WorldWideScience

Sample records for high current dc

  1. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined

  2. A high current density DC magnetohydrodynamic (MHD) micropump

    NARCIS (Netherlands)

    Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF

    2005-01-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a

  3. High Current Planar Transformer for Very High Efficiency Isolated Boost DC-DC Converters

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    This paper presents a design and optimization of a high current planar transformer for very high efficiency dc-dc isolated boost converters. The analysis considers different winding arrangements, including very high copper thickness windings. The analysis is focused on the winding ac......-resistance and transformer leakage inductance. Design and optimization procedures are validated based on an experimental prototype of a 6 kW dcdc isolated full bridge boost converter developed on fully planar magnetics. The prototype is rated at 30-80 V 0-80 A on the low voltage side and 700-800 V on the high voltage side...... with a peak efficiency of 97.8% at 80 V 3.5 kW. Results highlights that thick copper windings can provide good performance at low switching frequencies due to the high transformer filling factor. PCB windings can also provide very high efficiency if stacked in parallel utilizing the transformer winding window...

  4. High Voltage Coil Current Sensor for DC-DC Converters Employing DDCC

    Directory of Open Access Journals (Sweden)

    M. Drinovsky

    2015-12-01

    Full Text Available Current sensor is an integral part of every switching converter. It is used for over-current protection, regulation and in case of multiphase converters for balancing. A new high voltage current sensor for coil-based current sensing in DC-DC converters is presented. The sensor employs DDCC with high voltage input stage and gain trimming. The circuit has been simulated and implemented in 0.35 um BCD technology as part of a multiphase DC-DC converter where its function has been verified. The circuit is able to sustain common mode voltage on the input up to 40 V, it occupies 0.387*0.345 mm2 and consumes 3.2 mW typically.

  5. High Power Zero-Voltage and Zero-Current Switching DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Jaroslav Dudrik

    2005-01-01

    Full Text Available The paper presents principles and properties of the soft switching PWM DC-DC converters. The attention is focused mainly on high power applications and thus the full-bridge inverters are used in DC-DC converters. Considerations are also given to the control methods and principles of the switching and conduction losses reduction.

  6. Design and dSpace interfacing of current fed high gain dc to dc boost converter for low voltage applications

    Science.gov (United States)

    Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.

    2017-11-01

    In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.

  7. Analysis of Electric Vehicle DC High Current Conversion Technology

    Science.gov (United States)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  8. Electronic Current Transducer (ECT) for high voltage dc lines

    Science.gov (United States)

    Houston, J. M.; Peters, P. H., Jr.; Summerayes, H. R., Jr.; Carlson, G. J.; Itani, A. M.

    1980-02-01

    The development of a bipolar electronic current transducer (ECT) for measuring the current in a high voltage dc (HVDC) power line at line potential is discussed. The design and construction of a free standing ECT for use on a 400 kV line having a nominal line current of 2000 A is described. Line current is measured by a 0.0001 ohm shunt whose voltage output is sampled by a 14 bit digital data link. The high voltage interface between line and ground is traversed by optical fibers which carry digital light signals as far as 300 m to a control room where the digital signal is converted back to an analog representation of the shunt voltage. Two redundant electronic and optical data links are used in the prototype. Power to operate digital and optical electronics and temperature controlling heaters at the line is supplied by a resistively and capacitively graded 10 stage cascade of ferrite core transformers located inside the hollow, SF6 filled, porcelain support insulator. The cascade is driven by a silicon controlled rectifier inverter which supplies about 100 W of power at 30 kHz.

  9. Comparison of dc and superconducting rf photoemission guns for high brightness high average current beam production

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2011-07-01

    Full Text Available A comparison of the two most prominent electron sources of high average current high brightness electron beams, dc and superconducting rf photoemission guns, is carried out using a large-scale multivariate genetic optimizer interfaced with space charge simulation codes. The gun geometry for each case is varied concurrently with laser pulse shape and parameters of the downstream beam line elements of the photoinjector to obtain minimum emittance as a function of bunch charge. Realistic constraints are imposed on maximum field values for the two gun types. The superconducting rf and dc gun emittances and beam envelopes are compared for various values of photocathode thermal emittance. The performance of the two systems is found to be largely comparable for up to 154 pC per bunch at 1.3 GHz or 200 mA provided low intrinsic emittance photocathodes can be employed.

  10. High current DC negative ion source for cyclotron.

    Science.gov (United States)

    Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power.

  11. AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-12-01

    Full Text Available The AC voltage control of a DC/DC converter based on the modular multilevel converter (MMC is considered under normal operation and during a local DC fault. By actively setting the AC voltage according to the two DC voltages of the DC/DC converter, the modulation index can be near unity, and the DC voltage is effectively utilized to output higher AC voltage. This significantly decreases submodule (SM capacitance and conduction losses of the DC/DC converter, yielding reduced capital cost, volume, and higher efficiency. Additionally, the AC voltage is limited in the controllable range of both the MMCs in the DC/DC converter; thus, over-modulation and uncontrolled currents are actively avoided. The AC voltage control of the DC/DC converter during local DC faults, i.e., standby operation, is also proposed, where only the MMC connected on the faulty cable is blocked, while the other MMC remains operational with zero AC voltage output. Thus, the capacitor voltages can be regulated at the rated value and the decrease of the SM capacitor voltages after the blocking of the DC/DC converter is avoided. Moreover, the fault can still be isolated as quickly as the conventional approach, where both MMCs are blocked and the DC/DC converter is not exposed to the risk of overcurrent. The proposed AC voltage control strategy is assessed in a three-terminal high-voltage direct current (HVDC system incorporating a DC/DC converter, and the simulation results confirm its feasibility.

  12. DC-Compensated Current Transformer.

    Science.gov (United States)

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-20

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component.

  13. Design of conduction cooling system for a high current HTS DC reactor

    Science.gov (United States)

    Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun

    2017-07-01

    A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

  14. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Directory of Open Access Journals (Sweden)

    J. Grames

    2011-04-01

    Full Text Available GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c using a large drive laser beam to distribute ion damage over a larger area, and (d by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  15. Charge and fluence lifetime measurements of a dc high voltage GaAs photogun at high average current

    Energy Technology Data Exchange (ETDEWEB)

    J. Grames, R. Suleiman, P.A. Adderley, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M.L. Stutzman

    2011-04-01

    GaAs-based dc high voltage photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. This paper describes techniques to maintain good vacuum while delivering beam, and techniques that minimize the ill effects of ion bombardment, the dominant mechanism that reduces photocathode yield of a GaAs-based dc high voltage photogun. Experimental results presented here demonstrate enhanced lifetime at high beam currents by: (a) operating with the drive laser beam positioned away from the electrostatic center of the photocathode, (b) limiting the photocathode active area to eliminate photoemission from regions of the photocathode that do not support efficient beam delivery, (c) using a large drive laser beam to distribute ion damage over a larger area, and (d) by applying a relatively low bias voltage to the anode to repel ions created within the downstream beam line. A combination of these techniques provided the best total charge extracted lifetimes in excess of 1000 C at dc beam currents up to 9.5 mA, using green light illumination of bulk GaAs inside a 100 kV photogun.

  16. 3D MHD modelling of low current-high voltage dc plasma torch under restrike mode

    Science.gov (United States)

    Lebouvier, A.; Delalondre, C.; Fresnet, F.; Cauneau, F.; Fulcheri, L.

    2012-01-01

    We present in this paper a magnetohydrodynamic (MHD) modelling of the gliding arc behaviour of a dc plasma torch operating with air under low current and high voltage conditions. The low current leads to instabilities and difficulties with simulating the process because the magnetic field is not sufficient to constrict the arc. The model is 3D, time dependent and the MHD equations are solved using CFD software Code_Saturne®. Although the arc is definitively non-local thermodynamic equilibrium (LTE), the LTE assumption is considered as a first approach. The injection of air is tangential. A hot gas channel reattachment model has been used to simulate the restriking process of the arc root. After the description of the model, the most appropriate electrical voltage breakdown parameter has been selected in comparing with experimental results. A typical operating point is then studied in detail and shows the helical shape of the arc discharge in the nozzle. Finally, the mass flow rate and the current have been varied in the range 0.16-0.5 g s-1 and 100-300 mA, respectively, corresponding to typical glidarc operating points of our experimental plasma torch. The model shows good consistency with experimental data in terms of global behaviour, arc length, mean voltage and glidarc frequency.

  17. High frequency magnetic eigen excitations in a spin valve submitted to CPP DC current

    Energy Technology Data Exchange (ETDEWEB)

    Mistral, Q. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France)]. E-mail: mistral@ief.u-psud.fr; Deac, A. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Grollier, J. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France); Redon, O. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Liu, Y. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Li, M. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Wang, P. [Headway, 678 Hillview Dr., Milpitas, CA 95035 (United States); Dieny, B. [SPINTEC, URA CEA/CNRS, CEA Grenoble/DRFMC, 17 Rue des Martyrs, 38054 Grenoble Cedex 9 (France); Devolder, T. [Institut d' Electronique Fondamentale, CNRS UMR 8622, Bat 220, Universite Paris-Sud, Centre d' Orsay, F91405 Orsay Cedex (France)

    2006-01-25

    We study the magnetization dynamics induced at low field by spin-transfer in a pillar-shaped spin valve. The spin valve is a square of 150 nmx 150 nm patterned from a film of IrMn 7 nm/CoFe, 2.4 nm/Ru, 0.8 nm/CoFe, 4.4 nm/Cu, 2.6 nm/CoFe, and 3.6 nm. The spin valve is studied in its anti-parallel state at 50 K. The high frequency voltage noise generated by the DC current flowing through the magneto-resistive device is used to identify the excitations induced by spin-transfer. Between an instability current of 1.72 mA and the switching current of 1.89 mA, we demonstrate the existence of pre-switch steady-state excitations, i.e. low amplitude precession. We study the frequency (10 GHz, red shift -1.46 GHz/mA) of this excitation, its line width (78-246 MHz), the power it carries (113 nW), and the current dependance thereof. We discuss those experimental findings using the formalism of Sun et al. and Valet et al., and show that the experimental behavior can be described by a macrospin approximation only at the very onset of the pre-switch excitations. The early saturation of the excitation power and the non-monotonic switching probability with the current are experimental indications that the pre-switch excitations are strongly non-uniform when approaching the switching current.

  18. DC-Compensated Current Transformer †

    Science.gov (United States)

    Ripka, Pavel; Draxler, Karel; Styblíková, Renata

    2016-01-01

    Instrument current transformers (CTs) measure AC currents. The DC component in the measured current can saturate the transformer and cause gross error. We use fluxgate detection and digital feedback compensation of the DC flux to suppress the overall error to 0.15%. This concept can be used not only for high-end CTs with a nanocrystalline core, but it also works for low-cost CTs with FeSi cores. The method described here allows simultaneous measurements of the DC current component. PMID:26805830

  19. Direct current (DC) resistivity and Induced Polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, J.; Fiandaca, G.; Ingeman-Nielsen, Thomas

    2015-01-01

    With permafrost thawing and changes in active layer dynamics induced by climate change, interactions between biogeochemical and thermal processes in the ground are of great importance. Here, active layer dynamics have been monitored using direct current (DC) resistivity and induced polarization (...... non-intrusively and reliably image freezing patterns and their lateral variation on a 10-100 m scale that is difficult to sample by point measurements.......) measurements at high temporal resolution at a heath tundra site on Disko Island on the west coast of Greenland (69°N). Borehole sediment characteristics and subsurface temperatures supplemented the DC-IP measurements. Data acquired during the freezing period of October 2013 – February 2014 clearly image...... the soil freezing as a strong increase in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing...

  20. The zero-flux DC current transformer a high precision bipolar wide- band measuring device

    CERN Document Server

    Appelo, H C

    1977-01-01

    A current-carrying conductor is surrounded by a pair of ring cores. A sense winding on one core provides flux rate feedback to a power amplifier which drives the ampere-turn compensating current through a common compensating winding. The other core serves as a second- harmonic modulator to establish zero-flux operation and thus to ensure a perfect, temperature-independent current balance. A specially- developed burden resistor converts the compensating current into a voltage signal, which is amplified to give an 10 V output signal at the nominal value of the current to be measured. A substantial number of devices, ranging from 50 to 25000 Amperes is now operational in the beam transfer and extraction power supplies to the CERN SPS. (4 refs).

