WorldWideScience

Sample records for high current disruption

  1. High-resolution disruption halo current measurements using Langmuir probes in Alcator C-Mod

    Science.gov (United States)

    Tinguely, R. A.; Granetz, R. S.; Berg, A.; Kuang, A. Q.; Brunner, D.; LaBombard, B.

    2018-01-01

    Halo currents generated during disruptions on Alcator C-Mod have been measured with Langmuir ‘rail’ probes. These rail probes are embedded in a lower outboard divertor module in a closely-spaced vertical (poloidal) array. The dense array provides detailed resolution of the spatial dependence (~1 cm spacing) of the halo current distribution in the plasma scrape-off region with high time resolution (400 kHz digitization rate). As the plasma limits on the outboard divertor plate, the contact point is clearly discernible in the halo current data (as an inversion of current) and moves vertically down the divertor plate on many disruptions. These data are consistent with filament reconstructions of the plasma boundary, from which the edge safety factor of the disrupting plasma can be calculated. Additionally, the halo current ‘footprint’ on the divertor plate is obtained and related to the halo flux width. The voltage driving halo current and the effective resistance of the plasma region through which the halo current flows to reach the probes are also investigated. Estimations of the sheath resistance and halo region resistivity and temperature are given. This information could prove useful for modeling halo current dynamics.

  2. Axisymmetric MHD simulation of ITB crash and following disruption dynamics of Tokamak plasmas with high bootstrap current

    International Nuclear Information System (INIS)

    Takei, Nahoko; Tsutsui, Hiroaki; Tsuji-Iio, Shunji; Shimada, Ryuichi; Nakamura, Yukiharu; Kawano, Yasunori; Ozeki, Takahisa; Tobita, Kenji; Sugihara, Masayoshi

    2004-01-01

    Axisymmetric MHD simulation using the Tokamak Simulation Code demonstrated detailed disruption dynamics triggered by a crash of internal transport barrier in high bootstrap current, high β, reversed shear plasmas. Self-consistent time-evolutions of ohmic current bootstrap current and induced loop voltage profiles inside the disrupting plasma were shown from a view point of disruption characterization and mitigation. In contrast with positive shear plasmas, a particular feature of high bootstrap current reversed shear plasma disruption was computed to be a significant change of plasma current profile, which is normally caused due to resistive diffusion of the electric field induced by the crash of internal transport barrier in a region wider than the internal transport barrier. Discussion based on the simulation results was made on the fastest record of the plasma current quench observed in JT-60U reversed shear plasma disruptions. (author)

  3. Analytic modeling of axisymmetric disruption halo currents

    International Nuclear Information System (INIS)

    Humphreys, D.A.; Kellman, A.G.

    1999-01-01

    Currents which can flow in plasma facing components during disruptions pose a challenge to the design of next generation tokamaks. Induced toroidal eddy currents and both induced and conducted poloidal ''halo'' currents can produce design-limiting electromagnetic loads. While induction of toroidal and poloidal currents in passive structures is a well-understood phenomenon, the driving terms and scalings for poloidal currents flowing on open field lines during disruptions are less well established. A model of halo current evolution is presented in which the current is induced in the halo by decay of the plasma current and change in enclosed toroidal flux while being convected into the halo from the core by plasma motion. Fundamental physical processes and scalings are described in a simplified analytic version of the model. The peak axisymmetric halo current is found to depend on halo and core plasma characteristics during the current quench, including machine and plasma dimensions, resistivities, safety factor, and vertical stability growth rate. Two extreme regimes in poloidal halo current amplitude are identified depending on the minimum halo safety factor reached during the disruption. A 'type I' disruption is characterized by a minimum safety factor that remains relatively high (typically 2 - 3, comparable to the predisruption safety factor), and a relatively low poloidal halo current. A 'type II' disruption is characterized by a minimum safety factor comparable to unity and a relatively high poloidal halo current. Model predictions for these two regimes are found to agree well with halo current measurements from vertical displacement event disruptions in DIII-D [T. S. Taylor, K. H. Burrell, D. R. Baker, G. L. Jackson, R. J. La Haye, M. A. Mahdavi, R. Prater, T. C. Simonen, and A. D. Turnbull, open-quotes Results from the DIII-D Scientific Research Program,close quotes in Proceedings of the 17th IAEA Fusion Energy Conference, Yokohama, 1998, to be published in

  4. Current disruption in toroidal devices

    International Nuclear Information System (INIS)

    1979-07-01

    Attempts at raising the density or the plasma current in a tokamak above certain critical values generally result in termination of the discharge by a disruption. This sudden end of the plasma current and plasma confinement is accompanied by large induced voltages and currents in the outer structures which, in large tokamaks, can only be handled with considerable effort, and which will probably only be tolerable in reactors as rare accidents. Because of its crucial importance for the construction and operation of tokamaks, this phenomenon and its theoretical interpretation were the subject of a three-day symposium organized by the International Atomic Energy Agency and Max-Planck-Institut fuer Plasmaphysik at Garching from February 14 to 16. (orig./HT)

  5. Study of runaway current generation following disruptions in KSTAR

    International Nuclear Information System (INIS)

    Chen, Z Y; Kim, W C; Yu, Y W; England, A C; Yoo, J W; Hahn, S H; Yoon, S W; Lee, K D; Oh, Y K; Kwak, J G; Kwon, M

    2013-01-01

    The high fraction of runaway current conversion following disruptions has an important effect on the first wall for next-generation tokamaks. Because of the potentially severe consequences of a large full current runaway beam on the first wall in an unmitigated disruption, runaway suppression is given a high priority. The behavior of runaway currents both in spontaneous disruptions and in D 2 massive gas injection (MGI) shutdown experiments is investigated in the KSTAR tokamak. The experiments in KSTAR show that the toroidal magnetic field threshold, B T >2 T, for runaway generation is not absolute. A high fraction of runaway current conversion following spontaneous disruptions is observed at a much lower toroidal magnetic field of B T = 1.3 T. A dedicated fast valve for high-pressure gas injection with 39.7 bar is developed for the study of disruptions. A study of runaway current parameters shows that the conversion efficiency of pre-disruptive plasma currents into runaway current can reach over 80% both in spontaneous disruptions and in D 2 MGI shutdown experiments in KSTAR. (paper)

  6. Engineering aspects of disruption current decay

    International Nuclear Information System (INIS)

    Murray, J.G.

    1983-11-01

    Engineering features associated with the configuration of a tokamak can affect the amount of energy that produces melting and damage to the limiters or internal wall surfaces as the result of a major disruption. During the current decay period of a major thermal disruption, the energy that can damage a wall or limiter comes from the external magnetic field. By providing a good conducting torus near the plasma and increasing the plasma circuit resistance, this magnetic energy (transferred by way of the plasma circuit) can be minimized. This report addresses engineering design features to reduce the energy deposited on the inner torus surface that produces melting of the structures

  7. Toroidal current asymmetry in tokamak disruptions

    Science.gov (United States)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  8. The evolution of the plasma current during tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Anderson, D.; Lisak, M.; Eriksson, L.G.

    2004-01-01

    In a tokamak disruption, the ohmic plasma current is partly replaced by a current carried by runaway electrons. This process is analysed by combining the equations for runaway electron generation with Maxwell's equations for the evolution of the electric field. This allows a quantitative understanding to be gained of runaway production in present experiments, and extrapolation to be made to ITER. The runaway current typically becomes more peaked on the magnetic axis than the pre-disruption current. In fact, the central current density can rise although the total current falls, which may have implications for post-disruption plasma stability. Furthermore, it is found that the runaway current easily spreads radially in a filament way due to the high sensitivity of the runaway generation efficiency to plasma parameters. (authors)

  9. Tokamak plasma current disruption infrared control system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1987-01-01

    This patent describes a device for magnetically confining a plasma driven by a plasma current and contained within a toroidal vacuum chamber, the device having an inner toroidal limiter on an inside wall of the vacuum chamber and an arrangement for the rapid prediction and control in real time of a major plasma disruption. The arrangement is described which includes: scanning means sensitive to infrared radiation emanating from within the vacuum chamber, the infrared radiation indicating the temperature along a vertical profile of the inner toroidal limiter. The scanning means is arranged to observe the infrared radiation and to produce in response thereto an electrical scanning output signal representative of a time scan of temperature along the vertical profile; detection means for analyzing the scanning output signal to detect a first peaked temperature excursion occurring along the profile of the inner toroidal limiter, and to produce a detection output signal in repsonse thereto, the detection output signal indicating a real time prediction of a subsequent major plasma disruption; and plasma current reduction means for reducing the plasma current driving the plasma, in response to the detection output signal and in anticipation of a subsequent major plasma disruption

  10. Current disruptions in the near-earth neutral sheet region

    International Nuclear Information System (INIS)

    Liu, A.T.Y.; Anderson, B.J.; Takahashi, K.; Zanetti, L.J.; McEntire, R.W.; Potemra, T.A.; Lopez, R.E.; Klumpar, D.M.; Greene, E.M.; Strangeway, R.

    1992-01-01

    Observations from the Charge Composition Explorer in 1985 and 1986 revealed fifteen current disruption events in which the magnetic field fluctuations were large and their onsets coincided well with ground onsets of substorm expansion or intensification. Over the disruption interval, the local magnetic field can change by as much as a factor of ∼7. In general, the stronger the current buildup and the closer the neutral sheet, the larger the resultant field change. There is also a tendency for a larger subsequent enhancement in the AE index with a stronger current buildup prior to current disruption. For events with good pitch angle coverage and extended observation in the neutral sheet region the authors find that the particle pressure increases toward the disruption onset and decreases afterward. Just prior to disruption, either the total particle pressure is isotropic, or the perpendicular component (P perpendicular ) dominates the parallel component (P parallel ), the plasma beta is seen to be as high as ∼70, and the observed plasma pressure gradient at the neutral sheet is large along the tail axis. The deduced local current density associated with pressure gradient is ∼27-80 n/Am 2 and is ∼85-105 mA/m when integrated over the sheet thickness. They infer from these results that just prior to the onset of current disruption, (1) an extremely thin current sheet requiring P parallel > P perpendicular for stress balance does not develop at these distances, (2) the thermal ion orbits are in the chaotic or Speiser regime while the thermal electrons are in the adiabatic regime and, in one case, exhibit peaked fluxes perpendicular to the magnetic field, thus implying no electron orbit chaotization to possibly initiate ion tearing instability, and (3) the neutral sheet is in the unstable regime specified by the cross-field current instability

  11. Hiro and Evans currents in Vertical Disruption Event

    Science.gov (United States)

    Zakharov, Leonid; Xujing Li Team; Sergei Galkin Team

    2014-10-01

    The notion of Tokamak Magneto-Hydrodynamics (TMHD), which explicitly reflects the anisotropy of a high temperature tokamak plasma is introduced. The set of TMHD equations is formulated for simulations of macroscopic plasma dynamics and disruptions in tokamaks. Free from the Courant restriction on the time step, this set of equations is appropriate for high performance plasmas and does not require any extension of the MHD plasma model. At the same time, TMHD requires the use of magnetic field aligned numerical grids. The TMHD model was used for creation of theory of the Wall Touching Kink and Vertical Modes (WTKM and WTVM), prediction of Hiro and Evans currents, design of an innovative diagnostics for Hiro current measurements, installed on EAST device. While Hiro currents have explained the toroidal asymmetry in the plasma current measurements in JET disruptions, the Evans currents explain the tile current measurements in tokamaks. The recently developed Vertical Disruption Code (VDE) have demonstrated 5 regimes of VDE and confirmed the generation of both Hiro and Evans currents. The results challenge the 24 years long misinterpretation of the tile currents in tokamaks as ``halo'' currents, which were a product of misuse of equilibrium reconstruction for VDE. This work is supported by US DoE Contract No. DE-AC02-09-CH1146.

  12. Disruption, vertical displacement event and halo current characterization for ITER

    International Nuclear Information System (INIS)

    Wesley, J.; Fujisawa, N.; Ortolani, S.; Putvinski, S.; Rosenbluth, M.N.

    1997-01-01

    Characteristics, in ITER, of plasma disruptions, vertical displacement events (VDEs) and the conversion of plasma current to runaway electron current in a disruption are presented. In addition to the well known potential of disruptions to produce rapid thermal energy and plasma current quenches and theoretical predictions that show the likelihood of ∼ 50% runaway conversion, an assessment of VDE and halo current characteristics in vertically elongated tokamaks shows that disruptions in ITER will result in VDEs with peak in-vessel halo currents of up to 50% of the predisruption plasma current and with toroidal peaking factors (peak/average current density) of up to 4:1. However, the assessment also shows an inverse correlation between the halo current magnitude and the toroidal peaking factor; hence, ITER VDEs can be expected to have a product of normalized halo current magnitude times toroidal peaking factor of ≤ 75%. (author). 3 refs, 2 figs, 3 tabs

  13. Disruptive mood dysregulation disorder: current insights

    Directory of Open Access Journals (Sweden)

    Baweja R

    2016-08-01

    Full Text Available Raman Baweja, Susan D Mayes, Usman Hameed, James G Waxmonsky Department of Psychiatry, Penn State University College of Medicine, Hershey, PA, USA Abstract: Disruptive mood dysregulation disorder (DMDD was introduced as a new diagnostic entity under the category of depressive disorders in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5. It was included in DSM-5 primarily to address concerns about the misdiagnosis and consequent overtreatment of bipolar disorder in children and adolescents. DMDD does provide a home for a large percentage of referred children with severe persistent irritability that did not fit well into any DSM, Fourth Edition (DSM-IV diagnostic category. However, it has been a controversial addition to the DSM-5 due to lack of published validity studies, leading to questions about its validity as a distinct disorder. In this article, the authors discuss the diagnostic criteria, assessment, epidemiology, criticism of the diagnosis, and pathophysiology, as well as treatment and future directions for DMDD. They also review the literature on severe mood dysregulation, as described by the National Institute of Mental Health, as the scientific support for DMDD is based primarily on studies of severe mood dysregulation. Keywords: disruptive mood dysregulation disorder, persistent irritability, temper outbursts 

  14. Wave form of current quench during disruptions in tokamaks

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Gribov, Yuri; Shimada, Michiya; Lukash, Victor; Kawano, Yasunori; Yoshino, Ryuji; Miki, Nobuharu; Ohmori, Junji; Khayrutdinov, Rustam

    2003-01-01

    The time dependence of the current decay during the current quench phase of disruptions, which can significantly influence the electro-magnetic force on the in-vessel components due to the induced eddy currents, is investigated using data obtained in JT-60U experiments in order to derive a relevant physics guideline for the predictive simulations of disruptions in ITER. It is shown that an exponential decay can fit the time dependence of current quench for discharges with large quench rate (fast current quench). On the other hand, for discharges with smaller quench rate (slow current quench), a linear decay can fit the time dependence of current quench better than exponential. (author)

  15. Current disruption and its spreading in collisionless magnetic reconnection

    International Nuclear Information System (INIS)

    Jain, Neeraj; Büchner, Jörg; Dorfman, Seth; Ji, Hantao; Surjalal Sharma, A.

    2013-01-01

    Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2013)] have disclosed current disruption in the absence of an externally imposed guide field. During current disruption in MRX, both the current density and the total observed out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that current disruption is an intrinsic property of the dynamic formation of an X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived from Ampere's Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed which depends on the wave number of the perturbation. The implications of these results for MRX are discussed

  16. Dissipation of magnetic energy during disruptive current termination

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1983-09-01

    The magnetic coupling during a disruption between the plasma and the various coil systems on the PDX tokamak has been modeled. Using measured coil currents, the model indicates that dissipation of magnetic energy in the plasma equal to 75 % of the energy stored in the poloidal field of the plasma current does occur and that coupling between the plasma and the coil systems can reduce such dissipation. In the case of PDX ohmic discharges, bolometric measurements of radiation and charge exchange, integrated over a disruption, account for 90 % of the calculated energy dissipation. (author)

  17. Disruption-induced poloidal currents in the tokamak wall

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2017-01-01

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  18. Disruption-induced poloidal currents in the tokamak wall

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D., E-mail: Pustovitov_VD@nrcki.ru [National Research Centre ‘Kurchatov Institute’, Pl. Kurchatova 1, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia (Russian Federation)

    2017-04-15

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  19. Plasma-current structures of plasma focus during the current disruption

    International Nuclear Information System (INIS)

    Krokhin, O.N.; Kalachev, N.V.; Malafeev, Yu.S.; Nikulin, V.Ya; Polukhin, S.N.; Tsybenko, S.P.

    2000-01-01

    The results are presented of an investigation of the plasma structures arising during the current disruption in the Dense Plasma Focus (DPF). The study was performed using the laser-shadow and interferometry methods together with measurements of current and X-ray radiation. An analysis of the experimental results shows that for the construction of a multi mega-amperes current disruption device, the Filippov type of DPF (in comparison with the Mather type) is to be preferred since the processes occurring in the X-ray regime are much faster than in the pinch regime, and this type of plasma focus is geometrically more suitable for the assembly of such a current disrupter.This disrupter is now under construction, based on the 'Tulip' DPF installation

  20. Phenomenology of high density disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.M.; Bell, M.G.

    1993-01-01

    Studies of high density disruptions on TFTR, including a comparison of minor and major disruptions at high density, provide important new information regarding the nature of the disruption mechanism. Further, for the first time, an (m,n)=(1,1) 'cold bubble' precursor to high density disruptions has been experimentally observed in the electron temperature profile. The precursor to major disruptions resembles the 'vacuum bubble' model of disruptions first proposed by B.B. Kadomtsev and O.P. Pogutse (Sov. Phys. - JETP 38 (1974) 283). (author). Letter-to-the-editor. 25 refs, 3 figs

  1. Prevention of the current-quench phase of a major disruption in a tokamak reactor

    International Nuclear Information System (INIS)

    Miller, J.B.

    1987-01-01

    The 2-D Tokamak Simulation Code written by the Princeton Plasma Physics Laboratory was joined to a 3-D eddy-current code, which models periodic torus sectors. The combined system was found to be an efficient and accurate method for modeling the plasma/eddy current interaction during a major disruption. For modeling large highly compartmentalized structures, artificially increasing the self-inductance and limiting the mutual inductance of current elements were necessary to enhance numerical stability. Even with these modifications, a slowly growing instability made the results unreliable after 58 ms. This model was used to demonstrate prevention of the current quench phase of a major disruption in INTOR. The average plasma temperature was reduced to 150 eV over 3 ms. The (outboard) breeding blanket structure was constructed of CuBeNi and was electrically connected between torus sectors. Disruption recovery coils were provided inboard of the inboard shield (linking the toroidal field coils). It was necessary to supply to these coils a total of 500 MW for 0.6 s and to reheat the plasma to full beta in 6 s. The calculation shows a method of recovery from the most severe disruption probable. Determining the severity of the disruption from which recovery would be cost effective is beyond the scope of this study

  2. Toroidal current asymmetry and boundary conditions in disruptions

    Science.gov (United States)

    Strauss, Henry

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the plasma current. The toroidal current asymmetry ΔIϕ is proportional to the vertical current moment ΔMIZ , with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was claimed that this could only be explained by Hiro current. It is shown that instead it is essentially a kinematic effect produced by the VDE displacement of a 3D magnetic perturbation. This is verified by M3D simulations. The simulation results do not require penetration of plasma into the boundary, as in the Hiro current model. It is shown that the normal velocity perpendicular to the magnetic field vanishes at the wall, in the small Larmor radius limit of electromagnetic sheath boundary conditions. Plasma is absorbed into the wall only via the parallel velocity, which is small, penetrates only an infinitesimal distance into the wall, and does not affect forces exerted by the plasma on the wall. Supported by USDOE and ITER.

  3. Modeling Steroidogenesis Disruption Using High-Throughput ...

    Science.gov (United States)

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the

  4. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Han-Chie; Lin, Kwang-Lung, E-mail: matkllin@mail.ncku.edu.tw [Department of Material Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Albert T. [Department of Chemical and Material Engineering, National Central University, Jhongli 32001, Taiwan (China)

    2016-03-21

    This study presented the disruption of the Sn and Ag{sub 3}Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10{sup 3} A/cm{sup 2} with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag{sub 3}Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10{sup 17}/m{sup 2}. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  5. Disruption of crystalline structure of Sn3.5Ag induced by electric current

    International Nuclear Information System (INIS)

    Huang, Han-Chie; Lin, Kwang-Lung; Wu, Albert T.

    2016-01-01

    This study presented the disruption of the Sn and Ag_3Sn lattice structures of Sn3.5Ag solder induced by electric current at 5–7 × 10"3 A/cm"2 with a high resolution transmission electron microscope investigation and electron diffraction analysis. The electric current stressing induced a high degree of strain on the alloy, as estimated from the X-ray diffraction (XRD) peak shift of the current stressed specimen. The XRD peak intensity of the Sn matrix and the Ag_3Sn intermetallic compound diminished to nearly undetectable after 2 h of current stressing. The electric current stressing gave rise to a high dislocation density of up to 10"1"7/m"2. The grain morphology of the Sn matrix became invisible after prolonged current stressing as a result of the coalescence of dislocations.

  6. High current ion sources

    International Nuclear Information System (INIS)

    Brown, I.G.

    1989-06-01

    The concept of high current ion source is both relative and evolutionary. Within the domain of one particular kind of ion source technology a current of microamperers might be 'high', while in another area a current of 10 Amperes could 'low'. Even within the domain of a single ion source type, what is considered high current performance today is routinely eclipsed by better performance and higher current output within a short period of time. Within their fields of application, there is a large number of kinds of ion sources that can justifiably be called high current. Thus, as a very limited example only, PIGs, Freemen sources, ECR sources, duoplasmatrons, field emission sources, and a great many more all have their high current variants. High current ion beams of gaseous and metallic species can be generated in a number of different ways. Ion sources of the kind developed at various laboratories around the world for the production of intense neutral beams for controlled fusion experiments are used to form large area proton deuteron beams of may tens of Amperes, and this technology can be used for other applications also. There has been significant progress in recent years in the use of microwave ion sources for high current ion beam generation, and this method is likely to find wide application in various different field application. Finally, high current beams of metal ions can be produced using metal vapor vacuum arc ion source technology. After a brief consideration of high current ion source design concepts, these three particular methods are reviewed in this paper

  7. Characteristics of disruptive plasma current decay in the HT-2 tokamak

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Takeuchi, Kazuhiro; Otsuka, Michio

    1993-01-01

    Motions of plasma current channel and time evolutions of eddy current distribution on the vacuum vessel during disruptive plasma current decay were studied experimentally in the Hitachi tokamak HT-2. The plasmas are vertically elongated and circularly shaped plasmas. A disruptive plasma current decay has three phases. During the first phase, a large displacement of the plasma position without plasma current decay is observed. Rapid plasma current decay is observed during the second phase and the decay rate is roughly constant with time. The eddy current distribution is like that due to the shell effect which creates a poloidal field to reduce the plasma displacement. During the third phase, the plasma current decays exponentially. The second phase is observed in slightly elongated and high plasma current (> 20 kA) circularly shaped plasmas. The plasma current decay rates in the second phase depend on the plasma cross sectional shape, but they do not in the third phase. The magnetic axis moves from the plasma area to the vacuum vessel wall between the second and third phases. (author)

  8. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  9. High PRF high current switch

    Science.gov (United States)

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  10. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  11. Numerical simulation on current spike behaviour of JT-60U disruptive plasmas

    International Nuclear Information System (INIS)

    Takei, N; Nakamura, Y; Tsutsui, H; Yoshino, R; Kawano, Y; Ozeki, T; Tobita, K; Tsuji-Iio, S; Shimada, R; Jardin, S C

    2004-01-01

    Characteristics and underlying mechanisms for plasma current spikes, which have been frequently observed during the thermal quench of JT-60U disruptions, were investigated through tokamak simulation code simulations including the passive shell effects of the vacuum vessel. Positive shear and reversed shear (PS and RS) plasmas were shown to have various current spike features in the experiments, e.g. an impulsive increase in the plasma current (positive spike) in the majority of thermal quenches, and a sudden decrease (negative spike), that has been excluded from past consideration, as an exception. It was first clarified that the shell effects, which become significant especially at a strong pressure drop due to the thermal quench of high β p plasmas, play an important role in the current spike in accordance with the initial relation of the radial location between the plasma equilibria and the vacuum vessel. As a consequence, a negative current spike may appear at thermal quench when the plasma is positioned further out from the geometric centre of the vacuum vessel. It was also pointed out that a further lowering in the internal inductance, in contradiction to previous interpretation in the past, is a plausible candidate for the mechanism for positive current spikes observed even in RS plasmas. The new interpretation enables us to reason out the whole character of current spikes of JT-60U disruptions

  12. Estimation of post disruption plasma temperature for fast current quench Aditya plasma shots

    International Nuclear Information System (INIS)

    Purohit, S.; Chowdhuri, M.B.; Joisa, Y.S.; Raval, J.V.; Ghosh, J.; Jha, R.

    2013-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electromagnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. It is observed that thermal quench is followed by a sharp current decay. Fast current quench disruptive plasma shots were investigated for ADITYA tokamak. The current decay time was determined for the selected shots, which were in the range of 0.8 msec to 2.5 msec. This current decay information was then applied to L/R model, frequently employed for the estimation of the current decay time in tokamak plasmas, considering plasma inductance and plasma resistivity. This methodology was adopted for the estimation of the post disruption plasma temperature using the experimentally observed current decay time for the fast current quench disruptive ADITYA plasma shots. The study reveals that for the identified shots there is a constant increase in the current decay time with the post disruption plasma temperature. The investigations also explore the behavior post disruption plasma temperature and the current decay time as a function of the edge safety factor, Q. Post disruption plasma temperature and the current decay time exhibits a decrease with the increase in the value Q. (author)

  13. The high density and high βpol disruption mechanism on TFTR

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; Manickam, J.; McGuire, K.M.; Monticello, D.; Nagayama, Y.; Park, W.; Taylor, G.

    1992-01-01

    Studies of disruptions on TFTR have been extended to include high density disruptions as well as the high β pol disruptions. The data strongly suggests that the (m,n)=(1,1) mode plays an important role in both types of disruptions. Further, for the first time, it is unambiguously shown, using a fast electron cyclotron emission (ECE) instrument for the electron temperature profile measurements, that the (m,n)=(1,1) precursor to the high density disruptions has a 'cold bubble' structure. The precursor to the major disruption at high density resembles the 'vacuum bubble' model of disruptions first proposed by Kadomtsev and Pogutse. (author) 2 refs., 2 figs

  14. Characterization of the plasma current quench during disruptions in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Gerhardt, S.P.; Menard, J.E.

    2008-01-01

    A detailed analysis of the plasma current quench in the National Spherical Torus Experiment (M.Ono, et al Nuclear Fusion 40, 557 (2000)) is presented. The fastest current quenches are fit better by a linear waveform than an exponential one. Area-normalized current quench times down to .4 msec/m2 have been observed, compared to the minimum of 1.7 msec/m2 recommendation based on conventional aspect ratio tokamaks; as noted in previous ITPA studies, the difference can be explained by the reduced self-inductance at low aspect ratio and high-elongation. The maximum instantaneous dIp/dt is often many times larger than the mean quench rate, and the plasma current before the disruption is often substantially less than the flat-top value. The poloidal field time-derivative during the disruption, which is directly responsible for driving eddy currents, has been recorded at various locations around the vessel. The Ip quench rate, plasma motion, and magnetic geometry all play important roles in determining the rate of poloidal field change

  15. Study of the generation and suppression of runaway currents in provoked disruptions in J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.Y., E-mail: zychen@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Chen, Z.P., E-mail: zpchen@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China); Zhang, Y.; Jin, W.; Fang, D.; Ba, W.G.; Wang, Z.J.; Zhang, M.; Yang, Z.J.; Ding, Y.H.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, College of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2012-05-14

    Runaway currents following disruptions have an important effect on the first wall for the next generation tokamak. The behaviors of runaway currents following intentional provoked disruptions have been investigated in the J-TEXT tokamak. It is found that the runaway current generation following provoked disruptions depends on both the toroidal magnetic field and the plasma current. The conversion efficiency of pre-disruptive plasma currents into runaway currents is in the ranges of 30% to 60% in J-TEXT. The runaway currents can be avoided by the intensive gas puffing of H{sub 2} due to the low multiplication factor in J-TEXT. -- Highlights: ► The regime of runaway generation in disruptions in J-TEXT has been established. ► The magnetic field threshold for runaway current generation in disruptions is 2.2 T. ► The conversion efficiency of runaway current is in the ranges of 30% to 60%. ► The runaway currents can be avoided by the intensive gas puffing of H{sub 2}.

  16. Study of the generation and suppression of runaway currents in provoked disruptions in J-TEXT

    International Nuclear Information System (INIS)

    Chen, Z.Y.; Chen, Z.P.; Zhang, Y.; Jin, W.; Fang, D.; Ba, W.G.; Wang, Z.J.; Zhang, M.; Yang, Z.J.; Ding, Y.H.; Zhuang, G.

    2012-01-01

    Runaway currents following disruptions have an important effect on the first wall for the next generation tokamak. The behaviors of runaway currents following intentional provoked disruptions have been investigated in the J-TEXT tokamak. It is found that the runaway current generation following provoked disruptions depends on both the toroidal magnetic field and the plasma current. The conversion efficiency of pre-disruptive plasma currents into runaway currents is in the ranges of 30% to 60% in J-TEXT. The runaway currents can be avoided by the intensive gas puffing of H 2 due to the low multiplication factor in J-TEXT. -- Highlights: ► The regime of runaway generation in disruptions in J-TEXT has been established. ► The magnetic field threshold for runaway current generation in disruptions is 2.2 T. ► The conversion efficiency of runaway current is in the ranges of 30% to 60%. ► The runaway currents can be avoided by the intensive gas puffing of H 2 .

  17. High current induction linacs

    International Nuclear Information System (INIS)

    Barletta, W.; Faltens, A.; Henestroza, E.; Lee, E.

    1994-07-01

    Induction linacs are among the most powerful accelerators in existence. They have accelerated electron bunches of several kiloamperes, and are being investigated as drivers for heavy ion driven inertial confinement fusion (HIF), which requires peak beam currents of kiloamperes and average beam powers of some tens of megawatts. The requirement for waste transmutation with an 800 MeV proton or deuteron beam with an average current of 50 mA and an average power of 40 MW lies midway between the electron machines and the heavy ion machines in overall difficulty. Much of the technology and understanding of beam physics carries over from the previous machines to the new requirements. The induction linac allows use of a very large beam aperture, which may turn out to be crucial to reducing beam loss and machine activation from the beam halo. The major issues addressed here are transport of high intensity beams, availability of sources, efficiency of acceleration, and the state of the needed technology for the waste treatment application. Because of the transformer-like action of an induction core and the accompanying magnetizing current, induction linacs make the most economic sense and have the highest efficiencies with large beam currents. Based on present understanding of beam transport limits, induction core magnetizing current requirements, and pulse modulators, the efficiencies could be very high. The study of beam transport at high intensities has been the major activity of the HIF community. Beam transport and sources are limiting at low energies but are not significant constraints at the higher energies. As will be shown, the proton beams will be space-charge-dominated, for which the emittance has only a minor effect on the overall beam diameter but does determine the density falloff at the beam edge

  18. Studies of the disruption prevention by ECRH at plasma current rise stage in limiter discharges

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Borshegovskij, A.A.; Chistyakov, V.V.

    1999-01-01

    Studies of disruption prevention by means of ECRH in T-10 at the plasma current rise phase in limiter discharges with circular plasma cross-section were performed. Reliable disruption prevention by ECRH at HF power (P HF ) min level equal to 20% of ohmic heating power P OH was demonstrated. m/n=2/1 mode MHD-activity developed before disruption (with characteristic time ∼120 ms) can be considered as disruption precursor and can be used in a feedback system. (author)

  19. Current density distribution during disruptions and sawteeth in a simple model of plasma current in a tokamak

    International Nuclear Information System (INIS)

    Stefanovskii, A. M.

    2011-01-01

    The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.

  20. On the magnitude and distribution of halo currents during disruptions on MAST

    International Nuclear Information System (INIS)

    Counsell, G F; Martin, R; Pinfold, T; Taylor, D

    2007-01-01

    Recent results from MAST in which all halo current paths are monitored suggest that, during disruptions, the plasma responsible for the generation of halo current acts more as a voltage source than a current source. As a result the resistance of the current path along which the halo current must flow has a profound impact on the magnitude of the current. This may provide opportunities for directing the current away from sensitive components in future devices such as ITER. Analysis of data from over 3800 disruptions shows that the halo currents on MAST are relatively benign, having a peak value less than 25% of the pre-disruption plasma current with a rather symmetric distribution near the centre column (average toroidal peaking factor ∼1.1). The low peaking factor favourably reduces the tilting/bending forces in the region of the centre column, which has limited space for bulky supports

  1. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  2. Sudden disruption of the cross-tail current in the magnetotail

    International Nuclear Information System (INIS)

    Ma, Z. W.

    2008-01-01

    A Hall magnetohydrodynamic simulation is used to study current dynamic processes with realistic magnetotail geometry. The simulation results indicate that sudden disruption of cross-tail current at the near Earth region inside 15R E is triggered by fast magnetic reconnection with the reconnection rate ∼0.15. The cross-tail current density exhibits an impulsive intensification in the late growth phase. The magnitude of the current increases more than one order within a few minutes. After the reconnection onset, the cross-tail current is suddenly disrupted in a few Alfven times, which is in good agreement with that from the satellite observations. Associated with the current disruption, the tail-like geometry becomes a dipolarlike structure with an impulsive enhancement of the magnetic field B z . Large increases of the electric field and Earthward bulk flow in this simulation are observed immediately after the reconnection onset

  3. Axisymmetric disruption dynamics including current profile changes in the ASDEX-Upgrade tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Pautasso, G.; Gruber, O.; Jardin, S.C.

    2002-01-01

    Axisymmetric MHD simulations have revealed a new driving mechanism that governs the vertical displacement event (VDE) dynamics in tokamak disruptions. A rapid flattening of the plasma current profile during the disruption plays a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges. This dragging effect, due to an abrupt change in the current profile, is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the plasma current quench, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)

  4. Electromagnetic analysis of ITER generic equatorial port plug designs during three plasma current disruption cases

    International Nuclear Information System (INIS)

    Guirao, J.; Rodríguez, E.; Ordieres, J.; Cabanas, M.F.; García, C.H. Rojas

    2012-01-01

    Highlights: ► Electromagnetic transient performance evaluation of the GEPP structure. ► Three different plasma current disruption cases: MD UP LIN36, VDE UP LIN36 and VDE DW LIN36 were analyzed. ► Three DSM-First Wall (FW) designs (horizontal and vertical drawers and monoblock) were compared. - Abstract: Electromagnetic phenomena due to plasma current disruptions are the cause for the main mechanical operation loads over the ITER equatorial level port plug structures. This paper presents a detailed finite element simulation and analysis of the transient electromagnetic effects of three different plasma current disruption cases over three designs of diagnostic shielding module (DSM) structure. The DSMs are contained into and supported by the generic equatorial port plug (GEPP) analyzed structure. The three plasma disruption cases studied were: major disruption upwards linear decay in 36 ms (MD UP LIN36), vertical displacements events, upwards and downwards linear decay in 36 ms (VDE UP LIN36 and VDE DW LIN36). A detailed analysis for GEPP structure and three DSM-first wall (FW) designs (horizontal and vertical drawers and monoblock) is also presented in order to extract the Eddy current distribution on these devices and thus the resultant electromagnetic forces and moments acting on them.

  5. Characteristics of current quenches during disruptions in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Zhang, Y; Chen, Z Y; Fang, D; Jin, W; Huang, Y H; Wang, Z J; Yang, Z J; Chen, Z P; Ding, Y H; Zhang, M; Zhuang, G

    2012-01-01

    Characteristics of tokamak current quenches are an important issue for the determination of electro-magnetic forces that act on the in-vessel components and vacuum vessel during major disruptions. The characteristics of current quenches in spontaneous disruptions in the J-TEXT tokamak have been investigated. It is shown that the waveforms for the fastest current quenches are more accurately fitted by linear current decays than exponential, although neither is a good fit in many slower cases. The minimum current quench time is about 2.4 ms for the J-TEXT tokamak. The maximum instantaneous current quench rate is more than seven times the average current quench rate in J-TEXT. (paper)

  6. Analysis of minor disruptions during current flat phase in the HL-1 device

    International Nuclear Information System (INIS)

    Yan Longwen; Shi Bingren; Zheng Yongzhen; Peng Liling; Huang Keqiang

    1991-01-01

    The phenomena of minor disruptions during current flat phase have been observed in the HL-1 device for five years. When these phenomena appear the safety factors qa are between 2.5∼4.5, and densities are between 1 x 10 13 cm -3 and 3 x 10 13 cm -3 or greater than 4 x 10 13 cm -3 . Periodic relaxation ocsillations of voltage and soft-X-rays are observed during minor disruptions. Their character and development conditions are carefully analylsed

  7. MHD analysis of high (βt) disruptions in PBX

    International Nuclear Information System (INIS)

    Jahns, G.L.; Chance, M.S.; Kaye, S.M.; Manickam, J.; Takahashi, H.; LeBlanc, B.; Morris, A.W.; Reusch, M.; Sesnic, S.

    1988-01-01

    Princeton Beta Experiment (PBX) discharges run at the lowest q and highest (β t ) always terminated in a hard disruption. The discharges, with (β t ) values of up to 5.5% and q-values down to 2.2, were obtained by employing large current ramps and large gas feed rates during neutral beam injection. Previous work has indicated that the achieved (β t ) values were consistent with the limit imposed by the n=1 ideal external kink with a conducting wall at b/a=2. The authors of the paper investigate further the validity of ideal MHD theory in explaining the low q ψ disruptions. In particular, the characteristics of the pre-disruption MHD activity in these low-q discharges, specifically the time-scale of growth and internal and external mode structures, are compared with those determined from theoretical calculations. The results of these comparisons indicate that non-ideal effects must be considered in order to obtain detailed agreement between theory and experiment. (author). 13 refs, 6 figs

  8. MHD phenomena in a neutral beam heated high beta, low qa disruption

    International Nuclear Information System (INIS)

    Chu, M.S.; Greene, J.M.; Kim, J.S.; Lao, L.; Snider, R.T.; Stambaugh, R.D.; Strait, E.J.; Taylor, T.S.

    1988-01-01

    A neutral beam heated, β maximizing discharge at low q a in Doublet III ending in disruption is studied and correlated with theoretical models. This discharge achieved MHD β-values close to the theoretical Troyon-Sykes-Wesson limit in its evolution. The MHD phenomena of this discharge are analysed. The sequence of events leading to the high β disruptions is hypothesized as follows: the current and pressure profiles are broadened continuously by neutral beam injection. A last sawtooth internal disruption initiates an (m/n = 2/1) island through current profile steepening around the q=2 surface. The loss of plasma through stochastic field lines slows the island rotation and enhances its interaction with the limiter. The resultant enhanced island growth through island cooling or profile change enlarged the edge stochastic region. The overlapping of the edge stochastic region with the sawtooth mixing region precipitated the pressure disruption. Thus, in our hypothetical model for this discharge, β increase by neutral beam heating does not directly cause the disruption but ushers the plasma indirectly towards it through the profile broadening process and contributes to the destabilization of the 1/1 and 2/1 tearing modes. (author). 26 refs, 12 figs

  9. High energy neutrinos from the tidal disruption of stars

    Energy Technology Data Exchange (ETDEWEB)

    Lunardini, Cecilia [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Winter, Walter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-05-17

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  10. High energy neutrinos from the tidal disruption of stars

    International Nuclear Information System (INIS)

    Lunardini, Cecilia

    2017-01-01

    We study the production of high energy neutrinos in jets from the tidal disruption of stars by supermassive black holes. The diffuse neutrino flux expected from these tidal disruption events (TDEs) is calculated both analytically and numerically, taking account the dependence of the rate of TDEs on the redshift and black hole mass. We find that ∝ 10% of the observed diffuse flux at IceCube at an energy of about 1 PeV can come from TDEs if the characteristics of known jetted tidal disruption events are assumed to apply to the whole population of these sources. If, however, plausible scalings of the jet Lorentz factor or variability timescale with the black hole mass are taken into account, the contribution of the lowest mass black holes to the neutrino flux is enhanced. In this case, TDEs can account for most of the neutrino flux detected at IceCube, describing both the neutrino flux normalization and spectral shape with moderate baryonic loadings. While the uncertainties on our assumptions are large, a possible signature of TDEs as the origin of the IceCube signal is the transition of the flux flavor composition from a pion beam to a muon damped source at the highest energies, which will also result in a suppression of Glashow resonance events.

  11. Calculation of voltages and currents induced in the vacuum vessel of ASDEX by plasma disruptions

    International Nuclear Information System (INIS)

    Preis, H.

    1978-01-01

    An approximation method is used to analyze the electromagnetic diffusion process induced in the walls of the ASDEX vacuum vessel by plasma disruptions. For this purpose the rotational-symmetric vessel is regarded as N = 82 circular conductors connected in parallel and inductively coupled with one another and with the plasma. The transient currents and voltages occurring in this circuit are calculated with computer programs. From the calculated currents it is possible to determine the time behavior of the distributions of the current density and magnetic force density in the vessel walls. (orig.) [de

  12. High current density ion source

    International Nuclear Information System (INIS)

    King, H.J.

