WorldWideScience

Sample records for high current levels

  1. Stable superconducting magnet. [high current levels below critical temperature

    Science.gov (United States)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  2. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  3. Measurement technology of RF interference current in high current system

    Science.gov (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  4. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  5. Current status of high level radioactive waste disposal in Japan and foreign countries

    International Nuclear Information System (INIS)

    Tanaka, Satoru; Tanabe, Hiromi; Inagaki, Yusuke; Ishida, Hisahiro; Kato, Osamu; Kurata, Mitsuyuki; Yamachika, Hidehiko

    2002-01-01

    At a time point of 2002, there is no country actually disposing high level radioactive wastes into grounds, but in most of countries legislative preparation and practicing agents are carried out and site selection is promoted together with energetic advancement of its R and Ds. As disposal methods of the high level radioactive wastes, various methods such as space disposal, oceanic bottom disposal, ice bed disposal, ground disposal, and so on have been examined. And, a processing technology called partitioning and transmutation technology separating long-lived radionuclides from liquid high level radioactive waste and transmutation into short-lived or harmless radionuclides has also been studied. Here was introduced their wrestling conditions in Japan and main foreign countries, as a special issue of the Current status of high level radioactive waste disposal in Japan and foreign countries'. The high level radioactive wastes (glassification solids or spent nuclear fuels) are wastes always formed by nuclear power generation and establishment of technologies is an important subject for nuclear fuel cycle. (G.K.)

  6. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Yao, Y; Xiong, X; Lei, C; Soloveichik, S; Galstyan, E; Majkic, G

    2013-01-21

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba2Cu3Ox film. By a modified MOCVD process,enhanced critical current densities have been achieved with high levels of Zr addition,including 3.83 MA cm(-2) in 15 at.% Zr- added 1.1 mu m thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/ 12 mm have been reached in (Gd,Y) BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape,corresponding to a pinning force value of 268 GN m(-3). The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second- phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met.

  7. Enhanced critical currents in (Gd,Y)Ba2Cu3Ox superconducting tapes with high levels of Zr addition

    International Nuclear Information System (INIS)

    Selvamanickam, V; Shi, T; Liu, Y; Khatri, N D; Liu, J; Yao, Y; Galstyan, E; Majkic, G; Chen, Y; Xiong, X; Lei, C; Soloveichik, S

    2013-01-01

    The critical current and structural properties of (Gd,Y)BaCuO tapes made by metal organic chemical vapor deposition (MOCVD) with Zr addition levels up to 30 at.% have been investigated. The reduction in critical current beyond the previously optimized Zr addition level of 7.5 at.% was found to be due to structural deterioration of the (Gd,Y)Ba 2 Cu 3 O x film. By a modified MOCVD process, enhanced critical current densities have been achieved with high levels of Zr addition, including 3.83 MA cm −2 in 15 at.% Zr-added 1.1 μm thick film at 77 K in zero magnetic field. Critical currents as high as 1072 A/12 mm have been reached in (Gd,Y)BaCuO tapes with 15 at.% Zr addition at 30 K in a field of 3 T applied perpendicular to the tape, corresponding to a pinning force value of 268 GN m −3 . The enhanced critical currents achievable with a high density of nanoscale defects by employing high levels of second-phase additions enable the performance targets needed for the use of HTS tapes in coil applications involving high magnetic fields at temperatures below 50 K to be met. (paper)

  8. Historical Trust Levels Predict Current Welfare State Design

    DEFF Research Database (Denmark)

    Bergh, Andreas; Bjørnskov, Christian

    Using cross-sectional data for 76 countries, we apply instrumental variable techniques based on pronoun drop, temperature and monarchies to demonstrate that historical trust levels predict several indicators of current welfare state design, including universalism and high levels of regulatory...... freedom. We argue that high levels of trust and trustworthiness are necessary, but not sufficient, conditions for societies to develop successful universal welfare states that would otherwise be highly vulnerable to free riding and fraudulent behavior. Our results do not exclude positive feedback from...... welfare state universalism to individual trust, although we claim that the important causal link runs from historically trust levels to current welfare state design....

  9. Five-Phase Five-Level Open-Winding/Star-Winding Inverter Drive for Low-Voltage/High-Current Applications

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Wheeler, Patrick

    2016-01-01

    This paper work proposed a five-phase five-level open-/star-winding multilevel AC converter suitable for low-voltage/high-current applications. Modular converter consists of classical two-level five-phase voltage source inverter (VSI) with slight reconfiguration to serve as a multilevel converter...... for open-/star-winding loads. Elaborately, per phase of the VSI is built with one additional bi-directional switch (MOSFET/IGBT) and all five legs links to the neutral through two capacitors. The structure allows multilevel generation to five-level output with greater potential for fault tolerability under...

  10. Current R and D Status on High-Level Radioactive Waste Disposal in Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Myoung; Hwang, Yong Soo

    2008-11-15

    Current R and D status of such countries moving forward as the United States, Sweden, France, Japan and a few other countries for high-level radioactive waste (HLW) disposal in deep geological formation has been reviewed. Even though no HLW repositories have not practically constructed nor operated yet, lots of related R and D are being proceeded in many countries as well as in Korea. Through this brief review further progress is anticipated in this related R and D area in Korea.

  11. A high-current, high-voltage power supply with special output current waveform for APS injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Despe, O.D.; McGhee, D.G.; Mills, F.E.; Turner, L.R.

    1991-01-01

    This paper describes a high-voltage, high-current power supply for the injector synchrotron dipole magnets at APS. In order to reset the dipole magnets in each cycle two different current waveforms are suggested. The first current waveform consists of three sections, namely: dc-reset, linear ramp, and recovery sections where injection is done ''on the fly''. The second current waveform consists of six different sections, dc-reset, transition to injection level, injection flat level, parabolic, linear ramp and recovery sections. The effect of such waveforms on the beam is discussed and the power supply limitations to follow such waveforms are given. The power supply limitations are due to the power components and control loops. The reference for the current loop is generated by a DAC which is discussed

  12. Voltage Balancing Method on Expert System for 51-Level MMC in High Voltage Direct Current Transmission

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-01-01

    Full Text Available The Modular Multilevel Converters (MMC have been a spotlight for the high voltage and high power transmission systems. In the VSC-HVDC (High Voltage Direct Current based on Voltage Source Converter transmission system, the energy of DC link is stored in the distributed capacitors, and the difference of capacitors in parameters and charge rates causes capacitor voltage balance which affects the safety and stability of HVDC system. A method of MMC based on the expert system for reducing the frequency of the submodules (SMs of the IGBT switching frequency is proposed. Firstly, MMC with 51 levels for HVDC is designed. Secondly, the nearest level control (NLC for 51-level MMC is introduced. Thirdly, a modified capacitor voltage balancing method based on expert system for MMC-based HVDC transmission system is proposed. Finally, a simulation platform for 51-level Modular Multilevel Converter is constructed by using MATLAB/SIMULINK. The results indicate that the strategy proposed reduces the switching frequency on the premise of keeping submodule voltage basically identical, which greatly reduces the power losses for MMC-HVDC system.

  13. Current level detector

    International Nuclear Information System (INIS)

    Kerns, C.R.

    1977-01-01

    A device is provided for detecting the current level of a dc signal. It includes an even harmonic modulator to which a reference ac signal is applied. The unknown dc signal acts on the reference ac signal so that the output of the modulator includes an even harmonic whose amplitude is proportional to the unknown dc current. The device may be used to provide overcurrent protection for proportional wire chambers

  14. United States high-level radioactive waste management program: Current status and plans

    International Nuclear Information System (INIS)

    Williams, J.

    1992-01-01

    The inventory of spent fuel in storage at reactor sites in the United States is approximately 20,000 metric tons heavy metal (MTHM). It is increasing at a rate of 1700 to 2100 MTHM per year. According to current projections, by the time the last license for the current generation of nuclear reactors expires, there will be an estimated total of 84,000 MTHm. No commercial reprocessing capacity exists or is planned in the US. Therefore, the continued storage of spent fuel is required. The majority of spent fuel remains in the spent fuel pools of the utilities that generated it. Three utilities are presently supplementing pool capacity with on-site dry storage technologies, and four others are planning dry storage. Commercial utilities are responsible for managing their spent fuel until the Federal waste management system, now under development, accepts spent fuel for storage and disposal. Federal legislation charges the Office of Civilian Radioactive Waste Management (OCRWM) within the US Department of Energy (DOE) with responsibility for developing a system to permanently dispose of spent fuel and high level radioactive waste in a manner that protects the health and safety of the public and the quality of the environment. We are developing a waste management system consisting for three components: a mined geologic repository, with a projected start date of 2010; a monitored retrievable storage facility (MRS), scheduled to begin waste acceptance in 1998; and a transportation system to support MRS and repository operations. This paper discusses the background and framework for the program, as well as the current status and plans for management of spent nuclear fuel at commercial utilities; the OCRWM's development of a permanent geologic repository, an MRS, and a transportation system; the OCRWM's safety approach; the OCRWM's program management initiatives; and the OCRWM's external relations activities

  15. Electrooptic Methods for Measurement of Small DC Currents at High Voltage Level

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Beatty, Neville; Skilbreid, Asbjørn Ottar

    1989-01-01

    collectors are connected via resistors RA and RB to the protective side of the voltage to be measured and the emitters to the negative side. The currents flowing in to the bases of the transistors are independently controlled by the light levels following on the two photodiodes PDA, PDB....

  16. Analysis on current limiting characteristics of a transformer type SFCL with two triggering current levels

    International Nuclear Information System (INIS)

    Lim, Sung-Hun; Ko, Seckcheol; Han, Tae-Hee

    2013-01-01

    Highlights: ► We suggested the transformer type SFCL with two triggering current levels. ► The short-circuit tests for the suggested SFCL was executed. ► The fault angle as the fault conditions to verify its operation was selected. ► The usefulness of the suggested SFCL was confirmed through the short-circuit test. -- Abstract: In this paper, the transformer type superconducting fault current limiter (SFCL) with two triggering current levels was suggested and its current limiting characteristics were analyzed. The structure of the suggested transformer type SFCL with two triggering current levels largely consists of two parts. One is the transformer with two magnetically coupled coils, which correspond to the primary winding and the secondary one connected with one high-T C superconducting (HTSC) element. The other is third coil, or, another secondary winding with one HTSC element, which is wound on the same iron core together with two coils. This suggested transformer type SFCL can limit the fault current by generating its limiting impedance with two different amplitudes, which are dependent on the initial amplitude of the fault current in case of the fault occurrence. To confirm the usefulness of the proposed SFCL, the current limiting tests of the SFCL according to the fault angle, one of the effective fault conditions to affect the amplitude of the initial fault current, were carried out and its effective limiting operations were discussed

  17. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  18. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  19. 24 CFR 990.175 - Utilities expense level: Computation of the current consumption level.

    Science.gov (United States)

    2010-04-01

    ...: Computation of the current consumption level. 990.175 Section 990.175 Housing and Urban Development... Calculating Formula Expenses § 990.175 Utilities expense level: Computation of the current consumption level. The current consumption level shall be the actual amount of each utility consumed during the 12-month...

  20. Characteristics of solidified high-level waste products

    International Nuclear Information System (INIS)

    1979-01-01

    The object of the report is to contribute to the establishment of a data bank for future preparation of codes of practice and standards for the management of high-level wastes. The work currently in progress on measuring the properties of solidified high-level wastes is being studied

  1. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  2. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  3. High Level Radioactive Waste Management

    International Nuclear Information System (INIS)

    1991-01-01

    The proceedings of the second annual international conference on High Level Radioactive Waste Management, held on April 28--May 3, 1991, Las Vegas, Nevada, provides information on the current technical issue related to international high level radioactive waste management activities and how they relate to society as a whole. Besides discussing such technical topics as the best form of the waste, the integrity of storage containers, design and construction of a repository, the broader social aspects of these issues are explored in papers on such subjects as conformance to regulations, transportation safety, and public education. By providing this wider perspective of high level radioactive waste management, it becomes apparent that the various disciplines involved in this field are interrelated and that they should work to integrate their waste management activities. Individual records are processed separately for the data bases

  4. High-voltage high-current triggering vacuum switch

    International Nuclear Information System (INIS)

    Alferov, D.F.; Bunin, R.A.; Evsin, D.V.; Sidorov, V.A.

    2012-01-01

    Experimental investigations of switching and breaking capacities of the new high current triggered vacuum switch (TVS) are carried out at various parameters of discharge current. It has been shown that the high current triggered vacuum switch TVS can switch repeatedly a current from units up to ten kiloampers with duration up to ten millisecond [ru

  5. Techniques for the solidification of high-level wastes

    International Nuclear Information System (INIS)

    1977-01-01

    The problem of the long-term management of the high-level wastes from the reprocessing of irradiated nuclear fuel is receiving world-wide attention. While the majority of the waste solutions from the reprocessing of commercial fuels are currently being stored in stainless-steel tanks, increasing effort is being devoted to developing technology for the conversion of these wastes into solids. A number of full-scale solidification facilities are expected to come into operation in the next decade. The object of this report is to survey and compare all the work currently in progress on the techniques available for the solidification of high-level wastes. It will examine the high-level liquid wastes arising from the various processes currently under development or in operation, the advantages and disadvantages of each process for different types and quantities of waste solutions, the stages of development, the scale-up potential and flexibility of the processes

  6. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  7. Current conserving theory at the operator level

    Science.gov (United States)

    Yuan, Jiangtao; Wang, Yin; Wang, Jian

    The basic assumption of quantum transport in mesoscopic systems is that the total charge inside the scattering region is zero. This means that the potential deep inside reservoirs is effectively screened and therefore the electric field at interface of scattering region is zero. Thus the current conservation condition can be satisfied automatically which is an important condition in mesoscopic transport. So far the current conserving ac theory is well developed by considering the displacement current which is due to Coulomb interaction if we just focus on the average current. However, the frequency dependent shot noise does not satisfy the conservation condition since we do not consider the current conservation at the operator level. In this work, we formulate a generalized current conserving theory at the operator level using non-equilibrium Green's function theory which could be applied to both average current and frequency dependent shot noise. A displacement operator is derived for the first time so that the frequency dependent correlation of displacement currents could be investigated. Moreover, the equilibrium shot noise is investigated and a generalized fluctuation-dissipation relationship is presented.

  8. Canyon of current suppression in an interacting two-level quantum dot

    DEFF Research Database (Denmark)

    Karlström, O; Pedersen, Jonas Nyvold; Samuelsson, P

    2011-01-01

    Motivated by the recent discovery of a canyon of conductance suppression in a two-level equal-spin quantum dot system [Phys. Rev. Lett. 104, 186804 (2010)], the transport through this system is studied in detail. At low bias and low temperature a strong current suppression is found around...... the electron-hole symmetry point independent of the couplings, in agreement with previous results. By means of a Schrieffer–Wolff transformation we are able to give an intuitive explanation to this suppression in the low-energy regime. In the general situation, numerical simulations are carried out using...... for the current suppression. It is also shown how broadening, interference, and a finite interaction energy cause a shift of the current minimum away from degeneracy. Finally we see how an increased population of the upper level leads to current peaks on each side of the suppression line. At sufficiently high...

  9. Relative Price Levels and Current Accounts: An Exploration

    Directory of Open Access Journals (Sweden)

    Joshua Aizenman

    2008-12-01

    Full Text Available This paper studies the links between current accounts and relative price levels, finding that current account changes are associated with sizable future relative price levels effects. This is done in panel regressions of the Penn effect, adding a lagged current account/GDP and other explanatory variables. Higher GDP/ capita and a greater export share of manufacturing tend to mitigate the real exchange rate impact of lagged current accounts. Active management of current accounts may provide a powerful adjustment channel, mitigating the real exchange rate effects of volatile terms of trade, and may explain the growing proliferation of Sovereign Wealth Funds.

  10. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  11. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  12. Loss of cultural world heritage and currently inhabited places to sea-level rise

    International Nuclear Information System (INIS)

    Marzeion, Ben; Levermann, Anders

    2014-01-01

    The world population is concentrated near the coasts, as are a large number of Cultural World Heritage sites, defined by the UNESCO. Using spatially explicit sea-level estimates for the next 2000 years and high-resolution topography data, we compute which current cultural heritage sites will be affected by sea-level rise at different levels of sustained future warming. As indicators for the pressure on future cultural heritage we estimate the percentage of each country’s area loss, and the percentage of current population living in regions that will be permanently below sea level, for different temperature levels. If the current global mean temperature was sustained for the next two millennia, about 6% (40 sites) of the UNESCO sites will be affected, and 0.7% of global land area will be below mean sea level. These numbers increase to 19% (136 sites) and 1.1% for a warming of 3 K. At this warming level, 3–12 countries will experience a loss of more than half of their current land surface, 25–36 countries lose at least 10% of their territory, and 7% of the global population currently lives in regions that will be below local sea level. Given the millennial scale lifetime of carbon dioxide in the atmosphere, our results indicate that fundamental decisions with regard to mankind’s cultural heritage are required. (paper)

  13. High current plasma electron emitter

    International Nuclear Information System (INIS)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current, small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications

  14. Current status of low-level-waste-segregation technology

    International Nuclear Information System (INIS)

    Clark, D.E.; Colombo, P.; Sailor, V.L.

    1982-01-01

    The adoption of improved waste segregation practices by waste generators and burial sites will result in the improved disposal of low-level wastes (LLW) in the future. Many of the problems connected with this disposal mode are directly attributable to or aggravated by the indiscriminate mixing of various waste types in burial trenches. Thus, subsidence effects, contact with ground fluids, movement of radioactivity in the vapor phase, migration of radionuclides due to the presence of chelating agents or products of biological degradation, deleterious chemical reactions, and other problems have occurred. Regulations are currently being promulgated which will require waste segregation to a high degree at LLW burial sites. The state-of-the-art of LLW segregation technology and current practices in the USA have been surveyed at representative facilities. Favorable experience has been reported at various sites following the application of segregation controls. This paper reports on the state-of-the-art survey and addresses current and projected LLW segregation practices and their relationship to other waste management activities

  15. High School Sport Specialization Patterns of Current Division I Athletes

    OpenAIRE

    Post, Eric G.; Thein-Nissenbaum, Jill M.; Stiffler, Mikel R.; Brooks, M. Alison; Bell, David R.; Sanfilippo, Jennifer L.; Trigsted, Stephanie M.; Heiderscheit, Bryan C.; McGuine, Timothy A.

    2016-01-01

    Background: Sport specialization is a strategy to acquire superior sport performance in 1 sport but is associated with increased injury risk. Currently, the degree of high school specialization among Division I athletes is unknown. Hypothesis: College athletes will display increased rates of specialization as they progress through their high school careers. Study Design: Descriptive epidemiological study. Level of Evidence: Level 4. Methods: Three hundred forty-three athletes (115 female) rep...

  16. Evaluation of radionuclide concentrations in high-level radioactive wastes

    International Nuclear Information System (INIS)

    Fehringer, D.J.

    1985-10-01

    This report describes a possible approach for development of a numerical definition of the term ''high-level radioactive waste.'' Five wastes are identified which are recognized as being high-level wastes under current, non-numerical definitions. The constituents of these wastes are examined and the most hazardous component radionuclides are identified. This report suggests that other wastes with similar concentrations of these radionuclides could also be defined as high-level wastes. 15 refs., 9 figs., 4 tabs

  17. Technetium Chemistry in High-Level Waste

    International Nuclear Information System (INIS)

    Hess, Nancy J.

    2006-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  18. Characterization of high-current, high-temperature superconductor current lead elements

    International Nuclear Information System (INIS)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures

  19. Materials Science of High-Level Nuclear Waste Immobilization

    International Nuclear Information System (INIS)

    Weber, William J.; Navrotsky, Alexandra; Stefanovsky, S. V.; Vance, E. R.; Vernaz, Etienne Y.

    2009-01-01

    With the increasing demand for the development of more nuclear power comes the responsibility to address the technical challenges of immobilizing high-level nuclear wastes in stable solid forms for interim storage or disposition in geologic repositories. The immobilization of high-level nuclear wastes has been an active area of research and development for over 50 years. Borosilicate glasses and complex ceramic composites have been developed to meet many technical challenges and current needs, although regulatory issues, which vary widely from country to country, have yet to be resolved. Cooperative international programs to develop advanced proliferation-resistant nuclear technologies to close the nuclear fuel cycle and increase the efficiency of nuclear energy production might create new separation waste streams that could demand new concepts and materials for nuclear waste immobilization. This article reviews the current state-of-the-art understanding regarding the materials science of glasses and ceramics for the immobilization of high-level nuclear waste and excess nuclear materials and discusses approaches to address new waste streams

  20. Sterilization, high-level disinfection, and environmental cleaning.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2011-03-01

    Failure to perform proper disinfection and sterilization of medical devices may lead to introduction of pathogens, resulting in infection. New techniques have been developed for achieving high-level disinfection and adequate environmental cleanliness. This article examines new technologies for sterilization and high-level disinfection of critical and semicritical items, respectively, and because semicritical items carry the greatest risk of infection, the authors discuss reprocessing semicritical items such as endoscopes and automated endoscope reprocessors, endocavitary probes, prostate biopsy probes, tonometers, laryngoscopes, and infrared coagulation devices. In addition, current issues and practices associated with environmental cleaning are reviewed. Copyright © 2011. Published by Elsevier Inc.

  1. Five-Level Current-Source Inverters With Buck–Boost and Inductive-Current Balancing Capabilities

    DEFF Research Database (Denmark)

    Gao, Feng; Loh, Poh Chiang; Blaabjerg, Frede

    2010-01-01

    This paper presents new five-level current-source inverters (CSIs) with voltage/current buck–boost capability, unlike existing five-level CSIs where only voltage–boost operation is supported. The proposed inverters attain self-inductive-currentbalancing per switching cycle at their dc front ends...... without having to include additional balancing hardware or complex control manipulation. The inverters can conveniently be controlled by using the well-established phase-shifted carrier modulation scheme with only two additional linear references and a mapping logic table needed. Existing modulators can...

  2. Development of pulsed high current drivers for fast Z-pinch

    International Nuclear Information System (INIS)

    Sun Fengju; Qiu Aici; Zeng Zhengzhong; Zeng Jiangtao; Kuai Bin; Yang Hailiang

    2006-01-01

    It is required that the peak current of high power pulsed drive for fast Z-pinch reaches 60 MA to realize inertial confine fusion (ICF) and high yield (HY). With the conventional technological methods similar to the Z or Saturn apparatus, increasing driver current further is impractical and difficult according to the cost, structure complexity and reliability of the driver, so it is necessary to develop novel fast pulsed high current driver. The present art-of-state and trends of fast Z-pinch driver are summarized, and the typical conceptual designs and technological methods on ICF/HY PRS (plasma radiation source) and destroying-level super X-ray simulators in USA and Russia are outlined, such as HCEI's UGXX1 driver and new Saturn driver based on fast linear transformer driver (FLTD) and novel driver based on fast Marx generator (FMG) with current of 15 MA. The crucial technological problems and requirements to investigate in the future are presented. (authors)

  3. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  4. Study on current limiting characteristics of SFCL with two trigger current levels

    International Nuclear Information System (INIS)

    Lim, S.H.

    2010-01-01

    In this paper, the superconducting fault current limiter (SFCL) with two trigger current levels was suggested and its effectiveness through the analysis on the current limiting characteristics was described. The proposed SFCL, which consists of the triggering and the limiting components, can limit the fault current by generating the limiting impedance through two steps according to the amplitude of the initial fault current. In case that the fault happens, the lower initial fault current causes the only superconducting element of the triggering component to be quenched. On the other hand, the higher initial fault current makes both the superconducting elements comprising the triggering and the limiting components of the SFCL to be quenched, which contributes to the higher impedance of the SFCL. Therefore, the effective fault current limiting operation of the SFCL can be performed by generating the SFCL's impedance in proportion to the amplitude of the initial fault current. To confirm the current limiting operation of the proposed SFCL, the short-circuit tests of the SFCL according to the fault angle were carried out and its effective fault current limiting operations could be discussed.

  5. Design of high current bunching system and high power fast Faraday cup for high current LEBT at VECC

    International Nuclear Information System (INIS)

    Anuraag Misra, A.; Pandit, B.V.S.; Gautam Pal, C.

    2011-01-01

    A high current microwave ion source as described is currently operational at VECC. We are able to optimize 6.4 mA of proton current in the LEBT line of ion source. The cyclotron type of accelerators accept only a fraction of DC ion beam coming from ion source so a ion beam buncher is needed to increase the accepted current into the cyclotron. The buncher described in this paper is unique in its kind as it has to handle high beam loading power upto 400 W as it is designed to bunch few mA of proton beam currents at 80 keV beam energy. A sinusoidal quarter wave RF structure has been chosen to bunch the high current beam due to high Q achievable in comparison with other configurations. This buncher has been designed using CST Microwave studio 3D advanced code since the design frequency of our buncher is 42 MHz, we have provided the RF and vacuum window near the drift tube of buncher to avoid vacuum and multipacting problems and to keep maximum volume in air region. There is a provision of multipacting interlocks to shut off amplifier during multipacting. We have carried out a detailed electromagnetic and thermal design of the buncher in CST Microwave studio and simulated values of unloaded Q was calculated be 4000. We have estimated a power of 400 W to achieve gap (designed) voltage of 10 kV. This buncher is in advanced stage of fabrication. A high power fast Faraday cup is also designed to characterize the above mentioned high current bunching system. The fast Faraday cup is designed in 50 Ω coaxial geometry to transmit fast pulse of bunched ion beam. The design of Faraday cup was completed using ANSYS HFSS and a bandwidth of 1.75 GHz was achieved this faraday cup design was different from conventional Faraday cup design as we have designed the support and cooling lines at such a place on Faraday cup which do not disturb the electrical impedance of the cup. (author)

  6. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  7. High-Level Waste Melter Study Report

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Joseph M.; Bickford, Dennis F.; Day, Delbert E.; Kim, Dong-Sang; Lambert, Steven L.; Marra, Sharon L.; Peeler, David K.; Strachan, Denis M.; Triplett, Mark B.; Vienna, John D.; Wittman, Richard S.

    2001-07-13

    At the Hanford Site in Richland, Washington, the path to site cleanup involves vitrification of the majority of the wastes that currently reside in large underground tanks. A Joule-heated glass melter is the equipment of choice for vitrifying the high-level fraction of these wastes. Even though this technology has general national and international acceptance, opportunities may exist to improve or change the technology to reduce the enormous cost of accomplishing the mission of site cleanup. Consequently, the U.S. Department of Energy requested the staff of the Tanks Focus Area to review immobilization technologies, waste forms, and modifications to requirements for solidification of the high-level waste fraction at Hanford to determine what aspects could affect cost reductions with reasonable long-term risk. The results of this study are summarized in this report.

  8. A high Tc superconducting liquid nitrogen level sensor

    International Nuclear Information System (INIS)

    Jin, J. X.; Liu, H. K.; Dou, S. X.; Grantham, C.; Beer, J.

    1996-01-01

    Full text: The dramatic resistance change in the superconducting-normal transition temperature range enables a high T c superconductor to be considered for designing a liquid nitrogen level sensor. A (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire is selected and tested as a continuous liquid nitrogen level sensor to investigate the possibility for this application. The (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+x Ag clad superconducting wire has approximately 110 K critical temperature, with more flexible and stable properties compared with bulk shape ceramic high T c superconductors. The voltage drops across the sensor are tested with different immersion lengths in liquid nitrogen. The accuracy of the HTS sensor is analysed with its dR/dT in the superconducting-normal transition range. The voltage signal is sensitive to liquid nitrogen level change, and this signal can be optimized by controlling the transport current. The problems of the Ag clad superconductor are that the Ag sheath thermal conductivity is very high, and the sensor normal resistance is low. These are the main disadvantages for using such a wire as a continuous level sensor. However, a satisfactory accuracy can be achieved by control of the transport current. A different configuration of the wire sensor is also designed to avoid this thermal influence

  9. Modeling of leakage currents in high-k dielectrics

    International Nuclear Information System (INIS)

    Jegert, Gunther Christian

    2012-01-01

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO 2 material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO 2 /TiN capacitor structures were suggested and problem areas that may

  10. Modeling of leakage currents in high-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jegert, Gunther Christian

    2012-03-15

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO{sub 2} material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO{sub 2}/TiN capacitor structures were suggested and problem areas

  11. Pulse width modulated buck-boost five-level current source inverters

    DEFF Research Database (Denmark)

    Blaabjerg, Frede; Gao, F.; Loh, P.C.

    2008-01-01

    , resulting in the natural balance of input current. For maintaining the normalized volt-sec average unchanged, the alternative phase opposition disposition (APOD) modulation scheme with typical gating signal mapping technique from voltage source inverter (VSI) to CSI can be assumed to control the five......This paper presents new five-level current source inverters (CSIs) with voltage/current buck-boost capability. Being different from the existing multilevel CSI, the proposed CSIs were first designed to regulate the flowing path of dc input current by controlling two additional active switches......-level buck-boost CSIs. Next by observing the hidden current charging path during inductive charging interval under APOD modulation, it is noted that the buck-boost five-level CSI can then be further modified with lesser active component without degrading output performance. To verify the theoretical findings...

  12. Eddy-current inspection of high flux isotope reactor nuclear control rods

    International Nuclear Information System (INIS)

    Smith, J.H.; Chitwood, L.D.

    1981-07-01

    Inner control rods for the High Flux Isotope Reactor were nondestructively inspected for defects by eddy-current techniques. During these examinations aluminum cladding thickness and oxide thickness on the cladding were also measured. Special application techniques were required because of the high-radiation levels (approx. 10 5 R/h at 30 cm) present and the relatively large temperature gradients that occurred on the surface of the control rods. The techniques used to perform the eddy-current inspections and the methods used to reduce the associated data are described

  13. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  14. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  15. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  16. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  17. Adaptation of superconducting fault current limiter to high-speed reclosing

    International Nuclear Information System (INIS)

    Koyama, T.; Yanabu, S.

    2009-01-01

    Using a high temperature superconductor, we constructed and tested a model superconducting fault current limiter (SFCL). The superconductor might break in some cases because of its excessive generation of heat. Therefore, it is desirable to interrupt early the current that flows to superconductor. So, we proposed the SFCL using an electromagnetic repulsion switch which is composed of a superconductor, a vacuum interrupter and a by-pass coil, and its structure is simple. Duration that the current flow in the superconductor can be easily minimized to the level of less than 0.5 cycle using this equipment. On the other hand, the fault current is also easily limited by large reactance of the parallel coil. There is duty of high-speed reclosing after interrupting fault current in the electric power system. After the fault current is interrupted, the back-up breaker is re-closed within 350 ms. So, the electromagnetic repulsion switch should return to former state and the superconductor should be recovered to superconducting state before high-speed reclosing. Then, we proposed the SFCL using an electromagnetic repulsion switch which employs our new reclosing function. We also studied recovery time of the superconductor, because superconductor should be recovered to superconducting state within 350 ms. In this paper, the recovery time characteristics of the superconducting wire were investigated. Also, we combined the superconductor with the electromagnetic repulsion switch, and we did performance test. As a result, a high-speed reclosing within 350 ms was proven to be possible.

  18. Current Trends in High-Level Synthesis of Asynchronous Circuits

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2009-01-01

    This paper is a survey paper presenting what the author sees as two major and promising trends in the current research in CAD-tools and design-methods for asynchronous circuits. One branch of research builds on top of existing asynchronous CAD-tools that perform syntax directed translation, e...... a conventional synchronous circuit as the starting point, and then adds some form of handshake-based flow-control. One approach keeps the global clock and implements discrete-time asynchronous operation. Another approach substitutes the clocked registers by asynchronous handshake-registers, thus creating truly...

  19. On the predictability of high water level along the US East Coast: can the Florida Current measurement be an indicator for flooding caused by remote forcing?

    Science.gov (United States)

    Ezer, Tal; Atkinson, Larry P.

    2017-06-01

    Recent studies show that in addition to wind and air pressure effects, a significant portion of the variability of coastal sea level (CSL) along the US East Coast can be attributed to non-local factors such as variations in the Gulf Stream and the North Atlantic circulation; these variations can cause unpredictable coastal flooding. The Florida Current transport (FCT) measurement across the Florida Straits monitors those variations, and thus, the study evaluated the potential of using the FCT as an indicator for anomalously high water level along the coast. Hourly water level data from 12 tide gauge stations over 12 years are used to construct records of maximum daily water levels (MDWL) that are compared with the daily FCT data. An empirical mode decomposition (EMD) approach is used to divide the data into high-frequency modes (periods T anti-correlated with MDWL in high-frequency modes but positively correlated with MDWL in low-frequency modes. FCC on the other hand is always anti-correlated with MDWL for all frequency bands, and the high water signal lags behind FCC for almost all stations, thus providing a potential predictive skill (i.e., whenever a weakening trend is detected in the FCT, anomalously high water is expected along the coast over the next few days). The MDWL-FCT correlation in the high-frequency modes is maximum in the lower Mid-Atlantic Bight, suggesting influence from the meandering Gulf Stream after it separates from the coast. However, the correlation in low-frequency modes is maximum in the South Atlantic Bight, suggesting impact from variations in the wind pattern over subtropical regions. The middle-frequency and low-frequency modes of the FCT seem to provide the best predictor for medium to large flooding events; it is estimated that ˜10-25% of the sea level variability in those modes can be attributed to variations in the FCT. An example from Hurricane Joaquin (September-October, 2015) demonstrates how an offshore storm that never made

  20. Ionization chamber for measurements of high-level tritium gas

    International Nuclear Information System (INIS)

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed

  1. Design features of a full-scale high-level waste vitrification system

    International Nuclear Information System (INIS)

    Siemens, D.H.; Bonner, W.F.

    1976-08-01

    A system has been designed and is currently under construction for vitrification of commercial high-level waste. The process consists of a spray calciner coupled to an in-can melter. Due to the high radiation levels expected, this equipment is designed for totally remote operation and maintenance. The in-cell arrangement of this equipment has been developed cooperatively with a nuclear fuel reprocessor. The system will be demonstrated both full scale with nonradioactive simulated waste and pilot scale with actual high-level waste

  2. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    Schempp, A.; Goethe, J.W.

    1996-01-01

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  3. Properties of high current RFQ injectors

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, A.; Goethe, J.W. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1996-12-31

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author) 2 refs.

  4. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Chitnis, R.R.; Wattal, P.K.; Theyyunni, T.K.; Nair, M.K.T.; Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Rao, M.K.; Mathur, J.N.; Murali, M.S.; Iyer, R.H.; Badheka, L.P.; Banerji, A.

    1994-01-01

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs

  5. Partitioning of actinide from simulated high level wastes arising from reprocessing of PHWR fuels: counter current extraction studies using CMPO

    Energy Technology Data Exchange (ETDEWEB)

    Deshingkar, D S; Chitnis, R R; Wattal, P K; Theyyunni, T K; Nair, M K.T. [Bhabha Atomic Research Centre, Bombay (India). Process Engineering and Systems Development Div.; Ramanujam, A; Dhami, P S; Gopalakrishnan, V; Rao, M K [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Group; Mathur, J N; Murali, M S; Iyer, R H [Bhabha Atomic Research Centre, Bombay (India). Radiochemistry Div.; Badheka, L P; Banerji, A [Bhabha Atomic Research Centre, Bombay (India). Bio-organic Div.

    1994-12-31

    High level wastes (HLW) arising from reprocessing of pressurised heavy water reactor (PHWR) fuels contain actinides like neptunium, americium and cerium which are not extracted in the Purex process. They also contain small quantities of uranium and plutonium in addition to fission products. Removal of these actinides prior to vitrification of HLW can effectively reduce the active surveillance period of final waste form. Counter current studies using indigenously synthesised octyl (phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) were taken up as a follow-up of successful runs with simulated sulphate bearing low acid HLW solutions. The simulated HLW arising from reprocessing of PHWR fuel was prepared based on presumed burnup of 6500 MWd/Te of uranium, 3 years cooling period and 800 litres of waste generation per tonne of fuel reprocessed. The alpha activity of the HLW raffinate after extraction with the CMPO-TBP mixture could be brought down to near background level. (author). 13 refs., 2 tabs., 12 figs.

  6. Immobilization of high level nuclear reactor wastes in SYNROC: a current appraisal

    International Nuclear Information System (INIS)

    Oversby, V.M.; Ringwood, A.E.

    1981-01-01

    Results are presented for leach testing at 95 0 C and 200 0 C of SYNROC containing 9% and 20% simulated high level radioactive waste, synthetic hollandite and pervoskite samples, and natural zirconolite and pervoskite samples. Single phase synthetic minerals show much higher leach rates than natural mineral samples and polyphase SYNROC samples. Natural zirconolite samples with low radiation damage have leach rates at 200 0 C based on U which are identical to those measured on SYNROC samples. Natural zirconolites with very large accumulated α dose and radiation damage have leach rates at 200 0 C which are only 5 times higher than those of low dose samples

  7. Cermets for high level waste containment

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-01-01

    Cermet materials are currently under investigation as an alternate for the primary containment of high level wastes. The cermet in this study is an iron--nickel base metal matrix containing uniformly dispersed, micron-size fission product oxides, aluminosilicates, and titanates. Cermets possess high thermal conductivity, and typical waste loading of 70 wt % with volume reduction factors of 2 to 200 and low processing volatility losses have been realized. Preliminary leach studies indicate a leach resistance comparable to other candidate waste forms; however, more quantitative data are required. Actual waste studies have begun on NFS Acid Thorex, SRP dried sludge and fresh, unneutralized SRP process wastes

  8. Energy confinement in a high-current reversed field pinch

    International Nuclear Information System (INIS)

    An, Z.G.; Lee, G.S.; Diamond, P.H.