  1. Analysis of the Thermal Load of Structural Elements High-Power DC Supply with the Transformer of Ripple Filter with Current Overload

    Directory of Open Access Journals (Sweden)

    Jaroslav Lokvenc

    2017-01-01

    Full Text Available Design of the high-power DC supply quite logically based on the required electrical parameters and expected or defined operating conditions. A prerequisite trouble-free operation is also the correct choice of construction materials. Both in terms of mechanical strength and stability, and in terms of thermal load. The article deals with thermal conditions in the high-power DC supply with the transformer of ripple filter for long-term current overload.

  2. Electrooptic Methods for Measurement of Small DC Currents at High Voltage Level

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Beatty, Neville; Skilbreid, Asbjørn Ottar

    1989-01-01

    collectors are connected via resistors RA and RB to the protective side of the voltage to be measured and the emitters to the negative side. The currents flowing in to the bases of the transistors are independently controlled by the light levels following on the two photodiodes PDA, PDB....

  3. High gain high efficiency resonant DC-DC converter

    Science.gov (United States)

    Shang, Fei

    Low voltage power sources have played an important role in applications such as automotive system, renewable energy power generation and so on, where require a high gain DC-DC step-up converter. The converter is going to sustain a very high input current which can bring many design challenges in the existing topologies, such as high component current stress and power loss, complex and costly design for magnetic components, high input current ripple, etc. A new topology of high gain DCDC step-up converter proposed in this dissertation. The topology has many merits such as high gain capability, high efficiency, low components stress and requirement of the transformer, simple topology with less number of active switching devices, and easy to control. The dissertation carries out theoretical analysis of the proposed topology under different operating modes and the voltage gain has been deduced for each mode. The design of circuit components has been well studied, including the power devices current stress and power, the selection of transformer turns-ratio, the design method of the resonant tank and input current ripple. System dynamic state-space models are acquired by using generalized averaging method. Small signal model of the converter is achieved by linearization of the dynamic model around the operating points. The stability study indicates that the open loop system is stable at all operating points, except some operating points containing RHP zeros which can cause closed loop system unstable. The parameter sensitivity study shows that the system transfer function is not greatly affected by the variation of the leakage inductance and load resistance. A design of PI controller is implemented to achieve the output voltage regulation. Simulations have been carried out to validate the circuit operation and support the design analysis. A 2kW prototype has been built for experimental testing. The experimental results are in a good agreement with the theoretical

  4. A Current-Fed Isolated Bidirectional DC-DC Converter

    DEFF Research Database (Denmark)

    Sun, Xiaofeng; Wu, Xiaoying; Shen, Yanfeng

    2017-01-01

    This paper proposes a current-fed isolated bidirectional DC-DC converter (CF-IBDC) which has the advantages of wide input voltage range, low input current ripple, low conduction losses, and soft switching over the full operating range. Compared with conventional CF-IBDCs, the voltage spikes...... of the low-voltage (LV) side switches in the proposed converter can be eliminated without additional clamp circuits. The converter adopts the pulse width modulation (PWM) plus hybrid phase-shift control scheme such that the bus voltage can match the output voltage by means of the transformer. Thus......, the current stresses and conduction losses of the converter become lower. In addition, the practical ZVS of the secondary-side switches can be realized by adjusting the phase-shift angle within the secondary side when in light load or no load condition. The operating principles and characteristics including...

  5. Improvement of a high current DC power supply system for testing the large scaled superconducting cables and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo [and others

    1993-11-01

    A dc 75 kA power supply system was constructed to test the superconducting (SC) R and D cables and magnets for the Large Helical Device. It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID compensation is improved by a factor of two from the original method. (author).

  6. Improvement of a high current dc power supply system for testing the large scaled superconducting cables and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Shuichi; Chikaraishi, Hirotaka; Tanahashi, Shugo [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    1994-07-01

    A dc 75 kA power supply system was constructed to test the SC (superconducting) R and D (research and development) cables and magnets for the Large Helical Device (LHD). It consists of three 25 kA unit banks. A unit bank has two double-star-rectifier connections with the inter-phase reactors. A digital feedback control method is applied to the automatic current regulation (ACR) in each unit bank. For shortening the dead time of the feedback process, a new algorithm of a digital phase controller for the ACR is investigated. A Bode diagram of the feedback process is directly measured. It is confirmed that the dead time of the feedback process is reduced to one sixth, and that the feedback gain of PID (proportional, integral and differential) compensation is improved by a factor of two from the original method.

  7. Sheppard-Taylor Isolated High Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Chub, Andrii; Siwakoti, Yam Prasad; Vinnikov, Dmitri

    2017-01-01

    be implemented with fewer passive components. Soft-switching in semiconductors allows achieving high efficiency. In addition, the input side current is continuous. The operating principle and the design guidelines derived for the converter are presented. Theoretical results are supported with experimental......This paper presents a new galvanically isolated step-up dc-dc converter intended for low-power but high step-up applications. The proposed converter is capable of regulating output voltage within a wide range of the input voltage or load variations. In contrast to competitors, the converter can...... results obtained using a 100 W prototype. The converter proposed can be used in photovoltaic module level power electronics applications, where a wide input voltage and load regulation range are highly demanded....

  8. Kvasiresonant DC-DC Converter with Switching at Zero Current - Part 1

    OpenAIRE

    Vorel, P.

    1998-01-01

    A kvasiresonant DC - DC converter and its control circuits are proposed. The relations useful for design of the converter will be deduced in the part 2. The fundamental idea of the converter is the switching -on and -off a transistor at zero current. In this way the switching losses are eliminated. It enables to design a converter with a large output power (several kW), high switching frequency (about 200 kHz), very good efficiency and low radiation.

  9. New 2LC-Y DC-DC converter topologies for high-voltage/low-current renewable applications: New members of X-Y converter family

    DEFF Research Database (Denmark)

    Bhaskar, Mahajan Sagar; Padmanaban, Sanjeevikumar; Maroti, Pandav Kiran

    2017-01-01

    applications. The noticeable features of the proposed 2LC-Y converter topologies are: i) Only one power control switch and input source; ii) High negative output voltage with moderate duty ratio; iii) Low output current and minimal internal resistance; iv) Transformer-less converter topologies; v) High voltage......New members of XY converter family topologies are proposed in this treatise for a high-voltage/low-current renewable application. Based on the X Converter, the whole existing X-Y Converter family is categorized into four categories; L-Y, 2L-Y, 2LC-Y and 2LCm-Y converter. Four new 2LC-Y topologies...... (2LC-LVD, 2LC-2LVD, 2LC-2LCVD and 2LC-2LCmVD) converters are presented in this treatise which offer an effective solution for renewable applications requiring a very high voltage conversion ratio such as a Photovoltaic Multilevel Inverter (PV-MLI) system, hybrid electrical drives and automotive...

  10. Light-weight DC to very high voltage DC converter

    Science.gov (United States)

    Druce, R.L.; Kirbie, H.C.; Newton, M.A.

    1998-06-30

    A DC-DC converter capable of generating outputs of 100 KV without a transformer comprises a silicon opening switch (SOS) diode connected to allow a charging current from a capacitor to flow into an inductor. When a specified amount of charge has flowed through the SOS diode, it opens up abruptly; and the consequential collapsing field of the inductor causes a voltage and current reversal that is steered into a load capacitor by an output diode. A switch across the series combination of the capacitor, inductor, and SOS diode closes to periodically reset the SOS diode by inducing a forward-biased current. 1 fig.

  11. A Decentralized Current-Sharing Controller Endows Fast Transient Response to Parallel DC-DC Converters

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Han, Renke

    2017-01-01

    This paper proposes a decentralized current-sharing control strategy to endow fast transient response to paralleled DC-DC converters systems, such as DC microgrids or distributed power systems. The proposed controller consist of two main control loops: an external voltage droop control for curren...

  12. High voltage conversion ratio, switched C & L cells, step-down DC-DC converter

    DEFF Research Database (Denmark)

    Pelan, Ovidiu; Muntean, Nicolae; Cornea, Octavian

    2013-01-01

    The paper presents a high voltage conversion ratio DC-DC step-down topology obtained from a classical buck converter associated with an input switched-capacitor cell and an output switched-inductor cell. Analytical descriptions, the voltage and current limits of the main components are synthesize...

  13. Two new families of high-gain dc-dc power electronic converters for dc-microgrids

    Science.gov (United States)

    Prabhala, Venkata Anand Kishore

    Distributing the electric power in dc form is an appealing solution in many applications such as telecommunications, data centers, commercial buildings, and microgrids. A high gain dc-dc power electronic converter can be used to individually link low-voltage elements such as solar panels, fuel cells, and batteries to the dc voltage bus which is usually 400 volts. This way, it is not required to put such elements in a series string to build up their voltages. Consequently, each element can function at it optimal operating point regardless of the other elements in the system. In this dissertation, first a comparative study of dc microgrid architectures and their advantages over their ac counterparts is presented. Voltage level selection of dc distribution systems is discussed from the cost, reliability, efficiency, and safety standpoints. Next, a new family of non-isolated high-voltage-gain dc-dc power electronic converters with unidirectional power flow is introduced. This family of converters benefits from a low voltage stress across its switches. The proposed topologies are versatile as they can be utilized as single-input or double-input power converters. In either case, they draw continuous currents from their sources. Lastly, a bidirectional high-voltage-gain dc-dc power electronic converter is proposed. This converter is comprised of a bidirectional boost converter which feeds a switched-capacitor architecture. The switched-capacitor stage suggested here has several advantages over the existing approaches. For example, it benefits from a higher voltage gain while it uses less number of capacitors. The proposed converters are highly efficient and modular. The operating modes, dc voltage gain, and design procedure for each converter are discussed in details. Hardware prototypes have been developed in the lab. The results obtained from the hardware agree with those of the simulation models.

  14. Dynamic Performance Analyses of Current Sharing Control for DC/DC Converters

    OpenAIRE

    Sun, Juanjuan

    2007-01-01

    Paralleling operation of DC/DC converters is widely used in today's distributed power systems. To ensure balanced output currents among paralleled power modules, current sharing control is usually necessary.Active current sharing controls with current feedback mechanism are widely used in today's power supplies. However, the dynamic performance of these current sharing control schemes are not yet clearly explored. In this work, the dynamic current sharing performance is evaluated for parallel...

  15. High efficiency high step-up DC/DC converters - a review

    National Research Council Canada - National Science Library

    Tomaszuk, A; Krupa, A

    2011-01-01

    .... This review is focused on high efficiency step-up DC/DC converters with high voltage gain. The differentiation is based on the presence or lack of galvanic isolation. A comparison and discussion of different DC/DC step-up topologies will be performed across number of parameters and presented in this paper.

  16. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    The sizing of the DC-link capacitor in a three-level inverter is based on the RMS current flowing through it. This paper analyses the DC-link capacitor RMS current in a neutral-point clamped (NPC) inverter and expresses the same as a function of modulation index, line-side current amplitude and power factor. Analytical ...

  17. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...... components in the power stage are given. The circuit has been simulated to verify the accuracy of the presented equations and an efficiency of 89% has been shown. A prototype has been implemented with self-oscillating resonant gate drives driving the switches. The prototype has been used to drive an LED...

  18. A SOFT SWITCHED INTERLEAVED HIGH GAIN DC-DC CONVERTER

    Directory of Open Access Journals (Sweden)

    SHESHIDHAR REDDY ADDULA

    2017-09-01

    Full Text Available In this paper, a novel soft-switched interleaved DC-DC converter which provides a high voltage gain of 12 is proposed. Voltage gain of the basic interleaved boost converter is extended by using diode-capacitor multiplier (DCM cells. The switches are operated at a nominal duty ratio of 0.5. The voltage stress on the power switches and diodes is only a fraction of the output voltage. To enhance the operating power conversion efficiency, the switches are turned ON at zero voltage condition. Experimental results of 18-216V, 100W prototype converter validate the operating principle and the advantageous features of the presented converter.