    1977-01-01

    A high-current-density ion source with high total current is achieved by individually directing the beamlets from an electron bombardment ion source through screen and accelerator electrodes. The openings in these screen and accelerator electrodes are oriented and positioned to direct the individual beamlets substantially toward a focus point. 3 figures, 1 table

  13. Observation of negative potential depression on double layer during a phase of current disruption

    International Nuclear Information System (INIS)

    Fujita, H.; Matsuo, K.; Yagura, S.

    1984-01-01

    The negative potential depression with a depth of approximately electron temperature is observed on the low potential tail of the double layer just at the moment when the electron current passing through the layer is disrupted. The depression is confirmed to serve as an electron thermal barrier and form an ion hole from phase-space measurements of electrons and ions, respectively. The depth of the depression becomes maximum when the density around the depression becomes most inhomogeneous. (author)

  14. High current plasma electron emitter

    International Nuclear Information System (INIS)

    Fiksel, G.; Almagri, A.F.; Craig, D.

    1995-07-01

    A high current plasma electron emitter based on a miniature plasma source has been developed. The emitting plasma is created by a pulsed high current gas discharge. The electron emission current is 1 kA at 300 V at the pulse duration of 10 ms. The prototype injector described in this paper will be used for a 20 kA electrostatic current injection experiment in the Madison Symmetric Torus (MST) reversed-field pinch. The source will be replicated in order to attain this total current requirement. The source has a simple design and has proven very reliable in operation. A high emission current, small size (3.7 cm in diameter), and low impurity generation make the source suitable for a variety of fusion and technological applications

  15. Examining the Associations Among Home–School Dissonance, Amotivation, and Classroom Disruptive Behavior for Urban High School Students

    OpenAIRE

    Brown-Wright, Lynda; Tyler, Kenneth M.; Graves, Scott L.; Thomas, Deneia; Stevens-Watkins, Danelle; Mulder, Shambra

    2011-01-01

    The current study examined the association among home–school dissonance, amotivation, and classroom disruptive behavior among 309 high school juniors and seniors at two urban high schools in the Southern region of the country. Students completed two subscales of the Patterns of Learning Activities Scales (PALS) and one subscale of the Academic Motivation Scale (AMS). ANCOVA analyses revealed significant differences in classroom disruptive behaviors for the gender independent variable. Control...

  16. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    Science.gov (United States)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  17. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  18. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    Science.gov (United States)

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  19. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  20. Observations of propagating double layers in a high current discharge

    International Nuclear Information System (INIS)

    Lindberg, L.

    1988-01-01

    Observations of current disruptions and strong electric fields along the magnetic field in a high-density (2 x 10 19 m - 3 , highly-ionized, moving, and expanding plasma column are reported. The electric field is interpreted in terms of propagating, strong electric double layers (3-5kV). An initial plasma column is formed in an axial magnetic field (0.1T) by means of a conical theta-pinch plasma gun. When an axial current (max 5kA, 3-5 kV) is drawn through the column spontaneous disruptions and double-layer formation occur within a few microseconds. Floating, secondary emitting Langmuir probes are used. They often indicate very high positive potential peaks (1-2 kV above the anode potential during a few μs) in the plasma on the positive side of the double layer. Short, intense bursts of HF radiation are detected at the disruptions

  1. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    International Nuclear Information System (INIS)

    Oyoshi, K.; Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G.

    2010-01-01

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  2. Formation and disruption of current paths of anodic porous alumina films by conducting atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oyoshi, K., E-mail: oyoshi.keiji@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Nigo, S.; Inoue, J.; Sakai, O.; Kitazawa, H.; Kido, G. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2010-11-15

    Anodic porous alumina (APA) films have a honeycomb cell structure of pores and a voltage-induced bi-stable switching effect. We have applied conducting atomic force microscopy (CAFM) as a method to form and to disrupt current paths in the APA films. A bi-polar switching operation was confirmed. We have firstly observed terminals of current paths as spots or areas typically on the center of the triangle formed by three pores. In addition, though a part of the current path showed repetitive switching, most of them were not observed again at the same position after one cycle of switching operations in the present experiments. This suggests that a part of alumina structure and/or composition along the current paths is modified during the switching operations.

  3. Comparison between 3D eddy current patterns in tokamak in-vessel components generated by disruptions

    International Nuclear Information System (INIS)

    Sakellaris, J.; Crutzen, Y.

    1996-01-01

    During plasma disruption events in Tokamaks, a large amount of magnetic energy is associated to the transfer of plasma current into eddy currents in the passive structures. In the ITER program two design concepts have been proposed. One approach (ITER CDA design) is based on copper stabilization loops (i.e., twin loops) attached to box-shaped blanket segments, electrically and mechanically separated along the toroidal direction. For another design concept (ITER EDA design) based on lower plasma elongation there is no need for specific stabilization loops. The passive stabilization is obtained by toroidally continuous components (i.e., the plasma facing wall of the blanket segments allows a continuity along the toroidal direction). Consequently, toroidal currents flow, when electromagnetic transients occur. Electromagnetic loads appear in the blanket structures in case of plasma disruptions and/or vertical displacement events either for the ITER CDA design concept or for the ITER EDA design concept. In this paper the influence of the in-vessel design configuration concepts--insulated segments or electrically continuous structures--in terms of magnetic shielding and electric insulation on the magnitude and the flow pattern of the eddy currents is investigated. This investigation will allow a performance evaluation of the two proposed design concepts

  4. Radial expansion of the tail current disruption during substorms: A new approach to the substorm onset region

    International Nuclear Information System (INIS)

    Ohtani, S.; Kokubun, S.; Russell, C.T.

    1992-01-01

    The substorm onset region and the radial development of the tail current disruption are examined from a new viewpoint. The reconfiguration of the magnetotail field at substorm onset can be understood in terms of a sudden decrease (disruption) in tail current intensity. The north-south component (B Z ) is very sensitive to whether the spacecraft position is earthward or tailward of the disruption region, while the change in Sun-Earth component (B X ) is most sensitive to the change in tail current intensity near the spacecraft. If the current disruption starts in a localized range of radial distance and expands radially, a distinctive phase relationship between the changes in B X and B Z is expected to be observed. This phase relationship depends on whether the current disruption starts on the earthward side or the tailward side of the spacecraft. Thus it is possible to infer the direction of the radial expansion of the current disruption from magnetic field data of a single spacecraft. This method is applied to ISEE observations of a tail reconfiguration event that occurred on March 6, 1979. The phase relationship indicates that eh disruption region expanded tailward from the earthward side of the spacecraft during the event. This model prediction is consistent with the time lag of magnetic signatures observed by the two ISEE spacecraft. The expansion velocity is estimated at 2 R E /min (∼200 km/s) for this event. Furthermore, it is found that the observed magnetic signatures can be reproduced to a good approximation by a simple geometrical model of the current disruption. The method is used statistically for 13 events selected from the ISEE magnetometer data. It is found that the current disruption usually starts in the near-Earth magnetotail (|X| E ) and often within 15 R E of the Earth

  5. An Island Coalescence Scenario for Near-Earth Current Disruption in the Magnetotail

    International Nuclear Information System (INIS)

    Zhi-Wei, Ma; Xing-Qiang, Lu

    2009-01-01

    A current disruption and dipolarization scenario associated with island coalescences in the near-Earth region is proposed. The thin and elongated current-sheet built up during the growth phase is unstable due to a tearing mode instability that leads to formation of multiple magnetic islands (or magnetic flux ropes in the three dimensional case) in the near-Earth region. The growth rate of the tearing mode should be different in different locations because the rate is in general determined by the external driving force and the local plasma sheet properties. When the rate of the magnetic reconnection in the mid-tail region around 20R E is much larger than that in other locations, the strong bulk earthward flows resulting from the fast reconnection in the mid-tail drive the earthward convection and the coalescence of the magnetic islands. Consequently, the cross-tail current in the near-Earth region is suddenly disrupted and the geometry of the magnetic field changes from tail-like to dipolar-like in the ideal time scale. This proposed scenario is tested by Hall MHD simulation and is compared with the observations. (geophysics, astronomy, and astrophysics)

  6. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise

    Directory of Open Access Journals (Sweden)

    Hee-Tae Roh

    2017-06-01

    Conclusion: Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.

  7. Effect of halo current and its toroidal asymmetry during disruptions in JT-60U

    International Nuclear Information System (INIS)

    Neyatani, Y.; Yoshino, R.; Ando, T.

    1995-01-01

    A poloidal halo current due to a vertical displacement event (VDE) is observed in experimentally simulated VDE discharges and density limit disruptions in the JT-60U tokamak. In the case of a clockwise I p and B T discharge, the halo current flows into the vacuum vessel from the inside separatrix and goes back to the plasma from the outside separatrix. A maximum halo current is produced by a change in the poloidal flux generated by plasma current decay. A toroidal asymmetry factor of 2.5 is estimated from the requirements of the fracture of the carbon-fiber composite tiles. The toroidal asymmetry is caused by the poloidal field (PF) that is produced by the toroidal field (TF) ripple, the deformation of the vacuum vessel, the setting error between the vacuum vessel and the TF and PF coils, the low-n mode during current quench, etc. To consider this asymmetry, in JT-60U, one must estimate the total halo current as nearly 26% of the plasma current just before a current quench. 25 refs., 10 figs

  8. Behavior of hard X-ray emission in discharges with current disruptions in the DAMAVAND and TVD tokamaks

    International Nuclear Information System (INIS)

    Farshi, E.; Amrollahy, R.; Bortnikov, A.V.; Brevnov, N.N.; Gott, Yu.V.; Shurygin, V.A.

    2001-01-01

    Results are presented from studies of the behavior of hard X-ray emission in discharges with current disruptions in the DAMAVAND and TVD tokamaks. The current disruptions are caused by either an MHD instability or the instability related to the vertical displacement of the plasma column. Experiments were conducted at a fixed value of the safety factor at the plasma boundary (q a ≅ 2.3). Experimental data show that, during a disruption caused by an MHD instability, hard X-ray emission is suppressed by this instability if the amplitude of the magnetic field fluctuations exceeds a certain level. If the disruption is caused by the instability related to the vertical displacement of the plasma column, then hard X-ray emission is observed at the instant of disruption. The experimental results show that the physical processes resulting in the generation and suppression of runaway electron beams are almost identical in large and small tokamaks

  9. Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas

    Science.gov (United States)

    Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.

    2017-10-01

    KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.

  10. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  11. High trait anxiety: a challenge for disrupting fear memory reconsolidation

    NARCIS (Netherlands)

    Soeter, M.; Kindt, M.

    2013-01-01

    Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to

  12. Examining the Associations Among Home-School Dissonance, Amotivation, and Classroom Disruptive Behavior for Urban High School Students.

    Science.gov (United States)

    Brown-Wright, Lynda; Tyler, Kenneth M; Graves, Scott L; Thomas, Deneia; Stevens-Watkins, Danelle; Mulder, Shambra

    2013-01-01

    The current study examined the association among home-school dissonance, amotivation, and classroom disruptive behavior among 309 high school juniors and seniors at two urban high schools in the Southern region of the country. Students completed two subscales of the Patterns of Learning Activities Scales (PALS) and one subscale of the Academic Motivation Scale (AMS). ANCOVA analyses revealed significant differences in classroom disruptive behaviors for the gender independent variable. Controlling for gender in the multiple hierarchical regression analyses, it was revealed that home-school dissonance significantly predicted both amotivation and classroom disruptive behavior. In addition, a Sobel mediation analysis showed that amotivation was a significant mediator of the association between home-school dissonance and classroom disruptive behavior. Findings and limitations are discussed.

  13. Examining the Associations Among Home–School Dissonance, Amotivation, and Classroom Disruptive Behavior for Urban High School Students

    Science.gov (United States)

    Brown-Wright, Lynda; Tyler, Kenneth M.; Graves, Scott L.; Thomas, Deneia; Stevens-Watkins, Danelle; Mulder, Shambra

    2015-01-01

    The current study examined the association among home–school dissonance, amotivation, and classroom disruptive behavior among 309 high school juniors and seniors at two urban high schools in the Southern region of the country. Students completed two subscales of the Patterns of Learning Activities Scales (PALS) and one subscale of the Academic Motivation Scale (AMS). ANCOVA analyses revealed significant differences in classroom disruptive behaviors for the gender independent variable. Controlling for gender in the multiple hierarchical regression analyses, it was revealed that home–school dissonance significantly predicted both amotivation and classroom disruptive behavior. In addition, a Sobel mediation analysis showed that amotivation was a significant mediator of the association between home–school dissonance and classroom disruptive behavior. Findings and limitations are discussed. PMID:27081213

  14. High current polarized electron source

    Science.gov (United States)

    Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.

    2018-05-01

    Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.

  15. High current and high power superconducting rectifiers

    International Nuclear Information System (INIS)

    Kate, H.H.J. ten; Bunk, P.B.; Klundert, L.J.M. van de; Britton, R.B.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly. (author)

  16. Scientific basis and engineering design to accommodate disruption and halo current loads for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, P.M.; Bozek, A.S.; Hollerbach, M.A.; Humphreys, D.A.; Luxon, J.L.; Reis, E.E.; Schaffer, M.J.

    1996-10-01

    Plasma disruptions and halo current events apply sudden impulsive forces to the interior structures and vacuum vessel walls of tokamaks. These forces arise when induced toroidal currents and attached poloidal halo currents in plasma facing components interact with the poloidal and toroidal magnetic fields respectively. Increasing understanding of plasma disruptions and halo current events has been developed from experiments on DIII-D and other machines. Although the understanding has improved, these events must be planned for in system design because there is no assurance that these events can be eliminated in the operation of tokamaks. Increased understanding has allowed an improved focus of engineering designs.

  17. Scientific basis and engineering design to accommodate disruption and halo current loads for the DIII-D tokamak

    International Nuclear Information System (INIS)

    Anderson, P.M.; Bozek, A.S.; Hollerbach, M.A.; Humphreys, D.A.; Luxon, J.L.; Reis, E.E.; Schaffer, M.J.

    1996-10-01

    Plasma disruptions and halo current events apply sudden impulsive forces to the interior structures and vacuum vessel walls of tokamaks. These forces arise when induced toroidal currents and attached poloidal halo currents in plasma facing components interact with the poloidal and toroidal magnetic fields respectively. Increasing understanding of plasma disruptions and halo current events has been developed from experiments on DIII-D and other machines. Although the understanding has improved, these events must be planned for in system design because there is no assurance that these events can be eliminated in the operation of tokamaks. Increased understanding has allowed an improved focus of engineering designs

  18. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  19. High current transistor pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.; Cassel, R.

    1991-05-01

    A solid state pulse generator capable of delivering high current trapezoidally shaped pulses into an inductive load has been developed at SLAC. Energy stored in the capacitor bank of the pulse generator is switched to the load through a pair of Darlington transistors. A combination of diodes and Darlington transistors is used to obtain trapezoidal or triangular shaped current pulses into an inductive load and to recover the remaining energy in the same capacitor bank without reversing capacitor voltage. The transistors work in the switch mode, and the power losses are low. The rack mounted pulse generators presently used at SLAC contain a 660 microfarad storage capacitor bank and can deliver 400 amps at 800 volts into inductive loads up to 3 mH. The pulse generators are used in several different power systems, including pulse to pulse bipolar power supplies and in application with current pulses distributed into different inductive loads. The current amplitude and discharge time are controlled by the central computer system through a specially developed multichannel controller. Several years of operation with the pulse generators have proven their consistent performance and reliability. 8 figs

  20. Numerical simulation of the plasma current quench following a disruptive energy loss

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Holmes, J.A.; Miller, J.B.; Rothe, K.E.

    1983-11-01

    The plasma electromagnetic interaction with poloidal field coils and nearby passive conductor loops during the current quench following a disruptive loss of plasma energy is simulated. By solving a differential/algebraic system consisting of a set of circuit equations (including the plasma circuit) coupled to a plasma energy balance equation and an equilibrium condition, the electromagnetic consequences of an abrupt thermal quench are observed. Limiters on the small and large major radium sides of the plasma are assumed to define the plasma cross section. The presence of good conductors near the plasma and a small initial distance (i.e., 5 to 10% of the plasma minor radius) between the plasma edge and an inboard limiter are shown to lead to long current decay times. For a plasma with an initial major radius R/sub o/ = 4.3 m, aspect ratio A = 3.6, and current I/sub P/ = 4.0 MA, introducing nearby passive conductors lengthens the current decay from milliseconds to hundreds of milliseconds

  1. High resolution eddy current microscopy

    Science.gov (United States)

    Lantz, M. A.; Jarvis, S. P.; Tokumoto, H.

    2001-01-01

    We describe a sensitive scanning force microscope based technique for measuring local variations in resistivity by monitoring changes in the eddy current induced damping of a cantilever with a magnetic tip oscillating above a conducting sample. To achieve a high sensitivity, we used a cantilever with an FeNdBLa particle mounted on the tip. Resistivity measurements are demonstrated on a silicon test structure with a staircase doping profile. Regions with resistivities of 0.0013, 0.0041, and 0.022 Ω cm are clearly resolved with a lateral resolution of approximately 180 nm. For this range of resistivities, the eddy current induced damping is found to depend linearly on the sample resistivity.

  2. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    Science.gov (United States)

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  3. Control, pressure perturbations, displacements, and disruptions in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hofmann, F.; Tonetti, G.; Jardin, S.C.; Noll, P.

    1989-06-01

    The control and evolution of highly elongated tokamak plasmas with large growth rates are simulated with the axisymmetric, resistive MHD code TSC in the geometry of the TCV tokamak. Pressure perturbations such as sawteeth and externally programmed displacements create initial velocity perturbations which may be stabilized by low power, rapid response coils inside the passively stabilizing vacuum vessel, together with slower shaping coils outside the vessel. Vertical disruption induced voltages and forces on the rapid coils and vessel are investigated, and a model is proposed for an additional vertical force due to poloidal currents. (author) 6 figs., 1 tab., 26 refs

  4. Universities with multicultural disrupted past: what meanings current students attribute to them?

    Directory of Open Access Journals (Sweden)

    Olena Dobosh

    2016-09-01

    Full Text Available The changing of pre-war borders of Central and Eastern Europe after WW II caused not only belonging of certain territories to definite countries but also the massive forced relocation of population from those territories. The total change of the population in the multicultural cities affected also institutions, such as universities by changing their staff, language, and national profile. Nowadays, when modern universities are facing post-modernity challenges it is extremely difficult to talk about role, mission, and meaning of this institution, especially in the context of disrupted historical tradition. Look at the problem from the different perspective, from inside will show the tendencies of meanings current students of the universities with long but disrupted historical past attribute to their Alma maters. Are they aware of the presence of representatives of different national groups that created university community before WW II? This article will present results of three studies conducted at three universities that changed their national profile after WWII: Vilnius University in Lithuania (formerly a Polish university, Lviv University in Ukraine (formerly a Polish university and Wrocław University in Poland (formerly a German university. Both at Vilnius University and Lviv Universiy 150 university students participated in the study. At Wrocław University 152 university students participated in the study. The present analysis will try to explore the variety of meanings current students of those three universities attribute to their place of study. It will try to show if current students are aware of the university’s complex history and, if they include/exclude historical meanings connected with representatives of the different national group? Also, it will look at the possible differences between meaning attribution and perception of the university past among representatives of these three universities. Lviv, Wrocław, and Vilnius

  5. Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges

    International Nuclear Information System (INIS)

    Izzo, V A; Humphreys, D A; Kornbluth, M

    2012-01-01

    In DIII-D experiments, rapid termination by Ar-pellet injection sometimes produces a post-termination runaway electron (RE) current plateau, but this effect is highly non-reproducible on a shot-to-shot basis, particularly for diverted target plasmas. A set of DIII-D discharges is analyzed with two MHD codes to understand the relationship between the current profile of the target plasma and the amplitude of the RE current plateau. Using the linear stability code GATO, a correlation between the radial profile of the unstable n = 1 mode just after Ar-pellet injection and the observed appearance of an RE plateau is identified. Nonlinear NIMROD simulations with RE test-particle calculations directly predict RE confinement times during the disruption. With one exception, NIMROD predicts better RE confinement for shots in which higher RE currents were observed in DIII-D. But, the variation in confinement is primarily connected to the saturated n = 1 mode amplitude and not its radial profile. Still, both sets of analyses support the hypothesis that RE deconfinement by MHD fluctuations is a major factor in the shot-to-shot variability of RE plateaus, though additional factors such as seed current amplitude cannot be ruled out. (paper)

  6. Disruptive Effects of Contingent Food on High-Probability Behavior

    Science.gov (United States)

    Frank-Crawford, Michelle A.; Borrero, John C.; Nguyen, Linda; Leon-Enriquez, Yanerys; Carreau-Webster, Abbey B.; DeLeon, Iser G.

    2012-01-01

    The delivery of food contingent on 10 s of consecutive toy engagement resulted in a decrease in engagement and a corresponding increase in other responses that had been previously reinforced with food. Similar effects were not observed when tokens exchangeable for the same food were delivered, suggesting that engagement was disrupted by the…

  7. High trait anxiety: a challenge for disrupting fear memory reconsolidation.

    Directory of Open Access Journals (Sweden)

    Marieke Soeter

    Full Text Available Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation--n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice.

  8. High trait anxiety: a challenge for disrupting fear memory reconsolidation.

    Science.gov (United States)

    Soeter, Marieke; Kindt, Merel

    2013-01-01

    Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation--n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice.

  9. High current high accuracy IGBT pulse generator

    International Nuclear Information System (INIS)

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 μF capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles

  10. High current capacity electrical connector

    International Nuclear Information System (INIS)

    Bettis, E.S.; Watts, H.L.

    1976-01-01

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a ''sandwiched'' configuration in which a conductor plate contacts the busses along major surfaces clamped between two stainless steel backing plates. The conductor plate is provided with contact buttons in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors

  11. High current superconductors for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Pierluigi, E-mail: pierluigi.bruzzone@psi.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom – Confédération Suisse, CH-5232 Villigen PSI (Switzerland); Sedlak, Kamil; Stepanov, Boris [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas (CRPP), Association Euratom – Confédération Suisse, CH-5232 Villigen PSI (Switzerland)

    2013-10-15

    Highlights: ► Definition of requirement for TF coil based on the input of system code. ► A TF coil and conductor design for the European DEMO project. ► Use of React and Wind method opposite to Wind and React with related advantages. ► Hybridization of winding pack, Nb/Nb{sub 3}Sn, by graded layer winding. -- Abstract: In the assumption that DEMO will be an inductively driven tokamak, the number of load cycles will be in the range of several hundred thousands. The requirements for a new generation of Nb{sub 3}Sn based high current conductors for DEMO are drafted starting from the output of system code PROCESS. The key objectives include the stability of the DC performance over the lifetime of the machine and the effective use of the Nb{sub 3}Sn strand properties, for cost and reliability reasons. A preliminary layout of the winding pack and conductors for the toroidal field magnets is presented. To suppress the mechanism of reversible and irreversible degradation, i.e. to preserve in the cabled conductor the high critical current density of the strand, the thermal strain must be insignificant and no space for micro-bending under transverse load must be left in the strand bundle. The “react-and-wind” method is preferred here, with a graded, layer wound magnet, containing both Nb{sub 3}Sn and NbTi layers. The implications of the conductor choice on the coil design and technology are highlighted. A roadmap is sketched for the development of a full size prototype conductor sample and demonstration of the key technologies.

  12. Disruptions and X ray activity in LH current drive experiments in Petula

    International Nuclear Information System (INIS)

    Melin, G.; Blanc, P.; Briand, P.; Briffod, G.; Gormezano, C.; Moulin, B.; Parlange, F.; Ryter, F.; Van Houtte, D.

    1983-09-01

    In this paper, time evolutions of different parameters when discharges occur during RF application in Petula are presented. The profile evolution during the disruption of the electron temperature is noted; and behaviour of the disruption as a function of the RF power is given

  13. Stabilization of the (2,1) tearing mode and of the current disruption in the W VII-A stellarator

    International Nuclear Information System (INIS)

    Bartlett, D.V.; Cannici, G.; Cattanei, G.

    1980-01-01

    A numerical code based on a Δ'-analysis is applied to calculate the saturated amplitude of tearing modes dependent on the current density profile. The only stellarator effect included is the additional, shearless external rotational transform in the safety factor profile q(r). In this way, the stellarator field shifts the resonant q=2 surface toward the outside, where the current density gradient is smaller, and stabilizes the (2,1) mode as observed experimentally. Also the measured dependence of the (2,1) mode amplitude on electron density and plasma current can be absolutely predicted by the calculations. - In addition to stabilizing the (2,1) tearing mode, the current disruption is suppressed in Ohmically heated W VII-A discharges for approximately >0.15. The experimental findings, together with the calculated island widths, are compared with the predictions of a theoretical model proposed by several authors to explain the current disruption. (author)

  14. Measurement technology of RF interference current in high current system

    Science.gov (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei

    2018-06-01

    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  15. High-current railgap studies

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-03

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field-distortion-triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Image-converter streak photographs were used to study channel evolution and current division. Transient gas-pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance and lifetime are discussed. Lifetime tests of the rail gap were performed. Degradation in the channel current-sharing and erosion measurements are discussed.

  16. High-current railgap studies

    Science.gov (United States)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-01

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field distortion triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Channel evolution and current division were studied on image converter streak photographs. Transient gas pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance in the channel current sharing and erosion measurements are discussed.

  17. Low edge safety factor operation and passive disruption avoidance in current carrying plasmas by the addition of stellarator rotational transform

    Science.gov (United States)

    Pandya, M. D.; ArchMiller, M. C.; Cianciosa, M. R.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Knowlton, S. F.; Ma, X.; Massidda, S.; Maurer, D. A.; Roberds, N. A.; Traverso, P. J.

    2015-11-01

    Low edge safety factor operation at a value less than two ( q (a )=1 /ι̷tot(a )routine on the Compact Toroidal Hybrid device with the addition of sufficient external rotational transform. Presently, the operational space of this current carrying stellarator extends down to q (a )=1.2 without significant n = 1 kink mode activity after the initial plasma current rise phase of the discharge. The disruption dynamics of these low edge safety factor plasmas depend upon the fraction of helical field rotational transform from external stellarator coils to that generated by the plasma current. We observe that with approximately 10% of the total rotational transform supplied by the stellarator coils, low edge q disruptions are passively suppressed and avoided even though q(a) disrupt, the instability precursors measured and implicated as the cause are internal tearing modes with poloidal, m, and toroidal, n, helical mode numbers of m /n =3 /2 and 4/3 observed on external magnetic sensors and m /n =1 /1 activity observed on core soft x-ray emissivity measurements. Even though the edge safety factor passes through and becomes much less than q(a) disruption phenomenology observed.

  18. Disruption simulation experiment using high-frequency rastering electron beam as the heat source

    International Nuclear Information System (INIS)

    Yamazaki, S.; Seki, M.

    1987-01-01

    The disruption is a serious event which possibly reduces the lifetime of plasm interactive components, so the effects of the resulting high heat flux on the wall materials must be clearly identified. The authors performed disruption simulation experiments to investigate melting, evaporation, and crack initiation behaviors using an electron beam facility as the heat source. The facility was improved with a high-frequency beam rastering system which provided spatially and temporally uniform heat flux on wider test surfaces. Along with the experiments, thermal and mechanical analyses were also performed. A two-dimensional disruption thermal analysis code (DREAM) was developed for the analyses

  19. Fuel-disruption experiments under high-ramp-rate heating conditions

    International Nuclear Information System (INIS)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident

  20. High bandwidth beam current monitor

    International Nuclear Information System (INIS)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe

  1. Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, S.; Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); Shibata, Y.; Isayama, A.; Kawano, Y. [Japan Atomic Energy Agency, Naka 311-0193 (Japan); Watanabe, K. Y. [Graduate School of Engineering, Nagoya University, Nagoya 464-8603 (Japan); National Institute for Fusion Science, Toki 509-5292 (Japan); Takizuka, T. [Graduate School of Engineering, Osaka University, Suita 565-0871 (Japan); Okamoto, M. [Ishikawa National College of Technology, Ishikawa 929-0392 (Japan)

    2013-11-15

    According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

  2. Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology

    Science.gov (United States)

    Goodwin, Bruce

    2015-03-01

    This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.

  3. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  4. Calculation of the electromagnetic forces on the ASDEX upgrade vacuum vessel on disruption of the plasma current

    International Nuclear Information System (INIS)

    Preis, H.

    1986-01-01

    This study investigates the magnetic field diffusion through the vacuum vessel of the ASDEX Upgrade tokamak that occurs on sudden disruption of the plasma current. Eddy currents are thereby produced in the vessel wall. Their time behaviour and distribution are determined. Furthermore, the vessel is permeated by various magnetic fields which, together with the eddy currents, exert magnetic forces in the vessel wall. These are also calculated. These numerical analyses are performed for two of the modes of operation envisaged for ASDEX Upgrade: the so-called limiter and single-null magnetic field configurations. (orig.)

  5. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  6. Disruption model

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED

  7. Simulating the effects of plasma disruption with a 1 MA current pulse in a coaxial test fixture

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    A test fixture for simulating plasma disruptions, comprising two coaxial cylinders, has been designed for use with Argonne's electromagnetic test facility FELIX. A pulsed power supply drives a half cycle sine wave current of 10 0 A through the test fixture generating fields of -1 . The coaxial structure is 140 cm long, has an outer cylinder with an OD of 78 cm and an inner cylinder with an OD of 8.3 cm. It is surrounded by the FELIX solenoid field of 1 T. This proposed upgrade of the FELIX facility should be useful for testing the effect of plasma disruption on First Wall-Blanket-Shield (FWBS) structures; a future upgrade of the solenoid field to 4 T will allow to simulate reactor conditions even better

  8. Simulating the effects of plasma disruption with A 1 MA current pulse in a coaxial test fixture

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1985-01-01

    A test fixture for simulating plasma disruptions, comprising two coaxial cylinders, has been designed for use with Argonne's electromagnetic test facility FELIX. A pulsed power supply drives a half cycle sine wave current of 10 0 A through the test fixture generating fields of -1 . The coaxial structure is 140 cm long, has an outer cylinder with an OD of 78 cm and an inner cylinder with an OD of 8.3 cm. It is surrounded by the FELIX solenoid field of 1 T. This proposed upgrade of the FELIX facility should be useful for testing the effect of plasma disruption on First Wall-Blanket-Shield (FWBS) structures; a future upgrade of the solenoid field to 4 T will allow to simulate reactor conditions even better

  9. High current density ion beam measurement techniques

    International Nuclear Information System (INIS)

    Ko, W.C.; Sawatzky, E.

    1976-01-01

    High ion beam current measurements are difficult due to the presence of the secondary particles and beam neutralization. For long Faraday cages, true current can be obtained only by negative bias on the target and by summing the cage wall and target currents; otherwise, the beam will be greatly distorted. For short Faraday cages, a combination of small magnetic field and the negative target bias results in correct beam current. Either component alone does not give true current

  10. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  11. Properties of high current RFQ injectors

    International Nuclear Information System (INIS)

    Schempp, A.; Goethe, J.W.

    1996-01-01

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author)

  12. Properties of high current RFQ injectors

    Energy Technology Data Exchange (ETDEWEB)

    Schempp, A.; Goethe, J.W. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1996-12-31

    RFQ linacs are efficient, compact low energy ion structures, which have found numerous applications. They use electrical rf focusing and can capture, bunch and transmit high current ion beams. Some recent development and new projects like a heavy ion injectors for a cyclotron, and the status of the work on high current high duty factor RFQs will be discussed. (author) 2 refs.

  13. Multi-wavelength imaging of solar plasma. High-beta disruption model of solar flares

    International Nuclear Information System (INIS)

    Shibasaki, Kiyoto

    2007-01-01

    Solar atmosphere is filled with plasma and magnetic field. Activities in the atmosphere are due to plasma instabilities in the magnetic field. To understand the physical mechanisms of activities / instabilities, it is necessary to know the physical conditions of magnetized plasma, such as temperature, density, magnetic field, and their spatial structures and temporal developments. Multi-wavelength imaging is essential for this purpose. Imaging observations of the Sun at microwave, X-ray, EUV and optical ranges are routinely going on. Due to free exchange of original data among solar physics and related field communities, we can easily combine images covering wide range of spectrum. Even under such circumstances, we still do not understand the cause of activities in the solar atmosphere well. The current standard model of solar activities is based on magnetic reconnection: release of stored magnetic energy by reconnection is the cause of solar activities on the Sun such as solar flares. However, recent X-ray, EUV and microwave observations with high spatial and temporal resolution show that dense plasma is involved in activities from the beginning. Based on these observations, I propose a high-beta model of solar activities, which is very similar to high-beta disruptions in magnetically confined fusion experiments. (author)

  14. European Union's strategy on endocrine disrupting chemicals and the current position of Slovenia.

    Science.gov (United States)

    Perharič, Lucija; Fatur, Tanja; Drofenik, Jernej

    2016-06-01

    In view of the European Union regulations 1107/2009 and 528/2012, which say that basic substances in plant protection and biocidal products marketed in the European Union (EU) should not have an inherent capacity to cause endocrine disruption, an initiative was started to define scientific criteria for the identification of endocrine disruptors (EDs). The objectives of the EU strategy on EDs are to protect human health and the environment, to assure the functioning of the market, and to provide clear and coherent criteria for the identification of EDs that could have broad application in the EU legislation. Policy issues were to be addressed by the Ad-hoc group of Commission Services, EU Agencies and Member States established in 2010, whereas the scientific issues were to be addressed by the Endocrine Disruptors Expert Advisory Group (ED EAG), established in 2011. The ED EAG adopted the 2002 World Health Organization (WHO) definition of endocrine disruptor and agreed that for its identification it is necessary to produce convincing evidence of a biologically plausible causal link between an adverse effect and endocrine disrupting mode of action. In 2014, the European Commission proposed four ED identification criteria options and three regulatory options, which are now being assessed for socio-economic, environmental, and health impact. Slovenia supports the establishing of identification criteria and favours option 4, according to which ED identification should be based on the WHO definition with the addition of potency as an element of hazard characterisation. As for regulatory options, Slovenia favours the risk-based rather than hazard-based regulation.

  15. High-voltage high-current triggering vacuum switch

    International Nuclear Information System (INIS)

    Alferov, D.F.; Bunin, R.A.; Evsin, D.V.; Sidorov, V.A.

    2012-01-01

    Experimental investigations of switching and breaking capacities of the new high current triggered vacuum switch (TVS) are carried out at various parameters of discharge current. It has been shown that the high current triggered vacuum switch TVS can switch repeatedly a current from units up to ten kiloampers with duration up to ten millisecond [ru

  16. A study of disrupted carotid plaque using high-resolution MRI

    International Nuclear Information System (INIS)

    Yu Wei; Zhang Zhaoqi; Underhill, H.; Hatsukami, T.S.; Chun, Y.

    2008-01-01

    Objective: To evaluate distribution features of disrupted carotid plaque. Methods: Forty-three subjects with duplex ultrasound evidence of 50% to 99% stenosis were retrospectively analyzed. Plaques were categorized as disrupted if there was MRI evidence of fibrous cap rupture. Quantity measured areas of the lumen (LA), wall (WA), and plaque components. The morphological parameters used were total vessel area, vessel burden index, eccentricity index. Mann-Whitney test and Chi-square test appropriate used SPSS (v. 12.0). Results: There were 17 disrupted and 26 undisrupted lesions identified for comparison. Disrupted plaques showed a predominance of longer longitudinal length of large lip nucleus along the vessel wall (6 mm vs. 0 mm, U=126, P 2 vs. 30.18 mm 2 U=138 P<0.05) and a longer segment of stenosis when compared with the intact plaques. Conclusions: Disrupted plaques have significantly different characteristics in terms of both axial and longitudinal distribution. A combination of multi-plane and multi-contrast high resolution MRI may provide valuable information about overall lesion morphology and its association to vulnerability. (authors)

  17. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  18. Disruptive behavior in preschool children: distinguishing normal misbehavior from markers of current and later childhood conduct disorder.

    Science.gov (United States)

    Hong, Ji S; Tillman, Rebecca; Luby, Joan L

    2015-03-01

    To investigate which disruptive behaviors in preschool were normative and transient vs markers of conduct disorder, as well as which disruptive behaviors predicted the persistence of conduct disorder into school age. Data from a longitudinal study of preschool children were used to investigate disruptive behaviors. Caregivers of preschoolers ages 3.0-5.11 years (n = 273) were interviewed using the Preschool Age Psychiatric Assessment to derive the following diagnostic groups: conduct disorder, externalizing disorder without conduct disorder, internalizing disorder without externalizing disorder, and healthy. At school age, participants were again assessed via an age-appropriate diagnostic interview. Logistic and linear regression with pairwise group comparisons was used to investigate clinical markers of preschool conduct disorder and predictors of school age conduct disorder. Losing one's temper, low-intensity destruction of property, and low-intensity deceitfulness/stealing in the preschool period were found in both healthy and disordered groups. In contrast, high-intensity argument/defiant behavior, both low- and high-intensity aggression to people/animals, high-intensity destruction of property, high-intensity deceitfulness/stealing, and high-intensity peer problems were markers of preschool conduct disorder and predictors of school age conduct disorder. Inappropriate sexual behavior was not a marker for preschool conduct disorder but was a predictor of school age conduct disorder. These findings provide a guide for primary care clinicians to help identify preschoolers with clinical conduct disorder and those who are at risk for persistent conduct disorder in childhood. Preschoolers displaying these symptoms should be targeted for mental health assessment. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Disruption mitigation with high-pressure helium gas injection on EAST tokamak

    Science.gov (United States)

    Chen, D. L.; Shen, B.; Granetz, R. S.; Qian, J. P.; Zhuang, H. D.; Zeng, L.; Duan, Y.; Shi, T.; Wang, H.; Sun, Y.; Xiao, B. J.

    2018-03-01

    High pressure noble gas injection is a promising technique to mitigate the effect of disruptions in tokamaks. In this paper, results of mitigation experiments with low-Z massive gas injection (helium) on the EAST tokamak are reported. A fast valve has been developed and successfully implemented on EAST, with valve response time  ⩽150 μs, capable of injecting up to 7 × 1022 particles, corresponding to 300 times the plasma inventory. Different amounts of helium gas were injected into stable plasmas in the preliminary experiments. It is seen that a small amount of helium gas (N_He≃ N_plasma ) can not terminate a discharge, but can trigger MHD activity. Injection of 40 times the plasma inventory impurity (N_He≃ 40× N_plasma ) can effectively radiate away part of the thermal energy and make the electron density increase rapidly. The mitigation result is that the current quench time and vertical displacement can both be reduced significantly, without resulting in significantly higher loop voltage. This also reduces the risk of runaway electron generation. As the amount of injected impurity gas increases, the gas penetration time decreases slowly and asymptotes to (˜7 ms). In addition, the impurity gas jet has also been injected into VDEs, which are more challenging to mitigate that stable plasmas.

  20. A new high performance current transducer

    International Nuclear Information System (INIS)

    Tang Lijun; Lu Songlin; Li Deming

    2003-01-01

    A DC-100 kHz current transducer is developed using a new technique on zero-flux detecting principle. It was shown that the new current transducer is of high performance, its magnetic core need not be selected very stringently, and it is easy to manufacture

  1. Non-axisymmetric equilibrium reconstruction and suppression of density limit disruptions in a current-carrying stellarator

    Science.gov (United States)

    Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.

    2017-10-01

    Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.

  2. 3D eddy-current distribution in a tokamak first wall during a plasma disruption using 'TRIFOU'

    International Nuclear Information System (INIS)

    Chaussecourte, P.; Bossavit, A.; Verite, J.C.; Crutzen, Y.R.

    1989-01-01

    In fusion reactor studies there is a lack of knowledge concerning the electromagnetic-type of phenomena generated by a plasma disruption event (rapid quenching of the plasma current). The induced eddy current distribution in space and time in the passive conducting structural components surrounding the plasma ring needs to be accurately investigated. TRIFOU is a full 3D eddy-current computer program based on a mixed FEM and BIEM technique, using the magnetic field, h, as a state variable, It has already been used in various areas of interest including static or rotating machines, non-destructive testing, induction heating, and research devices such as tokamaks. It can take into account various geometries and a wide range of physical situations (time dependency, physical properties, etc.). The present application is related to the eddy-current situation arising from a strong electromagnetic transient generated in the NET (Next European Torus) first wall segment. With respect to previous numerical simulations, the general 3D approach for the current density shows different eddy current circulations in the front/side shells and in the stiff back plate. The results obtained by TRIFOU are illustrated by means of advanced computer graphic displays and an animation movie. (orig.)

  3. Inter-machine comparison of the termination phase and energy conversion in tokamak disruptions with runaway current plateau formation and implications for ITER

    International Nuclear Information System (INIS)

    Martín-Solís, J.R.; Loarte, A.; Hollmann, E.M.; Esposito, B.; Riccardo, V.