    1985-07-01

    The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP

  9. Accelerated sea level rise and Florida Current transport

    Directory of Open Access Journals (Sweden)

    J. Park

    2015-07-01

    Full Text Available The Florida Current is the headwater of the Gulf Stream and is a component of the North Atlantic western boundary current from which a geostrophic balance between sea surface height and mass transport directly influence coastal sea levels along the Florida Straits. A linear regression of daily Florida Current transport estimates does not find a significant change in transport over the last decade; however, a nonlinear trend extracted from empirical mode decomposition (EMD suggests a 3 Sv decline in mean transport. This decline is consistent with observed tide gauge records in Florida Bay and the straits exhibiting an acceleration of mean sea level (MSL rise over the decade. It is not known whether this recent change represents natural variability or the onset of the anticipated secular decline in Atlantic meridional overturning circulation (AMOC; nonetheless, such changes have direct impacts on the sensitive ecological systems of the Everglades as well as the climate of western Europe and eastern North America.

  10. High-level verification

    CERN Document Server

    Lerner, Sorin; Kundu, Sudipta

    2011-01-01

    Given the growing size and heterogeneity of Systems on Chip (SOC), the design process from initial specification to chip fabrication has become increasingly complex. This growing complexity provides incentive for designers to use high-level languages such as C, SystemC, and SystemVerilog for system-level design. While a major goal of these high-level languages is to enable verification at a higher level of abstraction, allowing early exploration of system-level designs, the focus so far for validation purposes has been on traditional testing techniques such as random testing and scenario-based

  11. Prototype high current, high duty factor negative hydrogen ion source for LAMPF

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Hayward, T.D.; Jackson, J.A.

    1975-01-01

    Present plans for the high current proton storage ring at LAMPF incorporate charge changing (stripping) injection of H - ions in all modes of operation. Achievable stored current levels in this device will be strongly dependent on the maximum H - beam intensity which can be accelerated by the linac, consistent with acceptable beam spill. This requirement has stimulated a program to develop an H - ion source capable of providing a suitably high peak current (up to 25 mA) at high duty factor (up to 12 percent), with a normalized x,x' or y,y' emittance acceptable to the accelerating system. There are presently two main approaches which could lead to H - ion sources providing this kind of performance. These are (a) the charge exchange method, in which an intense proton beam is fractionally converted to H - beam in a suitable charge adding medium, and (b) the direct extraction method, in which H - ions are obtained by a surface emission process associated with a gas discharge plasma. While both approaches may eventually find optimum application in different situations, it is not obvious, at present, which scheme will turn out to be the most satisfactory for LAMPF. A prototype charge exchange H - ion source has been constructed as a first step in the development program and is presently being evaluated. Work on surface emission direct extraction techniques is in the planning stages. (U.S.)

  12. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  13. Dark current studies on a normal-conducting high-brightness very-high-frequency electron gun operating in continuous wave mode

    Directory of Open Access Journals (Sweden)

    R. Huang

    2015-01-01

    Full Text Available We report on measurements and analysis of a field-emitted electron current in the very-high-frequency (VHF gun, a room temperature rf gun operating at high field and continuous wave (CW mode at the Lawrence Berkeley National Laboratory (LBNL. The VHF gun is the core of the Advanced Photo-injector Experiment (APEX at LBNL, geared toward the development of an injector for driving the next generation of high average power x-ray free electron lasers. High accelerating fields at the cathode are necessary for the high-brightness performance of an electron gun. When coupled with CW operation, such fields can generate a significant amount of field-emitted electrons that can be transported downstream the accelerator forming the so-called “dark current.” Elevated levels of a dark current can cause radiation damage, increase the heat load in the downstream cryogenic systems, and ultimately limit the overall performance and reliability of the facility. We performed systematic measurements that allowed us to characterize the field emission from the VHF gun, determine the location of the main emitters, and define an effective strategy to reduce and control the level of dark current at APEX. Furthermore, the energy spectra of isolated sources have been measured. A simple model for energy data analysis was developed that allows one to extract information on the emitter from a single energy distribution measurement.

  14. Limiting stable states of high-Tc superconductors in the alternating current modes

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.

    2014-01-01

    The limiting current-carrying capacity of high-T c superconductor and superconducting tape has been studied in the alternating current states. The features that are responsible for their stable formation have been investigated under the conduction-cooled conditions when the operating peak values of the electric field and the current may essentially exceed the corresponding critical values of superconductor. Besides, it has been proved that these peak values are higher than the values of the electric field and the current, which lead to the thermal runaway phenomenon when the current instability onset occurs in the operating modes with direct current. As a result, the stable extremely high heat generation exists in these operating states, which can be called as overloaded states. The limiting stable peak values of charged currents and stability conditions have been determined taking into account the flux creep states of superconductors. The analysis performed has revealed that there exist characteristic times defining the corresponding time windows in the stable development of overloaded states of the alternating current. In order to explain their existence, the basic thermo-electrodynamics mechanisms have been formulated, which have allowed to explain the high stable values of the temperature and the induced electric field before the onset of alternating current instability. In general, it has been shown that the high-T c superconductors may stably operate in the overloaded alternating current states even under the not intensive cooling conditions at a very high level of heat generation, which is not considered in the existing theory of losses. (authors)

  15. A new high-voltage level-shifting circuit for half-bridge power ICs

    International Nuclear Information System (INIS)

    Kong Moufu; Chen Xingbi

    2013-01-01

    In order to reduce the chip area and improve the reliability of HVICs, a new high-voltage level-shifting circuit with an integrated low-voltage power supply, two PMOS active resistors and a current mirror is proposed. The integrated low-voltage power supply not only provides energy for the level-shifting circuit and the logic circuit, but also provides voltage signals for the gates and sources of the PMOS active resistors to ensure that they are normally-on. The normally-on PMOS transistors do not, therefore, need to be fabricated in the depletion process. The current mirror ensures that the level-shifting circuit has a constant current, which can reduce the process error of the high-voltage devices of the circuit. Moreover, an improved RS trigger is also proposed to improve the reliability of the circuit. The proposed level-shifting circuit is analyzed and confirmed by simulation with MEDICI, and the simulation results show that the function is achieved well. (semiconductor integrated circuits)

  16. High current polarized electron source

    Science.gov (United States)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  17. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  18. Cermet high level waste forms: a pregress report

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-06-01

    The fixation of high level radioactive waste from both commercial and DOE defense sources as cermets is currently under study. This waste form consists of a continuous iron-nickel base metal matrix containing small particles of fission product oxides. Preliminary evaluations of cermets fabricated from a variety of simulated wastes indicate they possess properties providing advantages over other waste forms presently being considered, namely thermal conductivity, waste loading levels, and leach resistance. This report describes the progress of this effort, to date, since its initiation in 1977

  19. Hi-LAB: A New Measure of Aptitude for High-Level Language Proficiency

    Science.gov (United States)

    Linck, Jared A.; Hughes, Meredith M.; Campbell, Susan G.; Silbert, Noah H.; Tare, Medha; Jackson, Scott R.; Smith, Benjamin K.; Bunting, Michael F.; Doughty, Catherine J.

    2013-01-01

    Few adult second language (L2) learners successfully attain high-level proficiency. Although decades of research on beginning to intermediate stages of L2 learning have identified a number of predictors of the rate of acquisition, little research has examined factors relevant to predicting very high levels of L2 proficiency. The current study,…

  20. Development of cermets for high-level radioactive waste fixation

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1979-01-01

    A method is currently under development for the solidification and fixation of commercial and defense high-level radioactive wastes in the form of ceramic particles encapsulated by metal, i.e., a cermet. The chemical and physical processing techniques which have been developed and the properties of the resulting cermet bodies are described in this paper. These cermets have the advantages of high thermal conductivity and low leach rates

  1. High-level lipase production by Aspergillus candidus URM 5611 ...

    African Journals Online (AJOL)

    The current study evaluated lipase production by Aspergillus candidus URM 5611 through solid state fermentation (SSF) by using almond bran licuri as a new substrate. The microorganism produced high levels of the enzyme (395.105 U gds-1), thus surpassing those previously reported in the literature. The variable ...

  2. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  3. The relationship between chiropractor required and current level of business knowledge.

    Science.gov (United States)

    Ciolfi, Michael Anthony; Kasen, Patsy Anne

    2017-01-01

    Chiropractors frequently practice within health care systems requiring the business acumen of an entrepreneur. However, some chiropractors do not know the relationship between the level of business knowledge required for practice success and their current level of business knowledge. The purpose of this quantitative study was to examine the relationship between chiropractors' perceived level of business knowledge required and their perceived level of current business knowledge. Two hundred and seventy-four participants completed an online survey (Health Care Training and Education Needs Survey) which included eight key business items. Participants rated the level of perceived business knowledge required (Part I) and their current perceived level of knowledge (Part II) for the same eight items. Data was collected from November 27, 2013 to December 18, 2013. Data were analyzed using Spearman's ranked correlation to determine the statistically significant relationships for the perceived level of knowledge required and the perceived current level of knowledge for each of the paired eight items from Parts I and II of the survey. Wilcoxon Signed Ranks Tests were performed to determine the statistical difference between the paired items. The results of Spearman's correlation testing indicated a statistically significant ( p business items (6 of 8) however a statistically difference was demonstrated in only three of the paired business items. The implications of this study for social change include the potential to improve chiropractors' business knowledge and skills, enable practice success, enhance health services delivery and positively influence the profession as a viable career.

  4. Phonon induced optical gain in a current carrying two-level quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)

    2017-05-15

    In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.

  5. HIGH-CURRENT COLD CATHODE FIELD EMISSION ARRAY FOR ELECTRON LENS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-12-28

    During Phase I, the following goals were achieved: (1) design and fabrication of a novel, nano-dimensional CNT field emitter assembly for high current density application, with high durability; (2) fabrication of a ceramic based micro channel plate (MCP) and characterization of its secondary electron emission; and (3) characterizing the CNT/MCP cathode for high field emission and durability. As a result of these achievements, a relatively high current density of ~ 1.2 A/cm2 from a CNT cathode and single channel MCP were measured. The emission current was also extremely stable with a peak-to-peak variation of only 1.8%. The emission current could be further enhanced to meet requirements for electron lens applications by increasing the number of MCP channels. A calculation for maximum possible current density with a 1200 channel/cm2 MCP, placed over a cathode with 1200 uniformly functioning CNTs, would be ~1.46 kA/cm2, neglecting space charge limitations. Clearly this level of emission is far greater than what is needed for the electron lens application, but it does offer a highly comforting margin to account for sub-standard emitters and/or to allow the lesser challenge of building a cathode with fewer channels/cm2. A satisfactory goal for the electron lens application would be a controllable emission of 2-4 mA per channel in an ensemble of 800-1200 uniformly-functioning channels/cm2, and a cathode with overall area of about 1 cm2.

  6. High-voltage integrated linear regulator with current sinking capabilities for portable ultrasound scanners

    DEFF Research Database (Denmark)

    Pausas, Guifre Vendrell; Llimos Muntal, Pere; Jørgensen, Ivan Harald Holger

    2017-01-01

    This paper presents a high-voltage integrated regulator capable of sinking current for driving pulse-triggered level shifters in drivers for ultrasound applications. The regulator utilizes a new topology with a feedback loop and a current sinking circuit to satisfy the requirements of the portable....... The proposed design has been implemented in high-voltage 0.18 μm process whithin an area of 0.11 mm2 and it is suitable for system-on-chip integration due to its low component count and the fully integrated design....

  7. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  8. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  9. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  10. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To data the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modeling are presented

  11. High-current relativistic klystron amplifier development for microsecond pulse lengths

    International Nuclear Information System (INIS)

    Fazio, M.V.; Carlsten, B.E.; Faehl, R.J.; Kwan, T.J.; Rickel, D.G.; Stringfield, R.M.; Tallerico, P.J.

    1991-01-01

    Los Alamos is extending the performance of the Friedman-type, high-current relativistic klystron amplifier (RKA) to the microsecond regime while attempting to achieve the gigawatt-level peak power capability that has been characteristic of the RKA at shorter pulse lengths. Currently the electron beam power into the device is about 1 GW in microsecond duration pulses, with an effort underway to increase the beam power to 2.5 GW. To date the device has yielded an rf modulated electron beam power of 350 MW, with up to 50 MW coupled into waveguide. Several aspects of RKA operation under investigation that affect RKA beam bunching efficiency and amplifier gain include cavity tuning, beam diameter, beam current, and input rf drive power, and the development of an output coupler that efficiently couples the microwave power from the low impedance beam into rectangular waveguide operating in the dominant mode. Current results from experimental testing and code modelling are presented. 5 refs., 5 figs

  12. Critical currents and superconductivity ferromagnetism coexistence in high-Tc oxides

    CERN Document Server

    Khene, Samir

    2016-01-01

    The book comprises six chapters which deal with the critical currents and the ferromagnetism-superconductivity coexistence in high-Tc oxides. It begins by gathering key data for superconducting state and the fundamental properties of the conventional superconductors, followed by a recap of the basic theories of superconductivity. It then discusses the differences introduced by the structural anisotropy on the Ginzburg-Landau approach and the Lawrence-Doniach model before addressing the dynamics of vortices and the ferromagnetism-superconductivity coexistence in high-Tc oxides, and provides an outline of the pinning phenomena of vortices in these materials, in particular the pinning of vortices by the spins. It elucidates the methods to improve the properties of superconducting materials for industrial applications. This optimization aims at obtaining critical temperatures and densities of critical currents at the maximum level possible. Whereas the primary objective is the basic mechanisms pushing the superco...

  13. Current Sharing inside a High Power IGBT Module at the Negative Temperature Coefficient Operating Region

    CERN Document Server

    AUTHOR|(CDS)2084596; Papastergiou, Konstantinos; Bongiorno, M; Thiringer, T

    2016-01-01

    This work investigates the current sharing effect of a high power Soft Punch Through IGBT module in the Negative Temperature Coefficient region. The unbalanced current sharing between two of the substrates is demonstrated for different current and temperature levels and its impact on the thermal stressing of the device is evaluated. The results indicate that the current asymmetry does not lead to a significant thermal stressing unbalance between the substrates.

  14. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  15. High-current beam transport in electrostatic accelerator tubes

    International Nuclear Information System (INIS)

    Ramian, G.; Elais, L.

    1987-01-01

    The UCSB Free Electron Laser (FEL) has successfully demonstrated the use of a commercial 6 megavolt electrostatic accelerator as a high current beam source in a recirculating configuration. The accelerator, manufactured by National Electrostatics Corp. (NEC), Middleton WI, uses two standard high gradient accelerator tubes. Suppression of ion multiplication was accomplished by NEC with apertures and a shaped electrostatic field. This field shaping has fortuitously provided a periodically reversing radial field component with sufficient focusing strength to transport electron beams of up to 3 Amps current. Present two-stage FEL work requires a 20 Amp beam and proposed very high voltage FEL designs require currents as high as 100 Amps. A plan to permit transport of such high current beams by the addition of solenoidal focussing elements is described

  16. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-11-01

    Without reprocessing, spent LWR fuel itself is generally considered an acceptable waste form. With reprocessing, borosilicate glass canisters, have now gained general acceptance for waste immobilization. The current first choice for disposal is emplacement in an engineered structure in a mined cavern at a depth of 500-1000 meters. A variety of rock types are being investigated including basalt, clay, granite, salt, shale, and volcanic tuff. This paper gives specific coverage to the national high level waste disposal plans for France, the Federal Republic of Germany, Japan and the United States. The French nuclear program assumes prompt reprocessing of its spent fuels, and France has already constructed the AVM. Two larger borosilicate glass plants are planned for a new French reprocessing plant at La Hague. France plans to hold the glass canisters in near-surface storage for a forty to sixty year cooling period and then to place them into a mined repository. The FRG and Japan also plan reprocessing for their LWR fuels. Both are currently having some fuel reprocessed by France, but both are also planning reprocessing plants which will include waste vitrification facilities. West Germany is now constructing the PAMELA Plant at Mol, Belgium to vitrify high level reprocessing wastes at the shutdown Eurochemic Plant. Japan is now operating a vitrification mockup test facility and plans a pilot plant facility at the Tokai reprocessing plant by 1990. Both countries have active geologic repository programs. The United State program assumes little LWR fuel reprocessing and is thus primarily aimed at direct disposal of spent fuel into mined repositories. However, the US have two borosilicate glass plants under construction to vitrify existing reprocessing wastes

  17. High-current power supply for accelerator magnets

    International Nuclear Information System (INIS)

    Bourkland, K.R.; Winje, R.A.

    1978-01-01

    A power supply for controlling the current to accelerator magnets produces a high current at a precisely controlled time rate of change by varying the resonant frequency of an RLC circuit that includes the magnet and applying the current to the magnet during a predetermined portion of the waveform of an oscillation. The current is kept from going negative despite the reverse-current characteristics of thyristors by a quenching circuit

  18. The ARES High-level Intermediate Representation

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Nicholas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-03

    The LLVM intermediate representation (IR) lacks semantic constructs for depicting common high-performance operations such as parallel and concurrent execution, communication and synchronization. Currently, representing such semantics in LLVM requires either extending the intermediate form (a signi cant undertaking) or the use of ad hoc indirect means such as encoding them as intrinsics and/or the use of metadata constructs. In this paper we discuss a work in progress to explore the design and implementation of a new compilation stage and associated high-level intermediate form that is placed between the abstract syntax tree and when it is lowered to LLVM's IR. This highlevel representation is a superset of LLVM IR and supports the direct representation of these common parallel computing constructs along with the infrastructure for supporting analysis and transformation passes on this representation.

  19. High-level waste processing at the Savannah River Site: An update

    International Nuclear Information System (INIS)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ''sludge-only'' composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ''coupled'' feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates

  20. Safe disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ringwood, A E [Australian National Univ., Canberra. Research School of Earth Sciences

    1980-10-01

    Current strategies in most countries favour the immobilisation of high-level radioactive wastes in borosilicate glasses, and their burial in large, centralised, mined repositories. Strong public opposition has been encountered because of concerns over safety and socio-political issues. The author develops a new disposal strategy, based on immobilisation of wastes in an extremely resistant ceramic, SYNROC, combined with burial in an array of widely dispersed, very deep drill holes. It is demonstrated that the difficulties encountered by conventional disposal strategies can be overcome by this new approach.

  1. Real-time TPC analysis with the ALICE High-Level Trigger

    International Nuclear Information System (INIS)

    Lindenstruth, V.; Loizides, C.; Roehrich, D.; Skaali, B.; Steinbeck, T.; Stock, R.; Tilsner, H.; Ullaland, K.; Vestboe, A.; Vik, T.

    2004-01-01

    The ALICE High-Level Trigger processes data online, to either select interesting (sub-) events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber, the architecture of the system and the current state of the tracking and compression methods are outlined

  2. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  3. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  4. On the design of high-rise buildings with a specified level of reliability

    Science.gov (United States)

    Dolganov, Andrey; Kagan, Pavel

    2018-03-01

    High-rise buildings have a specificity, which significantly distinguishes them from traditional buildings of high-rise and multi-storey buildings. Steel structures in high-rise buildings are advisable to be used in earthquake-proof regions, since steel, due to its plasticity, provides damping of the kinetic energy of seismic impacts. These aspects should be taken into account when choosing a structural scheme of a high-rise building and designing load-bearing structures. Currently, modern regulatory documents do not quantify the reliability of structures. Although the problem of assigning an optimal level of reliability has existed for a long time. The article shows the possibility of designing metal structures of high-rise buildings with specified reliability. Currently, modern regulatory documents do not quantify the reliability of high-rise buildings. Although the problem of assigning an optimal level of reliability has existed for a long time. It is proposed to establish the value of reliability 0.99865 (3σ) for constructions of buildings and structures of a normal level of responsibility in calculations for the first group of limiting states. For increased (construction of high-rise buildings) and reduced levels of responsibility for the provision of load-bearing capacity, it is proposed to assign respectively 0.99997 (4σ) and 0.97725 (2σ). The coefficients of the use of the cross section of a metal beam for different levels of security are given.

  5. High-level language computer architecture

    CERN Document Server

    Chu, Yaohan

    1975-01-01

    High-Level Language Computer Architecture offers a tutorial on high-level language computer architecture, including von Neumann architecture and syntax-oriented architecture as well as direct and indirect execution architecture. Design concepts of Japanese-language data processing systems are discussed, along with the architecture of stack machines and the SYMBOL computer system. The conceptual design of a direct high-level language processor is also described.Comprised of seven chapters, this book first presents a classification of high-level language computer architecture according to the pr

  6. Other-than-high-level waste

    International Nuclear Information System (INIS)

    Bray, G.R.

    1976-01-01

    The main emphasis of the work in the area of partitioning transuranic elements from waste has been in the area of high-level liquid waste. But there are ''other-than-high-level wastes'' generated by the back end of the nuclear fuel cycle that are both large in volume and contaminated with significant quantities of transuranic elements. The combined volume of these other wastes is approximately 50 times that of the solidified high-level waste. These other wastes also contain up to 75% of the transuranic elements associated with waste generated by the back end of the fuel cycle. Therefore, any detailed evaluation of partitioning as a viable waste management option must address both high-level wastes and ''other-than-high-level wastes.''

  7. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Schwartz, J.; Cohn, D.R.; Bromberg, L.; Williams, J.E.C.

    1987-06-01

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  8. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  9. Survey of Digital Feedback Systems in High Current Storage Rings

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions

  10. Simple, high current, antimony ion source

    International Nuclear Information System (INIS)

    Sugiura, H.

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 μA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6 x 10 -4 Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8 x 10 -9 and 1.8 x 10 11 cm -3 , respectively

  11. High performance predictive current control of a three phase VSI: An ...

    Indian Academy of Sciences (India)

    ... current control of a three phase VSI: An experimental assessment ... Voltage source inverter; two level inverter; predictive current control; weighting factor ... Conventionally, for reference current tracking control in a two level VSI, the objective ...

  12. Status of the high-level nuclear waste disposal program in Japan

    International Nuclear Information System (INIS)

    Uematsu, K.

    1985-01-01

    The Japan Atomic Energy Commission (JAEC) initiated a high-level radioactive waste disposal program in 1976. Since then, the Advisory Committee on Radioactive Waste Management of JAEC has revised the program twice. The latest revision was issued in 1984. The committee recommended a four-phase program and the last phase calls for the beginning of emplacement of the high-level nuclear waste into a selected repository in the Year 2000. The first phase is already completed, and the second phase of this decade calls for the selection of a candidate disposal site and the conducting of the RandD of waste disposal in an underground research laboratory and in a hot test facility. This paper covers the current status of the high-level nuclear waste disposal program in Japan

  13. High School Sport Specialization Patterns of Current Division I Athletes.

    Science.gov (United States)

    Post, Eric G; Thein-Nissenbaum, Jill M; Stiffler, Mikel R; Brooks, M Alison; Bell, David R; Sanfilippo, Jennifer L; Trigsted, Stephanie M; Heiderscheit, Bryan C; McGuine, Timothy A

    Sport specialization is a strategy to acquire superior sport performance in 1 sport but is associated with increased injury risk. Currently, the degree of high school specialization among Division I athletes is unknown. College athletes will display increased rates of specialization as they progress through their high school careers. Descriptive epidemiological study. Level 4. Three hundred forty-three athletes (115 female) representing 9 sports from a Midwest Division I University completed a previously utilized sport specialization questionnaire regarding sport participation patterns for each grade of high school. McNemar and chi-square tests were used to investigate associations of grade, sport, and sex with prevalence of sport specialization category (low, moderate, high) (a priori P ≤ 0.05). Specialization increased throughout high school, with 16.9% (n = 58) and 41.1% (n = 141) of athletes highly specialized in 9th and 12th grades, respectively. Football athletes were less likely to be highly specialized than nonfootball athletes for each year of high school ( P 0.23). The majority of Division I athletes were not classified as highly specialized throughout high school, but the prevalence of high specialization increased as athletes progressed through high school. Nonfootball athletes were more likely to be highly specialized than football athletes at each grade level. Most athletes who are recruited to participate in collegiate athletics will eventually specialize in their sport, but it does not appear that early specialization is necessary to become a Division I athlete. Athletes should be counseled regarding safe participation in sport during high school to minimize injury and maximize performance.

  14. Experiences in messaging middle-ware for high-level control applications

    International Nuclear Information System (INIS)

    Wanga, N.; Shasharina, S.; Matykiewicz, J.; Rooparani Pundaleeka

    2012-01-01

    Existing high-level applications in accelerator control and modeling systems leverage many different languages, tools and frameworks that do not inter-operate with one another. As a result, the accelerator control community is moving toward the proven Service-Oriented Architecture (SOA) approach to address the inter-operability challenges among heterogeneous high-level application modules. Such SOA approach enables developers to package various control subsystems and activities into 'services' with well-defined 'interfaces' and make leveraging heterogeneous high-level applications via flexible composition possible. Examples of such applications include presentation panel clients based on Control System Studio (CSS) and middle-layer applications such as model/data servers. This paper presents our experiences in developing a demonstrative high-level application environment using emerging messaging middle-ware standards. In particular, we utilize new features in EPICS v4 and other emerging standards such as Data Distribution Service (DDS) and Extensible Type Interface by the Object Management Group. We first briefly review examples we developed previously. We then present our current effort in integrating DDS into such a SOA environment for control systems. Specifically, we illustrate how we are integrating DDS into CSS and develop a Python DDS mapping. (authors)

  15. Interlaboratory comparison on high-temperature superconductor critical-current measurements

    International Nuclear Information System (INIS)

    Wiejaczka, J.A.; Goodrich, L.F.

    1997-01-01

    An extensive interlaboratory comparison was conducted on high temperature superconductor (HTS) critical-current measurements. This study was part of an international cooperative effort through the Versailles Project on Advanced Materials and Standards (VAMAS). The study involved six US laboratories that are recognized leaders in the field of HTS. This paper includes the complete results from this comparison of critical-current measurements on Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10-x (2223) tapes. The effects of sample characteristics, specimen mounting, measurement technique, and specimen damage were studied. The future development of a standard HTS measurement method is also discussed. Most of the evolution of this emerging technology has occurred in improvement of the performance of the conductors. The successful completion of this interlaboratory comparison is an important milestone in the evolution of HTS technology and marks a level of maturity that the technology has reached

  16. A superconducting quadrupole array for transport of multiple high current beams

    International Nuclear Information System (INIS)

    Faltens, A.; Shuman, D.

    1999-01-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them

  17. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  18. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  19. Electrical and hydrodynamic characterization of a high current pulsed arc

    International Nuclear Information System (INIS)

    Sousa Martins, R; Chemartin, L; Zaepffel, C; Lalande, Ph; Soufiani, A

    2016-01-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs. (paper)

  20. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  1. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  2. Compact high-current, subnanosecond electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, V G; Shunajlov, S A; Ulmaskulov, M R; Yalandin, M I [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics; Pegel, I V [Russian Academy of Sciences, Tomsk (Russian Federation). High-Current Electronics Inst.; Tarakanov, V P [Russian Academy of Sciences, Moscow (Russian Federation). High-Temperature Inst.

    1997-12-31

    A compact subnanosecond, high-current electron accelerator producing an annular electron beam of duration up to 300 - 400 ps, energy about 250 keV, and current up to 1 kA has been developed to study transient processes in pulsed power microwave devices. The measuring and recording techniques used to experimentally investigate the dynamics of the beam current pulse and the transformation of the electron energy during the transportation of the beam in a longitudinal magnetic field are described. The experimental data obtained are compared with the predictions of a numerical simulation. (author). 6 figs., 5 refs.

  3. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-01-01

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K

  4. Beam size measurement at high radiation levels

    International Nuclear Information System (INIS)

    Decker, F.J.

    1991-05-01

    At the end of the Stanford Linear Accelerator the high energy electron and positron beams are quite small. Beam sizes below 100 μm (σ) as well as the transverse distribution, especially tails, have to be determined. Fluorescent screens observed by TV cameras provide a quick two-dimensional picture, which can be analyzed by digitization. For running the SLAC Linear Collider (SLC) with low backgrounds at the interaction point, collimators are installed at the end of the linac. This causes a high radiation level so that the nearby cameras die within two weeks and so-called ''radiation hard'' cameras within two months. Therefore an optical system has been built, which guides a 5 mm wide picture with a resolution of about 30 μm over a distance of 12 m to an accessible region. The overall resolution is limited by the screen thickness, optical diffraction and the line resolution of the camera. Vibration, chromatic effects or air fluctuations play a much less important role. The pictures are colored to get fast information about the beam current, size and tails. Beside the emittance, more information about the tail size and betatron phase is obtained by using four screens. This will help to develop tail compensation schemes to decrease the emittance growth in the linac at high currents. 4 refs., 2 figs

  5. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  6. High Accuracy Beam Current Monitor System for CEBAF'S Experimental Hall A

    International Nuclear Information System (INIS)

    J. Denard; A. Saha; G. Lavessiere

    2001-01-01

    CEBAF accelerator delivers continuous wave (CW) electron beams to three experimental Halls. In Hall A, all experiments require continuous, non-invasive current measurements and a few experiments require an absolute accuracy of 0.2 % in the current range from 1 to 180 (micro)A. A Parametric Current Transformer (PCT), manufactured by Bergoz, has an accurate and stable sensitivity of 4 (micro)A/V but its offset drifts at the muA level over time preclude its direct use for continuous measurements. Two cavity monitors are calibrated against the PCT with at least 50 (micro)A of beam current. The calibration procedure suppresses the error due to PCT's offset drifts by turning the beam on and off, which is invasive to the experiment. One of the goals of the system is to minimize the calibration time without compromising the measurement's accuracy. The linearity of the cavity monitors is a critical parameter for transferring the accurate calibration done at high currents over the whole dynamic range. The method for measuring accurately the linearity is described

  7. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  8. High current pulser for experiment No. 225, neutrino electron elastic scattering

    International Nuclear Information System (INIS)

    Dalton, C.; Krausse, G.; Sarjeant, J.

    1979-01-01

    With the advent of low-cost honeycomb extrusions of polypropylene sheets, flash chambers have become very attractive for large nuclear particle detector arrays. This has brought about the need for a pulse power system that will provide high peak currents and low levels of spurious radiation. Each module of 10 flash chambers will require a peak current of 70 KA with a rise time (tau/sub r/) of <50 ns, giving a maximum rate of current rise di/dt of 400 KA/μs. The pulser output must develop 7 KV across a load of 0.36 Ω with a pulse width of 500 ns. The repetition rate will be one per second. The paper describes the development of such a system and the impact of the physical limitations of present component technology on lifetime and pulse fidelity

  9. The management of high-level radioactive wastes

    International Nuclear Information System (INIS)

    Lennemann, Wm.L.

    1979-01-01

    The definition of high-level radioactive wastes is given. The following aspects of high-level radioactive wastes' management are discussed: fuel reprocessing and high-level waste; storage of high-level liquid waste; solidification of high-level waste; interim storage of solidified high-level waste; disposal of high-level waste; disposal of irradiated fuel elements as a waste

  10. Design of a high-temperature superconductor current lead for electric utility SMES

    International Nuclear Information System (INIS)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Rey, C.M.; Dixon, K.D.

    1995-01-01

    Current leads that rely on high-temperature superconductors (HTSs) to deliver power to devices operating at liquid helium temperature have the potential to reduce refrigeration requirements to levels significantly below those achievable with conventional leads. The design of HTS current leads suitable for use in near-term superconducting magnetic energy storage (SMES) is in progress. The SMES system has an 0.5 MWh energy capacity and a discharge power of 30 MW. Lead-design considerations include safety and reliability, electrical and thermal performance, structural integrity, manufacturability, and cost. Available details of the design, including materials, configuration, and performance predictions, are presented

  11. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  12. Current and sea-level signals in periplatform ooze (Neogene, Maldives, Indian Ocean)

    Science.gov (United States)

    Betzler, Christian; Lüdmann, Thomas; Hübscher, Christian; Fürstenau, Jörn

    2013-05-01

    Periplatform ooze is an admixture of pelagic carbonate and sediment derived from neritic carbonate platforms. Compositional variations of periplatform ooze allow the reconstruction of past sea-level changes. Periplatform ooze formed during sea-level highstands is finer grained and richer in aragonite through the elevated input of material from the flooded platform compared to periplatform ooze formed during the episodes of lowered sea level. In many cases, however, the sea floor around carbonate platforms is subjected to bottom currents which are expected to affect sediment composition, i.e. through winnowing of the fine fraction. The interaction of sea-level driven highstand shedding and current impact on the formation of periplatform ooze has hitherto not been analyzed. To test if a sea-level driven input signal in periplatform ooze is influenced or even distorted by changing current activity, an integrated study using seismic, hydroacoustic and sedimentological data has been performed on periplatform ooze deposited in the Inner Sea of the Maldives. The Miocene to Pleistocene succession of drift deposits is subdivided into nine units; limits of seismostratigraphic units correspond to changes or turnarounds in grain size trends in cores recovered at ODP Site 716 and NEOMA Site 1143. For the Pleistocene it can be shown how changes in grain size occur in concert with sea-level changes and changes of the monsoonal system, which is thought to be a major driver of bottom currents in the Maldives. A clear highstand shedding pattern only appears in the data at a time of relaxation of monsoonal strength during the last 315 ky. Results imply (1) that drift sediments provide a potential target for analyzing past changes in oceanic currents and (2) that the ooze composition bears a mixed signal of input and physical winnowing at the sea floor.

  13. User-Defined Data Distributions in High-Level Programming Languages

    Science.gov (United States)

    Diaconescu, Roxana E.; Zima, Hans P.

    2006-01-01

    One of the characteristic features of today s high performance computing systems is a physically distributed memory. Efficient management of locality is essential for meeting key performance requirements for these architectures. The standard technique for dealing with this issue has involved the extension of traditional sequential programming languages with explicit message passing, in the context of a processor-centric view of parallel computation. This has resulted in complex and error-prone assembly-style codes in which algorithms and communication are inextricably interwoven. This paper presents a high-level approach to the design and implementation of data distributions. Our work is motivated by the need to improve the current parallel programming methodology by introducing a paradigm supporting the development of efficient and reusable parallel code. This approach is currently being implemented in the context of a new programming language called Chapel, which is designed in the HPCS project Cascade.

  14. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  15. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  16. LENDING IN FOREIGN CURRENCY AND CURRENT CHALLENGES AT EUROPEAN LEVEL

    Directory of Open Access Journals (Sweden)

    ȘARGU Alina Camelia

    2012-12-01

    Full Text Available In recent years, most countries in Central and Eastern Europe, Member States of the EU, that we selected for the analysis (Bulgaria, Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania have recorded a significant expansion of lending in foreign currency, which was one of the major factors of the accelerated growth of loans to economy. Such developments have led to an increase of indebtedness in foreign currency of the non-financial private sector, especially of the households and of the accumulation of major macroeconomics and financial imbalances. The issue of lending in foreign currency, the determinants of increasing the share of loans in foreign currency and the risks generated at the level of financial stability are the subject of numerous studies, including: Basso, Calvo-Gonzales and Jurgilas (2007; Rosenberg and Tirpak (2008; Csajbók-Andras et al. (2010; Zettelmeyer, Nagy and Jeffrey (2010. Another significant issue addressed in the specialized literature regarding foreign currency loans refers to the role of monetary policy in limiting growth of these loans. Thus, in addition to those noted studies we remark other studies, such as: Kiss et al. (2006; Sirtaine and Skamnelos (2007; Hilbers et al. (2006; Brzoza-Brzezina et al. (2010. Our paper complements the specialized literature on the approached subject, in particular, by highlighting and discussing current issues of high interest for policymakers, both at national and European level regarding lending in foreign currency. The extremely negative implications of lending in foreign currency on financial stability in most countries under review, outlined clearly in the context of the current crisis, determined the focus of the policymakers concern, both at European and national level, regarding the issue of foreign currency loans, which became one of the most discussed issues on the agenda of the monetary-financial authorities. The aim of our research is to

  17. Lattice Effects Due to High Currents in PEP-II

    International Nuclear Information System (INIS)

    Decker, F.-J.; Smith, H.; Turner, J.L.; SLAC

    2005-01-01

    The very high beam currents in the PEP-II B-Factory have caused many expected and unexpected effects: Synchrotron light fans move the beam pipe and cause dispersion; higher order modes cause excessive heating, e-clouds around the positron beam blow up its beam size. Here we describe an effect where the measured dispersion of the beam in the Low Energy Ring (LER) is different at high and at low beam currents. The dispersion was iteratively lowered by making anti-symmetric orbit bumps in many sextupole duplets, checking each time with a dispersion measurement where a dispersive kick is generated. This can be done parasitically during collisions. It was a surprise when checking the low current characterization data that there is a change. Subsequent high and low current measurements confirmed the effect. One source was believed to be located far away from any synchrotron radiation in the middle of a straight (PR12), away from sextupoles and skew quadrupoles and created a dispersion wave of about 70 mm at high current while at low current it is negligible

  18. Intergenerational ethics of high level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Kunihiko [Nagoya Univ., Graduate School of Engineering, Nagoya, Aichi (Japan); Nasu, Akiko; Maruyama, Yoshihiro [Shibaura Inst. of Tech., Tokyo (Japan)

    2003-03-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  19. Intergenerational ethics of high level radioactive waste

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Nasu, Akiko; Maruyama, Yoshihiro

    2003-01-01

    The validity of intergenerational ethics on the geological disposal of high level radioactive waste originating from nuclear power plants was studied. The result of the study on geological disposal technology showed that the current method of disposal can be judged to be scientifically reliable for several hundred years and the radioactivity level will be less than one tenth of the tolerable amount after 1,000 years or more. This implies that the consideration of intergenerational ethics of geological disposal is meaningless. Ethics developed in western society states that the consent of people in the future is necessary if the disposal has influence on them. Moreover, the ethics depends on generally accepted ideas in western society and preconceptions based on racism and sexism. The irrationality becomes clearer by comparing the dangers of the exhaustion of natural resources and pollution from harmful substances in a recycling society. (author)

  20. LASL high-current proton storage rings

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.; Hudgings, D.W.; Spalek, G.; Jason, A.J.; Higgins, E.F.; Gillis, R.E.