  19. Harmonic analysis of DC capacitor current in sinusoidal and space ...

    Indian Academy of Sciences (India)

    The voltage ripple and power loss in the DC-capacitor of a voltage source inverter depend on the harmonic currents flowing through the capacitor. This paper presents a double Fourier series based analysis of the harmonic contents of the DC capacitor current in a three-level neutral-point clamped (NPC) inverter, modulated ...

  20. Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution

    DEFF Research Database (Denmark)

    Doetsch, Joseph; Ingeman-Nielsen, Thomas; Christiansen, Anders V.

    2015-01-01

    freezing patterns and their lateral variation on a 10-100. m scale that is difficult to sample by point measurements. In combination with laboratory experiments, the different patterns in resistivity and chargeability changes will enable the disentanglement of processes (e.g., fluid migration and freezing...... of the measurement schedule, which is critically important to acquire data in the winter months, where extremely high contact resistances increase the demands on the resistivity meter. Data acquired during the freezing period of October 2013 to February 2014 clearly image the soil freezing as a strong increase...... in resistivity. While the freezing horizon generally moves deeper with time, some variations in the freezing depth are observed along the profile. Comparison with depth-specific soil temperature indicates an exponential relationship between resistivity and below-freezing temperature. Time-lapse inversions...

  1. A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing

    DEFF Research Database (Denmark)

    Gao, Liyuan; Liu, Yao; Ren, Huisong

    2017-01-01

    , at the system coordinated control level, a hierarchical/droop control strategy based on the DC bus voltage is proposed. In the strategy, the operation modes of the AC main network and micro-sources are determined through detecting the DC voltage variation, which can ensure the power balance of the DC microgrid...... under different operating conditions. Meanwhile, communication is not needed between different DG units, while each DG unit needs to sample the DC bus voltage, which retains the plug-and-play feature of the DC microgrid. The proposed control strategy is validated by simulation on a DC microgrid......The DC microgrid has become a new trend for microgrid study with the advantages of high reliability, simple control and low losses. With regard to the drawbacks of the traditional droop control strategies, an improved DC droop control strategy based on integrator current-sharing is introduced...

  2. Electronic DC transformer with high power density

    NARCIS (Netherlands)

    Pavlovský, M.

    2006-01-01

    This thesis is concerned with the possibilities of increasing the power density of high-power dc-dc converters with galvanic isolation. Three cornerstones for reaching high power densities are identified as: size reduction of passive components, reduction of losses particularly in active components

  3. Looped-chain-based active current sharing strategy in DC microgrids

    Directory of Open Access Journals (Sweden)

    Li Dexiong

    2017-09-01

    Full Text Available The integration of renewable energy sources in modern electric grids have drawn increasing attention nowadays. In order to effectively manage large-scale renewable energy sources and achieve flexible and efficient operation, the concept of microgrids have been proposed. Considering the nature of DC outputs in many distributed energy resources (DERs, DC microgrids have been extensively studied in the past years. Among the operational issues in DC microgrids, current sharing issues have become an important topic since it is highly relevant to the operation of DC microgrids. By adopting a proper design of current sharing strategy in DC microgrids, the current rating violations in each interface converter can be successfully avoided. In this paper, a looped-chain-based active current sharing strategy is proposed to realize high accuracy current sharing in DC microgrids. In particular, the output current is shared between the neighboring interface converters. Hence, following a clockwise or counter-clockwise order, a looped-chain-based control diagram can be established to share the reference value of the output current. A final status in the whole DC microgrid is that the output current of every interface converter is equalized. Hence, the desired current sharing objective can be satisfied. A MATLAB simulation model is established to verify the proposed looped-chain-based active current sharing strategy in DC microgrids.

  4. Design and implementation of current fed DC-DC converter for PHEV application using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    As the fossil fuels are depleting day by day, the use of renewable energy sources came into existence and they evolved a lot lately. To increase efficiency and productivity in the hybrid vehicles, the existence less efficient petroleum and diesel IC engines need to be replaced with the new and efficient converters with renewable energy sources. This has to be done in such a way that impacts three factors mainly: cost, efficiency and reliability. The PHEVs that have been launched and the upcoming PHEVs using converters with voltage range around 380V to 400V generated with power ranges between 2.4KW to 2.8KW. The basic motto of this paper is to design a prolific converter while considering the factor such as cost and size. In this paper, a two stage DC-DC converter is proposed and the proposed DC-DC converter is utilized to endeavour voltage from 24V (photovoltaic source) to a yield voltage of 400V and to meet the power demand of 250W, since only one panel is being used for this proposed paper. This paper discuss in detail about why and how the current fed DC-DC converter is utilized along with a voltage doubler, thus reducing transformer turns and thereby reducing overall size of the product. Simulation and hardware results have been presented along with calculations for duty cycle required for firing sequence for different values of transformer turns.

  5. DC-Voltage Fluctuation Elimination Through a DC-Capacitor Current Control for DFIG Converters Under Unbalanced Grid Voltage Conditions

    DEFF Research Database (Denmark)

    Liu, Changjin; Xu, Dehong; Zhu, Nan

    2013-01-01

    Unbalanced grid voltage causes a large second-order harmonic current in the dc-link capacitors as well as dc-voltage fluctuation, which potentially will degrade the lifespan and reliability of the capacitors in voltage source converters. This paper proposes a novel dc-capacitor current control...... method for a grid-side converter (GSC) to eliminate the negative impact of unbalanced grid voltage on the dc-capacitors. In this method, a dc-capacitor current control loop, where a negative-sequence resonant controller is used to increase the loop gain, is added to the conventional GSC current control...... loop. The rejection capability to the unbalanced grid voltage and the stability of the proposed control system are discussed. The second-order harmonic current in the dc capacitor as well as dc-voltage fluctuation is very well eliminated. Hence, the dc capacitors will be more reliable under unbalanced...

  6. PI and Fuzzy Control Strategies for High Voltage Output DC-DC Boost Power Converter - Hardware Implementation and Analysis

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevi Kumar; Blaabjerg, Frede; Siano, Pierluigi

    2016-01-01

    This paper presents the control strategies by Proportional-Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its...... converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter...

  7. Trans-inverse (Tx−1) high step-up DC-DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; Blaabjerg, Frede; Loh, Poh Chiang

    2015-01-01

    In this paper, a new magnetically coupled single-switch non-isolated dc-dc converter with a high voltage gain is proposed. The new topology utilizes a transformer to boost the output voltage. However, unlike other converter topologies with transformer or coupled magnetics, the voltage gain...... in the proposed topology is increased by reducing the turns ratio of the transformer. Hence the name Trans-inverse (Tx−1) is given to represent the inverse transformer principle of operation of the proposed converter. The new topology draws a continuous current from the source, which is required for many...... confirmed the validity of the proposed converter....

  8. Stability analysis of a high-step-Up DC grid-connected two-stage boost DC-DC converter

    Directory of Open Access Journals (Sweden)

    El Aroudi A.

    2014-01-01

    Full Text Available High conversion ratio switching converters are used whenever there is a need to step-up dc source voltage level to a much higher output dc voltage level such as in photovoltaic systems, telecommunications and in some medical applications. A simple solution for achieving this high conversion ratio is by cascading different stages of dc-dc boost converters. The individual converters in such a cascaded system are usually designed separately applying classical design criteria. However these criteria may not be applicable for the complete cascaded system . This paper first presents a glimpse on the bifurcation behavior that a cascade connection of two boost converters can exhibit. It is shown that the desired periodic orbit can undergo period doubling leading to subharmonic oscillations and chaotic regimes. Then, in order to simplify the analysis the second stage is considered as constant current sink and design-oriented analysis is carried out to obtain stability boundaries in the parameter space by taking into account slope interactions between the state variables in the two-different stages.

  9. A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing

    Directory of Open Access Journals (Sweden)

    Liyuan Gao

    2017-08-01

    Full Text Available The DC microgrid has become a new trend for microgrid study with the advantages of high reliability, simple control and low losses. With regard to the drawbacks of the traditional droop control strategies, an improved DC droop control strategy based on integrator current-sharing is introduced. In the strategy, the principle of eliminating deviation through an integrator is used, constructing the current-sharing term in order to make the power-sharing between different distributed generation (DG units uniform and reasonable, which can reduce the circulating current between DG units. Furthermore, at the system coordinated control level, a hierarchical/droop control strategy based on the DC bus voltage is proposed. In the strategy, the operation modes of the AC main network and micro-sources are determined through detecting the DC voltage variation, which can ensure the power balance of the DC microgrid under different operating conditions. Meanwhile, communication is not needed between different DG units, while each DG unit needs to sample the DC bus voltage, which retains the plug-and-play feature of the DC microgrid. The proposed control strategy is validated by simulation on a DC microgrid with permanent magnet synchronous generator-based wind turbines, solar arrays and energy storage batteries, which can be applied to small commercial or residential buildings.

  10. Coupled-Inductor-Based DC Current Measurement Technique for Transformerless Grid-Tied Inverters

    DEFF Research Database (Denmark)

    Abdelhakim, Ahmed; Mattavelli, Paolo; Yang, Dongsheng

    2018-01-01

    , such as the dc current component injection into the grid. This component should be effectively mitigated in order to avoid some impacts, such as the saturation of the transformers in the distribution network. On the other hand, limiting this component up to few milliamperes is a challenging issue due....... Moreover, none of them measures the dc component directly, but predicts its value using different approaches. Hence, this letter proposes a new technique to measure this dc current component with high accuracy using a coupled inductor combined with a small-range Hall effect current sensor in order...... to achieve the lowest possible cost with the highest possible accuracy. The proposed technique is introduced, analyzed, and tested experimentally to verify its principle of operation. Also experimental measurement of the dc current component using a 5-kVA transformerless grid-tied voltage-source inverter...

  11. Ultra-high Efficiency DC-DC Converter using GaN Devices

    DEFF Research Database (Denmark)

    Ramachandran, Rakesh

    2016-01-01

    with the PCB layout and the magnetics. This thesis mainly covers the design and implementation of various high efficiency isolated dcdc converters in the range of 1 to 2.5 kW of output power. Both hard-switched and soft-switched topologies in isolated dc-dc converters has been studied and realized......The demands for high efficiency dc-dc power converters are increasing day by day in various applications such as telecommunication, data-centers, electric vehicles and various renewable energy systems. Silicon (Si) has been used as the semiconductor material in majority of the power devices...... properties of GaN devices can be utilized in power converters to make them more compact and highly efficient. This thesis entitled “Ultra-high Efficiency DC-DC Converter using GaN devices” focuses on achieving ultra-high conversion efficiency in an isolated dc-dc converter by the optimal utilization of Ga...

  12. Speed Control Analysis of Brushless DC Motor Based on Maximum Amplitude DC Current Feedback

    Directory of Open Access Journals (Sweden)

    Hassan M.A.A.

    2014-07-01

    Full Text Available This paper describes an approach to develop accurate and simple current controlled modulation technique for brushless DC (BLDC motor drive. The approach is applied to control phase current based on generation of quasi-square wave current by using only one current controller for the three phases. Unlike the vector control method which is complicated to be implemented, this simple current modulation technique presents advantages such as phase currents are kept in balance and the current is controlled through only one dc signal which represent maximum amplitude value of trapezoidal current (Imax. This technique is performed with Proportional Integral (PI control algorithm and triangular carrier comparison method to generate Pulse Width Modulation (PWM signal. In addition, the PI speed controller is incorporated with the current controller to perform desirable speed operation of non-overshoot response. The performance and functionality of the BLDC motor driver are verified via simulation by using MATLAB/SIMULINK. The simulation results show the developed control system performs desirable speed operation of non-overshoot and good current waveforms.