    2014-01-01

    The termination of the current and the loss of runaway electrons following runaway current plateau formation during disruptions have been investigated in the JET, DIII-D and FTU tokamaks. Substantial conversion of magnetic energy into runaway kinetic energy, up to ∼10 times the initial plateau runaway kinetic energy, has been inferred for the slowest current terminations. Both modelling and experiment suggest that, in present devices, the efficiency of conversion into runaway kinetic energy is determined to a great extent by the characteristic runaway loss time, τ diff , and the resistive time of the residual ohmic plasma after the disruption, τ res , increasing with the ratio τ diff /τ res . It is predicted that, in large future devices such as ITER, the generation of runaways by the avalanche mechanism will play an important role, particularly for slow runaway discharge terminations, increasing substantially the amount of energy deposited by the runaways onto the plasma-facing components by the conversion of magnetic energy of the runaway plasma into runaway kinetic energy. Estimates of the power fluxes on the beryllium plasma-facing components during runaway termination in ITER indicate that for runaway currents of up to 2 MA no melting of the components is expected. For larger runaway currents, minimization of the effects of runaway impact on the first wall requires a reduction in the kinetic energy of the runaway beam before termination and, in addition, high plasma density n e and low ohmic plasma resistance (long τ res ) to prevent large conversion of magnetic into runaway kinetic energy during slow current terminations. (paper)

  4. Disrupted pregnancies? How doctors, sonographers and pregnant couples negotiate high risk for Down’s syndrome – a qualitative study

    DEFF Research Database (Denmark)

    Lou, Stina; Hvidman, Lone; Petersen, Olav Bjørn

    2012-01-01

    that 90–95% of the high-risk couples carry a foetus with normal chromosomes. How do these couples frame the disruption caused by the high risk category? Are they able to return to a ‘normal’ pregnancy or does the disruption cause subsequent worry? In the presentation, we will reflect on this important...

  5. Disruption scenarios for a high-level waste repository at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Ross, B.

    1986-01-01

    A high-level waste repository located in unsaturated welded tuff at Yucca Mountain, Nevada, would rely on six different, although not entirely independent, barriers to prevent escape of radioactivity. These barriers are the waste canister, fuel cladding, slow dissolution of the spent fuel itself, and slow movement of released contaminants in three different hydrogeologic units: the unsaturated Topopah Spring welded tuff unit, the unsaturated Calico Hills nonwelded tuff unit, and the saturated tuff aquifer. Fifty-eight processes and events that might affect such a repository were reviewed. Eighty-three different sequences were identified by which these processes and events could lead to failure of one or more barriers. Sequences which had similar consequences were grouped, yielding 17 categories. The repository system has considerable redundancy; most of the more likely disruptions affect only one or a few barriers. Occurrence of more than one disruption is needed before such disruptions would cause release of radioactivity. Future studies of repository performance must assess the likelihood and consequences of multiple-disruption scenarios to evaluate how well the repository meets performance standards

  6. Simulations of vertical disruptions with VDE code: Hiro and Evans currents

    Science.gov (United States)

    Li, Xujing; Di Hu Team; Leonid Zakharov Team; Galkin Team

    2014-10-01

    The recently created numerical code VDE for simulations of vertical instability in tokamaks is presented. The numerical scheme uses the Tokamak MHD model, where the plasma inertia is replaced by the friction force, and an adaptive grid numerical scheme. The code reproduces well the surface currents generated at the plasma boundary by the instability. Five regimes of the vertical instability are presented: (1) Vertical instability in a given plasma shaping field without a wall; (2) The same with a wall and magnetic flux ΔΨ|plX< ΔΨ|Xwall(where X corresponds to the X-point of a separatrix); (3) The same with a wall and magnetic flux ΔΨ|plX> ΔΨ|Xwall; (4) Vertical instability without a wall with a tile surface at the plasma path; (5) The same in the presence of a wall and a tile surface. The generation of negative Hiro currents along the tile surface, predicted earlier by the theory and measured on EAST in 2012, is well-reproduced by simulations. In addition, the instability generates the force-free Evans currents at the free plasma surface. The new pattern of reconnection of the plasma with the vacuum magnetic field is discovered. This work is supported by US DoE Contract No. DE-AC02-09-CH11466.

  7. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  8. Current R and D status on material motion and interactions relevant to core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Satoru [Safety Engineering Division, O-arai Engineering Center, Power Reactor and Nuclear Fuel Development Corporation, O-arai, Ibaraki (Japan)

    1994-07-01

    In this paper, the current status of research and development activities are briefly reviewed on evaluation of material-coolant interactions and material movement and relocation relevant to the safety of liquid-metal fast reactors. Since the status of European activities are well summarized in other papers submitted to the present meeting, the activities in Japan and the United States are highlighted in this paper. The review includes: out-of-pile experiments, in-pile experiments and relevant computer code development. It is emphasized that improved understanding on material motion has contributed to establishing more realistic and rational safety evaluation methods, where various mitigation mechanisms are inherently effective. (author)

  9. Studies of the disruption prevention by ECRH at plasma current rise stage in limiter discharges/Possibility of an internal transport barrier producing under dominating electron transport in the T-10 tokamak

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Borshegovskij, A.A.; Chistyakov, V.V.

    2001-01-01

    'Studies of the Disruption Prevention by ECRH at Plasma Current Rise Stage in Limiter Discharges' - Studies of disruption prevention by means of ECRH in T-10 at the plasma current rise phase in limiter discharges with circular plasma cross-section were performed. Reliable disruption prevention by ECRH at HF power (P HF ) min level equal to 20% of ohmic heating power P OH was demonstrated. m/n=2/1 mode MHD-activity developed before disruption (with characteristic time ∼ 120 ms) can be considered as disruption precursor and can be used in a feedback system. 'Possibility of an Internal Transport Barrier Producing under Dominating Electron Transport in the T-10 Tokamak' - The reversed shear experiments were carried out on T-10 at the HF power up to 1MW. The reversed shear in the core was produced by on-axis ECCD in direction opposite to the plasma current. There are no obvious signs of Internal Transport Barriers formation under condition when high-k turbulence determines the electron transport. (author)

  10. Simple, high current, antimony ion source

    International Nuclear Information System (INIS)

    Sugiura, H.

    1979-01-01

    A simple metal ion source capable of producing a continuous, uncontaminated, high current beam of Sb ions is presented. It produced a total ion current of 200 μA at 1 kV extraction voltage. A discharge occurred in the source at a pressure of 6 x 10 -4 Torr. The ion current extracted from the source increased with the 3/2 power of the extraction voltage. The perveance of the source and ion density in the plasma were 8 x 10 -9 and 1.8 x 10 11 cm -3 , respectively

  11. Compact high-current, subnanosecond electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shpak, V G; Shunajlov, S A; Ulmaskulov, M R; Yalandin, M I [Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Electrophysics; Pegel, I V [Russian Academy of Sciences, Tomsk (Russian Federation). High-Current Electronics Inst.; Tarakanov, V P [Russian Academy of Sciences, Moscow (Russian Federation). High-Temperature Inst.

    1997-12-31

    A compact subnanosecond, high-current electron accelerator producing an annular electron beam of duration up to 300 - 400 ps, energy about 250 keV, and current up to 1 kA has been developed to study transient processes in pulsed power microwave devices. The measuring and recording techniques used to experimentally investigate the dynamics of the beam current pulse and the transformation of the electron energy during the transportation of the beam in a longitudinal magnetic field are described. The experimental data obtained are compared with the predictions of a numerical simulation. (author). 6 figs., 5 refs.

  12. Development of a high current ion implanter

    International Nuclear Information System (INIS)

    Choi, Byung Ho; Kim, Wan; Jin, Jeong Tae

    1990-01-01

    A high current ion implanter of the energy of 100 Kev and the current of about 100 mA has been developed for using the high dose ion implantation, surface modification of steels and ceramics, and ion beam milling. The characteristics of the beam extraction and transportation are investigated. A duoPIGatron ion source compatible with gas ion extraction of about 100 mA, a single gap acceleration tube which is able to compensate the divergence due to the space charge effect, and a beam transport system with the concept of the space charge neutralization are developed for the high current machine. The performance of the constructed machine shows that nitrogen, argon, helium, hydrogen and oxygen ion beams are successfully extracted and transported at a beam divergence due to space charge effect is negligible in the operation pressure of 2 x 10 -5 torr. (author)

  13. Polarity-Specific Transcranial Direct Current Stimulation Disrupts Auditory Pitch Learning

    Directory of Open Access Journals (Sweden)

    Reiko eMatsushita

    2015-05-01

    Full Text Available Transcranial direct current stimulation (tDCS is attracting increasing interest because of its potential for therapeutic use. While its effects have been investigated mainly with motor and visual tasks, less is known in the auditory domain. Past tDCS studies with auditory tasks demonstrated various behavioural outcomes, possibly due to differences in stimulation parameters or task measurements used in each study. Further research using well-validated tasks are therefore required for clarification of behavioural effects of tDCS on the auditory system. Here, we took advantage of findings from a prior functional magnetic resonance imaging study, which demonstrated that the right auditory cortex is modulated during fine-grained pitch learning of microtonal melodic patterns. Targeting the right auditory cortex with tDCS using this same task thus allowed us to test the hypothesis that this region is causally involved in pitch learning. Participants in the current study were trained for three days while we measured pitch discrimination thresholds using microtonal melodies on each day using a psychophysical staircase procedure. We administered anodal, cathodal, or sham tDCS to three groups of participants over the right auditory cortex on the second day of training during performance of the task. Both the sham and the cathodal groups showed the expected significant learning effect (decreased pitch threshold over the three days of training; in contrast we observed a blocking effect of anodal tDCS on auditory pitch learning, such that this group showed no significant change in thresholds over the three days. The results support a causal role for the right auditory cortex in pitch discrimination learning.

  14. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  15. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  16. MHD analysis of high (β/sub t/) disruptions in PBX [Princeton Beta Experiment

    International Nuclear Information System (INIS)

    Jahns, G.L.; Chance, M.S.; Kaye, S.M.; Manickam, J.; Takahashi, H.; LeBlanc, B.; Morris, A.W.; Reusch, M.; Sesnic, S.

    1987-10-01

    PBX discharges run at the lowest q and highest (β/sub t/) always terminated in a hard disruption. The discharges, with (β/sub t/) values of up to 5.5% and q-values down to 2.2, were obtained by employing large current ramps and large gas feed rates during neutral beam injection. Previous work has indicated that the achieved (β/sub t/)-values were consistent with the limit imposed by the n = 1 ideal external kink with a conducting wall at b/a = 2. In this work, we investigate further the validity of ideal MHD theory in explaining the low-q/sub psi/j disruptions. In particular, the character of the pre-disruption MHD activity in these low-q discharges, specifically the time scales of growth and internal and external mode structures, was compared with those determined from theoretical calculations. The results of these comparisons indicate that non-ideal effects must be considered to obtain detailed agreement between theory and experiment. 13 refs., 6 figs

  17. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Ozeki, T.; Azumi, M.; Ishii, Y.

    1997-01-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of q min is close to the region of high ∇n e . Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  18. Critical current enhancement in high Tc superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Graebner, J.E.; Tiefel, T.H.

    1990-01-01

    Progress toward major technological applications of the bulk, high T c superconductors has been hindered by two major barriers, i.e., the Josephson weak-links at grain boundaries and the lack of sufficient intragrain flux pinning. It has been demonstrated that the weak link problem can be overcome by extreme alignment of grains such as in melt-textured-growth (MTG) materials. Modified or improved processing by various laboratories has produced further increased critical currents. However, the insufficient flux pinning seems to limit the critical current density in high fields to about 10 4 --10 5 A/cm 2 at 77K, which is not satisfactory for many applications. In this paper, processing, microstructure, and critical current behavior of the MTG type superconductors are described, and various processing possibilities for flux pinning enhancement are discussed

  19. Charged current weak interactions at high energy

    International Nuclear Information System (INIS)

    Cline, D.

    1977-01-01

    We review high energy neutrino and antineutrino charged current interactions. An overview of the experimental data is given, including a discussion of the experimental status of the y anomaly. Locality tests, μ-e universality and charge symmetry invariance tests are discussed. Charm production is discussed. The experimental status of trimuon events and possible phenomenological models for these events are presented. (orig.) [de

  20. Fast-response protection from high currents

    International Nuclear Information System (INIS)

    Novikov, A.A.

    1989-01-01

    Protection devices for power electronic equipment from shorting current are described. The device is shunted using spark gaps with minimal possible number of spark gaps to protect it. High fast-response (<100 ns) and operation voltage wide range (6-100 kV) are attained using Arkadiev-Marx generator-base trigger devices and air-core pulse transformer

  1. Research on high beam-current accelerators

    International Nuclear Information System (INIS)

    Keefe, D.

    1981-01-01

    In this review of research being undertaken at present in the US on accelerating devices and concepts of a novel nature, both non-collective systems, including high-current rf linacs and a variety of induction linacs, and also collective systems are considered. (U.K.)

  2. Disruption of myoblast alignment by highly motile rhabdomyosarcoma cell in tissue structure.

    Science.gov (United States)

    Li, Menglu; Nagamori, Eiji; Kino-Oka, Masahiro

    2017-02-01

    Rhabdomyosarcoma (RMS) is a highly malignant tumor type of skeletal muscle origin, hallmarked by local invasion. Interaction between invasive tumor cells and normal cells plays a major role in tumor invasion and metastasis. Culturing tumor cells in a three-dimensional (3D) model can translate tumor malignancy relevant cell-cell interaction. To mimic tumor heterogeneity in vitro, a co-culture system consisting of a malignant embryonal rhabdomyosarcoma (ERMS) cell line RD and a normal human skeletal muscle myoblast (HSMM) cell line was established by cell sheet technology. Various ratios of RDs to HSMMs were employed to understand the quantitative effect on intercellular interactions. Disruption of sheet structure was observed in heterogeneous cell sheets having a low ratio of RDs to HSMMs, whereas homogeneous HSMM or RD sheets maintained intact structure. Deeper exploration of dynamic tumor cell behavior inside HSMM sheets revealed that HSMM cell alignment was disrupted by highly motile RDs. This study demonstrated that RMS cells are capable of compromising their surrounding environment through induced decay of HSMMs alignment in a cell-based 3D system. This suggests that muscle disruption might be a major consequence of RMS cell invasion into muscles, which could be a promising target to preventing tumor invasion. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Surface ionization ion source with high current

    International Nuclear Information System (INIS)

    Fang Jinqing; Lin Zhizhou; Yu Lihua; Zhan Rongan; Huang Guojun; Wu Jianhua

    1986-04-01

    The working principle and structure of a surface ionization ion source with high current is described systematically. Some technological keypoints of the ion source are given in more detail, mainly including: choosing and shaping of the material of the surface ionizer, heating of the ionizer, distributing of working vapour on the ionizer surface, the flow control, the cooling problem at the non-ionization surface and the ion optics, etc. This ion source has been used since 1972 in the electromagnetic isotope separator with 180 deg angle. It is suitable for separating isotopes of alkali metals and rare earth metals. For instance, in the case of separating Rubidium, the maximum ion current of Rbsup(+) extracted from the ion source is about 120 mA, the maximum ion current accepted by the receiver is about 66 mA, the average ion current is more than 25 mA. The results show that our ion source have advantages of high ion current, good characteristics of focusing ion beam, working stability and structure reliability etc. It may be extended to other fields. Finally, some interesting phenomena in the experiment are disccused briefly. Some problems which should be investigated are further pointed out

  4. High current ion source development at Frankfurt

    Energy Technology Data Exchange (ETDEWEB)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M. [Frankfurt Univ. (Germany). Inst. fuer Angewandte Physik

    1995-11-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H{sup -}-sources each delivering a 70 mA H{sup -}-beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs.

  5. High current ion source development at Frankfurt

    International Nuclear Information System (INIS)

    Volk, K.; Klein, H.; Lakatos, A.; Maaser, A.; Weber, M.

    1995-01-01

    The development of high current positive and negative ion sources is an essential issue for the next generation of high current linear accelerators. Especially, the design of the European Spallation Source facility (ESS) and the International Fusion Material Irradiation Test Facility (IFMIF) have increased the significance of high brightness hydrogen and deuterium sources. As an example, for the ESS facility, two H - -sources each delivering a 70 mA H - -beam in 1.45 ms pulses at a repetition rate of 50 Hz are necessary. A low emittance is another important prerequisite. The source must operate, while meeting the performance requirements, with a constancy and reliability over an acceptable period of time. The present paper summarizes the progress achieved in ion sources development of intense, single charge, positive and negative ion beams. (author) 16 figs., 7 refs

  6. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  7. LASL high-current proton storage rings

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Cooper, R.K.; Hudgings, D.W.; Spalek, G.; Jason, A.J.; Higgins, E.F.; Gillis, R.E.

    1980-01-01

    The Proton Storage Ring at LAMPF is a high-current accumulator designed to convert long 800-MeV linac pulses into very short high-intensity proton bunches ideally suited to driving a pulsed polyenergetic neutron source. The Ring, authorized for construction at $19 million, will operate in a short-bunch high-frequency mode for fast neutron physics and a long-bunch low-frequency mode for thermal neutron-scattering programs. Unique features of the project include charge-changing injection with initial conversion from H - to H 0 , a high repetition rate fast-risetime extraction kicker, and high-frequency and first-harmonic bunching system

  8. High sugar diet disrupts gut homeostasis though JNK and STAT pathways in Drosophila.

    Science.gov (United States)

    Zhang, Xiaoyue; Jin, Qiuxia; Jin, Li Hua

    2017-06-10

    The incidence of diseases associated with a high sugar diet has increased in the past years, and numerous studies have focused on the effect of high sugar intake on obesity and metabolic syndrome. However, how a high sugar diet influences gut homeostasis is still poorly understood. In this study, we used Drosophila melanogaster as a model organism and supplemented a culture medium with 1 M sucrose to create a high sugar condition. Our results indicate that a high sugar diet promoted differentiation of intestinal stem cells through upregulation of the JNK pathway and downregulation of the JAK/STAT pathway. Moreover, the number of commensal bacteria decreased in the high sugar group. Our data suggests that the high caloric diet disrupts gut homeostasis and highlights Drosophila as an ideal model system to explore gastrointestinal disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Disruption of ten protease genes in the filamentous fungus Aspergillus oryzae highly improves production of heterologous proteins.

    Science.gov (United States)

    Yoon, Jaewoo; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2011-02-01

    Proteolytic degradation by secreted proteases into the culture medium is one of the significant problems to be solved in heterologous protein production by filamentous fungi including Aspergillus oryzae. Double (tppA, and pepE) and quintuple (tppA, pepE, nptB, dppIV, and dppV) disruption of protease genes enhanced human lysozyme (HLY) and bovine chymosin (CHY) production by A. oryzae. In this study, we used a quintuple protease gene disruptant and performed successive rounds of disruption for five additional protease genes (alpA, pepA, AopepAa, AopepAd, and cpI), which were previously investigated by DNA microarray analyses for their expression. Gene disruption was performed by pyrG marker recycling with a highly efficient gene-targeting background (∆ligD) as previously reported. As a result, the maximum yields of recombinant CHY and HLY produced by a decuple protease gene disruptant were approximately 30% and 35%, respectively, higher than those produced by a quintuple protease gene disruptant. Thus, we successfully constructed a decuple protease gene disruptant possessing highly improved capability of heterologous protein production. This is the first report on decuple protease gene disruption that improved the levels of heterologous protein production by the filamentous fungus A. oryzae.

  10. Current neutralization of nanosecond risetime, high-current electron beam

    International Nuclear Information System (INIS)

    Lidestri, J.P.; Spence, P.W.; Bailey, V.L.; Putnam, S.D.; Fockler, J.; Eichenberger, C.; Champney, P.D.

    1991-01-01

    This paper reports that the authors have recently investigated methods to achieve current neutralization in fast risetime (<3 ns) electron beams propagating in low-pressure gas. For this investigation, they injected a 3-MV, 30-kA intense beam into a drift cell containing gas pressures from 0.10 to 20 torr. By using a fast net current monitor (100-ps risetime), it was possible to observe beam front gas breakdown phenomena and to optimize the drift cell gas pressure to achieve maximum current neutralization. Experimental observations have shown that by increasing the drift gas pressure (P ∼ 12.5 torr) to decrease the mean time between secondary electron/gas collisions, the beam can propagate with 90% current neutralization for the full beam pulsewidth (16 ns)

  11. Planned upgrade to the coaxial plasma source facility for high heat flux plasma flows relevant to tokamak disruption simulations

    International Nuclear Information System (INIS)

    Caress, R.W.; Mayo, R.M.; Carter, T.A.

    1995-01-01

    Plasma disruptions in tokamaks remain serious obstacles to the demonstration of economical fusion power. In disruption simulation experiments, some important effects have not been taken into account. Present disruption simulation experimental data do not include effects of the high magnetic fields expected near the PFCs in a tokamak major disruption. In addition, temporal and spatial scales are much too short in present simulation devices to be of direct relevance to tokamak disruptions. To address some of these inadequacies, an experimental program is planned at North Carolina State University employing an upgrade to the Coaxial Plasma Source (CPS-1) magnetized coaxial plasma gun facility. The advantages of the CPS-1 plasma source over present disruption simulation devices include the ability to irradiate large material samples at extremely high areal energy densities, and the ability to perform these material studies in the presence of a high magnetic field. Other tokamak disruption relevant features of CPS-1U include a high ion temperature, high electron temperature, and long pulse length

  12. Disrupted resting brain graph measures in individuals at high risk for alcoholism.

    Science.gov (United States)

    Holla, Bharath; Panda, Rajanikant; Venkatasubramanian, Ganesan; Biswal, Bharat; Bharath, Rose Dawn; Benegal, Vivek

    2017-07-30

    Familial susceptibility to alcoholism is likely to be linked to the externalizing diathesis seen in high-risk offspring from high-density alcohol use disorder (AUD) families. The present study aimed at comparing resting brain functional connectivity and their association with externalizing symptoms and alcoholism familial density in 40 substance-naive high-risk (HR) male offspring from high-density AUD families and 30 matched healthy low-risk (LR) males without a family history of substance dependence using graph theory-based network analysis. The HR subjects from high-density AUD families compared with LR, showed significantly reduced clustering, small-worldness, and local network efficiency. The frontoparietal, cingulo-opercular, sensorimotor and cerebellar networks exhibited significantly reduced functional segregation. These disruptions exhibited independent incremental value in predicting the externalizing symptoms over and above the demographic variables. The reduction of functional segregation in HR subjects was significant across both the younger and older age groups and was proportional to the family loading of AUDs. Detection and estimation of these developmentally relevant disruptions in small-world architecture at critical brain regions sub-serving cognitive, affective, and sensorimotor processes are vital for understanding the familial risk for early onset alcoholism as well as for understanding the pathophysiological mechanism of externalizing behaviors. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  13. Highly sensitive detection of a current ripple

    International Nuclear Information System (INIS)

    Aoki, Takashi; Gushiken, Tutomu; Nishikigouri, Kazutaka; Kumada, Masayuki.

    1996-01-01

    In the HIMAC, there are six thyristor-controlled power sources for driving two synchrotrons. These power sources are the three-output terminal power sources which are equipped with positive output, negative output and neutral point for the common mode countermeasures. As electromagnet circuits are connected to the three-output terminal power sources, those are three-line type. In the inside of the power source circuits controlled by thyristors, there is the oscillation peculiar to the power sources, and the variation of voltage induces current spikes. This time, in order to assess the results of the common mode countermeasures in the power source and electromagnet circuits, as one method of cross-check, it is considered that since electromagnet current flows being divided to the bridging resistance and the coil, if attention is paid to the current on bridging resistance side, the ripple components of common mode and normal mode can be detected with high sensitivity, and this was verified. The present state of heightening the performance of synchrotron power sources is explained. The cross-check of the method of assessing the performance of electromagnet power sources is reported. The method of measuring ripple current and the results of the measurement are reported. (K.I.)

  14. Versatile high current metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1992-01-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multicathode, broad-beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred kiloelectronvolts because of the ion charge state multiplicity, and with a beam current of up to several amps peak pulsed and several tens of milliamps time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line of sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. (orig)

  15. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  16. High current beam transport experiments at GSI

    International Nuclear Information System (INIS)

    Klabunde, J.; Schonlein, A.; Spadtke, P.

    1985-01-01

    The status of the high current ion beam transport experiment is reported. 190 keV Ar 1+ ions were injected into six periods of a magnetic quadrupole channel. Since the pulse length is > 0.5 ms partial space charge neutralization occurs. In our experiments, the behavior of unneutralized and partially space charge compensated beams is compared. With an unneutralized beam, emittance growth has been measured for high intensities even in case of the zero-current phase advance sigma 0 0 . This initial emittance growth at high tune depression we attribute to the homogenization effect of the space charge density. An analytical formula based on this assumption describes the emittance growth very well. Furthermore the predicted envelope instabilities for sigma 0 > 90 0 were observed even after 6 periods. In agreement with the theory, unstable beam transport was also experimentally found if a beam with different emittances in the two transverse phase planes was injected into the transport channel. Although the space charge force is reduced for a partially neutralized beam a deterioration of the beam quality was measured in a certain range of beam parameters. Only in the range where an unneutralized beam shows the initial emittance growth, the partial neutralization reduces this effect, otherwise the partially neutralized beam is more unstable

  17. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  18. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  19. Pulsed high current ion beam processing equipment

    International Nuclear Information System (INIS)

    Korenev, S.A.; Perry, A.

    1995-01-01

    A pulsed high voltage ion source is considered for use in ion beam processing for the surface modification of materials, and deposition of conducting films on different substrates. The source consists of an Arkad'ev-Marx high voltage generator, a vacuum ion diode based on explosive ion emission, and a vacuum chamber as substrate holder. The ion diode allows conducting films to be deposited from metal or allow sources, with ion beam mixing, onto substrates held at a pre-selected temperature. The main variables can be set in the ranges: voltage 100-700 kV, pulse length 0.3 μs, beam current 1-200 A depending on the ion chosen. The applications of this technology are discussed in semiconductor, superconductor and metallizing applications as well as the direction of future development and cost of these devices for commercial application. 14 refs., 6 figs

  20. How useful is esophageal high resolution manometry in diagnosing gastroesophageal junction disruption: causes affecting this disruption and its relationship with manometric alterations and gastroesophageal reflux

    Directory of Open Access Journals (Sweden)

    Constanza Ciriza-de-los-Ríos

    2014-01-01

    Full Text Available Background: High-resolution manometry (HRM is a breakthrough in the morphological study of the gastroesophageal junction (GEJ and its degrees of disruption. Objectives: a Assessment of risk factors involved in the disruption of the GEJ in patients with gastroesophageal reflux (GER symptoms; b the relationship between the type of GEJ and GER demonstrated by 24 hours pH-monitoring; and c identification of the alterations in the manometric parameters related to the morphology of the GEJ. Methods: One hundred and fifteen patients with symptoms of GER studied with HRM and classified by the type of GEJ (type I: Normal; type II: Sliding; type III: Hiatal hernia. Twenty four hour pH-monitoring without proton pump inhibitors was performed in all of them. Epidemiological aspects, manometric parameters (Chicago 2012 classification and the pH-monitoring results were evaluated. Results: Age (OR 1.033 [1.006-1.060]; p = 0.16, BMI (OR 1.097 [1.022-1.176]; p = 0. 01 and abdominal perimeter (OR 1.034 [1.005-1.063]; p = 0.0215 were independent risk factors for the GEJ type III (area under the curve 0.70. Disruption of the GEJ was associated with a lower resting pressure (p = 0.006, greater length (p < 0.001 and greater esophageal shortening (p < 0.001. Abnormal acidic reflux was found in the total period (p = 0.015, standing (p = 0.022 and supine (p = 0.001 in patients with GEJ type II and III with respect to type I. Conclusions: Increased age, overweight and central obesity pose a higher risk of GEJ type III (hiatal hernia. The greater disruption of the GEJ is associated with lower resting pressure, esophageal shortening, and higher acid exposure in the pH-monitoring.

  1. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  2. Macrofilament simulation of high current beam transport

    International Nuclear Information System (INIS)

    Hayden, R.J.; Jakobson, M.J.

    1985-01-01

    Macrofilament simulation of high current beam transport through a series of solenoids has been used to investigate the sensitivity of such calculations to the initial beam distribution and to the number of filaments used in the simulation. The transport line was tuned to approximately 105 0 phase advance per cell at zero current with a tune depression of 65 0 due to the space charge. Input distributions with the filaments randomly uniform throughout a four dimensional ellipsoid and K-V input distributions have been studied. The behavior of the emittance is similar to that published for quadrupoles with like tune depression. The emittance demonstrated little growth in the first twelve solenoids, a rapid rate of growth for the next twenty, and a subsequent slow rate of growth. A few hundred filaments were sufficient to show the character of the instability. The number of filaments utilized is an order of magnitude fewer than has been utilized previously for similar instabilities. The previously published curves for simulations with less than a thousand particles show a rather constant emittance growth. If the solenoid transport line magnetic field is increased a few percent, emittance growth curves are obtained not unlike those curves. Collision growth effects are less important than indicated in the previously published results for quadrupoles

  3. High-energy cosmic ray nuclei from tidal disruption events: Origin, survival, and implications

    Science.gov (United States)

    Zhang, B. Theodore; Murase, Kohta; Oikonomou, Foteini; Li, Zhuo

    2017-09-01

    Tidal disruption events (TDEs) by supermassive or intermediate mass black holes have been suggested as candidate sources of ultrahigh-energy cosmic rays (UHECRs) and high-energy neutrinos. Motivated by the recent measurements from the Pierre Auger Observatory, which indicates a metal-rich cosmic-ray composition at ultrahigh energies, we investigate the fate of UHECR nuclei loaded in TDE jets. First, we consider the production and survival of UHECR nuclei at internal shocks, external forward and reverse shocks, and nonrelativistic winds. Based on the observations of Swift J 1644 +57 , we show that the UHECRs can survive for external reverse and forward shocks, and disk winds. On the other hand, UHECR nuclei are significantly disintegrated in internal shocks, although they could survive for low-luminosity TDE jets. Assuming that UHECR nuclei can survive, we consider implications of different composition models of TDEs. We find that the tidal disruption of main sequence stars or carbon-oxygen white dwarfs does not successfully reproduce UHECR observations, namely the observed composition or spectrum. The observed mean depth of the shower maximum and its deviation could be explained by oxygen-neon-magnesium white dwarfs, although they may be too rare to be the sources of UHECRs.

  4. Evidence of disrupted high-risk human papillomavirus DNA in morphologically normal cervices of older women.

    Science.gov (United States)

    Leonard, Sarah M; Pereira, Merlin; Roberts, Sally; Cuschieri, Kate; Nuovo, Gerard; Athavale, Ramanand; Young, Lawrence; Ganesan, Raji; Woodman, Ciarán B

    2016-02-15

    High-risk human papillomavirus (HR-HPV) causes nearly 100% of cervical carcinoma. However, it remains unclear whether HPV can establish a latent infection, one which may be responsible for the second peak in incidence of cervical carcinoma seen in older women. Therefore, using Ventana in situ hybridisation (ISH), quantitative PCR assays and biomarkers of productive and transforming viral infection, we set out to provide the first robust estimate of the prevalence and characteristics of HPV genomes in FFPE tissue from the cervices of 99 women undergoing hysterectomy for reasons unrelated to epithelial abnormality. Our ISH assay detected HR-HPV in 42% of our study population. The majority of ISH positive samples also tested HPV16 positive using sensitive PCR based assays and were more likely to have a history of preceding cytological abnormality. Analysis of subsets of this population revealed HR-HPV to be transcriptionally inactive as there was no evidence of a productive or transforming infection. Critically, the E2 gene was always disrupted in those HPV16 positive cases which were assessed. These findings point to a reservoir of transcriptionally silent, disrupted HPV16 DNA in morphologically normal cervices, re-expression of which could explain the increase in incidence of cervical cancer observed in later life.

  5. Aspects of possible magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Amos, R.; Perry, F.; Self, S.; Vaniman, D.

    1982-10-01

    The Nevada Test Site (NTS) region is located within the central section of a north-northeast-trending basaltic volcanic belt of late Cenozoic age, a part of the Quaternary volcanic province of the Great Basin. Future volcanism within the belt represents a potential hazard to storage of high-level radioactive waste within a buried repository located in the southwestern NTS. The hazards of future volcanism in the region are being characterized through a combination of volcanic hazards studies, probability determinations, and consequence analyses. Basaltic activity within the NTS regions is divided into two age groups consisting of relatively large-volume silicic cycle basalts (8 to 10 Myr) and rift basalts (< 8 to 0.3 Myr). This paper describes the processes of basaltic magmatism ranging from derivation of basalt melts at depth, through ascent through the upper mantle and crust, to surface eruption. Each stage in the evolution and dispersal of basaltic magma is described, and the disruption and potential dispersal of stored radioactive waste is evaluated. These data document areas of knowns and unknowns in the processes of basaltic volcanisms and provide background data necessary to assist calculations of radiation release levels due to disruption of a repository. 9 figures, 11 tables

  6. High current pelletron for ion implantation

    International Nuclear Information System (INIS)

    Schroeder, J.B.

    1989-01-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MW Pelletron accelerators with this new 4-chain charging system. (orig.)

  7. Achromatic beam transport of High Current Injector

    International Nuclear Information System (INIS)

    Kumar, Sarvesh; Mandal, A.

    2016-01-01

    The high current injector (HCI) provides intense ion beams of high charge state using a high temperature superconducting ECR ion source. The ion beam is accelerated upto a final energy of 1.8 MeV/u due to an electrostatic potential, a radio frequency quadrupole (RFQ) and a drift tube linac (DTL). The ion beam has to be transported to superconducting LINAC which is around 50 m away from DTL. This section is termed as high energy beam transport section (HEBT) and is used to match the beam both in transverse and longitudinal phase space to the entrance of LINAC. The HEBT section is made up of four 90 deg. achromatic bends and interconnecting magnetic quadrupole triplets. Two RF bunchers have been used for longitudinal phase matching to the LINAC. The ion optical design of HEBT section has been simulated using different beam dynamics codes like TRACEWIN, GICOSY and TRACE 3D. The field computation code OPERA 3D has been utilized for hardware design of all the magnets. All the dipole and quadrupole magnets have been field mapped and their test results such as edge angles measurements, homogeneity and harmonic analysis etc. are reported. The whole design of HEBT section has been performed such that the most of the beam optical components share same hardware design and there is ample space for beam diagnostics as per geometry of the building. Many combination of achromatic bends have been simulated to transport the beam in HEBT section but finally the four 90 deg. achromatic bend configuration is found to be the best satisfying all the geometrical constraints with simplified beam tuning process in real time

  8. High altitude observations of Birkeland currents

    International Nuclear Information System (INIS)

    Russell, C.T.

    1977-01-01

    Birkeland or field-aligned currents are thought to play a fundamental role in many magnetospheric processes. These roles are reviewed together with observations of Birkeland currents in the distant magnetosphere

  9. Highly efficient red electrophosphorescent devices at high current densities

    International Nuclear Information System (INIS)

    Wu Youzhi; Zhu Wenqing; Zheng Xinyou; Sun, Runguang; Jiang Xueyin; Zhang Zhilin; Xu Shaohong

    2007-01-01

    Efficiency decrease at high current densities in red electrophosphorescent devices is drastically restrained compared with that from conventional electrophosphorescent devices by using bis(2-methyl-8-quinolinato)4-phenylphenolate aluminum (BAlq) as a hole and exciton blocker. Ir complex, bis(2-(2'-benzo[4,5-α]thienyl) pyridinato-N,C 3' ) iridium (acetyl-acetonate) is used as an emitter, maximum external quantum efficiency (QE) of 7.0% and luminance of 10000cd/m 2 are obtained. The QE is still as high as 4.1% at higher current density J=100mA/cm 2 . CIE-1931 co-ordinates are 0.672, 0.321. A carrier trapping mechanism is revealed to dominate in the process of electroluminescence

  10. High-risk Long QT Syndrome Mutations in the Kv7.1 (KCNQ1) Pore Disrupt the Molecular Basis for Rapid K+ Permeation

    Science.gov (United States)

    Burgess, Don E.; Bartos, Daniel C.; Reloj, Allison R.; Campbell, Kenneth S.; Johnson, Jonathan N.; Tester, David J.; Ackerman, Michael J.; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J.; Ohno, Seiko; Horie, Minoru; Delisle, Brian P.

    2012-01-01

    Type 1 long QT syndrome (LQT1) syndrome is caused by loss-of-function mutations in the KCNQ1, which encodes the K+ channel (Kv7.1) that underlies the slowly activating delayed rectifier K+ current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss-of-function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confer a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated non-functional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamic simulations (MDS) of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K+-K+ repulsive forces required for rapid K+ permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K+ channel selectivity filter. PMID:23092362

  11. High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation.

    Science.gov (United States)

    Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P

    2012-11-13

    Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.

  12. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    Science.gov (United States)

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K

    2018-01-01

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.

  13. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia.

    Science.gov (United States)

    Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang

    2018-05-30

    Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.

  14. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  15. Eddy current testing with high penetration

    International Nuclear Information System (INIS)

    Becker, R.; Kroening, M.

    1999-01-01

    The low-frequency eddy current testing method is used when penetration into very deep layers is required. The achievable penetration depth is determined among other parameters by the lowest testing frequency that can be realised together with the eddy current sensor. When using inductive sensors, the measuring effect declines proportional to the lowering frequency (induction effect). Further reduction of testing frequency requires other types of sensors, as e.g. the GMR (Giant Magnetic Resistance), which achieves a constant measuring sensitivity down to the steady field. The multi-frequency eddy current testing method MFEC 3 of IZFP described here can be operated using three different scanning frequencies at a time. Two variants of eddy current probes are used in this case. Both have an inductive winding at their emitters, of the type of a measuring probe. The receiver end is either also an inductive winding, or a magnetic field-responsive resistance (GMR). (orig./CB) [de

  16. Study of current oscillations and hard x-ray emissions in pre-cursor phase of major disruptions in Damavand tokamak

    International Nuclear Information System (INIS)

    Amrollahi, R.

    2002-01-01

    We notice that the hard x-ray activity before disruption consists of a series of spikes, uniformly distributed in time domain forming an orderly periodic series of oscillations at a frequency of 6.0 kHz. Disruption starts with an initial fast rise followed by decay. Current decay occurs in two regimes: the first corresponds to slow decay, in which the current is oscillating and reducing down to ∼70% its max value, and the second corresponds to fast decay, in which it totally vanishes abruptly in about 0.2 ms. In the first regime, the loop voltage also oscillates with considerable amplitude. The frequency of oscillations in the first regime is measured to be also about 6.0 kHz. As well, they follow the oscillation phase of hard x-rays. Thus the micro-instabilities driven by runaway electrons, being responsible for the production of hard x-rays bursts and small current oscillations, play a significant role in the disruption. (author)

  17. Characterization of high-current, high-temperature superconductor current lead elements

    International Nuclear Information System (INIS)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures

  18. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    Science.gov (United States)

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Adaptive high learning rate probabilistic disruption predictors from scratch for the next generation of tokamaks

    International Nuclear Information System (INIS)

    Vega, J.; Moreno, R.; Pereira, A.; Acero, A.; Murari, A.; Dormido-Canto, S.

    2014-01-01

    The development of accurate real-time disruption predictors is a pre-requisite to any mitigation action. Present theoretical models of disruptions do not reliably cope with the disruption issues. This article deals with data-driven predictors and a review of existing machine learning techniques, from both physics and engineering points of view, is provided. All these methods need large training datasets to develop successful predictors. However, ITER or DEMO cannot wait for hundreds of disruptions to have a reliable predictor. So far, the attempts to extrapolate predictors between different tokamaks have not shown satisfactory results. In addition, it is not clear how valid this approach can be between present devices and ITER/DEMO, due to the differences in their respective scales and possibly underlying physics. Therefore, this article analyses the requirements to create adaptive predictors from scratch to learn from the data of an individual machine from the beginning of operation. A particular algorithm based on probabilistic classifiers has been developed and it has been applied to the database of the three first ITER-like wall campaigns of JET (1036 non-disruptive and 201 disruptive discharges). The predictions start from the first disruption and only 12 re-trainings have been necessary as a consequence of missing 12 disruptions only. Almost 10 000 different predictors have been developed (they differ in their features) and after the chronological analysis of the 1237 discharges, the predictors recognize 94% of all disruptions with an average warning time (AWT) of 654 ms. This percentage corresponds to the sum of tardy detections (11%), valid alarms (76%) and premature alarms (7%). The false alarm rate is 4%. If only valid alarms are considered, the AWT is 244 ms and the standard deviation is 205 ms. The average probability interval about the reliability and accuracy of all the individual predictions is 0.811 ± 0.189. (paper)

  20. Adaptive high learning rate probabilistic disruption predictors from scratch for the next generation of tokamaks

    Science.gov (United States)

    Vega, J.; Murari, A.; Dormido-Canto, S.; Moreno, R.; Pereira, A.; Acero, A.; Contributors, JET-EFDA

    2014-12-01

    The development of accurate real-time disruption predictors is a pre-requisite to any mitigation action. Present theoretical models of disruptions do not reliably cope with the disruption issues. This article deals with data-driven predictors and a review of existing machine learning techniques, from both physics and engineering points of view, is provided. All these methods need large training datasets to develop successful predictors. However, ITER or DEMO cannot wait for hundreds of disruptions to have a reliable predictor. So far, the attempts to extrapolate predictors between different tokamaks have not shown satisfactory results. In addition, it is not clear how valid this approach can be between present devices and ITER/DEMO, due to the differences in their respective scales and possibly underlying physics. Therefore, this article analyses the requirements to create adaptive predictors from scratch to learn from the data of an individual machine from the beginning of operation. A particular algorithm based on probabilistic classifiers has been developed and it has been applied to the database of the three first ITER-like wall campaigns of JET (1036 non-disruptive and 201 disruptive discharges). The predictions start from the first disruption and only 12 re-trainings have been necessary as a consequence of missing 12 disruptions only. Almost 10 000 different predictors have been developed (they differ in their features) and after the chronological analysis of the 1237 discharges, the predictors recognize 94% of all disruptions with an average warning time (AWT) of 654 ms. This percentage corresponds to the sum of tardy detections (11%), valid alarms (76%) and premature alarms (7%). The false alarm rate is 4%. If only valid alarms are considered, the AWT is 244 ms and the standard deviation is 205 ms. The average probability interval about the reliability and accuracy of all the individual predictions is 0.811 ± 0.189.