    1980-01-01

    The Proton Storage Ring at LAMPF is a high-current accumulator designed to convert long 800-MeV linac pulses into very short high-intensity proton bunches ideally suited to driving a pulsed polyenergetic neutron source. The Ring, authorized for construction at $19 million, will operate in a short-bunch high-frequency mode for fast neutron physics and a long-bunch low-frequency mode for thermal neutron-scattering programs. Unique features of the project include charge-changing injection with initial conversion from H - to H 0 , a high repetition rate fast-risetime extraction kicker, and high-frequency and first-harmonic bunching system

  1. DUACS: Toward High Resolution Sea Level Products

    Science.gov (United States)

    Faugere, Y.; Gerald, D.; Ubelmann, C.; Claire, D.; Pujol, M. I.; Antoine, D.; Desjonqueres, J. D.; Picot, N.

    2016-12-01

    The DUACS system produces, as part of the CNES/SALP project, and the Copernicus Marine Environment and Monitoring Service, high quality multimission altimetry Sea Level products for oceanographic applications, climate forecasting centers, geophysic and biology communities... These products consist in directly usable and easy to manipulate Level 3 (along-track cross-calibrated SLA) and Level 4 products (multiple sensors merged as maps or time series) and are available in global and regional version (Mediterranean Sea, Arctic, European Shelves …).The quality of the products is today limited by the altimeter technology "Low Resolution Mode" (LRM), and the lack of available observations. The launch of 2 new satellites in 2016, Jason-3 and Sentinel-3A, opens new perspectives. Using the global Synthetic Aperture Radar mode (SARM) coverage of S3A and optimizing the LRM altimeter processing (retracking, editing, ...) will allow us to fully exploit the fine-scale content of the altimetric missions. Thanks to this increase of real time altimetry observations we will also be able to improve Level-4 products by combining these new Level-3 products and new mapping methodology, such as dynamic interpolation. Finally these improvements will benefit to downstream products : geostrophic currents, Lagrangian products, eddy atlas… Overcoming all these challenges will provide major upgrades of Sea Level products to better fulfill user needs.

  2. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  3. Surface ionization ion source with high current

    International Nuclear Information System (INIS)

    Fang Jinqing; Lin Zhizhou; Yu Lihua; Zhan Rongan; Huang Guojun; Wu Jianhua

    1986-04-01

    The working principle and structure of a surface ionization ion source with high current is described systematically. Some technological keypoints of the ion source are given in more detail, mainly including: choosing and shaping of the material of the surface ionizer, heating of the ionizer, distributing of working vapour on the ionizer surface, the flow control, the cooling problem at the non-ionization surface and the ion optics, etc. This ion source has been used since 1972 in the electromagnetic isotope separator with 180 deg angle. It is suitable for separating isotopes of alkali metals and rare earth metals. For instance, in the case of separating Rubidium, the maximum ion current of Rbsup(+) extracted from the ion source is about 120 mA, the maximum ion current accepted by the receiver is about 66 mA, the average ion current is more than 25 mA. The results show that our ion source have advantages of high ion current, good characteristics of focusing ion beam, working stability and structure reliability etc. It may be extended to other fields. Finally, some interesting phenomena in the experiment are disccused briefly. Some problems which should be investigated are further pointed out

  4. RPython high-level synthesis

    Science.gov (United States)

    Cieszewski, Radoslaw; Linczuk, Maciej

    2016-09-01

    The development of FPGA technology and the increasing complexity of applications in recent decades have forced compilers to move to higher abstraction levels. Compilers interprets an algorithmic description of a desired behavior written in High-Level Languages (HLLs) and translate it to Hardware Description Languages (HDLs). This paper presents a RPython based High-Level synthesis (HLS) compiler. The compiler get the configuration parameters and map RPython program to VHDL. Then, VHDL code can be used to program FPGA chips. In comparison of other technologies usage, FPGAs have the potential to achieve far greater performance than software as a result of omitting the fetch-decode-execute operations of General Purpose Processors (GPUs), and introduce more parallel computation. This can be exploited by utilizing many resources at the same time. Creating parallel algorithms computed with FPGAs in pure HDL is difficult and time consuming. Implementation time can be greatly reduced with High-Level Synthesis compiler. This article describes design methodologies and tools, implementation and first results of created VHDL backend for RPython compiler.

  5. Some legal aspects on high level radioactive waste disposal in Japan

    International Nuclear Information System (INIS)

    Tanabe, Tomoyuki

    1997-01-01

    In Japan, it is considered to be an urgent problem to prepare the system for the research and execution of high level radioactive waste disposal. Under what regulation scheme the disposal should be done has not been sufficiently examined. In this research, the examination was carried out on the legal aspects of high level radioactive waste disposal as follows. First, the current legislation on the disposal in Japan was analyzed, and it was made clear that high level radioactive waste disposal has not been stipulated clearly. Next, on the legal choices which are conceivable on the way the legislation for high level radioactive waste disposal should be, from the aspects of applying the law on regulating nuclear reactors and others, applying the law on nuclear power damage reparation, and industrialization by changing the government ordinances, those were arranged in six choices, and the examination was carried out for each choice from the viewpoints of the relation with the base stipulation for waste-burying business, the speciality of high level radioactive waste disposal as compared with other actions of nuclear power business, the coordination with existing nuclear power of nuclear power business, the coordination with existing nuclear power law system and the formation of national consensus. In this research, it was shown that the execution of high level radioactive waste disposal as the business based on the separate legislation is the realistic choice. (K.I.)

  6. Critical current enhancement in high Tc superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Graebner, J.E.; Tiefel, T.H.

    1990-01-01

    Progress toward major technological applications of the bulk, high T c superconductors has been hindered by two major barriers, i.e., the Josephson weak-links at grain boundaries and the lack of sufficient intragrain flux pinning. It has been demonstrated that the weak link problem can be overcome by extreme alignment of grains such as in melt-textured-growth (MTG) materials. Modified or improved processing by various laboratories has produced further increased critical currents. However, the insufficient flux pinning seems to limit the critical current density in high fields to about 10 4 --10 5 A/cm 2 at 77K, which is not satisfactory for many applications. In this paper, processing, microstructure, and critical current behavior of the MTG type superconductors are described, and various processing possibilities for flux pinning enhancement are discussed

  7. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Espejo, J.M.; Beceiro, A.R.

    1992-01-01

    The Empresa Nacional de Residuos Radiactivos, S.A. (ENRESA) has been limited liability company to be responsible for the management of all kind of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high - level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international cooperation are also included

  8. High-Voltage-Input Level Translator Using Standard CMOS

    Science.gov (United States)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  9. Third harmonic current injection into highly saturated multi-phase machines

    Directory of Open Access Journals (Sweden)

    Klute Felix

    2017-03-01

    Full Text Available One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.

  10. High dynamic range low-noise focal plane readout for VLWIR applications implemented with current mode background subtraction

    Science.gov (United States)

    Yang, Guang; Sun, Chao; Shaw, Timothy; Wrigley, Chris; Peddada, Pavani; Blazejewski, Edward R.; Pain, Bedabrata

    1998-09-01

    Design and operation of a low noise CMOS focal pa;ne readout circuit with ultra-high charge handling capacity is presented. Designed for high-background, VLWIR detector readout, each readout unit cell use an accurate dynamic current memory for automatic subtraction of the dark pedestal in current domain enabling measurement of small signals 85 dB below the dark level. The redout circuit operates with low-power dissipation, high linearity, and is capable of handling pedestal currents up to 300 nA. Measurements indicate an effective charge handling capacity of over 5 X 10(superscript 9) charges/pixel with less than 10(superscript 5) electrons of input referred noise.

  11. Current DOE direction in low-level waste management

    International Nuclear Information System (INIS)

    Wilhite, E.L.; Dolenc, M.R.; Shupe, M.W.; Waldo, L.C.

    1989-01-01

    The U.S. Department of Energy (DOE) is implementing revised DOE Order 5820.2A Radioactive Waste Management. Chapter III of the revised order provides prescriptive requirements for managing low-level waste and is the subject of this paper. The revised order requires that all DOE low-level radioactive and mixed waste be systematically managed, using an approach that considers the combination of waste management practices used in waste generation reduction, segregation, treatment, packaging, storage, and disposal. The Order defines performance objectives for protecting groundwater, for protecting against intrusion, and for maintaining adequate operational practices. A performance assessment will be required to ensure that waste management operations comply with these performance objectives. DOE implementation of the revised Order includes work in the areas of leach testing, waste stabilization, waste certification, facility monitoring, and management of unique waste streams. This paper summarizes the status of this work and the current direction DOE is taking in managing low-level waste under DOE 5820.2A

  12. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  13. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  14. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Ozeki, T.; Azumi, M.; Ishii, Y.

    1997-01-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of q min is close to the region of high ∇n e . Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  15. Determination of deep levels in semi-insulating cadmium telluride by thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Scharager, C.; Muller, J.C.; Stuck, R.; Siffert, P.

    1975-01-01

    Thermally stimulated current (TSC) measurements have been performed in high resistivity (rho approximately 10 7 ohms.cm) CdTe γ-ray detectors between 35 and 300K. The TSC curves have been analyzed by different methods, including those taking into account the retrapping of the carriers. The trap characteristics have been determined; especially three levels located at E(v)+0.13eV, E(v)+0.30eV and E(c)-0.55eV have been investigated [fr

  16. Soil-structure interaction effects on high level waste tanks

    International Nuclear Information System (INIS)

    Miller, C.A.; Costantino, C.J.; Heymsfeld, E.

    1991-01-01

    High Level Waste Tanks consist of steel tanks located in concrete vaults which are usually completely embedded in the soil. Many of these tanks are old and were designed to seismic standards which are not compatible with current requirements. The objective if this paper is to develop simple methods of modeling SSI effects for such structures and to obtain solutions for a range of parameters that can be used to identify significant aspects of the problem

  17. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  18. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  19. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    International Nuclear Information System (INIS)

    Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok

    2006-01-01

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented

  20. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  1. Beam physics design strategy for a high-current rf linac

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, M. [Univ. of Maryland, College Park, MD (United States)

    1995-10-01

    The high average beam power of an rf linac system for transmutation of nuclear waste puts very stringent requirements on beam quality and beam control. Fractional beam losses along the accelerator must be kept at extremely low levels to assure {open_quotes}hands-on{close_quotes} maintenance. Hence, halo formation and large-amplitude tails in the particle distribution due to beam mismatch and equipartitioning effects must be avoided. This implies that the beam should ideally be in near-perfect thermal equilibrium from injection to full energy - in contrast to existing rf linacs in which the transverse temperature, T {sub {perpendicular}}, is higher than the longitudinal temperature, T{sub {parallel}}. The physics and parameter scaling for such a system will be reviewed using the results of recent work on high-intensity bunched beams. A design strategy for a high-current rf linac with equilibrated beam will be proposed.

  2. High-level intuitive features (HLIFs) for intuitive skin lesion description.

    Science.gov (United States)

    Amelard, Robert; Glaister, Jeffrey; Wong, Alexander; Clausi, David A

    2015-03-01

    A set of high-level intuitive features (HLIFs) is proposed to quantitatively describe melanoma in standard camera images. Melanoma is the deadliest form of skin cancer. With rising incidence rates and subjectivity in current clinical detection methods, there is a need for melanoma decision support systems. Feature extraction is a critical step in melanoma decision support systems. Existing feature sets for analyzing standard camera images are comprised of low-level features, which exist in high-dimensional feature spaces and limit the system's ability to convey intuitive diagnostic rationale. The proposed HLIFs were designed to model the ABCD criteria commonly used by dermatologists such that each HLIF represents a human-observable characteristic. As such, intuitive diagnostic rationale can be conveyed to the user. Experimental results show that concatenating the proposed HLIFs with a full low-level feature set increased classification accuracy, and that HLIFs were able to separate the data better than low-level features with statistical significance. An example of a graphical interface for providing intuitive rationale is given.

  3. Snack intake is reduced using an implicit, high-level construal cue.

    Science.gov (United States)

    Price, Menna; Higgs, Suzanne; Lee, Michelle

    2016-08-01

    Priming a high level construal has been shown to enhance self-control and reduce preference for indulgent food. Subtle visual cues have been shown to enhance the effects of a priming procedure. The current study therefore examined the combined impact of construal level and a visual cue reminder on the consumption of energy-dense snacks. A student and community-based adult sample with a wide age and body mass index (BMI) range (N = 176) were randomly assigned to a high or low construal condition in which a novel symbol was embedded. Afterward participants completed a taste test of ad libitum snack foods in the presence or absence of the symbol. The high (vs. the low) construal level prime successfully generated more abstract responses (p snacks in the presence of a visual cue-reminder. This may be a practical technique for reducing overeating and has the potential to be extended to other unhealthy behaviors. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  4. High potassium level

    Science.gov (United States)

    ... level is very high, or if you have danger signs, such as changes in an ECG . Emergency ... Seifter JL. Potassium disorders. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: ...

  5. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  6. New initiatives for producing high current electron accelerators

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1996-01-01

    New classes of compact electron accelerators able to deliver multi-kiloamperes of pulsed 10-50 MeV electron beams are being studied. One class is based upon rf linac technology with dielectric-filled cavities. For materials with ε/ε o >>1, the greatly increased energy storage permits high current operation. The second type is a high energy injected betatron. Circulating current limits scale as Β 2 γ 3

  7. A truck cask design for shipping defense high-level waste

    International Nuclear Information System (INIS)

    Madsen, M.M.; Zimmer, A.

    1985-01-01

    The Defense High-Level Waste (DHLW) cask is a Type B packaging currently under development by the U.S. Department of Energy (DOE). This truck cask has been designed to initially transport borosilicate glass waste from the Defense Waste Processing Facility (DWPF) to the Waste Isolation Pilot Plant (WIPP). Specific program activities include designing, testing, certifying, and fabricating a prototype legal-weight truck cask system. The design includes such state-of-the-art features as integral impact limiters and remote handling features. A replaceable shielding liner provides the flexibility for shipping a wide range of waste types and activity levels

  8. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  9. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  10. Design of high current injector for SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakamura, N.; Mizuno, A.; Suzuki, S.; Hori, T.; Yanagida, K.; Mashiko, K.; Yokomizo, H.

    1992-01-01

    The linac of SPring-8, large synchrotron radiation facility of Japan, has the option which is positron operation modes. The electron gun of this linac is designed on base of the optimization for a high current beam to get positrons as many as possible. But otherwise this linac should be used as an accurate electron beam generator for commissioning on the whole facility. This report shows differences of the beam specification between a high current beam and a low current beam. The bunching section of this linac has just been constructed this summer at Tokai-Lab. of JAERI to be confirmed with the specification. (author). 3 refs., 1 tab., 4 figs

  11. Handling and storage of high-level radioactive liquid wastes requiring cooling

    International Nuclear Information System (INIS)

    1979-01-01

    The technology of high-level liquid wastes storage and experience in this field gained over the past 25 years are reviewed in this report. It considers the design requirements for storage facilities, describes the systems currently in use, together with essential accessories such as the transfer and off-gas cleaning systems, and examines the safety and environmental factors

  12. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  13. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  14. Spanish high level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Ulibarri, A.; Veganzones, A.

    1993-01-01

    The Empresa Nacional de Residuous Radiactivos, S.A. (ENRESA) was set up in 1984 as a state-owned limited liability company to be responsible for the management of all kinds of radioactive wastes in Spain. This paper provides an overview of the strategy and main lines of action stated in the third General Radioactive Waste Plan, currently in force, for the management of spent nuclear fuel and high-level wastes, as well as an outline of the main related projects, either being developed or foreseen. Aspects concerning the organizational structure, the economic and financing system and the international co-operational are also included

  15. Cross-Circulating Current Suppression Method for Parallel Three-Phase Two-Level Inverters

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Guo, Xiaoqiang

    2015-01-01

    The parallel architecture is very popular for power inverters to increase the power level. This paper presents a method for the parallel operation of inverters in an ac-distributed system, to suppress the cross-circulating current based on virtual impedance without current-sharing bus...

  16. High-current proton accelerators-meson factories

    International Nuclear Information System (INIS)

    Dmitrievskij, V.P.

    1979-01-01

    A possibility of usage of accelerators of neutron as well as meson factories is considered. Parameters of linear and cyclic accelerators are given, which are employed as meson factories and as base for developing intense neutron generators. It is emphasized that the principal aim of developing neutron generators on the base of high current proton accelerators is production of intense neutron fluxes with a present energy spectrum. Production of tens-and-hundreds milliampere currents at the energy of 800-1000 MeV is considered at present for two types of accelerating facilities viz. linear accelerators under continuous operating conditions and cyclotrons with strong focusing. Quantitative evaluations of developing high-efficiency linear and cyclic accelerators are considered. The basic parameters of an ccelerating complex are given, viz. linear accelerator-injector and 800 MeV isochronous cyclotron. The main problems associated with their realization are listed [ru

  17. Apparatus for Crossflow Filtration Testing of High Level Waste Samples

    International Nuclear Information System (INIS)

    Nash, C.

    1998-05-01

    Remotely-operated experimental apparatuses for verifying crossflow filtration of high level nuclear waste have been constructed at the Savannah River Site (SRS). These units have been used to demonstrate filtration processes at the Savannah River Site, Oak Ridge National Laboratory, the Idaho National Engineering and Environmental Laboratory, and Pacific Northwest National Laboratory. The current work covers the design considerations for experimentation as well as providing results from testing at SRS

  18. Record high-average current from a high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States); and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  19. Proposal for a race-track microtron with high peak current

    NARCIS (Netherlands)

    Ernst, G.J.; Haselhoff, E.H.; Witteman, W.J.; Botman, J.I.M.; van Genderen, W.; Hagedoorn, H.L.; van der Heide, J.A.; Kleeven, W.J.G.M.

    1989-01-01

    In order to obtain high gain in a free electron laser a high-quality electron beam with high peak current is required. It is well-known that a microtron is able to produce a high-quality beam having low emittance and small energy spread (1%). Because a circular microtron has a limited high-current

  20. Robotics and remote handling concepts for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    McAffee, Douglas; Raczka, Norman; Schwartztrauber, Keith

    1997-01-01

    This paper summarizes preliminary remote handling and robotic concepts being developed as part of the US Department of Energy's (DOE) Yucca Mountain Project. The DOE is currently evaluating the Yucca Mountain Nevada site for suitability as a possible underground geologic repository for the disposal of high level nuclear waste. The current advanced conceptual design calls for the disposal of more than 12,000 high level nuclear waste packages within a 225 km underground network of tunnels and emplacement drifts. Many of the waste packages may weigh as much as 66 tonnes and measure 1.8 m in diameter and 5.6 m long. The waste packages will emit significant levels of radiation and heat. Therefore, remote handling is a cornerstone of the repository design and operating concepts. This paper discusses potential applications areas for robotics and remote handling technologies within the subsurface repository. It also summarizes the findings of a preliminary technology survey which reviewed available robotic and remote handling technologies developed within the nuclear, mining, rail and industrial robotics and automation industries, and at national laboratories, universities, and related research institutions and government agencies

  1. Research on high beam-current accelerators

    International Nuclear Information System (INIS)

    Keefe, D.

    1981-01-01

    In this review of research being undertaken at present in the US on accelerating devices and concepts of a novel nature, both non-collective systems, including high-current rf linacs and a variety of induction linacs, and also collective systems are considered. (U.K.)

  2. High-Level Synthesis: Productivity, Performance, and Software Constraints

    Directory of Open Access Journals (Sweden)

    Yun Liang

    2012-01-01

    Full Text Available FPGAs are an attractive platform for applications with high computation demand and low energy consumption requirements. However, design effort for FPGA implementations remains high—often an order of magnitude larger than design effort using high-level languages. Instead of this time-consuming process, high-level synthesis (HLS tools generate hardware implementations from algorithm descriptions in languages such as C/C++ and SystemC. Such tools reduce design effort: high-level descriptions are more compact and less error prone. HLS tools promise hardware development abstracted from software designer knowledge of the implementation platform. In this paper, we present an unbiased study of the performance, usability and productivity of HLS using AutoPilot (a state-of-the-art HLS tool. In particular, we first evaluate AutoPilot using the popular embedded benchmark kernels. Then, to evaluate the suitability of HLS on real-world applications, we perform a case study of stereo matching, an active area of computer vision research that uses techniques also common for image denoising, image retrieval, feature matching, and face recognition. Based on our study, we provide insights on current limitations of mapping general-purpose software to hardware using HLS and some future directions for HLS tool development. We also offer several guidelines for hardware-friendly software design. For popular embedded benchmark kernels, the designs produced by HLS achieve 4X to 126X speedup over the software version. The stereo matching algorithms achieve between 3.5X and 67.9X speedup over software (but still less than manual RTL design with a fivefold reduction in design effort versus manual RTL design.

  3. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  4. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M.

    1995-01-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H - -sources each delivering a 70 mA H - -beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  5. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  6. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  7. Development of aluminosilicate and borosilicate glasses as matrices for CANDU high-level waste

    International Nuclear Information System (INIS)

    Strathdee, G.G.; McIntyre, N.S.; Taylor, P.

    1979-01-01

    This paper covers the results of analyses of two radioactive nepheline syenite glass blocks recovered from in-ground leaching experiments at the Chalk River Nuclear Laboratories. Current research on borosilicate glasses for immobilization of high-level waste is also described

  8. High current density magnets for INTOR and TIBER

    International Nuclear Information System (INIS)

    Miller, J.R.; Henning, C.D.; Kerns, J.A.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.

    1986-12-01

    The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm 2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER

  9. Thermally stimulated current method applied to highly irradiated silicon diodes

    CERN Document Server

    Pintilie, I; Pintilie, I; Moll, Michael; Fretwurst, E; Lindström, G

    2002-01-01

    We propose an improved method for the analysis of Thermally Stimulated Currents (TSC) measured on highly irradiated silicon diodes. The proposed TSC formula for the evaluation of a set of TSC spectra obtained with different reverse biases leads not only to the concentration of electron and hole traps visible in the spectra but also gives an estimation for the concentration of defects which not give rise to a peak in the 30-220 K TSC temperature range (very shallow or very deep levels). The method is applied to a diode irradiated with a neutron fluence of phi sub n =1.82x10 sup 1 sup 3 n/cm sup 2.

  10. High-level waste melter alternatives assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program`s (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant`s melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy.

  11. High-level waste melter alternatives assessment report

    International Nuclear Information System (INIS)

    Calmus, R.B.

    1995-02-01

    This document describes the Tank Waste Remediation System (TWRS) High-Level Waste (HLW) Program's (hereafter referred to as HLW Program) Melter Candidate Assessment Activity performed in fiscal year (FY) 1994. The mission of the TWRS Program is to store, treat, and immobilize highly radioactive Hanford Site waste (current and future tank waste and encapsulated strontium and cesium isotopic sources) in an environmentally sound, safe, and cost-effective manner. The goal of the HLW Program is to immobilize the HLW fraction of pretreated tank waste into a vitrified product suitable for interim onsite storage and eventual offsite disposal at a geologic repository. Preparation of the encapsulated strontium and cesium isotopic sources for final disposal is also included in the HLW Program. As a result of trade studies performed in 1992 and 1993, processes planned for pretreatment of tank wastes were modified substantially because of increasing estimates of the quantity of high-level and transuranic tank waste remaining after pretreatment. This resulted in substantial increases in needed vitrification plant capacity compared to the capacity of original Hanford Waste Vitrification Plant (HWVP). The required capacity has not been finalized, but is expected to be four to eight times that of the HWVP design. The increased capacity requirements for the HLW vitrification plant's melter prompted the assessment of candidate high-capacity HLW melter technologies to determine the most viable candidates and the required development and testing (D and T) focus required to select the Hanford Site HLW vitrification plant melter system. An assessment process was developed in early 1994. This document describes the assessment team, roles of team members, the phased assessment process and results, resulting recommendations, and the implementation strategy

  12. Current sharing effect on the current instability and allowable temperature rise of composite high-TC superconductors

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.; Nishijima, G.; Takahashi, Ken-ichiro

    2004-01-01

    To understand the basic mechanisms of the thermal runaway phenomenon, the limiting margin of the current instability, which may spontaneously occur in composite high-T C superconductors like multifilament Bi-based wire or tape, is derived under DC magnetic field. The current sharing and allowable temperature rise effects were considered. A static zero-dimensional model was utilized to describe the basic formulae dealing with the peculiarities of the non-isothermal change of superconducting composite voltage-current characteristic. The boundary of allowable stable values of the temperature, electric field and current are derived analytically. It was shown that permissible values of the current and electric field might be higher than those determined by use of the standard critical current criterion. In consequence of this feature, the noticeable allowable temperature rise of the composite superconductor before its transition to the normal state may be seen. The criterion for complete thermal stability condition is written describing the state when temperature of the composite equals critical temperature of a superconductor and the transport current flows stably only in matrix. The performed analysis also proves the existence of value of the volume fraction of a superconductor in composite at which its current-carrying capacity has minimum. These peculiarities are due to the stable current redistribution between superconductor and stabilizing matrix. Therefore, the current sharing not only leads to the matrix/superconductor ratio effect on the stable operating characteristics of the composite high-T C superconductors but also becomes important in the adequate description of quench process in the high-T C superconducting magnets

  13. The Savannah River Site Replacement High Level Radioactive Waste Evaporator Project

    International Nuclear Information System (INIS)

    Brock Presgrove, S.

    1992-01-01

    The Replacement High Level Waste Evaporator Project was conceived in 1985 to reduce the volume of the high level radioactive waste currently stored at the DOE Savannah River Site Tank Farm. Process of the high level waste has been accomplished up to this time using Bent Tube type evaporators and therefore, that type evaporator was selected for this project. The Title I Design of the project was 70% completed in late 1990. The Department of Energy at that time hired an independent consulting firm to perform a complete review of the project. The DOE placed a STOP ORDER on purchasing the evaporator in January 1991. Essentially, no construction was to be done on the project until all findings and concerns dealing with the type and design of the evaporator are resolved. This report addresses two aspects of the DOE design review: Comparing the Bent Tube Evaporator with the Forced Circulation Evaporator; The design portion of the DOE Project Review - concentrated on the mechanical design properties of the evaporator. (author)

  14. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  15. Development of a high brightness, high current SRF photo-electron source for ERL applications

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel [Helmholtz-Zentrum Berlin (Germany); Collaboration: bERLinPro Team

    2016-07-01

    Energy recovery linacs (ERL) offer the potential to combine major beam properties of the two main domains of particle accelerators: The low emittance of linear accelerators and the high average beam current of storage rings, while also allowing to compress to short bunches below the ps regime. This makes among other applications ERLs an ideal candidate for future light sources. The beam properties of the ERL are given by the performance of the injection section and hence of the beam source. Helmholtz-Zentrum Berlin is currently designing and building a high average current all superconducting CW driven ERL as a prototype to demonstrate low normalized beam emittance of 1 mm*mrad at 100 mA and short pulses of about 2 ps. In this contribution we discuss the development of this class of a high brightness, high current SRF photo-electron source and present recent commissioning results. Also, alternative approaches at other laboratories are shortly reviewed.

  16. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  17. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  18. The design of a five-cell high-current superconducting cavity

    International Nuclear Information System (INIS)

    Li Yongming; Zhu Feng; Quan Shengwen; Liu Kexin; Nassiri, Ali

    2012-01-01

    Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. (authors)

  19. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  20. High volume tidal or current flow harnessing system

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.M.

    1984-08-07

    Apparatus permitting the utilization of large volumes of water in the harnessing and extracting of a portion of the power generated by the rise and fall of ocean tides, ocean currents, or flowing rivers includes the provision of a dam, and a specialized single cavity chamber of limited size as compared with the water head enclosed by the dam, and an extremely high volume gating system in which all or nearly all of the water between the high and low levels on either side of the dam is cyclically gated through the single chamber from one side of the dam to the other so as to alternately provide positive air pressure and a partial vacuum within the single chamber. In one embodiment, the specialized chamber has a barrier at the bottom which divides the bottom of the chamber in half, large ports at the bottom of the chamber to permit inflow and outflow of high volumes of water, and ganged structures having a higher total area than that of corresponding ports, in which the structures form sluice gates to selectively seal off and open different sets of ports. In another embodiment, a single chamber is used without a barrier. In this embodiment, vertical sluice gates are used which may be activated automatically by pressures acting on the sluice gates as a result of ingested and expelled water.

  1. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  2. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  3. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    International Nuclear Information System (INIS)

    ROGERS, C.A.

    2000-01-01

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  4. QSPIN: A High Level Java API for Quantum Computing Experimentation

    Science.gov (United States)

    Barth, Tim

    2017-01-01

    QSPIN is a high level Java language API for experimentation in QC models used in the calculation of Ising spin glass ground states and related quadratic unconstrained binary optimization (QUBO) problems. The Java API is intended to facilitate research in advanced QC algorithms such as hybrid quantum-classical solvers, automatic selection of constraint and optimization parameters, and techniques for the correction and mitigation of model and solution errors. QSPIN includes high level solver objects tailored to the D-Wave quantum annealing architecture that implement hybrid quantum-classical algorithms [Booth et al.] for solving large problems on small quantum devices, elimination of variables via roof duality, and classical computing optimization methods such as GPU accelerated simulated annealing and tabu search for comparison. A test suite of documented NP-complete applications ranging from graph coloring, covering, and partitioning to integer programming and scheduling are provided to demonstrate current capabilities.

  5. Vitrification of low level and mixed (radioactive and hazardous) wastes: Lessons learned from high level waste vitrification

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1994-01-01

    Borosilicate glasses will be used in the USA and in Europe immobilize radioactive high level liquid wastes (HLLW) for ultimate geologic disposal. Simultaneously, tehnologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to immobilize low-level and mixed (radioactive and hazardous) wastes (LLMW) in durable glass formulations for permanent disposal or long-term storage. Vitrification of LLMW achieves large volume reductions (86--97 %) which minimize the associated long-term storage costs. Vitrification of LLMW also ensures that mixed wastes are stabilized to the highest level reasonably possible, e.g. equivalent to HLLW, in order to meet both current and future regulatory waste disposal specifications The tehnologies being developed for vitrification of LLMW rely heavily on the technologies developed for HLLW and the lessons learned about process and product control

  6. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    In summary, as of December 1988, the four sites collectively stored about 95 million gallons of high-level waste in underground tanks and bins. Approximately 57 million gallons are stored at Hanford, 34 million gallons at Savannah River, 3 million gallons at INEL, and 6 million gallons at West Valley. The waste is in several forms, including liquid, sludge, and dry granular materials, that make it unsuitable for permanent storage in its current state at these locations. Leaks from the tanks, designed for temporary storage, can pose an environmental hazard to surrounding land and water for thousands of years. DOE expects that when its waste processes at Savannah River, West Valley, and Hanford become operational, the high-level radioactive waste stored at these sites will be blended with other materials to immobilize it by forming a glass-like substance. The glass form will minimize the risk of environmental damage and make the waste more acceptable for permanent disposal in a geologic repository. At INEL, DOE is still considering various other immobilization and permanent disposal approaches. In July 1989, DOE estimated that it would cost about $13 billion (in fiscal year 1988 dollars) to retrieve, process, immobilize, and store the high-level waste until it can be moved to a permanent disposal site: about $5.3 billion is expected to be spent at Savannah River, $0.9 billion at West Valley, $2.8 billion at Hanford, and $4.0 billion at INEL. DOE has started construction at Savannah River and West Valley for facilities that will be used to transform the waste into glass (a process known as vitrification). These sites have each encountered schedule delays, and one has encountered a significant cost increase over earlier estimates. More specifically, the Savannah River facility is scheduled to begin high-level waste vitrification in 1992; the West Valley project, based on a January 1989 estimate, is scheduled to begin high-level waste vitrification in 1996, about 8

  7. High current betatron research at the University of New Mexico

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Len, L.K.

    1987-01-01

    Betatrons are among the simplest of high energy accelerators. Their circuit is equivalent to a step-up transformer; the electron beam forms a multi-turn secondary winding. Circulation of the beam around the flux core allows generation of high energy electrons with relatively small core mass. As with any transformer, a betatron is energy inefficient at low beam current; the energy balance is dominated by core losses. This fact has prompted a continuing investigation of high current betatrons as efficient, compact sources of beta and gamma radiation. A program has been supported at the University of New Mexico by the Office of Naval Research to study the physics of high current electron beams in circular accelerators and to develop practical technology for high power betatrons. Fabrication and assembly of the main ring was completed in January of this year. In contrast to other recent high current betatron experiments the UNM device utilizes a periodic focusing system to contain high current beams during the low energy phase of the acceleration cycle. The reversing cusp fields generated by alternating polarity solenoidal lenses cancel beam drift motions induced by machine errors. In consequence, they have found that the cusp geometry has had significantly better stability properties than a monodirectional toroidal field. In comparison to other minimum-Β geometries such as the Stelllatron cusps have open field lines which facilitate beam injection and neutralization

  8. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  9. Fast-response protection from high currents

    International Nuclear Information System (INIS)

    Novikov, A.A.

    1989-01-01

    Protection devices for power electronic equipment from shorting current are described. The device is shunted using spark gaps with minimal possible number of spark gaps to protect it. High fast-response (<100 ns) and operation voltage wide range (6-100 kV) are attained using Arkadiev-Marx generator-base trigger devices and air-core pulse transformer

  10. ISAC target operation with high proton currents

    CERN Document Server

    Dombsky, M; Schmor, P; Lane, M

    2003-01-01

    The TRIUMF-ISAC facility target stations were designed for ISOL target irradiations with up to 100 mu A proton beam currents. Since beginning operation in 1998, ISAC irradiation currents have progressively increased from initial values of approx 1 mu A to present levels of up to 40 mu A on refractory metal foil targets. In addition, refractory carbide targets have operated at currents of up to 15 mu A for extended periods. The 1-40 mu A operational regime is achieved by tailoring each target to the thermal requirements dictated by material properties such as beam power deposition, thermal conductivity and maximum operating temperature of the target material. The number of heat shields on each target can be varied in order to match the effective emissivity of the target surface for the required radiative power dissipation. Targets of different thickness, surface area and volume have been investigated to study the effect of diffusion and effusion delays on the yield of radioisotopes. For yields of short-lived p...

  11. EAP high-level product architecture

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir; Mortensen, Niels Henrik; Sarban, Rahimullah

    2013-01-01

    EAP technology has the potential to be used in a wide range of applications. This poses the challenge to the EAP component manufacturers to develop components for a wide variety of products. Danfoss Polypower A/S is developing an EAP technology platform, which can form the basis for a variety...... of EAP technology products while keeping complexity under control. High level product architecture has been developed for the mechanical part of EAP transducers, as the foundation for platform development. A generic description of an EAP transducer forms the core of the high level product architecture...... the function of the EAP transducers to be changed, by basing the EAP transducers on a different combination of organ alternatives. A model providing an overview of the high level product architecture has been developed to support daily development and cooperation across development teams. The platform approach...

  12. Current Controller for Multi-level Front-end Converter and Its Digital Implementation Considerations on Three-level Flying Capacitor Topology

    Science.gov (United States)

    Tekwani, P. N.; Shah, M. T.

    2017-10-01

    This paper presents behaviour analysis and digital implementation of current error space phasor based hysteresis controller applied to three-phase three-level flying capacitor converter as front-end topology. The controller is self-adaptive in nature, and takes the converter from three-level to two-level mode of operation and vice versa, following various trajectories of sector change with the change in reference dc-link voltage demanded by the load. It keeps current error space phasor within the prescribed hexagonal boundary. During the contingencies, the proposed controller takes the converter in over modulation mode to meet the load demand, and once the need is satisfied, controller brings back the converter in normal operating range. Simulation results are presented to validate behaviour of controller to meet the said contingencies. Unity power factor is assured by proposed controller with low current harmonic distortion satisfying limits prescribed in IEEE 519-2014. Proposed controller is implemented using TMS320LF2407 16-bit fixed-point digital signal processor. Detailed analysis of numerical format to avoid overflow of sensed variables in processor, and per-unit model implementation in software are discussed and hardware results are presented at various stages of signal conditioning to validate the experimental setup. Control logic for the generation of reference currents is implemented in TMS320LF2407A using assembly language and experimental results are also presented for the same.

  13. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    International Nuclear Information System (INIS)

    Abraimov, D; Francis, A; Jaroszynski, J; McCallister, J; Polyanskii, A; Santos, M; Viouchkov, Y L; Ballarino, A; Bottura, L; Rossi, L; Barth, C; Senatore, C; Dietrich, R; Rutt, A; Schlenga, K; Usoskin, A; Majkic, G S; Selvamanickam, V

    2015-01-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa 2 Cu 3 O x−δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed. (paper)

  14. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    Science.gov (United States)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  15. Long-lived legacy: Managing high-level and transuranic waste at the DOE Nuclear Weapons Complex. Background paper

    International Nuclear Information System (INIS)

    1991-05-01

    The document focuses on high-level and transuranic waste at the DOE nuclear weapons complex. Reviews some of the critical areas and aspects of the DOE waste problem in order to provide data and further analysis of important issues. Partial contents, High-Level Waste Management at the DOE Weapons Complex, are as follows: High-Level Waste Management: Present and Planned; Amount and Distribution; Current and Potential Problems; Vitrification; Calcination; Alternative Waste Forms for the Idaho National Engineering Laboratory; Technologies for Pretreatment of High-Level Waste; Waste Minimization; Regulatory Framework; Definition of High-Level Waste; Repository Delays and Contingency Planning; Urgency of High-Level Tank Waste Treatment; Technologies for High-Level Waste Treatment; Rethinking the Waste Form and Package; Waste Form for the Idaho National Engineering Laboratory; Releases to the Atmosphere; Future of the PUREX Plant at Hanford; Waste Minimization; Tritium Production; International Cooperation; Scenarios for Future HLW Production. Partial contents of Chapter 2, Managing Transuranic Waste at the DOE Nuclear Weapons Complex, are as follows: Transuranic Waste at Department of Energy Sites; Amount and Distribution; Waste Management: Present and Planned; Current and Potential Problems; Three Technologies for Treating Retrievably Stored Transuranic Waste; In Situ Vitrification; The Applied Research, Development, Demonstration, Testing, and Evaluation Plan (RDDT ampersand E); Actinide Conversion (Transmutation); Waste Minimization; The Regulatory Framework; Definition of, and Standards for, Disposal of Transuranic Waste; Repository Delays; Alternative Storage and Disposal Strategies; Remediation of Buried Waste; The Waste Isolation Pilot Plant; Waste Minimization; Scenarios for Future Transuranic Waste Production; Conditions of No-Migration Determination

  16. Disposal of high level and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Flowers, R.H.

    1991-01-01

    The waste products from the nuclear industry are relatively small in volume. Apart from a few minor gaseous and liquid waste streams, containing readily dispersible elements of low radiotoxicity, all these products are processed into stable solid packages for disposal in underground repositories. Because the volumes are small, and because radioactive wastes are latecomers on the industrial scene, a whole new industry with a world-wide technological infrastructure has grown up alongside the nuclear power industry to carry out the waste processing and disposal to very high standards. Some of the technical approaches used, and the Regulatory controls which have been developed, will undoubtedly find application in the future to the management of non-radioactive toxic wastes. The repository site outlined would contain even high-level radioactive wastes and spent fuels being contained without significant radiation dose rates to the public. Water pathway dose rates are likely to be lowest for vitrified high-level wastes with spent PWR fuel and intermediate level wastes being somewhat higher. (author)

  17. Mining techniques and some aspects of high-level waste disposal

    International Nuclear Information System (INIS)

    Hoefnagels, J.A.R.