  13. Research on current sharing of paralleled IGBTs in different DC breaker circuit topologies

    Directory of Open Access Journals (Sweden)

    Chen Ying

    2016-01-01

    Full Text Available IGBT modules used in series and parallel to satisfy the requirement in high-power DC circuit breakers are often prone to large-current destruction due to current unbalance between paralleled IGBTs. It is of great importance to identify the current unbalance causes and to find a method optimizing the current sharing of paralleled IGBTs. In this paper the current-sharing influencing factors are discussed and verified by simulation. Two possible circuit topologies used in DC circuit breakers are proposed and simulated to see their performance in current sharing. The results show that one of them can provide us with a simple and effective method to achieve good current balancing in the DC circuit breaker application.

  14. SEMICONDUCTOR INTEGRATED CIRCUITS: DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Science.gov (United States)

    Changming, Pi; Wei, Yan; Ke, Zhang; Wenhong, Li

    2010-08-01

    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 μm CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency.

  15. DCM, FSM, dead time and width controllers for a high frequency high efficiency buck DC-DC converter over a wide load range

    Energy Technology Data Exchange (ETDEWEB)

    Pi Changming; Yan Wei; Zhang Ke; Li Wenhong, E-mail: wenhongli@fudan.edu.c [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)

    2010-08-15

    This paper presents a width controller, a dead time controller, a discontinuous current mode (DCM) controller and a frequency skipping modulation (FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range, especially at high switching frequency, the dead time controller and width controller are applied to enhance the high load efficiency, while the DCM controller and FSM controller are proposed to increase the light load efficiency. The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35 {mu}m CMOS process, and the measured results show that the efficiency of the buck DC-DC converter is above 80% over a wide load current range from 8 to 570 mA, and the peak efficiency is 86% at 10 MHz switching frequency. (semiconductor integrated circuits)

  16. Analysis of Planar E+I and ER+I Transformers for Low-Voltage High-Current DC/DC Converters with Focus on Winding Losses and Leakage Inductance

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Ouyang, Ziwei

    2012-01-01

    a significant advantage in terms of winding losses compared to planar E cores. Results from finite element analysis highlight that low frequency winding resistance is lower for the ER core since it is dominated by the lower mean turn length however, as the AC-resistance becomes dominating the winding eddy......In this paper an analysis of two planar transformers designed for high-current switching applications is presented. Typical converter application is represented by fuel and electrolyser cell converters. The transformer designs are based on E+I and ER+I planar cores while the analysis focuses...... on winding resistance and leakage inductances which represent the main concerns related to low-voltage high-current applications. The PCB winding design has a one to one turn ratio with no interleaving between primary and secondary windings. The main goal was to determine if ER planar core could provide...

  17. Research on resistance characteristics of YBCO tape under short-time DC large current impact

    Science.gov (United States)

    Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen

    2017-06-01

    Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.

  18. Analytical Method to Calculate the DC Link Current Stress in Voltage Source Converters

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2014-01-01

    for the applications with high line current ripple. The effect of the pulsewidth modulation (PWM) scheme on the rms value of the dc-link current is also studied and the analysis for continuous PWM and discontinuous PWM (DPWM) schemes is presented. The proposed analytical method is also verified experimentally....

  19. A dc transmission cable prototype using high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; Friend, C.M. [BICC Cables Ltd, Hedgeley Road, Hebburn, Tyne and Wear NE31 1XR (United Kingdom); Segir, W.; Ferrero, E. [Ceat Cavi Industrie srl, Via Brescia 16, 10036 Settimo Torinese (Italy); Vivaldi, F.; Ottonello, L. [Ansaldo Ricerche srl, Corso Perrone 25, 16161 Genoa (Italy)

    1996-01-01

    This paper gives the results from a recent collaboration between BICC Cables Ltd, its Italian subsidiary Ceat Cavi srl, and Ansaldo Ricerche srl on the design and testing of a high-temperature superconducting dc transmission cable prototype. The cable was designed to carry 10 000 A at 40 kV, operating at 40 K. Qualification testing was carried out from 4.2 K up to 40 K. At an operating temperature of 31 K the prototype cable had a current capacity of 11 067 A (the largest dc current reported in a high-temperature prototype to date), which represents a tenfold increase in current over a conventional 1000 mm{sup 2} copper cable. (author)

  20. Superconducting dc fault current limiter; Limiteur supraconducteur de courant continu

    Energy Technology Data Exchange (ETDEWEB)

    Cointe, Y

    2007-12-15

    Within the framework of the electric power market liberalization, DC networks have many interests compared to alternative ones, but their protections need to use new systems. Superconducting fault current limiters enable by an overstepping of the critical current to limit the fault current to a preset value, lower than the theoretical short-circuit current. For these applications, coated conductors offer excellent opportunities. We worked on the implementation of these materials and built a test bench. We carried out limiting experiments to estimate the quench homogeneity at various short-circuit parameters. An important point is the temperature measurement by deposited sensors on the ribbon, results are in good correlation with the theoretical models. Improved quench behaviours for temperatures close to the critical temperature have been confirmed. Our results enable to better understand the limitation mechanisms of coated conductors. (author)

  1. High power density dc/dc converter: Component selection and design

    Science.gov (United States)

    Divan, Deepakraj M.

    Further work pertaining to design considerations for the new high power, high frequency dc/dc converters is discussed. The goal of the project is the development of high power, high power density dc/dc converters at power levels in the multi-kilowatt to megawatt range for aerospace applications. The prototype converter is rated for 50 kW at a switching frequency of 50 kHz, with an input voltage of 200 Vdc and an output of 2000 Vdc. The overall power density must be in the vicinity of 0.2 to 0.3 kg/kW.

  2. Bifurcation boundary conditions for current programmed PWM DC-DC converters at light loading

    Science.gov (United States)

    Fang, Chung-Chieh

    2012-10-01

    Three types of bifurcations (instabilities) in the PWM DC-DC converter at light loading under current mode control in continuous-conduction mode (CCM) or discontinuous-conduction mode (DCM) are analysed: saddle-node bifurcation (SNB) in CCM or DCM, border-collision bifurcation during the CCM-DCM transition, and period-doubling bifurcation in CCM. Different bifurcations occur in some particular loading ranges. Bifurcation boundary conditions separating stable regions from unstable regions in the parametric space are derived. A new methodology to analyse the SNB in the buck converter based on the peak inductor current is proposed. The same methodology is applied to analyse the other types of bifurcations and converters. In the buck converter, multiple stable/unstable CCM/DCM steady-state solutions may coexist. Possibility of multiple solutions deserves careful study, because an ignored solution may merge with a desired stable solution and make both disappear. Understanding of SNB can explain some sudden disappearances or jumps of steady-state solutions observed in switching converters.

  3. Modelling and simulation of current fed dc to dc converter for PHEV applications using renewable source

    Science.gov (United States)

    Milind Metha, Manish; Tutki, Sanjay; Rajan, Aju; Elangovan, D.; Arunkumar, G.

    2017-11-01

    With the current rate of depletion of the fossil fuel the need to switch on to the renewable energy sources is the need of the hour. Thus the need for new and efficient converters arises so as to replace the existing less efficient diesel and petroleum IC engines with renewable energy sources. The PHEVs, which have been launched in the market, and Upcoming PHEVs have converters around 380V to 400V generated with a power range between 2KW to 2.8KW. The fundamental target of this paper is to plan a productive converter keeping in mind cost and size restriction. In this paper, a two-stage dc-dc converter is proposed. The proposed converter is utilized to venture up a voltage from 24V (photovoltaic source) to a yield voltage of 400V to take care of a power demand of 2.4kW for a plug-in hybrid electric vehicle (PHEV) application considering the real time scenario of PHEV. This paper talks about in detail why the current fed converter is utilized alongside a voltage doubler thus minimizing the transformer turns thereby reducing the overall size of the final product. Simulation results along with calculation for the duty cycle of the firing sequence for different value of transformer turns are presented for a prototype unit.

  4. A Novel Dual-input Isolated Current-Fed DC-DC Converter for Renewable Energy System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    In this paper, a novel isolated current-fed DC-DC converter (boost-type) with two input power sources based on multi-transformer structure, which is suitable for fuel cells and super-capacitors hybrid energy system, is proposed and designed. With particular transformer windings connection strateg...

  5. Design and implementation of a bidirectional current-controlled voltage-regulated DC-DC switched-mode converter

    CSIR Research Space (South Africa)

    Coetzer, A

    2016-01-01

    Full Text Available The design and implementation of a bidirectional current-controlled voltage-regulated DC-DC converter is presented. The converter is required to connect a battery of electrochemical cells (the battery) to an asynchronous motor-drive unit via a...

  6. High efficiency and low electromagnetic interference boost DC-DC converter

    Science.gov (United States)

    Yajun, Li; Xinquan, Lai; Qiang, Ye; Bing, Yuan

    2014-04-01

    A synchronous boost DC-DC converter with an adaptive dead time control (DTC) circuit and anti-ringing circuit is presented. The DTC circuit is used to provide adjustable dead time and zero inductor current detection for power transistors and therefore, a high efficiency is achieved by minimizing power losses, such as the shoot-through current loss, the body diode conduction loss, the charge-sharing loss and the reverse inductor current loss. Simultaneously, a novel anti-ringing circuit controlled by the switching sequence of power transistors is developed to suppress the ringing when the converter enters the discontinuous conduction mode (DCM) for low electromagnetic interference (EMI) and additional power savings. The proposed converter has been fabricated in a 0.6 μm CDMOS technology. Simulation and experimental results show that the power efficiency of the boost converter is above 81% under different load currents from 10 to 250 mA and a peak efficiency of 90% is achieved at about 100 mA. Moreover, the ringing is easily suppressed by the anti-ringing circuit and therefore the EMI noise is attenuated.

  7. Fast response double series resonant high-voltage DC-DC converter

    Science.gov (United States)

    Lee, S. S.; Iqbal, S.; Kamarol, M.

    2012-10-01

    In this paper, a novel double series resonant high-voltage dc-dc converter with dual-mode pulse frequency modulation (PFM) control scheme is proposed. The proposed topology consists of two series resonant tanks and hence two resonant currents flow in each switching period. Moreover, it consists of two high-voltage transformer with the leakage inductances are absorbed as resonant inductor in the series resonant tanks. The secondary output of both transformers are rectified and mixed before supplying to load. In the resonant mode operation, the series resonant tanks are energized alternately by controlling two Insulated Gate Bipolar Transistor (IGBT) switches with pulse frequency modulation (PFM). This topology operates in discontinuous conduction mode (DCM) with all IGBT switches operating in zero current switching (ZCS) condition and hence no switching loss occurs. To achieve fast rise in output voltage, a dual-mode PFM control during start-up of the converter is proposed. In this operation, the inverter is started at a high switching frequency and as the output voltage reaches 90% of the target value, the switching frequency is reduced to a value which corresponds to the target output voltage. This can effectively reduce the rise time of the output voltage and prevent overshoot. Experimental results collected from a 100-W laboratory prototype are presented to verify the effectiveness of the proposed system.

  8. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  9. High-Voltage DC-DC Converter Topology for PV Energy Utilization - Investigation and Implementation

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Blaabjerg, Frede; Wheeler, Patrick

    2017-01-01

    This paper exploited the utilization of photovoltaic (PV) energy system with high-voltage (HV) output DC-DC converter. Classical boost converters are used for both renewable energy integration and HV applications, but limited by reducing output/efficiency in performance. Moreover, as parasitic el...

  10. High Efficiency Interleaved Bi-Directional ZVS DC-DC Converter

    DEFF Research Database (Denmark)

    Zafar Ullah Khan, M.; Mohsin Naveed, M.; Hussain, Dil Muhammad Akbar

    2013-01-01

    A High Efficiency Interleaved Bi-Directional ZVS DC-DC converter is presented in this paper. This converter can be operated in both buck and boost mode. CoolMOS is used as a power device to achieve low conduction losses and fast turn off. The value of inductance is selected such that the Cool...

  11. High-power high-frequency DC-to-DC converters

    Energy Technology Data Exchange (ETDEWEB)

    Kheraluwala, M.H.