  1. Scanning the horizon for high value-add manufacturing science: Accelerating manufacturing readiness for the next generation of disruptive, high-value curative cell therapeutics.

    Science.gov (United States)

    Hourd, Paul; Williams, David J

    2018-05-01

    Since the regenerative medicine sector entered the second phase of its development (RegenMed 2.0) more than a decade ago, there is increasing recognition that current technology innovation trajectories will drive the next translational phase toward the production of disruptive, high-value curative cell and gene-based regenerative medicines. To identify the manufacturing science problems that must be addressed to permit translation of these next generation therapeutics. In this short report, a long lens look within the pluripotent stem cell therapeutic space, both embryonic and induced, is used to gain early insights on where critical technology and manufacturing challenges may emerge. This report offers a future perspective on the development and innovation that will be needed within manufacturing science to add value in the production and commercialization of the next generation of advanced cell therapies and precision medicines. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  3. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  4. Formation and Disruption of W-Phase in High-Entropy Alloys

    Directory of Open Access Journals (Sweden)

    Sephira Riva

    2016-05-01

    Full Text Available High-entropy alloys (HEAs are single-phase systems prepared from equimolar or near-equimolar concentrations of at least five principal elements. The combination of high mixing entropy, severe lattice distortion, sluggish diffusion and cocktail effect favours the formation of simple phases—usually a bcc or fcc matrix with minor inclusions of ordered binary intermetallics. HEAs have been proposed for applications in which high temperature stability (including mechanical and chemical stability under high temperature and high mechanical impact is required. On the other hand, the major challenge to overcome for HEAs to become commercially attractive is the achievement of lightweight alloys of extreme hardness and low brittleness. The multicomponent AlCrCuScTi alloy was prepared and characterized using powder X-ray diffraction (PXRD, scanning-electron microscope (SEM and atomic-force microscope equipped with scanning Kelvin probe (AFM/SKP techniques. Results show that the formation of complex multicomponent ternary intermetallic compounds upon heating plays a key role in phase evolution. The formation and degradation of W-phase, Al2Cu3Sc, in the AlCrCuScTi alloy plays a crucial role in its properties and stability. Analysis of as-melted and annealed alloy suggests that the W-phase is favoured kinetically, but thermodynamically unstable. The disruption of the W-phase in the alloy matrix has a positive effect on hardness (890 HV, density (4.83 g·cm−3 and crack propagation. The hardness/density ratio obtained for this alloy shows a record value in comparison with ordinary heavy refractory HEAs.

  5. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  6. Power transistor module for high current applications

    International Nuclear Information System (INIS)

    Cilyo, F.F.

    1975-01-01

    One of the parts needed for the control system of the 400-GeV accelerator at Fermilab was a power transistor with a safe operating area of 1800A at 50V, dc current gain of 100,000 and 20 kHz bandwidth. Since the commercially available discrete devices and power hybrid packages did not meet these requirements, a power transistor module was developed which performed satisfactorily. By connecting 13 power transistors in parallel, with due consideration for network and heat dissipation problems, and by driving these 13 with another power transistor, a super power transistor is made, having an equivalent current, power, and safe operating area capability of 13 transistors. For higher capabilities, additional modules can be conveniently added. (auth)

  7. ISAC target operation with high proton currents

    CERN Document Server

    Dombsky, M; Schmor, P; Lane, M

    2003-01-01

    The TRIUMF-ISAC facility target stations were designed for ISOL target irradiations with up to 100 mu A proton beam currents. Since beginning operation in 1998, ISAC irradiation currents have progressively increased from initial values of approx 1 mu A to present levels of up to 40 mu A on refractory metal foil targets. In addition, refractory carbide targets have operated at currents of up to 15 mu A for extended periods. The 1-40 mu A operational regime is achieved by tailoring each target to the thermal requirements dictated by material properties such as beam power deposition, thermal conductivity and maximum operating temperature of the target material. The number of heat shields on each target can be varied in order to match the effective emissivity of the target surface for the required radiative power dissipation. Targets of different thickness, surface area and volume have been investigated to study the effect of diffusion and effusion delays on the yield of radioisotopes. For yields of short-lived p...

  8. Current high-level waste solidification technology

    International Nuclear Information System (INIS)

    Bonner, W.F.; Ross, W.A.

    1976-01-01

    Technology has been developed in the U.S. and abroad for solidification of high-level waste from nuclear power production. Several processes have been demonstrated with actual radioactive waste and are now being prepared for use in the commercial nuclear industry. Conversion of the waste to a glass form is favored because of its high degree of nondispersibility and safety

  9. High-energy Neutrino Flares from X-Ray Bright and Dark Tidal Disruption Events

    Energy Technology Data Exchange (ETDEWEB)

    Senno, Nicholas; Murase, Kohta; Mészáros, Peter [Department of Physics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2017-03-20

    X-ray and γ-ray observations by the Swift satellite revealed that a fraction of tidal disruption events (TDEs) have relativistic jets. Jetted TDEs have been considered to be potential sources of very-high-energy cosmic-rays and neutrinos. In this work, using semi-analytical methods, we calculate neutrino spectra of X-ray bright TDEs with powerful jets and dark TDEs with possible choked jets, respectively. We estimate their neutrino fluxes and find that non-detection would give us an upper limit on the baryon loading of the jet luminosity contained in cosmic-rays ξ {sub cr} ≲ 20–50 for Sw J1644+57. We show that X-ray bright TDEs make a sub-dominant (≲5%–10%) contribution to IceCube’s diffuse neutrino flux, and study possible contributions of X-ray dark TDEs given that particles are accelerated in choked jets or disk winds. We discuss future prospects for multi-messenger searches of the brightest TDEs.

  10. Physics of the interaction between runaway electrons and the background plasma of the current quench in tokamak disruptions

    Science.gov (United States)

    Reux, Cedric

    2017-10-01

    Runaway electrons are created during disruptions of tokamak plasmas. They can be accelerated in the form of a multi-MA beam at energies up to several 10's of MeV. Prevention or suppression of runaway electrons during disruptions will be essential to ensure a reliable operation of future tokamaks such as ITER. Recent experiments showed that the suppression of an already accelerated beam with massive gas injection was unsuccessful at JET, conversely to smaller tokamaks. This was attributed to a dense, cold background plasma (up to several 1020 m-3 accompanying the runaway beam. The present contribution reports on the latest experimental results obtained at JET showing that some mitigation efficiency can be restored by changing the features of the background plasma. The density, temperature, position of the plasma and the energy of runaways were characterized using a combined analysis of interferometry, soft X-rays, bolometry, magnetics and hard X-rays. It showed that lower density background plasmas were obtained using smaller amounts of gas to trigger the disruption, leading to an improved penetration of the mitigation gas. Based on the observations, a physical model of the creation of the background plasma and its subsequent evolution is proposed. The plasma characteristics during later stages of the disruption are indeed dependent on the way it was initially created. The sustainment of the plasma during the runaway beam phase is then addressed by making a power balance between ohmic heating, power transfer from runaway electrons, radiation and atomic processes. Finally, a model of the interaction of the plasma with the mitigation gas is proposed to explain why massive gas injection of runaway beams works only in specific situations. This aims at pointing out which parameters bear the most importance if this mitigation scheme is to be used on larger devices like ITER. Acknowledgement: This work has been carried out within the framework of the EUROfusion Consortium

  11. High stability, high current DC-power supplies

    International Nuclear Information System (INIS)

    Hosono, K.; Hatanaka, K.; Itahashi, T.

    1995-01-01

    Improvements of the power supplies and the control system of the AVF cyclotron which is used as an injector to the ring cyclotron and of the transport system to the ring cyclotron were done in order to get more high quality and more stable beam. The power supply of the main coil of the AVF cyclotron was exchanged to new one. The old DCCTs (zero-flux current transformers) used for the power supplies of the trim coils of the AVF cyclotron were changed to new DCCTs to get more stability. The potentiometers used for the reference voltages in the other power supplies of the AVF cyclotron and the transport system were changed to the temperature controlled DAC method for numerical-value settings. This paper presents the results of the improvements. (author)

  12. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  13. Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts

    Science.gov (United States)

    Fialkov, Anastasia; Loeb, Abraham

    2017-11-01

    Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.

  14. MAXILAC as a high current UNILAC injector

    International Nuclear Information System (INIS)

    Ungrin, J.; Klabunde, J.

    1984-08-01

    MAXILAC, an RFQ of split coaxial resonator design, will deliver heavy ion currents in the 20-30 mA range with energies in the 100-150 keV/u range. One proposed method of coupling this RFQ to UNILAC is to divide the first tank of the Wideroee section into two segments and to inject the MAXILAC beam for acceleration starting with the second segment. This injection scheme has been investigated in detail with the beam dynamics codes MIKRO, PARMT and PARMI. Other injection schemes are also considered. (orig.)

  15. CURRENT MICROBIOLOGICAL ASPECTS IN HIGH MOUNTAIN

    OpenAIRE

    KURT HANSELMANN; MUNTI YUHANA

    2006-01-01

    Remote and normally unpolluted high mountain lakes provide habitats with no or very limited anthropogenic influences and, therefore, their hydrodynamics are mostly regulated by the natural c onditions. Researches in high mountain lakes deal with measuring and modeling the response of the habitats to environmental changes especially correlated to acid deposition, pollutants influx and climatic variability. The microbial world has also become a focus in many studies of these extreme ecosystem...

  16. A single high dose of escitalopram disrupts sensory gating and habituation, but not sensorimotor gating in healthy volunteers

    DEFF Research Database (Denmark)

    Oranje, Bob; Wienberg, Malene; Glenthøj, Birte Yding

    2011-01-01

    Early mechanisms to limit the input of sensory information to higher brain areas are important for a healthy individual. In previous studies, we found that a low dose of 10mg escitalopram (SSRI) disrupts habituation, without affecting sensory and sensorimotor gating in healthy volunteers. In the ......Early mechanisms to limit the input of sensory information to higher brain areas are important for a healthy individual. In previous studies, we found that a low dose of 10mg escitalopram (SSRI) disrupts habituation, without affecting sensory and sensorimotor gating in healthy volunteers....... In the current study a higher dose of 15mg was used. The hypothesis was that this higher dose of escitalopram would not only disrupt habituation, but also sensory and sensorimotor gating. Twenty healthy male volunteers received either placebo or 15mg escitalopram, after which they were tested in a P50...... suppression, and a habituation and prepulse inhibition (PPI) of the startle reflex paradigm. Escitalopram significantly decreased P50 suppression and habituation, but had no effect on PPI. The results indicate that habituation and sensory gating are disrupted by increased serotonergic activity, while...

  17. The physics of high current beams

    International Nuclear Information System (INIS)

    Lawson, J.D.

    1988-05-01

    An outline is presented of paraxial charged particle optics in the presence of self-fields arising from the space-charge and current carried by the beam. Solutions of the envelope equations for beams with finite emittance are considered for a number of specific situations, with the approximation that the density profile of the beam is uniform with a sharp edge, so that the focusing remains linear. More realistic beams are then considered, and the problems of matching, emittance growth and stability are discussed. An attempt is made to emphasize physical principles and physical ideas rather than to present the detailed mathematical techniques required for specific problems. The approach is a tutorial one, and several 'exercises' are included in the text. Most of the material is treated in more depth in the author's forthcoming book. (author)

  18. High-Current Plasma Electron Sources

    International Nuclear Information System (INIS)

    Gushenets, J.Z.; Krokhmal, V.A.; Krasik, Ya. E.; Felsteiner, J.; Gushenets, V.

    2002-01-01

    In this report we present the design, electrical schemes and preliminary results of a test of 4 different electron plasma cathodes operating under Kg h-voltage pulses in a vacuum diode. The first plasma cathode consists of 6 azimuthally symmetrically distributed arc guns and a hollow anode having an output window covered by a metal grid. Plasma formation is initiated by a surface discharge over a ceramic washer placed between a W-made cathode and an intermediate electrode. Further plasma expansion leads to a redistribution of the discharge between the W-cathode and the hollow anode. An accelerating pulse applied between the output anode grid and the collector extracts electrons from this plasma. The operation of another plasma cathode design is based on Penning discharge for preliminary plasma formation. The main glow discharge occurs between an intermediate electrode of the Penning gun and the hollow anode. To keep the background pressure in the accelerating gap at P S 2.5x10 4 Torr either differential pumping or a pulsed gas puff valve were used. The operation of the latter electron plasma source is based on a hollow cathode discharge. To achieve a sharp pressure gradient between the cathode cavity and the accelerating gap a pulsed gas puff valve was used. A specially designed ferroelectric plasma cathode initiated plasma formation inside the hollow cathode. This type of the hollow cathode discharge ignition allowed to achieve a discharge current of 1.2 kA at a background pressure of 2x10 4 Torr. All these cathodes were developed and initially tested inside a planar diode with a background pressure S 2x10 4 Torr under the same conditions: accelerating voltage 180 - 300 kV, pulse duration 200 - 400 ns, electron beam current - 1 - 1.5 kA, and cross-sectional area of the extracted electron beam 113 cm 2

  19. Current situation on highly pathogenic avian influenza

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  20. Extremely fast vertical displacement event induced by a plasma βp collapse in high βp tokamak disruptions

    International Nuclear Information System (INIS)

    Nakamura, Yukiharu; Yoshino, Ryuji; Pomphrey, N.; Jardin, S.C.

    1996-05-01

    In a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell, extremely fast vertical displacement events (VDE's) induced by a model of strong β p collapse were found through computer simulations using the Tokamak Simulation Code. Although the plasma current quench, which had been shown to be the prime cause of VDE's in a relatively low β p tokamak (β p ∼ 0.2), was not observed during the VDE evolution, the observed growth rate of VDE's was almost five times (γ ∼ 655 sec -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 sec -1 ). The essential mechanism of the β p collapse-induced VDE was clarified to be the significant destabilization of positional instability due to a large and sudden degradation of the decay n-index in addition to a reduction of the stability index n s . It is pointed out that the shell-geometry characterizes the VDE dynamics, and that the VDE rate depends strongly both on the magnitude of the β p collapse and the n-index of the equilibria just before the β p collapse occurs. A new guide line for designing the fusion reactor is proposed with considering the impact of disruptions. (author)

  1. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I.S.; Pestchanyi, S.E.; Bazylev, B.N [Forschungszentrum Karlsruhe (Germany). Inst. for Pulsed Power and Microwave Technology; Safronov, V.M. [Troitsk Inst. for Innovation and Fusion Research (TRINITI) (Russian Federation); Garkusha, I.E. [Kharkov Inst. of Physics and Technology (KIPT) (Ukraine). Inst. of Plasma Physics

    2004-08-01

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 10{sup 2} MJ/m{sup 2} on a time scale {tau} of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q {approx} 3MJ/m{sup 2} and {tau}{approx}0.3 ms; deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q=10-30MJ/m{sup 2} and {tau} = 0.03-0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  2. Aspects of potential magmatic disruption of a high-level radioactive waste repository in southern Nevada

    International Nuclear Information System (INIS)

    Crowe, B.; Self, S.; Vaniman, D.; Amos, R.; Perry, F.

    1983-01-01

    Volcanic hazard studies, combining standard techniques of hazard appraisal and risk assessment are being undertaken with respect to storage of high-level, radioactive waste in southern Nevada. Consequence studies, the emphasis of this work, are evaluated by tracing the steps of ascent of basaltic magma including intersection and disruption of a repository followed by surface eruption. Theoretical considerations suggest basalt magma ascends rapidly from mantle depth (10's of cm/sec in the bubble-free regime) but may be trapped temporarily and fractionate at the mantle/crust interface. Basalt centers are fed from narrow linear dikes. Local sheet-like intrusions formed at depths of 200 to 300 m probably due to a combination of extensional faulting during emplacement and trapping within low-density tuff country rock, aided in part by a low magma-volatile content. Incorporation of radioactive waste in basalt magma is controlled by the dimensions of basalt dikes at repository depths and the depth of magma fragmentation. Dispersal pathways of waste should follow the pyroclastic component of a Strombolian eruption. The maximum volume of waste deposited with basaltic tephra can be traced approximately by assuming waste material is dispersed in the same patterns as country rock lithic fragments. Based on a basalt magma cycle that is similar to typical Strombolian centers, 180 m 3 of a repository inventory will be deposited in a scoria cone (of which approx. 1 m 3 will be exposed to the surface in a 10,000-year period), 320 to 900 m 3 will be deposited in a scoria-fall sheet (up to 12-km dispersal), and 21 m 3 will be dispersed regionally with a fine-grained particle component. 62 references, 8 figures, 2 tables

  3. Material Surface Damage under High Pulse Loads Typical for ELM Bursts and Disruptions in ITER

    Science.gov (United States)

    Landman, I. S.; Pestchanyi, S. E.; Safronov, V. M.; Bazylev, B. N.; Garkusha, I. E.

    The divertor armour material for the tokamak ITER will probably be carbon manufactured as fibre composites (CFC) and tungsten as either brush-like structures or thin plates. Disruptive pulse loads where the heat deposition Q may reach 102 MJ/m 2 on a time scale Ïä of 3 ms, or operation in the ELMy H-mode at repetitive loads with Q âe 1/4 3 MJ/m2 and Ïä âe 1/4 0.3 ms, deteriorate armour performance. This work surveys recent numerical and experimental investigations of erosion mechanisms at these off-normal regimes carried out at FZK, TRINITI, and IPP-Kharkov. The modelling uses the anisotropic thermomechanics code PEGASUS-3D for the simulation of CFC brittle destruction, the surface melt motion code MEMOS-1.5D for tungsten targets, and the radiation-magnetohydrodynamics code FOREV-2D for calculating the plasma impact and simulating the heat loads for the ITER regime. Experiments aimed at validating these codes are being carried out at the plasma gun facilities MK-200UG, QSPA-T, and QSPA-Kh50 which produce powerful streams of hydrogen plasma with Q = 10–30 MJ/m2 and Ïä = 0.03–0.5 ms. Essential results are, for CFC targets, the experiments at high heat loads and the development of a local overheating model incorporated in PEGASUS-3D, and for the tungsten targets the analysis of evaporation- and melt motion erosion on the base of MEMOS-1.5D calculations for repetitive ELMs.

  4. Disruption Physics and Mitigation on DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Humphreys, D.A.; Kellman, A.G.

    2005-01-01

    The contributions of the DIII-D tokamak toward the understanding and control of disruptions are reviewed. Disruptions are found to be deterministic, and the underlying causes of disruption can therefore be predicted and avoided. With sufficiently rapid detection, possible damage from disruptions can be mitigated using an understanding of disruption phenomenology and plasma physics. Regimes of high β are readily available in DIII-D and provide access to relatively high energy density disruptions, despite DIII-D's moderate magnetic field and size. DIII-D, with all-graphite wall armor and wall conditioning between discharges, has proven highly resilient to the deleterious effects that disruptions can have on plasma operations. Simultaneously, exploitation and adaptation of DIII-D's extensive core and edge plasma diagnostic set have allowed for unique plasma measurements during disruptions. These measurements have tied into the development of several physical models used to understand aspects of disruptions, such as magnetohydrodynamic growth at the disruption onset, radiation energy balance through the thermal quench, and halo currents during the current quench. Based on this fundamental understanding, DIII-D has developed techniques to mitigate the harmful effects of disruptions by radiative dissipation of the plasma energy and extrapolated these techniques for possible use on larger devices like ITER

  5. Sleep Disrupts High-Level Speech Parsing Despite Significant Basic Auditory Processing.

    Science.gov (United States)

    Makov, Shiri; Sharon, Omer; Ding, Nai; Ben-Shachar, Michal; Nir, Yuval; Zion Golumbic, Elana

    2017-08-09

    The extent to which the sleeping brain processes sensory information remains unclear. This is particularly true for continuous and complex stimuli such as speech, in which information is organized into hierarchically embedded structures. Recently, novel metrics for assessing the neural representation of continuous speech have been developed using noninvasive brain recordings that have thus far only been tested during wakefulness. Here we investigated, for the first time, the sleeping brain's capacity to process continuous speech at different hierarchical levels using a newly developed Concurrent Hierarchical Tracking (CHT) approach that allows monitoring the neural representation and processing-depth of continuous speech online. Speech sequences were compiled with syllables, words, phrases, and sentences occurring at fixed time intervals such that different linguistic levels correspond to distinct frequencies. This enabled us to distinguish their neural signatures in brain activity. We compared the neural tracking of intelligible versus unintelligible (scrambled and foreign) speech across states of wakefulness and sleep using high-density EEG in humans. We found that neural tracking of stimulus acoustics was comparable across wakefulness and sleep and similar across all conditions regardless of speech intelligibility. In contrast, neural tracking of higher-order linguistic constructs (words, phrases, and sentences) was only observed for intelligible speech during wakefulness and could not be detected at all during nonrapid eye movement or rapid eye movement sleep. These results suggest that, whereas low-level auditory processing is relatively preserved during sleep, higher-level hierarchical linguistic parsing is severely disrupted, thereby revealing the capacity and limits of language processing during sleep. SIGNIFICANCE STATEMENT Despite the persistence of some sensory processing during sleep, it is unclear whether high-level cognitive processes such as speech

  6. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  7. High-current power supply for accelerator magnets

    International Nuclear Information System (INIS)

    Bourkland, K.R.; Winje, R.A.

    1978-01-01

    A power supply for controlling the current to accelerator magnets produces a high current at a precisely controlled time rate of change by varying the resonant frequency of an RLC circuit that includes the magnet and applying the current to the magnet during a predetermined portion of the waveform of an oscillation. The current is kept from going negative despite the reverse-current characteristics of thyristors by a quenching circuit

  8. Design of high current bunching system and high power fast Faraday cup for high current LEBT at VECC

    International Nuclear Information System (INIS)

    Anuraag Misra, A.; Pandit, B.V.S.; Gautam Pal, C.

    2011-01-01

    A high current microwave ion source as described is currently operational at VECC. We are able to optimize 6.4 mA of proton current in the LEBT line of ion source. The cyclotron type of accelerators accept only a fraction of DC ion beam coming from ion source so a ion beam buncher is needed to increase the accepted current into the cyclotron. The buncher described in this paper is unique in its kind as it has to handle high beam loading power upto 400 W as it is designed to bunch few mA of proton beam currents at 80 keV beam energy. A sinusoidal quarter wave RF structure has been chosen to bunch the high current beam due to high Q achievable in comparison with other configurations. This buncher has been designed using CST Microwave studio 3D advanced code since the design frequency of our buncher is 42 MHz, we have provided the RF and vacuum window near the drift tube of buncher to avoid vacuum and multipacting problems and to keep maximum volume in air region. There is a provision of multipacting interlocks to shut off amplifier during multipacting. We have carried out a detailed electromagnetic and thermal design of the buncher in CST Microwave studio and simulated values of unloaded Q was calculated be 4000. We have estimated a power of 400 W to achieve gap (designed) voltage of 10 kV. This buncher is in advanced stage of fabrication. A high power fast Faraday cup is also designed to characterize the above mentioned high current bunching system. The fast Faraday cup is designed in 50 Ω coaxial geometry to transmit fast pulse of bunched ion beam. The design of Faraday cup was completed using ANSYS HFSS and a bandwidth of 1.75 GHz was achieved this faraday cup design was different from conventional Faraday cup design as we have designed the support and cooling lines at such a place on Faraday cup which do not disturb the electrical impedance of the cup. (author)

  9. Stable superconducting magnet. [high current levels below critical temperature

    Science.gov (United States)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  10. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  11. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong; Yang, Jiang Ke; Lee, On On; Li, Tie Gang; Al-Suwailem, Abdulaziz M.; Danchin, Antoine; Qian, Pei-Yuan

    2011-01-01

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  12. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong

    2011-12-21

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  13. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

  14. Disruptions and Their Mitigation in TEXTOR

    International Nuclear Information System (INIS)

    Finken, K.H.; Jaspers, R.; Kraemer-Flecken, A.; Savtchkov, A.; Lehnen, M.; Waidmann, G.

    2005-01-01

    Disruptions remain a major concern for tokamak devices, particularly for large machines. The critical issues are the induced (halo) currents and the resulting forces, the excessive heating of exposed surfaces by the instantaneous power release, and the possible occurrence of highly energetic runaway electrons. The key topics of the investigations on TEXTOR in the recent years concerned (a) the power deposition pattern recorded by a fast infrared scanner, (b) the runaway generation measured by synchrotron radiation in the infrared spectral region, (c) method development for 'healing' discharges that are going to disrupt, and (d) massive gas puffing for mitigating the adverse effects of disruptions

  15. βp-collapse-induced vertical displacement event in high βp tokamak disruption

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yoshino, R.; Pomphrey, N.; Jardin, S.C.

    1996-01-01

    Extremely fast vertical displacement events (VDEs) induced by a strong β p collapse were found in a vertically elongated (κ ∼ 1.5), high β p (β p ∼ 1.7) tokamak with a resistive shell through computer simulations using the tokamak simulation code. Although the plasma current quench which has been shown to be the prime cause of VDEs in a relatively low β p tokamak (β p ∼ 0.2) (Nakamura Y et al 1996 Nucl. Fusion 36 643), was not observed during the VDE evolution, the observed growth rate of VDEs was almost five times (γ ∼ 655 s -1 ) faster than the growth rate of the usual positional instability (γ ∼ 149 s -1 ). The essential mechanism of the β p -collapse-induced VDE was clarified to be the intense enhancement of positional instability due to a large and sudden degradation of the magnetic field decay n-index in addition to the significant destabilization due to a reduction in the stability index n s . The radial shift of the magnetic axis caused by the β p collapse induces eddy currents on the resistive shell, and these eddy currents produce a large degradation of the n-index. (author)

  16. Understanding disruptions in tokamaksa)

    Science.gov (United States)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  17. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  18. Application of high speed photography for high current vacuum arcs

    NARCIS (Netherlands)

    Damstra, G.C.; Merck, W.F.H.; Vossen, J.W.G.L.; Janssen, M.F.P.; Bouwmeester, C.E.

    1998-01-01

    A high speed image detection system for 106 frames per second or 107 streaks per second has been developed for the testing of vacuum circuit breakers, using 10×16 optical fibres for light transfer to 160 fast photo diodes. The output of these diodes is multiplexed, AD converted in a 4 bit

  19. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Schwartz, J.; Cohn, D.R.; Bromberg, L.; Williams, J.E.C.

    1987-06-01

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  20. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  1. High-current beam transport in electrostatic accelerator tubes

    International Nuclear Information System (INIS)

    Ramian, G.; Elais, L.

    1987-01-01

    The UCSB Free Electron Laser (FEL) has successfully demonstrated the use of a commercial 6 megavolt electrostatic accelerator as a high current beam source in a recirculating configuration. The accelerator, manufactured by National Electrostatics Corp. (NEC), Middleton WI, uses two standard high gradient accelerator tubes. Suppression of ion multiplication was accomplished by NEC with apertures and a shaped electrostatic field. This field shaping has fortuitously provided a periodically reversing radial field component with sufficient focusing strength to transport electron beams of up to 3 Amps current. Present two-stage FEL work requires a 20 Amp beam and proposed very high voltage FEL designs require currents as high as 100 Amps. A plan to permit transport of such high current beams by the addition of solenoidal focussing elements is described

  2. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  3. Recriticality, a Key Phenomenon to Investigate in Core Disruptive Accident Scenarios of Current and Future Fast Reactor Designs

    International Nuclear Information System (INIS)

    Maschek, W.; Rineiski, A.; Flad, M.; Kriventsev, V.; Gabrielli, F.; Morita, K.

    2012-01-01

    Final comments and conclusions: • Modern plants, should have performed better under Fukushima type event. • In future fast reactor systems significantly higher active and passive safety features are installed, which should cope with events like Fukushima. • One important lesson: put a focus on rare initiators, accident routes and consequences that are neither expected nor have been observed, events that are categorized under ‘black swans’. • Importance of severe accident research demonstrated - both analytically and experimentally for assessing and interpreting accident scenarios and developments. Precondition for developing preventive & mitigative safety measures. Passive safety measures are in the focus of advanced design options and must work under conditions of multiple loads and aggravating events. • Fast reactor systems behavior as the SFR under severe accident conditions: – In fast spectrum systems as the SFR the core is not in its neutronically most reactive configuration and SFRs may be loaded with MAs for waste management; – Recriticalities have a high probability because of the higher enrichment levels; – Short time scales have to be envisioned for core melt-down; – Decay heat levels might be significantly higher, if MA bearing fuel is involved. • Improve design by measures for prevention and/or mitigation of recriticalities; – High reliability of simulations required for proof; • Assessment of fuel relocated on peripheral structures; • Preventive/mitigating measures should not replace containment measures

  4. A model for disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.; Campbell, R.B.

    1993-01-01

    One of the possible consequences of disruptions in tokamaks is the generation of runaway electrons which can impact plasma facing components and cause damage, owing to high local energy deposition. This problem becomes more serious as the machine size and plasma current increase. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that impurity concentration and type, as well as plasma motion, can strongly influence runaway behaviour. A comparison of disruption data from several runs on JET and DIII-D with model results demonstrate the effects of impurities, and plasma motion, on runaway number density and energy. The model is also applied to the calculation of runaway currents for ITER. (author). 16 refs, 13 figs

  5. Current voltage characteristics of composite superconductors with high contact resistance

    International Nuclear Information System (INIS)

    Akhmetov, A.A.; Baev, V.P.

    1984-01-01

    An experimental study has been made of current-voltage characteristics of composite superconductors with contact resistance between superconducting filaments and normal metal with high electrical conductivity. It is shown that stable resistive states exist in such conductors over a wide range of currents. The presence of resistive states is interpreted in terms of the resistive domain concept. The minimum and maximum currents of resistive states are found to be dependent on the electrical resistance of normal metal and magnetic field. (author)

  6. Hall probe for measuring high currents in superconducting coils

    International Nuclear Information System (INIS)

    Ferendeci, A.M.

    1986-01-01

    Constructional details of a compact Hall probe for measuring high currents in superconducting coils are given. The Hall probe is easy to assemble and can be inserted or removed from the system without breaking the superconducting loop. Upper current limit of the probe can be increased by using larger magnetic core material. Shielding becomes necessary if the probe holder is to be placed near large current dependent magnetic fields

  7. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  8. Evidence for intrinsic critical current density in high Tc superconductors

    International Nuclear Information System (INIS)

    Freltoft, T.; Minnhagen, P.; Jeldtoft Jensen, H.

    1991-01-01

    We present measurements of the voltage-current characteristics of high quality epitaxial YBaCuO films in zero magnetic field. According to the predictions of a current induced vortex pair breaking picture the voltage should follow the functional form V∝I(I-I c ) a-1 . An analysis designed to test this functional behavior is carried out. Consistency is found. (orig.)

  9. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  10. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  11. Critical current of high Tc superconducting Bi223/Ag tapes

    NARCIS (Netherlands)

    Huang, Y.; ten Haken, Bernard; ten Kate, Herman H.J.

    1998-01-01

    The magnetic field dependence of the critical current of various high Tc superconducting Bi2223/Ag tapes indicates that the transport current is carried through two paths: one is through weakly-linked grain boundaries (Josephson junctions); another is through well-connected grains. The critical

  12. Oscillographic Chronopotentiometry with High and Low Frequency Current

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel electroanalytical method, oscillographic chronopotentiometry with high and low frequency current, is presented in this paper. With this method, the sensitivity of almost all kinds of oscillographic chronopotentiometry can be enhanced about one order.

  13. New initiatives for producing high current electron accelerators

    International Nuclear Information System (INIS)

    Faehl, R.J.; Keinigs, R.K.; Pogue, E.W.

    1996-01-01

    New classes of compact electron accelerators able to deliver multi-kiloamperes of pulsed 10-50 MeV electron beams are being studied. One class is based upon rf linac technology with dielectric-filled cavities. For materials with ε/ε o >>1, the greatly increased energy storage permits high current operation. The second type is a high energy injected betatron. Circulating current limits scale as Β 2 γ 3

  14. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  15. On the avalanche generation of runaway electrons during tokamak disruptions

    International Nuclear Information System (INIS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-01-01

    A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model

  16. High current density aluminum stabilized conductor concepts for space applications

    International Nuclear Information System (INIS)

    Huang, X.; Eyssa, Y.M.; Hilal, M.A.

    1989-01-01

    Lightweight conductors are needed for space magnets to achieve values of E/M (energy stored per unit mass) comparable to the or higher than advanced batteries. High purity aluminum stabilized NbTi composite conductors cooled by 1.8 K helium can provide a winding current density up to 15 kA/cm/sup 2/ at fields up to 10 tesla. The conductors are edge cooled with enough surface area to provide recovery following a normalizing disturbance. The conductors are designed so that current diffusion time in the high purity aluminum is smaller than thermal diffusion time in helium. Conductor design, stability and current diffusion are considered in detail

  17. Design of high current injector for SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Nakamura, N.; Mizuno, A.; Suzuki, S.; Hori, T.; Yanagida, K.; Mashiko, K.; Yokomizo, H.

    1992-01-01

    The linac of SPring-8, large synchrotron radiation facility of Japan, has the option which is positron operation modes. The electron gun of this linac is designed on base of the optimization for a high current beam to get positrons as many as possible. But otherwise this linac should be used as an accurate electron beam generator for commissioning on the whole facility. This report shows differences of the beam specification between a high current beam and a low current beam. The bunching section of this linac has just been constructed this summer at Tokai-Lab. of JAERI to be confirmed with the specification. (author). 3 refs., 1 tab., 4 figs

  18. High current betatron research at the University of New Mexico

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Len, L.K.

    1987-01-01

    Betatrons are among the simplest of high energy accelerators. Their circuit is equivalent to a step-up transformer; the electron beam forms a multi-turn secondary winding. Circulation of the beam around the flux core allows generation of high energy electrons with relatively small core mass. As with any transformer, a betatron is energy inefficient at low beam current; the energy balance is dominated by core losses. This fact has prompted a continuing investigation of high current betatrons as efficient, compact sources of beta and gamma radiation. A program has been supported at the University of New Mexico by the Office of Naval Research to study the physics of high current electron beams in circular accelerators and to develop practical technology for high power betatrons. Fabrication and assembly of the main ring was completed in January of this year. In contrast to other recent high current betatron experiments the UNM device utilizes a periodic focusing system to contain high current beams during the low energy phase of the acceleration cycle. The reversing cusp fields generated by alternating polarity solenoidal lenses cancel beam drift motions induced by machine errors. In consequence, they have found that the cusp geometry has had significantly better stability properties than a monodirectional toroidal field. In comparison to other minimum-Β geometries such as the Stelllatron cusps have open field lines which facilitate beam injection and neutralization

  19. Integrated disruption avoidance and mitigation in KSTAR

    International Nuclear Information System (INIS)

    Kim, Jayhyun; Woo, M.H.; Han, H.; In, Y.; Bak, J.G.; Eidietis, N.W.

    2014-01-01

    The final target of Korea Superconducting Tokamak Advanced Research (KSTAR) aims advanced tokamak operation at plasma current 2 MA and toroidal field 3.5 T. In order to safely achieve the target, disruption counter-measures are unavoidable when considering the disruption risks, inevitably accompanied with high performance discharges, such as electro-magnetic load on conducting structures, collisional damage by run-away electrons, and thermal load on plasma facing components (PFCs). In this reason, the establishment of integrated disruption mitigation system (DMS) has been started for routine mega-ampere class operations of KSTAR since 2013 campaign. The DMS mainly consists of the disruption prediction and its avoidance/mitigation in company with logical/technical integration of them. We present the details of KSTAR DMS and the related experimental results in this article. (author)

  20. The influence of plasma motion on disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.

    1991-01-01

    One of the possible consequences of disruptions is the generation of runaway electrons which can impact plasma facing components and cause damage due to high local energy deposition. This problem becomes more serious as the machine size and plasma current increases. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that control circuitry on strongly influence runaway behavior. A comparison of disruption data from several shots on JET and D3-D with model results, demonstrate the effects of plasma motion on runaway number density and energy. 6 refs., 12 figs

  1. Disruptive Innovation Patterns Driven by Mega-Projects: A Sustainable Development Pattern Case of China’s High-Speed Rail

    Directory of Open Access Journals (Sweden)

    Bingxiu Gui

    2018-04-01

    Full Text Available Sustainable development of mega-projects has drawn many concerns around the world. The theory of disruptive innovation in mega-projects is a typical sustainable development pattern but still lacks systematic understanding. This article takes China’s high-speed rail (CHSR project as an example to analyze the disruptive innovation pattern of mega-projects. First, this paper systematically traces the theories of disruptive innovation and summarizes the connotations of disruptive innovation. Simultaneously, from the historical development of several typical mega-projects in China, this paper summarizes the connotations of mega-projects. Based on two connotations, this paper summarizes the theoretical basis of disruptive innovation in mega-projects. Second, this paper takes the CHSR project as a case to analyze its innovation pattern from the analysis of the development process, operation mechanism and influence in sustainability; the disruptive innovation pattern is put forward afterward. Third, the discussion is drawn from the perspectives of the characteristics, scope of application and innovation environment of the disruptive innovation of CHSR. Last, the conclusions of this article are summarized.

  2. Morphodynamics of supercritical high-density turbidity currents

    NARCIS (Netherlands)

    Cartigny, M.

    2012-01-01

    Seafloor and outcrop observations combined with numerical and physical experiments show that turbidity currents are likely 1) to be in a supercritical flow state and 2) to carry high sediment concentrations (being of high-density). The thesis starts with an experimental study of bedforms

  3. Design and application consideration of high temperature superconducting current leads

    International Nuclear Information System (INIS)

    Wu, J.L.

    1994-01-01

    As a potential major source of heat leak and the resultant cryogen boiloff, cryogenic current leads can significantly affect the refrigeration power requirement of cryogenic power equipment. Reduction of the heat leak associated with current leads can therefore contribute to the development and application of this equipment. Recent studies and tests have demonstrated that, due to their superconducting and low thermal conductivity properties, ceramic high temperature superconductor (HTSC) can be employed in current leads to significantly reduce the heat leak. However, realization of this benefit requires special design considerations pertaining to the properties and the fabrication technology of the relatively new ceramic superconductor materials. Since processing and fabrication technology are continuously being developed in the laboratories, data on material properties unrelated to critical states are quite limited. Therefore, design analysis and experiments have to be conducted in tandem to achieve a successful development. Due to the rather unique combination of superconducting and thermal conductivities which are orders of magnitude lower than copper, ceramic superconductors allow expansion of the operating scenarios of current leads. In addition to the conventional vapor-cooled lead type application, low heat leak conduction-cooled type current leads may be practical and are being developed. Furthermore, a current lead with an intermediate heat leak intercept has been successfully demonstrated in a multiple current lead assembly employing HTSC. These design and application considerations of high temperature superconducting current leads are addressed here

  4. HOM frequency control of SRF cavity in high current ERLs

    Science.gov (United States)

    Xu, Chen; Ben-Zvi, Ilan

    2018-03-01

    The acceleration of high-current beam in Superconducting Radio Frequency (SRF) cavities is a challenging but essential for a variety of advanced accelerators. SRF cavities should be carefully designed to minimize the High Order Modes (HOM) power generated in the cavities by the beam current. The reduction of HOM power we demonstrate in a particular case can be quite large. This paper presents a method to systematically control the HOM resonance frequencies in the initial design phase to minimize the HOM power generation. This method is expected to be beneficial for the design of high SRF cavities addressing a variety of Energy Recovery Linac (ERL) applications.

  5. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  6. Disrupted Disclosure

    DEFF Research Database (Denmark)

    Krause Hansen, Hans; Uldam, Julie

    appearances become challenged through disruptive disclosures in mediaenvironments characterized by multiple levels of visibility, with companies both observing andbeing observed by civil society groups that criticize them; (c) why and how the mobilization aroundtransparency and ensuing practices...

  7. Family Disruptions

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Disruptions Page Content Article Body No matter how ...