    1980-01-01

    The solutions to many problems of underground waste disposal involve mine engineering. This article attempts to highlight chosen issues and thereby create an overall impression, avoiding emphasis on single-aspect calculation. High level waste (H.L.W.) dominates current radioactive waste studies because of its specific characteristics and is therefore dealt with in this paper. However, depending on the method of disposal the other categories of radio active waste might become problems by themselves because of the relatively large quantities involved. (Auth.)

  18. Investigating influences on current community pharmacy practice at micro, meso, and macro levels.

    Science.gov (United States)

    Hermansyah, Andi; Sainsbury, Erica; Krass, Ines

    The nature of Australian community pharmacy is continually evolving, raising the need to explore the current situation in order to understand the potential impact of any changes. Although community pharmacy has the potential to play a greater role in health care, it is currently not meeting this potential. To investigate the nature of the contemporary practice of community pharmacy in Australia and examine the potential missed opportunities for role expansion in health care. In-depth semi-structured interviews with a wide-range of key stakeholders within and beyond community pharmacy circles were conducted. Interviews were audio-recorded, transcribed verbatim and analyzed for emerging themes. Twenty-seven key informants across Eastern half of Australia were interviewed between December 2014 and August 2015. Several key elements of the current situation representing the social, economic and policy context of community pharmacy have been identified. These elements operate interdependently, influence micro, meso and macro levels of community pharmacy operation and are changing in the current climate. Community pharmacy has untapped potential in primary health care, but it has been slow to change to meet opportunities available in the current situation. As the current situation is complex, interrelated and dynamic with often unintended and unpredictable consequences, this paper suggests that policy makers to consider the micro, meso and macro levels of community pharmacy operation when making significant policy changes. The framework proposed in this study can be a helpful tool to analyze the processes operating at these three levels and their influences on practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. THE NIOBIUM-THORIUM EUTECTIC ALLOY AS A HIGH-FIELD, HIGH-CURRENT SUPERCONDUCTOR

    Energy Technology Data Exchange (ETDEWEB)

    Cline, H. E.; Rose, R. M.; Wulff, J.

    1963-03-15

    Niobium-thorium eutectic alloys having fine acicuiar microstructures were produced by fast cooling frorn a vacuum melt. Although the solidified material was normal, continuity between the superconducting niobium-rich phase, which was essentially pure niobium, was attained by plastic deformation at room temperature. The resulting wire was tested for critical current at 4.2 deg K, in transverse magnetic fields up to 82.5 kilogauss; at the highest field, critical current densities of slightly more than 10/sup 4/ amps per square centimeter were observed. The critical current density was independent of applied field from 20 kilogauss to the highest field used; the level of critical current density depended on diameter in a manner that suggested dependence on cold work. It was concluded that the cold work reduced the thickness of the needles of niobium below the superconducting penetration depth, and brought them sufficiently close together to allow the superconducting correlation to interconnect the niobium, in the manner suggested by Cooper; furthermore, the constant critical current region may possibly extend to considerably higher fields. (auth)

  20. L1Track: A fast Level 1 track trigger for the ATLAS high luminosity upgrade

    International Nuclear Information System (INIS)

    Cerri, Alessandro

    2016-01-01

    With the planned high-luminosity upgrade of the LHC (HL-LHC), the ATLAS detector will see its collision rate increase by approximately a factor of 5 with respect to the current LHC operation. The earliest hardware-based ATLAS trigger stage (“Level 1”) will have to provide a higher rejection factor in a more difficult environment: a new improved Level 1 trigger architecture is under study, which includes the possibility of extracting with low latency and high accuracy tracking information in time for the decision taking process. In this context, the feasibility of potential approaches aimed at providing low-latency high-quality tracking at Level 1 is discussed. - Highlights: • HL-LH requires highly performing event selection. • ATLAS is studying the implementation of tracking at the very first trigger level. • Low latency and high-quality seem to be achievable with dedicated hardware and adequate detector readout architecture.

  1. Inventory and characteristics of current and projected low-level radioactive materials and waste in the United States

    International Nuclear Information System (INIS)

    Bisaria, A.; Bugos, R.G.; Pope, R.B.; Salmon, R.; Storch, S.N.; Lester, P.B.

    1994-01-01

    The Integrated Data Base (IDB), under US Department of Energy (DOE) funding and guidance, provides an annual update of compiled data on current and projected inventories and characteristics of DOE and commercially owned radioactive wastes. The data base addresses also the inventories of DOE and commercial spent fuel. These data are derived from reliable information from government sources, open literature, technical reports, and direct contacts. The radioactive materials considered are spent nuclear fuel, high-level waste (HLW), transuranic (TRU) waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, and mixed-LLW. This paper primarily focuses on LLW inventory and characterization

  2. An experimental investigation of cathode erosion in high current magnetoplasmadynamic arc discharges

    Science.gov (United States)

    Codron, Douglas A.

    Since the early to mid 1960's, laboratory studies have demonstrated the unique ability of magnetoplasmadynamic (MPD) thrusters to deliver an exceptionally high level of specific impulse and thrust at large power processing densities. These intrinsic advantages are why MPD thrusters have been identified as a prime candidate for future long duration space missions, including piloted Mars, Mars cargo, lunar cargo, and other missions beyond low Earth orbit (LEO). The large total impulse requirements inherent of the long duration space missions demand the thruster to operate for a significant fraction of the mission burn time while requiring the cathodes to operate at 50 to 10,000 kW for 2,000 to 10,000 hours. The high current levels lead to high operational temperatures and a corresponding steady depletion of the cathode material by evaporation. This mechanism has been identified as the life-limiting component of MPD thrusters. In this research, utilizing subscale geometries, time dependent cathode axial temperature profiles under varying current levels (20 to 60 A) and argon gas mass flow rates (450 to 640 sccm) for both pure and thoriated solid tungsten cathodes were measured by means of both optical pyrometry and charged-coupled (CCD) camera imaging. Thoriated tungsten cathode axial temperature profiles were compared against those of pure tungsten to demonstrate the large temperature reducing effect lowered work function imparts by encouraging increased thermionic electron emission from the cathode surface. Also, Langmuir probing was employed to measure the electron temperature, electron density, and plasma potential near the "active zone" (the surface area of the cathode responsible for approximately 70% of the emitted current) in order to characterize the plasma environment and verify future model predictions. The time changing surface microstructure and elemental composition of the thoriated tungsten cathodes were analyzed using a scanning electron microscope

  3. Corrosion and failure processes in high-level waste tanks

    International Nuclear Information System (INIS)

    Mahidhara, R.K.; Elleman, T.S.; Murty, K.L.

    1992-11-01

    A large amount of radioactive waste has been stored safely at the Savannah River and Hanford sites over the past 46 years. The aim of this report is to review the experimental corrosion studies at Savannah River and Hanford with the intention of identifying the types and rates of corrosion encountered and indicate how these data contribute to tank failure predictions. The compositions of the High-Level Wastes, mild steels used in the construction of the waste tanks and degradation-modes particularly stress corrosion cracking and pitting are discussed. Current concerns at the Hanford Site are highlighted

  4. Optimization of Superconducting Focusing Quadrupoles for the HighCurrent Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sabbi, GianLuca; Gourlay, Steve; Gung, Chen-yu; Hafalia, Ray; Lietzke, Alan; Martovetski, Nicolai; Mattafirri, Sara; Meinke, Rainer; Minervini, Joseph; Schultz, Joel; Seidl, Peter

    2005-09-16

    The Heavy Ion Fusion (HIF) program is progressing through a series of physics and technology demonstrations leading to an inertial fusion power plant. The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is exploring the physics of intense beams with high line-charge density. Superconducting focusing quadrupoles have been developed for the HCX magnetic transport studies. A baseline design was selected following several pre-series models. Optimization of the baseline design led to the development of a first prototype that achieved a conductor-limited gradient of 132 T/m in a 70 mm bore, without training, with measured field errors at the 0.1% level. Based on these results, the magnet geometry and fabrication procedures were adjusted to improve the field quality. These modifications were implemented in a second prototype. In this paper, the optimized design is presented and comparisons between the design harmonics and magnetic measurements performed on the new prototype are discussed.

  5. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  6. The Efficiency of Repressive Anti-Corruption Measures in Conditions of High-Level Corruption

    OpenAIRE

    Abramov Fedir V.

    2017-01-01

    The article is aimed at determining the efficiency of repressive anti-corruption measures in conditions of high-level corruption. It is shown that the formal rules regulating the use of repressive methods of countering corruption are characterized by a significant level of the target inefficiency of formal rules. Resulting from ignorance as to the causes of both occurence and spread of corruption – the inefficiency of the current formal rules – repressive anti-corruption measures are fundamen...

  7. Design of an end station for a high current ion implantation system

    International Nuclear Information System (INIS)

    Kranik, J.R.

    1979-01-01

    During the last 4 to 5 years IBM has been involved in an effort to develop a high current Ion Implantation system with pre-deposition capabilities. The system is dedicated to Arsenic implants, involving doses > 1 x 10 15 ions/cm 2 in the energy range of 30 to 60 keV. A major portion of this effort involved the design of an associated end station capable of producing high uniformity implants with beam currents in the 0.5 to 6.0 mA range. The end station contains all components from the exit of the analyzing magnet, including the exit beamline, process chamber, scan system, wafer handling system, high vacuum pumping package, beam optics, dosimetry system, and associated electronic controls. The unit was restricted to a six wafer (82 mm) batch size to maintain process line compatibility. In addition, implant dose non-uniformity objectives were established at +- 3% (2σ) within a wafer and +- 2% (2σ) wafer-to-wafer. Also, the system was to be capable of implanting 24 wafers/hour at a dose of 7.5 x 10 15 ions/cm 2 . Major consideration in the design was afforded to high reliability, ease of maintenance and production level throughput capabilities. The rationale and evolution of the final end station design is described. (author)

  8. Microstructures and critical currents in high-Tc superconductors

    International Nuclear Information System (INIS)

    Suenaga, Masaki

    1998-01-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high T c superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa 2 Cu 3 O 7 if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa 2 Cu 3 O 7 and how effective are these in pinning vortices

  9. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    International Nuclear Information System (INIS)

    Maguire, J.F.; Yuan, J.

    2009-01-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  10. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.F., E-mail: jmaguire@amsc.co [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States); Yuan, J. [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States)

    2009-10-15

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  11. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Science.gov (United States)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  12. Studies in High Current Density Ion Sources for Heavy Ion Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chacon-Golcher, Edwin [Univ. of California, Berkeley, CA (United States)

    2002-06-01

    This dissertation develops diverse research on small (diameter ~ few mm), high current density (J ~ several tens of mA/cm2) heavy ion sources. The research has been developed in the context of a programmatic interest within the Heavy Ion Fusion (HIF) Program to explore alternative architectures in the beam injection systems that use the merging of small, bright beams. An ion gun was designed and built for these experiments. Results of average current density yield () at different operating conditions are presented for K+ and Cs+ contact ionization sources and potassium aluminum silicate sources. Maximum values for a K+ beam of ~90 mA/cm2 were observed in 2.3 μs pulses. Measurements of beam intensity profiles and emittances are included. Measurements of neutral particle desorption are presented at different operating conditions which lead to a better understanding of the underlying atomic diffusion processes that determine the lifetime of the emitter. Estimates of diffusion times consistent with measurements are presented, as well as estimates of maximum repetition rates achievable. Diverse studies performed on the composition and preparation of alkali aluminosilicate ion sources are also presented. In addition, this work includes preliminary work carried out exploring the viability of an argon plasma ion source and a bismuth metal vapor vacuum arc (MEVVA) ion source. For the former ion source, fast rise-times (~ 1 μs), high current densities (~ 100 mA/cm+) and low operating pressures (< 2 mtorr) were verified. For the latter, high but acceptable levels of beam emittance were measured (εn ≤ 0.006 π· mm · mrad) although measured currents differed from the desired ones (I ~ 5mA) by about a factor of 10.

  13. High C-reactive protein levels are associated with depressive symptoms in schizophrenia.

    Science.gov (United States)

    Faugere, M; Micoulaud-Franchi, J-A; Faget-Agius, C; Lançon, C; Cermolacce, M; Richieri, R

    2018-01-01

    Depressive symptoms are frequently associated with schizophrenia symptoms. C - Reactive protein (CRP), a marker of chronic inflammation, had been found elevated in patients with schizophrenia and in patients with depressive symptoms. However, the association between CRP level and depressive symptoms has been poorly investigated in patients with schizophrenia. The only study conducted found an association between high CRP levels and antidepressant consumption, but not with depressive symptoms investigated with the Calgary Depression Rating Scale for Schizophrenia (CDSS). The aim of this study was to evaluate CRP levels and depressive symptoms in patients with schizophrenia, and to determine whether high CRP levels are associated with depressive symptoms and/or antidepressant consumption, independently of potential confounding factors, especially tobacco-smoking and metabolic syndrome. Three hundred and seven patients with schizophrenia were enrolled in this study (mean age = 35.74 years, 69.1% male gender). Depressive symptoms was investigated with the CDSS. Patients were classified in two groups: normal CRP level (≤ 3.0mg/L) and high CRP level (> 3.0mg/L). Current medication was recorded. 124 subjects (40.4%) were classified in the high CRP level group. After adjusting for confounding factors, these patients were found to have higher CDSS scores than those with normal CRP levels in multivariate analyses (p = 0.035, OR = 1.067, 95% CI = 1.004-1.132). No significant association between CRP levels and antidepressants consumption was found. The size sample is relatively small. The cut-off point for high cardiovascular risk was used to define the two groups. CRP was the sole marker of inflammation in this study and was collected at only one time point. The design of this study is cross-sectional and there are no conclusions about the directionality of the association between depression and inflammation in schizophrenia. This study found an association between high

  14. History of Aral Sea level variability and current scientific debates

    Science.gov (United States)

    Cretaux, Jean-François; Letolle, René; Bergé-Nguyen, Muriel

    2013-11-01

    The Aral Sea has shrunk drastically over the past 50 years, largely due to water abstraction from the Amu Darya and Syr Darya rivers for land irrigation. Over a longer timescale, Holocene palaeolimnological reconstruction of variability in water levels of the Aral Sea since 11,700 BP indicates a long history of alternating phases of regression and transgression, which have been attributed variously to climate, tectonic and anthropogenic forcing. The hydrological history of the Aral Sea has been investigated by application of a variety of scientific approaches, including archaeology, palaeolimnological palaeoclimate reconstruction, geophysics, sedimentology, and more recently, space science. Many issues concerning lake level variability over the Holocene and more recent timescales, and the processes that drive the changes, are still a matter for active debate. Our aim in this article is to review the current debates regarding key issues surrounding the causes and magnitude of Aral Sea level variability on a variety of timescales from months to thousands of years. Many researchers have shown that the main driving force of Aral Sea regressions and transgressions is climate change, while other authors have argued that anthropogenic forcing is the main cause of Aral Sea water level variations over the Holocene. Particular emphasis is made on contributions from satellite remote sensing data in order to improve our understanding of the influence of groundwater on the current hydrological water budget of the Aral Sea since 2005. Over this period of time, water balance computation has been performed and has shown that the underground water inflow to the Aral Sea is close to zero with an uncertainty of 3 km3/year.

  15. The Solenarc circuit-breaker of high performance level

    International Nuclear Information System (INIS)

    Lehmann, J.M.

    1983-01-01

    After recalling the breaking principle involved in MV circuit-breakers manufactured by Merlin Gerin, it is showed how Solenarc technique enables specific problems to be solved that are set by the equipment of Eurodif plant at Tricastin and that represent constraints similar to those encountered with protective equipment for power station auxiliaries (high rated currents, long duration overloads, very high short-circuit currents, current breaks without natural passage through zero, etc.) [fr

  16. Characterisation Of The Beam Plasma In High Current, Low Energy Ion Beams For Implanters

    International Nuclear Information System (INIS)

    Fiala, J.; Armour, D. G.; Berg, J. A. van der; Holmes, A. J. T.; Goldberg, R. D.; Collart, E. H. J.

    2006-01-01

    The effective transport of high current, positive ion beams at low energies in ion implanters requires the a high level of space charge compensation. The self-induced or forced introduction of electrons is known to result in the creation of a so-called beam plasma through which the beam propagates. Despite the ability of beams at energies above about 3-5 keV to create their own neutralising plasmas and the development of highly effective, plasma based neutralising systems for low energy beams, very little is known about the nature of beam plasmas and how their characteristics and capabilities depend on beam current, beam energy and beamline pressure. These issues have been addressed in a detailed scanning Langmuir probe study of the plasmas created in beams passing through the post-analysis section of a commercial, high current ion implanter. Combined with Faraday cup measurements of the rate of loss of beam current in the same region due to charge exchange and scattering collisions, the probe data have provided a valuable insight into the nature of the slow ion and electron production and loss processes. Two distinct electron energy distribution functions are observed with electron temperatures ≥ 25 V and around 1 eV. The fast electrons observed must be produced in their energetic state. By studying the properties of the beam plasma as a function of the beam and beamline parameters, information on the ways in which the plasma and the beam interact to reduce beam blow-up and retain a stable plasma has been obtained

  17. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J. J.; van der Meiden, H. J.; Morgan, T. W.; D.C. Schram,; De Temmerman, G.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 mu F) is parallel-coupled to the current regulated power supply. The current is transiently increased from

  18. Characterization of a high-power/current pulsed magnetized arc discharge

    NARCIS (Netherlands)

    Zielinski, J.J.; Meiden, van der H.J.; Morgan, T.W.; Schram, D.C.; De Temmerman, G.C.

    2012-01-01

    A high-power pulsed magnetized arc discharge has been developed to allow the superimposition of a dc plasma and a high-power plasma impulse with a single plasma source. A capacitor bank (8400 µF) is parallel-coupled to the current regulated power supply. The current is transiently increased from its

  19. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  20. Bivariate quadratic method in quantifying the differential capacitance and energy capacity of supercapacitors under high current operation

    Science.gov (United States)

    Goh, Chin-Teng; Cruden, Andrew

    2014-11-01

    Capacitance and resistance are the fundamental electrical parameters used to evaluate the electrical characteristics of a supercapacitor, namely the dynamic voltage response, energy capacity, state of charge and health condition. In the British Standards EN62391 and EN62576, the constant capacitance method can be further improved with a differential capacitance that more accurately describes the dynamic voltage response of supercapacitors. This paper presents a novel bivariate quadratic based method to model the dynamic voltage response of supercapacitors under high current charge-discharge cycling, and to enable the derivation of the differential capacitance and energy capacity directly from terminal measurements, i.e. voltage and current, rather than from multiple pulsed-current or excitation signal tests across different bias levels. The estimation results the author achieves are in close agreement with experimental measurements, within a relative error of 0.2%, at various high current levels (25-200 A), more accurate than the constant capacitance method (4-7%). The archival value of this paper is the introduction of an improved quantification method for the electrical characteristics of supercapacitors, and the disclosure of the distinct properties of supercapacitors: the nonlinear capacitance-voltage characteristic, capacitance variation between charging and discharging, and distribution of energy capacity across the operating voltage window.

  1. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  2. Laboratory characterization and vitrification of Hanford radioactive high-level waste

    International Nuclear Information System (INIS)

    Tingey, J.M.; Elliott, M.L.; Larson, D.E.; Morrey, E.V.

    1991-05-01

    Radioactive high-level wastes generated at the Department of Energy's Hanford Site are stored in underground carbon steel tanks. Two double-shell tanks contain neutralized current acid waste (NCAW) from the reprocessing of irradiated nuclear fuel in the Plutonium and Uranium Extraction (PUREX) Plant. The tanks were sampled for characterization and waste immobilization process/product development. The high-level waste generated in PUREX was denitrated with sugar to form current acid waste (CAW). The CAW was ''neutralized'' to a pH of approximately 14 by adding sodium hydroxide to reduce corrosion of the tanks. This ''neutralized'' waste is called Neutralized Current Acid Waste. Both precipitated solids and liquids are stored in the NCAW waste tanks. The NCAW contains small amounts of plutonium and most of the fission products and americium from the irradiated fuel. NCAW also contains stainless steel corrosion products, and iron and sulfate from the ferrous sulfamate reductant used in the PUREX process. The NCAW will be retrieved, pretreated, and immobilized prior to final disposal. Pretreatment consists of water washing the precipitated NCAW solids for sulfate and soluble salts removal as a waste reduction step prior to vitrification. This waste is expected to be the first waste type to be retrieved and vitrified in the Hanford Waste Vitrification Plant (HWVP). A characterization plan was developed that details the processing of the small-volume NCAW samples through retrieval, pretreatment and vitrification process steps. Physical, rheological, chemical, and radiochemical properties were measured throughout these process steps. The results of nonradioactive simulant tests were used to develop appropriate pretreatment and vitrification process steps. The processing and characterization of simulants and actual NCAW tank samples are used to evaluate the operation of these processes. 3 refs., 1 fig., 4 tabs

  3. High Field Side Lower Hybrid Current Drive Simulations for Off- axis Current Drive in DIII-D

    Directory of Open Access Journals (Sweden)

    Wukitch S.J.

    2017-01-01

    Full Text Available Efficient off-axis current drive scalable to reactors is a key enabling technology for developing economical, steady state tokamak. Previous studies have focussed on high field side (HFS launch of lower hybrid current drive (LHCD in double null configurations in reactor grade plasmas and found improved wave penetration and high current drive efficiency with driven current profile peaked near a normalized radius, ρ, of 0.6-0.8, consistent with advanced tokamak scenarios. Further, HFS launch potentially mitigates plasma material interaction and coupling issues. For this work, we sought credible HFS LHCD scenario for DIII-D advanced tokamak discharges through utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D constrained by experimental considerations. For a model and existing discharge, HFS LHCD scenarios with excellent wave penetration and current drive were identified. The LHCD is peaked off axis, ρ∼0.6-0.8, with FWHM Δρ=0.2 and driven current up to 0.37 MA/MW coupled. For HFS near mid plane launch, wave penetration is excellent and have access to single pass absorption scenarios for variety of plasmas for n||=2.6-3.4. These DIII-D discharge simulations indicate that HFS LHCD has potential to demonstrate efficient off axis current drive and current profile control in DIII-D existing and model discharge.

  4. Recovering method for high level radioactive material

    International Nuclear Information System (INIS)

    Fukui, Toshiki

    1998-01-01

    Offgas filters such as of nuclear fuel reprocessing facilities and waste control facilities are burnt, and the burnt ash is melted by heating, and then the molten ashes are brought into contact with a molten metal having a low boiling point to transfer the high level radioactive materials in the molten ash to the molten metal. Then, only the molten metal is evaporated and solidified by drying, and residual high level radioactive materials are recovered. According to this method, the high level radioactive materials in the molten ashes are transferred to the molten metal and separated by the difference of the distribution rate of the molten ash and the molten metal. Subsequently, the molten metal to which the high level radioactive materials are transferred is heated to a temperature higher than the boiling point so that only the molten metal is evaporated and dried to be removed, and residual high level radioactive materials are recovered easily. On the other hand, the molten ash from which the high level radioactive material is removed can be discarded as ordinary industrial wastes as they are. (T.M.)

  5. High-level-waste immobilization

    International Nuclear Information System (INIS)

    Crandall, J.L.

    1982-01-01

    Analysis of risks, environmental effects, process feasibility, and costs for disposal of immobilized high-level wastes in geologic repositories indicates that the disposal system safety has a low sensitivity to the choice of the waste disposal form

  6. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  7. High-level radioactive waste management

    International Nuclear Information System (INIS)

    Schneider, K.J.; Liikala, R.C.

    1974-01-01

    High-level radioactive waste in the U.S. will be converted to an encapsulated solid and shipped to a Federal repository for retrievable storage for extended periods. Meanwhile the development of concepts for ultimate disposal of the waste which the Federal Government would manage is being actively pursued. A number of promising concepts have been proposed, for which there is high confidence that one or more will be suitable for long-term, ultimate disposal. Initial evaluations of technical (or theoretical) feasibility for the various waste disposal concepts show that in the broad category, (i.e., geologic, seabed, ice sheet, extraterrestrial, and transmutation) all meet the criteria for judging feasibility, though a few alternatives within these categories do not. Preliminary cost estimates show that, although many millions of dollars may be required, the cost for even the most exotic concepts is small relative to the total cost of electric power generation. For example, the cost estimates for terrestrial disposal concepts are less than 1 percent of the total generating costs. The cost for actinide transmutation is estimated at around 1 percent of generation costs, while actinide element disposal in space is less than 5 percent of generating costs. Thus neither technical feasibility nor cost seems to be a no-go factor in selecting a waste management system. The seabed, ice sheet, and space disposal concepts face international policy constraints. The information being developed currently in safety, environmental concern, and public response will be important factors in determining which concepts appear most promising for further development

  8. High improvement in trap level density and direct current breakdown strength of block polypropylene by doping with a β-nucleating agent

    Science.gov (United States)

    Zhang, Chong; Zha, Jun-Wei; Yan, Hong-Da; Li, Wei-Kang; Dang, Zhi-Min

    2018-02-01

    Polypropylene is one kind of eco-friendly insulating material, which has attracted more attention for use in high voltage direct current (HVDC) insulation due to the long-distance transmission, low loss, and recyclability. In this work, the morphology and thermal and electrical properties of the block polypropylene with various β-nucleating agent (β-NA) contents were investigated. The relative fraction of the β-crystal can reach 64.7% after adding 0.05 wt. % β-NA. The β-NA also greatly reduced the melting point and improved the crystallization temperature. The electrical property results showed that the alternating and direct current breakdown strength and conduction current were obviously improved. In addition, space charge accumulation was significantly suppressed by introducing the β-NA. This work provides an attractive strategy of design and fabrication of polypropylene for HVDC application.

  9. Electropolishing decontamination system for high-level waste canisters

    International Nuclear Information System (INIS)

    Larson, D.E.; Berger, D.N.; Allen, R.P.; Bryan, G.H.; Place, B.G.

    1988-10-01

    As part of a US Department of Energy (DOE) project agreement with the Federal Ministry for Research and Technology (BMFT) in the Federal Republic of Germany (FRG). The Nuclear Waste Treatment Program at the Pacific Northwest Laboratory (PNL) is preparing 30 radioactive canisters containing borosilicate glass for use in high-level waste repository related tests at the Asse Salt Mine. After filling, the canisters will be welded closed and decontaminated in preparation for shipping to the FRG. Electropolishing was selected as the primary decontamination approach, and an electropolishing system with associated canister inspection equipment has been designed and fabricated for installation in a large hot cell. This remote electropolishing system, which is currently undergoing preliminary testing, is described in this report. 3 refs., 3 figs., 1 tab

  10. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  11. High stability, high current DC-power supplies

    International Nuclear Information System (INIS)

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  12. Hall probe for measuring high currents in superconducting coils

    International Nuclear Information System (INIS)

    Ferendeci, A.M.

    1986-01-01

    Constructional details of a compact Hall probe for measuring high currents in superconducting coils are given. The Hall probe is easy to assemble and can be inserted or removed from the system without breaking the superconducting loop. Upper current limit of the probe can be increased by using larger magnetic core material. Shielding becomes necessary if the probe holder is to be placed near large current dependent magnetic fields

  13. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  14. High current density ion beam obtained by a transition to a highly focused state in extremely low-energy region

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Y., E-mail: y.hirano@aist.go.jp, E-mail: hirano.yoichi@phys.cst.nihon-u.ac.jp [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); College of Science and Technologies, Nihon University, Chiyodaku, Tokyo 101-0897 (Japan); Kiyama, S.; Koguchi, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Fujiwara, Y.; Sakakita, H. [Innovative Plasma Processing Group, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Department of Engineering Mechanics and Energy, University of Tsukuba, Ibaraki 305-8577 (Japan)

    2015-11-15

    A high current density (≈3 mA/cm{sup 2}) hydrogen ion beam source operating in an extremely low-energy region (E{sub ib} ≈ 150–200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E{sub ib} is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.

  15. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  16. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  17. Low-level radioactive waste management at the Nevada Test Site - Current status

    International Nuclear Information System (INIS)

    Becker, B.D.; Crowe, B.M.; Gertz, C.P.; Clayton, W.A.

    1999-01-01

    The performance objectives of the Department of Energy's Low-Level Radioactive Waste (LLW) disposal facilities located at the Nevada Test Site transcend those of any other radioactive waste disposal site in the US. Situated at the southern end of the Great Basin, 800 feet above the water table, the Area 5 Radioactive Waste Management Site (RWMS) has utilized a combination of engineered shallow land disposal cells and deep augured shafts to dispose a variety of waste streams. These include high volume low-activity wastes, classified materials, and high-specific-activity special case wastes. Twenty miles north of Area 5 is the Area 3 RWMS. Here bulk LLW disposal takes place in subsidence craters formed from underground testing of nuclear weapons. Earliest records indicate that documented LLW disposal activities have occurred at the Area 5 and Area 3 RWMS's since 1961 and 1968, respectively. However, these activities have only been managed under a formal program since 1978. This paper describes the technical attributes of the facilities, present and future capacities and capabilities, and provides a description of the process from waste approval to final disposition. The paper also summarizes the current status of the waste disposal operations

  18. Removing high-level contaminants

    International Nuclear Information System (INIS)

    Wallace, Paula

    2013-01-01

    Full text: Using biomimicry, an Australian cleantech innovation making inroads intoChinas's industrial sector offers multiple benefits to miners and processors in Australia. Stephen Shelley, the executive chairman of Creative Water Technology (CWT), was on hand at a recent trade show to explain how his Melbourne company has developed world-class techniques in zero liquid discharge and fractional crystallization of minerals to apply to a wide range of water treatment and recycling applications. “Most existing technologies operate with high energy distillation, filters or biological processing. CWT's appliance uses a low temperature, thermal distillation process known as adiabatic recovery to desalinate, dewater and/or recycle highly saline and highly contaminated waste water,” said Shelley. The technology has been specifically designed to handle the high levels of contaminant that alternative technologies struggle to process, with proven water quality results for feed water samples with TDS levels over 300,000ppm converted to clean water with less than 20ppm. Comparatively, reverse osmosis struggles to process contaminant levels over 70,000ppm effectively. “CWT is able to reclaim up to 97% clean usable water and up to 100% of the contaminants contained in the feed water,” said Shelley, adding that soluble and insoluble contaminants are separately extracted and dried for sale or re-use. In industrial applications CWT has successfully processed feed water with contaminant levels over 650,000 mg/1- without the use of chemicals. “The technology would be suitable for companies in oil exploration and production, mining, smelting, biofuels, textiles and the agricultural and food production sectors,” said Shelley. When compared to a conventional desalination plant, the CWT system is able to capture the value in the brine that most plants discard, not only from the salt but the additional water it contains. “If you recover those two commodities... then you

  19. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  20. Transmutation of high-level radioactive waste - Perspectives

    CERN Document Server

    Junghans, Arnd; Grosse, Eckart; Hannaske, Roland; Kögler, Toni; Massarczyk, Ralf; Schwengner, Ronald; Wagner, Andreas

    2014-01-01

    In a fast neutron spectrum essentially all long-lived actinides (e.g. Plutonium) undergo fission and thus can be transmuted into generally short lived fission products. Innovative nuclear reactor concepts e.g. accelerator driven systems (ADS) are currently in development that foresee a closed fuel cycle. The majority of the fissile nuclides (uranium, plutonium) shall be used for power generation and only fission products will be put into final disposal that needs to last for a historical time scale of only 1000 years. For the transmutation of high-level radioactive waste a lot of research and development is still required. One aspect is the precise knowledge of nuclear data for reactions with fast neutrons. Nuclear reactions relevant for transmutation are being investigated in the framework of the european project ERINDA. First results from the new neutron time-of-flight facility nELBE at Helmholtz-Zentrum Dresden-Rossendorf will be presented.

  1. A High-Voltage Level Tolerant Transistor Circuit

    NARCIS (Netherlands)

    Annema, Anne J.; Geelen, Godefridus Johannes Gertrudis Maria

    2001-01-01

    A high-voltage level tolerant transistor circuit, comprising a plurality of cascoded transistors, including a first transistor (T1) operatively connected to a high-voltage level node (3) and a second transistor (T2) operatively connected to a low-voltage level node (2). The first transistor (T1)

  2. High current superconductors for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Pierluigi, E-mail: pierluigi.bruzzone@psi.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom – Confédération Suisse, CH-5232 Villigen PSI (Switzerland); Sedlak, Kamil; Stepanov, Boris [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom – Confédération Suisse, CH-5232 Villigen PSI (Switzerland)

    2013-10-15

    Highlights: ► Definition of requirement for TF coil based on the input of system code. ► A TF coil and conductor design for the European DEMO project. ► Use of React and Wind method opposite to Wind and React with related advantages. ► Hybridization of winding pack, Nb/Nb{sub 3}Sn, by graded layer winding. -- Abstract: In the assumption that DEMO will be an inductively driven tokamak, the number of load cycles will be in the range of several hundred thousands. The requirements for a new generation of Nb{sub 3}Sn based high current conductors for DEMO are drafted starting from the output of system code PROCESS. The key objectives include the stability of the DC performance over the lifetime of the machine and the effective use of the Nb{sub 3}Sn strand properties, for cost and reliability reasons. A preliminary layout of the winding pack and conductors for the toroidal field magnets is presented. To suppress the mechanism of reversible and irreversible degradation, i.e. to preserve in the cabled conductor the high critical current density of the strand, the thermal strain must be insignificant and no space for micro-bending under transverse load must be left in the strand bundle. The “react-and-wind” method is preferred here, with a graded, layer wound magnet, containing both Nb{sub 3}Sn and NbTi layers. The implications of the conductor choice on the coil design and technology are highlighted. A roadmap is sketched for the development of a full size prototype conductor sample and demonstration of the key technologies.

  3. Long-term management of high-level radioactive waste. The meaning of a demonstration

    International Nuclear Information System (INIS)

    1983-01-01

    The ''demonstration'' of the safe management of high level radioactive waste is a prerequisite for the further development of nuclear energy. It is therefore essential to be clear about both the meaning of the term ''demonstration'' and the practical means to satisfy this request. In the complex sequence of operations necessary to the safe management of high level waste, short term activities can be directly demonstrated. For longer term activities, such as the long term isolation of radioactive waste in deep undergroung structures, demonstration must be indirect. The ''demonstration'' of deep underground disposal for high level radioactive waste involves two steps: one direct, to prove that the system could be built, operated and closed safely and at acceptable costs, and one indirect, to make a convincing evaluation of the system's performance and long term safety on the basis of predictive analyses confirmed by a body of varied technical and scienfic data, much of it deriving from experimental work. The assessment of the evidence collected from current operations, existing experience in related fields and specific research and development activities, calls for specialized scientific expertise. Uncertainties in far future situations and probabilistic events can be taken into account in a scientific assessment. Competent national authorithies will have to satisfy themselves that the proposed waste management solutions can meet long term safety objectives. An element of judgement will always be needed in determining the acceptability of a waste disposal concept. However, the level of confidence in our ability to predict the performance of waste management systems will increase as supporting evidence is collected from current research and development activities and as our predictive techniques improve

  4. High performance current generator with one-picoampere resolution

    International Nuclear Information System (INIS)

    Grillo, L.; Manfredi, P.F.; Marchesini, R.

    1975-01-01

    A high-performance current generator for the picoampere region is presented. Although it was primarily developed as a part of an automatic test system to calibrate charge integrators for accelerating machines. It can suit a wide range of applications. It consists basically of a positive feedback loop of controlled gain which includes a varactor bridge operational amplifier. The essential features of the instrument are a 1 pA resolution and a 10 15 Ω output impedance. The output is guarded and floating between - 120 V and + 120 V, and the voltage across the external loads is measured without affecting the delivered current by a digital panel meter on the front panel. The unit can therefore operate as a high-accuracy dc impedance meter. (Auth.)

  5. Testing and evaluation of high temperature superconductor current leads

    International Nuclear Information System (INIS)

    Yadav, Anand; Puntambekar, Avinash; Manekar, M.A.

    2009-01-01

    National Institute for Inter-disciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research, Trivandrum (formerly Regional Research Laboratory) has accomplished a DAE-BRNS project with Raja Ramanna Centre for Advanced Technology (RRCAT) as principal collaborator for the development of high temperature superconductor (HTS) current leads. These HTS current leads have self-field critical currents (Ic) ranging from 50 A to 1000 A at liquid nitrogen (LN 2 ) temperature. These HTS are made out of silver sheathed Bismuth Strontium Calcium Copper Oxide (BSCCO-2223), for direct application in superconducting (SC) systems involving transportation of high electric currents from power sources at room temperature to superconducting devices at cryogenic temperatures. RRCAT has participated in this project by testing and evaluation of these HTS current leads and carried out actual load trials. In this paper, we will describe the HTS testing setup, tests performed with their testing procedure and the test results. The testing of these HTS has been done with joint effort of Materials Advanced Accelerator Science and Cryogenics Div. and Superconducting Technology Lab (SCT Lab), Advanced Accelerator Module Development Div., using the test facility available at the SCT Lab. (author)

  6. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  7. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  8. Quench protection and design of large high-current-density superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.