    1991-01-01

    Three new dc-to-dc converter topologies aimed at high-power high-frequency applications are introduced. Major system parasitics, namely, the leakage inductance of the transformer and the device output capacitance are efficiently utilized. All circuits operate at a constant switching frequency, thus simplifying design of the reactive elements. Of the three circuits the single-phase and three-phase versions of the dual-active-bridge topology demonstrate minimal electrical stresses, better utilization of the transformer, bi-directional and buck-boost model of operation. The power-transfer characteristics and soft-switching regions on the Vout-Iout plane are identified. Two coaxial transformers with different cross-sections were built for a rating of 50 kVA. The measured leakage inductance at 50 kHz is seen to be in the vicinity of 150-250 nH, with power density of approximately 0.1 kg/kW. Based on the single-phase dual-active-bridge topology, a 50kW, 50-kHz converter operating at an input voltage of 200V dc and an output voltage of 1,600V dc was fabricated.

  12. Periodically Swapping Modulation (PSM) Strategy for Three-Level (TL) DC/DC Converter with Balanced Switch Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The asymmetrical modulation strategy is widely used in various types of three-level (TL) DC/DC converters, while the current imbalance among the power switches is one of the important issues. In this paper, a novel periodically swapping modulation (PSM) strategy is proposed for balancing the power...... switches’ currents in various types of TL DC/DC converters. In the proposed PSM strategy, the driving signals of the switch pairs are swapped periodically, which guarantees that the currents through the power switches are kept balanced in every two switching periods. Therefore, the proposed PSM...... strategy can effectively improve the reliability of the converter by balancing the power losses and thermal stresses among the power switches. The operation principle and performances of the proposed PSM strategy are analyzed in detail. Finally, the simulation and experimental results are presented...

  13. A ZVS PWM control strategy with balanced capacitor current for half-bridge three-level DC/DC converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Chen, Zhe

    2017-01-01

    The capacitor current would be imbalanced under the conventional control strategy in the half-bridge three-level (HBTL) DC/DC converter due to the effect of the output inductance of the power supply and the input line inductance, which would affect the converter's reliability. This paper proposes...... a pulse-wide modulation (PWM) strategy composed of two operation modes for the HBTL DC/DC converter, which can realize the zero-voltage switching (ZVS) for the efficiency improvement. In addition, a capacitor current balancing control is proposed by alternating the two operation modes of the proposed ZVS...... PWM strategy, which can eliminate the current imbalance among the two input capacitors. Therefore, the proposed control strategy can improve the converter's performance and reliability in: 1) reducing the switching losses and noises of the power switches; 2) balancing the thermal stresses...

  14. Influence of dc bias currents on Co/Cu/Co nonlocal spin valves

    Science.gov (United States)

    Wang, X. J.; Zou, H.; Ocola, L. E.; Divan, R.; Ji, Y.

    2009-05-01

    The spin signals of three Co/Cu/Co nonlocal spin valves have been measured as a function of a dc bias current. Both increases and decreases of spin signals have been observed. The increase in spin signal is attributed to the redistribution of the injection current at a high current density. A shift in effective injection point up to ˜100 nm is estimated. The decrease in spin signals is attributed to structural change of the materials and interfaces due to the prolonged exposure to a high-density current.

  15. Effect of Over Zone Feeding on Rail Potential and Stray Current in DC Mass Transit System

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2016-01-01

    Full Text Available DC traction power system with running rails as reflux conductor has been adopted in Guangzhou Metro Line 8. During the operation of the Guangzhou Metro Line, a high rail potential has been observed, and the leakage of stray current increases significantly. Because of the electrical connectivity of the catenary, over zone feeding of traction current may exist when multiple trains run in multiple traction substations. Guangzhou Metro Line 8 suspects that over zone feeding of traction current is the major cause of the high rail potential. In this paper, a unified chain model of DC traction power system is proposed to simulate the distribution of rail potential and stray current. Field tests and simulations have been carried out to study whether over zone feeding has an impact on rail potential and stray current. Results show that over zone feeding widely exists in DC traction power system and that the rail potential and stray current can be reduced effectively by preventing the over zone feeding of traction current.

  16. Harmonic analysis of DC capacitor current in sinusoidal and space ...

    Indian Academy of Sciences (India)

    In spite of all these advantages the three-level NPC inverter has a drawback in terms of DC neutral-point imbalance. However, the DC-bus imbalance in a three- level NPC inverter can be mitigated through appropriate control as has been reported extensively. (Orfanoudakis et al 2013a, b; Lee & Lee 2014; Choi et al 2014).

  17. High reliability DC/DC converter module for electronic boards equipped with FPGAs

    Science.gov (United States)

    Viganò, W.; Boccardi, A.; Zamantzas, C.

    2015-01-01

    The Beam Instrumentation Group at CERN is designing a new general-purpose VME carrier module utilising several PTH04T230W DC/DC converters. These off-the-shelf converters are built with unshielded inductors and need to be mounted on the printed circuit board as stand-alone components. Thus, reducing the global manageability and increasing the total cost of the carrier module. The new design aims to develop a module with better power dissipation, efficiency and reliability. In the future, it should be also possible to be directly integrated on the mainboard. For this reason, a Buck DC/DC converter has been implemented with the following main characteristics: input range from 3.0 V to 5.5 V; output range from 0.6 V to 3.3 V, settable by means of an external resistor; output current protection at 6 A; maximum output ripple ± 50 mVpp; switching frequency of 300KHz; short circuit protection; On/Off function; EMI reduction with frequency spread spectrum; soft-start function and thermal shutdown, in a 16 × 19 mm compact size. The selected buck controller is the TPS40303 integrated circuit and drives the CSD16321 power MOSFET, both from Texas Instruments. All selected components have been used at a minimum derating of 50% to reduce component stress and increase the reliability of this module. The selected inductors, i.e. Bourns SRP1055, are the main contributor for the high efficiency (95%), due to their very low equivalent series resistance. On the 4-layer PCB comprising all the components of this module, a snubber circuit, for further reduction of the output ripple due to the MOSFET ringing, can be mounted optionally. It is left as an option due to its effect on the total efficiency. The board layout has been optimized for maximum heat transfer and it can be used without active cooling. The board can maintain the maximum temperature on its surface, while at maximum current output, below 55°C at 25°C ambient temperature. An example of the electrical performance

  18. Effects of DC bias on magnetic performance of high grades grain-oriented silicon steels

    Science.gov (United States)

    Ma, Guang; Cheng, Ling; Lu, Licheng; Yang, Fuyao; Chen, Xin; Zhu, Chengzhi

    2017-03-01

    When high voltage direct current (HVDC) transmission adopting mono-polar ground return operation mode or unbalanced bipolar operation mode, the invasion of DC current into neutral point of alternating current (AC) transformer will cause core saturation, temperature increasing, and vibration acceleration. Based on the MPG-200D soft magnetic measurement system, the influence of DC bias on magnetic performance of 0.23 mm and 0.27 mm series (P1.7=0.70-1.05 W/kg, B8>1.89 T) grain-oriented (GO) silicon steels under condition of AC / DC hybrid excitation were systematically realized in this paper. For the high magnetic induction GO steels (core losses are the same), greater thickness can lead to stronger ability of resisting DC bias, and the reasons for it were analyzed. Finally, the magnetostriction and A-weighted magnetostriction velocity level of GO steel under DC biased magnetization were researched.

  19. Controller for a High-Power, Brushless dc Motor

    Science.gov (United States)

    Fleming, David J.; Makdad, Terence A.

    1987-01-01

    Driving and braking torques controllable. Control circuit operates 7-kW, 45-lb-ft (61-N-m), three-phase, brushless dc motor in both motor and generator modes. In motor modes, energy from power source is pulse-width modulated to motor through modified "H-bridge" circuit, in generator mode, energy from motor is pulse-width modulated into bank of load resistors to provide variable braking torques. Circuit provides high-resolution torque control in both directions over wide range of speeds and torques. Tested successfully at bus voltages up to 200 Vdc and currents up to 45 A.

  20. Rotor position sensor switches currents in brushless dc motors

    Science.gov (United States)

    1965-01-01

    Reluctance switch incorporated in an induction motor is used for sensing rotor position and switching armature circuits in a brushless dc motor. This device drives the solar array system of an unmanned space satellite.

  1. Discrete time domain modelling and analysis of dc-dc converters with continuous and discontinuous inductor current

    Science.gov (United States)

    Iwens, R. P.; Lee, F. C.; Triner, J. E.

    1977-01-01

    Using discrete time state variable representation, a generalized computer-aided modeling and analysis of dc-dc converters is presented. The methodology provides exact modeling and is applicable to all types of power stages and duty-cycle control, including continuous and discontinuous inductor current operation. Converter stability, transient behavior and audio susceptibility can be analytically evaluated and predicted. The generalized theory of the proposed approach to converter modeling and analysis is presented first, followed by a demonstrative example applying the theory to a constant frequency buck converter operating in continuous and discontinuous inductor current mode. Excellent agreement with laboratory test data has been observed.

  2. Method to predetermine current/power flow change in a dc grid

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a method for controlling current/power flow within a power transmission system, comprising two or more interconnected converter stations. The method comprises the steps of: providing a DC admittance matrix given from the DC grid; providing a current distribution matrix...... occurs at one of the AC/DC converters; establishing a generalized droop feedback gain matrix G; controlling current/power flow within DC grid towards predefined setpoints, by use of control law. The invention presents an analytical approach to derive the generalized feedback gain allowing...

  3. Dynamic Sliding Mode Evolution PWM Controller for a Novel High-Gain Interleaved DC-DC Converter in PV System

    Directory of Open Access Journals (Sweden)

    Taizhou Bei

    2014-01-01

    Full Text Available Considering the disadvantages of the traditional high-gain DC-DC converter such as big size, high voltage stress of switches, and large input current ripple, a novel high-gain interleaved boost converter with coupled-inductor and switched-capacitor was proposed correspondingly and the operation principle together with the steady-state analysis of this converter was also described. Besides, a new control approach-dynamic sliding mode evolution PWM controller (DSME PWM for the novel topological converter based on both dynamic evolution and sliding mode control was also presented. From the simulation results and experimental validation the proposed converter can fulfill high-gain boost, low ripple of both the input current and the output voltage. Furthermore, MPPT technique can be also achieved in a short time by simulation. The efficiency and stability of the converter proposed in this paper can be improved.

  4. Distributed Secondary Control for DC Microgrid Applications with Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2013-01-01

    , a distributed secondary control method is proposed. Droop control is employed as the primary control method for load current sharing. Meanwhile, the dc output voltage and current in each module is transferred to the others by the low bandwidth communication (LBC) network. Average voltage and current controllers...... are used locally as the distributed secondary controllers in each converter to enhance the current sharing accuracy and restore the dc bus voltage simultaneously. All the controllers are realized locally and the LBC system is only used for changing the data of dc voltage and current. Thus, a decentralized...

  5. Design of interleaved multilayer rosen type piezoelectric transformer for high voltage dc/dc applications

    DEFF Research Database (Denmark)

    Rødgaard, Martin Schøler; Andersen, Thomas; Meyer, Kaspar Sinding

    2012-01-01

    Research and development within piezoelectric transformer (PT) based converters are rapidly increasing as the technology is maturing and starts to prove its capabilities. Especially for high voltage and high step-up applications, PT based converters have demonstrated good performance and DC/AC...

  6. A high voltage gain quasi Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    by a voltage doubling output rectifier. The converter is well-suited to applications requiring a high voltage gain, especially renewable energy sources such as photovoltaic and fuel-cell power supplies. To demonstrate the converter's performance a prototype designed to output 400 V at 500 W was constructed......A compact quasi-Z-source DC/DC converter is presented with high voltage gain, isolated output, and improved efficiency. The improvements in size and performance were achieved by using a square wave inverter with only two output switches driving an isolating transformer in push-pull mode, followed...