  8. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  9. High Density Airborne LIDAR Estimation of Disrupted Trees Induced by landslides

    NARCIS (Netherlands)

    Razak, K.A.; Bucksch, A.; Straatsma, M.W.; Abu Bakar, R.; Jong, S.M. de; Westen, C.J. van

    2013-01-01

    Airborne laser scanning (ALS) data has revolutionized the landslide assessment in a rugged vegetated terrain. It enables the parameterization of morphology and vegetation of the instability slopes. Vegetation characteristics are by far less investigated because of the currently available accuracy

  10. Lattice Effects Due to High Currents in PEP-II

    International Nuclear Information System (INIS)

    Decker, F.-J.; Smith, H.; Turner, J.L.; SLAC

    2005-01-01

    The very high beam currents in the PEP-II B-Factory have caused many expected and unexpected effects: Synchrotron light fans move the beam pipe and cause dispersion; higher order modes cause excessive heating, e-clouds around the positron beam blow up its beam size. Here we describe an effect where the measured dispersion of the beam in the Low Energy Ring (LER) is different at high and at low beam currents. The dispersion was iteratively lowered by making anti-symmetric orbit bumps in many sextupole duplets, checking each time with a dispersion measurement where a dispersive kick is generated. This can be done parasitically during collisions. It was a surprise when checking the low current characterization data that there is a change. Subsequent high and low current measurements confirmed the effect. One source was believed to be located far away from any synchrotron radiation in the middle of a straight (PR12), away from sextupoles and skew quadrupoles and created a dispersion wave of about 70 mm at high current while at low current it is negligible

  11. Formation of Highly Twisted Ribbons in a Carboxymethylcellulase Gene-Disrupted Strain of a Cellulose-Producing Bacterium

    Science.gov (United States)

    Sugano, Yasushi; Shoda, Makoto; Sakakibara, Hitoshi; Oiwa, Kazuhiro; Tuzi, Satoru; Imai, Tomoya; Sugiyama, Junji; Takeuchi, Miyuki; Yamauchi, Daisuke

    2013-01-01

    Cellulases are enzymes that normally digest cellulose; however, some are known to play essential roles in cellulose biosynthesis. Although some endogenous cellulases of plants and cellulose-producing bacteria are reportedly involved in cellulose production, their functions in cellulose production are unknown. In this study, we demonstrated that disruption of the cellulase (carboxymethylcellulase) gene causes irregular packing of de novo-synthesized fibrils in Gluconacetobacter xylinus, a cellulose-producing bacterium. Cellulose production was remarkably reduced and small amounts of particulate material were accumulated in the culture of a cmcax-disrupted G. xylinus strain (F2-2). The particulate material was shown to contain cellulose by both solid-state 13C nuclear magnetic resonance analysis and Fourier transform infrared spectroscopy analysis. Electron microscopy revealed that the cellulose fibrils produced by the F2-2 cells were highly twisted compared with those produced by control cells. This hypertwisting of the fibrils may reduce cellulose synthesis in the F2-2 strains. PMID:23243308

  12. A high-current, high-voltage power supply with special output current waveform for APS injector synchrotron dipole magnets

    International Nuclear Information System (INIS)

    Fathizadeh, M.; Despe, O.D.; McGhee, D.G.; Mills, F.E.; Turner, L.R.

    1991-01-01

    This paper describes a high-voltage, high-current power supply for the injector synchrotron dipole magnets at APS. In order to reset the dipole magnets in each cycle two different current waveforms are suggested. The first current waveform consists of three sections, namely: dc-reset, linear ramp, and recovery sections where injection is done ''on the fly''. The second current waveform consists of six different sections, dc-reset, transition to injection level, injection flat level, parabolic, linear ramp and recovery sections. The effect of such waveforms on the beam is discussed and the power supply limitations to follow such waveforms are given. The power supply limitations are due to the power components and control loops. The reference for the current loop is generated by a DAC which is discussed

  13. High-voltage, high-current, solid-state closing switch

    Science.gov (United States)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  14. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  15. Electron gun for formation of two high-current beams

    International Nuclear Information System (INIS)

    Borisov, A.R.; Zherlitsyn, A.G.; Mel'nikov, G.V.; Shtejn, Yu.G.

    1982-01-01

    The design of the ''Tonus'' accelerator electron gun for formation of two high-current beams aiming at the production of the maximum beam power and density is described. The results of investigation of two modes of beam formation are presented. In the first variant the beams were produced by means of two plane diodes with 40 mm diameter cathodes made of stainless steel and anodes made of 50 μm thick titanium foil. In the second variant the beams were formed by means of two coaxial diodes with magnetic insulation. In one diode the cathode diameter equals to 74 mm, the anode diameter - 92 mm, in the other diode 16 and 44 mm respectively. Current redistribution in the diodes and its effect on accelerating voltage are investigated. It is shown that the gun permits formation of synchronized two high-current beams, iaving equal electron energied. Wide range current control of both beams is possible

  16. Resistive current limiter with high-temperature superconductors. Final report

    International Nuclear Information System (INIS)

    Schubert, M.

    1995-12-01

    Fundamental results of the possibility of using high temperature superconductors (HTSC) in resistive fault current limiters are discussed. Measurement of the homogeneity of BSCCO-powder-in-tube materials were made. In addition, investigations of the transition from superconducting to normalconducting state under AC-current conditions were carried out. Based on these results, simulations of HTSC-materials on ceramic substrate were made and recent results are presented. Important results of the investigations are: 1. Current-limiting without external trigger only possible when the critical current density of HTSC exceeds 10 4 A/cm 2 . 2. Inhomogeneities sometimes cause problems with local destruction. This can be solved by parallel-elements or external trigger. 3. Fast current-limiting causes overvoltages which can be reduced by using parallel-elements. (orig.) [de

  17. Use of high current density superconducting coils in fusion devices

    International Nuclear Information System (INIS)

    Green, M.A.

    1979-11-01

    Superconducting magnets will play an important role in fusion research in years to come. The magnets which are currently proposed for fusion research use the concept of cryostability to insure stable operation of the superconducting coils. This paper proposes the use of adiabatically stable high current density superconducting coils in some types of fusion devices. The advantages of this approach are much lower system cold mass, enhanced cryogenic safety, increased access to the plasma and lower cost

  18. High-current pulses from inductive energy stores

    International Nuclear Information System (INIS)

    Wipf, S.L.

    1981-01-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ

  19. Microstructures and critical currents in high-Tc superconductors

    International Nuclear Information System (INIS)

    Suenaga, Masaki

    1998-01-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high T c superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa 2 Cu 3 O 7 if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa 2 Cu 3 O 7 and how effective are these in pinning vortices

  20. Enhanced performance on high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Cotrell, G.; Corti, S.; Christiansen, J.P.; Hellsten, T.; Jacquinot, J.; Lallia, P.; Lomas, P.; O'Rourke, J.; Taroni, A.; Tibone, F.; Start, D.F.H.

    1989-01-01

    The performance of high current discharges can be increased by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Sawtooth-free periods have been obtained resulting in the enhanced discharge performance. High T e (0) 9 - 10.5 keV with peaked profiles T e (0)/ e > = 3 - 4 were obtained giving values of n e (0)T e (0) up to 6x10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A 60 % enhancement in D-D reaction rate from 2nd harmonic deuterium (2ω CD ) heating appears to be present. In all current rise (CR) discharges radiation amounts to 25-50 % of total power. (author) 4 refs., 6 figs

  1. Low energy current accumulator for high-energy proton rings

    International Nuclear Information System (INIS)

    Month, M.

    1977-01-01

    Building current in high-energy p-p colliding beam machines is most appropriately done in a low-energy (small circumference) current accumulator. Three significant factors favor such a procedure: First, large rings tend to be susceptible to unstable longitudinal density oscillations. These can be avoided by pumping up the beam in the accumulator. When the current stack is injected into the storage ring, potentially harmful instability is essentially neutralized. Second, high-field magnets characteristic of future high energy proton rings are designed with superconducting coils within the iron magnetic shield. This means coil construction and placement errors propagate rapidly within the beam aperture. An intermediate ''stacking ring'' allows the minimum use of the superconducting ring aperture. Finally, the coils are vulnerable to radiation heating and possible magnet quenching. By minimizing beam manipulaion in the superconducting environment and using only the central portion of the beam aperture, coil vulnerability can be put at a minimum

  2. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  3. Enhanced performance of high current discharges in JET produced by ICRF heating during the current rise

    International Nuclear Information System (INIS)

    Bures, M.; Bhatnagar, V.; Christiansen, J.P.

    1989-01-01

    The performance of high current discharges can be improved by applying central ICRF heating before or shortly after the onset of sawtooth activity in the plasma current rise phase. Long sawtooth-free periods have been obtained which result in a transiently-enhanced discharge performance. High T c (0) = 9-10.5 keV with peaked profile T e (0)/ e > = 3-4 were obtained giving values of N e (0)T e (0) up to 6 x 10 20 (keV m -3 ). Improvements in T i (0) and neutron production are observed. A best value of n Dd (0)T i (0)τ E = 1.65 x 10 20 (m -3 keV s) was achieved. Local transport simulation shows that the electron and ion thermal diffusivities do not differ substantially in the two cases of current-rise (CR) and flat-top (FT) heating, the performance of the central plasma region being enhanced, in the case of current-rise, entirely by the elimination of the sawtooth instability. The maximum D-D reaction rate is enhanced by a factor of 2 compared to the flat-top value. An appreciable part of the reaction rate is attributed to 2nd harmonic deuterium (2ω CD ) heating. In all current-rise discharges radiation amounts to 25-50% of total power and Ζ eff remains roughly constant. (author)

  4. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC

    International Nuclear Information System (INIS)

    BEN-ZVI, I.

    2005-01-01

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R and D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC

  5. High dislocation density of tin induced by electric current

    International Nuclear Information System (INIS)

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-01-01

    A dislocation density of as high as 10 17 /m 2 in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10 3 A/ cm 2 . The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining

  6. Revolutionize Propulsion Test Facility High-Speed Video Imaging with Disruptive Computational Photography Enabling Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced rocket propulsion testing requires high-speed video recording that can capture essential information for NASA during rocket engine flight certification...

  7. Design considerations for high-current superconducting ion linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-01-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context

  8. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  9. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  10. Application of RF Superconductivity to High-Current Linac

    International Nuclear Information System (INIS)

    Chan, K.C.D.

    1998-01-01

    In 1997, the authors initiated a development program in Los Alamos for high-current superconducting proton-linac technology to build prototypes components of this linac to demonstrate the feasibility. The authors are building 700-MHz niobium cavities with elliptical shapes, as well as power couplers to transfer high RF power to these cavities. The cavities and power couplers will be integrated in cryostats as linac cryomodules. In this paper, they describe the linac design and the status of the development program

  11. High School Sport Specialization Patterns of Current Division I Athletes

    OpenAIRE

    Post, Eric G.; Thein-Nissenbaum, Jill M.; Stiffler, Mikel R.; Brooks, M. Alison; Bell, David R.; Sanfilippo, Jennifer L.; Trigsted, Stephanie M.; Heiderscheit, Bryan C.; McGuine, Timothy A.

    2016-01-01

    Background: Sport specialization is a strategy to acquire superior sport performance in 1 sport but is associated with increased injury risk. Currently, the degree of high school specialization among Division I athletes is unknown. Hypothesis: College athletes will display increased rates of specialization as they progress through their high school careers. Study Design: Descriptive epidemiological study. Level of Evidence: Level 4. Methods: Three hundred forty-three athletes (115 female) rep...

  12. Reducing AC-Winding Losses in High-Current High-Power Inductors

    DEFF Research Database (Denmark)

    Nymand, Morten; Madawala, Udaya K.; Andersen, Michael Andreas E.

    2009-01-01

    Foil windings are preferable in high-current high-power inductors to realize compact designs and to reduce dc-current losses. At high frequency, however, proximity effect will cause very significant increase in ac resistance in multi-layer windings, and lead to high ac winding losses. This paper ...

  13. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  14. A review of high beam current RFQ accelerators and funnels

    International Nuclear Information System (INIS)

    Schneider, J.D.

    1998-01-01

    The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H - injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H - ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers

  15. The design of high performance weak current integrated amplifier

    International Nuclear Information System (INIS)

    Chen Guojie; Cao Hui

    2005-01-01

    A design method of high performance weak current integrated amplifier using ICL7650 operational amplifier is introduced. The operating principle of circuits and the step of improving amplifier's performance are illustrated. Finally, the experimental results are given. The amplifier has programmable measurement range of 10 -9 -10 -12 A, automatic zero-correction, accurate measurement, and good stability. (authors)

  16. Observed currents at Bombay High during a winter

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Chandramohan, P.; Nayak, B.U.

    Ten day records of Aanderaa current meters (24 Dec 1981 to 2 Jan. 1982) at four depths, viz. 30, 45, 60 and 75 m at Bombay High (19˚24.5'N, 71˚2.5'E) off the west coast of India, in a water depth of 80 m have been subjected to spectral, cross...

  17. Politisk disruption

    DEFF Research Database (Denmark)

    Tække, Jesper

    2018-01-01

    Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på.......Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på....

  18. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  19. Valley current characterization of high current density resonant tunnelling diodes for terahertz-wave applications

    Science.gov (United States)

    Jacobs, K. J. P.; Stevens, B. J.; Baba, R.; Wada, O.; Mukai, T.; Hogg, R. A.

    2017-10-01

    We report valley current characterisation of high current density InGaAs/AlAs/InP resonant tunnelling diodes (RTDs) grown by metal-organic vapour phase epitaxy (MOVPE) for THz emission, with a view to investigate the origin of the valley current and optimize device performance. By applying a dual-pass fabrication technique, we are able to measure the RTD I-V characteristic for different perimeter/area ratios, which uniquely allows us to investigate the contribution of leakage current to the valley current and its effect on the PVCR from a single device. Temperature dependent (20 - 300 K) characteristics for a device are critically analysed and the effect of temperature on the maximum extractable power (PMAX) and the negative differential conductance (NDC) of the device is investigated. By performing theoretical modelling, we are able to explore the effect of typical variations in structural composition during the growth process on the tunnelling properties of the device, and hence the device performance.

  20. Testing and evaluation of high temperature superconductor current leads

    International Nuclear Information System (INIS)

    Yadav, Anand; Puntambekar, Avinash; Manekar, M.A.

    2009-01-01

    National Institute for Inter-disciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research, Trivandrum (formerly Regional Research Laboratory) has accomplished a DAE-BRNS project with Raja Ramanna Centre for Advanced Technology (RRCAT) as principal collaborator for the development of high temperature superconductor (HTS) current leads. These HTS current leads have self-field critical currents (Ic) ranging from 50 A to 1000 A at liquid nitrogen (LN 2 ) temperature. These HTS are made out of silver sheathed Bismuth Strontium Calcium Copper Oxide (BSCCO-2223), for direct application in superconducting (SC) systems involving transportation of high electric currents from power sources at room temperature to superconducting devices at cryogenic temperatures. RRCAT has participated in this project by testing and evaluation of these HTS current leads and carried out actual load trials. In this paper, we will describe the HTS testing setup, tests performed with their testing procedure and the test results. The testing of these HTS has been done with joint effort of Materials Advanced Accelerator Science and Cryogenics Div. and Superconducting Technology Lab (SCT Lab), Advanced Accelerator Module Development Div., using the test facility available at the SCT Lab. (author)

  1. Incarcerated Mothers and Fathers: How their Absences Disrupt Children’s High School Graduation

    Directory of Open Access Journals (Sweden)

    Anh- Luu Huynh- Hohnbaum

    2015-05-01

    Full Text Available The United States is faced with a growing number of children who have incarcerated parents and nearly one quarter of children who fail to complete high school. It has been shown that parental incarceration negatively impacts academic outcomes. This study examined whether parental incarceration affects children’s high school graduation. Data on 12,418 young adults was drawn from the Add Health Wave IV dataset. Logistic regression analyses examined differences between maternal and paternal incarceration and the effects of chronicity of incarceration. Whereas both were found to reduce the likelihood that children will complete high school, maternal incarceration had a greater impact. This study fills gaps in the literature examining differences in parental incarceration. Practice and policy implications are discussed.

  2. High current density magnets for INTOR and TIBER

    International Nuclear Information System (INIS)

    Miller, J.R.; Henning, C.D.; Kerns, J.A.; Slack, D.S.; Summers, L.T.; Zbasnik, J.P.

    1986-12-01

    The adoption of high current density, high field, superconducting magnets for INTOR and TIBER would prove beneficial. When combined with improved radiation tolerance of the magnets to minimize the inner leg shielding, a substantial reduction in machine dimensions and capital costs can be achieved. Fortunately, cable-in-conduit conductors (CICC) which are capable of the desired enhancements are being developed. Because conductor stability in a CICC depends more on the trapped helium enthalpy, rather than the copper resistivity, higher current densities of the order of 40 A/mm 2 at 12 T are possible. Radiation damage to the copper stabilizer is less important because the growth in resistance is a second-order effect on stability. Such CICC conductors lend themselves naturally to niobium-tin utilization, with the benefits of the high current-sharing temperature of this material being taken to advantage in absorbing radiation heating. When the helium coolant is injected at near the critical pressure, Joule-Thompson expansion in the flow path tends to stabilize the fluid temperature at under 6 K. Thus, higher fields, as well as higher current densities, can be considered for INTOR or TIBER

  3. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  4. Stability of large orbit, high-current particle rings

    International Nuclear Information System (INIS)

    Lovelace, R.V.E.

    1994-01-01

    A review is made of theory of the low-frequency stability of large orbit, high-current particle rings which continue to be of interest for compact fusion systems. The precession mode was the first mode predicted by Furth and observed by Christofilos to be unstable under certain conditions. Subsequently, many detailed studies have been made of the stability of particle rings- different modes, different ring geometries, systems with/without a toroidal B field, and sytems with/without a current carrying plasma component. The possibly dangerous modes are still thought to include the precession mode, the tilting mode, and the low order kink modes. copyright American Institute of Physics

  5. Crane RF accelerator for high current radiation damage studies

    International Nuclear Information System (INIS)

    Whitham, K.; Anamkath, H.; Evans, K.; Lyons, S.; Palmer, D.; Miller, R.; Treas, P.; Zante, T.

    1992-01-01

    An electron accelerator was designed and built for the Naval Weapons Support Center for transient radiation effects on electronics experiments and testing. The Crane L Band RF Electron Linac was designed to provide high currents over a wide range of pulse widths and energies. The energy extends to 60 MeV and pulse widths vary from a few ns to 10 μsec. Beam currents range from 20 amps in the short pulse case to 1.5 amps in the long pulse case. This paper describes the linac, its architecture, the e-gun and pulser, waveguides, klystrons and modulator, vacuum system, beam transport, and control systems. fig., tab

  6. Emerging and Disruptive Technologies.

    Science.gov (United States)

    Kricka, Larry J

    2016-08-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.

  7. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter

    DEFF Research Database (Denmark)

    Jørgensen, Thomas R; vanKuyk, Patricia A; Poulsen, Bjarne R

    2007-01-01

    This is a study of high-affinity glucose uptake in Aspergillus niger and the effect of disruption of a high-affinity monosaccharide-transporter gene, mstA. The substrate saturation constant (K(s)) of a reference strain was about 15 microM in glucose-limited chemostat culture. Disruption of mst......-affinity uptake system of A. niger. The mstA disruptant and a reference strain were cultivated in glucose-limited chemostat cultures at low, intermediate and high dilution rate (D=0.07 h(-1), 0.14 h(-1) and 0.20 h(-1)). Mycelium harvested from steady-state cultures was subjected to glucose uptake assays...

  8. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Science.gov (United States)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  9. Silicon Valley: Planet Startup : Disruptive Innovation, Passionate Entrepreneurship & High-tech Startups

    NARCIS (Netherlands)

    dr. A. Maas; Dr. P. Ester

    2016-01-01

    For decades now, Silicon Valley has been the home of the future. It's the birthplace of the world's most successful high-tech companies-including Apple, Yahoo, Google, Facebook, Twitter, and many more. So what's the secret? What is it about Silicon Valley that fosters entrepreneurship and

  10. Mixtures of endocrine disrupting contaminants modelled on human high end exposures

    DEFF Research Database (Denmark)

    Christiansen, Sofie; Kortenkamp, A.; Petersen, Marta Axelstad

    2012-01-01

    exceeding 1 is expected to lead to effects in the rat, a total dose more than 62 times higher than human exposures should lead to responses. Considering the high uncertainty of this estimate, experience on lowest‐observed‐adverse‐effect‐level (LOAEL)/NOAEL ratios and statistical power of rat studies, we...... expected that combined doses 150 times higher than high end human intake estimates should give no, or only borderline effects, whereas doses 450 times higher should produce significant responses. Experiments indeed showed clear developmental toxicity of the 450‐fold dose in terms of increased nipple...... though each individual chemical is present at low, ineffective doses, but the effects of mixtures modelled based on human intakes have not previously been investigated. To address this issue for the first time, we selected 13 chemicals for a developmental mixture toxicity study in rats where data about...

  11. Outcomes and Stages of Child-Centered Play Therapy for a Child with Highly Disruptive Behavior Driven by Self-Concept Issues

    Science.gov (United States)

    Cochran, Jeff L.; Cochran, Nancy H.; Fuss, Angela; Nordling, William J.

    2010-01-01

    Children with highly disruptive behavior present problems for their peers and are often a heavy burden to the schools, teachers, counselors, and other adults who care for them. Without successful intervention, such children certainly face lives of high risk, emotional pain, and ever-increasing difficulty; from a humanistic perspective, such an…

  12. High-Trust Leadership and Blended Learning in the Age of Disruptive Innovation: Strategic Thinking for Colleges and Schools of Education

    Science.gov (United States)

    Holland, Denise D.; Piper, Randy T.

    2016-01-01

    We introduce diverse definitions of leadership and its evolutionary history and then we integrate this idea network: strategic thinking, high-trust leadership, blended learning, and disruptive innovation. Following the lead of Marx's (2014) model of Teaching Leadership and Strategy and Rehm's (2014) model of High School Student Leadership…

  13. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  14. Dynamics of an n = 1 explosive instability and its role in highdisruptions

    Science.gov (United States)

    Aydemir, A. Y.; Park, B. H.; In, Y. K.

    2018-01-01

    Some low-n kink-ballooning modes not far from marginal stability are shown to exhibit a bifurcation between two very distinct nonlinear paths that depends sensitively on the background transport levels and linear perturbation amplitudes. The particular instability studied in this work is an n=1 mode dominated by an m/n=2/1 component. It is driven by a large pressure gradient in weak magnetic shear and can appear in various high- \

  15. High current density, cryogenically cooled sliding electrical joint development

    International Nuclear Information System (INIS)

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an ∼ 20 T toroidal field magnet with a flat top conductor current of ∼ 300 kA and a sliding electrical joint with a gross current density of ∼ 0.6 kA/cm 2 . A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025

  16. Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase.

    Science.gov (United States)

    Patil, Mahesh D; Patel, Gopal; Surywanshi, Balaji; Shaikh, Naeem; Garg, Prabha; Chisti, Yusuf; Banerjee, Uttam Chand

    2016-12-01

    Disruption of Pseudomonas putida KT2440 by high-pressure homogenization in a French press is discussed for the release of arginine deiminase (ADI). The enzyme release response of the disruption process was modelled for the experimental factors of biomass concentration in the broth being disrupted, the homogenization pressure and the number of passes of the cell slurry through the homogenizer. For the same data, the response surface method (RSM), the artificial neural network (ANN) and the support vector machine (SVM) models were compared for their ability to predict the performance parameters of the cell disruption. The ANN model proved to be best for predicting the ADI release. The fractional disruption of the cells was best modelled by the RSM. The fraction of the cells disrupted depended mainly on the operating pressure of the homogenizer. The concentration of the biomass in the slurry was the most influential factor in determining the total protein release. Nearly 27 U/mL of ADI was released within a single pass from slurry with a biomass concentration of 260 g/L at an operating pressure of 510 bar. Using a biomass concentration of 100 g/L, the ADI release by French press was 2.7-fold greater than in a conventional high-speed bead mill. In the French press, the total protein release was 5.8-fold more than in the bead mill. The statistical analysis of the completely unseen data exhibited ANN and SVM modelling as proficient alternatives to RSM for the prediction and generalization of the cell disruption process in French press.

  17. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes.

    Science.gov (United States)

    Meccariello, Angela; Monti, Simona Maria; Romanelli, Alessandra; Colonna, Rita; Primo, Pasquale; Inghilterra, Maria Grazia; Del Corsano, Giuseppe; Ramaglia, Antonio; Iazzetti, Giovanni; Chiarore, Antonia; Patti, Francesco; Heinze, Svenia D; Salvemini, Marco; Lindsay, Helen; Chiavacci, Elena; Burger, Alexa; Robinson, Mark D; Mosimann, Christian; Bopp, Daniel; Saccone, Giuseppe

    2017-08-30

    The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.

  18. Development and implementation of a high-throughput compound screening assay for targeting disrupted ER calcium homeostasis in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kamran Honarnejad

    Full Text Available Disrupted intracellular calcium homeostasis is believed to occur early in the cascade of events leading to Alzheimer's disease (AD pathology. Particularly familial AD mutations linked to Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic reticulum (ER. Here we report the development of a fully automated high-throughput calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at single cell resolution for compound screening. The established high-throughput screening assay offers several advantages over conventional high-throughput calcium imaging technologies. We employed this assay for drug discovery in AD by screening compound libraries consisting of over 20,000 small molecules followed by structure-activity-relationship analysis. This led to the identification of Bepridil, a calcium channel antagonist drug in addition to four further lead structures capable of normalizing the potentiated FAD-PS1-induced calcium release from ER. Interestingly, it has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ fragment levels upon Bepridil treatment. The latter findings suggest that Bepridil may provide a multifactorial therapeutic modality for AD by simultaneously addressing multiple aspects of the disease.

  19. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    ROSENTHAL, STEPHEN E.; DESJARLAIS, MICHAEL P.; SPIELMAN, RICK B.; STYGAR, WILLIAM A.; ASAY, JAMES R.; DOUGLAS, M.R.; HALL, C.A.; FRESE, M.H.; MORSE, R.L.; REISMAN, D.B.

    2000-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model

  20. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  1. Testing of full size high current superconductors in SULTAN III

    Science.gov (United States)

    Blau, B.; Rohleder, I.; Vecsey, G.; Pasotti, G.; Ricci, M. V.; Sacchetti, N.; Bruzzone, P.; Katheder, H.; Mitchell, N.; Bessette, D.

    1994-07-01

    The high field test facility SULTAN III in operation at PSI/Switzerland tests full size industrial prototype superconductors for fusion applications such as ITER. The facility provides a background field of up to 11 T over a length of 58 cm. A 50 kA superconducting transformer works as a very low noise current source which allows a criterion of 0.1 mu V/cm to determine the superconducting to normal transition. Three 3.6 m long cable-in-conduit conductors based on both NbTi and Nb3Sn, developed by different manufacturers, suitable for the central solenoid and toroidal field coils of ITER, have been tested so far. This paper presents the results of extensive measurements of critical current and current sharing temperature of the Nb3Sn conductors in the 8 - 11 T range for temperatures between 4.5 K and 11 K. Voltage versus current curves have been analyzed with respect to the n value. The manufacturing of a high quality joint between two Nb3Sn conductors after heat treatment is reported, together with some measurements of the joint resistance.

  2. Testing of full size high current superconductors in SULTAN III

    International Nuclear Information System (INIS)

    Blau, B.; Rohleder, I.; Vecsey, G.

    1994-01-01

    The high field test facility SULTAN III in operation at PSI/Switzerland tests full size industrial prototype superconductors for fusion applications such as ITER. The facility provides a background field of up to 11 T over a length of 58 cm. A 50 kA superconducting transformer works as a very low noise current source which allows a criterion of 0.1 μV/cm to determine the superconducting to normal transition. Three 3.6 m long cable-in-conduit conductors based on both NbTi and Nb 3 Sn, developed by different manufacturers, suitable for the central solenoid and toroidal field coils of ITER, have been tested so far. This paper presents the results of extensive measurements of critical current and current sharing temperature of the Nb 3 Sn conductors in the 8--11 T range for temperatures between 4.5 K and 11 K Voltage versus current curves have been analyzed with respect to the n value. The manufacturing of a high quality joint between two Nb 3 Sn conductors after heat treatment is reported, together with some measurements of the joint resistance

  3. MHD Modeling of Conductors at Ultra-High Current Density

    International Nuclear Information System (INIS)

    Rosenthal, S.E.; Asay, J.R.; Desjarlais, M.P.; Douglas, M.R.; Frese, M.H.; Hall, C.A.; Morse, R.L.; Reisman, D.; Spielman, R.B.; Stygar, W.A.

    1999-01-01

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator we have revisited a problem first described in detail by Heinz Knoepfel. MITLs of previous pulsed power accelerators have been in the 1-Tesla regime. Z's disc transmission line (downstream of the current addition) is in a 100-1200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 we have been investigating conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are ( 1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into our MHD computations. Certain features are strongly dependent on the details of the conductivity model. Comparison with measurements on Z will be discussed

  4. High School Sport Specialization Patterns of Current Division I Athletes.

    Science.gov (United States)

    Post, Eric G; Thein-Nissenbaum, Jill M; Stiffler, Mikel R; Brooks, M Alison; Bell, David R; Sanfilippo, Jennifer L; Trigsted, Stephanie M; Heiderscheit, Bryan C; McGuine, Timothy A

    Sport specialization is a strategy to acquire superior sport performance in 1 sport but is associated with increased injury risk. Currently, the degree of high school specialization among Division I athletes is unknown. College athletes will display increased rates of specialization as they progress through their high school careers. Descriptive epidemiological study. Level 4. Three hundred forty-three athletes (115 female) representing 9 sports from a Midwest Division I University completed a previously utilized sport specialization questionnaire regarding sport participation patterns for each grade of high school. McNemar and chi-square tests were used to investigate associations of grade, sport, and sex with prevalence of sport specialization category (low, moderate, high) (a priori P ≤ 0.05). Specialization increased throughout high school, with 16.9% (n = 58) and 41.1% (n = 141) of athletes highly specialized in 9th and 12th grades, respectively. Football athletes were less likely to be highly specialized than nonfootball athletes for each year of high school ( P 0.23). The majority of Division I athletes were not classified as highly specialized throughout high school, but the prevalence of high specialization increased as athletes progressed through high school. Nonfootball athletes were more likely to be highly specialized than football athletes at each grade level. Most athletes who are recruited to participate in collegiate athletics will eventually specialize in their sport, but it does not appear that early specialization is necessary to become a Division I athlete. Athletes should be counseled regarding safe participation in sport during high school to minimize injury and maximize performance.

  5. High-current proton accelerators-meson factories

    International Nuclear Information System (INIS)

    Dmitrievskij, V.P.

    1979-01-01

    A possibility of usage of accelerators of neutron as well as meson factories is considered. Parameters of linear and cyclic accelerators are given, which are employed as meson factories and as base for developing intense neutron generators. It is emphasized that the principal aim of developing neutron generators on the base of high current proton accelerators is production of intense neutron fluxes with a present energy spectrum. Production of tens-and-hundreds milliampere currents at the energy of 800-1000 MeV is considered at present for two types of accelerating facilities viz. linear accelerators under continuous operating conditions and cyclotrons with strong focusing. Quantitative evaluations of developing high-efficiency linear and cyclic accelerators are considered. The basic parameters of an ccelerating complex are given, viz. linear accelerator-injector and 800 MeV isochronous cyclotron. The main problems associated with their realization are listed [ru

  6. High performance current generator with one-picoampere resolution

    International Nuclear Information System (INIS)

    Grillo, L.; Manfredi, P.F.; Marchesini, R.

    1975-01-01

    A high-performance current generator for the picoampere region is presented. Although it was primarily developed as a part of an automatic test system to calibrate charge integrators for accelerating machines. It can suit a wide range of applications. It consists basically of a positive feedback loop of controlled gain which includes a varactor bridge operational amplifier. The essential features of the instrument are a 1 pA resolution and a 10 15 Ω output impedance. The output is guarded and floating between - 120 V and + 120 V, and the voltage across the external loads is measured without affecting the delivered current by a digital panel meter on the front panel. The unit can therefore operate as a high-accuracy dc impedance meter. (Auth.)

  7. Generation of sheet currents by high frequency fast MHD waves

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Manuel, E-mail: mnjmhd@am.uva.es

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium. - Highlights: • Regular solutions of quasilinear hyperbolic systems may evolve into shocks. • The shock location is found for high frequency fast MHD waves. • The result is applied to static axisymmetric equilibria. • The previous process may lead to the formation of sheet currents and destruction of the equilibrium.

  8. LTS and HTS high current conductor development for DEMO

    International Nuclear Information System (INIS)

    Bruzzone, Pierluigi; Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay; Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta; Seri, Massimo

    2015-01-01

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb_3Sn high grade TF conductors. • Progress in the manufacture of short length Nb_3Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb_3Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb_3Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb_3Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb_3Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  9. Ion beams from high-current PF facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sadowski, M [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1997-12-31

    Pulsed beams of fast deuterons and impurity or admixture ions emitted from high-current PF-type facilities operated in different laboratories are dealt with. A short comparative analysis of time-integrated and time-resolved studies is presented. Particular attention is paid to the microstructure of such ion beams, and to the verification of some theoretical models. (author). 5 figs., 19 refs.

  10. [Extensive injuries due to high-tension electrical current].

    Science.gov (United States)

    Tomásek, D; Königová, R; Snupárek, Z

    1989-03-01

    The authors submit a case of severe injury with high tension electric current. They emphasize the necessity of prevention of this injury which occurs most frequently when transformer stations are not adequately safeguarded, in case of inadequate protection when approaching trolley wires on the railway track, and when safety principles are not respected during work on the railway. The authors draw attention to the importance of immediate resuscitation and multidisciplinary comprehensive care.

  11. Energy confinement in a high-current reversed field pinch

    International Nuclear Information System (INIS)

    An, Z.G.; Lee, G.S.; Diamond, P.H.

    1985-07-01

    The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP

  12. High-current Rhodotron for X-ray facility

    International Nuclear Information System (INIS)

    Umezu, Toru; Tsujiura, Yuichiro; Bol, Jean Louis

    2009-01-01

    The Rhodotron is a widely employed high-power industrial accelerator developed and exclusively distributed by IBA. Most early examples of the accelerator were optimized to operate at 10 MeV. A new Rhodotron configuration recently advanced produces a lower-energy higher-current beam dedicated with x-ray to sterilize and enhancement materials. Core elements of this system's evolution include a higher performance RF electron gun (operating range, response control, and cathode lifetime). This operational machine is now producing 100 mA at 7 MeV (700 kW of beam) and treat medical devices, thick cable and pipes with a high efficiency. (author)

  13. High current proton linear accelerators and nuclear power

    International Nuclear Information System (INIS)

    Tunnicliffe, P.R.; Chidley, B.G.; Fraser, J.S.

    1976-01-01

    This paper outlines a possible role that high-current proton linear accelerators might play as ''electrical breeders'' in the forthcoming nuclear-power economy. A high-power beam of intermediate energy protons delivered to an actinide-element target surrounded by a blanket of fertile material may produce fissile material at a competitive cost. Criteria for technical performance and, in a Canadian context, for costs are given and the major problem areas outlined not only for the accelerator and its associated rf power source but also for the target assembly. (author)

  14. Compilation of current high-energy-physics experiments

    International Nuclear Information System (INIS)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976

  15. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    Science.gov (United States)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  16. Osteoarthritis-like pathologic changes in the knee joint induced by environmental disruption of circadian rhythms is potentiated by a high-fat diet.

    Science.gov (United States)

    Kc, Ranjan; Li, Xin; Forsyth, Christopher B; Voigt, Robin M; Summa, Keith C; Vitaterna, Martha Hotz; Tryniszewska, Beata; Keshavarzian, Ali; Turek, Fred W; Meng, Qing-Jun; Im, Hee-Jeong

    2015-11-20

    A variety of environmental factors contribute to progressive development of osteoarthritis (OA). Environmental factors that upset circadian rhythms have been linked to various diseases. Our recent work establishes chronic environmental circadian disruption - analogous to rotating shiftwork-associated disruption of circadian rhythms in humans - as a novel risk factor for the development of OA. Evidence suggests shift workers are prone to obesity and also show altered eating habits (i.e., increased preference for high-fat containing food). In the present study, we investigated the impact of chronic circadian rhythm disruption in combination with a high-fat diet (HFD) on progression of OA in a mouse model. Our study demonstrates that when mice with chronically circadian rhythms were fed a HFD, there was a significant proteoglycan (PG) loss and fibrillation in knee joint as well as increased activation of the expression of the catabolic mediators involved in cartilage homeostasis. Our results, for the first time, provide the evidence that environmental disruption of circadian rhythms plus HFD potentiate OA-like pathological changes in the mouse joints. Thus, our findings may open new perspectives on the interactions of chronic circadian rhythms disruption with diet in the development of OA and may have potential clinical implications.

  17. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina).

    Science.gov (United States)

    Landler, Lukas; Painter, Michael S; Coe, Brittney Hopkins; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2017-09-01

    The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Crack initiation behaviors of metallic walls subjected to high heat flux expected at plasma disruption

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Uno, Masayoshi; Seki, Masahiro.

    1989-01-01

    Experimental and numerical studies were performed to investigate crack initiation behavior near a surface of stainless steel and tungsten when subjected to extremely high heat flux. The improved electron beam test facility was used as the heat source. Two-dimensional thermal and elasto-plastic stress analyses were also performed. From the results for stainless steel, micro-cracks about 0.1 mm deep only initiated in the resolidified layer along dendrites. No cracks propagated into the non-melted zone, and repeated heating of up to 20 times did not affect the depth and population of the cracks. According to the elasto-plastic stress analyses, no fatigue cracks were expected. Cracks with a depth of more than a few millimeters were observed in a tungsten plate. The cracks initiated at a boundary between heated and unheated areas. They grew into the non-melted zone, and curved towards the center part of the heated area. The elasto-plastic stress analyses indicated that the cracks were initiated due to the residual tensile strain after heated at the surface of the test specimen. When the heat flux was repeated, the cracks propagated and penetrated to the rear side of the test specimen in several repetition. (author)

  19. Physical modeling and high-performance GPU computing for characterization, interception, and disruption of hazardous near-Earth objects

    Science.gov (United States)

    Kaplinger, Brian Douglas

    For the past few decades, both the scientific community and the general public have been becoming more aware that the Earth lives in a shooting gallery of small objects. We classify all of these asteroids and comets, known or unknown, that cross Earth's orbit as near-Earth objects (NEOs). A look at our geologic history tells us that NEOs have collided with Earth in the past, and we expect that they will continue to do so. With thousands of known NEOs crossing the orbit of Earth, there has been significant scientific interest in developing the capability to deflect an NEO from an impacting trajectory. This thesis applies the ideas of Smoothed Particle Hydrodynamics (SPH) theory to the NEO disruption problem. A simulation package was designed that allows efficacy simulation to be integrated into the mission planning and design process. This is done by applying ideas in high-performance computing (HPC) on the computer graphics processing unit (GPU). Rather than prove a concept through large standalone simulations on a supercomputer, a highly parallel structure allows for flexible, target dependent questions to be resolved. Built around nonclassified data and analysis, this computer package will allow academic institutions to better tackle the issue of NEO mitigation effectiveness.

  20. Electrical and hydrodynamic characterization of a high current pulsed arc

    International Nuclear Information System (INIS)

    Sousa Martins, R; Chemartin, L; Zaepffel, C; Lalande, Ph; Soufiani, A

    2016-01-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs. (paper)

  1. Electrical and hydrodynamic characterization of a high current pulsed arc

    Science.gov (United States)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  2. High fat diet and exercise lead to a disrupted and pathogenic DNA methylome in mouse liver.

    Science.gov (United States)

    Zhou, Dan; Hlady, Ryan A; Schafer, Marissa J; White, Thomas A; Liu, Chen; Choi, Jeong-Hyeon; Miller, Jordan D; Roberts, Lewis R; LeBrasseur, Nathan K; Robertson, Keith D

    2017-01-02

    High-fat diet consumption and sedentary lifestyle elevates risk for obesity, non-alcoholic fatty liver disease, and cancer. Exercise training conveys health benefits in populations with or without these chronic conditions. Diet and exercise regulate gene expression by mediating epigenetic mechanisms in many tissues; however, such effects are poorly documented in the liver, a central metabolic organ. To dissect the consequences of diet and exercise on the liver epigenome, we measured DNA methylation, using reduced representation bisulfite sequencing, and transcription, using RNA-seq, in mice maintained on a fast food diet with sedentary lifestyle or exercise, compared with control diet with and without exercise. Our analyses reveal that genome-wide differential DNA methylation and expression of gene clusters are induced by diet and/or exercise. A combination of fast food and exercise triggers extensive gene alterations, with enrichment of carbohydrate/lipid metabolic pathways and muscle developmental processes. Through evaluation of putative protective effects of exercise on diet-induced DNA methylation, we show that hypermethylation is effectively prevented, especially at promoters and enhancers, whereas hypomethylation is only partially attenuated. We assessed diet-induced DNA methylation changes associated with liver cancer-related epigenetic modifications and identified significant increases at liver-specific enhancers in fast food groups, suggesting partial loss of liver cell identity. Hypermethylation at a subset of gene promoters was associated with inhibition of tissue development and promotion of carcinogenic processes. Our study demonstrates extensive reprogramming of the epigenome by diet and exercise, emphasizing the functional relevance of epigenetic mechanisms as an interface between lifestyle modifications and phenotypic alterations.