    1981-03-01

    Although most large superconducting magnets have been designed using the concept of cryostability, there is increased need for large magnets which operate at current densities above the cryostable limit (greater than 10 8 Am -2 ). Large high current density superconducting magnets are chosen for the following reasons: reduced mass, reduced coil thickness or size, and reduced cost. The design of large high current density, adiabatically stable, superconducting magnets requires a very different set of design rules than either large cryostable superconducting magnets or small self-protected high current density magnets. The problems associated with large high current density superconducting magnets fall into three categories; (a) quench protection, (b) stress and training, and (c) cryogenic design. The three categories must be considered simultaneously. The paper discusses quench protection and its implication for magnets of large stored energies (this includes strings of smaller magnets). Training and its relationship to quench protection and magnetic strain are discussed. Examples of magnets, built at the Lawrence Berkeley Laboratory and elsewhere using the design guidelines given in this report, are presented

  9. High current beam transport experiments at GSI

    International Nuclear Information System (INIS)

    Klabunde, J.; Schonlein, A.; Spadtke, P.

    1985-01-01

    The status of the high current ion beam transport experiment is reported. 190 keV Ar 1+ ions were injected into six periods of a magnetic quadrupole channel. Since the pulse length is > 0.5 ms partial space charge neutralization occurs. In our experiments, the behavior of unneutralized and partially space charge compensated beams is compared. With an unneutralized beam, emittance growth has been measured for high intensities even in case of the zero-current phase advance sigma 0 0 . This initial emittance growth at high tune depression we attribute to the homogenization effect of the space charge density. An analytical formula based on this assumption describes the emittance growth very well. Furthermore the predicted envelope instabilities for sigma 0 > 90 0 were observed even after 6 periods. In agreement with the theory, unstable beam transport was also experimentally found if a beam with different emittances in the two transverse phase planes was injected into the transport channel. Although the space charge force is reduced for a partially neutralized beam a deterioration of the beam quality was measured in a certain range of beam parameters. Only in the range where an unneutralized beam shows the initial emittance growth, the partial neutralization reduces this effect, otherwise the partially neutralized beam is more unstable

  10. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  11. The Efficiency of Repressive Anti-Corruption Measures in Conditions of High-Level Corruption

    Directory of Open Access Journals (Sweden)

    Abramov Fedir V.

    2017-12-01

    Full Text Available The article is aimed at determining the efficiency of repressive anti-corruption measures in conditions of high-level corruption. It is shown that the formal rules regulating the use of repressive methods of countering corruption are characterized by a significant level of the target inefficiency of formal rules. Resulting from ignorance as to the causes of both occurence and spread of corruption – the inefficiency of the current formal rules – repressive anti-corruption measures are fundamentally incapable of achieving a significant reduction in the level of corruptness. It has been proved that, in addition to significant target inefficiency, repressive anti-corruption methods can potentially lead to increased levels of corruption because of abusing by supervisory officials of their official duties and the spread of internal corruption within anti-corruption structures. The potential threats from the uncontrolled anti-corruption structures towards other controlling organizations were considered. It is shown that in conditions of high-level corruption repressive anti-corruption measures can lead to expansion of imitation of anti-corruption activity.

  12. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  13. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  14. Waste package designs for disposal of high-level waste in salt formations

    International Nuclear Information System (INIS)

    Basham, S.J. Jr.; Carr, J.A.

    1984-01-01

    In the United States of America the selected method for disposal of radioactive waste is mined repositories located in suitable geohydrological settings. Currently four types of host rocks are under consideration: tuff, basalt, crystalline rock and salt. Development of waste package designs for incorporation in mined salt repositories is discussed. The three pertinent high-level waste forms are: spent fuel, as disassembled and close-packed fuel pins in a mild steel canister; commercial high-level waste (CHLW), as borosilicate glass in stainless-steel canisters; defence high-level waste (DHLW), as borosilicate glass in stainless-steel canisters. The canisters are production and handling items only. They have no planned long-term isolation function. Each waste form requires a different approach in package design. However, the general geometry and the materials of the three designs are identical. The selected waste package design is an overpack of low carbon steel with a welded closure. This container surrounds the waste forms. Studies to better define brine quantity and composition, radiation effects on the salt and brines, long-term corrosion behaviour of the low carbon steel, and the leaching behaviour of the spent fuel and borosilicate glass waste forms are continuing. (author)

  15. Enhanced performance on high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Cotrell, G.; Corti, S.; Christiansen, J.P.; Hellsten, T.; Jacquinot, J.; Lallia, P.; Lomas, P.; O'Rourke, J.; Taroni, A.; Tibone, F.; Start, D.F.H.

    1989-01-01

    The performance of high current discharges can be increased by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Sawtooth-free periods have been obtained resulting in the enhanced discharge performance. High T e (0) 9 - 10.5 keV with peaked profiles T e (0)/ e > = 3 - 4 were obtained giving values of n e (0)T e (0) up to 6x10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A 60 % enhancement in D-D reaction rate from 2nd harmonic deuterium (2ω CD ) heating appears to be present. In all current rise (CR) discharges radiation amounts to 25-50 % of total power. (author) 4 refs., 6 figs

  16. High-level waste processing and disposal

    International Nuclear Information System (INIS)

    Crandall, J.L.; Krause, H.; Sombret, C.; Uematsu, K.

    1984-01-01

    The national high-level waste disposal plans for France, the Federal Republic of Germany, Japan, and the United States are covered. Three conclusions are reached. The first conclusion is that an excellent technology already exists for high-level waste disposal. With appropriate packaging, spent fuel seems to be an acceptable waste form. Borosilicate glass reprocessing waste forms are well understood, in production in France, and scheduled for production in the next few years in a number of other countries. For final disposal, a number of candidate geological repository sites have been identified and several demonstration sites opened. The second conclusion is that adequate financing and a legal basis for waste disposal are in place in most countries. Costs of high-level waste disposal will probably add about 5 to 10% to the costs of nuclear electric power. The third conclusion is less optimistic. Political problems remain formidable in highly conservative regulations, in qualifying a final disposal site, and in securing acceptable transport routes

  17. The impact of current infection levels on the cost-benefit of vaccination

    Directory of Open Access Journals (Sweden)

    Matt J. Keeling

    2017-12-01

    Full Text Available When considering a new vaccine programme or modifying an existing one, economic cost-benefit analysis, underpinned by predictive epidemiological modelling, is a key component. This analysis is intimately linked to the willingness to pay for additional QALYs (quality-adjusted life-years gained; currently in England and Wales a health programme is economically viable if the cost per QALY gained is less than £ 20,000, and models are often used to assess if a vaccine programme is likely to fall below this threshold cost. Before a programme begins, infection levels are generally high and therefore vaccination may be expected to have substantial effects and therefore will often be economically viable. However, once a programme is established, and infection rates are lower, it might be expected that a re-evaluation of the programme (using current incidence information will show it to be less cost-effective. This is the scenario we examine here with analytical tools and simple ODE models. Surprisingly we show that in most cases the benefits from maintaining an existing vaccination programme are at least equal to those of starting the programme initially, and in the majority of scenarios the differences between the two are minimal. In practical terms, this is an extremely helpful finding, allowing us to assert that the action of immunising individuals does not de-value the vaccination programme.

  18. A review of high beam current RFQ accelerators and funnels

    International Nuclear Information System (INIS)

    Schneider, J.D.

    1998-01-01

    The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H - injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H - ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers

  19. Compilation of current high-energy-physics experiments

    International Nuclear Information System (INIS)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976

  20. Application of radiofrequency superconductivity to accelerators for high-current ion beams

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Roche, C.T.; Sagalovsky, L.

    1992-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high-current, high-brightness ion beam. During the last few years, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm) surface areas. Theoretical studies of beam halo, cumulative beam breakup and alternating-phase focusing have also yielded important results. This paper su-summarizes the recent progress and identifies current and future work in the areas of superconducting accelerator technology for high-current ion beams

  1. Lead-iron phosphate glass: a stable storage medium for high-level nuclear waste

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1984-01-01

    Results are presented which show that lead-iron phosphate glasses are a promising new waste form for the safe immobilization of both high-level defense and high-level commercial radioactive waste. Relative to the borosilicate nuclear waste glasses that are currently the ''reference'' waste form for the long-term disposal of nuclear waste, lead-iron phosphate glasses have several distinct advantages: (1) an aqueous corrosion rate that is about 1000 times lower, (2) a processing temperature that is 100 0 to 250 0 C lower and, (3) a much lower melt viscosity in the temperature range from 800 0 to 1000 0 C. Most significantly, the lead-iron phosphate waste form can be processed using a technology similar to that developed for borosilicate nuclear waste glasses

  2. High level waste transport and disposal cost calculations for the United Kingdom

    International Nuclear Information System (INIS)

    Nattress, P.C.; Ward, R.D.

    1992-01-01

    Commercial nuclear power has been generated in the United Kingdom since 1962, and throughout that time fuel has been reprocessed giving rise to high level waste. This has been managed by storing fission products and related wastes as highly active liquor, and more recently by a program of vitrification and storage of the glass blocks produced. Government policy is that vitrified high level waste should be stored for at least 50 years, which has the technical advantage of allowing the heat output rate of the waste to fall, making disposal easier and cheaper. Thus, there is no immediate requirement to develop a deep geological repository in the UK, but the nuclear companies do have a requirement to make financial provision out of current revenues for high level waste disposal at a future repository. In 1991 the interested organizations undertook a new calculation of costs for such provisions, which is described here. The preliminary work for the calculation included the assumption of host geology characteristics, a compatible repository concept including overpacking, and a range of possible nuclear programs. These have differing numbers of power plants, and differing mixes of high level waste from reprocessing and spent fuel for direct disposal. An algorithm was then developed so that the cost of high level waste disposal could be calculated for any required case within a stated envelope of parameters. An Example Case was then considered in detail leading to the conclusion that a repository to meet the needs of a constant UK nuclear economy up to the middle of the next century would have a cash cost of UK Pounds 1194M (US$2011M). By simple division the cost to a kWh of electricity is UK Pounds 0.00027 (0.45 US mil). (author)

  3. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  4. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  5. Development of the High Current Ion Source for Neutral Beam Injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hun Ju; Kim, S. H.; Jang, D. H. [Jae Ju University, Jaeju (Korea, Republic of)

    1997-08-01

    The scope of the 1st year research is to design an 140keV deuterium ion source which has a beam current of 30-40A. According to the collected data, the model of an ion source for NBI of KSTAR was established. The negative ion source, which has good neutralization effecting in high energy, was selected. To generate a plasma, the thoriated tungsten filament was adopted. To increase the efficiency of plasma, the multi cusp type magnetic field was attached. The magnetic field was calculated by POISSON code. The extraction structure was designed with EGUN code, to extract the high quality ion beam. The design of a high current ion source for NBI was carried out. To develop the high current ion source with the high operational stability and the long lifetime, the parameters including an arc current, gas pressure and extraction voltage should be optimized. If designed ion source would be fabricated, its parameters could be optimized experimentally. Through the optimization of the ion source parameter, the core technology for NBI is established and the experiment of current drive in the fusion device can be performed. This technology also can be applied to the synthesis of new material and semiconductor industry. 18 refs., 11 tabs., 19 figs. (author)

  6. High levels of Porphyromonas gingivalis-induced immunoglobulin G2 are associated with lower high-density lipoprotein levels in chronic periodontitis.

    Science.gov (United States)

    Ardila, Carlos M; Guzmán, Isabel C

    2016-11-01

    To investigate the association between the presence of Porphyromonas gingivalis-induced immunoglobulin G antibodies and the high-density lipoprotein (HDL) level. A total of 108 individuals were examined. The presence of P. gingivalis was detected using primers designed to target the 16S rRNA gene sequence. Peripheral blood was collected from each subject to determine the levels of P. gingivalis-induced IgG1 and IgG2 serum antibodies. The HDL levels were determined using fully enzymatic methods. A higher proportion of periodontitis patients had high levels of P. gingivalis-induced IgG1 and IgG2, and the proportion of subjects with a HDL level of chronic periodontitis patients. In the unadjusted regression model, the presence of high levels of P. gingivalis-induced IgG2 was associated with a HDL level of periodontitis patients with high levels of P. gingivalis-induced IgG2 showed 3.2 more chances of having pathological HDL levels (odds ratio = 3.2, 95% confidence interval = 1.2-9.8). High levels of P. gingivalis-induced IgG2 were associated with low HDL concentrations in patients with periodontitis, which suggests that the response of the host to periodontal infection may play an important role in the pathogenesis of cardiovascular diseases. © 2015 Wiley Publishing Asia Pty Ltd.

  7. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  8. Effect of welding current and speed on occurrence of humping bead in high-speed GMAW

    Institute of Scientific and Technical Information of China (English)

    Chen Ji; Wu Chuansong

    2009-01-01

    The developed mathematical model of humping formation mechanism in high-speed gas metal arc welding (GMAW) is used to analyze the effects of welding current and welding speed on the occurrence of humping bead. It considers both the momentum and heat content of backward flowing molten jet inside weld pool. Three-dimensional geometry of weld pool, the spacing between two adjacent humps and hump height along humping weld bead are calculated under different levels of welding current and welding speed. It shows that wire feeding rate, power intensity and the moment of backward flowing molten jet are the major factors on humping bead formation.

  9. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  10. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  11. Realisation and instrumentation of high current power station for superconducting cables testing

    International Nuclear Information System (INIS)

    Regnaud, S.

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%

  12. Oscillographic Chronopotentiometry with High and Low Frequency Current

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel electroanalytical method, oscillographic chronopotentiometry with high and low frequency current, is presented in this paper. With this method, the sensitivity of almost all kinds of oscillographic chronopotentiometry can be enhanced about one order.

  13. Astatine-211 Radiochemistry: The Development Of Methodologies For High Activity Level Radiosynthesis

    International Nuclear Information System (INIS)

    Zalutsky, Michael R.

    2012-01-01

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for α-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the α-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At-labeled targeted

  14. ASTATINE-211 RADIOCHEMISTRY: THE DEVELOPMENT OF METHODOLOGIES FOR HIGH ACTIVITY LEVEL RADIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MICHAEL R. ZALUTSKY

    2012-08-08

    Targeted radionuclide therapy is emerging as a viable approach for cancer treatment because of its potential for delivering curative doses of radiation to malignant cell populations while sparing normal tissues. Alpha particles such as those emitted by 211At are particularly attractive for this purpose because of their short path length in tissue and high energy, making them highly effective in killing cancer cells. The current impact of targeted radiotherapy in the clinical domain remains limited despite the fact that in many cases, potentially useful molecular targets and labeled compounds have already been identified. Unfortunately, putting these concepts into practice has been impeded by limitations in radiochemistry methodologies. A critical problem is that the synthesis of therapeutic radiopharmaceuticals provides additional challenges in comparison to diagnostic reagents because of the need to perform radio-synthesis at high levels of radioactivity. This is particularly important for {alpha}-particle emitters such as 211At because they deposit large amounts of energy in a highly focal manner. The overall objective of this project is to develop convenient and reproducible radiochemical methodologies for the radiohalogenation of molecules with the {alpha}-particle emitter 211At at the radioactivity levels needed for clinical studies. Our goal is to address two problems in astatine radiochemistry: First, a well known characteristic of 211At chemistry is that yields for electrophilic astatination reactions decline as the time interval after radionuclide isolation from the cyclotron target increases. This is a critical problem that must be addressed if cyclotrons are to be able to efficiently supply 211At to remote users. And second, when the preparation of high levels of 211At-labeled compounds is attempted, the radiochemical yields can be considerably lower than those encountered at tracer dose. For these reasons, clinical evaluation of promising 211At

  15. Resistive current limiter with high-temperature superconductors. Final report

    International Nuclear Information System (INIS)

    Schubert, M.

    1995-12-01

    Fundamental results of the possibility of using high temperature superconductors (HTSC) in resistive fault current limiters are discussed. Measurement of the homogeneity of BSCCO-powder-in-tube materials were made. In addition, investigations of the transition from superconducting to normalconducting state under AC-current conditions were carried out. Based on these results, simulations of HTSC-materials on ceramic substrate were made and recent results are presented. Important results of the investigations are: 1. Current-limiting without external trigger only possible when the critical current density of HTSC exceeds 10 4 A/cm 2 . 2. Inhomogeneities sometimes cause problems with local destruction. This can be solved by parallel-elements or external trigger. 3. Fast current-limiting causes overvoltages which can be reduced by using parallel-elements. (orig.) [de

  16. Current and field distribution in high temperature superconductors

    International Nuclear Information System (INIS)

    Johnston, M.D.

    1998-01-01

    The manufacture of wires from HTS materials containing copper-oxide planes is difficult because their physical and electrical properties are highly anisotropic. The electrical connectivity depends on the nearest-neighbour grain alignment and although a high degree of grain texture is achieved through processing, the tape microstructure is generally far from uniform, with weak links and porosity also complicating the picture. In order to optimise the processing, the microstructural features common to good tapes must be identified, requiring knowledge of the local properties. The preferential path taken by transport current is determined by the properties of the local microstructure and as such can be used to measure the variation in quality across the tape cross-section. By measuring the self-field profile generated by a current-carrying tape, it is possible to extract the associated current distribution. I have designed and built a Scanning Hall Probe Microscope to measure the normal field distribution above superconductor tapes carrying DC currents, operating at liquid nitrogen temperature and zero applied magnetic field. It has a spatial resolution of 50*50 μm and a field sensitivity of 5 μT, and can scan over a distance of 6 mm. The current extraction is performed by means of a deconvolution procedure based on Legendre functions. This allows a nondestructive, non-invasive method of evaluating the effects of the processing on the tapes - especially when correlated with transport and magnetisation measurement data. Conductors fabricated from Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Bi 2 Sr 2 CaCu 2 O 8 and (Tl 0.78 Bi 0.22 )(Sr 0.8 Ba 0.2 ) 2 Ca 2 Cu 3 O x , have been investigated. I have confirmed the reports that in Bi-2223/Ag mono-core conductors produced by the oxide-powder-in-tube (OPIT) technique, the current flows predominantly at the edges of the tape, where the grains are long and well-aligned. This is in contrast to Bi-2212 ribbons, where the better microstructure

  17. High-frequency, three-phase current controller implementation in an FPGA

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M.; Round, S. D.; Kolar, J. W.

    2008-07-01

    Three phase rectifiers with switching frequencies of 500 kHz or more require high speed current controllers. At such high switching frequencies analog controllers as well as high speed digital signal processing (DSP) systems have limited performance. In this paper, two high speed current controller implementations using two different field-programmable gate arrays (FPGA) - one for switching frequencies up to 1 MHz and one for switching frequencies beyond 1 MHz - are presented to overcome this performance limitation. Starting with the digital system design all the blocks of the signal chain, containing analog-to-digital (A/D) interface, digital controller implementation using HW-multipliers and implementation of a novel high speed, high resolution pulse width modulation (PWM) are discussed and compared. Final measurements verify the performance of the controllers. (author)

  18. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  19. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  20. High-Level Application Framework for LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Chu, P; Chevtsov, S.; Fairley, D.; Larrieu, C.; Rock, J.; Rogind, D.; White, G.; Zalazny, M.; /SLAC

    2008-04-22

    A framework for high level accelerator application software is being developed for the Linac Coherent Light Source (LCLS). The framework is based on plug-in technology developed by an open source project, Eclipse. Many existing functionalities provided by Eclipse are available to high-level applications written within this framework. The framework also contains static data storage configuration and dynamic data connectivity. Because the framework is Eclipse-based, it is highly compatible with any other Eclipse plug-ins. The entire infrastructure of the software framework will be presented. Planned applications and plug-ins based on the framework are also presented.

  1. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    Science.gov (United States)

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  2. General Algorithm (High level)

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. General Algorithm (High level). Iteratively. Use Tightness Property to remove points of P1,..,Pi. Use random sampling to get a Random Sample (of enough points) from the next largest cluster, Pi+1. Use the Random Sampling Procedure to approximate ci+1 using the ...

  3. Partitioning of high level liquid waste: experiences in plant level adoption

    International Nuclear Information System (INIS)

    Manohar, Smitha; Kaushik, C.P.

    2016-01-01

    High Level Radioactive Wastes are presently vitrified in borosilicate matrices in all our back end facilities in our country. This is in accordance with internationally endorsed methodology for the safe management of high level radioactive wastes. Recent advancements in the field of partitioning technology in our group, has presented us with an opportunity to have a fresh perspective on management of high level liquid radioactive wastes streams, that emanate from reprocessing operations. This paper will highlight our experiences with respect to both partitioning studies and vitrification practices, with a focus on waste volume reduction for final disposal. Incorporation of this technique has led to the implementation of the concept of recovering wealth from waste, a marked decrease on the load of disposal in deep geological repositories and serve as a step towards the vision of transmutation of long lived radionuclides

  4. High-current Rhodotron for X-ray facility

    International Nuclear Information System (INIS)

    Umezu, Toru; Tsujiura, Yuichiro; Bol, Jean Louis

    2009-01-01

    The Rhodotron is a widely employed high-power industrial accelerator developed and exclusively distributed by IBA. Most early examples of the accelerator were optimized to operate at 10 MeV. A new Rhodotron configuration recently advanced produces a lower-energy higher-current beam dedicated with x-ray to sterilize and enhancement materials. Core elements of this system's evolution include a higher performance RF electron gun (operating range, response control, and cathode lifetime). This operational machine is now producing 100 mA at 7 MeV (700 kW of beam) and treat medical devices, thick cable and pipes with a high efficiency. (author)

  5. Maternal high-fat diet and offspring expression levels of vitamin K-dependent proteins.

    Science.gov (United States)

    Lanham, S A; Cagampang, F R; Oreffo, R O C

    2014-12-01

    Studies suggest that bone growth and development and susceptibility to vascular disease in later life are influenced by maternal nutrition during intrauterine and early postnatal life. There is evidence for a role of vitamin K-dependent proteins (VKDPs) including osteocalcin, matrix Gla protein, periostin, and growth-arrest specific- protein 6, in both bone and vascular development. We have examined whether there are alterations in these VKDPs in bone and vascular tissue from offspring of mothers subjected to a nutritional challenge: a high-fat diet during pregnancy and postnatally, using 6-week-old mouse offspring. Bone site-specific and sex-specific differences across femoral and vertebral bone in male and female offspring were observed. Overall a high-fat maternal diet and offspring diet exacerbated the bone changes observed. Sex-specific differences and tissue-specific differences were observed in VKDP levels in aorta tissue from high-fat diet-fed female offspring from high-fat diet-fed mothers displaying increased levels of Gas6 and Ggcx compared with those of female controls. In contrast, differences were seen in VKDP levels in femoral bone of female offspring with lower expression levels of Mgp in offspring of mothers fed a high-fat diet compared with those of controls. We observed a significant correlation in Mgp expression levels within the femur to measures of bone structure of the femur and vertebra, particularly in the male offspring cohort. In summary, the current study has highlighted the importance of maternal nutrition on offspring bone development and the correlation of VKDPs to bone structure.

  6. High-precision measurement of tidal current structures using coastal acoustic tomography

    Science.gov (United States)

    Zhang, Chuanzheng; Zhu, Xiao-Hua; Zhu, Ze-Nan; Liu, Wenhu; Zhang, Zhongzhe; Fan, Xiaopeng; Zhao, Ruixiang; Dong, Menghong; Wang, Min

    2017-07-01

    A high-precision coastal acoustic tomography (CAT) experiment for reconstructing the current variation in Dalian Bay (DLB) was successfully conducted by 11 coastal acoustic tomography systems during March 7-8, 2015. The horizontal distributions of tidal currents and residual currents were mapped well by the inverse method, which used reciprocal travel time data along 51 successful sound transmission rays. The semi-diurnal tide is dominant in DLB, with a maximum speed of 0.69 m s-1 at the eastern and southwestern parts near the bay mouth that gradually decreases toward the inner bay with an average velocity of 0.31 m s-1. The residual current enters the observational domain from the two flanks of the bay mouth and flows out in the inner bay. One anticyclone and one cyclone were noted inside DLB as was one cyclone at the bay mouth. The maximum residual current in the observational domain reached 0.11 m s-1, with a mean residual current of 0.03 m s-1. The upper 15-m depth-averaged inverse velocities were in excellent agreement with the moored Acoustic Doppler Current Profiler (ADCP) at the center of the bay, with a root-mean-square difference (RMSD) of 0.04 m s-1 for the eastward and northward components. The precision of the present tomography measurements was the highest thus far owing to the largest number of transmission rays ever recorded. Sensitivity experiments showed that the RMSD between CAT and moored-ADCP increased from 0.04 m s-1 to 0.08 m s-1 for both the eastward and northward velocities when reducing the number of transmission rays from 51 to 11. The observational accuracy was determined by the spatial resolution of acoustic ray in the CAT measurements. The cost-optimal scheme consisted of 29 transmission rays with a spatial resolution of acoustic ray of 2.03 √{ km2 / ray numbers } . Moreover, a dynamic analysis of the residual currents showed that the horizontal pressure gradient of residual sea level and Coriolis force contribute 38.3% and 36

  7. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  8. Ion beams from high-current PF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Pulsed beams of fast deuterons and impurity or admixture ions emitted from high-current PF-type facilities operated in different laboratories are dealt with. A short comparative analysis of time-integrated and time-resolved studies is presented. Particular attention is paid to the microstructure of such ion beams, and to the verification of some theoretical models. (author). 5 figs., 19 refs.

  9. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  10. A vacuum sealed high emission current and transmission efficiency carbon nanotube triode

    Energy Technology Data Exchange (ETDEWEB)

    Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing 210096 (China); Jiangsu Key Laboratory of Optoelectronic Technology, Nanjing Normal University, Nanjing 210023 (China); Wang, Qilong; Zhang, Xiaobing, E-mail: bell@seu.edu.cn; Lei, Wei; Du, Xiaofei; Yu, Cairu [School of Electronic Science & Engineering, Southeast University, Nanjing 210096 (China)

    2016-04-15

    A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75 mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42 mA has been collected by the anode. Also contributed by the high aperture ration of the grid, desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ∼1 × 10{sup −7} Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.

  11. Investigation of students’ intermediate conceptual understanding levels: the case of direct current electricity concepts

    International Nuclear Information System (INIS)

    Aktan, D Cobanoglu

    2013-01-01

    Conceptual understanding is one of the main topics in science and physics education research. In the majority of conceptual understanding studies, students’ understanding levels were categorized dichotomously, either as alternative or scientific understanding. Although they are invaluable in many ways, namely developing new instructional materials and assessment instruments, students’ alternative understandings alone are not sufficient to describe students’ conceptual understanding in detail. This paper introduces an example of a study in which a method was developed to assess and describe students’ conceptual understanding beyond alternative and scientific understanding levels. In this study, six undergraduate students’ conceptual understanding levels of direct current electricity concepts were assessed and described in detail by using their answers to qualitative problems. In order to do this, conceptual understanding indicators are described based on science and mathematics education literature. The students’ understanding levels were analysed by assertion analysis based on the conceptual understanding indicators. The results indicated that the participants demonstrated three intermediate understanding levels in addition to alternative and scientific understanding. This paper presents the method and its application to direct current electricity concepts. (paper)

  12. Highly sensitive detection of a current ripple

    International Nuclear Information System (INIS)

    Aoki, Takashi; Gushiken, Tutomu; Nishikigouri, Kazutaka; Kumada, Masayuki.

    1996-01-01

    In the HIMAC, there are six thyristor-controlled power sources for driving two synchrotrons. These power sources are the three-output terminal power sources which are equipped with positive output, negative output and neutral point for the common mode countermeasures. As electromagnet circuits are connected to the three-output terminal power sources, those are three-line type. In the inside of the power source circuits controlled by thyristors, there is the oscillation peculiar to the power sources, and the variation of voltage induces current spikes. This time, in order to assess the results of the common mode countermeasures in the power source and electromagnet circuits, as one method of cross-check, it is considered that since electromagnet current flows being divided to the bridging resistance and the coil, if attention is paid to the current on bridging resistance side, the ripple components of common mode and normal mode can be detected with high sensitivity, and this was verified. The present state of heightening the performance of synchrotron power sources is explained. The cross-check of the method of assessing the performance of electromagnet power sources is reported. The method of measuring ripple current and the results of the measurement are reported. (K.I.)

  13. Reliable on-line storage in the ALICE High-Level Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Kalcher, Sebastian; Lindenstruth, Volker [Kirchhoff Institute of Physics, University of Heidelberg (Germany)

    2009-07-01

    The on-line disk capacity within large computing clusters such as used in the ALICE High-Level Trigger (HLT) is often not used due to the inherent unreliability of the involved disks. With currently available hard drive capacities the total on-line capacity can be significant when compared to the storage requirements of present high energy physics experiments. In this talk we report on ClusterRAID, a reliable, distributed mass storage system, which allows to harness the (often unused) disk capacities of large cluster installations. The key paradigm of this system is to transform the local hard drive into a reliable device. It provides adjustable fault-tolerance by utilizing sophisticated error-correcting codes. To reduce the costs of coding and decoding operations the use of modern graphics processing units as co-processor has been investigated. Also, the utilization of low overhead, high performance communication networks has been examined. A prototype set up of the system exists within the HLT with 90 TB gross capacity.

  14. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  15. Ramsar hot springs: how safe is to live in an environment with high level of natural radiation

    International Nuclear Information System (INIS)

    Mortazavi, S.M.J.

    2005-01-01

    Ramsar in northern Iran is among the world's well-known areas with highest levels of natural radiation. Annual exposure levels in areas with elevated levels of natural radiation in Ramsar are up to 260 mGy y -1 and average exposure rates are about 10 mGy y -1 for a population of about 2000 residents. Due to the local geology, which includes high levels of radium in rocks, soils, and groundwater, Ramsar residents are also exposed to high levels of alpha activity in the form of ingested radium and radium decay progeny as well as very high radon levels (over 1000 MBq m -3 ) in their dwellings. In some cases, the inhabitants of these areas receive doses much higher than the current ICRP-60 dose limit of 20 mSv y -1 . As the biological effects of low doses of radiation are not fully understood, the current radiation protection recommendations are based on the predictions of an assumption on the linear, no-threshold (LNT) relationship between radiation dose and the carcinogenic effects. Considering LNT, areas having such levels of natural radiation must be evacuated or at least require immediate remedial actions. Inhabitants of the high level natural radiation areas (HLNRAs) of Ramsar ar largely unaware of natural radiation, radon, or its possible health effects, and the inhabitants have not encountered any harmful effects due to living in their paternal houses. In this regard, it is often difficult to ask the inhabitants of HLNRAs of Ramsar to carry out remedical actions. Despite the fact that considering LNT and ALARA, public health in HLNRAs like Ramsar is best served by relocating the inhabitants, the residents' health seems unaffected and relocation is upsetting to the residents. Based on the findings obtained by studies on the health effect of high levels of natural radiation in Ramsar, as well as other HLNRAs, no consistent detrimental effect has been detected so far. However, more research is needed to clarify if the regulatory authorities should set limiting

  16. Predictors of Placement in Lower Level versus Higher Level High School Mathematics

    Science.gov (United States)

    Archbald, Doug; Farley-Ripple, Elizabeth N.

    2012-01-01

    Educators and researchers have long been interested in determinants of access to honors level and college prep courses in high school. Factors influencing access to upper level mathematics courses are particularly important because of the hierarchical and sequential nature of this subject and because students who finish high school with only lower…

  17. Elimination of zero sequence circulating current between parallel operating three-level inverters

    DEFF Research Database (Denmark)

    Li, Kai; Wang, Xiaodong; Dong, Zhenhua

    2016-01-01

    In order to suppress the zero sequence circulating currents (ZSCCs) between parallel operating three level voltage source inverters with common AC and DC buses, a common mode voltage reduction PWM (CMVR-PWM) technique and neural point potentials (NPPs) control based method is proposed in this paper...

  18. New IES scheme for power conditioning at ultra-high currents: from concept to MHD modeling and first experiments

    International Nuclear Information System (INIS)

    Chuvatin, Alexandre S.; Aranchuk, Leonid E.; Rudakov, Leonid I.; Kokshenev, Vladimir A.; Kurmaev, Nikolai E.; Fursov, Fiodor I.; Huet, Dominique; Gasilov, Vladimir A.; Krukovskii, Alexandre Yu.

    2002-01-01

    This work introduces an inductive energy storage (IES) scheme which aims pulsed-power conditioning at multi- MJ energies. The key element of the scheme represents an additional plasma volume, where a magnetically accelerated wire array is used for inductive current switching. This plasma acceleration volume is connected in parallel to a microsecond capacitor bank and to a 100-ns current ruse-time useful load. Simple estimates suggest that optimized scheme parameters could be reachable even when operating at ultra-high currents. We describe first proof-of-principle experiments carried out on GIT12 generator at the wire-array current level of 2 MA. The obtained confirmation of the concept consists in generation of a 200 kV voltage directly at an inductive load. This load voltage value can be already sufficient to transfer the available magnetic energy into kinetic energy of a liner at this current level. Two-dimensional modeling with the radiational MHD numerical tool Marple confirms the development of inductive voltage in the system. However, the average voltage increase is accompanied by short-duration voltage drops due to interception of the current by the low-density upstream plasma. Upon our viewpoint, this instability of the current distribution represents the main physical limitation to the scheme performance

  19. The CMS High Level Trigger System: Experience and Future Development

    CERN Document Server

    Bauer, Gerry; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, J A; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, R; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Y L Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, R K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, M; Spataru, A C; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  20. Identification of Current Proficiency Level of Extension Competencies and the Competencies Needed for Extension Agents to Be Successful in the 21st Century

    Directory of Open Access Journals (Sweden)

    Dona Lakai

    2014-02-01

    Full Text Available In this era of globalization, competency is an issue of concern to any field of professionals and their clients. Competency is an integrated set of skills, knowledge, and attitudes that allow one to effectively carry out the activities of a given work to the standards expected in the employment context. The purpose of this descriptive survey study was to determine the current proficiency level of North Carolina Cooperative Extension agents’ competencies and the other competencies they need to develop to be successful in Cooperative Extension. Findings indicate that the current proficiency level of competency for Extension agents in North Carolina Cooperative Extension varies from moderate to high in all 42 items listed in the survey. Multiple regression analysis confirmed that Extension agents’ years of Extension experience and age were major determinants of their overall proficiency level. Extension agents’ proficiency levels did not vary with gender, level of education, professional association affiliation, job position, or area of job responsibility. The research revealed that emotional intelligence, interpersonal skills, flexibility for adapting to changing environments, and ability to manage resources were the most significant other competencies needed for Extension agents to be successful in current context.

  1. High-Level Development of Multiserver Online Games

    Directory of Open Access Journals (Sweden)

    Frank Glinka

    2008-01-01

    Full Text Available Multiplayer online games with support for high user numbers must provide mechanisms to support an increasing amount of players by using additional resources. This paper provides a comprehensive analysis of the practically proven multiserver distribution mechanisms, zoning, instancing, and replication, and the tasks for the game developer implied by them. We propose a novel, high-level development approach which integrates the three distribution mechanisms seamlessly in today's online games. As a possible base for this high-level approach, we describe the real-time framework (RTF middleware system which liberates the developer from low-level tasks and allows him to stay at high level of design abstraction. We explain how RTF supports the implementation of single-server online games and how RTF allows to incorporate the three multiserver distribution mechanisms during the development process. Finally, we describe briefly how RTF provides manageability and maintenance functionality for online games in a grid context with dynamic resource allocation scenarios.

  2. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  3. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Gharahcheshmeh, MH; Xu, A; Galstyan, E; Delgado, L; Cantoni, C

    2015-01-19

    REBa2Cu3Ox ((REBCO), RE = rare earth) superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50K and fields of 2-30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J(c)) above 20 MA/cm(2) at 30 K, 3 T in heavily doped (25 mol.% Zr-added) (Gd,Y)Ba2Cu3Ox superconductor tapes, which is more than three times higher than the J(c) typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m(3) have also been attained at 20 K. A composition map of lift factor in J(c) (ratio of J(c) at 30 K, 3 T to the J(c) at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO3 (BZO) nanocolumn defect density of nearly 7 x 10(11) cm(-2) as well as 2-3 nm sized particles rich in Cu and Zr have been found in the high J(c) films. (C) 2015 AIP Publishing LLC.

  4. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  5. Motion-induced eddy current thermography for high-speed inspection

    Directory of Open Access Journals (Sweden)

    Jianbo Wu

    2017-08-01

    Full Text Available This letter proposes a novel motion-induced eddy current based thermography (MIECT for high-speed inspection. In contrast to conventional eddy current thermography (ECT based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday’s law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.

  6. High-Level Radioactive Waste.

    Science.gov (United States)

    Hayden, Howard C.

    1995-01-01

    Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…

  7. High-level radioactive wastes

    International Nuclear Information System (INIS)

    Grissom, M.C.

    1982-10-01

    This bibliography contains 812 citations on high-level radioactive wastes included in the Department of Energy's Energy Data Base from January 1981 through July 1982. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  8. Process for solidifying high-level nuclear waste

    Science.gov (United States)

    Ross, Wayne A.

    1978-01-01

    The addition of a small amount of reducing agent to a mixture of a high-level radioactive waste calcine and glass frit before the mixture is melted will produce a more homogeneous glass which is leach-resistant and suitable for long-term storage of high-level radioactive waste products.