  7. DC-DC Type High-Frequency Link DC for Improved Power Quality of Cascaded Multilevel Inverter

    Science.gov (United States)

    Sadikin, Muhammad; Senjyu, Tomonobu; Yona, Atsushi

    2013-06-01

    Multilevel inverters are emerging as a new breed of power converter options for power system applications. Recent advances in power switching devices enabled the suitability of multilevel inverters for high voltage and high power applications because they are connecting several devices in series without the need of component matching. Usually, a transformerless battery energy storage system, based on a cascaded multilevel inverter, is used as a measure for voltage and frequency deviations. System can be reduced in size, weight, and cost of energy storage system. High-frequency link circuit topology is advantageous in realizing compact and light-weight power converters for uninterruptible power supply systems, new energy systems using photovoltaic-cells, fuel-cells and so on. This paper presents a DC-DC type high-frequency link DC (HFLDC) cascaded multilevel inverter. Each converter cell is implemented a control strategy for two H-bridge inverters that are controlled with the same multicarrier pulse width modulation (PWM) technique. The proposed cascaded multilevel inverter generates lower voltage total harmonic distortion (THD) in comparison with conventional cascaded multilevel inverter. Digital simulations are carried out using PSCAD/EMTDC to validate the performance of the proposed cascaded multilevel inverter.

  8. Bidirectional DC/DC Converter

    Science.gov (United States)

    Pedersen, F.

    2008-09-01

    The presented bidirectional DC/DC converter design concept is a further development of an already existing converter used for low battery voltage operation.For low battery voltage operation a high efficient low parts count DC/DC converter was developed, and used in a satellite for the battery charge and battery discharge function.The converter consists in a bidirectional, non regulating DC/DC converter connected to a discharge regulating Buck converter and a charge regulating Buck converter.The Bidirectional non regulating DC/DC converter performs with relatively high efficiency even at relatively high currents, which here means up to 35Amps.This performance was obtained through the use of power MOSFET's with on- resistances of only a few mille Ohms connected to a special transformer allowing paralleling several transistor stages on the low voltage side of the transformer. The design is patent protected. Synchronous rectification leads to high efficiency at the low battery voltages considered, which was in the range 2,7- 4,3 Volt DC.The converter performs with low switching losses as zero voltage zero current switching is implemented in all switching positions of the converter.Now, the drive power needed, to switch a relatively large number of low Ohm , hence high drive capacitance, power MOSFET's using conventional drive techniques would limit the overall conversion efficiency.Therefore a resonant drive consuming considerable less power than a conventional drive circuit was implemented in the converter.To the originally built and patent protected bidirectional non regulating DC/DC converter, is added the functionality of regulation.Hereby the need for additional converter stages in form of a Charge Buck regulator and a Discharge Buck regulator is eliminated.The bidirectional DC/DC converter can be used in connection with batteries, motors, etc, where the bidirectional feature, simple design and high performance may be useful.

  9. Interlink Converter with Linear Quadratic Regulator Based Current Control for Hybrid AC/DC Microgrid

    Directory of Open Access Journals (Sweden)

    Dwi Riana Aryani

    2017-11-01

    Full Text Available A hybrid alternate current/direct current (AC/DC microgrid consists of an AC subgrid and a DC subgrid, and the subgrids are connected through the interlink bidirectional AC/DC converter. In the stand-alone operation mode, it is desirable that the interlink bidirectional AC/DC converter manages proportional power sharing between the subgrids by transferring power from the under-loaded subgrid to the over-loaded one. In terms of system security, the interlink bidirectional AC/DC converter takes an important role, so proper control strategies need to be established. In addition, it is assumed that a battery energy storage system is installed in one subgrid, and the coordinated control of interlink bidirectional AC/DC converter and battery energy storage system converter is required so that the power sharing scheme between subgrids becomes more efficient. For the purpose of designing a tracking controller for the power sharing by interlink bidirectional AC/DC converter in a hybrid AC/DC microgrid, a droop control method generates a power reference for interlink bidirectional AC/DC converter based on the deviation of the system frequency and voltages first and then interlink bidirectional AC/DC converter needs to transfer the power reference to the over-loaded subgrid. For efficiency of this power transferring, a linear quadratic regulator with exponential weighting for the current regulation of interlink bidirectional AC/DC converter is designed in such a way that the resulting microgrid can operate robustly against various uncertainties and the power sharing is carried out quickly. Simulation results show that the proposed interlink bidirectional AC/DC converter control strategy provides robust and efficient power sharing scheme between the subgrids without deteriorating the secure system operation.

  10. Comparison of two different high performance mixed signal controllers for DC/DC converters

    DEFF Research Database (Denmark)

    Jakobsen, Lars Tønnes; Andersen, Michael Andreas E.

    2006-01-01

    an engineer experienced in microcontroller programming write the software algorithms to achieve optimal performance. Two mixed signal controller designs based on the same 8-bit microcontroller are compared both theoretically and experimentally. A 16-bit PID compensator with a sampling frequency of 200 k......This paper describes how mixed signal controllers combining a cheap microcontroller with a simple analogue circuit can offer high performance digital control for DC/DC converters. Mixed signal controllers have the same versatility and performance as DSP based controllers. It is important to have...

  11. A Novel Quasi-SEPIC High-Voltage Boost DC-DC Converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam Prasad; N. Soltani, Mohsen; Blaabjerg, Frede

    2017-01-01

    This paper proposes a modified coupled-inductor SEPIC dc-dc converter for low power and high voltage gain applications such as for piezoelectric drive systems. The converter uses the same components as of SEPIC converter with an additional diode. Compared to conventional topologies with similar...... voltage gain expression, the proposed topology uses less components to achieve same or even higher voltage gain. This helps to design a very compact and light weight converter with higher power density at lower cost. Due to brevity, the principle of operation, theoretical analysis and comparison supported...

  12. High-voltage boost quasi-Z-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede; Loh, Poh Chiang

    2014-01-01

    A high-voltage gain two-switch quasi-Z-source isolated DC/DC converter has been presented in this study. It consists of a quasi-Z-source network at its input, a push-pull square-wave inverter at its middle, and a voltage-doubler rectifier at its output. When coordinated appropriately, the new...... converter uses less switches, a smaller common duty cycle and less turns for the transformer when compared with existing topologies. Its size and weight are therefore smaller, whereas its efficiency is higher. It is therefore well-suited for applications, where a wide range of voltage gain is required like...... renewable energy systems, DC power supplies found in telecom, aerospace and electric vehicles. To demonstrate the performance of the proposed converter, a 400 V, 500 W prototype has been implemented in the laboratory. Efficiency of the prototype measured is found to vary from 89.0 to 97.4% when its input...

  13. DC Link Current Estimation in Wind-Double Feed Induction Generator Power Conditioning System

    Directory of Open Access Journals (Sweden)

    MARIAN GAICEANU

    2010-12-01

    Full Text Available In this paper the implementation of the DC link current estimator in power conditioning system of the variable speed wind turbine is shown. The wind turbine is connected to double feed induction generator (DFIG. The variable electrical energy parameters delivered by DFIG are fitted with the electrical grid parameters through back-to-back power converter. The bidirectional AC-AC power converter covers a wide speed range from subsynchronous to supersynchronous speeds. The modern control of back-to-back power converter involves power balance concept, therefore its load power should be known in any instant. By using the power balance control, the DC link voltage variation at the load changes can be reduced. In this paper the load power is estimated from the dc link, indirectly, through a second order DC link current estimator. The load current estimator is based on the DC link voltage and on the dc link input current of the rotor side converter. This method presents certain advantages instead of using measured method, which requires a low pass filter: no time delay, the feedforward current component has no ripple, no additional hardware, and more fast control response. Through the numerical simulation the performances of the proposed DC link output current estimator scheme are demonstrated.

  14. Experimental investigation of the effect of titanium dioxide and barium titanate additives on DC transient currents in low density polyethylene

    DEFF Research Database (Denmark)

    Khalil, M.S; Henk, Peter O; Henriksen, Mogens

    1988-01-01

    The effect of titanium dioxide as a semiconductive additive and barium titanate as a highly polar additive on the DC transient currents in low-density polyethylene is investigated. Experiments were made using thick specimens under a high electric field (>25×106 V/m) and a constant temperature of 40...

  15. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    Science.gov (United States)

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  16. A low noise high efficiency buck DC-DC converter with sigma-delta modulation

    Energy Technology Data Exchange (ETDEWEB)

    Cai Shujiang; Pi Changming; Yan Wei; Li Wenhong, E-mail: wenhongli@fudan.edu.cn [State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 201203 (China)

    2011-07-15

    Some research efforts to improve the efficiency and noise performance of buck DC-DC converters are explored. A carefully designed power MOSFET driver, including a dead time controller, discontinuous current mode (DCM) controller and gate width controller, is proposed to improve efficiency. Instead of PWM modulation, sigma-delta modulation is introduced into the feedback loop of the converter to move out the clock-referred harmonic spike. The proposed converter has been designed and fabricated by a 0.35 {mu}m CMOS process. Measured results show that the peak efficiency of the converter can reach 93% and sigma-delta modulation suppresses the harmonic spike by 30 dB over PWM modulation. (semiconductor integrated circuits)

  17. New non-linear control strategy for non-isolated DC/DC converter with high voltage ratio

    Energy Technology Data Exchange (ETDEWEB)

    Shahin, A.; Huang, B.; Martin, J.P.; Pierfederici, S.; Davat, B. [Groupe de Recherche en Electronique et en Electrotechnique de Nancy - INPL - Nancy Universite, 2, Avenue de la Foret de Haye, 54516 Vandoeuvre-les-Nancy Cedex (France)

    2010-01-15

    In this paper, a non-isolated DC/DC converter with high voltage ratio is proposed to allow the interface between a low voltage power source like fuel cell and a high voltage DC bus. To take into account the low voltage-high density characteristics of power sources, a cascaded structure composed of two sub-converters has been chosen and allows obtaining a high voltage ratio. The choice of each sub-converter is based on the requirements of the source and its performances. Consequently, we have chosen a three-interleaved boost converter as the 1st sub-converter whereas the 2nd sub-converter is a three-level boost converter. The control of the whole system is realized thanks to energetic trajectories planning based on flatness properties of the system. The control of both the current and the balance of voltage across the output serial capacitors of the three-level boost converter is ensured by non-linear controllers based on a new non-linear model. Experimental results allow validating the proposed power architecture and its associated control. (author)

  18. Design of a modular, high step-up ratio DC–DC converter for HVDC applications integrating offshore wind power

    OpenAIRE

    Hu, Yihua; Zeng, Rong; Cao, Wenping; Zhang, Jiangfeng; Finney, Stephen J.

    2016-01-01

    High-power and high-voltage gain dc-dc converters are key to high-voltage direct current (HVDC) power transmission for offshore wind power. This paper presents an isolated ultra-high step-up dc-dc converter in matrix transformer configuration. A flyback-forward converter is adopted as the power cell and the secondary side matrix connection is introduced to increase the power level and to improve fault tolerance. Because of the modular structure of the converter, the stress on the switching de...

  19. Protection Principle for a DC Distribution System with a Resistive Superconductive Fault Current Limiter

    Directory of Open Access Journals (Sweden)

    Shimin Xue

    2015-05-01

    Full Text Available A DC distribution system, which is suitable for access to distributed power generation and DC loads, is one of the development directions in power systems. Furthermore, it could greatly improve the energy efficiency and reduce the loss of power transportation. The huge short circuit current is always a great threat to the safety of the components, especially the capacitors and diodes. A resistive superconductive fault current limiter (SFCL, which could respond quickly once a fault happens and limit the fault current to a relatively low level, becomes a good solution to this problem. In this paper, the operational principle of the resistive SFCL is introduced first, and then, the DC short-circuit fault characteristic of the DC distribution system with the SFCL is analyzed and the effectiveness of the SFCL verified. In order to realize the selectivity of the protection in the DC distribution system with SFCL, a new transient current protection principle based on Ip (the peak value of the current and tp (the transient time that the current takes to reach its peak value is proposed. Finally, a model of a 10-kV DC distribution system with an SFCL is established and simulated in PSCAD/METDC. Simulation results have demonstrated the validity of the analysis and protection principle.