  3. Utilization of Superheroes Social Skills to Reduce Disruptive and Aggressive Behavior

    Science.gov (United States)

    O'Handley, Roderick D.; Radley, Keith C.; Cavell, Hannah J.

    2016-01-01

    The current pilot study investigated the effectiveness of the Superheroes Social Skills program in decreasing disruptive and aggressive behavior of elementary-age students with high-incidence disabilities. Six students in a self-contained classroom, identified as displaying high rates of disruptive and aggressive behavior toward peers, were…

  4. Current and field distribution in high temperature superconductors

    International Nuclear Information System (INIS)

    Johnston, M.D.

    1998-01-01

    The manufacture of wires from HTS materials containing copper-oxide planes is difficult because their physical and electrical properties are highly anisotropic. The electrical connectivity depends on the nearest-neighbour grain alignment and although a high degree of grain texture is achieved through processing, the tape microstructure is generally far from uniform, with weak links and porosity also complicating the picture. In order to optimise the processing, the microstructural features common to good tapes must be identified, requiring knowledge of the local properties. The preferential path taken by transport current is determined by the properties of the local microstructure and as such can be used to measure the variation in quality across the tape cross-section. By measuring the self-field profile generated by a current-carrying tape, it is possible to extract the associated current distribution. I have designed and built a Scanning Hall Probe Microscope to measure the normal field distribution above superconductor tapes carrying DC currents, operating at liquid nitrogen temperature and zero applied magnetic field. It has a spatial resolution of 50*50 μm and a field sensitivity of 5 μT, and can scan over a distance of 6 mm. The current extraction is performed by means of a deconvolution procedure based on Legendre functions. This allows a nondestructive, non-invasive method of evaluating the effects of the processing on the tapes - especially when correlated with transport and magnetisation measurement data. Conductors fabricated from Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Bi 2 Sr 2 CaCu 2 O 8 and (Tl 0.78 Bi 0.22 )(Sr 0.8 Ba 0.2 ) 2 Ca 2 Cu 3 O x , have been investigated. I have confirmed the reports that in Bi-2223/Ag mono-core conductors produced by the oxide-powder-in-tube (OPIT) technique, the current flows predominantly at the edges of the tape, where the grains are long and well-aligned. This is in contrast to Bi-2212 ribbons, where the better microstructure

  5. Fuel retention and recovery in natural and MGI disruptions on KSTAR

    International Nuclear Information System (INIS)

    Yu, Y.W.; Hong, S.H.; Yoon, S.W.; Kim, K.P.; Kim, W.C.; Seo, D.C.

    2013-01-01

    Fuel retention and recovery are studied during natural and Massive Gas Injection (MGI) induced disruptions in KSTAR with full graphite wall. The amount of released particles in natural disruptions in 15 s after the discharge is ∼5–10 times higher than that of non-disruption shots, but the difference is only ∼ 2 MGI induced disruptions depends on magnetic field (B t ) and MGI amount. The MGI disruption under a low B t and a medium MGI amount shows shorter thermal quench (TQ) and current quench (CQ), thereby higher fuel recovery. High B t plasma requires higher MGI amount for both disruption mitigation and fuel recovery. A high recovery of 4.2 × 10 22 D (∼0.78 monolayers) is obtained by MGI disruption in KSTAR 2011

  6. Superconducting fault current limiter using high-resistive YBCO tapes

    Energy Technology Data Exchange (ETDEWEB)

    Yazawa, T. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan)], E-mail: takashi.yazawa@toshiba.co.jp; Koyanagi, K.; Takahashi, M.; Ono, M.; Toba, K.; Takigami, H.; Urata, M. [Power and Industrial System R and D Center, Toshiba Corporation, 2-4 Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Iijima, Y.; Saito, T. [Fujikura Ltd., 1-5-1 Kiba, Koto, Tokyo 135-0042 (Japan); Ameniya, N. [Yokohama National University, 79-1 Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan); Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, 1-10-13 Shinonome, Koto, Tokyo 135-0062 (Japan)

    2008-09-15

    One of the programs in the Ministry of Economy and Trade and Industry (METI) project regarding R and D on YBCO conductor is to evaluate the applicability of the developed conductor toward several applications. This paper focuses on a fault current limiter (FCL) as one of the expected power applications. YBCO tape conductors with ion beam assisted deposition (IBAD) substrate are used in this work. In order to obtain high resistance of the conductor, which is preferable to an FCL, the thickness of the protecting layer made of silver was decreased as possible. Then high-resistive metal stabilizing layer is attached on the silver layer to improve stability. Obtaining the relevant current limiting performance on short sample experiments, model coils were developed to aim the 6.6 kV-class FCL. Short circuit experiments were implemented with a short circuit generator. The coil successfully restricted the short circuit current over 17 kA to about 700 A by the applied voltage of 3.8 kV, which is nominal phase-to-ground voltage. The experimental results show good agreement with computer analyses and show promising toward the application.

  7. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  8. Broad-beam, high current, metal ion implantation facility

    International Nuclear Information System (INIS)

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1990-07-01

    We have developed a high current metal ion implantation facility with which high current beams of virtually all the solid metals of the Periodic Table can be produced. The facility makes use of a metal vapor vacuum arc ion source which is operated in a pulsed mode, with pulse width 0.25 ms and repetition rate up to 100 pps. Beam extraction voltage is up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion charge state multiplicity; beam current is up to several Amperes peak and around 10 mA time averaged delivered onto target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we describe the facility and some of the implants that have been carried out using it, including the 'seeding' of silicon wafers prior to CVD with titanium, palladium or tungsten, the formation of buried iridium silicide layers, and actinide (uranium and thorium) doping of III-V compounds. 16 refs., 6 figs

  9. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  11. Current status of high energy nucleon-meson transport code

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)

  12. Long-wavelength negative mass instabilities in high current betatrons

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Hughes, T.P.

    1985-01-01

    Growth rates of negative mass instabilities in conventional and modified betatrons are calculated by analytic methods and by performing three-dimensional particle simulations. In contrast to earlier work, toroidal corrections to the field equations are included in the analytic model. As a result, good agreement with numerical simulations is obtained. The simulations show that the nonlinear development of the instabilities can seriously disrupt the beam

  13. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  14. Engineering design of a high-temperature superconductor current lead

    International Nuclear Information System (INIS)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R.; Daugherty, M.A.; Buckles, W.E.

    1993-01-01

    As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria

  15. Low-leakage, high-current power crowbar transformer

    International Nuclear Information System (INIS)

    Buck, R.T.; Galbraith, J.D.; Nunnally, W.C.

    1979-01-01

    The design, fabrication, and testing of two sizes of power crowbar transformers for the ZT-40 Toroidal Z-Pinch experiment at the Los Alamos Scientific Laboratory are described. Low-leakage transformers in series with the poloidal and the toroidal field coils are used to sustain magnetic field currents initially produced by 50-kV capacitor banks. The transformer primaries are driven by cost-effective, ignitron-switched, 10-kV high-density capacitor banks. The transformer secondaries, in series with the field coils, provide from 1,000 to 1,500 V to cancel the resistive voltage drop in the coil circuits. Prototype transformers, with a total leakage inductance measured in the secondary of 5 nH, have been tested with peak secondary currents in excess of 600 kA resulting from a 10-kV primary charge voltage. The test procedures and results and the mechanical construction details are presented

  16. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  17. Engineering design of a high-temperature superconductor current lead

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Daugherty, M. A.; Buckles, W. E.

    As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.

  18. Survey of Digital Feedback Systems in High Current Storage Rings

    International Nuclear Information System (INIS)

    Teytelman, Dmitry

    2003-01-01

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions

  19. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  20. High-Mobility Group Box 1 Disrupts Metabolic Function with Cigarette Smoke Exposure in a Ceramide-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Oliver J. Taylor

    2017-05-01

    Full Text Available We have previously found that cigarette smoke disrupts metabolic function, in part, by increasing muscle ceramide accrual. To further our understanding of this, we sought to determine the role of the cytokine high-mobility group box 1 (HMGB1, which is increased with smoke exposure, in smoke-induced muscle metabolic perturbations. To test this theory, we determined HMGB1 from lungs of human smokers, as well as from lung cells from mice exposed to cigarette smoke. We also treated cells and mice directly with HMGB1, in the presence or absence of myriocin, an inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in ceramide biosynthesis. Outcomes included assessments of insulin resistance and muscle mitochondrial function. HMGB1 was significantly increased in both human lungs and rodent alveolar macrophages. Further testing revealed that HMGB1 treatment elicited a widespread increase in ceramide species and reduction in myotube mitochondrial respiration, an increase in reactive oxygen species, and reduced insulin-stimulated Akt phosphorylation. Inhibition of ceramide biosynthesis with myriocin was protective. In mice, by comparing treatments of HMGB1 injections with or without myriocin, we found that HMGB1 injections resulted in increased muscle ceramides, especially C16 and C24, which were necessary for reduced muscle mitochondrial respiration and compromised insulin and glucose tolerance. In conclusion, HMGB1 may be a necessary intermediate in the ceramide-dependent metabolic consequences of cigarette smoke exposure.

  1. Research of long pulse high current diode radial insulation

    International Nuclear Information System (INIS)

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  2. Research on High Current Pulse Discharges at IPP ASci CR

    Czech Academy of Sciences Publication Activity Database

    Koláček, Karel; Schmidt, Jiří; Prukner, Václav; Štraus, Jaroslav; Frolov, Oleksandr; Martínková, M.

    2006-01-01

    Roč. 56, suppl. B (2006), s. 259-266 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/22nd./. Praha, 26.6.2006-29.6.2006] R&D Projects: GA ČR GA202/06/1324; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Pulsed high current capillary discharge * amplified spontaneous emission * soft X-ray laser Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.568, year: 2006

  3. Modeling of leakage currents in high-k dielectrics

    International Nuclear Information System (INIS)

    Jegert, Gunther Christian

    2012-01-01

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO 2 material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO 2 /TiN capacitor structures were suggested and problem areas that may

  4. High-current Standing Wave Linac With Gyrocon Power Source

    CERN Document Server

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V

    2004-01-01

    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  5. Modeling of leakage currents in high-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jegert, Gunther Christian

    2012-03-15

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO{sub 2} material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO{sub 2}/TiN capacitor structures were suggested and problem areas

  6. Velocity spread of REB generated by high current diode

    International Nuclear Information System (INIS)

    Vrba, P.

    1994-05-01

    A theoretical analysis and numerical simulations of the Relativistic Electron Beam (REB) generation in a high current diode immersed in an external magnetic field were performed. The calculations confirmed the generated beam to be homogeneous and monoenergetic in a broad central region. In the case of a cylindrical diode the mixing of electron trajectories was only observed in a narrow peripheral beam region. The angle between particle trajectories and the external longitudinal magnetic field varies chaotically form 0 to -25 deg. This phenomenon suppresses the excitation of the two-stream instability excited by REB in a plasma column. (author) 2 tabs., 12 figs., 7 refs

  7. Current status of high-T{sub c} wire

    Energy Technology Data Exchange (ETDEWEB)

    Vase, Per [Nordic Superconductor Technologies A/S, Priorparken 685, DK 2605 Broendby (Denmark); Fluekiger, Rene [Departement de Physique de la Matiere Condensee, Universite de Geneve (Switzerland); Leghissa, Martino [Siemens AG, Corporate Technology, Erlangen (Germany); Glowacki, Bartek [Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2000-07-01

    This paper is the result of the work of a SCENET (The European Network for Superconductivity) material working group's efforts on giving values for present and future expected performance of high-temperature superconducting (HTS) wires and tapes. The purpose of the work is to give input to the design of HTS applications like power cables, motors, current leads, magnets, transformers and generators. The current status performance values are supposed to be used in the design of today's prototypes and the future values for the design of fully commercial HTS applications of the future. We focus on what is expected to be the relevant parameters for HTS application design. The most successful technique by far for making HTS tapes has been on the (Bi, Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223) material by the powder-in-tube (PIT) technique and this paper therefore focuses on giving the current status and expected future performance for Bi-2223 tapes. (author)

  8. Ultra fast shutter driven by pulsed high current

    International Nuclear Information System (INIS)

    Zeng Jiangtao; Sun Fengju; Qiu Aici; Yin Jiahui; Guo Jianming; Chen Yulan

    2005-01-01

    Radiation simulation utilizing plasma radiation sources (PRS) generates a large number of undesirable debris, which may damage the expensive diagnosing detectors. An ultra fast shutter (UFS) driven by pulsed high current can erect a physical barrier to the slowly moving debris after allowing the passage of X-ray photons. The UFS consists of a pair of thin metal foils twisting the parallel axes in a Nylon cassette, compressed with an outer magnetic field, generated from a fast capacitor bank, discharging into a single turn loop. A typical capacitor bank is of 7.5 μF charging voltages varying from 30 kV to 45 kV, with corresponding currents of approximately 90 kA to 140 kA and discharging current periods of approximately 13.1 μs. A shutter closing time as fast as 38 microseconds has been obtained with an aluminium foil thickness of 100 micrometers and a cross-sectional area of 15 mm by 20 mm. The design, construction and the expressions of the valve-closing time of the UFS are presented along with the measured results of valve-closing velocities. (authors)

  9. High current photoemission with 10 picosecond uv pulses

    International Nuclear Information System (INIS)

    Fischer, J.; Srinivasan-Rao, T.; Tsang, T.

    1990-06-01

    The quantum efficiency and the optical damage threshold of various metals were explored with 10 ps, 266 nm, UV laser pulses. Efficiencies for Cu, Y, and Sm were: 1.4, 5, and 7 x 10 -4 , with damage thresholds about 100, 10, and 30 mJ/cm 2 . This would permit over 1 μC/cm 2 or current densities exceeding 100 kA/cm 2 . High charge and current densities of up to 66 kA/cm 2 were obtained on 0.25 mm diam cathodes, and 21 kA/cm 2 on a 3 mm diam yttrium cathode. The maximum currents were limited by space charge and the dc field. The experiments with small area illumination indicate that the emitted electrons spread transversely due to Coulomb repulsion and their initial transverse velocity. This increases the effective area above the cathode, reduces the space charge effect and increases emission density on the cathode. The quantum efficiency can be increased substantially by enhancing the field on the surface by either a suitable electrode geometry or microstructures on it. 14 refs., 12 figs., 3 tabs

  10. High current pulsed linear ion accelerators for inertial fusion applications

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Yonas, G.; Poukey, J.W.

    1978-01-01

    Pulsed ion beams have a number of advantages for use as inertial fusion drivers. Among these are classical interaction with targets and good efficiency of production. As has been pointed out by members of the accelerator community, multistage accelerators are attractive in this context because of lower current requirements, low power flow per energy conversion stage and low beam divergence at higher ion energies. On the other hand, current transport limits in conventional accelerators constrain them to the use of heavy ions at energies much higher than those needed to meet the divergence requirements, resulting in large, costly systems. We have studied methods of neutralizing ion beams with electrons within the accelerator volume to achieve higher currents. The aim is to arrive at an inexpensive accelerator that can advantageously use existing pulsed voltage technology while being conservative enough to achieve a high repetition rate. Typical output parameters for reactor applications would be an 0 + beam of 30 kA at 300 MeV. We will describe reactor scaling studies and the physics of neutralized linear accelerators using magnetic fields to control the electron dynamics. Recent results are discussed from PULSELAC, a five stage multikiloampere device being tested at Sandia Laboratories

  11. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  12. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  13. The emittance of high current heavy ion beams

    International Nuclear Information System (INIS)

    White, N.R.; Devaney, A.S.

    1989-01-01

    Ion implantation is the main application for high current heavy ion beams. Transfer ratio is defined as the ratio of the total ion current leaving the ion source to the current delivered to the endstation. This ratio is monitored and logged and its importance is explained. It is also affected by other factors, such as the isotopic and molecular composition of the total ion beam. The transfer ratio reveals the fraction of ions which are intercepted by parts of the beamline system. The effects of these ions are discussed in two categories: processing purity and reliability. In discussing the emittance of ribbon beams, the two orthogonal planes are usually considered separately. Longitudinal emittance is determined by slot length and by plasma ion temperature. It has already been revealed that the longitudinal divergence of the beams from BF3 is perhaps double that of the beam from arsenic vapour or argon, at the same total perveance from the ion source. This poses the question: why is the ion temperature higher for BF3 than for As or Ar? The transverse emittance is in practical terms dominated by the divergence. It is the most fruitful area for improvement in most real-world systems. There is an intrinsic divergence arising from initial ion energies within the plasma, and there is emittance growth that can occur as a result of aberration in the beam extraction optics. (N.K.)

  14. High current vacuum arc ion source for heavy ion fusion

    International Nuclear Information System (INIS)

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-01-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in ∼0.5 A current beams with ∼20 micros pulse widths and ∼10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce ∼0.5 A, ∼60 keV Gd (A∼158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported

  15. Development of high current injector for tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Takashi; Iwamoto, Eiji [Nissin - High Voltage Co. Ltd., Kyoto (Japan); Kishimoto, Naoki; Saito, Tetsuya; Mori, Yoshiharu

    1997-02-01

    The development of the electrostatic type tandem accelerators has been carried out so far, but by the recent remarkable progress of negative ion sources, the beam current which was inconceivable so far has become obtainable, and the use as the electrostatic type tandem accelerators is expanding rapidly. The problem which must be solved in the development of a high energy, large current heavy ion injection device is the development of an injector. As to the generation of negative ions, by the development of plasma sputter negative ion sources, the almost satisfactory performance has been obtained in beam current, emittance, life and so on, but as for the transport and control of generated negative ion beam, there is the large problem of spatial charge effect. This time, the verifying test on this problem was carried out, therefore, its contents and results are reported. The equipment which was developed this time was delivered to the Institute for Materials Research. Its specifications are shown. The whole constitution, negative ion source, and beam transport system are described. Beam generation test and spatial charge effect test are reported. The test stand was made, and in the verifying test, the maximum beams of 4 mA in Cu and 3 mA in Ni were able to be generated and transported. The effect of the countermeasures to spatial charge effect was confirmed. (K.I.)

  16. Development of high current beam ns pulsed system

    CERN Document Server

    Shen Guan Ren; Gao Fu; Guan Xia Ling; LiuNaiYi

    2001-01-01

    The development of high current beam ns pulsed system of CPNG and its characteristic, main technological performance and application are introduced. Firstly, important parameters of the system are calculated using theoretical model, the design requirements of some important parts are understood. Some mistakes in physics conception are corrected. Second, the chopper is designed for parallel plate deflector, chopping aperture and sine wave voltage sweeping device. It is emphasized that the conception of parallel plate load impedance is the capacitance load, but not the 50 ohm load impedance. The dynamic capacitance value has been measured. The output emphasizes the output voltage amplitude, but not the output power for sweeping device. The display system of output sweeping voltage was set up and it is sure that the maximum output voltage(V-V) is >=4000 V. The klystron buncher are re-designed. It is emphasized to overcome difficulty of support high voltage electrode in the klystron and insulator of input sine wa...

  17. Compilation of current high energy physics experiments - Sept. 1978

    Energy Technology Data Exchange (ETDEWEB)

    Addis, L.; Odian, A.; Row, G. M.; Ward, C. E. W.; Wanderer, P.; Armenteros, R.; Joos, P.; Groves, T. H.; Oyanagi, Y.; Arnison, G. T. J.; Antipov, Yu; Barinov, N.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)

  18. Method for making a high current fiber brush collector

    Science.gov (United States)

    Scuro, S. J.

    1986-05-01

    An axial-type homopolar motor having high density, high current fiber brush collectors affording efficient, low contact resistance and low operating temperatures is discussed. The collectors include a ring of concentric row of brushes in equally spaced beveled holes soldered in place using a fixture for heating the ring to just below the solder melting point at a soldering iron for the local application of additional heat at each brush. Prior to soldering, an oxide film is formed on the surfaces of the brushes and ring, and the bevels are burnished to form a wetting surface. Flux applied with the solder at each bevel removes to an effective soldering depth the oxide film on the brushes and the holes.

  19. High-voltage direct-current circuit breakers

    International Nuclear Information System (INIS)

    Yoshioka, Y.; Hirasawa, K.

    1991-01-01

    This paper reports that in 1954 the first high-voltage direct-current (HVDC) transmission system was put into operation between Gotland and the mainland of Sweden. Its system voltage and capacity were 100 kV and 20 MW, respectively. Since then many HVDC transmission systems have been planned, constructed, or commissioned in more than 30 places worldwide, and their total capacity is close to 40 GW. Most systems commissioned to date are two-terminal schemes, and HVDC breakers are not yet used in the high-potential main circuit of those systems, because the system is expected to perform well using only converter/inverter control even at a fault stage of the transmission line. However, even in a two-terminal scheme there are not a few merits in using an HVDC breaker when the system has two parallel transmission lines, that is, when it is a double-circuit system

  20. High resolution modelling of the North Icelandic Irminger Current (NIIC

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2006-01-01

    Full Text Available The northward inflow of Atlantic Water through Denmark Strait – the North Icelandic Irminger Current (NIIC – is simulated with a numerical model of the North Atlantic and Arctic Ocean. The model uses the technique of adaptive grid refinement which allows a high spatial resolution (1 km horizontal, 10 m vertical around Iceland. The model is used to assess time and space variability of volume and heat fluxes for the years 1997–2003. Passive tracers are applied to study origin and composition of NIIC water masses. The NIIC originates from two sources: the Irminger Current, flowing as part of the sub-polar gyre in 100–500 m depth along the Reykjanes Ridge and the shallow Icelandic coastal current, flowing north-westward on the south-west Icelandic shelf. The ratio of volume flux between the deep and shallow branch is around 2:1. The NIIC continues as a warm and saline branch northward through Denmark Strait where it entrains large amounts of polar water due to the collision with the southward flowing East Greenland Current. After passing Denmark Strait, the NIIC follows the coast line eastward being an important heat source for north Icelandic waters. At least 60% of the temporal temperature variability of north Icelandic waters is caused by the NIIC. The NIIC volume and heat transport is highly variable and depends strongly on the wind field north-east of Denmark Strait. Daily means can change from 1 Sv eastward to 2 Sv westward within a few days. Highest monthly mean transport rates occur in summer when winds from north are weak, whereas the volume flux is reduced by around 50% in winter. Summer heat flux rates can be even three times higher than in winter. The simulation also shows variability on the interannual scale. In particular weak winds from north during winter 2002/2003 combined with mild weather conditions south of Iceland led to anomalous high NIIC volume (+40% and heat flux (+60% rates. In this period, simulated north Icelandic

  1. Energy flow during disruptions in JET

    International Nuclear Information System (INIS)

    Paley, J.I.; Andrew, P.; Cowley, S.C.; Fundamenski, W.; Huber, A.

    2005-01-01

    Disruptions place severe limitations on the materials selected for plasma facing components in fusion devices. In a disruption, the plasma stored thermal and magnetic energy is dissipated leading to predicted power loadings in the current quench of up to 10 MW m -2 in JET. In the thermal quench very high power loads of up to 10 G Wm -2 would be expected if all the power flowed to the steady state strike points, however this is not observed. In this paper the energy balance associated with both events is investigated. The magnetic energy is found to balance well with radiated energy. Circumstantial evidence for limiter interaction during the thermal quench of plasmas in divertor configuration is presented and a possible mechanism for limiter interaction in disruptions resulting from the collapse of an internal transport barrier is discussed

  2. Study of current instabilities in high resistivity gallium arsenide

    International Nuclear Information System (INIS)

    Barraud, A.

    1968-01-01

    We have shown the existence and made a study of the current oscillations produced in high-resistivity gallium arsenide by a strong electric field. The oscillations are associated with the slow travelling of a region of high electrical field across the whole sample. An experimental study of the properties of these instabilities has made it possible for us to distinguish this phenomenon from the Gunn effect, from acoustic-electric effects and from contact effects. In order to account for this type of instability, a differential trapping mechanism involving repulsive impurities is proposed; this mechanism can reduce the concentration of charge carriers in the conduction band at strong electrical fields and can lead to the production of a high-field domain. By developing this model qualitatively we have been able to account for all the properties of high-resistance gallium arsenide crystals subjected to a strong electrical field: increase of the Hall constant, existence of a voltage threshold for these oscillations, production of domains of high field, low rate of propagation of these domains, and finally the possibility of inverting the direction of the propagation of the domain without destroying the latter. A quantitative development of the model makes it possible to calculate the various characteristic parameters of these instabilities. Comparison with experiment shows that there is a good agreement, the small deviations coming especially from the lack of knowledge concerning transport properties in gallium arsenide subjected to high fields. From a study of this model, it appears that the instability phenomenon can occur over a wide range of repulsive centre concentrations, and also for a large range of resistivities. This is the reason why it appears systematically in gallium arsenide of medium and high resistivity. (authors) [fr

  3. Modeling photo-desorption in high current storage rings

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1991-01-01

    High luminosity flavor factories are characterized by high fluxes of synchrotron radiation that lead to thermal management difficulties. The associated photo-desorption from the vacuum chamber walls presents an additional design challenge, providing a vacuum system suitable for maintaining acceptable beam-gas lifetimes and low background levels of scattered radiation in the detector. Achieving acceptable operating pressures (1-10 nTorr) with practical pumping schemes requires the use of materials with low photodesorption efficiency operating in a radiation environment beyond that of existing storage rings. Extrapolating the existing photo-desorption data base to the design requirements of high luminosity colliders requires a physical model of the differential cleaning in the vacuum chamber. The authors present a simple phenomenological model of photodesorption that includes effects of dose dependence and diffuse photon reflection to compute the leveling of gas loads in beamlines of high current storage rings that typify heavy flavor factories. This model is also used to estimate chamber commissioning times

  4. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  5. Continuing Development of Alternative High-Throughput Screens to Determine Endocrine Disruption, Focusing on Androgen Receptor, Steroidogenesis, and Thyroid Pathways

    Science.gov (United States)

    The focus of this meeting is the SAP's review and comment on the Agency's proposed high-throughput computational model of androgen receptor pathway activity as an alternative to the current Tier 1 androgen receptor assay (OCSPP 890.1150: Androgen Receptor Binding Rat Prostate Cyt...

  6. A High Current Proton Linac with 352 MHz SC Cavities

    CERN Document Server

    Pagani, C; Pierini, P

    1996-01-01

    A proposal for a 10-120 mA proton linac employing superconducting beta-graded, CERN type, four cell cavities at 352 MHz is presented. The high energy part (100 MeV-1 GeV) of the machine is split in three beta-graded sections, and transverse focusing is provided via a periodic doublet array. All the parameters, like power in the couplers and accelerating fields in the cavities, are within the state of the art, achieved in operating machines. A first stage of operation at 30 mA beam current is proposed, while the upgrade of the machine to 120 mA operation can be obtained increasing the number of klystrons and couplers per cavity. The additional coupler ports, up to four, will be integrated in the cavity design. Preliminary calculations indicate that beam transport is feasible, given the wide aperture of the 352 MHz structures. A capital cost of less than 100 M$ at 10 mA, reaching up to 280 M$ for the 120 mA extension, has been estimated for the superconducting high energy section (100 MeV-1 GeV). The high effic...

  7. High volume tidal or current flow harnessing system

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, A.M.

    1984-08-07

    Apparatus permitting the utilization of large volumes of water in the harnessing and extracting of a portion of the power generated by the rise and fall of ocean tides, ocean currents, or flowing rivers includes the provision of a dam, and a specialized single cavity chamber of limited size as compared with the water head enclosed by the dam, and an extremely high volume gating system in which all or nearly all of the water between the high and low levels on either side of the dam is cyclically gated through the single chamber from one side of the dam to the other so as to alternately provide positive air pressure and a partial vacuum within the single chamber. In one embodiment, the specialized chamber has a barrier at the bottom which divides the bottom of the chamber in half, large ports at the bottom of the chamber to permit inflow and outflow of high volumes of water, and ganged structures having a higher total area than that of corresponding ports, in which the structures form sluice gates to selectively seal off and open different sets of ports. In another embodiment, a single chamber is used without a barrier. In this embodiment, vertical sluice gates are used which may be activated automatically by pressures acting on the sluice gates as a result of ingested and expelled water.

  8. Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Reiman, A.; Taylor, P.; Kellman, A.; LaHaye, R.

    1996-01-01

    We report on the results of a statistical analysis of the DIII-D disruption data base, and on an examination of a selected subset of the shots to determine the likely causes of disruptions. The statistical analysis focuses on the dependence of the disruption rate on key dimensionless parameters. We find that the disruption frequency is high at modest values of the parameters, and that it can be relatively low at operational limits. For example, the disruption frequency in an ITER relevant regime (β N /l i ∼ 2, 3 G > 0.6, where n G is the Greenwald limit) is approximately 23%. For this range of q, the disruption frequency rises only modestly to about 35% at the β limit, consistent with previous observations of a soft β limit for this q regime. For the range 6 95 G G < .9) in all q regimes we have studied. The location of the minimum moves to higher density with increasing q

  9. The free recovery of a short duration, high current discharge

    International Nuclear Information System (INIS)

    Piejak, R.

    1984-01-01

    The hold-off voltage between stainless steel electrodes has been measured as a function of time after an initial discharge. The hold-off voltage is the highest voltage that the gap will withstand without appreciable current flow. A high current (600-1200 amp), short duration (170 nsec) discharge was initiated between Rogowski profile electrodes. After a pre-determined time delay, a second pulse was applied to the discharge gap. The hold-off voltage as a function to time was determined up to the Paschen breakdown voltage. Background gas pressure between 30 and 100 torr and electrode separation of 2mm and 4mm were employed. UV preionization was introduced in some tests to create various discharge modes (glow/arc). The findings indicate significantly higher recovery rates in air than in N 2 , presumably due to attachment processes. In addition, the presence of pre-breakdown UV was found to influence the discharge mode, thus affecting the recovery rate of the gap. Hold-off voltage curves for the previously mentioned gases, background pressures and electrode spacing will be presented along with open shutter photographs of the various discharge modes

  10. Improved Turn-on Characteristics of Fast High Current Thyristors

    CERN Document Server

    Ducimetière, L; Vossenberg, Eugène B

    1999-01-01

    The beam dumping system of CERN's Large Hadron Collider (LHC) is equipped with fast solid state closing switches, designed for a hold-off voltage of 30 kV and a quasi half sine wave current of 20 kA, with 3 ms rise time, a maximum di/dt of 12 kA/ms and 2 ms fall time. The design repetition rate is 20 s. The switch is composed of ten Fast High Current Thyristors (FHCT’s), which are modified symmetric 4.5 kV GTO thyristors of WESTCODE. Recent studies aiming at improving the turn-on delay, switching speed and at decreasing the switch losses, have led to test an asymmetric not fully optimised GTO thyristor of WESTCODE and an optimised device of GEC PLESSEY Semiconductor (GPS), GB. The GPS FHCT, which gave the best results, is a non irradiated device of 64 mm diameter with a hold-off voltage of 4.5 kV like the symmetric FHCT. Tests results of the GPS FHCT show a reduction in turn-on delay of 40 % and in switching losses of almost 50 % with respect to the symmetric FHCT of WESTCODE. The GPS device can sustain an i...

  11. Development of high current low energy H+ ion source

    International Nuclear Information System (INIS)

    Forrester, A.T.; Crow, J.T.; Goebel, D.M.

    1978-01-01

    The ultimate goal of this work is the development of an ion source suitable for double charge exchange of D + ions to D - ions in cesium or other vapor. Since the fraction of the D + which changes to D - may be as high as 0.35 in the energy below one keV, the process appears very favorable. What is desired is a source of several hundred cm 2 area, with a D + current density greater than, say 0.2A/cm 2 . Small angular spread is essential with up to about 0.1 radian being acceptable. A simple approach to this problem appears to be through fine mesh extraction electrodes. In this system a single grid facing the ion source plasma constitutes the entire extraction electrode system. If the potential difference between the grid and the source plasma is large compared to the ion energy at the plasma boundary, then the distance s 0 is just the Child-Langmuir distance corresponding to the ion current density J and the potential difference V 0 between the plasma and the grid

  12. A high-current pulsed cathodic vacuum arc plasma source

    International Nuclear Information System (INIS)

    Oates, T.W.H.; Pigott, J.; Mckenzie, D.R.; Bilek, M.M.M.

    2003-01-01

    Cathodic vacuum arcs (CVAs) are well established as a method for producing metal plasmas for thin film deposition and as a source of metal ions. Fundamental differences exist between direct current (dc) and pulsed CVAs. We present here results of our investigations into the design and construction of a high-current center-triggered pulsed CVA. Power supply design based on electrolytic capacitors is discussed and optimized based on obtaining the most effective utilization of the cathode material. Anode configuration is also discussed with respect to the optimization of the electron collection capability. Type I and II cathode spots are observed and discussed with respect to cathode surface contamination. An unfiltered deposition rate of 1.7 nm per pulse, at a distance of 100 mm from the source, has been demonstrated. Instantaneous plasma densities in excess of 1x10 19 m -3 are observed after magnetic filtering. Time averaged densities an order of magnitude greater than common dc arc densities have been demonstrated, limited by pulse repetition rate and filter efficiency

  13. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  14. Development of a high brightness, high current SRF photo-electron source for ERL applications

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Axel [Helmholtz-Zentrum Berlin (Germany); Collaboration: bERLinPro Team

    2016-07-01

    Energy recovery linacs (ERL) offer the potential to combine major beam properties of the two main domains of particle accelerators: The low emittance of linear accelerators and the high average beam current of storage rings, while also allowing to compress to short bunches below the ps regime. This makes among other applications ERLs an ideal candidate for future light sources. The beam properties of the ERL are given by the performance of the injection section and hence of the beam source. Helmholtz-Zentrum Berlin is currently designing and building a high average current all superconducting CW driven ERL as a prototype to demonstrate low normalized beam emittance of 1 mm*mrad at 100 mA and short pulses of about 2 ps. In this contribution we discuss the development of this class of a high brightness, high current SRF photo-electron source and present recent commissioning results. Also, alternative approaches at other laboratories are shortly reviewed.

  15. Preparation and characterization of high-Tc superconducting thin films with high critical current densities

    International Nuclear Information System (INIS)

    Vase, P.

    1991-08-01

    The project was carried out in relation to possible cable and electronics applications of high-T c materials. Laser ablation was used as the deposition technique because of its stoichiometry conservation. Films were made in the YBa 2 Cu 3 O 7 compound due to its relatively simple stoichiometry compared to other High-T c compounds. Much attention was paid to the critical current density. A very high critical current density was reached. By using texture analysis by X-ray diffraction, it was found that films with high critical current densities were epitaxial, while films with low critical current densities contained several crystalline orientations. Four techniques for patterning the films were used - photo lithography and wet etch, laser ablation lithography, laser writing and electron beam lithography and ion milling. Sub-micron patterning has been demonstrated without degradation of the superconducting properties. The achieved patterning resolution is sufficient for preparation of many superconducting components. (AB)

  16. A distributed current stimulator ASIC for high density neural stimulation.

    Science.gov (United States)

    Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim

    2016-08-01

    This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.

  17. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  18. Advanced power flow technologies for high current ICF accelerators

    International Nuclear Information System (INIS)

    VanDevender, J.P.; McDaniel, D.H.

    1978-01-01

    Two new technologies for raising the power density in high current, inertial confinement fusion accelerators have been developed in the past two years. Magnetic flashover inhibition utilizes the self-magnetic fields around the vacuum insulator surface to inhibit surface flashover; average electric fields of 40 Mv/m at magnetic fields of 1.1 T have been achieved. Self-magnetic insulation of long, vacuum transmission lines has been used to transport power at 1.6 x 10 14 W/m 2 over six meters and up to 1.6 x 10 15 W/m 2 over short distances in a radial anode-cathode feed. The recent data relevant to these new technologies and their implications for ICF will be explored

  19. Thermally stimulated current method applied to highly irradiated silicon diodes

    CERN Document Server

    Pintilie, I; Pintilie, I; Moll, Michael; Fretwurst, E; Lindström, G

    2002-01-01

    We propose an improved method for the analysis of Thermally Stimulated Currents (TSC) measured on highly irradiated silicon diodes. The proposed TSC formula for the evaluation of a set of TSC spectra obtained with different reverse biases leads not only to the concentration of electron and hole traps visible in the spectra but also gives an estimation for the concentration of defects which not give rise to a peak in the 30-220 K TSC temperature range (very shallow or very deep levels). The method is applied to a diode irradiated with a neutron fluence of phi sub n =1.82x10 sup 1 sup 3 n/cm sup 2.

  20. High current superconductors for tokamak toroidal field coils

    International Nuclear Information System (INIS)

    Fietz, W.A.

    1976-01-01

    Conductors rated at 10,000 A for 8 T and 4.2 K are being purchased for the first large coil segment tests at ORNL. Requirements for these conductors, in addition to the high current rating, are low pulse losses, cryostatic stability, and acceptable mechanical properties. The conductors are required to have losses less than 0.4 W/m under pulsed fields of 0.5 T with a rise time of 1 sec in an ambient 8-T field. Methods of calculating these losses and techniques for verifying the performance by direct measurement are discussed. Conductors stabilized by two different cooling methods, pool boiling and forced helium flow, have been proposed. Analysis of these conductors is presented and a proposed definition and test of stability is discussed. Mechanical property requirements, tensile and compressive, are defined and test methods are discussed

  1. Western High-Fat Diet Consumption during Adolescence Increases Susceptibility to Traumatic Stress while Selectively Disrupting Hippocampal and Ventricular Volumes

    Science.gov (United States)

    Kalyan-Masih, Priya; Vega-Torres, Julio David; Haddad, Elizabeth; Rainsbury, Sabrina; Baghchechi, Mohsen

    2016-01-01

    Abstract Psychological trauma and obesity co-occur frequently and have been identified as major risk factors for psychiatric disorders. Surprisingly, preclinical studies examining how obesity disrupts the ability of the brain to cope with psychological trauma are lacking. The objective of this study was to determine whether an obesogenic Western-like high-fat diet (WD) predisposes rats to post-traumatic stress responsivity. Adolescent Lewis rats (postnatal day 28) were fed ad libitum for 8 weeks with either the experimental WD diet (41.4% kcal from fat) or the control diet (16.5% kcal from fat). We modeled psychological trauma by exposing young adult rats to a cat odor threat. The elevated plus maze and the open field test revealed increased psychological trauma-induced anxiety-like behaviors in the rats that consumed the WD when compared with control animals 1 week after undergoing traumatic stress (p < 0.05). Magnetic resonance imaging showed significant hippocampal atrophy (20% reduction) and lateral ventricular enlargement (50% increase) in the animals fed the WD when compared with controls. These volumetric abnormalities were associated with behavioral indices of anxiety, increased leptin and FK506-binding protein 51 (FKBP51) levels, and reduced hippocampal blood vessel density. We found asymmetric structural vulnerabilities to the WD, particularly the ventral and left hippocampus and lateral ventricle. This study highlights how WD consumption during adolescence impacts key substrates implicated in post-traumatic stress disorder. Understanding how consumption of a WD affects the developmental trajectories of the stress neurocircuitry is critical, as stress susceptibility imposes a marked vulnerability to neuropsychiatric disorders. PMID:27844058

  2. A socio-cognitive strategy to address farmers' tolerance of high risk work: Disrupting the effects of apprenticeship of observation.

    Science.gov (United States)

    Mazur, Joan M; Westneat, Susan

    2017-02-01

    Why do generations of farmers tolerate the high-risk work of agricultural work and resist safe farm practices? This study presents an analysis inspired by empirical data from studies conducted from 1993 to 2012 on the differing effects of farm safety interventions between participants who live or work on farms and those who don't, when both were learning to be farm safety advocates. Both groups show statistically significant gains in knowledge and behavioral change proxy measures. However, non-farm participants' gains consistently outstripped their live/work farm counterparts. Drawing on socio-cultural perspectives, a grounded theory qualitative analysis focused on identifying useful constructs to understand the farmers' resistance to adopt safety practices. Understanding apprenticeships of observation and its relation to experiential learning over time can expose sources of deeply anchored beliefs and how they operate insidiously to promote familiar, albeit unsafe farming practices. The challenge for intervention-prevention programs becomes how to disrupt what has been learned during these apprenticeships of observation and to address what has been obscured during this powerful socialization process. Implications focus on the design and implementation of farm safety prevention and education programs. First, farm safety advocates and prevention researchers need to attend to demographics and explicitly explore the prior experiences and background of safety program participants. Second, farm youth in particular need to explore, explicitly, their own apprenticeships of observations, preferably through the use of new social media and or digital forms of expression, resulting in a story repair process. Third, careful study of the organization of work and farm experiences and practices need to provide the foundations for intervention programs. Finally, it is crucial that farm safety programs understand apprenticeships of observation are generational and ongoing over time

  3. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  4. Characteristics of a High Current Helicon Ion Source With High Monatomic Fraction

    International Nuclear Information System (INIS)

    Jung, Hwa-Dong; Chung, Kyoung-Jae; Hwang, Yong-Seok

    2006-01-01

    Applications of neutron need compact and high yield neutron sources as well as very intense neutron sources from giant devices such as accelerators. Ion source based neutron sources using nuclear fusion reactions such as D(d, 3He)n, D(t, 4He)n can meet the requirements. This type of neutron generators can be simply composed of an ion source and a target. High-performance neutron generators with high yield require ion sources with high beam current, high monatomic fraction and long lifetime. Helicon ion source can meet these requirements. To make high current ion source, characteristics of helicon plasma such as high plasma density can be utilized. Moreover, efficient plasma heating with RF power lead high fraction of monatomic ion beam. Here, Characteristics of helicon plasma sources are described. Design and its performances of a helicon ion source are presented

  5. Sustainable Disruptions

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Kjær, Lykke Bloch

    2016-01-01

    Since 2012 the Sustainable Disruptions (SD) project at the Laboratory for Sustainability at Design School Kolding (DK) has developed and tested a set of design thinking tools, specifically targeting the barriers to economically, socially, and environmentally sustainable business development....... The tools have been applied in practice in collaboration with 11 small and medium sized companies (SMEs). The study investigates these approaches to further understand how design thinking can contribute to sustainable transition in a business context. The study and the findings are relevant to organizations...... invested in the issue of sustainable business development, in particular the leaders and employees of SMEs, but also to design education seeking new ways to consciously handle and teach the complexity inherent in sustainable transformation. Findings indicate that the SD design thinking approach contributes...