  9. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  10. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Naoya, E-mail: naoya.iwamoto@smn.uio.no; Azarov, Alexander; Svensson, Bengt G. [Department of Physics, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292 Gunma (Japan); Moe, Anne Marie M. [Washington Mills AS, N-7300 Orkanger (Norway)

    2015-07-28

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 10{sup 15 }cm{sup −3} range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ∼10{sup 14 }cm{sup −3}). Schottky barrier diodes fabricated on substrates annealed at 1400–1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  11. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  12. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  13. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  14. Critical current of high Tc superconducting Bi223/Ag tapes

    NARCIS (Netherlands)

    Huang, Y.; ten Haken, Bernard; ten Kate, Herman H.J.

    1998-01-01

    The magnetic field dependence of the critical current of various high Tc superconducting Bi2223/Ag tapes indicates that the transport current is carried through two paths: one is through weakly-linked grain boundaries (Josephson junctions); another is through well-connected grains. The critical

  15. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-level waste immobilization program: an overview

    International Nuclear Information System (INIS)

    Bonner, W.R.

    1979-09-01

    The High-Level Waste Immobilization Program is providing technology to allow safe, affordable immobilization and disposal of nuclear waste. Waste forms and processes are being developed on a schedule consistent with national needs for immobilization of high-level wastes stored at Savannah River, Hanford, Idaho National Engineering Laboratory, and West Valley, New York. This technology is directly applicable to high-level wastes from potential reprocessing of spent nuclear fuel. The program is removing one more obstacle previously seen as a potential restriction on the use and further development of nuclear power, and is thus meeting a critical technological need within the national objective of energy independence

  17. National high-level waste systems analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy.

  18. National high-level waste systems analysis report

    International Nuclear Information System (INIS)

    Kristofferson, K.; Oholleran, T.P.; Powell, R.H.

    1995-09-01

    This report documents the assessment of budgetary impacts, constraints, and repository availability on the storage and treatment of high-level waste and on both existing and pending negotiated milestones. The impacts of the availabilities of various treatment systems on schedule and throughput at four Department of Energy sites are compared to repository readiness in order to determine the prudent application of resources. The information modeled for each of these sites is integrated with a single national model. The report suggests a high-level-waste model that offers a national perspective on all high-level waste treatment and storage systems managed by the Department of Energy

  19. Enhanced performance of high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Christiansen, J.P.

    1989-01-01

    The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High T c (0) = 9-10.5 keV with peaked profile T e (0)/ e > = 3-4 were obtained giving values of N e (0)T e (0) up to 6 x 10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A best value of n Dd (0)T i (0)τ E = 1.65 x 10 20 (m -3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2ω CD ) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Ζ eff remains roughly constant. (author)

  20. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  1. Forget the Desk Job: Current Roles and Responsibilities in Entry-Level Reference Job Advertisements

    Science.gov (United States)

    Detmering, Robert; Sproles, Claudene

    2012-01-01

    This study examines the evolving roles and responsibilities of entry-level academic reference positions, as stated in recent job advertisements posted on the American Library Association's JobLIST Web site and other sources. Findings from a content analysis of these advertisements indicate that current entry-level reference positions in academic…

  2. Design and application consideration of high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  3. Effects of high CO2 levels on dynamic photosynthesis: carbon gain, mechanisms, and environmental interactions.

    Science.gov (United States)

    Tomimatsu, Hajime; Tang, Yanhong

    2016-05-01

    Understanding the photosynthetic responses of terrestrial plants to environments with high levels of CO2 is essential to address the ecological effects of elevated atmospheric CO2. Most photosynthetic models used for global carbon issues are based on steady-state photosynthesis, whereby photosynthesis is measured under constant environmental conditions; however, terrestrial plant photosynthesis under natural conditions is highly dynamic, and photosynthetic rates change in response to rapid changes in environmental factors. To predict future contributions of photosynthesis to the global carbon cycle, it is necessary to understand the dynamic nature of photosynthesis in relation to high CO2 levels. In this review, we summarize the current body of knowledge on the photosynthetic response to changes in light intensity under experimentally elevated CO2 conditions. We found that short-term exposure to high CO2 enhances photosynthetic rate, reduces photosynthetic induction time, and reduces post-illumination CO2 burst, resulting in increased leaf carbon gain during dynamic photosynthesis. However, long-term exposure to high CO2 during plant growth has varying effects on dynamic photosynthesis. High levels of CO2 increase the carbon gain in photosynthetic induction in some species, but have no significant effects in other species. Some studies have shown that high CO2 levels reduce the biochemical limitation on RuBP regeneration and Rubisco activation during photosynthetic induction, whereas the effects of high levels of CO2 on stomatal conductance differ among species. Few studies have examined the influence of environmental factors on effects of high levels of CO2 on dynamic photosynthesis. We identified several knowledge gaps that should be addressed to aid future predictions of photosynthesis in high-CO2 environments.

  4. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  5. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  6. High-current railgap studies

    Science.gov (United States)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-01

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field distortion triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Channel evolution and current division were studied on image converter streak photographs. Transient gas pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance in the channel current sharing and erosion measurements are discussed.

  7. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    Science.gov (United States)

    Xiaobo, Wu; Qing, Liu; Menglian, Zhao; Mingyang, Chen

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA.

  8. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  9. A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    International Nuclear Information System (INIS)

    Liu Jizhi; Chen Xingbi

    2009-01-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate. (semiconductor integrated circuits)

  10. A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jizhi; Chen Xingbi, E-mail: jzhliu@uestc.edu.c [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2009-12-15

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate. (semiconductor integrated circuits)

  11. Experiments and simulation of high current operation at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Crawford, K.; Delayen, J.R.; Doolittle, L.; Hovater, C.; Kazimi, R.; Krafft, G.; Reece, C.; Simrock, S.; Tiefenback, M.; Wang, D.X.

    1996-01-01

    The superconducting rf, cw electron accelerator at CEBAF has achieved the design energy of 4 GeV using 5-pass recirculation through a pair of 400 MeV linacs. Stable beam current of 35 μA has been delivered to the Experimental Hall C. The total beam current that has been recirculated so far is 248 μA. Measurements of the performance of the rf control system have been made in both pulsed and cw mode, and a numerical model has been developed which describes the beam-cavity interaction, includes a realistic representation of low level controls, klystron characteristics and microphonic noise. Experimental data and simulation results on transient beam loading, klystron saturation, a new technique for cavity phasing, and heavy beam loading tests are described; in conclusion, an outlook on full current operation is presented

  12. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.; Lazarus, E.A.

    1994-02-01

    This paper describes recent DIII-D high power heating and current drive experiments. Describes are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal beta

  13. 40 CFR 227.30 - High-level radioactive waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false High-level radioactive waste. 227.30...-level radioactive waste. High-level radioactive waste means the aqueous waste resulting from the operation of the first cycle solvent extraction system, or equivalent, and the concentrated waste from...

  14. Adequacy of Physicians Knowledge Level of Cardiopulmonary Resuscitation to Current Guidelines

    Directory of Open Access Journals (Sweden)

    Ümmu Kocalar

    2016-01-01

    Full Text Available Aim: The purpose of this study is to test the level of information on CPR and suitability to current application of the phsicians practicing in hospital ANEAH. Material and Method: The form of a test of 20 questions fort his purpose has been prepared in accordance with the 2010 AHA-ERC CPR guidelines. This form distributed to volunteer physicians to fill in. A total of 173 physicians agreed to participate in he study. The results were analyzed statistically and tried to determine the factors affecting the level of information. Results:According to the results of the study physicians gender, age and the total duration of physicians and medical asistance doesn%u2019t affect the level of information. The number of CPR within 1 month positively affect the level of knowledge. The number of theoretical and practical training in medical school, have taken the positive impact the level of knowledge of physicians. The training period after graduation, significantly increased the level of physicians information. The order of these training sessions with the asistant courses, congress, seminars and lessions on the sempozims are effective. Discussion: CPR trainig programs for physicians should be standardized, updated and expanded. Recurent in-service trainig should be provided to increase phsicians knowledge on skills.

  15. Investigation of surface related leakage current in AlGaN/GaN High Electron Mobility Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, J.K., E-mail: janeshkaushik@sspl.drdo.in [Solid State Physics Laboratory, Delhi 110054 (India); Balakrishnan, V.R.; Mongia, D.; Kumar, U.; Dayal, S. [Solid State Physics Laboratory, Delhi 110054 (India); Panwar, B.S. [Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Muralidharan, R. [Indian Institute of Science, Bengaluru, Karnataka 560012 (India)

    2016-08-01

    This paper reports the study of surface-related mechanisms to explain the high reverse leakage current observed in the in-house fabricated Si{sub 3}N{sub 4} passivated AlGaN/GaN High Electron Mobility Transistors. We propose that the Si{sub 3}N{sub 4}/AlGaN interface in the un-gated regions provides an additional leakage path between the gate and source/drain and may constitute a large component of reverse current. This surface related leakage component of current exhibits both temperature and electric field dependence and its Arrhenius behavior has been experimentally verified using Conductance Deep Level Transient Spectroscopy and temperature dependent reverse leakage current measurements. A thin interfacial amorphous semiconductor layer formed due to inter diffusion at Si{sub 3}N{sub 4}/AlGaN interface has been presumed as the source for this surface related leakage. We, therefore, conclude that optimum Si{sub 3}N{sub 4} deposition conditions and careful surface preparation prior to passivation can limit the extent of surface leakage and can thus vastly improve the device performance. - Highlights: • Enhanced leakage in AlGaN/GaN High Electron Mobility Transistors after passivation • Experimental evidence of the presence of extrinsic traps at Si{sub 3}N{sub 4}/AlGaN interface • Electron hopping in shallower extended defects and band tail traps at the interface. • Reduction in current collapse due to the virtual gate inhibition by this conduction • However, limitation on the operating voltages due to decrease in breakdown voltage.

  16. High-current railgap studies

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-03

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field-distortion-triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Image-converter streak photographs were used to study channel evolution and current division. Transient gas-pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance and lifetime are discussed. Lifetime tests of the rail gap were performed. Degradation in the channel current-sharing and erosion measurements are discussed.

  17. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    Science.gov (United States)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  18. Recent DIII-D high power heating and current drive experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Jackson, G.L.; Lazarus, E.A.; Mahdavi, M.A.; Petrie, T.W.; Politzer, P.A.; Taylor, T.S.

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal β. ((orig.))

  19. Recent DIII-D high power heating and current drive experiments

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C. [General Atomics, San Diego, CA (United States); Jackson, G.L. [General Atomics, San Diego, CA (United States); Lazarus, E.A. [Oak Ridge National Lab., TN (United States); Mahdavi, M.A. [General Atomics, San Diego, CA (United States); Petrie, T.W. [General Atomics, San Diego, CA (United States); Politzer, P.A. [General Atomics, San Diego, CA (United States); Taylor, T.S. [General Atomics, San Diego, CA (United States); DIII-D Team

    1995-01-01

    This paper describes recent DIII-D high power heating and current drive experiments. Described are experiments with improved wall conditioning, divertor particle pumping, radiative divertor experiments, studies of plasma shape and high poloidal {beta}. ((orig.)).

  20. Terrorism: Current and Long Term Threats

    National Research Council Canada - National Science Library

    Jenkins, Brian

    2001-01-01

    Despite the high level of anxiety the American people are currently experiencing, we may still not fully comprehend the seriousness of the current and near-term threats we confront or the longer-term...

  1. Examination of the Current Approaches to State-Level Nuclear Security Evaluation

    International Nuclear Information System (INIS)

    Kim, Chan; Yim, Mansung; Kim, So Young

    2014-01-01

    An effective global nuclear materials security system will cover all materials, employ international standards and best practices, and reduce risks by reducing weapons-usable nuclear material stocks and the number of locations where they are found. Such a system must also encourage states to accept peer reviews by outside experts in order to demonstrate that effective security is in place. It is thus critically important to create an integrative framework of state-level evaluation of nuclear security as a basis for measuring the level and progress of international effort to secure and control all nuclear materials. There have been studies to represent state-level nuclear security with a quantitative metric. A prime example is the Nuclear Materials Security Index (NMSI) by the Nuclear Threat Initiative (NTI). Another comprehensive study is the State Level Risk Metric by Texas A and M University (TAMU). This paper examines the current methods with respect to their strengths and weaknesses and identifies the directions for future research to improve upon the existing approaches

  2. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  3. Generation and transportation of low-energy, high-current electron beams

    International Nuclear Information System (INIS)

    Ozur, G.E.; Proskurovskij, D.I.; Nazarov, D.S.

    1996-01-01

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm 2 , which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs

  4. Josephson current and Andreev level dynamics in nanoscale superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Aldo

    2014-11-15

    In this thesis we focus on the interplay between proximity induced superconducting correlations and Coulomb interactions in a Josephson junction: i.e., in a system where two superconductors modeled as two s-wave superconductors at a phase difference φ are contacted by means of a weak link, in our case a quantum dot located in the contact. In the first part we study the Josephson current-phase relation for a multi-level quantum dot tunnel-contacted by two conventional s-waves superconductors. We determine in detail the conditions for observing a finite anomalous Josephson current, i.e. a supercurrent flowing at zero phase difference in a two-level dot with spin-orbit interactions, a weak magnetic (Zeeman) field, and in the presence of Coulomb interactions. This leads to an onset behavior I{sub a}∝sgn(B), interpreted as the sign of an incipient spontaneous breakdown of time-reversal symmetry. Moreover, we will provide conditions for realizing spatially separated - but topologically unprotected - Majorana bound states, whose signature in the system will be detectable via the current-phase relation. In the second part of the thesis, we address the Andreev bound state population dynamics in superconducting weak links (a superconducting 'atomic contact'), in which a poisoning mechanism due to the trapping of single quasiparticles can occur. Our motivation is that quantum coherent superconducting circuits are the most promising candidates for future large-scale quantum information processing devices. Moreover, quasiparticle poisoning has recently been observed in devices which contain a short superconducting weak link with few transport channels. We discuss a novel charge imbalance effect in the continuum quasiparticle population, which is due to phase fluctuations of the environment weakly coupled to the superconducting contact. This coupling enters the system as a transition rate connecting continuum quasiparticles and the Andreev bound state system. The

  5. The Characteristics of Welding Joint on Stainless Steel as a Candidate of High Level Waste Canister

    International Nuclear Information System (INIS)

    Aisyah; Herlan-Martono

    2000-01-01

    High level waste is the waste generated from reprocessing of the spent fuels. This type of waste is vitrified with borosilicate glass to become waste-glass. This waste glass is contained in a canister made of austenitic stainless steel. The canister material is subjected to be welded during fabrication and utilization. The character of the welding joint that is the function of the electrical current used in the welding process have been studied. The strength of the joint is tested mechanically i.e.: the tensile strength and hardness test. The result shows that the higher the current used in welding process, the better the strength of the joint and as well the tensile strength. The optimum current is 110 A. From the hardness test, it was figured that the length of the HAZ area is 14 mm. The material in HAZ area is the hardest compared to the others, it is due to the appearance of the chrome-carbide. The welding of the canister with such a condition, during fabrication as well as during the utilization of the canister for the container of the high level waste with the PWHT process gives better result. (author)

  6. Stationary, high bootstrap fraction plasmas in DIII-D without inductive current control

    International Nuclear Information System (INIS)

    Politzer, P.A.; Hyatt, A.W.; Luce, T.C.; Prater, R.; Turnbull, A.D.; Ferron, J.R.; Greenfield, C.M.; La Haye, R.J.; Petty, C.C.; Perkins, F.W.; Brennan, D.P.; Lazarus, E.A.; Jayakumar, J.; Wade, M.R.

    2005-01-01

    We have initiated an experimental program to address some of the questions associated with operation of a tokamak with high bootstrap current fraction under high performance conditions, without assistance from a transformer. In these discharges stationary (or slowly improving) conditions are maintained for > 3.7 s at β N ∼ β p ≤ 3.3. The achievable current and pressure are limited by a relaxation oscillation, involving growth and collapse of an ITB at ρ ≥ 0.6. The pressure gradually increases and the current profile broadens throughout the discharge. Eventually the plasma reaches a more stable, high confinement (H89P ∼ 3) state. Characteristically these plasmas have 65%-85% bootstrap current, 15%-30% NBCD, and 0%-10% ECCD. (author)

  7. Current neutralization of nanosecond risetime, high-current electron beam

    International Nuclear Information System (INIS)

    Lidestri, J.P.; Spence, P.W.; Bailey, V.L.; Putnam, S.D.; Fockler, J.; Eichenberger, C.; Champney, P.D.

    1991-01-01

    This paper reports that the authors have recently investigated methods to achieve current neutralization in fast risetime (<3 ns) electron beams propagating in low-pressure gas. For this investigation, they injected a 3-MV, 30-kA intense beam into a drift cell containing gas pressures from 0.10 to 20 torr. By using a fast net current monitor (100-ps risetime), it was possible to observe beam front gas breakdown phenomena and to optimize the drift cell gas pressure to achieve maximum current neutralization. Experimental observations have shown that by increasing the drift gas pressure (P ∼ 12.5 torr) to decrease the mean time between secondary electron/gas collisions, the beam can propagate with 90% current neutralization for the full beam pulsewidth (16 ns)

  8. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  9. Currently used dosage regimens of vancomycin fail to achieve therapeutic levels in approximately 40% of intensive care unit patients.

    Science.gov (United States)

    Obara, Vitor Yuzo; Zacas, Carolina Petrus; Carrilho, Claudia Maria Dantas de Maio; Delfino, Vinicius Daher Alvares

    2016-01-01

    This study aimed to assess whether currently used dosages of vancomycin for treatment of serious gram-positive bacterial infections in intensive care unit patients provided initial therapeutic vancomycin trough levels and to examine possible factors associated with the presence of adequate initial vancomycin trough levels in these patients. A prospective descriptive study with convenience sampling was performed. Nursing note and medical record data were collected from September 2013 to July 2014 for patients who met inclusion criteria. Eighty-three patients were included. Initial vancomycin trough levels were obtained immediately before vancomycin fourth dose. Acute kidney injury was defined as an increase of at least 0.3mg/dL in serum creatinine within 48 hours. Considering vancomycin trough levels recommended for serious gram-positive infection treatment (15 - 20µg/mL), patients were categorized as presenting with low, adequate, and high vancomycin trough levels (35 [42.2%], 18 [21.7%], and 30 [36.1%] patients, respectively). Acute kidney injury patients had significantly greater vancomycin trough levels (p = 0.0055, with significance for a trend, p = 0.0023). Surprisingly, more than 40% of the patients did not reach an effective initial vancomycin trough level. Studies on pharmacokinetic and dosage regimens of vancomycin in intensive care unit patients are necessary to circumvent this high proportion of failures to obtain adequate initial vancomycin trough levels. Vancomycin use without trough serum level monitoring in critically ill patients should be discouraged.

  10. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  11. Minor component study for simulated high-level nuclear waste glasses (Draft)

    International Nuclear Information System (INIS)

    Li, H.; Langowskim, M.H.; Hrma, P.R.; Schweiger, M.J.; Vienna, J.D.; Smith, D.E.

    1996-02-01

    Hanford Site single-shell tank (SSI) and double-shell tank (DSI) wastes are planned to be separated into low activity (or low-level waste, LLW) and high activity (or high-level waste, HLW) fractions, and to be vitrified for disposal. Formulation of HLW glass must comply with glass processibility and durability requirements, including constraints on melt viscosity, electrical conductivity, liquidus temperature, tendency for phase segregation on the molten glass surface, and chemical durability of the final waste form. A wide variety of HLW compositions are expected to be vitrified. In addition these wastes will likely vary in composition from current estimates. High concentrations of certain troublesome components, such as sulfate, phosphate, and chrome, raise concerns about their potential hinderance to the waste vitrification process. For example, phosphate segregation in the cold cap (the layer of feed on top of the glass melt) in a Joule-heated melter may inhibit the melting process (Bunnell, 1988). This has been reported during a pilot-scale ceramic melter run, PSCM-19, (Perez, 1985). Molten salt segregation of either sulfate or chromate is also hazardous to the waste vitrification process. Excessive (Cr, Fe, Mn, Ni) spinel crystal formation in molten glass can also be detrimental to melter operation

  12. A high linearity current mode multiplier/divider with a wide dynamic range

    International Nuclear Information System (INIS)

    Liao Pengfei; Luo Ping; Zhang Bo; Li Zhaoji

    2012-01-01

    A high linearity current mode multiplier/divider (CMM/D) with a wide dynamic range is presented. The proposed CMM/D is based on the voltage—current characteristic of the diode, thus wide dynamic range is achieved. In addition, high linearity is achieved because high accuracy current mirrors are adopted and the output current is insensitive to the temperature and device parameters of the fabrication process. Furthermore, no extra bias current for all input signals is required and thus power saving is realized. With proper selection of establishing the input terminal, the proposed circuit can perform as a multifunction circuit to be operated as a multiplier/divider, without changing its topology. The proposed circuit is implemented in a 0.25 μm BCD process and the chip area is 0.26 × 0.24 mm 2 . The simulation and measurement results show that the maximum static linearity error is ±1.8% and the total harmonic distortion is 0.4% while the input current ranges from 0 to 200 μA. (semiconductor integrated circuits)

  13. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  14. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  15. High critical currents in heavily doped (Gd,Y)Ba2Cu3Ox superconductor tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V.; Gharahcheshmeh, M. Heydari; Xu, A.; Galstyan, E.; Delgado, L.; Cantoni, C.

    2015-01-01

    REBa 2 Cu 3 O x ((REBCO), RE = rare earth) superconductor tapes with moderate levels of dopants have been optimized for high critical current density in low magnetic fields at 77 K, but they do not exhibit exemplary performance in conditions of interest for practical applications, i.e., temperatures less than 50 K and fields of 2–30 T. Heavy doping of REBCO tapes has been avoided by researchers thus far due to deterioration in properties. Here, we report achievement of critical current densities (J c ) above 20 MA/cm 2 at 30 K, 3 T in heavily doped (25 mol. % Zr-added) (Gd,Y)Ba 2 Cu 3 O x superconductor tapes, which is more than three times higher than the J c typically obtained in moderately doped tapes. Pinning force levels above 1000 GN/m 3 have also been attained at 20 K. A composition map of lift factor in J c (ratio of J c at 30 K, 3 T to the J c at 77 K, 0 T) has been developed which reveals the optimum film composition to obtain lift factors above six, which is thrice the typical value. A highly c-axis aligned BaZrO 3 (BZO) nanocolumn defect density of nearly 7 × 10 11  cm −2 as well as 2–3 nm sized particles rich in Cu and Zr have been found in the high J c films

  16. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  17. Stability of large orbit, high-current particle rings

    International Nuclear Information System (INIS)

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  18. Sputtering of sub-micrometer aluminum layers as compact, high-performance, light-weight current collector for supercapacitors

    Science.gov (United States)

    Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.

    2016-10-01

    Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.

  19. HIGH ALUMINUM HLW (HIGH LEVEL WASTE) GLASSES FOR HANFORD'S WTP (WASTE TREATMENT PROJECT)

    International Nuclear Information System (INIS)

    Kruger, A.A.; Bowan, B.W.; Joseph, I.; Gan, H.; Kot, W.K.; Matlack, K.S.; Pegg, I.L.

    2010-01-01

    This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m 2 and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m 2 . The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al 2 O 3 concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m 2 .day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m 2 .day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m 2 .day).

  20. Fair rules for siting a high-level nuclear waste repository

    International Nuclear Information System (INIS)

    Easterling, D.

    1992-01-01

    Geologic repositories are designed to resolve the ever-growing problem of high-level nuclear waste, but these facilities invite intense local opposition due to the perceived severity of the risks and the possibility of stigma effects. This analysis examines whether the perceived fairness of the siting process affects local residents' support for hosting a repository. In particular, a survey of 1,001 Nevada residents is used to test the hypothesis that an individual's willingness to accept a local repository will increase if he or she is convinced that this is the safest disposal option available. A logistic analysis indicates that beliefs regarding relative suitability have an independent effect on the acceptability of a local repository (i.e., Yucca Mountain). The article then considers the question of how to implement an optimizing strategy for siting facilities, comparing an idealized strategy against the original Nuclear Waste Policy Act (NWPA) of 1982 and the Amendments Act of 1987. Although choosing the safest site seems as if it could enhance public acceptance of the repository program, there is currently little prospect of identifying the best option to the high-level waste problem and, as a results, little chance of gaining the public support that is necessary to promote a successful siting outcome. 81 refs., 1 fig., 5 tabs

  1. Current voltage characteristics of composite superconductors with high contact resistance

    International Nuclear Information System (INIS)

    Akhmetov, A.A.; Baev, V.P.

    1984-01-01

    An experimental study has been made of current-voltage characteristics of composite superconductors with contact resistance between superconducting filaments and normal metal with high electrical conductivity. It is shown that stable resistive states exist in such conductors over a wide range of currents. The presence of resistive states is interpreted in terms of the resistive domain concept. The minimum and maximum currents of resistive states are found to be dependent on the electrical resistance of normal metal and magnetic field. (author)

  2. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    Science.gov (United States)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  3. State-level high school completion rates: Concepts, measures, and trends.

    Directory of Open Access Journals (Sweden)

    John Robert Warren

    2005-12-01

    Full Text Available Since the mid 1970s the national rate at which incoming 9th graders have completed high school has fallen slowly but steadily; this is also true in 41 states. In 2002, about three in every four students who might have completed high school actually did so; in some states this figure is substantially lower. In this paper I review state-level measures of high school completion rates and describe and validate a new measure that reports these rates for 1975 through 2002. Existing measures based on the Current Population Survey are conceptually imperfect and statistically unreliable. Measures based on Common Core Data (CCD dropout information are unavailable for many states and have different conceptual weaknesses. Existing measures based on CCD enrollment and completion data are systematically biased by migration, changes in cohort size, and/or grade retention. The new CCD-based measure described here is considerably less biased, performs differently in empirical analyses, and gives a different picture of the dropout situation across states and over time.

  4. LTS and HTS high current conductor development for DEMO

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay; Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta; Seri, Massimo

    2015-01-01

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb_3Sn high grade TF conductors. • Progress in the manufacture of short length Nb_3Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb_3Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb_3Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb_3Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb_3Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  5. Generation and transportation of low-energy, high-current electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ozur, G E; Proskurovskij, D I; Nazarov, D S [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of High Current Electronics

    1997-12-31

    Experimental data on the production of low-energy, high-current electron beams in a plasma-filled diode are presented. The highest beam energy density achieved is about 40 J/cm{sup 2}, which makes it possible to treat materials in the mode of intense evaporation of the surface layer. It was shown that the use of a hollow cathode improves the beam homogeneity. The feasibility was demonstrated of the production of low-energy high-current electron beams in a gun with plasma anode based on the use of a reflective discharge. (author). 6 figs., 6 refs.

  6. Critical current densities amd pinning mechanisms of high-Tc films on single crystalline and technologically relevant substrates. Final report

    International Nuclear Information System (INIS)

    Adrian, H.

    1995-12-01

    The report deals with six project tasks: (1) Effects of impurity additions at atomic level on the pinning behaviour and the critical current densities, examined in epitactic YBA 2 (Cu 1-x Ni x ) 3 O 7 films. It could be proven that the Ni atoms increase the activation energy for flux movement and the critical current density in a concentration range of 0 2 Sr 2 Ca n-1 Cu n O 2n+4+δ films (n = 2 and 3) with good crystalline properties, high critical currents, and high current densities were prepared. Thin YBa 2 Cu 3 O 7 films of high quality could be grown on saphire substrates, both by the MO-CVD process and by MBE. The aim of depositing biaxially textured YBa 2 Cu 3 O 7 films with high critical current densities on polycrystalline, metallic substrates was achieved by the IBAD process combined with MBE. The buffer layer was YSZ. Heterostructures of the layer sequence YBa 2 Cu 3 O 7 /CeO 2 /Y 0.3 Pr 0.7 Ba 2 Cu 3 O 7 /YBa 2 Cu 3 O 7 and YBa 2 Cu 3 O 7 /CeO 2 /Au were prepared by laser ablation and sputtering processes, in order to examine Josephson ramp contacts and superconducting field-effect transistors. (orig./MM) [de

  7. Noise levels of neonatal high-flow nasal cannula devices--an in-vitro study.

    Science.gov (United States)

    König, Kai; Stock, Ellen L; Jarvis, Melanie

    2013-01-01

    Excessive ambient noise levels have been identified as a potential risk factor for adverse outcome in very preterm infants. Noise level measurements for continuous positive airway pressure (CPAP) devices demonstrated that these constantly exceed current recommendations. The use of high-flow nasal cannula (HFNC) as an alternative non-invasive ventilation modality has become more popular in recent years in neonatal care. To study noise levels of two HFNC devices commonly used in newborns. As a comparison, noise levels of a continuous flow CPAP device were also studied. In-vitro study. The noise levels of two contemporary HFNC devices (Fisher & Paykel NHF™ and Vapotherm Precision Flow®) and one CPAP device (Dräger Babylog® 8000 plus) were measured in the oral cavity of a newborn manikin in an incubator in a quiet environment. HFNC flows of 4-8 l/min and CPAP pressures of 4-8 cm H2O were applied. The CPAP flow was set at 8 l/min as per unit practice. Vapotherm HFNC generated the highest noise levels, measuring 81.2-91.4 dB(A) with increasing flow. Fisher & Paykel HFNC noise levels were between 78.8 and 81.2 dB(A). The CPAP device generated the lowest noise levels between 73.9 and 77.4 dB(A). Both HFNC devices generated higher noise levels than the CPAP device. All noise levels were far above current recommendations of the American Academy of Pediatrics. In light of the long duration of non-invasive respiratory support of very preterm infants, less noisy devices are required to prevent the potentially adverse effects of continuing excessive noise exposure in the neonatal intensive care unit. Copyright © 2013 S. Karger AG, Basel.

  8. A High-Sensitivity Current Sensor Utilizing CrNi Wire and Microfiber Coils

    Directory of Open Access Journals (Sweden)

    Xiaodong Xie

    2014-05-01

    Full Text Available We obtain an extremely high current sensitivity by wrapping a section of microfiber on a thin-diameter chromium-nickel wire. Our detected current sensitivity is as high as 220.65 nm/A2 for a structure length of only 35 μm. Such sensitivity is two orders of magnitude higher than the counterparts reported in the literature. Analysis shows that a higher resistivity or/and a thinner diameter of the metal wire may produce higher sensitivity. The effects of varying the structure parameters on sensitivity are discussed. The presented structure has potential for low-current sensing or highly electrically-tunable filtering applications.

  9. The ALICE High Level Trigger: status and plans

    CERN Document Server

    Krzewicki, Mikolaj; Gorbunov, Sergey; Breitner, Timo; Lehrbach, Johannes; Lindenstruth, Volker; Berzano, Dario

    2015-01-01

    The ALICE High Level Trigger (HLT) is an online reconstruction, triggering and data compression system used in the ALICE experiment at CERN. Unique among the LHC experiments, it extensively uses modern coprocessor technologies like general purpose graphic processing units (GPGPU) and field programmable gate arrays (FPGA) in the data flow. Realtime data compression is performed using a cluster finder algorithm implemented on FPGA boards. These data, instead of raw clusters, are used in the subsequent processing and storage, resulting in a compression factor of around 4. Track finding is performed using a cellular automaton and a Kalman filter algorithm on GPGPU hardware, where both CUDA and OpenCL technologies can be used interchangeably. The ALICE upgrade requires further development of online concepts to include detector calibration and stronger data compression. The current HLT farm will be used as a test bed for online calibration and both synchronous and asynchronous processing frameworks already before t...

  10. High-level radioactive-waste-disposal investigations in Texas

    International Nuclear Information System (INIS)

    Smith, R.D.

    1983-01-01

    The Texas Energy and Natural Resources Advisory Council (TENRAC) was designated in 1980 to coordinate the interaction between the State of Texas and the federal government relating to the high-level radioactive waste disposal issue. This report was prepared to summarize the many aspects of that issue with particular emphasis on the activities in Texas. The report is intended to provide a comprehensive introduction for individuals with little or no previous exposure to the issue and to provide a broader perspective for those individuals who have addressed specific aspects of the issue but have not had the opportunity to study it in a broader context. Following the introduction, contents of this report are as follows: (1) general status of major repository siting investigations in the US; (2) detailed review of Texas studies; (3) possible facilities to be sited in Texas; (4) current Texas policy; (5) federal regulations; and (6) federal legislation. 9 figures, 2 tables

  11. Low-leakage, high-current power crowbar transformer

    International Nuclear Information System (INIS)

    Buck, R.T.; Galbraith, J.D.; Nunnally, W.C.

    1979-01-01

    The design, fabrication, and testing of two sizes of power crowbar transformers for the ZT-40 Toroidal Z-Pinch experiment at the Los Alamos Scientific Laboratory are described. Low-leakage transformers in series with the poloidal and the toroidal field coils are used to sustain magnetic field currents initially produced by 50-kV capacitor banks. The transformer primaries are driven by cost-effective, ignitron-switched, 10-kV high-density capacitor banks. The transformer secondaries, in series with the field coils, provide from 1,000 to 1,500 V to cancel the resistive voltage drop in the coil circuits. Prototype transformers, with a total leakage inductance measured in the secondary of 5 nH, have been tested with peak secondary currents in excess of 600 kA resulting from a 10-kV primary charge voltage. The test procedures and results and the mechanical construction details are presented

  12. High current proton linear accelerators and nuclear power

    International Nuclear Information System (INIS)

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  13. NSLS-II High Level Application Infrastructure And Client API Design

    International Nuclear Information System (INIS)

    Shen, G.; Yang, L.; Shroff, K.

    2011-01-01

    The beam commissioning software framework of NSLS-II project adopts a client/server based architecture to replace the more traditional monolithic high level application approach. It is an open structure platform, and we try to provide a narrow API set for client application. With this narrow API, existing applications developed in different language under different architecture could be ported to our platform with small modification. This paper describes system infrastructure design, client API and system integration, and latest progress. As a new 3rd generation synchrotron light source with ultra low emittance, there are new requirements and challenges to control and manipulate the beam. A use case study and a theoretical analysis have been performed to clarify requirements and challenges to the high level applications (HLA) software environment. To satisfy those requirements and challenges, adequate system architecture of the software framework is critical for beam commissioning, study and operation. The existing traditional approaches are self-consistent, and monolithic. Some of them have adopted a concept of middle layer to separate low level hardware processing from numerical algorithm computing, physics modelling, data manipulating, plotting, and error handling. However, none of the existing approaches can satisfy the requirement. A new design has been proposed by introducing service oriented architecture technology. The HLA is combination of tools for accelerator physicists and operators, which is same as traditional approach. In NSLS-II, they include monitoring applications and control routines. Scripting environment is very important for the later part of HLA and both parts are designed based on a common set of APIs. Physicists and operators are users of these APIs, while control system engineers and a few accelerator physicists are the developers of these APIs. With our Client/Server mode based approach, we leave how to retrieve information to the

  14. Current status of high-T{sub c} wire

    Energy Technology Data Exchange (ETDEWEB)

    Vase, Per [Nordic Superconductor Technologies A/S, Priorparken 685, DK 2605 Broendby (Denmark); Fluekiger, Rene [Departement de Physique de la Matiere Condensee, Universite de Geneve (Switzerland); Leghissa, Martino [Siemens AG, Corporate Technology, Erlangen (Germany); Glowacki, Bartek [Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2000-07-01

    This paper is the result of the work of a SCENET (The European Network for Superconductivity) material working group's efforts on giving values for present and future expected performance of high-temperature superconducting (HTS) wires and tapes. The purpose of the work is to give input to the design of HTS applications like power cables, motors, current leads, magnets, transformers and generators. The current status performance values are supposed to be used in the design of today's prototypes and the future values for the design of fully commercial HTS applications of the future. We focus on what is expected to be the relevant parameters for HTS application design. The most successful technique by far for making HTS tapes has been on the (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) material by the powder-in-tube (PIT) technique and this paper therefore focuses on giving the current status and expected future performance for Bi-2223 tapes. (author)

  15. Solidification of high-level radioactive wastes. Final report

    International Nuclear Information System (INIS)

    1979-06-01

    A panel on waste solidification was formed at the request of the Nuclear Regulatory Commission to study the scientific and technological problems associated with the conversion of liquid and semiliquid high-level radioactive wastes into a stable form suitable for transportation and disposition. Conclusions reached and recommendations made are as follows. Many solid forms described in this report could meet standards as stringent as those currently applied to the handling, storage, and transportation of spent fuel assemblies. Solid waste forms should be selected only in the context of the total radioactive waste management system. Many solid forms are likely to be satisfactory for use in an appropriately designed system, The current United States policy of deferring the reprocessing of commercial reactor fuel provides additional time for R and D solidification technology for this class of wastes. Defense wastes which are relatively low in radioactivity and thermal power density can best be solidified by low-temperature processes. For solidification of fresh commercial wastes that are high in specific activity and thermal power density, the Panel recommends that, in addition to glass, the use of fully-crystalline ceramics and metal-matrix forms be actively considered. Preliminary analysis of the characteristics of spent fuel pins indicates that they may be eligible for consideration as a waste form. Because the differences in potential health hazards to the public resulting from the use of various solid form and disposal options are likely to be small, the Panel concludes that cost, reliability, and health hazards to operating personnel will be major considerations in choosing among the options that can meet safety requiremens. The Panel recommends that responsibility for all radioactive waste management operations (including solidification R and D) should be centralized

  16. Effects of Birkeland current limitation on high-latitude convection patterns

    International Nuclear Information System (INIS)

    Marklund, G.T.; Raadu, M.A.; Lindqvist, P.-A.