  20. Preparative separation and identification of novel subsidiary colors of the color additive D&C Red No. 33 (Acid Red 33) using spiral high-speed counter-current chromatography☆

    Science.gov (United States)

    Weisz, Adrian; Ridge, Clark D.; Mazzola, Eugene P.; Ito, Yoichiro

    2015-01-01

    Three low-level subsidiary color impurities (A, B, and C) often present in batches of the color additive D&C Red No. 33 (R33, Acid Red 33, Colour Index No. 17200) were separated from a portion of R33 by spiral high-speed counter-current chromatography (HSCCC). The separation involved use of a very polar solvent system, 1-BuOH/5 mM aq. (NH4)2SO4. Addition of ammonium sulfate to the lower phase forced partition of the components into the upper phase, thereby eliminating the need to add a hydrophobic counterion as was previously required for separations of components from sulfonated dyes. The very polar solvent system used would not have been retained in a conventional multi-layer coil HSCCC instrument, but the spiral configuration enabled retention of the stationary phase, and thus, the separation was possible. A 1 g portion of R33 enriched in A, B, and C was separated using the upper phase of the solvent system as the mobile phase. The retention of the stationary phase was 38.1%, and the separation resulted in 4.8 mg of A of >90% purity, 18.3 mg of B of >85% purity, and 91 mg of C of 65–72% purity. A second separation of a portion of the C mixture resulted in 7 mg of C of >94% purity. The separated impurities were identified by high-resolution mass spectrometry and NMR spectroscopic techniques as follows: 5-amino-3-biphenyl-3-ylazo-4-hydroxy-naphthalene-2,7-disulfonic acid, A; 5-amino-4-hydroxy-6-phenyl-3-phenylazo-naphthalene-2,7-disulfonic acid, B; and 5-amino-4-hydroxy-3,6-bis-phenylazo-naphthalene-2,7-disulfonic acid, C. The isomers A and B are compounds reported for the first time. Application of the spiral HSCCC method resulted in the additional benefit of yielding 930 mg of the main component of R33, 5-amino-4-hydroxy-3-phenylazo-naphthalene-2,7-disulfonic acid, of >97% purity. PMID:25591404

  1. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push......-pull circuit with voltage-doubling rectification. The converter's voltage gain is presently not matched by any other converter operating at the same switch duty ratio. The converter also has more degrees of freedom in design for setting the desired gain than other converters, and hence can better meet...... the demands of many applications. The operating principles of the converter have been analysed mathematically, and are verified by both simulation and experiment....

  2. GaN-based High Efficiency Bidirectional DC-DC Converter with 10 MHz Switching Frequency

    DEFF Research Database (Denmark)

    Kruse, Kristian; Zhang, Zhe; Elbo, Mads

    2017-01-01

    -isolated bidirectional DC-DC converter equipped with Gallium Nitride (GaN) semiconductor transistors is presented. The converter’s operation principles, zero-voltage switching (ZVS) constraints and dead-time effects are studied. Moreover, the optimization and tradeoffs on the adopted high-frequency inductor......Wide bandgap (WBG) semiconductor devices allow power electronic converters to achieve higher efficiency, higher power density and potentially higher reliability. However, the design challenges accompanied by applying the new WBG devices have risen accordingly. In this paper, a non...... are investigated. Based on the theoretical analysis and calculation, a laboratory prototype with a switching frequency up to 10 MHz and the maximum output power of 100 W is constructed and tested. Switching at 10 MHz, a power density of approximately 6.25W/cm3 and an efficiency of 94.4% in the Buck mode...

  3. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    Science.gov (United States)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  4. DC Vs AC - War Of Currents For Future Power Systems A HVDC Technology Overview

    Directory of Open Access Journals (Sweden)

    Anil K. Rai

    2015-08-01

    Full Text Available DC vs AC discussion began in 1880s with development of first commercial power transmission in Wall Street New York. Later when AC technology came into notice by efforts of inventor and researcher Sir Nicola Tesla soon the advantages of AC transmission and AC devices overtook the DC technology. It was hoped that DC technology had lost battle of currents. Today with researches going on FACTS devices and bulk power transmission HVDC has again gained a reputation in power sector. Solution of this centuries old debate is to develop HVDC systems that assists HVAC systems for better performance stability and control

  5. Plug-and-Play Design of Current Controllers for Grid-feeding Converters in DC Microgrids

    DEFF Research Database (Denmark)

    Han, Renke; Tucci, Michele; Soloperto, Raffaele

    2017-01-01

    In this paper, we address the problem of synthesizing decentralized current controllers for grid-feeding converters of current-controlled distributed generation units (CDGUs) in dc microgrids (MGs). Notably, a plug-and-play (PnP) design procedure is proposed to achieve grid-feeding current tracki...

  6. Plug-and-Play Design of Current Controllers for Grid-feeding Converters in DC Microgrids

    DEFF Research Database (Denmark)

    Han, Renke; Tucci, Michele; Soloperto, Raffaele

    2017-01-01

    In this paper, we address the problem of synthesizing decentralized current controllers for grid-feeding converters of current-controlled distributed generation units (CDGUs) in dc microgrids (MGs). Notably, a plug-and-play (PnP) design procedure is proposed to achieve grid-feeding current tracking...

  7. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zorzetti, Silvia [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, which makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.

  8. Design and implementation of a high-power resonant DC-DC converter module for a reduced-scale prototype integrated power system

    OpenAIRE

    Whitcomb, Bryan D.

    2001-01-01

    An Integrated Power System (IPS) with a DC Zonal Electrical Distribution System (DC ZEDS) is a strong candidate for the next generation submarine and surface ship. To study the implementation of an IPS with DC ZEDS, members of the Energy Sources Analysis Consortium (ESAC) are currently constructing a reduced-scale laboratory. One fundamental component of DC ZEDS is the Ships Service Converter Module (SSCM), commonly known as a buck DC-DC converter. This thesis documents the design, simulation...

  9. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  10. Analytical evaluation of DC capacitor RMS current and voltage ...

    Indian Academy of Sciences (India)

    K S GOPALAKRISHNAN

    point clamped inverters .... be written as the product of switching function (SR1) and load current (iR) as follows: i1ÀHB ¼ SR1iR. ð2Þ .... From table 1, the product of the switching function SR1SB1 reduces to either SR1 or SB1 in different ...

  11. Renewed interest in Direct Current (DC) transmission | Charles ...

    African Journals Online (AJOL)

    Journal of Applied Science and Technology. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 16, No 1-2 (2011) >. Log in or Register to get access to full text downloads.

  12. DC link current simulation of voltage source inverter with random space vector pulse width modulation

    Directory of Open Access Journals (Sweden)

    Chen Guoqiang

    2016-01-01

    Full Text Available Aiming at analysis complexity, a simulation model is built and presented to analyze and demonstrate the characteristics of the direct current (DC link current of the three-phase two-level inverter with the random space vector pulse width modulation (SVPWM strategy. The developing procedure and key subsystems of the simulation model are given in detail. Several experiments are done using the simulation model. The results verify the efficiency and convenience of the simulation model and show that the random SVPWM scheme, especially the random switching frequency scheme, can efficiently suppress the harmonic peaks of the DC link current.

  13. High step-up isolated efficient single switch DC-DC converter for renewable energy source

    Directory of Open Access Journals (Sweden)

    A. Gopi

    2014-12-01

    Full Text Available In this paper, an isolated high step-up single switch DC-DC converter for renewable energy source is proposed. In the proposed converter high step-up voltage is obtained by single power switching technique that operates low duty cycle with isolated transformer inductors and switched capacitors and power diodes. The disadvantage of conventional converters is that it has high duty ratio and high voltage stress on power devices with less efficiency. The proposed converter eliminates the switching losses and recycles the leakage energy which includes reverse recovery energy of the power diode by using passive clamp circuit. To achieve high output voltage gain, the isolated transformer primary terminal and secondary terminal are connected in series during switching operation. PSIM software has been used for simulation. Simulation circuit is analyzed at 40Vdc/400Vdc, 200 W and this operation is validated by implementing in the hardware model at 12Vdc/120Vdc, 60 W.

  14. Robust method for stator current reconstruction from DC link in a ...

    African Journals Online (AJOL)

    ... induction motor drive, using a dSPACE 1104 controller board is presented to validate the proposed algorithm. Keywords: Algorithm, current-reconstruction, current-sensor, dc-link, hysteresis modulation, three-phase induction motor. International Journal of Engineering, Science and Technology, Vol. 2, No. 10, 2010, pp.

  15. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400019, Maharashtra (India)

    2016-05-06

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  16. High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter.

    Science.gov (United States)

    Wang, Jianlin; Xu, Dan; Zhou, Huan; Bai, Anning; Lu, Wei

    2017-01-01

    This paper presents an adaption of the fractional order terminal sliding mode control (AFTSMC) strategy for DC-DC Buck converter. The following strategy aims to design a novel nonlinear sliding surface function, with a double closed-loop structure of voltage and current. This strategy is a fusion of two characteristics: terminal sliding mode control (TSMC) and fractional order calculation (FOC). In addition, the influence of "the controller parameters" on the "performance of double closed-loop system" is investigated. It is observed that the value of terminal power has to be chosen to make a compromise between start-up and transient response of the converter. Therefore the AFTSMC strategy chooses the value of the terminal power adaptively, and this strategy can lead to the appropriate number of fractional order as well. Furthermore, through the fractional order analysis, the system can reach the sliding mode surface in a finite time. And the theoretical considerations are verified by numerical simulation. The performance of the AFTSMC and TSMC strategies is tested by computer simulations. And the comparison simulation results show that the AFTSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. Moreover, AFTSMC obtains a faster dynamical response, smaller steady-state error rate and lower overshoot.

  17. High-performance fractional order terminal sliding mode control strategy for DC-DC Buck converter.

    Directory of Open Access Journals (Sweden)

    Jianlin Wang

    Full Text Available This paper presents an adaption of the fractional order terminal sliding mode control (AFTSMC strategy for DC-DC Buck converter. The following strategy aims to design a novel nonlinear sliding surface function, with a double closed-loop structure of voltage and current. This strategy is a fusion of two characteristics: terminal sliding mode control (TSMC and fractional order calculation (FOC. In addition, the influence of "the controller parameters" on the "performance of double closed-loop system" is investigated. It is observed that the value of terminal power has to be chosen to make a compromise between start-up and transient response of the converter. Therefore the AFTSMC strategy chooses the value of the terminal power adaptively, and this strategy can lead to the appropriate number of fractional order as well. Furthermore, through the fractional order analysis, the system can reach the sliding mode surface in a finite time. And the theoretical considerations are verified by numerical simulation. The performance of the AFTSMC and TSMC strategies is tested by computer simulations. And the comparison simulation results show that the AFTSMC exhibits a considerable improvement in terms of a faster output voltage response during load changes. Moreover, AFTSMC obtains a faster dynamical response, smaller steady-state error rate and lower overshoot.

  18. Input-Parallel Output-Parallel Three-Level DC/DC Converters With Interleaving Control Strategy for Minimizing and Balancing Capacitor Ripple Currents

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Gong, Zheng

    2017-01-01

    In this paper, the input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters associated with the interleaving control strategy are proposed for minimizing and balancing the capacitor ripple currents. The proposed converters consist of two four-switch half-bridge three-level (HBTL) DC....../DC converters featuring with simple and compact circuit structures, which can reduce the current stresses of the components and increase the power rating of the converter. The combination of the proposed IPOP TL circuit structure and the interleaving control strategy can greatly reduce the ripple currents...... on the two input capacitor not only by doubling the frequencies of these ripple currents as the universal benefit of utilizing the interleaving control strategy but also by counteracting part of these ripple currents due to the operation principle of the proposed IPOP TL circuit structure. More importantly...

  19. Design of current source DC/DC converter and inverter for 2kW fuel cell application

    DEFF Research Database (Denmark)

    Andreiciks, A.; Steiks, I.; Krievs, O.

    2013-01-01

    In order to use hydrogen fuel cell in domestic applications either as main power supply or backup power source, the low DC output voltage of the fuel cell has to be matched to the voltage level and frequency of the utility grid AC voltage. The interfacing power converter systems usually consist...... of a DC/DC converter and an inverter. In this paper a detailed simulation study of such interfacing converter system comprising a double inductor push-pull step-up DC/DC converter and a cascaded H-bridge inverter has been carried out and further confirmed with experimental results. The power converter...