  6. A high current, short pulse electron source for wakefield accelerators

    International Nuclear Information System (INIS)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed

  7. Structured Cable for High-Current Coils of Tokamaks

    Science.gov (United States)

    Benson, Christopher; McIntyre, Peter; Sattarov, Akhdiyor; Mann, Thomas

    2011-10-01

    The 45 kA superconducting cable for the ITER central solenoid coil has yielded questionable results in two recent tests. In both cases the cable Tc increased after cycling only a fraction of the design life, indicating degradation due to fatigue and fracture among the superconducting strands. The Accelerator Research Lab at Texas A&M University is developing a design for a Nb3Sn structured cable suitable for such tokamak coils. The superconductor is configured in 6 sub-cables, and each subcable is supported within a channel of a central support structure within a high-strength armor sheath. The structured cable addresses two issues that are thought to compromise opposition at high current. The strands are supported without cross-overs (which produce stress concentration); and armor sheath and core structure bypass stress through the coil and among subcables so that the stress within each subcable is only what is produced directly upon it. Details of the design and plans for development will be presented.

  8. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    Science.gov (United States)

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  9. Current Knowledge on Endocrine Disrupting Chemicals (EDCs from Animal Biology to Humans, from Pregnancy to Adulthood: Highlights from a National Italian Meeting

    Directory of Open Access Journals (Sweden)

    Maria Elisabeth Street

    2018-06-01

    Full Text Available Wildlife has often presented and suggested the effects of endocrine disrupting chemicals (EDCs. Animal studies have given us an important opportunity to understand the mechanisms of action of many chemicals on the endocrine system and on neurodevelopment and behaviour, and to evaluate the effects of doses, time and duration of exposure. Although results are sometimes conflicting because of confounding factors, epidemiological studies in humans suggest effects of EDCs on prenatal growth, thyroid function, glucose metabolism and obesity, puberty, fertility, and on carcinogenesis mainly through epigenetic mechanisms. This manuscript reviews the reports of a multidisciplinary national meeting on this topic.

  10. High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

    Science.gov (United States)

    Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.

    2017-10-01

    Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.

  11. Emission mechanism in high current hollow cathode arcs

    International Nuclear Information System (INIS)

    Krishnan, M.

    1976-01-01

    Large (2 cm-diameter) hollow cathodes have been operated in a magnetoplasmadynamic (MPD) arc over wide ranges of current (0.25 to 17 kA) and mass flow (10 -3 to 8 g/sec), with orifice current densities and mass fluxes encompassing those encountered in low current steady-state hollow cathode arcs. Detailed cathode interior measurements of current and potential distributions show that maximum current penetration into the cathode is about one diameter axially upstream from the tip, with peak inner surface current attachment up to one cathode diameter upstream of the tip. The spontaneous attachment of peak current upstream of the cathode tip is suggested as a criterion for characteristic hollow cathode operation. This empirical criterion is verified by experiment

  12. Distribution of MCA-coated grits in maize fields after high wheel tractor application for disrupting orientation of Diabrotica virgifera virgifera LeConte.

    Science.gov (United States)

    Wennemann, Ludger; Hummel, Hans E

    2002-01-01

    High wheel tractor applications of 4-methoxycinnamaldehyde (MCA)-coated corn granules ('grits') were conducted in Ruski Krstur (Serbia) in summer 2001 in a 5 ha corn field. Grits are a by-product after corn is harvested and separated from the cob and used as a carrier medium to disseminate MCA into the corn field. MCA is a kairomone mimic derived form Cucurbita maxima (Duchesne) used to disrupt orientation of Diabrotica virgifera virgifera LeConte towards different MCA and pheromone baited traps. The ultimate goal is to investigate the use of MCA as a mating disruptant. MCA was dissolved in an organic solvent and mixed in a cement machine with the grits. Grits were applied at rates of 17.39, 17.1 and 12.45 kg/ha on July 4th, July 19th and August 3rd. Before the impact of MCA as a disruptant can be addressed, the distribution patterns of MCA coated grits have to be thoroughly investigated. They were evaluated by counting girts deposited in 16 or 20 plastic dishes of 30-cm diameter positioned along 2 rows through the field directly after the grit application by tractor. Additionally, grits deposited on corn plant surface such as leaves, leaf axils and corn cobs were counted. Total number of grits collected in plastic dishes revealed even application rates at the first and second application but not on the third application date. Number of grits collected on plant surfaces were significantly different from each other regarding each application date. Altogether, grit distribution in the dishes as well as on the plant surface was variable. However, distribution patterns achieved so far hold promise to disseminate MCA coated grits into corn fields for orientation disruption or mating disruption of D. virgifera virgifera.

  13. High-latitude Conic Current Sheets in the Solar Wind

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, Olga V.; Obridko, Vladimir N.; Kharshiladze, Alexander F. [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Moscow (Russian Federation); Malova, Helmi V. [Scobeltsyn Nuclear Physics Institute of Lomonosov Moscow State University, Moscow (Russian Federation); Kislov, Roman A.; Zelenyi, Lev M. [Space Research Centre of the Polish Academy of Sciences (CBK PAN), Warsaw (Poland); Tokumaru, Munetoshi; Fujiki, Ken’ichi [Institute for Space-Earth Environmental Research, Nagoya University (Japan); Sokół, Justyna M.; Grzedzielski, Stan [Space Research Centre of the Polish Academy of Sciences (CBK), Warsaw (Poland)

    2017-02-10

    We provide observational evidence for the existence of large-scale cylindrical (or conic-like) current sheets (CCSs) at high heliolatitudes. Long-lived CCSs were detected by Ulysses during its passages over the South Solar Pole in 1994 and 2007. The characteristic scale of these tornado-like structures is several times less than a typical width of coronal holes within which the CCSs are observed. CCS crossings are characterized by a dramatic decrease in the solar wind speed and plasma beta typical for predicted profiles of CCSs. Ulysses crossed the same CCS at different heliolatitudes at 2–3 au several times in 1994, as the CCS was declined from the rotation axis and corotated with the Sun. In 2007, a CCS was detected directly over the South Pole, and its structure was strongly highlighted by the interaction with comet McNaught. Restorations of solar coronal magnetic field lines reveal the occurrence of conic-like magnetic separators over the solar poles in both 1994 and 2007. Such separators exist only during solar minima. Interplanetary scintillation data analysis confirms the presence of long-lived low-speed regions surrounded by the typical polar high-speed solar wind in solar minima. Energetic particle flux enhancements up to several MeV/ nuc are observed at edges of the CCSs. We built simple MHD models of a CCS to illustrate its key features. The CCSs may be formed as a result of nonaxiality of the solar rotation axis and magnetic axis, as predicted by the Fisk–Parker hybrid heliospheric magnetic field model in the modification of Burger and coworkers.

  14. Architecture and control of a high current ion implanter system

    International Nuclear Information System (INIS)

    Bayer, E.H.; Paul, L.F.; Kranik, J.R.

    1979-01-01

    The design of an ion implant system for use in production requires that special attention be given to areas of design which normally are not emphasized on research or development type ion implanters. Manually operated, local controls are replaced by remote controls, automatic sequencing, and digital displays. For ease of maintenance and replication the individual components are designed as simply as possible and are contained in modules of separate identities, joined only by the beam line and electrical interconnections. A production environment also imposes requirements for the control of contamination and maintainability of clean room integrity. For that reason the major portion of the hardware is separated from the clean operator area and is housed in a maintenance core area. The controls of a production system should also be such that relatively unskilled technicians are able to operate the system with optimum repeatability and minimum operator intervention. An extensive interlock system is required. Most important, for use in production the ion implant system has to have a relatively high rate of throughput. Since the rate of throughput at a given dose is a function of beam current, pumpdown time and wafer handling capacity, design of components affecting these parameters has been optimized. Details of the system are given. (U.K.)

  15. High-density matter: current status and future challenges

    Directory of Open Access Journals (Sweden)

    Stone J. R.

    2015-01-01

    Full Text Available There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC. This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  16. Exposure to modern, widespread environmental endocrine disrupting chemicals and their effect on the reproductive potential of women: an overview of current epidemiological evidence.

    Science.gov (United States)

    Karwacka, Anetta; Zamkowska, Dorota; Radwan, Michał; Jurewicz, Joanna

    2017-07-31

    Growing evidence indicates that exposure to widespread, environmental contaminants called endocrine disruptors (EDCs) negatively affects animal and human reproductive health and has been linked to several diseases including infertility. This review aims to evaluate the impact of environmental exposure to endocrine disrupting chemicals [phthalates, parabens, triclosan, bisphenol A (BPA), organochlorine (PCBs) and perfluorinated (PFCs) compounds] on the reproductive potential among women, by reviewing most recently published literature. Epidemiological studies focusing on EDCs exposure and reproductive potential among women for the last 16 years were identified by a search of the PUBMED, MEDLINE, EBSCO and TOXNET literature databases. The results of the presented studies show that exposure to EDCs impacts the reproductive potential in women, measured by ovarian reserve and by assisted reproductive technology outcomes. Exposure to environmental endocrine disrupting chemicals decrease: (i) oestradiol levels (BPA); (ii) anti-Müllerian hormone concentrations (PCBs); (iii) antral follicle count (BPA, parabens, phthalates); (iv) oocyte quality (BPA, triclosan, phthalates, PCBs); (v) fertilization rate (PFCs, PCBs); (vi) implantation (BPA, phthalates, PCBs); (vii) embryo quality (triclosan, PCBs, BPA); (viii) rate of clinical pregnancy and live births (parabens, phthalates). The studies were mostly well-designed and used prospective cohorts with the exposure assessment based on the biomarker of exposure. Considering the suggested health effects, more epidemiological data is urgently needed to confirm the presented findings.

  17. Countercurrent in high-current microsecond diodes with magnetic insulation

    International Nuclear Information System (INIS)

    Bugaev, S.P.; Kim, A.A.; Koshelev, V.I.

    1979-01-01

    In order to increase the efficiency of the generation of tube electron beams in diodes and the efficiency of the electron beam current pulse duration studied is the formation of the electron counter current in microsecond diodes with magnetic insulation in dependence on the various geometry of the cathode joint. The experiments have been carried out at the accelerator with the following parameters: diode voltage from 400 to 600 kV, the front and duration of the pulse 75 ns and 1-2 μs respectively, beam current from 4 to 17 kA, magnetic field of 18 kGs. The current in the drift tube and the total current of the electron gun have been measured. Distributing resistance current of vacuum insulator has been controlled. Conclusions have been made, that, in the case when the diameters of cathode and cathode holder are equal, the electron current is being produced from the reverse side of cathode plasma, which expands across the magnetic field with the rate of (4-5)x10 5 sm/cs. The counter current value has constituted 15% of the total current at the use of reflector with the geometry repeating the shape of the magnetic field force lines, corresponding to the cathode radius. The counter current has not been present at the use of the flat reflector

  18. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  19. Characterization of plasma current quench at JET

    International Nuclear Information System (INIS)

    Riccardo, V; Barabaschi, P; Sugihara, M

    2005-01-01

    Eddy currents generated during the fastest disruption current decays represent the most severe design condition for medium and small size in-vessel components of most tokamaks. Best-fit linear and instantaneous plasma current quench rates have been extracted for a set of recent JET disruptions. Contrary to expectations, the current quench rate spectrum of high and low thermal energy disruptions is not substantially different. For most of the disruptions with the highest instantaneous current quench rate an exponential fit of the early phase of the current decay provides a more accurate estimate of the maximum current decay velocity. However, this fit is only suitable to model the fastest events, for which the current quench is dominated by radiation losses rather than the plasma motion

  20. A High-Content Phenotypic Screen Reveals the Disruptive Potency of Quinacrine and 3′,4′-Dichlorobenzamil on the Digestive Vacuole of Plasmodium falciparum

    OpenAIRE

    Lee, Yan Quan; Goh, Amanda S. P.; Ch'ng, Jun Hong; Nosten, François H.; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S. W.

    2014-01-01

    Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of in...

  1. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    International Nuclear Information System (INIS)

    Abraimov, D; Francis, A; Jaroszynski, J; McCallister, J; Polyanskii, A; Santos, M; Viouchkov, Y L; Ballarino, A; Bottura, L; Rossi, L; Barth, C; Senatore, C; Dietrich, R; Rutt, A; Schlenga, K; Usoskin, A; Majkic, G S; Selvamanickam, V

    2015-01-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa 2 Cu 3 O x−δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed. (paper)

  2. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    Science.gov (United States)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  3. A PICTORIAL PRESENTATION OF ESOPHAGEAL HIGH RESOLUTION MANOMETRY CURRENT PARAMETERS.

    Science.gov (United States)

    Lafraia, Fernanda M; Herbella, Fernando A M; Kalluf, Julia R; Patti, Marco G

    2017-01-01

    High resolution manometry is the current technology used to the study of esophageal motility and is replacing conventional manometry in important centers for esophageal motility with parameters used on esophageal motility, following the Chicago Classification. This classification unifies high resolution manometry interpretation and classifies esophageal disorders. This review shows, in a pictorial presentation, the new parameters established by the Chicago Classification, version 3.0, aimed to allow an easy comprehension and interpretation of high resolution manometry. Esophageal manometries performed by the authors were reviewed to select illustrative tracings representing Chicago Classification parameters. The parameters are: Esophagogastric Morphology, that classifies this junction according to its physiology and anatomy; Integrated Relaxation Pressure, that measures the lower esophageal sphincter relaxation; Distal Contractile Integral, that evaluates the contraction vigor of each wave; and, Distal Latency, that measures the peristalsis velocity from the beginning of the swallow to the epiphrenic ampulla. Clinical applications of these new concepts is still under evaluation. Mostrar, de forma pictórica, os novos parâmetros compilados na versão 3.0 da Classificação de Chicago, buscando facilitar a compreensão e interpretação da manometria de alta resolução. Foram revistas as manometrias da casuística dos autores e selecionados os traçados representativos dos parâmetros da Classificação de Chicago. Entre os parâmetros apresentados foram considerados a Morfologia da Transição Gastroesofágica, que classifica o segmento de acordo com sua fisiologia e anatomia; a Integral da Pressão de Relaxamento, que mede o relaxamento do esfíncter esofagiano inferior; a Integral Contrátil Distal, que avalia o vigor contrátil da onda peristáltica; e, a Latência Distal, que mede o tempo da peristalse, desde o início da deglutição até a ampola epifr

  4. High-current magnetron discharge with magnetic insulation of anode

    International Nuclear Information System (INIS)

    Bizyukov, A.A.; Sereda, K.N.; Sleptsov, V.V.

    2008-01-01

    In magnetron discharge at currents higher then critical which magnitude is in the range of 15...30 A the transition from glow discharge in transverse magnetic field to arc discharge occurs. In the present time the problem of arc blowout is solved at the expense of pulse and HF power supply applying. In this paper the alternative method of limiting current of magnetron discharge increasing at the expense of increasing of discharge gap resistance by means of additional anode layer transverse magnetic field and arc current interruption by sectioning of current collector of anode surface is carrying out

  5. Risk assessment for the Yucca Mountain high-level nuclear waste repository site: Estimation of volcanic disruption. Final report

    International Nuclear Information System (INIS)

    Ho, Chih-Hsiang.

    1992-01-01

    In this article, we model the volcanism near the proposed nuclear waste repository at Yucca Mountain, Nevada, U.S.A. by estimating the instantaneous recurrence rate using a nonhomogeneous Poisson process with Weibull intensity and by using a homogeneous Poisson process to predict future eruptions. We then quantify the probability that any single eruption is disruptive in terms of a (prior) probability distribution, since not every eruption would result in disruption of the repository. Bayesian analysis is performed to evaluate the volcanic risk. Based on the Quaternary data, a 90% confidence interval for the instantaneous recurrence rate near the Yucca Mountain site is (1.85 x 10 -6 /yr, 1.26 x 10 -5 /yr). Also, using these confidence bounds, the corresponding 90% confidence interval for the risk (probability of at least one disruptive eruption) for an isolation time of 10 4 years is (1.0 x 10 -3 , 6.7 x 10 -3 ), if it is assumed that the intensity remains constant during the projected time frame

  6. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  7. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model.

    Directory of Open Access Journals (Sweden)

    Aida J Chaves

    Full Text Available Influenza A virus (IAV causes central nervous system (CNS lesions in avian and mammalian species, including humans. However, the mechanism used by IAV to invade the brain has not been determined. In the current work, we used chickens infected with a highly pathogenic avian influenza (HPAI virus as a model to elucidate the mechanism of entry of IAV into the brain. The permeability of the BBB was evaluated in fifteen-day-old H7N1-infected and non-infected chickens using three different methods: (i detecting Evans blue (EB extravasation into the brain, (ii determining the leakage of the serum protein immunoglobulin Y (IgY into the brain and (iii assessing the stability of the tight-junction (TJ proteins zonula occludens-1 and claudin-1 in the chicken brain at 6, 12, 18, 24, 36 and 48 hours post-inoculation (hpi. The onset of the induced viremia was evaluated by quantitative real time RT-PCR (RT-qPCR at the same time points. Viral RNA was detected from 18 hpi onward in blood samples, whereas IAV antigen was detected at 24 hpi in brain tissue samples. EB and IgY extravasation and loss of integrity of the TJs associated with the presence of viral antigen was first observed at 36 and 48 hpi in the telencephalic pallium and cerebellum. Our data suggest that the mechanism of entry of the H7N1 HPAI into the brain includes infection of the endothelial cells at early stages (24 hpi with subsequent disruption of the TJs of the BBB and leakage of virus and serum proteins into the adjacent neuroparenchyma.

  8. Disrupted Reinforcement Signaling in Orbital Frontal Cortex and Caudate in Youths with Conduct Disorder/Oppositional Defiant Disorder and High Psychopathic Traits

    Science.gov (United States)

    Finger, Elizabeth C.; Marsh, Abigail A.; Blair, Karina S.; Reid, Marguerite. E.; Sims, Courtney; Ng, Pamela; Pine, Daniel S.; Blair, R. James. R.

    2010-01-01

    OBJECTIVE Dysfunction in amygdala and orbital frontal cortex functioning has been reported in youths and adults with psychopathic traits. However, the specific nature of the computational irregularities within these brain structures remains poorly understood. The current study used the passive avoidance task to examine responsiveness of these systems to early stimulus-reinforcement exposure, when prediction errors are greatest and learning maximized, and to reward in youths with psychopathic traits and comparison youths. METHOD 30 youths (N=15 with conduct disorder or oppositional defiant disorder plus high psychopathic traits and N=15 comparison subjects) completed a 3.0 T fMRI scan while performing a passive avoidance learning task. RESULTS Relative to comparison youth, youths with conduct disorder or oppositional defiant disorder plus psychopathic traits showed reduced orbitofrontal cortex responsiveness both to early stimulus-reinforcement exposure and to rewards, as well as reduced caudate response to early stimulus-reinforcement exposure. Contrary to other predictions, however, there were no group differences in amygdala responsiveness specifically to these two task parameters. However, amygdala responsiveness throughout the task was reduced in the youths with conduct disorder or oppositional defiant disorder plus psychopathic traits. CONCLUSIONS This study demonstrates that youths with conduct disorder or oppositional defiant disorder plus psychopathic traits are marked by a compromised sensitivity to early reinforcement information in both orbitofrontal cortex and caudate and to reward outcome information within orbitofrontal cortex. They further suggest that the integrated functioning of the amygdala, caudate and orbitofrontal cortex may be disrupted in individuals with this disorder. PMID:21078707

  9. High Precision Current Control for the LHC Main Power Converters

    CERN Document Server

    Thiesen, H; Hudson, G; King, Q; Montabonnet, V; Nisbet, D; Page, S

    2010-01-01

    Since restarting at the end of 2009, the LHC has reached a new energy record in March 2010 with the two 3.5 TeV beams. To achieve the performance required for the good functioning of the accelerator, the currents in the main circuits (Main Bends and Main Quadrupoles) must be controlled with a higher precision than ever previously requested for a particle accelerator at CERN: a few parts per million (ppm) of nominal current. This paper describes the different challenges that were overcome to achieve the required precision for the current control of the main circuits. Precision tests performed during the hardware commissioning of the LHC illustrate this paper.

  10. Large area dispenser cathode applied to high current linac

    International Nuclear Information System (INIS)

    Yang Anmin; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Liu Chenjun; Xia Liansheng; Wang Wendou; Zhang Kaizhi

    2005-01-01

    The paper introduced a dispenser cathode (411 M) which was 55 mm in diameter. A 200 kV long pulsed power generator with 2 μs flattop based on Marx-PEN and system with heat and voltage insulation were built. A 52 A space charge limited current was gained, when the temperature was 1165 degree C and the filament current was 18 A on the cathode and the voltage of the pulse was 75 kV at the cathode test stand. Experimental results show that the current values are consistent with the numerical simulation. The experiment reveals that the deflated gas will influence the cathode emission ability. (authors)

  11. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  12. Survey of disruption causes at JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Alper, B.; Hender, T.C.; Riccardo, V.; Buratti, P.; Koslowski, H.R.

    2011-01-01

    A survey has been carried out into the causes of all 2309 disruptions over the last decade of JET operations. The aim of this survey was to obtain a complete picture of all possible disruption causes, in order to devise better strategies to prevent or mitigate their impact. The analysis allows the effort to avoid or prevent JET disruptions to be more efficient and effective. As expected, a highly complex pattern of chain of events that led to disruptions emerged. It was found that the majority of disruptions had a technical root cause, for example due to control errors, or operator mistakes. These bring a random, non-physics, factor into the occurrence of disruptions and the disruption rate or disruptivity of a scenario may depend more on technical performance than on physics stability issues. The main root cause of JET disruptions was nevertheless due to neo-classical tearing modes that locked, closely followed in second place by disruptions due to human error. The development of more robust operational scenarios has reduced the JET disruption rate over the last decade from about 15% to below 4%. A fraction of all disruptions was caused by very fast, precursorless unpredictable events. The occurrence of these disruptions may set a lower limit of 0.4% to the disruption rate of JET. If one considers on top of that human error and all unforeseen failures of heating or control systems this lower limit may rise to 1.0% or 1.6%, respectively.

  13. Development of high electrical resistance persistent current switch for high speed energization system

    International Nuclear Information System (INIS)

    Jizo, Y.; Furuta, Y.; Nakashima, H.

    1986-01-01

    Japanese National Railways is now developing a superconducting magnetically-levitated train system. A persistent current switch is incorporated in the super-conducting magnet used in the magnetically-levitated train. In recent years, the switch has been required to have higher electrical resistance during its off-state in order to realize the high speed energization/de-energization system of the superconducting magnets. The system aims to decrease evaporation volume of liquid helium during the energization/de-energization of the magnet, by means of energizing the superconducting magnet with high current increasing/decreasing rate. Consequently, it would be possible to decrease the dependence of the on-board magnet system upon the ground cooling system. Through the development of a stable superconductive wire material and a coil structure for the persistent current switch using many small model switches which were produced in order to improve their current carrying capacities, the authors have succeeded in manufacturing the high electrical resistance persistent current switch whose electrical resistance was 5 ohms. The switch, of cylindrical shape, has a diameter of about 100mm, a length of about 100mm. These 5 ohm PCSs are now functioning in stable conditions being incorporated in the superconducting magnets of No.2 vehicle of MLU001 at the JNR's Miyazaki test track. Further, the authors are now developing the PCS of still higher resistance values, such as 50 ohms, through studies for stabilization in structural aspects of the winding and obtaining results therefrom

  14. Critical transport current in granular high temperature superconductors

    International Nuclear Information System (INIS)

    Bogolyubov, N.A.

    1999-01-01

    The temperature and size dependence of the critical current in a zero magnetic field of three bismuth-based ceramic samples with round cross section and one sample with rectangular triangle cross section have been studied by a contactless technique. It is shown that the critical current can be presented as a product of the temperature and size dependent factors. The temperature-dependent multiplier reflects the individual peculiarities of the Josephson net of each sample, while the size factor is a homogeneous function of the cross-section sizes. The index of this function is independent of the cross-section form, the temperature and individual properties of HTSC samples. The radial distribution of critical current density in round samples and dependence of the critical current density on the magnetic conduction in granular HTSC have been found from the analysis of experimental data

  15. High-Current-Density Vertical-Tunneling Transistors from Graphene/Highly Doped Silicon Heterostructures.

    Science.gov (United States)

    Liu, Yuan; Sheng, Jiming; Wu, Hao; He, Qiyuan; Cheng, Hung-Chieh; Shakir, Muhammad Imran; Huang, Yu; Duan, Xiangfeng

    2016-06-01

    Scalable fabrication of vertical-tunneling transistors is presented based on heterostructures formed between graphene, highly doped silicon, and its native oxide. Benefiting from the large density of states of highly doped silicon, the tunneling transistors can deliver a current density over 20 A cm(-2) . This study demonstrates that the interfacial native oxide plays a crucial role in governing the carrier transport in graphene-silicon heterostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  17. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  18. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac-resistance a......This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  19. Final report: High current capacity high temperature superconducting film based tape for high field magnets

    International Nuclear Information System (INIS)

    Ying Xin

    2000-01-01

    The primary goal of the program was to establish the process parameters for the continuous deposition of high quality, superconducting YBCO films on one meter lengths of buffered RABiTS tape using MOCVD and to characterize the potential utility of the resulting tapes in high field magnet applications

  20. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  1. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Science.gov (United States)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  2. Vacuum interrupters used for the interruption of high dc currents

    International Nuclear Information System (INIS)

    Warren, R.W.

    1977-01-01

    Conventional ac vacuum interrupters are being used to interrupt currents in pulsed energy storage systems. They have been tested with dc currents of up to 37 kA. The limit to the current which can be successfully interrupted has been measured as a function of various parameters. Among these are (1) the size of the interrupter, (2) the magnitude of the counterpulse current, (3) the nature and flux rating of the saturable reactor used, and (4) the kind of ''snubber'' circuit used. Fragmentary data have also been collected on electrode erosion rates and on mechanical failure of the bellows. A description is given of the circuits used in these tests and of the results found for a representative selection of the commercially available domestic interrupters. More recently efforts have been made to increase the values found for the maximum interruptible current. The techniques used have included connecting interrupters in parallel and operating them in an impressed axial magnetic field. The results of this work are discussed

  3. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  4. Some high-current ion sources for materials modification

    International Nuclear Information System (INIS)

    Taylor, T.

    1989-01-01

    Ion sources for materials modification have evolved through three distinct generations. The first generation was adopted from research accelerators. These cold-cathode plasma-discharge devices generate beam currents of less than 100 μA. The hot-cathode plasma-discharge ion sources, originally developed for isotope separation, comprise the second generation. They produce between 100 μA and 10 mA of beam current. The third generation ion sources give beam currents in excess of 10 mA. This technology, transferred from industrial accelerators, has already made SIMOX (Separation by IMplanted OXygen) into a commercially viable semiconductor process and promises to do the same for ion implantation of metals and insulators. The author focuses on the third generation technology that will play a key role in the future of ion implantation. 10 refs.; 5 figs.; 2 tabs

  5. Experiments and simulation of high current operation at CEBAF

    International Nuclear Information System (INIS)

    Merminga, L.; Crawford, K.; Delayen, J.R.; Doolittle, L.; Hovater, C.; Kazimi, R.; Krafft, G.; Reece, C.; Simrock, S.; Tiefenback, M.; Wang, D.X.

    1996-01-01

    The superconducting rf, cw electron accelerator at CEBAF has achieved the design energy of 4 GeV using 5-pass recirculation through a pair of 400 MeV linacs. Stable beam current of 35 μA has been delivered to the Experimental Hall C. The total beam current that has been recirculated so far is 248 μA. Measurements of the performance of the rf control system have been made in both pulsed and cw mode, and a numerical model has been developed which describes the beam-cavity interaction, includes a realistic representation of low level controls, klystron characteristics and microphonic noise. Experimental data and simulation results on transient beam loading, klystron saturation, a new technique for cavity phasing, and heavy beam loading tests are described; in conclusion, an outlook on full current operation is presented

  6. Characteristics of a high current ion source operated with lithium

    International Nuclear Information System (INIS)

    Bay, H.L.; Dullni, E.; Leismann, P.

    1986-05-01

    A low pressure arc ion source has been tested for operation with lithium. Currents up to 120 mA could be extracted through a multiple aperture extraction system at energies of 30 keV. The ion beam was neutralized up to 70% in a charge exchange cell filled with lithium vapour. The beam divergence ranged from 20 to 25 mrad full angle deduced from the spatial distribution of the collision induced Li I resonance line. Current densities from 2 to 3 mA/m 2 at a distance of 1.9 m from the source were measured either by laser induced fluorescence or with a Faraday cup. (orig.)

  7. Record high-average current from a high-brightness photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel [Cornell Laboratory for Accelerator-Based Sciences and Education, Cornell University, Ithaca, New York 14853 (United States); and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  8. A high-throughput fluorescence resonance energy transfer (FRET)-based endothelial cell apoptosis assay and its application for screening vascular disrupting agents

    International Nuclear Information System (INIS)

    Zhu, Xiaoming; Fu, Afu; Luo, Kathy Qian

    2012-01-01

    Highlights: ► An endothelial cell apoptosis assay using FRET-based biosensor was developed. ► The fluorescence of the cells changed from green to blue during apoptosis. ► This method was developed into a high-throughput assay in 96-well plates. ► This assay was applied to screen vascular disrupting agents. -- Abstract: In this study, we developed a high-throughput endothelial cell apoptosis assay using a fluorescence resonance energy transfer (FRET)-based biosensor. After exposure to apoptotic inducer UV-irradiation or anticancer drugs such as paclitaxel, the fluorescence of the cells changed from green to blue. We developed this method into a high-throughput assay in 96-well plates by measuring the emission ratio of yellow fluorescent protein (YFP) to cyan fluorescent protein (CFP) to monitor the activation of a key protease, caspase-3, during apoptosis. The Z′ factor for this assay was above 0.5 which indicates that this assay is suitable for a high-throughput analysis. Finally, we applied this functional high-throughput assay for screening vascular disrupting agents (VDA) which could induce endothelial cell apoptosis from our in-house compounds library and dioscin was identified as a hit. As this assay allows real time and sensitive detection of cell apoptosis, it will be a useful tool for monitoring endothelial cell apoptosis in living cell situation and for identifying new VDA candidates via a high-throughput screening.

  9. High-current beam dynamics and transport, theory and experiment

    International Nuclear Information System (INIS)

    Reiser, M.

    1986-01-01

    Recent progress in the understanding of beam physics and technology factors determining the current and brightness of ion and electron beams in linear accelerators will be reviewed. Topics to be discussed including phase-space density constraints of particle sources, low-energy beam transport include charge neutralization, emittance growth due to mismatch, energy exchange, instabilities, nonlinear effects, and longitudinal bunching

  10. Electron beam formation in high-current diode

    International Nuclear Information System (INIS)

    Korneev, S.A.

    1981-01-01

    The results of experimental investigation of the electron beam formation in diode with cathode on the base of incomplete discharge over the surface of dielectrics with dielectric penetration epsilon 2 . The measurement of current density distribution over transversal cross section reveals an efficient homogeneity [ru

  11. High voltage fault current limiter having immersed phase coils

    Science.gov (United States)

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  12. RADLAC II high current electron beam propagation experiment

    International Nuclear Information System (INIS)

    Frost, C.A.; Shope, S.L.; Mazarakis, M.G.; Poukey, J.W.; Wagner, J.S.; Turman, B.N.; Crist, C.E.; Welch, D.R.; Struve, K.W.

    1993-01-01

    The resistive hose instability of an electron beam was observed to be convective in recent RADLAC II experiments for higher current shots. The effects of air scattering for these shots were minimal. These experiments and theory suggest low-frequency hose motion which does not appear convective may be due to rapid expansion and subsequent drifting of the beam nose

  13. High current DC negative ion source for cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S. [Sumitomo Heavy Industries, Ltd., Tokyo 141-6025 (Japan); Onai, M.; Hatayama, A. [Graduate School of Science and Technology, Keio University, Kanagawa 223-8522 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Okumura, Y. [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Aomori 039-3212 (Japan)

    2016-02-15

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.

  14. Sleep disruption in chronic rhinosinusitis.

    Science.gov (United States)

    Mahdavinia, Mahboobeh; Schleimer, Robert P; Keshavarzian, Ali

    2017-05-01

    Chronic rhinosinusitis (CRS) is a common disease of the upper airways and paranasal sinuses with a marked decline in quality of life (QOL). CRS patients suffer from sleep disruption at a significantly higher proportion (60 to 75%) than in the general population (8-18 %). Sleep disruption in CRS causes decreased QOL and is linked to poor functional outcomes such as impaired cognitive function and depression. Areas covered: A systematic PubMed/Medline search was done to assess the results of studies that have investigated sleep and sleep disturbances in CRS. Expert commentary: These studies reported sleep disruption in most CRS patients. The main risk factors for sleep disruption in CRS include allergic rhinitis, smoking, and high SNOT-22 total scores. The literature is inconsistent with regard to the prevalence of sleep-related disordered breathing (e.g. obstructive sleep apnea) in CRS patients. Although nasal obstruction is linked to sleep disruption, the extent of sleep disruption in CRS seems to expand beyond that expected from physical blockage of the upper airways alone. Despite the high prevalence of sleep disruption in CRS, and its detrimental effects on QOL, the literature contains a paucity of studies that have investigated the mechanisms underlying this major problem in CRS.

  15. High ion charge states in a high-current, short-pulse, vacuum ARC ion sources

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1996-01-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1-4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several μs) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  16. High ion charge states in a high-current, short-pulse, vacuum arc ion source

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.; MacGill, R.; Dickinson, M.

    1995-09-01

    Ions of the cathode material are formed at vacuum arc cathode spots and extracted by a grid system. The ion charge states (typically 1--4) depend on the cathode material and only little on the discharge current as long as the current is low. Here the authors report on experiments with short pulses (several micros) and high currents (several kA); this regime of operation is thus approaching a more vacuum spark-like regime. Mean ion charge states of up to 6.2 for tungsten and 3.7 for titanium have been measured, with the corresponding maximum charge states of up to 8+ and 6+, respectively. The results are discussed in terms of Saha calculations and freezing of the charge state distribution

  17. MHD instabilities leading to disruption in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Takechi, M.; Fujita, T.; Ishii, Y.; Ozeki, T.; Suzuki, T.; Isayama, A.

    2005-01-01

    High performance reversed shear discharges with strong internal transport barrier (ITB) and flat pressure profile in the plasma core region disrupt frequently even with low beta. We analyzed MHD instabilities leading to low beta disruption with measuring fluctuations and current profile with MSE measurement. We mainly observed two type of disruptions. One is the disruption without precursor at q surf ∼integer. The other is the disruption with n=1 precursor of γ>10 ms. The poloidal mode number of the n=1 mode is equal to outermost integer of q. The n=1 mode exist from peripheral region to ITB layer or peripheral region and ITB and the phase is 180 degree different between them. To explain these characteristics of disruption, we introduce the simple model such as, disruption occurs when the both MHD instabilities at plasma surface and at safety factor being equal to surface mode are unstable. This simple model can explain almost all observed disruption by two process. One is the surface mode triggered disruption, which occurs when q surf change, corresponding q surface at ITB layer change discretely. The other is the internal mode triggered disruption, which occurs when corresponding q surface become unstable gradually. (author)

  18. Fueling Requirements for Steady State high butane current fraction discharges

    International Nuclear Information System (INIS)

    R.Raman

    2003-01-01

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs

  19. Peltier effect in multilayered nanopillars under high density charge current

    International Nuclear Information System (INIS)

    Gravier, L; Fukushima, A; Kubota, H; Yamamoto, A; Yuasa, S

    2006-01-01

    From the basic equations of thermoelectricity, we model the thermal regimes that develop in multilayered nanopillar elements experiencing continuous charge currents. The energy conservation principle was applied to all layer-layer and layer-electrode junctions. The obtained set of equations was solved to derive the temperature of each junction. The contribution of the Peltier effect is included in an effective resistance. This model gives satisfactory fits to experimental data obtained on a series of reference nanopillar elements

  20. Pulsed high-current electron source: Final report

    International Nuclear Information System (INIS)

    Spindt, C.A.

    1988-10-01

    The objective of this investigation was to investigate ways to realize the cathode's potential as a source for high power pulse operation. The questions that needed to be studied were those of large area coverage, maximum emission that the cathode arrays are capable of producing practically, uniformity of emission over large areas, and the ability to operate with high voltage anodes. 9 figs

  1. Quantifying the erosion effect on current carbon budget of European agricultural soils at high spatial resolution.

    Science.gov (United States)

    Lugato, Emanuele; Paustian, Keith; Panagos, Panos; Jones, Arwyn; Borrelli, Pasquale

    2016-05-01

    The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the 'four per mil' initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km(2) resolution across the agricultural soils of the European Union (EU). Based on data-driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates 0.45 Mg C ha(-1) yr(-1). In comparison with a baseline without erosion, the model suggested an erosion-induced sink of atmospheric C consistent with previous empirical-based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of -2.28 and +0.79 Tg yr(-1) of CO2 eq, respectively, depending on the value for the short-term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. The design of a new JET divertor for high triangularity and high current scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Chappuis, P. E-mail: philippe.chappuis@cea.fr; Damiani, C.; Guerin, C.; Hurd, F.; Loarte, A.; Lomas, P.; Lorenz, A.; Pamela, J.; Peacock, A.; Portafaix, C.; Rapp, J.; Riccardo, V.; Rimini, F.; Saibene, G.; Salavy, J.F.; Sauce, Y.; Sartori, R.; Solano, E.; Thomas, E.; Thomas, P.; Tsitrone, E.; Valeta, M.P

    2003-09-01

    A new divertor (MKII-HP) has been designed to be implemented in JET as part of a possible enhancement programme of the JET facility (JET EP). The aim is to handle up to 40 MW of injected power for 10 s with plasma triangularities up to 0.5 while keeping enough flexibility for other scenarios. The divertor is shaped to optimise the wetting fraction without exposing sharp edges or metallic parts and the general design allows for high halo currents.

  3. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    International Nuclear Information System (INIS)

    Lagov, P B; Drenin, A S; Zinoviev, M A

    2017-01-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding. (paper)

  4. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    Science.gov (United States)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  5. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    OpenAIRE

    Abraimov D; Ballarino A; Barth C; Bottura L; Dietrich R; Francis A; Jaroszynski J; Majkic G S; McCallister J; Polyanskii A; Rossi L; Rutt A; Santos M; Schlenga K; Selvamanickam V

    2015-01-01

    A significant increase of critical current in high magnetic field up to 31 T was recorded in long tapes manufactured by employing a double disorder route. In a double disordered high temperature superconductor (HTS) a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-d matrix and (ii) the extrinsic disorder is in...

  6. Prototype high current, high duty factor negative hydrogen ion source for LAMPF

    International Nuclear Information System (INIS)

    Lawrence, G.P.; Hayward, T.D.; Jackson, J.A.

    1975-01-01

    Present plans for the high current proton storage ring at LAMPF incorporate charge changing (stripping) injection of H - ions in all modes of operation. Achievable stored current levels in this device will be strongly dependent on the maximum H - beam intensity which can be accelerated by the linac, consistent with acceptable beam spill. This requirement has stimulated a program to develop an H - ion source capable of providing a suitably high peak current (up to 25 mA) at high duty factor (up to 12 percent), with a normalized x,x' or y,y' emittance acceptable to the accelerating system. There are presently two main approaches which could lead to H - ion sources providing this kind of performance. These are (a) the charge exchange method, in which an intense proton beam is fractionally converted to H - beam in a suitable charge adding medium, and (b) the direct extraction method, in which H - ions are obtained by a surface emission process associated with a gas discharge plasma. While both approaches may eventually find optimum application in different situations, it is not obvious, at present, which scheme will turn out to be the most satisfactory for LAMPF. A prototype charge exchange H - ion source has been constructed as a first step in the development program and is presently being evaluated. Work on surface emission direct extraction techniques is in the planning stages. (U.S.)