    1984-12-01

    It is shown how the high-latitude convection pattern may be mo- dified by substorm-enhanced polarization electric fields. These are generated whenever the flow of those Birkeland currents which are associated with ionospheric conductivity gradients is limited. Such Birkeland currents are fed mainly by the enhanced Pedersen current in the evening and morning sectors of the auro- ral oval and by the enhanced Hall current around local midnight. As the current limitation increases, the ionospheric potential, represented here by a symmetric two-cell pattern, will rotate clockwise and deform, just as the associated Birkeland current distribution. The resulting patterns are shown to agree well with observations. A pronounced westward intrusion of the equi- potential contours occurs in the auroral oval, and may be asso- ciated with the Westward Travelling Surge. This feature does not however require any assumed longitudinal conductivity gradi- ents. Rather it falls out naturally when the limitation of the enhanced Pedersen current is taken into account. (Author)

  17. Monolithic quasi-sliding-mode controller for SIDO buck converter with a self-adaptive free-wheeling current level

    International Nuclear Information System (INIS)

    Wu Xiaobo; Liu Qing; Zhao Menglian; Chen Mingyang

    2013-01-01

    An analog implementation of a novel fixed-frequency quasi-sliding-mode controller for single-inductor dual-output (SIDO) buck converter in pseudo-continuous conduction mode (PCCM) with a self-adaptive freewheeling current level (SFCL) is presented. Both small and large signal variations around the operation point are considered to achieve better transient response so as to reduce the cross-regulation of this SIDO buck converter. Moreover, an internal integral loop is added to suppress the steady-state regulation error introduced by conventional PWM-based sliding mode controllers. Instead of keeping it as a constant value, the free-wheeling current level varies according to the load condition to maintain high power efficiency and less cross-regulation at the same time. To verify the feasibility of the proposed controller, an SIDO buck converter with two regulated output voltages, 1.8 V and 3.3 V, is designed and fabricated in HEJIAN 0.35 μm CMOS process. Simulation and experiment results show that the transient time of this SIDO buck converter drops to 10 μs while the cross-regulation is reduced to 0.057 mV/mA, when its first load changes from 50 to 100 mA. (semiconductor integrated circuits)

  18. R and D status of high-current accelerators at IFP

    International Nuclear Information System (INIS)

    Deng, J. J.; Shi, J. S.; Xie, W. P.

    2011-01-01

    High-current accelerators have many important applications in Z-pinches, high-power microwaves, and free electron lasers, imploding liners and radiography and so on. Research activities on Z-pinches, imploding liners, radiography at the Institute of Fluid Physics (IFP) are introduced. Several main high-current accelerators developed and being developed at IFP are described, such as the Linear Induction Accelerator X-Ray Facility Upgrade (LIAXFU, 12 MeV, 2.5 kA, 90 ns), the Dragon-I linear induction accelerator (20 MeV, 2.5 kA, 60 ns), and the Primary Test Stand for Z-pinch (PTS, 10 MA, 120 ns). The design of Dragon-II linear induction accelerator (20 MeV, 2.5 kA, 3 x 60 ns) to be built will be presented briefly.

  19. Superconducting fault current limiter using high-resistive YBCO tapes

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan)], E-mail: takashi.yazawa@toshiba.co.jp; Koyanagi, K.; Takahashi, M.; Ono, M.; Toba, K.; Takigami, H.; Urata, M. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Iijima, Y.; Saito, T. [Fujikura Ltd., 1-5-1 Kiba, Koto, Tokyo 135-0042 (Japan); Ameniya, N. [Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto, Tokyo 135-0062 (Japan)

    2008-09-15

    One of the programs in the Ministry of Economy and Trade and Industry (METI) project regarding R and D on YBCO conductor is to evaluate the applicability of the developed conductor toward several applications. This paper focuses on a fault current limiter (FCL) as one of the expected power applications. YBCO tape conductors with ion beam assisted deposition (IBAD) substrate are used in this work. In order to obtain high resistance of the conductor, which is preferable to an FCL, the thickness of the protecting layer made of silver was decreased as possible. Then high-resistive metal stabilizing layer is attached on the silver layer to improve stability. Obtaining the relevant current limiting performance on short sample experiments, model coils were developed to aim the 6.6 kV-class FCL. Short circuit experiments were implemented with a short circuit generator. The coil successfully restricted the short circuit current over 17 kA to about 700 A by the applied voltage of 3.8 kV, which is nominal phase-to-ground voltage. The experimental results show good agreement with computer analyses and show promising toward the application.

  20. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  1. The role of high level play as a predictor social functioning in autism.

    Science.gov (United States)

    Manning, Margaret M; Wainwright, Laurel D

    2010-05-01

    Play and social abilities of a group of children diagnosed with high functioning autism were compared to a second group diagnosed with a variety of developmental language disorders (DLD). The children with autism engaged in fewer acts of high level play. The children with autism also had significantly lower social functioning than the DLD group early in the play session; however, these differences were no longer apparent by the end of the play session. In addition, a significant association existed between play and social functioning regardless of diagnosis. This suggests that play may act as a current indicator of social ability while providing an arena for social skills practice.

  2. Evidence for intrinsic critical current density in high Tc superconductors

    International Nuclear Information System (INIS)

    Freltoft, T.; Minnhagen, P.; Jeldtoft Jensen, H.

    1991-01-01

    We present measurements of the voltage-current characteristics of high quality epitaxial YBaCuO films in zero magnetic field. According to the predictions of a current induced vortex pair breaking picture the voltage should follow the functional form V∝I(I-I c ) a-1 . An analysis designed to test this functional behavior is carried out. Consistency is found. (orig.)

  3. Current measurement in high-performance frequency converters; Strommessung in Hochleistungsumrichtern

    Energy Technology Data Exchange (ETDEWEB)

    Marien, Jan; Hetzler, Ullrich [Isabellenhuette Heusler GmbH und Co. KG, Dillenburg (Germany); Hornung, Hans-Georg; Zwinger, Stefan [Sensor-Technik Wiedemann GmbH, Kaufbeuren (Germany)

    2011-04-15

    The load cycles (raising, lowering, accelerating, braking) of cranes, lift trucks and other off-road vehicles are ideally suited for the efficient deployment of hybrid or full electrical drive technology. Current measurement is a key technology for advancing electrification. Sensor Technik Wiedemann places by her frequency converters on a shunt-based current measurement module from Isabellenhuette Heusler which permits highly accurate measurements. (orig.)

  4. Observed currents at Bombay High during a winter

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Chandramohan, P.; Nayak, B.U.

    Ten day records of Aanderaa current meters (24 Dec 1981 to 2 Jan. 1982) at four depths, viz. 30, 45, 60 and 75 m at Bombay High (19˚24.5'N, 71˚2.5'E) off the west coast of India, in a water depth of 80 m have been subjected to spectral, cross...

  5. Fabrication of High-performance Sm-Fe-N isotropic bulk magnets by a combination of High-pressure compaction and current sintering

    Energy Technology Data Exchange (ETDEWEB)

    Takagi, Kenta, E-mail: k-takagi@aist.go.jp [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan); Nakayama, Hiroyuki; Ozaki, Kimihiro; Kobayashi, Keizo [Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560 (Japan)

    2012-04-15

    TbCu{sub 7}-type Sm-Fe-N coarse powders in the flake form were consolidated without a bonding medium using a low-thermal-load process of current sintering combined with high-pressure compression. When compacted at 1.2 GPa, the relative density of the powder was increased by 80% with close stacking of the flake particles. Although the subsequent current heating was only briefly performed at a low temperature of 400 Degree-Sign C to avoid decomposition, the compact was consolidated into a rigid bulk in which the particles were bonded at the atomic level. Finally, by using cyclic compaction, this process produced bulk magnets with a density of 92% that exhibited the highest maximum energy product (BH)max of 16.2 MGOe, which surpasses that of conventional isotropic Sm-Fe-N bond magnets. - Highlights: Black-Right-Pointing-Pointer We conduct a consolidation of Sm{sub 1}Fe{sub 7}N bulk magnets without thermal decomposition. Black-Right-Pointing-Pointer Rapid current sintering with high-pressure compaction is used as a low-thermal-load process. Black-Right-Pointing-Pointer In this process, sintering occurs at a temperature of 400 Degree-Sign C, which is below the decomposition point. Black-Right-Pointing-Pointer As a result, bulk magnets with a density of over 92% are obtained without decomposition. Black-Right-Pointing-Pointer These magnets exhibit the highest (BH)max (16.2 MGOe) among isotropic Sm-Fe-N magnets.

  6. Critical current density and wire fabrication of high-TC superconductors

    International Nuclear Information System (INIS)

    Schlabach, T.D.; Jin, S.; Sherwood, R.C.; Tiefel, T.H.

    1989-01-01

    In this paper, some of the recent investigations of wire fabrication techniques and critical current behavior in high T c superconductors will be reviewed. In spite of the tremendous interest and research effort, the progress toward major applications of the bulk high-temperature superconductors has been impeded by, among other thins, the low critical currents and their severe deterioration in weak magnetic fields. Significant advances, however, have been made in understanding the causes of the problem as well as in improving the current-carrying capacity through proper microstructural control such as the melt-textured-growth in Y-Ba-Cu-O. The low density of effective flux-pinning sites in bulk Y-Ba-Cu-O limits J c at 77K in high magnetic fields to about 10 4 A/cm 2 even in the absence of weak links. Magnetization measurements on Bi-Sr-Ca-Cu-O and Tl-Ba-Ca-Cu-O at 77K by various researchers indicate even weaker flux pinning capabilities in these materials than in Y-Ba-Cu-O. The challenge in the future is to obtain suitable flux-pinning defects by choosing the right processing and chemistry changes

  7. Time and space resolved spectroscopic investigation during anode plume formation in a high-current vacuum arc

    Science.gov (United States)

    Khakpour, A.; Methling, R.; Uhrlandt, D.; Franke, St.; Gortschakow, S.; Popov, S.; Batrakov, A.; Weltmann, K. D.

    2017-05-01

    This paper presents time and space resolved results of spectroscopic measurements during the formation of an anode plume in the late current pulse phase of a high-current vacuum arc. The formation of the anode plume is investigated systematically based on the occurrence of high-current anode spots, depending on gap distance and current for AC 100 Hz and CuCr7525 butt contacts with a diameter of 10 mm. The anode plume is observed after the extinction of anode spot type 2 in which both the anode and cathode are active. It is concluded from the spatial profiles of the atomic and ionic radiation, parallel and perpendicular to anode surface, that the inner part of the plume is dominated by Cu I radiation, whereas a halo of light emitted by Cu II covers the plume. The radiation intensity of Cu III lines is quite low across the whole anode plume. Upper level excited state densities corresponding to Cu I lines at 510.55, 515.32, 521.82, 578.21 nm are determined. The temporal evolution of the resulting excitation temperature in the centre of the plume varies from 8500 K to 6000 K at 500 µs to 100 µs before current zero, respectively. The density calculated for Cu I at position in the plume is in the range of 1-5  ×  1019 m-3.

  8. Recent results with a high-current, heavy-ion source system

    International Nuclear Information System (INIS)

    Keller, R.; Spaedtke, P.; Emig, H.

    1986-01-01

    In the last conference of this series, an improved high-current ion source for gases, CORDIS was presented. This source has been further developed to allow the processing of substances which are not volatile at room temperature. One of these modifications, HORDIS, incorporates an oven whereas the third version works at rather moderate temperatures and can be fed through a slightly heated external bottle. With this source system, high-current ion beams in the 100 mA range can be produced for a considerable part of the periodic table. Operation parameters and experiences with the sources are discussed, and the most recent results for all versions are given. (author)

  9. Effect of Abrikosov vortices on Josephson junction currents in high temperature superconductors

    International Nuclear Information System (INIS)

    Mitchell, E.; Mueller, K.-H.

    2000-01-01

    Full text: The current-carrying capacity of high temperature superconductors (HTS) is limited by the weak links which form between individual grains. We investigate the role of Abrikosov vortices (AV) and inhomogeneities at the intergrain boundary by examining the high magnetic field characteristics of HTS thin film grain boundary junctions. We model the effects of junction inhomogeneity, AV's and vortex pinning by solving the inhomogeneous London equation. The calculations show that both inhomogeneities and the presence of AV's improve the current-carrying capacity across grain boundaries at high magnetic fields. Our experimental measurements of the irreversibility of the junction critical current density J c (H a ) find good agreement with the model

  10. Radiation effects in glass waste forms for high-level waste and plutonium disposal

    International Nuclear Information System (INIS)

    Weber, W.J.; Ewing, R.C.

    1997-01-01

    A key challenge in the permanent disposal of high-level waste (HLW), plutonium residues/scraps, and excess weapons plutonium in glass waste forms is the development of predictive models of long-term performance that are based on a sound scientific understanding of relevant phenomena. Radiation effects from β-decay and α-decay can impact the performance of glasses for HLW and Pu disposition through the interactions of the α-particles, β-particles, recoil nuclei, and γ-rays with the atoms in the glass. Recently, a scientific panel convened under the auspices of the DOE Council on Materials Science to assess the current state of understanding, identify important scientific issues, and recommend directions for research in the area of radiation effects in glasses for HLW and Pu disposition. The overall finding of the panel was that there is a critical lack of systematic understanding on radiation effects in glasses at the atomic, microscopic, and macroscopic levels. The current state of understanding on radiation effects in glass waste forms and critical scientific issues are presented

  11. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    1983-01-01

    This report deals with certain aspects of the management of one of the most important wastes, i.e. the handling and storage of conditioned (immobilized and packaged) high-level waste from the reprocessing of spent nuclear fuel and, although much of the material presented here is based on information concerning high-level waste from reprocessing LWR fuel, the principles, as well as many of the details involved, are applicable to all fuel types. The report provides illustrative background material on the arising and characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The report introduces the principles important in conditioned high-level waste storage and describes the types of equipment and facilities, used or studied, for handling and storage of such waste. Finally, it discusses the safety and economic aspects that are considered in the design and operation of handling and storage facilities

  12. Handling and storage of conditioned high-level wastes

    International Nuclear Information System (INIS)

    Heafield, W.

    1984-01-01

    This paper deals with certain aspects of the management of one of the most important radioactive wastes arising from the nuclear fuel cycle, i.e. the handling and storage of conditioned high-level wastes. The paper is based on an IAEA report of the same title published during 1983 in the Technical Reports Series. The paper provides illustrative background material on the characteristics of high-level wastes and, qualitatively, their requirements for conditioning. The principles important in the storage of high-level wastes are reviewed in conjunction with the radiological and socio-political considerations involved. Four fundamentally different storage concepts are described with reference to published information and the safety aspects of particular storage concepts are discussed. Finally, overall conclusions are presented which confirm the availability of technology for constructing and operating conditioned high-level waste storage facilities for periods of at least several decades. (author)

  13. Guiding effect of bent macroscopic quartz tube for high current electron beam

    International Nuclear Information System (INIS)

    Zhang Mingwu; Chen Jing; Wu Yehong; Yang Bian; Wang Wei; Xue Yingli; Yu Deyang; Cai Xiaohong

    2012-01-01

    By using an incident electron beam with the high current and high energy, the guiding effect of the bent macroscopic quartz tube for the electron beam has been investigated. The angular distributions of outgoing electrons depending on the current and energy of incident electrons were measured. The dependences of electron transmitted fraction on energy and current of incident electrons are also shown. As the incident electron energy increasing, the electron transmitted fraction increases, but it decreases while the incident electron current increasing. The results have been compared with the present data. This work presents, the process of guiding electrons is essentially different from that of guiding highly charged ions, the guiding electron beam was caused by both elastic and inelastic collisions between electrons and inner walls of quartz tube, rather than self-organized charging effect on the surface of inner wall of quartz tube. (authors)

  14. The relationship between cannabis use and cortisol levels in youth at ultra high-risk for psychosis.

    Science.gov (United States)

    Carol, Emily E; Spencer, Robert L; Mittal, Vijay A

    2017-09-01

    Recent studies have posited a relationship between cannabis use and the biological stress system, but this critical relationship has not been evaluated during the ultra high-risk (UHR) period immediately preceding the onset of psychotic disorders. Salivary cortisol samples were collected on 46 UHR and 29 control adolescents; these individuals were assessed for current cannabis use with a urine panel and self-report. UHR participants where separated into two groups: Current Cannabis Use (UHR-CU) and No Current Cannabis Use (UHR-NC). Healthy Control participants (HC) were free of cannabis use. Consistent with the literature, results indicate UHR individuals showed elevated cortisol levels when compared to HC participants. Further, we also observed that UHR-CU participants exhibited elevated levels when compared to both the non-using UHR and HC groups. Findings suggest that cannabis use may interact with underlying biological vulnerability associated with the hypothalamic-pituitary-adrenal (HPA) axis system. Published by Elsevier Ltd.

  15. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  16. High-temperature current conduction through three kinds of Schottky diodes

    International Nuclear Information System (INIS)

    Fei, Li; Xiao-Ling, Zhang; Yi, Duan; Xue-Song, Xie; Chang-Zhi, Lü

    2009-01-01

    Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I–V–T measurements ranging from 300 to 523 K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelling and so on. The most remarkable finding in the present paper is that these three kinds of Schottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Schottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AlGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Testing of full size high current superconductors in SULTAN III

    Science.gov (United States)

    Blau, B.; Rohleder, I.; Vecsey, G.; Pasotti, G.; Ricci, M. V.; Sacchetti, N.; Bruzzone, P.; Katheder, H.; Mitchell, N.; Bessette, D.

    1994-07-01

    The high field test facility SULTAN III in operation at PSI/Switzerland tests full size industrial prototype superconductors for fusion applications such as ITER. The facility provides a background field of up to 11 T over a length of 58 cm. A 50 kA superconducting transformer works as a very low noise current source which allows a criterion of 0.1 mu V/cm to determine the superconducting to normal transition. Three 3.6 m long cable-in-conduit conductors based on both NbTi and Nb3Sn, developed by different manufacturers, suitable for the central solenoid and toroidal field coils of ITER, have been tested so far. This paper presents the results of extensive measurements of critical current and current sharing temperature of the Nb3Sn conductors in the 8 - 11 T range for temperatures between 4.5 K and 11 K. Voltage versus current curves have been analyzed with respect to the n value. The manufacturing of a high quality joint between two Nb3Sn conductors after heat treatment is reported, together with some measurements of the joint resistance.

  18. Testing of full size high current superconductors in SULTAN III

    International Nuclear Information System (INIS)

    Blau, B.; Rohleder, I.; Vecsey, G.

    1994-01-01

    The high field test facility SULTAN III in operation at PSI/Switzerland tests full size industrial prototype superconductors for fusion applications such as ITER. The facility provides a background field of up to 11 T over a length of 58 cm. A 50 kA superconducting transformer works as a very low noise current source which allows a criterion of 0.1 μV/cm to determine the superconducting to normal transition. Three 3.6 m long cable-in-conduit conductors based on both NbTi and Nb 3 Sn, developed by different manufacturers, suitable for the central solenoid and toroidal field coils of ITER, have been tested so far. This paper presents the results of extensive measurements of critical current and current sharing temperature of the Nb 3 Sn conductors in the 8--11 T range for temperatures between 4.5 K and 11 K Voltage versus current curves have been analyzed with respect to the n value. The manufacturing of a high quality joint between two Nb 3 Sn conductors after heat treatment is reported, together with some measurements of the joint resistance

  19. Choice of initial operating parameters for high average current linear accelerators

    International Nuclear Information System (INIS)

    Batchelor, K.

    1976-01-01

    Recent emphasis on alternative energy sources together with the need for intense neutron sources for testing of materials for CTR has resulted in renewed interest in high current (approximately 100 mA) c.w. proton and deuteron linear accelerators. In desinging an accelerator for such high currents, it is evident that beam losses in the machine must be minimized, which implies well matched beams, and that adequate acceptance under severe space charge conditions must be met. An investigation is presented of the input parameters to an Alvarez type drift-tube accelerator resulting from such factors. The analysis indicates that an accelerator operating at a frequency of 50 MHz is capable of accepting deuteron currents of about 0.4 amperes and proton currents of about 1.2 amperes. These values depend critically on the assumed values of beam emittance and on the ability to properly ''match'' this to the linac acceptance

  20. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  1. Is it possible to demonstrate compliance with the regulations for high-level-waste repositories?

    International Nuclear Information System (INIS)

    Bingham, F.W.

    1992-01-01

    The regulations that currently govern repositories for spent fuel and high-level waste require demonstrations that are sometimes described as impossible to make. To make them will require an understanding of the current and the future phenomena at repository sites; it will also require credible estimates of the probabilities that the phenomena will occur in the distant future. Experts in many fields emdash earth sciences, statistics, numerical modeling, and the law emdash have questioned whether any amount of data collection can allow modelers to meet these requirements with enough confidence to satisfy the regulators. In recent years some performance assessments have begun to shed light on this question because they use results of actual site investigations. Although these studies do not settle the question definitively, a review of a recent total-system assessment suggests that compliance may be possible to demonstrate. The review also suggests, however, that the demonstration can be only at the ''reasonable'' levels of assurance mentioned, but not defined, in the regulations

  2. The ATLAS High-Level Calorimeter Trigger in Run-2

    CERN Document Server

    Wiglesworth, Craig; The ATLAS collaboration

    2018-01-01

    The ATLAS Experiment uses a two-level triggering system to identify and record collision events containing a wide variety of physics signatures. It reduces the event rate from the bunch-crossing rate of 40 MHz to an average recording rate of 1 kHz, whilst maintaining high efficiency for interesting collision events. It is composed of an initial hardware-based level-1 trigger followed by a software-based high-level trigger. A central component of the high-level trigger is the calorimeter trigger. This is responsible for processing data from the electromagnetic and hadronic calorimeters in order to identify electrons, photons, taus, jets and missing transverse energy. In this talk I will present the performance of the high-level calorimeter trigger in Run-2, noting the improvements that have been made in response to the challenges of operating at high luminosity.

  3. High Current Ionic Diode Using Homogeneously Charged Asymmetric Nanochannel Network Membrane.

    Science.gov (United States)

    Choi, Eunpyo; Wang, Cong; Chang, Gyu Tae; Park, Jungyul

    2016-04-13

    A high current ionic diode is achieved using an asymmetric nanochannel network membrane (NCNM) constructed by soft lithography and in situ self-assembly of nanoparticles with uniform surface charge. The asymmetric NCNM exhibits high rectified currents without losing a rectification ratio because of its ionic selectivity gradient and differentiated electrical conductance. Asymmetric ionic transport is analyzed with diode-like I-V curves and visualized via fluorescent dyes, which is closely correlated with ionic selectivity and ion distribution according to variation of NCNM geometries.

  4. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  5. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  6. Acceleration of a high-current single bunch in a linear accelerator

    International Nuclear Information System (INIS)

    Takeda, Seishi

    1984-01-01

    Some problems associated with the feasibility of an electron-positron linear collider with colliding energy of about 1x1 TeV are discussed. The first problem is related to the generation of high-current single bunch. A quasi-relativistic electron beam from an electron gun is injected into one bucket of the accelerating fields, in opposition to the longitudinal defocusing due to the space-charge effect. For generating a high-current single bunch, the beam bunching by means of the velocity modulation with a subharmonic prebuncher (SHPB) is indispensable. Three existing second generation single bunch electron linear accelerators (SLC, ANL and ISLR-Osaka Univ.) are briefly described. The results of the simulation of subharmonic-bunching is also reported. The second problem is associated with the physics of accelerating high-current single bunch. The longitudinal and transverse wake fields generated by a bunch-cavity interaction and the energy spread of the single bunch are analyzed and discussed. (Aoki, K.)

  7. High-Level Waste System Process Interface Description

    International Nuclear Information System (INIS)

    D'Entremont, P.D.

    1999-01-01

    The High-Level Waste System is a set of six different processes interconnected by pipelines. These processes function as one large treatment plant that receives, stores, and treats high-level wastes from various generators at SRS and converts them into forms suitable for final disposal. The three major forms are borosilicate glass, which will be eventually disposed of in a Federal Repository, Saltstone to be buried on site, and treated water effluent that is released to the environment

  8. Canadian high-level radioactive waste management system issues

    International Nuclear Information System (INIS)

    Allan, C.J.; Gray, B.R.

    1992-01-01

    In Canada responsibility for the management of radioactive wastes rests with the producer of those wastes. This fundamental principle applies to such diverse wastes as uranium mine and mill tailings, low-level wastes from universities and hospitals, wastes produced at nuclear research establishments, and wastes produced at nuclear generating stations. The federal government has accepted responsibility for historical wastes for which the original producer can no longer be held accountable. Management of radioactive wastes is subject to the regulatory control of the Atomic Energy Control Board, the federal agency responsible for regulating the nuclear industry. In this paper the authors summarize the current situation concerning the management of high level (used nuclear fuel) wastes. In 1981 the two governments also announced that selection of a disposal site would not proceed, and responsibility for site selection and operation would not be assigned until the Concept for used fuel disposal had been reviewed and assessed. Thus the concept assessment is generic rather than site specific. The Concept that has been developed has been designed to conform with safety and performance criteria established by the Atomic Energy Control Board. It is based on burial deep in plutonic rock of the Canadian Shield, using a multi-barrier approach with a series of engineered and natural barriers: these include the waste form, container, buffer and backfill, and the host rock

  9. High-Level Waste Vitrification Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    D. A. Lopez

    1999-08-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035.

  10. High-Level Waste Vitrification Facility Feasibility Study

    International Nuclear Information System (INIS)

    D. A. Lopez

    1999-01-01

    A ''Settlement Agreement'' between the Department of Energy and the State of Idaho mandates that all radioactive high-level waste now stored at the Idaho Nuclear Technology and Engineering Center will be treated so that it is ready to be moved out of Idaho for disposal by a compliance date of 2035. This report investigates vitrification treatment of the high-level waste in a High-Level Waste Vitrification Facility based on the assumption that no more New Waste Calcining Facility campaigns will be conducted after June 2000. Under this option, the sodium-bearing waste remaining in the Idaho Nuclear Technology and Engineering Center Tank Farm, and newly generated liquid waste produced between now and the start of 2013, will be processed using a different option, such as a Cesium Ion Exchange Facility. The cesium-saturated waste from this other option will be sent to the Calcine Solids Storage Facilities to be mixed with existing calcine. The calcine and cesium-saturated waste will be processed in the High-Level Waste Vitrification Facility by the end of calendar year 2035. In addition, the High-Level Waste Vitrification Facility will process all newly-generated liquid waste produced between 2013 and the end of 2035. Vitrification of this waste is an acceptable treatment method for complying with the Settlement Agreement. This method involves vitrifying the waste and pouring it into stainless-steel canisters that will be ready for shipment out of Idaho to a disposal facility by 2035. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory until they are sent to a national geologic repository. The operating period for vitrification treatment will be from the end of 2015 through 2035

  11. Three-Phase Short-Circuit Current Calculation of Power Systems with High Penetration of VSC-Based Renewable Energy

    Directory of Open Access Journals (Sweden)

    Niancheng Zhou

    2018-03-01

    Full Text Available Short-circuit current level of power grid will be increased with high penetration of VSC-based renewable energy, and a strong coupling between transient fault process and control strategy will change the fault features. The full current expression of VSC-based renewable energy was obtained according to transient characteristics of short-circuit current. Furtherly, by analyzing the closed-loop transfer function model of controller and current source characteristics presented in steady state during a fault, equivalent circuits of VSC-based renewable energy of fault transient state and steady state were proposed, respectively. Then the correctness of the theory was verified by experimental tests. In addition, for power grid with VSC-based renewable energy, superposition theorem was used to calculate AC component and DC component of short-circuit current, respectively, then the peak value of short-circuit current was evaluated effectively. The calculated results could be used for grid planning and design, short-circuit current management as well as adjustment of relay protection. Based on comparing calculation and simulation results of 6-node 500 kV Huainan power grid and 35-node 220 kV Huaisu power grid, the effectiveness of the proposed method was verified.

  12. High-current heavy-ion accelerator system and its application to material modification

    International Nuclear Information System (INIS)

    Kishimoto, Naoki; Takeda, Yoshihiko; Lee, C.G.; Umeda, Naoki; Okubo, Nariaki; Iwamoto, Eiji

    2001-01-01

    A high-current heavy-ion accelerator system has been developed to realize intense particle fluxes for material modification. The facility of a tandem accelerator attained 1 mA-class ion current both for negative low-energy ions and positive high-energy ions. The negative ion source of the key device is of the plasma-sputter type, equipped with mutli-cusp magnets and Cs supply. The intense negative ions are either directly used for material irradiation at 60 keV or further accelerated up to 6 MeV after charge transformation. Application of negative ions, which alleviates surface charging, enables us to conduct low-energy high-current irradiation on insulating substrates. Since positive ions above the MeV range are irrelevant for Coulomb repulsion, the facility as a whole meets the needs of high-current irradiation onto insulators over a wide energy range. Application of high flux ions provides technological merits not only for efficient implantation but also for essentially different material kinetics, which may become an important tool of material modification. Other advantages of the system are co-irradiation by intense laser and in-situ detection of kinetic processes. For examples of material modifications, we present nanoparticle fabrication in insulators, and synergistic phenomena by co-irradiation due to ions and photons. (author)

  13. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    International Nuclear Information System (INIS)

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.

    2004-01-01

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program

  14. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    International Nuclear Information System (INIS)

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Laetitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2003-01-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.2 This technology owes its development in part to fundamental results obtained in this program

  15. High level nuclear wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.

    1987-01-01

    The transformations involved in the nuclear fuels during the burn-up at the power nuclear reactors for burn-up levels of 33.000 MWd/th are considered. Graphs and data on the radioactivity variation with the cooling time and heat power of the irradiated fuel are presented. Likewise, the cycle of the fuel in light water reactors is presented and the alternatives for the nuclear waste management are discussed. A brief description of the management of the spent fuel as a high level nuclear waste is shown, explaining the reprocessing and giving data about the fission products and their radioactivities, which must be considered on the vitrification processes. On the final storage of the nuclear waste into depth geological burials, both alternatives are coincident. The countries supporting the reprocessing are indicated and the Spanish programm defined in the Plan Energetico Nacional (PEN) is shortly reviewed. (author) 8 figs., 4 tabs

  16. High spin levels in 151Ho

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.

    1981-02-01

    We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units

  17. Decontamination of stainless steel canisters that contain high-level waste

    International Nuclear Information System (INIS)

    Bray, L.A.

    1987-01-01

    At the West Valley Nuclear Services Company (WVNSC) in West Valley, New York, high-level radioactive waste (HLW) will be vitrified into a borosilicate glass form and poured into large, stainless steel canisters. During the filling process, volatile fission products, principally 137 Cs, condense on the exterior of the canisters. The smearable contamination that remains on the canisters after they are filled and partially cooled must be removed from the canisters' exterior surfaces prior to their storage and ultimate shipment to a US Department of Energy (DOE) repository for disposal. A simple and effective method was developed for decontamination of HLW canisters. This method of chemical decontamination is applicable to a wide variety of contaminated equipment found in the nuclear industry. The process employs a reduction-oxidation system [Ce(III)/Ce(IV)] in nitric acid solution to chemically mill the surface of stainless steel, similar to the electropolishing process, but without the need for an applied electrical current. Contaminated canisters are simply immersed in the solution at controlled temperature and Ce(IV) concentration levels

  18. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    International Nuclear Information System (INIS)

    Lagov, P B; Drenin, A S; Zinoviev, M A

    2017-01-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)

  19. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  20. High level waste management in Asia: R and D perspectives

    International Nuclear Information System (INIS)

    Deokattey, Sangeeta; Bhanumurthy, K.

    2010-01-01

    The present work is an attempt to provide an overview, about the status of R and D and current trends in high level radioactive waste management, particularly in Asian countries. The INIS database (for the period 1976 to 2010) was selected for this purpose, as this is the most authoritative global source of information, in the area of Nuclear Science and Technology. Appropriate query formulations on the database, resulted in the retrieval of 4322 unique bibliographic records. Using the content analysis method (which is both a qualitative as well as a quantitative research method), all the records were analyzed. Part One of the analysis details Scientometric R and D indicators, such as the countries and the institutions involved in R and D, the types of publications, and programmes and projects related to High Level Waste management. Part Two is a subject-based analysis, grouped under the following broad categories: I. Waste Processing 1. Partitioning and transmutation (including ADS) II. Waste Immobilization 1. Glass waste forms and 2. Crystalline ceramics and other waste forms III. Waste Disposal 1. Performance assessment and safety evaluation studies 2. Geohydrological studies a. Site selection and characterization, b. In situ underground experiments, c. Rock mechanical characterization 3. Deep geological repositories a. Sorption, migration and groundwater chemistry b. Engineered barrier systems and IV. Waste Packaging Materials. The results of this analysis are summarized in the study. (author)

  1. Radiation transport in high-level waste form

    International Nuclear Information System (INIS)

    Arakali, V.S.; Barnes, S.M.

    1992-01-01

    The waste form selected for vitrifying high-level nuclear waste stored in underground tanks at West Valley, NY is borosilicate glass. The maximum radiation level at the surface of a canister filled with the high-level waste form is prescribed by repository design criteria for handling and disposition of the vitrified waste. This paper presents an evaluation of the radiation transport characteristics for the vitreous waste form expected to be produced at West Valley and the resulting neutron and gamma dose rates. The maximum gamma and neutron dose rates are estimated to be less than 7500 R/h and 10 mRem/h respectively at the surface of a West Valley canister filled with borosilicate waste glass

  2. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  3. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.; Lan, Yann Wen; Zeng, Caifu; Chen, Jyun Hong; Kou, Xufeng; Navabi, Aryan; Tang, Jianshi; Montazeri, Mohammad; Adleman, James R.; Lerner, Mitchell B.; Zhong, Yuan Liang; Li, Lain-Jong; Chen, Chii Dong; Wang, Kang L.

    2015-01-01

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  4. Treatment strategy for metastatic prostate cancer with extremely high PSA level: reconsidering the value of vintage therapy.

    Science.gov (United States)

    Yamada, Yasutaka; Sakamoto, Shinichi; Amiya, Yoshiyasu; Sasaki, Makoto; Shima, Takayuki; Komiya, Akira; Suzuki, Noriyuki; Akakura, Koichiro; Ichikawa, Tomohiko; Nakatsu, Hiroomi

    2018-05-04

    The prognostic significance of initial prostate-specific antigen (PSA) level for metastatic prostate cancer remains uncertain. We investigated the differences in prognosis and response to hormonal therapies of metastatic prostate cancer patients according to initial PSA levels. We analyzed 184 patients diagnosed with metastatic prostate cancer and divided them into three PSA level groups as follows: low (PSA progression-free survival (PFS) for first-line ADT and overall survival (OS) within each of the three groups. Furthermore, we analyzed response to antiandrogen withdrawal (AW) and alternative antiandrogen (AA) therapies after development of castration-resistant prostate cancer (CRPC). No significant differences in OS were observed among the three groups (P = 0.654). Patients with high PSA levels had significantly short PFS for first-line ADT (P = 0.037). Conversely, patients in the high PSA level group had significantly longer PFS when treated with AW than those in the low PSA level group (P = 0.047). Furthermore, patients with high PSA levels had significantly longer PFS when provided with AA therapy (P = 0.049). PSA responders to AW and AA therapies had significantly longer survival after CRPC development than nonresponders (P = 0.011 and P PSA level predicted favorable response to vintage sequential ADT and AW. The current data suggest a novel aspect of extremely high PSA value as a favorable prognostic marker after development of CRPC.

  5. Electrodynamic wear of rails in high current density rail gun discharges

    International Nuclear Information System (INIS)

    Edwards, W.T.; Caldwell, S.G.

    1984-01-01

    Significant advances in high current, high speed power sources, has in recent years allowed rail guns to produce very high velocity (> 10 km/sec) macroscopic particles (> 1/10 grams). A continuing problem is the structural integrity of the components under these loadings and in particular, the rail wear due to the high current density plasma contacts. In this investigation a small bore rail gun (6x5 mm) was used with a 10.6 kjoule capacitor energy source to examine the modes of rail damage. The rails were constructed of 110 copper base material. These rails were used in an uncoated condition and also with plasma sprayed coatings of W and W/WC. The resulting surface wear was characterized by standard metallurgical techniques and analyzed for the various coatings

  6. High current table-top setup for femtosecond gas electron diffraction

    Directory of Open Access Journals (Sweden)

    Omid Zandi

    2017-07-01

    Full Text Available We have constructed an experimental setup for gas phase electron diffraction with femtosecond resolution and a high average beam current. While gas electron diffraction has been successful at determining molecular structures, it has been a challenge to reach femtosecond resolution while maintaining sufficient beam current to retrieve structures with high spatial resolution. The main challenges are the Coulomb force that leads to broadening of the electron pulses and the temporal blurring that results from the velocity mismatch between the laser and electron pulses as they traverse the sample. We present here a device that uses pulse compression to overcome the Coulomb broadening and deliver femtosecond electron pulses on a gas target. The velocity mismatch can be compensated using laser pulses with a tilted intensity front to excite the sample. The temporal resolution of the setup was determined with a streak camera to be better than 400 fs for pulses with up to half a million electrons and a kinetic energy of 90 keV. The high charge per pulse, combined with a repetition rate of 5 kHz, results in an average beam current that is between one and two orders of magnitude higher than previously demonstrated.

  7. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    Science.gov (United States)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  8. The ALICE Dimuon Spectrometer High Level Trigger

    CERN Document Server

    Becker, B; Cicalo, Corrado; Das, Indranil; de Vaux, Gareth; Fearick, Roger; Lindenstruth, Volker; Marras, Davide; Sanyal, Abhijit; Siddhanta, Sabyasachi; Staley, Florent; Steinbeck, Timm; Szostak, Artur; Usai, Gianluca; Vilakazi, Zeblon

    2009-01-01

    The ALICE Dimuon Spectrometer High Level Trigger (dHLT) is an on-line processing stage whose primary function is to select interesting events that contain distinct physics signals from heavy resonance decays such as J/psi and Gamma particles, amidst unwanted background events. It forms part of the High Level Trigger of the ALICE experiment, whose goal is to reduce the large data rate of about 25 GB/s from the ALICE detectors by an order of magnitude, without loosing interesting physics events. The dHLT has been implemented as a software trigger within a high performance and fault tolerant data transportation framework, which is run on a large cluster of commodity compute nodes. To reach the required processing speeds, the system is built as a concurrent system with a hierarchy of processing steps. The main algorithms perform partial event reconstruction, starting with hit reconstruction on the level of the raw data received from the spectrometer. Then a tracking algorithm finds track candidates from the recon...

  9. Atmospheric Signature of the Agulhas Current

    Science.gov (United States)

    Nkwinkwa Njouodo, Arielle Stela; Koseki, Shunya; Keenlyside, Noel; Rouault, Mathieu

    2018-05-01

    Western boundary currents play an important role in the climate system by transporting heat poleward and releasing it to the atmosphere. While their influence on extratropical storms and oceanic rainfall is becoming appreciated, their coastal influence is less known. Using satellite and climate reanalysis data sets and a regional atmospheric model, we show that the Agulhas Current is a driver of the observed band of rainfall along the southeastern African coast and above the Agulhas Current. The Agulhas current's warm core is associated with sharp gradients in sea surface temperature and sea level pressure, a convergence of low-level winds, and a co-located band of precipitation. Correlations among wind convergence, sea level pressure, and sea surface temperature indicate that these features show high degree of similarity to those in the Gulf Stream region. Model experiments further indicate that the Agulhas Current mostly impacts convective rainfall.

  10. Observations of propagating double layers in a high current discharge

    International Nuclear Information System (INIS)

    Lindberg, L.

    1988-01-01

    Observations of current disruptions and strong electric fields along the magnetic field in a high-density (2 x 10 19 m - 3 , highly-ionized, moving, and expanding plasma column are reported. The electric field is interpreted in terms of propagating, strong electric double layers (3-5kV). An initial plasma column is formed in an axial magnetic field (0.1T) by means of a conical theta-pinch plasma gun. When an axial current (max 5kA, 3-5 kV) is drawn through the column spontaneous disruptions and double-layer formation occur within a few microseconds. Floating, secondary emitting Langmuir probes are used. They often indicate very high positive potential peaks (1-2 kV above the anode potential during a few μs) in the plasma on the positive side of the double layer. Short, intense bursts of HF radiation are detected at the disruptions

  11. The CMS High-Level Trigger

    International Nuclear Information System (INIS)

    Covarelli, R.

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the 'High-Level Trigger'(HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  12. The CMS High-Level Trigger

    CERN Document Server

    Covarelli, Roberto

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, tau leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  13. The CMS High-Level Trigger

    Science.gov (United States)

    Covarelli, R.

    2009-12-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  14. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  15. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  16. SIGWX Charts - High Level Significant Weather

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — High level significant weather (SIGWX) forecasts are provided for the en-route portion of international flights. NOAA's National Weather Service Aviation Center...

  17. Ramifications of defining high-level waste

    International Nuclear Information System (INIS)

    Wood, D.E.; Campbell, M.H.; Shupe, M.W.

    1987-01-01

    The Nuclear Regulatory Commission (NRC) is considering rule making to provide a concentration-based definition of high-level waste (HLW) under authority derived from the Nuclear Waste Policy Act (NWPA) of 1982 and the Low Level Waste Policy Amendments Act of 1985. The Department of Energy (DOE), which has the responsibility to dispose of certain kinds of commercial waste, is supporting development of a risk-based classification system by the Oak Ridge National Laboratory to assist in developing and implementing the NRC rule. The system is two dimensional, with the axes based on the phrases highly radioactive and requires permanent isolation in the definition of HLW in the NWPA. Defining HLW will reduce the ambiguity in the present source-based definition by providing concentration limits to establish which materials are to be called HLW. The system allows the possibility of greater-confinement disposal for some wastes which do not require the degree of isolation provided by a repository. The definition of HLW will provide a firm basis for waste processing options which involve partitioning of waste into a high-activity stream for repository disposal, and a low-activity stream for disposal elsewhere. Several possible classification systems have been derived and the characteristics of each are discussed. The Defense High Level Waste Technology Lead Office at DOE - Richland Operations Office, supported by Rockwell Hanford Operations, has coordinated reviews of the ORNL work by a technical peer review group and other DOE offices. The reviews produced several recommendations and identified several issues to be addressed in the NRC rule making. 10 references, 3 figures

  18. High-Level software requirements specification for the TWRS controlled baseline database system

    International Nuclear Information System (INIS)

    Spencer, S.G.

    1998-01-01

    This Software Requirements Specification (SRS) is an as-built document that presents the Tank Waste Remediation System (TWRS) Controlled Baseline Database (TCBD) in its current state. It was originally known as the Performance Measurement Control System (PMCS). Conversion to the new system name has not occurred within the current production system. Therefore, for simplicity, all references to TCBD are equivalent to PMCS references. This SRS will reference the PMCS designator from this point forward to capture the as-built SRS. This SRS is written at a high-level and is intended to provide the design basis for the PMCS. The PMCS was first released as the electronic data repository for cost, schedule, and technical administrative baseline information for the TAAS Program. During its initial development, the PMCS was accepted by the customer, TARS Business Management, with no formal documentation to capture the initial requirements

  19. Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Fujita, T.; Ide, S.; Isayama, A.; Takechi, M.; Suzuki, T.; Takenaga, H.; Oyama, N.; Kamada, Y.

    2005-01-01

    This paper reports the results of the progress in stationary discharges with a large bootstrap current fraction in JT-60U towards steady-state tokamak operation. In the weak shear plasma regime, high-β p ELMy H-mode discharges have been optimized under nearly full non-inductive current drive conditions by the large bootstrap current fraction (f BS ∼ 45%) and the beam driven current fraction (f BD ∼ 50%), which was sustained for 5.8 s in the stationary condition. This duration corresponds to ∼26τ E and ∼2.8τ R , which was limited by the pulse length of negative-ion-based neutral beams. The high confinement enhancement factor H 89 ∼ 2.2 (HH 98y2 ∼ 1.0) was obtained and the profiles of current and pressure reached the stationary condition. In the reversed shear plasma regime, a large bootstrap current fraction (f BS ∼ 75%) has been sustained for 7.4 s under nearly full non-inductive current drive conditions. This duration corresponds to ∼16τ E and ∼2.7τ R . The high confinement enhancement factor H 89 ∼ 3.0 (HH 98y2 ∼ 1.7) was also sustained, and the profiles of current and pressure reached the stationary condition. The large bootstrap current and the off-axis beam driven current sustained this reversed q profile. This duration was limited only by the duration of the neutral beam injection

  20. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  1. Production and properties of solidified high-level waste

    International Nuclear Information System (INIS)

    Brodersen, K.

    1980-08-01

    Available information on production and properties of solidified high-level waste are presented. The review includes literature up to the end of 1979. The feasibility of production of various types of solidified high-level wast is investigated. The main emphasis is on borosilicate glass but other options are also mentioned. The expected long-term behaviour of the materials are discussed on the basis of available results from laboratory experiments. Examples of the use of the information in safety analysis of disposal in salt formations are given. The work has been made on behalf of the Danish utilities investigation of the possibilities of disposal of high-level waste in salt domes in Jutland. (author)

  2. The effects of high frequency current ripple on electric vehicle battery performance

    International Nuclear Information System (INIS)

    Uddin, Kotub; Moore, Andrew D.; Barai, Anup; Marco, James

    2016-01-01

    Highlights: • Experimental study into the impact of current ripple on li-ion battery degradation. • 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. • Results highlight a greater spread of degradation for cells exposed to AC excitation. • Implications for BMS control, thermal management and system integration. - Abstract: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both the energy flows within the vehicle and the delivery of torque by the electrical machine. Such systems are known to generate undesired electrical noise on the high voltage bus. High frequency current oscillations, or ripple, if unhindered will enter the vehicle’s battery system. Real-world measurements of the current on the high voltage bus of a series hybrid electric vehicle (HEV) show that significant current perturbations ranging from 10 Hz to in excess of 10 kHz are present. Little is reported within the academic literature about the potential impact on battery system performance and the rate of degradation associated with exposing the battery to coupled direct current (DC) and alternating currents (AC). This paper documents an experimental investigation that studies the long-term impact of current ripple on battery performance degradation. Initial results highlight that both capacity fade and impedance rise progressively increase as the frequency of the superimposed AC current increases. A further conclusion is that the spread of degradation for cells cycled with a coupled AC–DC signal is considerably more than for cells exercised with a traditional DC waveform. The underlying causality for this degradation is not yet understood. However, this has important implications for the battery management system (BMS). Increased variations in cell capacity and impedance will cause differential current flows and heat generation within the battery pack that if not properly managed will further reduce battery life

  3. Visualisation of the high-current e-beams on solid surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V I; Osipov, V V; Mikhajlov, S G; Lipchak, A I [Russian Academy of Sciences, Ural Division, Ekaterinburg (Russian Federation). Institute of Electrophysics

    1997-12-31

    Natural minerals such as spodumen, calcite, and Mn-doped apatite crystals may serve as suitable low-cost materials for visualization of high-current electron beams. High-intensity luminescence lasting several tens of minutes has been observed when irradiating natural specimen by electron beams with the current density of 10-1000 A/sq.cm, with energy of 100-300 keV, and pulse duration of 2-50 ns. The luminescent images of the beam cross-section provide information on the beam density profiles, while the images taken in the plane parallel to the beam axis make it possible to estimate the beam penetration depth and, therefore, the beam energy. The method is illustrated by examples of luminescent images taken from the experiment. (J.U.).

  4. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    Science.gov (United States)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic

  5. RIKEN 200 kV high current implanter for metal surface modification

    International Nuclear Information System (INIS)

    Iwaki, M.; Yoshida, K.; Sakudo, N.

    1985-01-01

    A high current, metal ion implanter was constructed in order to aid the formation of a new metastable surface alloy. This implanter, called a RIKEN 200 kV high current implanter, is a modified Lintott high current machine (Series III), which has the advantages of having its own microwave ion source and an extra target chamber. The microwave discharge ion source without a hot-filament has a comparatively long lifetime because the chloride ions and radicals in a plasma during discharge of metal chlorides might prevent metal to deposit on the inner walls of the discharge chamber by bombarding and chemically cleaning them. An extra target chamber for metal modification is able to control the surface composition by utilizing the sputtering effect of the ion beam during ion implantation. The use of this ion source and the extra target chamber is suggested to be suitable for the production of metallic ions and for the implantation into metals. The case study will be introduced for TI implantation into Fe. (orig.)

  6. Deformation of contact surfaces in a vacuum interrupter after high-current interruptions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haoran; Wang, Zhenxing, E-mail: zxwang@xjtu.edu.cn; Zhou, Zhipeng; Jiang, Yanjun; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-07

    In a high-current interruption, the contact surface in a vacuum interrupter might be severely damaged by constricted vacuum arcs causing a molten area on it. As a result, a protrusion will be initiated by a transient recovery voltage after current zero, enhancing the local electric field and making breakdowns occur easier. The objective of this paper is to simulate the deformation process on the molten area under a high electric field by adopting the finite element method. A time-dependent Electrohydrodynamic model was established, and the liquid-gas interface was tracked by the level-set method. From the results, the liquid metal can be deformed to a Taylor cone if the applied electric field is above a critical value. This value is correlated to the initial geometry of the liquid metal, which increases as the size of the liquid metal decreases. Moreover, the buildup time of a Taylor cone obeys the power law t = k × E{sup −3}, where E is the initial electric field and k is a coefficient related to the material property, indicating a temporal self-similar characteristic. In addition, the influence of temperature has little impact on the deformation but has great impact on electron emission. Finally, the possible reason to initiate a delayed breakdown is associated with the deformation. The breakdown does not occur immediately when the voltage is just applied upon the gap but is postponed to several milliseconds later when the tip is formed on the liquid metal.

  7. Construing Morality at High versus Low Levels Induces Better Self-control, Leading to Moral Acts

    Directory of Open Access Journals (Sweden)

    Chia-Chun Wu

    2017-06-01

    Full Text Available Human morality entails a typical self-control dilemma in which one must conform to moral rules or socially desirable norms while exerting control over amoral, selfish impulses. Extant research regarding the connection between self-control and level of construal suggest that, compared with a low-level, concrete construal (highlighting means and resources, e.g., answering ‘how’ questions, a high-level, abstract construal (highlighting central goals, e.g., answering ‘why’ questions promotes self-control. Hence, construing morality at higher levels rather than lower levels should engender greater self-control and, it follows, promote a tendency to perform moral acts. We conducted two experiments to show that answering “why” (high-level construal vs. “how” (low-level construal questions regarding morality was associated with a situational state of greater self-control, as indexed by less Stroop interference in the Stroop color-naming task (Experiments 1 and 2. Participants exposed to “why” questions regarding morality displayed a greater inclination for volunteerism (Experiment 1, showed a lower tendency toward selfishness in a dictator game (Experiment 2, and were more likely to return undeserved money (Experiment 2 compared with participants exposed to “how” questions regarding morality. In both experiments, self-control mediated the effect of a high-level construal of morality on dependent measures. The current research constitutes a new approach to promoting prosociality and moral education. Reminding people to think abstractly about human morality may help them to generate better control over the temptation to benefit from unethical acts and make it more likely that they will act morally.

  8. Construing Morality at High versus Low Levels Induces Better Self-control, Leading to Moral Acts.

    Science.gov (United States)

    Wu, Chia-Chun; Wu, Wen-Hsiung; Chiou, Wen-Bin

    2017-01-01

    Human morality entails a typical self-control dilemma in which one must conform to moral rules or socially desirable norms while exerting control over amoral, selfish impulses. Extant research regarding the connection between self-control and level of construal suggest that, compared with a low-level, concrete construal (highlighting means and resources, e.g., answering 'how' questions), a high-level, abstract construal (highlighting central goals, e.g., answering 'why' questions) promotes self-control. Hence, construing morality at higher levels rather than lower levels should engender greater self-control and, it follows, promote a tendency to perform moral acts. We conducted two experiments to show that answering "why" (high-level construal) vs. "how" (low-level construal) questions regarding morality was associated with a situational state of greater self-control, as indexed by less Stroop interference in the Stroop color-naming task (Experiments 1 and 2). Participants exposed to "why" questions regarding morality displayed a greater inclination for volunteerism (Experiment 1), showed a lower tendency toward selfishness in a dictator game (Experiment 2), and were more likely to return undeserved money (Experiment 2) compared with participants exposed to "how" questions regarding morality. In both experiments, self-control mediated the effect of a high-level construal of morality on dependent measures. The current research constitutes a new approach to promoting prosociality and moral education. Reminding people to think abstractly about human morality may help them to generate better control over the temptation to benefit from unethical acts and make it more likely that they will act morally.

  9. Effects of heat from high-level waste on performance of deep geological repository components

    International Nuclear Information System (INIS)

    1984-11-01

    This report discusses the effects of heat on the deep geological repository systems and its different components. The report is focussed specifically on effects due to thermal energy release solely from high-level waste or spent fuel. It reviews the experimental data and theoretical models of the effects of heat both on the behaviour of engineered and natural barriers. A summary of the current status of research and repository development including underground test facilities is presented

  10. Separation of transuranium elements from high-level waste by extraction with diisodecyl phosphoric acid

    International Nuclear Information System (INIS)

    Morita, Y.; Kubota, M.; Tani, S.

    1991-01-01

    Separation of transuranic elements (TRU) by extraction with diisodecyl phosphoric acid (DIDPA) has been studied to develop a partitioning process for high-level waste (HLW). In the present study, experiments of counter-current continuous extraction and back-extraction using a miniature mixer-settler were carried out to find the optimum process condition for the separation of Np initially in the pentavalent state and to examine the extraction behaviors of fission and corrosion products. (J.P.N.)

  11. Translation of a High-Level Temporal Model into Lower Level Models: Impact of Modelling at Different Description Levels

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    2001-01-01

    given types of properties, and examine how descriptions on higher levels translate into descriptions on lower levels. Our example looks at temporal properties where the information is concerned with the existence in time. In a high level temporal model with information kept in a three-dimensional space...... the existences in time can be mapped precisely and consistently securing a consistent handling of the temporal properties. We translate the high level temporal model into an entity-relationship model, with the information in a two-dimensional graph, and finally we look at the translations into relational...... and other textual models. We also consider the aptness of models that include procedural mechanisms such as active and object databases...

  12. A dynamic simulation model of the Savannah River Site high level waste complex

    International Nuclear Information System (INIS)

    Gregory, M.V.; Aull, J.E.; Dimenna, R.A.

    1994-01-01

    A detailed, dynamic simulation entire high level radioactive waste complex at the Savannah River Site has been developed using SPEEDUP(tm) software. The model represents mass transfer, evaporation, precipitation, sludge washing, effluent treatment, and vitrification unit operation processes through the solution of 7800 coupled differential and algebraic equations. Twenty-seven discrete chemical constituents are tracked through the unit operations. The simultaneous simultaneous simulation of concurrent batch and continuous processes is achieved by several novel, customized SPEEDUP(tm) algorithms. Due to the model's computational burden, a high-end work station is required: simulation of a years operation of the complex requires approximately three CPU hours on an IBM RS/6000 Model 590 processor. The model will be used to develop optimal high level waste (HLW) processing strategies over a thirty year time horizon. It will be employed to better understand the dynamic inter-relationships between different HLW unit operations, and to suggest strategies that will maximize available working tank space during the early years of operation and minimize overall waste processing cost over the long-term history of the complex. Model validation runs are currently underway with comparisons against actual plant operating data providing an excellent match

  13. Timing of High-level Waste Disposal

    International Nuclear Information System (INIS)

    2008-01-01

    This study identifies key factors influencing the timing of high-level waste (HLW) disposal and examines how social acceptability, technical soundness, environmental responsibility and economic feasibility impact on national strategies for HLW management and disposal. Based on case study analyses, it also presents the strategic approaches adopted in a number of national policies to address public concerns and civil society requirements regarding long-term stewardship of high-level radioactive waste. The findings and conclusions of the study confirm the importance of informing all stakeholders and involving them in the decision-making process in order to implement HLW disposal strategies successfully. This study will be of considerable interest to nuclear energy policy makers and analysts as well as to experts in the area of radioactive waste management and disposal. (author)

  14. Measurements of the reverse current of highly irradiated silicon sensors to determine the effective energy and current related damage rate

    Science.gov (United States)

    Wiehe, Moritz; Wonsak, S.; Kuehn, S.; Parzefall, U.; Casse, G.

    2018-01-01

    The reverse current of irradiated silicon sensors leads to self heating of the sensor and degrades the signal to noise ratio of a detector. Precise knowledge of the expected reverse current during detector operation is crucial for planning and running experiments in High Energy Physics. The dependence of the reverse current on sensor temperature and irradiation fluence is parametrized by the effective energy and the current related damage rate, respectively. In this study 18 n-in-p mini silicon strip sensors from companies Hamamatsu Photonics and Micron Semiconductor Ltd. were deployed. Measurements of the reverse current for different bias voltages were performed at temperatures of -32 ° C, -27 ° C and -23 ° C. The sensors were irradiated with reactor neutrons in Ljubljana to fluences ranging from 2 × 1014neq /cm2 to 2 × 1016neq /cm2. The measurements were performed directly after irradiation and after 10 and 30 days of room temperature annealing. The aim of the study presented in this paper is to investigate the reverse current of silicon sensors for high fluences of up to 2 × 1016neq /cm2 and compare the measurements to the parametrization models.

  15. Properties of high-spin boson interaction currents and elimination of power divergences

    International Nuclear Information System (INIS)

    Kulish, Yu.V.; Rybachuk, E.V.

    2001-01-01

    The problem of the elimination of the power divergences for the interactions of the high-spin bosons (J ≥ 1) is investigated. It is proved that in the consistent theory the high-spin boson interaction currents and the field tensors must obey similar requirements. Therefore the momentum dependencies of the propagators for all the bosons are the same. The partial differential equations derived for some components include the derivatives of order 2J for the currents. Therefore the current components for the spin-J boson must decrease with the momentum Kombi scalar p v Kombi scalar → ∞ at least as Kombi scalar p v Kombi scalar -2J

  16. On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, Nicole R.; Ha, Seungbum; He, Meinan; Dees, Dennis; Trask, Steve; Polzin, Bryant; Gallagher, Kevin G.

    2017-01-01

    In this study, parasitic side reactions in lithium-ion batteries were examined experimentally using a potentiostatic hold at high cell voltage. The experimental leakage current measured during the potentiostatic hold was compared to the Tafel expression and showed poor agreement with the expected transfer coefficient values, indicating that a more complicated expression could be needed to accurately capture the physics of this side reaction. Here we show that cross-talk between the electrodes is the primary contribution to the observed leakage current after the relaxation of concentration gradients has ceased. This cross-talk was confirmed with experiments using a lithium-ion conducting glass ceramic (LICGC) separator, which has high conductance only for lithium cations. The cells with LICGC separators showed significantly less leakage current during the potentiostatic hold test compared to cells with standard microporous separators where cross-talk is present. In addition, direct-current pulse power tests show an impedance rise for cells held at high potentials and for cells held at high temperatures, which could be attributed to film formation from the parasitic side reaction. Based on the experimental findings, a phenomenological mechanism is proposed for the parasitic side reaction which accounts for cross-talk and mass transport of the decomposition products across the separator.

  17. Application of parallel connected power-MOSFET elements to high current d.c. power supply

    International Nuclear Information System (INIS)

    Matsukawa, Tatsuya; Shioyama, Masanori; Shimada, Katsuhiro; Takaku, Taku; Neumeyer, Charles; Tsuji-Iio, Shunji; Shimada, Ryuichi

    2001-01-01

    The low aspect ratio spherical torus (ST), which has single turn toroidal field coil, requires the extremely high d.c. current like as 20 MA to energize the coil. Considering the ratings of such extremely high current and low voltage, power-MOSFET element is employed as the switching device for the a.c./d.c. converter of power supply. One of the advantages of power-MOSFET element is low on-state resistance, which is to meet the high current and low voltage operation. Recently, the capacity of power-MOSFET element has been increased and its on-state resistance has been decreased, so that the possibility of construction of high current and low voltage a.c./d.c. converter with parallel connected power-MOSFET elements has been growing. With the aim of developing the high current d.c. power supply using power-MOSFET, the basic characteristics of parallel operation with power-MOSFET elements are experimentally investigated. And, the synchronous rectifier type and the bi-directional self commutated type a.c./d.c. converters using parallel connected power-MOSFET elements are proposed

  18. Use of high current density superconducting coils in fusion devices

    International Nuclear Information System (INIS)

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  19. Operating modes of high-Tc composite superconductors and thermal runaway conditions under current charging

    International Nuclear Information System (INIS)

    Romanovskii, V R; Watanabe, K

    2006-01-01

    The operating thermal and electric modes of a high-T c superconducting composite in partially and fully penetrated states induced by the charging current are investigated. They were studied under conditions in which the current charging rate, the volume fraction of the superconductor in a composite or the temperature of the cooling bath were changed. The transient behaviour of the voltage-current dependence, which is characteristic during stable and unstable increases in electric field inside the composite under a continuous current charging, is discussed. Simulations were done using zero- and one-dimensional steady and unsteady thermoelectric models with a power equation describing the virgin voltage-current characteristic of a superconductor. It is found that some thermoelectric trends underlie the shape of the voltage-current characteristic of the high-T c superconducting composite. These have to be considered during experiments in which the critical or quench currents are defined. First, in the initial stage of the fully penetrated regime (in the low voltage range), the electric field distribution does not have a uniform character. These states depend on the volume fraction of the superconductor and the current charging rate: the higher these quantities, the higher the heterogeneity of the electric field. Second, during the stable over-critical regime (in the high voltage range) occurring in complete penetration modes, the evolution of the electric field may depend on the relevant temperature increase of a composite according to the corresponding increase in its temperature-dependent heat capacity. Consequently, the shape of the voltage-current characteristic of a composite high-T c superconductor during continuous current charging, both before and after thermal runaway, has only a positive slope. Moreover, it is proved that the growth of the fully penetrated part of the voltage-current characteristic becomes less intensive when the current charging rate or the

  20. Acclimation to extremely high ammonia levels in continuous biomethanation process and the associated microbial community dynamics

    DEFF Research Database (Denmark)

    Tian, Hailin; Fotidis, Ioannis; Mancini, Enrico

    2018-01-01

    Acclimatized anaerobic communities to high ammonia levels can offer a solution to the ammonia toxicity problem in biogas reactors. In the current study, a stepwise acclimation strategy up to 10 g NH4+-N L−1, was performed in mesophilic (37 ± 1 °C) continuously stirred tank reactors. The reactors...... change throughout the ammonia acclimation process. Clostridium ultunense, a syntrophic acetate oxidizing bacteria, increased significantly alongside with hydrogenotrophic methanogen Methanoculleus spp., indicating strong hydrogenotrophic methanogenic activity at extreme ammonia levels (>7 g NH4+-N L−1...

  1. Underground disposal of vitrified high level radioactive waste: a review of research and development

    International Nuclear Information System (INIS)

    1982-11-01

    A review has been undertaken of the worldwide status of research and development related to the geological disposal of vitrified high level radioactive waste. The nature and quantities of vitrified high level waste that will arise from nuclear power generation in the UK have been estimated and considered. The safety case for establishing a geological repository would have to be based on predictive models, which could adequately represent the interactions and effects of a wide range of gradual processes and possible sudden events. No detailed repository design has yet been published, but the configuration currently favoured, in the UK and in most other countries, comprises a small number of vertical shafts, from which a network of horizontal tunnels would be excavated. Waste packages would be placed in holes drilled in the floors of the tunnels. The excavation of such a repository in hard crystalline rock, in a thick homogeneous formation of rock salt, or in the less plastic argillaceous formations, appears to be within the scope of present technology. Rock types available in the UK, which are likely to prove suitable for the accommodation of a repository, have been identified. The strategies and programmes for high level waste disposal in other countries have been reviewed. (U.K.)

  2. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  3. Occurrence of lead-related symptoms below the current occupational safety and health act allowable blood lead levels.

    Science.gov (United States)

    Rosenman, Kenneth D; Sims, Amy; Luo, Zhehui; Gardiner, Joseph

    2003-05-01

    To determine the occurrence of symptoms of lead toxicity at levels below the current allowable Occupational Safety and Health Act blood lead level of 50 micrograms/dL, standardized telephone interviews were conducted of individuals reported to a statewide laboratory-based surveillance system. Four hundred and ninety-seven, or 75%, of the eligible participants were interviewed. Gastrointestinal, musculoskeletal, and nervous system symptoms increased with increasing blood lead levels. Nervous, gastrointestinal, and musculoskeletal symptoms all began to be increased in individuals with blood leads between 30-39 micrograms/dL and possibly at levels as low as 25-30 micrograms/dL for nervous system symptoms. The results of this study of increased symptoms are consistent with and provide added weight to previous results showing subclinical changes in the neurologic and renal systems and sperm counts at blood lead levels currently allowed by the Occupational Safety and Health Act.

  4. Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo.

    Science.gov (United States)

    Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei

    2018-03-13

    Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. High current photoemission with 10 picosecond uv pulses

    International Nuclear Information System (INIS)

    Fischer, J.; Srinivasan-Rao, T.; Tsang, T.

    1990-06-01

    The quantum efficiency and the optical damage threshold of various metals were explored with 10 ps, 266 nm, UV laser pulses. Efficiencies for Cu, Y, and Sm were: 1.4, 5, and 7 x 10 -4 , with damage thresholds about 100, 10, and 30 mJ/cm 2 . This would permit over 1 μC/cm 2 or current densities exceeding 100 kA/cm 2 . High charge and current densities of up to 66 kA/cm 2 were obtained on 0.25 mm diam cathodes, and 21 kA/cm 2 on a 3 mm diam yttrium cathode. The maximum currents were limited by space charge and the dc field. The experiments with small area illumination indicate that the emitted electrons spread transversely due to Coulomb repulsion and their initial transverse velocity. This increases the effective area above the cathode, reduces the space charge effect and increases emission density on the cathode. The quantum efficiency can be increased substantially by enhancing the field on the surface by either a suitable electrode geometry or microstructures on it. 14 refs., 12 figs., 3 tabs

  6. Ultra fast shutter driven by pulsed high current

    International Nuclear Information System (INIS)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5 μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90 kA to 140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities. (authors)

  7. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells

    KAUST Repository

    Hong, Yiying

    2011-10-01

    One form of power overshoot commonly observed with mixed culture microbial fuel cells (MFCs) is doubling back of the power density curve at higher current densities, but the reasons for this type of overshoot have not been well explored. To investigate this, MFCs were acclimated to different external resistances, producing a range of anode potentials and current densities. Power overshoot was observed for reactors acclimated to higher (500 and 5000. Ω) but not lower (5 and 50. Ω) resistances. Acclimation of the high external resistance reactors for a few cycles to low external resistance (5. Ω), and therefore higher current densities, eliminated power overshoot. MFCs initially acclimated to low external resistances exhibited both higher current in cyclic voltammograms (CVs) and higher levels of redox activity over a broader range of anode potentials (-0.4 to 0. V; vs. a Ag/AgCl electrode) based on first derivative cyclic voltammetry (DCV) plots. Reactors acclimated to higher external resistances produced lower current in CVs, exhibited lower redox activity over a narrower anode potential range (-0.4 to -0.2. V vs. Ag/AgCl), and failed to produce higher currents above ∼-0.3. V (vs. Ag/AgCl). After the higher resistance reactors were acclimated to the lowest resistance they also exhibited similar CV and DCV profiles. Our findings show that to avoid overshoot, prior to the polarization and power density tests the anode biofilm must adapt to low external resistances to be capable of higher currents. © 2011 Elsevier B.V.

  8. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  9. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  10. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  11. Study of pulse stretching in high current power supplies using multipulse techniques

    International Nuclear Information System (INIS)

    Trendler, R.C.

    1977-01-01

    Considerable interest exists at Fermilab to increase the pulse width of the Neutrino Focusing Horn to permit an increase in beam spill length from twenty (20) microseconds to one (1) millisecond. Two techniques to do this were examined: (1) a high current transformer, and (2) increased bank capacitance using the multi-power supply technique. The transformer is the most straightforward conceptually; it is, however, a complicated device requiring sizable changes to the existing horn power supply. This alternative is briefly reviewed. The second scheme involves pulsing a 20 kv 200 ka power supply to establish the required load current and then maintaining this current by the sequential pulsing of a number of low voltage high current power supplies. This alternative is discussed in detail with the results of tests performed on the Fermilab Focusing Horn System

  12. [Extensive injuries due to high-tension electrical current].

    Science.gov (United States)

    Tomásek, D; Königová, R; Snupárek, Z

    1989-03-01

    The authors submit a case of severe injury with high tension electric current. They emphasize the necessity of prevention of this injury which occurs most frequently when transformer stations are not adequately safeguarded, in case of inadequate protection when approaching trolley wires on the railway track, and when safety principles are not respected during work on the railway. The authors draw attention to the importance of immediate resuscitation and multidisciplinary comprehensive care.

  13. Ocean disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    1983-01-01

    This study confirms, subject to limitations of current knowledge, the engineering feasibility of free fall penetrators for High Level Radioactive Waste disposal in deep ocean seabed sediments. Restricted sediment property information is presently the principal bar to an unqualified statement of feasibility. A 10m minimum embedment and a 500 year engineered barrier waste containment life are identified as appropriate basic penetrator design criteria at this stage. A range of designs are considered in which the length, weight and cross section of the penetrator are varied. Penetrators from 3m to 20m long and 2t to 100t in weight constructed of material types and thicknesses to give a 500 year containment life are evaluated. The report concludes that the greatest degree of confidence is associated with performance predictions for 75 to 200 mm thick soft iron and welded joints. A range of lengths and capacities from a 3m long single waste canister penetrator to a 20m long 12 canister design are identified as meriting further study. Estimated embedment depths for this range of penetrator designs lie between 12m and 90m. Alternative manufacture, transport and launch operations are assessed and recommendations are made. (author)

  14. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  15. CURRENT LEVELS OF MEDICAL EXPOSURE IN RUSSIA

    Directory of Open Access Journals (Sweden)

    M. I. Balonov

    2015-01-01

    Full Text Available We considered conditions of patients’ medical radiation exposure in Russian diagnostic radiology and nuclear medicine basing on the data of our own research, of the Unified system of individual dose control and of some relevant literature. We analyzed the data on the number of diagnostic examinations, patients’ individual and collective doses and their distribution by examination types. Time trends of the studied parameters are presented for the period between 1999 and 2013. Current level of Russian patients’ medical exposure is the lowest over the whole observation period and one of the lowest among the developed countries. The annual number of X-ray diagnostic examinations is 1.8 per capita. In 2013 median effective dose of medical exposure per capita in Russia was 0.45 mSv and median dose per procedure was 0.25 mSv. The major contribution to collective dose of medical exposure was from computed tomography and radiography; the largest individual doses were caused by interventional radiology, computed X-Ray and nuclear medicine tomographic examinations. The range of median doses comprises about four orders of magnitude, i.e. from several microSv in dental X-ray examinations up to several tens of milliSv in interventional and multistage tomographic examinations. The median effective dose of adult patients increases by about an order of magnitude with each transition from dental X-ray examinations to conventional radiology and further to computed tomography and interventional radiology examinations. During interventional X-Ray examinations, absorbed skin doses at radiation beam entrance site may reach several Gray, which may lead to deterministic radiation effects in skin and subcutaneous tissues. Due to replacement of low-dose ‘functional’ nuclear medicine examinations with more informative modern scintigraphy and tomography examination, patient doses substantially increased over the last decade. With current trend for re-equipment of

  16. Presal36: a high resolution ocean current model for Brazilian pre-salt area: implementation and validation results

    Energy Technology Data Exchange (ETDEWEB)

    Schoellkopf, Jacques P. [Advanced Subsea do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The PRESAL 36 JIP is a project for the development of a powerful Ocean Current Model of 1/36 of a degree resolution, nested in an existing Global Ocean global Model, Mercator PSY4 (1/12-a-degree resolution ), with tide corrections, improved bathymetry accuracy and high frequency atmospheric forcing (every 3 hours). The simulation outputs will be the 3 dimensional structure of the velocity fields (u,v,w) at 50 vertical levels over the water column, including geostrophic, Ekman and tidal currents, together with Temperature, Salinity and sea surface height at a sub-mesoscale spatial resolution. Simulations will run in hindcast, nowcast and forecast modes, with a temporal resolution of 3 hours . This Ocean current model will allow to perform detailed statistical studies on various areas using conditions analysed using hindcast mode, short term operational condition prediction for various surface and sub sea operations using realtime and Forecast modes. The paper presents a publication of significant results of the project, in term of pre-sal zoomed model implementation, and high resolution model validation. It demonstrate the capability to properly describe ocean current phenomenon at beyond mesoscale frontier. This project demonstrate the feasibility of obtaining accurate information for engineering studies and operational conditions, based on a 'zoom technique' starting from global ocean models. (author)

  17. Development of Concentration and Calcination Technology For High Level Liquid Waste

    International Nuclear Information System (INIS)

    Pande, D.P.

    2006-01-01

    The concentrated medium and high-level liquid radio chemicals effluents contain nitric acid, water along with the dissolved chemicals including the nitrates of the radio nuclides. High level liquid waste contain mainly nitrates of cesium, strontium, cerium, zirconium, chromium, barium, calcium, cobalt, copper, pickle, iron etc. and other fission products. This concentrated solution requires further evaporation, dehydration, drying and decomposition in temperature range of 150 to 700 deg. C. The addition of the calcined solids in vitrification pot, instead of liquid feed, helps to avoid low temperature zone because the vaporization of the liquid and decomposition of nitrates do not take place inside the melter. In our work Differential and thermo gravimetric studies has been carried out in the various stages of thermal treatment including drying, dehydration and conversion to oxide forms. Experimental studies were done to characterize the chemicals present in high-level radioactive waste. A Rotary Ball Kiln Calciner was used for development of the process because this is amenable for continuous operation and moderately good heat transfer can be achieved inside the kiln. This also has minimum secondary waste and off gases generation. The Rotary Ball Kiln Calciner Demonstration facility system was designed and installed for the demonstration of calcination process. The Rotary Ball Kiln Calciner is a slowly rotating slightly inclined horizontal tube that is externally heated by means of electric resistance heating. The liquid feed is sprayed onto the moving bed of metal balls in a slowly rotating calciner by a peristaltic type-metering pump. The vaporization of the liquid occurs in the pre-calcination zone due to counter current flow of hot gases. The dehydration and denitration of the solids occurs in the calcination zone, which is externally heated by electrical furnace. The calcined powder is cooled in the post calcination portion. It has been demonstrated that the

  18. High-Level Language Production in Parkinson's Disease: A Review

    Directory of Open Access Journals (Sweden)

    Lori J. P. Altmann

    2011-01-01

    Full Text Available This paper discusses impairments of high-level, complex language production in Parkinson's disease (PD, defined as sentence and discourse production, and situates these impairments within the framework of current psycholinguistic theories of language production. The paper comprises three major sections, an overview of the effects of PD on the brain and cognition, a review of the literature on language production in PD, and a discussion of the stages of the language production process that are impaired in PD. Overall, the literature converges on a few common characteristics of language production in PD: reduced information content, impaired grammaticality, disrupted fluency, and reduced syntactic complexity. Many studies also document the strong impact of differences in cognitive ability on language production. Based on the data, PD affects all stages of language production including conceptualization and functional and positional processing. Furthermore, impairments at all stages appear to be exacerbated by impairments in cognitive abilities.

  19. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  20. Preliminary study on the three-dimensional geoscience information system of high-level radioactive waste geological disposal

    International Nuclear Information System (INIS)

    Li Peinan; Zhu Hehua; Li Xiaojun; Wang Ju; Zhong Xia

    2010-01-01

    The 3D geosciences information system of high-level radioactive waste geological disposal is an important research direction in the current high-level radioactive waste disposal project and a platform of information integration and publishing can be used for the relevant research direction based on the provided data and models interface. Firstly, this paper introduces the basic features about the disposal project of HLW and the function and requirement of the system, which includes the input module, the database management module, the function module, the maintenance module and the output module. Then, the framework system of the high-level waste disposal project information system has been studied, and the overall system architecture has been proposed. Finally, based on the summary and analysis of the database management, the 3D modeling, spatial analysis, digital numerical integration and visualization of underground project, the implementations of key functional modules and the platform have been expounded completely, and the conclusion has been drawn that the component-based software development method should be utilized in system development. (authors)