  7. Fast Kicker for High Current Beam Manipulation in Large Aperture

    CERN Document Server

    Gambaryan, V

    2017-01-01

    The pulsed deflecting magnet (kicker) project was worked out in Budker Institute of Nuclear Physics. The kicker design parameters are: impulsive force, 1 mT*m; pulse edge, 5 ns; impulse duration, 200 ns. The unconventional approach is that the plates must be replaced by a set of cylinders. The obtained magnet construction enables the field homogeneity to be controlled by changing current magnitudes in cylinders. Furthermore, we demonstrated the method of field optimization. In addition, measurement technique for the harmonic components was considered and the possibility of control harmonic components value was demonstrated.

  8. High-current pulsed ion source for metallic ions

    International Nuclear Information System (INIS)

    Gavin, B.; Abbott, S.; MacGill, R.; Sorensen, R.; Staples, J.; Thatcher, R.

    1981-03-01

    A new sputter-ion PIG source and magnet system, optimized for intermediate charge states, q/A of 0.02 to 0.03, is described. This source will be used with the new Wideroe-based injector for the SuperHILAC. Pulsed electrical currents of several emA of heavy metal ions have been produced in a normalized emittance area of .05π cm-mr. The source system is comprised of two electrically separate anode chambers, one in operation and one spare, which can be selected by remote control. The entire source head is small and quickly removable

  9. Design studies on high current and grid control electron gun

    International Nuclear Information System (INIS)

    Wang Jinnan; Lu Kun; Chi Yunlong; Zhou Zusheng

    2011-01-01

    Electron gun, the source of electrons, is a kind of ultrahigh vacuum device and plays an important role in different kind of accelerators. With the irradiation accelerator demands, describes the design studies on beam optics optimization. The simulation result shows that the beam current is above 5 A with cathode voltage of 80 kV and beam emittance, gun electric field and beam waist radius meet the accelerator needs. The electron gun manufactured and installed in the test stand, the conditioning and test will be done in the near future. (authors)

  10. Current Trends in High-Level Synthesis of Asynchronous Circuits

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2009-01-01

    This paper is a survey paper presenting what the author sees as two major and promising trends in the current research in CAD-tools and design-methods for asynchronous circuits. One branch of research builds on top of existing asynchronous CAD-tools that perform syntax directed translation, e...... a conventional synchronous circuit as the starting point, and then adds some form of handshake-based flow-control. One approach keeps the global clock and implements discrete-time asynchronous operation. Another approach substitutes the clocked registers by asynchronous handshake-registers, thus creating truly...

  11. High Field Side Lower Hybrid Current Drive Simulations for Off- axis Current Drive in DIII-D

    Directory of Open Access Journals (Sweden)

    Wukitch S.J.

    2017-01-01

    Full Text Available Efficient off-axis current drive scalable to reactors is a key enabling technology for developing economical, steady state tokamak. Previous studies have focussed on high field side (HFS launch of lower hybrid current drive (LHCD in double null configurations in reactor grade plasmas and found improved wave penetration and high current drive efficiency with driven current profile peaked near a normalized radius, ρ, of 0.6-0.8, consistent with advanced tokamak scenarios. Further, HFS launch potentially mitigates plasma material interaction and coupling issues. For this work, we sought credible HFS LHCD scenario for DIII-D advanced tokamak discharges through utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D constrained by experimental considerations. For a model and existing discharge, HFS LHCD scenarios with excellent wave penetration and current drive were identified. The LHCD is peaked off axis, ρ∼0.6-0.8, with FWHM Δρ=0.2 and driven current up to 0.37 MA/MW coupled. For HFS near mid plane launch, wave penetration is excellent and have access to single pass absorption scenarios for variety of plasmas for n||=2.6-3.4. These DIII-D discharge simulations indicate that HFS LHCD has potential to demonstrate efficient off axis current drive and current profile control in DIII-D existing and model discharge.

  12. Current sharing effect on the current instability and allowable temperature rise of composite high-TC superconductors

    International Nuclear Information System (INIS)

    Romanovskii, V.R.; Watanabe, K.; Awaji, S.; Nishijima, G.; Takahashi, Ken-ichiro

    2004-01-01

    To understand the basic mechanisms of the thermal runaway phenomenon, the limiting margin of the current instability, which may spontaneously occur in composite high-T C superconductors like multifilament Bi-based wire or tape, is derived under DC magnetic field. The current sharing and allowable temperature rise effects were considered. A static zero-dimensional model was utilized to describe the basic formulae dealing with the peculiarities of the non-isothermal change of superconducting composite voltage-current characteristic. The boundary of allowable stable values of the temperature, electric field and current are derived analytically. It was shown that permissible values of the current and electric field might be higher than those determined by use of the standard critical current criterion. In consequence of this feature, the noticeable allowable temperature rise of the composite superconductor before its transition to the normal state may be seen. The criterion for complete thermal stability condition is written describing the state when temperature of the composite equals critical temperature of a superconductor and the transport current flows stably only in matrix. The performed analysis also proves the existence of value of the volume fraction of a superconductor in composite at which its current-carrying capacity has minimum. These peculiarities are due to the stable current redistribution between superconductor and stabilizing matrix. Therefore, the current sharing not only leads to the matrix/superconductor ratio effect on the stable operating characteristics of the composite high-T C superconductors but also becomes important in the adequate description of quench process in the high-T C superconducting magnets

  13. Study of high-energy neutrino neutral-current interactions

    International Nuclear Information System (INIS)

    Aderholz, M.; Aggarwal, M.M.; Akbari, H.; Allport, P.P.; Badyal, S.K.; Ballagh, H.C.; Barth, M.; Baton, J.P.; Bingham, H.H.; Brucker, E.B.; Burnstein, R.A.; Campbell, J.R.; Cence, R.J.; Chatterjee, T.K.; Clayton, E.F.; Corrigan, G.; Coutures, C.; DeProspo, D.; Devanand; De Wolf, E.A.; Faulkner, P.J.W.; Foeth, H.; Fretter, W.B.; Gupta, V.K.; Hanlon, J.; Harigel, G.; Harris, F.A.; Jabiol, M.A.; Jacques, P.; Jain, V.; Jones, G.T.; Jones, M.D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J.M.; Koller, E.L.; Krawiec, R.J.; Lauko, M.; Lys, J.E.; Marage, P.; Milburn, R.H.; Miller, D.B.; Mittra, I.S.; Mobayyen, M.M.; Moreels, J.; Morrison, D.R.O.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M.W.; Peterson, V.Z.; Plano, R.; Rao, N.K.; Rubin, H.A.; Sacton, J.; Sambyal, S.S.; Schmitz, N.; Schneps, J.; Singh, J.B.; Smart, W.; Stamer, P.; Varvell, K.E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G.P.

    1992-01-01

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288±0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(bar ν) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and bar ν events. A value of 0.274±0.038 is obtained for the dominant ν component assuming bar ν NC/CC=0.39±0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323±0.025 and the K 0 production rates are 0.375±0.064 per CC and 0.322±0.073 per NC event. The corresponding Λ rates are 0.161±0.030 per CC and 0.113±0.030 per NC event. The K 0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events

  14. Study of high-energy neutrino neutral-current interactions

    Science.gov (United States)

    Aderholz, M.; Aggarwal, M. M.; Akbari, H.; Allport, P. P.; Badyal, S. K.; Ballagh, H. C.; Barth, M.; Baton, J. P.; Bingham, H. H.; Brucker, E. B.; Burnstein, R. A.; Campbell, J. R.; Cence, R. J.; Chatterjee, T. K.; Clayton, E. F.; Corrigan, G.; Coutures, C.; Deprospo, D.; Devanand; de Wolf, E. A.; Faulkner, P. J.; Foeth, H.; Fretter, W. B.; Gupta, V. K.; Hanlon, J.; Harigel, G.; Harris, F. A.; Jabiol, M. A.; Jacques, P.; Jain, V.; Jones, G. T.; Jones, M. D.; Kafka, T.; Kalelkar, M.; Kasper, P.; Kohli, J. M.; Koller, E. L.; Krawiec, R. J.; Lauko, M.; Lys, J. E.; Marage, P.; Milburn, R. H.; Miller, D. B.; Mittra, I. S.; Mobayyen, M. M.; Moreels, J.; Morrison, D. R.; Myatt, G.; Nailor, P.; Naon, R.; Napier, A.; Neveu, M.; Passmore, D.; Peters, M. W.; Peterson, V. Z.; Plano, R.; Rao, N. K.; Rubin, H. A.; Sacton, J.; Sambyal, S. S.; Schmitz, N.; Schneps, J.; Singh, J. B.; Smart, W.; Stamer, P.; Varvell, K. E.; Verluyten, L.; Wachsmuth, H.; Wainstein, S.; Willocq, S.; Yost, G. P.

    1992-04-01

    From an exposure of the Fermilab 15-foot bubble chamber to the Tevatron quadrupole triplet neutrino beam, we have determined the ratio of neutral-current (NC) to charged-current (CC) interactions to be 0.288+/-0.032 for events with visible hadron momentum above 10 GeV/c. The mean ν(ν¯) event energy is 150 (110) GeV, which is higher than that for any previous beam. This result agrees with those from previous experiments at lower energies. The NC/CC ratio is derived for a combined sample of ν and ν¯ events. A value of 0.274+/-0.038 is obtained for the dominant ν component assuming ν¯ NC/CC=0.39+/-0.08. For events with visible hadron momentum above 25 GeV/c, where the neutral hadron contamination remaining in the NC sample is assumed to be negligible, the combined NC/CC is 0.323+/-0.025 and the K0 production rates are 0.375+/-0.064 per CC and 0.322+/-0.073 per NC event. The corresponding Λ rates are 0.161+/-0.030 per CC and 0.113+/-0.030 per NC event. The K0 and Λ distributions of the fractional hadron energy variable z in NC events are consistent with those in CC events.

  15. Thigmotaxis Mediates Trail Odour Disruption.

    Science.gov (United States)

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  16. Current high-temperature superconducting coils and applications in Japan

    International Nuclear Information System (INIS)

    Matsushita, T.

    2000-01-01

    In Japan, four projects for the application of Bi-based superconducting magnets to practical apparatus are currently underway. These projects involve the development of an insert magnet for a 1 GHz nuclear magnetic resonance spectrometer, a magnet for a silicon single-crystal pulling apparatus, a magnet for a magnetic separation system, and a 1 T pulse magnet for a superconducting magnet energy storage system. For example, the magnet for the silicon single-crystal pulling apparatus is of the class with stored energy of 1 MJ to be operated at around 20 K. This review focuses on the present status of the development of these magnets, followed by a discussion of the problems of the present superconducting tapes that need to be overcome for future applications. (author)

  17. High current densities in superconducting films from magnetization

    International Nuclear Information System (INIS)

    McGuire, T.R.; Gupta, A.; Koren, G.; Gross, R.

    1990-01-01

    Epitaxial thin films of YBa 2 Cu 3 O 7-x made by laser ablation have the CuO planes parallel to the film surface. In the CuO planes critical currents of J C ∼40 x 10 6 amps/cm 2 are found at 5K in zero field. Multi-layered films with Gd replacing Y each .01μm in thickness have J C nearly 140 x 10 6 amps/cm 2 . This higher value is perhaps due to additional point defects. Perpendicular to the CuO planes magnetization studies indicate strong pinning effects attributed to the CuO planes acting as barriers to flux motion

  18. A review of currently available high performance interactive graphics systems

    International Nuclear Information System (INIS)

    Clark, S.A.; Harvey, J.

    1981-12-01

    A survey of several interactive graphics systems is given, all but one of which being based on calligraphic technology, which are being considered for a new High Energy Physics graphics facility at RAL. A brief outline of the system architectures is given, the detailed features being summarised in an appendix, and their relative merits are discussed. (U.K.)

  19. High Current Density Electrical Breakdown of TiS

    NARCIS (Netherlands)

    Molina-Mendoza, Aday J.; Island, J.O.; Paz, Wendel S.; Clamagirand, Jose Manuel; Ares, Josè Ramon; Flores, Eduardo; Leardini, Fabrice; Sánchez, Carlos; Agraït, Nicolás; Rubio-Bollinger, Gabino; van der Zant, H.S.J.; Ferrer, Isabel J.; Palacios, JJ; Castellanos-Gomez, Andres

    2017-01-01

    The high field transport characteristics of nanostructured transistors based on layered materials are not only important from a device physics perspective but also for possible applications in next generation electronics. With the growing promise of layered materials as replacements to

  20. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    signed for the low-energy high-intensity proton accelerator (LEHIPA) project at BARC,. India. The beam ... In this generalized method, the focussing factor (B) and vane voltage ..... r0 and also power dissipation vary along the length of the RFQ.

  1. Quench propagation in High Temperature Superconducting materials integrated in high current leads

    CERN Document Server

    Milani, D

    2001-01-01

    High temperature superconductors (HTS) have been integrated in the high current leads for the Large Hadron Collider (LHC), under construction at CERN, in order to reduce the heat leak into the liquid helium bath due to the joule effect. The use of the HTS technology in the lower part of the current leads allowed to significantly reduce the heat charge on the cryogenic system. Hybrid current leads have been designed to fulfill the LHC requirements with respect to thermal load; several tests have been performed to study the lead behavior especially during a quench transient. Quench experiments have been performed at CERN on 13 kA prototypes to determine the adequate design and protection. In all the tests it is possible to know the temperature profile of the HTS only with the help of quench simulations that model the thermo-hydraulic processes during quench. The development of a theoretical model for the simulation allows reducing the number of test to perform and to scale the experimental result to other curre...

  2. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  3. An evaluation of current high-performance networks

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Christian; Bonachea, Dan; Cote, Yannick; Duell, Jason; Hargrove, Paul; Husbands, Parry; Iancu, Costin; Welcome, Michael; Yelick, Katherine

    2003-01-25

    High-end supercomputers are increasingly built out of commodity components, and lack tight integration between the processor and network. This often results in inefficiencies in the communication subsystem, such as high software overheads and/or message latencies. In this paper we use a set of microbenchmarks to quantify the cost of this commoditization, measuring software overhead, latency, and bandwidth on five contemporary supercomputing networks. We compare the performance of the ubiquitous MPI layer to that of lower-level communication layers, and quantify the advantages of the latter for small message performance. We also provide data on the potential for various communication-related optimizations, such as overlapping communication with computation or other communication. Finally, we determine the minimum size needed for a message to be considered 'large' (i.e., bandwidth-bound) on these platforms, and provide historical data on the software overheads of a number of supercomputers over the past decade.

  4. High risk bladder cancer: current management and survival

    Directory of Open Access Journals (Sweden)

    Anna M. Leliveld

    2011-04-01

    Full Text Available PURPOSE: To evaluate the pattern of care in patients with high risk non muscle invasive bladder cancer (NMIBC in the Comprehensive Cancer Center North-Netherlands (CCCN and to assess factors associated with the choice of treatment, recurrence and progression free survival rates. MATERIALS AND METHODS: Retrospective analysis of 412 patients with newly diagnosed high risk NMIBC. Clinical, demographic and follow-up data were obtained from the CCCN Cancer Registry and a detailed medical record review. Uni and multivariate analysis was performed to identify factors related to choice of treatment and 5 year recurrence and progression free survival. RESULTS: 74/412 (18% patients with high risk NMIBC underwent a transurethral resection (TUR as single treatment. Adjuvant treatment after TUR was performed in 90.7% of the patients treated in teaching hospitals versus 71.8 % in non-teaching hospitals (p 80 years OR 0.1 p = 0.001 and treatment in non-teaching hospitals (OR 0.25; p < 0.001 were associated with less adjuvant treatment after TUR. Tumor recurrence occurred in 191/392 (49% and progression in 84 /392 (21.4% patients. The mean 5-years progression free survival was 71.6% (95% CI 65.5-76.8. CONCLUSION: In this pattern of care study in high risk NMIBC, 18% of the patients were treated with TUR as single treatment. Age and treatment in non-teaching hospitals were associated with less adjuvant treatment after TUR. None of the variables sex, age, comorbidity, hospital type, stage and year of treatment was associated with 5 year recurrence or progression rates.

  5. High-quality cardiopulmonary resuscitation: current and future directions.

    Science.gov (United States)

    Abella, Benjamin S

    2016-06-01

    Cardiopulmonary resuscitation (CPR) represents the cornerstone of cardiac arrest resuscitation care. Prompt delivery of high-quality CPR can dramatically improve survival outcomes; however, the definitions of optimal CPR have evolved over several decades. The present review will discuss the metrics of CPR delivery, and the evidence supporting the importance of CPR quality to improve clinical outcomes. The introduction of new technologies to quantify metrics of CPR delivery has yielded important insights into CPR quality. Investigations using CPR recording devices have allowed the assessment of specific CPR performance parameters and their relative importance regarding return of spontaneous circulation and survival to hospital discharge. Additional work has suggested new opportunities to measure physiologic markers during CPR and potentially tailor CPR delivery to patient requirements. Through recent laboratory and clinical investigations, a more evidence-based definition of high-quality CPR continues to emerge. Exciting opportunities now exist to study quantitative metrics of CPR and potentially guide resuscitation care in a goal-directed fashion. Concepts of high-quality CPR have also informed new approaches to training and quality improvement efforts for cardiac arrest care.

  6. A ns-pulsed high-current electron beam source

    International Nuclear Information System (INIS)

    Guan, Gexin; Li, Youzhi; Pan, Yuli

    1988-01-01

    The behaviour of a pulse electron beam source which is composed of a gun and pulse system depends on not only the time characteristics of the gun and the pulser, but also their combination. This point become apparent if effects of the electron tansit-time between electrodes are studied. A ferrite transmission line (FTL) pulser is used as a grid driver in this source. It has advantages of providing fast risetime, large peak power output and good loading characteristics. It is these advantages of the pulser that compensates the absence of some technological conditions of manufacturing gun and makes the source better. Our testing showed that the cooperation of both the gun and the pulser produced peak currents in the range of 1 to 9 amps with widths of 2 to 2.5 ns (FWHM) at cathode-to-anode potential of 60 to 82 kv, while the grid drives are about in the range of 1 to 3 kv. In addition, the results of the testing instructed that effects of electron transit-time cannot be ignored when the pulses with widths of several nanoseconds are used as a grid drive. Based on the results, electron transit-time effects on the design of the gun and the beam performances are briefly descussed in this paper. (author)

  7. Tumor RNA disruption predicts survival benefit from breast cancer chemotherapy.

    Science.gov (United States)

    Parissenti, Amadeo M; Guo, Baoqing; Pritzker, Laura B; Pritzker, Kenneth P H; Wang, Xiaohui; Zhu, Mu; Shepherd, Lois E; Trudeau, Maureen E

    2015-08-01

    In a prior substudy of the CAN-NCIC-MA.22 clinical trial (ClinicalTrials.gov identifier NCT00066443), we observed that neoadjuvant chemotherapy reduced tumor RNA integrity in breast cancer patients, a phenomenon we term "RNA disruption." The purpose of the current study was to assess in the full patient cohort the relationship between mid-treatment tumor RNA disruption and both pCR post-treatment and, subsequently, disease-free survival (DFS) up to 108 months post-treatment. To meet these objectives, we developed the RNA disruption assay (RDA) to quantify RNA disruption and stratify it into 3 response zones of clinical importance. Zone 1 is a level of RNA disruption inadequate for pathologic complete response (pCR); Zone 2 is an intermediate level, while Zone 3 has high RNA disruption. The same RNA disruption cut points developed for pCR response were then utilized for DFS. Tumor RDA identified >fourfold more chemotherapy non-responders than did clinical response by calipers. pCR responders were clustered in RDA Zone 3, irrespective of tumor subtype. DFS was about 2-fold greater for patients with tumors in Zone 3 compared to Zone 1 patients. Kaplan-Meier survival curves corroborated these findings that high tumor RNA disruption was associated with increased DFS. DFS values for patients in zone 3 that did not achieve a pCR were similar to that of pCR recipients across tumor subtypes, including patients with hormone receptor positive tumors that seldom achieve a pCR. RDA appears superior to pCR as a chemotherapy response biomarker, supporting the prospect of its use in response-guided chemotherapy.

  8. Statistical analysis of disruptions in JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Segui, I.

    2009-01-01

    The disruption rate (the percentage of discharges that disrupt) in JET was found to drop steadily over the years. Recent campaigns (2005-2007) show a yearly averaged disruption rate of only 6% while from 1991 to 1995 this was often higher than 20%. Besides the disruption rate, the so-called disruptivity, or the likelihood of a disruption depending on the plasma parameters, has been determined. The disruptivity of plasmas was found to be significantly higher close to the three main operational boundaries for tokamaks; the low-q, high density and β-limit. The frequency at which JET operated close to the density-limit increased six fold over the last decade; however, only a small reduction in disruptivity was found. Similarly the disruptivity close to the low-q and β-limit was found to be unchanged. The most significant reduction in disruptivity was found far from the operational boundaries, leading to the conclusion that the improved disruption rate is due to a better technical capability of operating JET, instead of safer operations close to the physics limits. The statistics showed that a simple protection system was able to mitigate the forces of a large fraction of disruptions, although it has proved to be at present more difficult to ameliorate the heat flux.

  9. High-Current Cold Cathode Employing Diamond and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  10. High-dose irradiated food: Current progress, applications, and prospects

    Science.gov (United States)

    Feliciano, Chitho P.

    2018-03-01

    Food irradiation as an established and mature technology has gained more attention in the food industry for ensuring food safety and quality. Primarily used for phytosanitary applications, its use has been expanded for developing various food products for varied purposes (e.g. ready-to-eat & ready-to-cook foods, hospital diets, etc.). This paper summarized and analyzed the recent progress and application of high-dose irradiation and discussed its prospects in the field of food product development, its safety and quality.

  11. Proposal for a race-track microtron with high peak current

    NARCIS (Netherlands)

    Ernst, G.J.; Haselhoff, E.H.; Witteman, W.J.; Botman, J.I.M.; van Genderen, W.; Hagedoorn, H.L.; van der Heide, J.A.; Kleeven, W.J.G.M.

    1989-01-01

    In order to obtain high gain in a free electron laser a high-quality electron beam with high peak current is required. It is well-known that a microtron is able to produce a high-quality beam having low emittance and small energy spread (1%). Because a circular microtron has a limited high-current

  12. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  13. Tools for the design of high-current linacs

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1994-01-01

    With the programs usually employed to design linear accelerators, beam dynamics parameters are calculated from data describing the accelerator structure. The desired phase advances (with and without space charge) in the transverse and longitudinal planes are reached after several iterations on the structure parameters. Codes which use the opposite procedure have been written. The phase advances are first chosen thanks to a diagram which gives the tune depressions versus the phase advances without space charge. The structure parameters are then calculated. As shown, it can be applied to radiofrequency quadrupoles (RFQ), DTL and high-energy structures. Up to now, this method has been mainly used to design RFQ linear accelerators. 3 figs., 10 refs

  14. Stretchable electronics for wearable and high-current applications

    Science.gov (United States)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  15. Measurements of the reverse current of highly irradiated silicon sensors to determine the effective energy and current related damage rate

    Science.gov (United States)

    Wiehe, Moritz; Wonsak, S.; Kuehn, S.; Parzefall, U.; Casse, G.

    2018-01-01

    The reverse current of irradiated silicon sensors leads to self heating of the sensor and degrades the signal to noise ratio of a detector. Precise knowledge of the expected reverse current during detector operation is crucial for planning and running experiments in High Energy Physics. The dependence of the reverse current on sensor temperature and irradiation fluence is parametrized by the effective energy and the current related damage rate, respectively. In this study 18 n-in-p mini silicon strip sensors from companies Hamamatsu Photonics and Micron Semiconductor Ltd. were deployed. Measurements of the reverse current for different bias voltages were performed at temperatures of -32 ° C, -27 ° C and -23 ° C. The sensors were irradiated with reactor neutrons in Ljubljana to fluences ranging from 2 × 1014neq /cm2 to 2 × 1016neq /cm2. The measurements were performed directly after irradiation and after 10 and 30 days of room temperature annealing. The aim of the study presented in this paper is to investigate the reverse current of silicon sensors for high fluences of up to 2 × 1016neq /cm2 and compare the measurements to the parametrization models.

  16. Simulations of tokamak disruptions including self-consistent temperature evolution

    International Nuclear Information System (INIS)

    Bondeson, A.

    1986-01-01

    Three-dimensional simulations of tokamaks have been carried out, including self-consistent temperature evolution with a highly anisotropic thermal conductivity. The simulations extend over the transport time-scale and address the question of how disruptive current profiles arise at low-q or high-density operation. Sharply defined disruptive events are triggered by the m/n=2/1 resistive tearing mode, which is mainly affected by local current gradients near the q=2 surface. If the global current gradient between q=2 and q=1 is sufficiently steep, the m=2 mode starts a shock which accelerates towards the q=1 surface, leaving stochastic fields, a flattened temperature profile and turbulent plasma behind it. For slightly weaker global current gradients, a shock may form, but it will dissipate before reaching q=1 and may lead to repetitive minidisruptions which flatten the temperature profile in a region inside the q=2 surface. (author)

  17. Design of high-energy high-current linac with focusing by superconducting solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Batskikh, G.I.; Belugin, V.M.; Bondarev, B.I. [Moscow Radiotechnical Institute (Russian Federation)] [and others

    1995-10-01

    The advancement of MRTI design for 1.5 GeV and 250 mA ion CW linac was presented in a previous report. In this new linac version all the way from input to output the ions are focused by magnetic fields of superconducting solenoids. The ion limit current is far beyond the needed value. The linac focusing channel offers major advantages over the more conventional ones. The acceptance is 1.7 times as large for such focusing channel as for quadrupole one. Concurrently, a random perturbation sensitivity for such channel is one order of magnitude smaller than in quadrupole channel. These focusing channel features allow to decrease beam matched radius and increase a linac radiation purity without aperture growth. {open_quotes}Regotron{close_quotes} is used as high power generator in linac main part. But D&W cavities need not be divided into sections connected by RF-bridges which denuded them of high coupling factor.

  18. Current and future applications of high nitrogen steels

    International Nuclear Information System (INIS)

    Stein, G.; Hucklenbroich, I.; Feichtinger, H.

    1999-01-01

    For any new development there are just two gateways into the market: either it does relevant things never done before - in this case the market is ready to pay a considerable price. Or it does the usual things, but at a very competitive price. And of course, there is any combination of these two prerequisites. With nitrogen steels both concepts apply. On one hand there is the idea of substitution, i.e. replacing the expensive nickel by nitrogen. On the other hand there is a production of steels with an unprecedented combination of usually conflicting properties such as superior strength, toughness and corrosion resistance, as represented by the austenitic Cr-Mn-steel P900, which is used for retaining rings. In a way, success of a material and its usages, which become feasible, can be explained by looking at two things: property potential of a new material and process technology for the production of such material. HNS steels are already indispensable in some fields and we can be sure that they will grow to further importance in the near future. This contribution just makes a little round trip through the field of HNS leads from the technology of large scale generators to the world of fashion, from high tech building and wear resistant aircraft bearings and finally even to the world of medicine. (orig.)

  19. Contribution of ASDEX Upgrade to disruption studies for ITER

    International Nuclear Information System (INIS)

    Pautasso, G.; Reiter, B.; Giannone, L.; Gruber, O.; Herrmann, A.; Kardaun, O.; Maraschek, M.; Mlynek, A.; Schneider, W.; Zhang, Y.; Khayrutdinov, K.K.; Lukash, V.E.; Nakamura, Y.; Sias, G.; Sugihara, M.

    2011-01-01

    This paper describes the most recent contributions of ASDEX Upgrade to ITER in the field of disruption studies. (1) The ITER specifications for the halo current magnitude are based on data collected from several tokamaks and summarized in the plot of the toroidal peaking factor versus the maximum halo current fraction. Even if the maximum halo current in ASDEX Upgrade reaches 50% of the plasma current, the duration of this maximum lasts a fraction of a ms. (2) Long-lasting asymmetries of the halo current are rare and do not give rise to a large asymmetric component of the mechanical forces on the machine. Differently from JET, these asymmetries are neither locked nor exhibit a stationary harmonic structure. (3) Recent work on disruption prediction has concentrated on the search for a simple function of the most relevant plasma parameters, which is able to discriminate between the safe and pre-disruption phases of a discharge. For this purpose, the disruptions of the last four years have been classified into groups and then discriminant analysis is used to select the most significant variables and to derive the discriminant function. (4) The attainment of the critical density for the collisional suppression of the runaway electrons seems to be technically and physically possible on our medium size tokamak. The CO 2 interferometer and the AXUV diagnostic provide information on the highly 3D impurity transport process during the whole plasma quench.

  20. Will blockchain disrupt your business?

    OpenAIRE

    Schmeiss, Jessica

    2018-01-01

    Blockchain has been praised to be “the technology most likely to change the next decade of business”. The disruptive power of the blockchain technology is yet limited, says HIIG-researcher Jessica Schmeiss. Beyond the hype, there a opportunities for companies to make their current business models more cost-effective and more efficient.

  1. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D

    2016-09-01

    Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Large high current density superconducting solenoids for use in high energy physics experiments

    International Nuclear Information System (INIS)

    Green, M.A.; Eberhard, P.H.; Taylor, J.D.

    1976-05-01

    Very often the study of high energy physics in colliding beam storage-rings requires a large magnetic field volume in order to detect and analyze charged particles which are created from the collision of two particle beams. Large superconducting solenoids which are greater than 1 meter in diameter are required for this kind of physics. In many cases, interesting physics can be done outside the magnet coil, and this often requires that the amount of material in the magnet coil be minimized. As a result, these solenoids should have high current density (up to 10 9 A m -2 ) superconducting windings. The methods commonly used to stabilize large superconducting magnets cannot be employed because of this need to minimize the amount of material in the coils. A description is given of the Lawrence Berkeley Laboratory program for building and testing prototype solenoid magnets which are designed to operate at coil current densities in excess of 10 9 A m -2 with magnetic stored energies which are as high as 1.5 Megajoules per meter of solenoid length. The coils use intrinsically stable multifilament Nb--Ti superconductors. Control of the magnetic field quench is achieved by using a low resistance aluminum bore tube which is inductively coupled to the coil. The inner cryostat is replaced by a tubular cooling system which carries two phase liquid helium. The magnet coil, the cooling tubes, and aluminum bore tube are cast in epoxy to form a single unified magnet and cryogenic system which is about 2 centimeters thick. The results of the magnet coil tests are discussed

  3. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Liu Jingliang; Wang Renmin; Huang Bin; Lin Chan; Zhou Jiali; Pan Xuejun

    2012-01-01

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  4. Place Attachment and Place Disruption: The Perceptions of Selected Adults and High School Students on a Rural School District Reorganization.

    Science.gov (United States)

    Wieland, Regi Leann

    2001-01-01

    Interviews with adult residents and high school students in two rural Kansas communities that had consolidated their high schools found that adults in the community that lost its high school had more negative reactions and feelings of loss than adults in the community that retained its high school. Student reactions were generally positive.…

  5. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  6. Engineering analysis of TFTR disruption

    International Nuclear Information System (INIS)

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1984-09-01

    This report covers an engineering approach quantifying the currents, forces, and times, as well as plasma position, for the worst-case disruption based on engineerign circuit assumptions for the plasma. As the plasma moves toward the wall during the current-decay phase of disruption, the wall currents affect the rate of movement and, hence, the decay time. The calculated structure-induced currents differ considerably from those calculated using a presently available criterion, which specifies that the plasma remains stationary in the center of the torus while decaying in 10 ms. This report outlines the method and basis for the engineering calculation used to determine the current and forces as a function of the circuit characteristics. It provides specific calculations for the Tokamak Fusion Test Reactor (TFTR) with variations in parameters such as the thermal decay time, the torus resistance, and plasma temperature during the current decay. The study reviews possible ways to reduce the disruption damage of TFTR by reducing the magnitude of the plasma external field energy that is absorbed by the plasma during the current decay

  7. Engineering analysis of TFTR disruption

    Energy Technology Data Exchange (ETDEWEB)

    Murray, J.G.; Rothe, K.E.; Bronner, G.

    1984-09-01

    This report covers an engineering approach quantifying the currents, forces, and times, as well as plasma position, for the worst-case disruption based on engineerign circuit assumptions for the plasma. As the plasma moves toward the wall during the current-decay phase of disruption, the wall currents affect the rate of movement and, hence, the decay time. The calculated structure-induced currents differ considerably from those calculated using a presently available criterion, which specifies that the plasma remains stationary in the center of the torus while decaying in 10 ms. This report outlines the method and basis for the engineering calculation used to determine the current and forces as a function of the circuit characteristics. It provides specific calculations for the Tokamak Fusion Test Reactor (TFTR) with variations in parameters such as the thermal decay time, the torus resistance, and plasma temperature during the current decay. The study reviews possible ways to reduce the disruption damage of TFTR by reducing the magnitude of the plasma external field energy that is absorbed by the plasma during the current decay.

  8. Disruption simulation for the EAST plasma

    International Nuclear Information System (INIS)

    Niu Xingping; Wu Bin

    2007-01-01

    The disruptions due to vertical displacement event for the EAST plasma are simulated in this article by using the TSC program. Meanwhile, the evolutions of the halo current and stress on vacuum vessel are calculated; the disruptions at different initial conditions are compared with each other, and killer pellet injection is simulated for the device fast shutting-down. (authors)

  9. Simulation of a major tokamak disruption

    International Nuclear Information System (INIS)

    White, R.B.; Monticello, D.A.; Rosenbluth, M.N.

    1977-08-01

    It is known that the internal tokamak disruption leads to a current profile which is flattened inside the surface where the safety factor equals unity. It is shown that such a profile can lead to m = 2 magnetic islands which grow to fill a substantial part of the tokamak cross section in a time consistent with the observations of the major disruption

  10. β limit disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.; Janos, A.; Bell, M.; Budny, R.V.; Bush, C.E.; Manickam, J.; Mynick, H.; Nazikian, R.; Taylor, G.

    1994-11-01

    A disruptive β limit (β = plasma pressure/magnetic pressure) is observed in high performance plasmas in TFTR. The MHD character of these disruptions differs substantially from the disruptions in high density plasmas (density limit disruptions) on TFTR. The high β disruptions can occur with less than a milliseconds warning in the form of a fast growing precursor. The precursor appears to be an external kink or internal (m,n)=(1,1) kink strongly coupled through finite β effects and toroidal terms to higher m components. It does not have the open-quote cold bubble close-quote structure found in density limit disruptions. There is also no evidence for a change in the internal inductance, i.e., a major reconnection of the flux, at the time of the thermal quench

  11. Monitoring-induced disruption in skilled typewriting.

    Science.gov (United States)

    Snyder, Kristy M; Logan, Gordon D

    2013-10-01

    It is often disruptive to attend to the details of one's expert performance. The current work presents four experiments that utilized a monitor to report protocol to evaluate the sufficiency of three accounts of monitoring-induced disruption. The inhibition hypothesis states that disruption results from costs associated with preparing to withhold inappropriate responses. The dual-task hypothesis states that disruption results from maintaining monitored information in working memory. The implicit-explicit hypothesis states that disruption results from explicitly monitoring details of performance that are normally implicit. The findings suggest that all three hypotheses are sufficient to produce disruption, but inhibition and dual-task costs are not necessary. Experiment 1 showed that monitoring to report was disruptive even when there was no requirement to inhibit. Experiment 2 showed that maintaining information in working memory caused some disruption but much less than monitoring to report. Experiment 4 showed that monitoring to inhibit was more disruptive than monitoring to report, suggesting that monitoring is more disruptive when it is combined with other task requirements, such as inhibition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  12. Disruption avoidance by means of electron cyclotron waves

    International Nuclear Information System (INIS)

    Esposito, B; Granucci, G; Nowak, S; Lazzaro, E; Maraschek, M; Giannone, L; Gude, A; Igochine, V; McDermott, R; Poli, E; Reich, M; Sommer, F; Stober, J; Suttrop, W; Treutterer, W; Zohm, H

    2011-01-01

    Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, I p = 0.6 MA, B t = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power ≤1.7 MW (H-mode NBI-heated plasmas, P NBI ∼ 7.5 MW, I p = 1 MA, B t = 2.1 T, q 95 ∼ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ' H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.

  13. The Effects of Disruption on Strategic Management

    DEFF Research Database (Denmark)

    Drejer, Anders

    2017-01-01

    There is a lot of interest in Disruption these days even though the concept itself is still under formation. Disruption can be traced back to the idea of disruptive technological change and the late 1990s but has reemerged in the public eye in current years under guises such as Big Data......, Digitalization, Globalization and much more. Furthermore, the effects of disruption are now being felt by organizations and industries all over the world. In this paper, we will try to outline and illustrate some of those effects using the case-study of an international, Danish, SME. The case company has been...... forced to face some challenges caused by disruption and in the process of doing so has changed its strategy process significantly towards a more learning based approach to strategic management. Keywords: disruption; case- study; SME; strategy process....

  14. Automatic location of disruption times in JET

    Science.gov (United States)

    Moreno, R.; Vega, J.; Murari, A.

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  15. Automatic location of disruption times in JET.

    Science.gov (United States)

    Moreno, R; Vega, J; Murari, A

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  16. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells

    KAUST Repository

    Hong, Yiying; Call, Douglas F.; Werner, Craig M.; Logan, Bruce E.

    2011-01-01

    . Acclimation of the high external resistance reactors for a few cycles to low external resistance (5. Ω), and therefore higher current densities, eliminated power overshoot. MFCs initially acclimated to low external resistances exhibited both higher current

  17. Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D

    Science.gov (United States)

    Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.

    2017-10-01

    An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.

  18. Suppression of Runaway Electrons by Resonant Magnetic Perturbations in TEXTOR Disruptions

    International Nuclear Information System (INIS)

    Lehnen, M.; Bozhenkov, S. A.; Abdullaev, S. S.; TEXTOR Team,; Jakubowski, M. W.

    2008-01-01

    The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n=1 and n=2. The disruptions are initiated by fast injection of about 3x10 21 argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions

  19. Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes

    KAUST Repository

    Cui, Li-Feng

    2009-01-14

    Silicon is an attractive alloy-type anode material for lithium ion batteries because of its highest known capacity (4200 mAh/g). However silicon\\'s large volume change upon lithium insertion and extraction, which causes pulverization and capacity fading, has limited its applications. Designing nanoscale hierarchical structures is a novel approach to address the issues associated with the large volume changes. In this letter, we introduce a core-shell design of silicon nanowires for highpower and long-life lithium battery electrodes. Silicon crystalline- amorphous core-shell nanowires were grown directly on stainless steel current collectors by a simple one-step synthesis. Amorphous Si shells instead of crystalline Si cores can be selected to be electrochemically active due to the difference of their lithiation potentials. Therefore, crystalline Si cores function as a stable mechanical support and an efficient electrical conducting pathway while amorphous shells store Li ions. We demonstrate here that these core-shell nanowires have high charge storage capacity (̃1000 mAh/g, 3 times of carbon) with ̃90% capacity retention over 100 cycles. They also show excellent electrochemical performance at high rate charging and discharging (6.8 A/g, ̃20 times of carbon at 1 h rate). © 2009 American Chemical Society.

  20. Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France

    Science.gov (United States)

    Castelle, Bruno; Guillot, Benoit; Marieu, Vincent; Chaumillon, Eric; Hanquiez, Vincent; Bujan, Stéphane; Poppeschi, Coline

    2018-01-01

    A dataset of 15 geo-referenced orthomosaics photos was generated to address long-term shoreline change along approximately 270 km of high-energy sandy coast in SW France between 1950 and 2014. The coast consists of sandy beaches backed by coastal dunes, which are only disrupted by two wide tidal inlets (Arcachon and Maumusson), a wide estuary mouth (Gironde) and a few small wave-dominated inlets and coastal towns. A time and spatially averaged erosion trend of 1.12 m/year is found over 1950-2014, with a local maximum of approximately 11 m/year and a maximum local accretion of approximately 6 m/year, respectively. Maximum shoreline evolutions are observed along coasts adjacent to the inlets and to the estuary mouth, with erosion and accretion alternating over time on the timescale of decades. The two inlet-sandspit systems of Arcachon and Maumusson show a quasi-synchronous behaviour with the two updrift coasts accreting until the 1970s and subsequently eroding since then, which suggests that shoreline change at these locations is controlled by allocyclic mechanisms. Despite sea level rise and the well-established increase in winter wave height over the last decades, there is no capture of significant increase in mean erosion rate. This is hypothesized to be partly the result of relevant coastal dune management works from the 1960s to the 1980s after a long period of coastal dune disrepair during and after the Second World War. This study suggests that long-term shoreline change of high-energy sandy coasts disrupted by inlets and/or estuaries is complex and needs to consider a wide range of parameters including, non-extensively, waves, tides, inlet dynamics, sea level rise, coastal dune management and coastal defences, which challenges the development of reliable long-term coastal evolution numerical models.