  20. High-Temperature SOI/SiC-Based DC-DC Converter Suite

    Directory of Open Access Journals (Sweden)

    Brice McPherson

    2008-08-01

    Full Text Available A complete design strategy (mechanical and electrical for a 25 W 28 V/5 V dc-dc converter utilizing SiC and SOI electronics is presented. The converter includes a high-temperature SOI-based PWM controller featuring 150 kHz operation, a PID feedback loop, maximum duty cycle limit, complementary or symmetrical outputs, and a bootstrapped high-side gate driver. Several passive technologies were investigated for both control and power sections. Capacitor technologies were characterized over temperature and over time at 300C∘, power inductors designed and tested up to 350C∘, and power transformers designed and tested up to 500C∘. Northrop Grumman normally-off SiC JFETs were used as power switches and were characterized up to 250C∘. Efficiency and mass optimization routines were developed with the data gained from the first prototype. The effects of radiation on SiC and SOI electronics are then discussed. The results of the first prototype module are presented, with operation from 25C∘ up to an ambient temperature of 240C∘ .

  1. A DC-Link Modulation Scheme with Phase-Shifted Current Control for Harmonic Cancellations in Multidrive Applications

    DEFF Research Database (Denmark)

    Yang, Yongheng; Davari, Pooya; Zare, Firuz

    2016-01-01

    of a new DC link modulation scheme with a phase-shifted current control enabled by the SCR. The DC-link current modulation scheme is implemented by adding and subtracting specific modulation levels, which makes the total currents drawn from the grid “multi-level”, resulting in an improved current quality...

  2. A low noise high efficiency buck DC-DC converter with sigma—delta modulation

    Science.gov (United States)

    Shujiang, Cai; Changming, Pi; Wei, Yan; Wenhong, Li

    2011-07-01

    Some research efforts to improve the efficiency and noise performance of buck DC—DC converters are explored. A carefully designed power MOSFET driver, including a dead time controller, discontinuous current mode (DCM) controller and gate width controller, is proposed to improve efficiency. Instead of PWM modulation, sigma-delta modulation is introduced into the feedback loop of the converter to move out the clock-referred harmonic spike. The proposed converter has been designed and fabricated by a 0.35 μm CMOS process. Measured results show that the peak efficiency of the converter can reach 93% and sigma-delta modulation suppresses the harmonic spike by 30 dB over PWM modulation.

  3. DC Home Appliances for DC Distribution System

    Directory of Open Access Journals (Sweden)

    MUHAMMAD KAMRAN

    2017-10-01

    Full Text Available This paper strengthens the idea of DC distribution system for DC microgrid consisting of a building of 50 apartments. Since the war of currents AC system has been dominant because of the paucity of research in the protection of the DC system. Now with the advance research in power electronics material and components, generation of electricity is inherently DC as by solar PV, fuel cell and thermoelectric generator that eliminates the rectification process. Transformers are replaced by the power electronics buck-boost converters. DC circuit breakers have solved the protection problems for both DC transmission and distribution system. In this paper 308V DC microgrid is proposed and home appliances (DC internal are modified to operate on 48V DC from DC distribution line. Instead of using universal and induction motors in rotary appliances, BLDC (Brushless DC motors are proposed that are highly efficient with minimum electro-mechanical and no commutation losses. Proposed DC system reduces the power conversion stages, hence diminishes the associated power losses and standby losses that boost the overall system efficiency. So in view of all this a conventional AC system can be replaced by a DC system that has many advantages by cost as well as by performance

  4. Determination of Cooper pairs and Majorana fermions currents ratio in dc SQUID with topologically nontrivial barriers

    Science.gov (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.; Dawood, R.; El Samman, H.

    2017-07-01

    We present the results of numerical study of the phase dynamics of the dc SQUID with topologically trivial and nontrivial barriers. In our calculations we take into account two components of superconducting current, Cooper pairs (2π periodic) and Majorana fermions (4π periodic) currents. Magnetic field dependence of return current is presented. The qualitative behavior of this dependence is explained. We show that in case of two-component superconducting current the periodicity of magnetic field dependence of return current displaced by Cooper pairs and Majorana fermion ratio over the magnetic field. This effect makes possible the experimental determination of ratio of Cooper pairs and Majorana fermions currents.

  5. Influence of DC arc current on the formation of cobalt-based ...

    Indian Academy of Sciences (India)

    The synthesis of cobalt-based magnetic nanostructures using DC arc discharge technique with varying arc current is reported here. ... Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, A-10/B, G.I.D.C. Electronic Estate, Sector-25, Gandhinagar 382 016, India; Department of Physical ...

  6. Control of AC–DC grid side converter with single AC current sensor

    Indian Academy of Sciences (India)

    Himanshu Misra

    2017-11-24

    Nov 24, 2017 ... Grid side converter; vector control; single current sensor; AC–DC conversion. 1. Introduction. Three-phase ... of sensors in any closed loop control. This will lead to primarily two main advantages: cost ... induction motor control was presented by Verma and group in [15]. In this paper, extended work of [14] is ...

  7. Operation of the DC current transformer intensity monitors at FNAL during run II

    Energy Technology Data Exchange (ETDEWEB)

    Crisp, J.; Fellenz, B.; Heikkinen, D.; Ibrahim, M.A.; Meyer, T.; Vogel, G.; /Fermilab

    2012-01-01

    Circulating beam intensity measurements at FNAL are provided by five DC current transformers (DCCT), one per machine. With the exception of the DCCT in the Recycler, all DCCT systems were designed and built at FNAL. This paper presents an overview of both DCCT systems, including the sensor, the electronics, and the front-end instrumentation software, as well as their performance during Run II.

  8. Zero-Voltage Switching PWM Strategy Based Capacitor Current-Balancing Control for Half-Bridge Three-Level DC/DC Converter

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Zhang, Qi

    2018-01-01

    The current imbalance among the two input capacitors is one of the important issues of the half-bridge threelevel (HBTL) DC/DC converter, which would affect system performance and reliability. In this paper, a zero-voltage switching (ZVS) pulse-wide modulation (PWM) strategy including two operation...... modes is proposed. Based on the proposed ZVS PWM strategy, a capacitor current-balancing control is proposed for the HBTL DC/DC converter, where the currents on the two input capacitors can be kept balanced by alternating the two operation modes of the proposed ZVS PWM strategy. Therefore, the proposed...... control strategy can improve the performance and reliability of the converter in the aspect of balancing the thermal stresses and lifetimes among the two input capacitors. Finally, simulation and experimental studies are conducted and results verify the proposed control strategy....

  9. Hysteresis Current Control Based Shunt Active Power Filter for Six Pulse Ac/Dc Converter

    OpenAIRE

    Rakesh Kumar Pandey; Vaibhav Purwar; Nikhlesh Sharma

    2017-01-01

    In this paper the simulation of Shunt Active power Filter using P-Q theory and PI controller has been presented. This SAPF compensates the harmonic currents drawn by three phase six pulse AC/DC converter. The process of compensation is done by calculating the instantaneous reactive power losses using p-q theory and the PI controller to reduce the ripple voltage of the dc capacitor of the PWM-VSI. This approach is different from conventional approach and provides very effective sol...

  10. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  11. Comparative Studies of High-Gradient Rf and Dc Breakdowns

    CERN Document Server

    Kovermann, Jan Wilhelm; Wuensch, Walter

    2010-01-01

    The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...

  12. Decentralised control method for DC microgrids with improved current sharing accuracy

    DEFF Research Database (Denmark)

    Yang, Jie; Jin, Xinmin; Wu, Xuezhi

    2017-01-01

    A decentralised control method that deals with current sharing issues in dc microgrids (MGs) is proposed in this study. The proposed method is formulated in terms of ‘modified global indicator’ concept, which was originally proposed to improve reactive power sharing in ac MGs. In this work......, the ‘modified global indicator’ concept is extended to coordinate dc MGs, which aims to preserve the main features offered by decentralised control methods such as no need of communication links, central controller or knowledge of the microgrid topology and parameters. This global indicator is inserted between...... a shunt virtual resistance. The operation under multiple dc-buses is also included in order to enhance the applicability of the proposed controller. A detailed mathematical model including the effect of network mismatches is derived for analysis of the stability of the proposed controller. The feasibility...

  13. Magnetically integrated high step-up resonant DC-DC converter for distributed photovoltaic systems

    DEFF Research Database (Denmark)

    Vinnikov, Dmitri; Chub, Andrii; Liivik, Elizaveta

    2017-01-01

    In this paper magnetically integrated resonant single-switch quasi-Z-source DC-DC converter is evaluated as a candidate topology for the low-cost photovoltaic microconverter. The derivation of the topology and its basic operation principle are explained. Generalized design guidelines...

  14. Design optimization of a high-power transformer for three-phase dual active bridge DC-DC converter for MVDC grids

    OpenAIRE

    Lee, Youngsil; Vakil, Gaurang; Feldman, Ralph; Goodman, Andrew; Wheeler, Patrick

    2016-01-01

    High-power DC-DC converter will be one of the essential technologies for the future DC grids. Especially, a three-phase dual-active bridge DC-DC (3DAB) Converter is highly suitable for high-power DC systems. Key component within this converter is the high power transformer operated at a medium frequency (MF) range. The design and optimization of this key component is presented in this paper. The transformer provides galvanic isolation from low voltage level to medium level or high voltage lev...

  15. A Simple MPPT Algorithm for Novel PV Power Generation System by High Output Voltage DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Sanjeevikumar, Padmanaban; Grandi, Gabriele; Wheeler, Patrick

    2015-01-01

    substantially improves the high output-voltage by a simple MPPT closed loop proportional-integral (P-I) controller, and requires only two sensor for feedback needs. The complete numerical model of the converter circuit along with PV MPPT algorithm is developed in numerical simulation (Matlab/Simulink) software......This paper presents the novel topology of Photo Voltaic (PV) power generation system with simple Maximum Power Point Tracking (MPPT) algorithm in voltage operating mode. Power circuit consists of high output voltage DC-DC boost converter which maximizes the output of PV panel. Usually traditional...... DC-DC boost converters are used for such application, but they are not the most suitable solution due to output limitation, lower efficiency and require more sensors with complex control algorithm. Further on, the effects of parasitic elements are suppressed, as well as the power transfer efficiency...

  16. Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-05-01

    Full Text Available The main objective of this paper was to study a bidirectional direct current to direct current converter (BDC topology with a high voltage conversion ratio for electric vehicle (EV batteries connected to a dc-microgrid system. In this study, an unregulated level converter (ULC cascaded with a two-phase interleaved buck-boost charge-pump converter (IBCPC is introduced to achieve a high conversion ratio with a simpler control circuit. In discharge state, the topology acts as a two-stage voltage-doubler boost converter to achieve high step-up conversion ratio (48 V to 385 V. In charge state, the converter acts as two cascaded voltage-divider buck converters to achieve high voltage step-down conversion ratio (385 V to 48 V. The features, operation principles, steady-state analysis, simulation and experimental results are made to verify the performance of the studied novel BDC. Finally, a 500 W rating prototype system is constructed for verifying the validity of the operation principle. Experimental results show that highest efficiencies of 96% and 95% can be achieved, respectively, in charge and discharge states.

  17. Surge snubber design for high power-density DC-DC converters in HVDC power distribution systems

    OpenAIRE

    Domoto, Kazuhide; Ninomiya, Tamotsu; Ishizuka, Yoichi; Simanjorang, Rejeki; Yamaguchi, Hiroshi; Abe, Seiya; Kaga, Masato

    2012-01-01

    In an isolated DC-DC converter utilized in the HVDC power distribution system, a large surge voltage occurs across the secondary-side diodes due to the transformer's leakage inductance, and then the diodes with a large withstand voltage are required. However, those diodes cause a lot of power loss. In this paper, a simple surge snubber with prominent surge suppression capability is examined, and the surge-voltage evaluation through the analysis using the high-frequency equivalent circuits, wh...

  18. DSP Based Control Implementation of an AC/DC Converter with Improved Input Current Distortion

    Directory of Open Access Journals (Sweden)

    WISUTMETHEEKORN, P.

    2011-05-01

    Full Text Available This paper presents a digital signal processor based control of an AC/DC converter with nearly unity power factor. Normally, the output voltage of a single-phase AC/DC converter comprises a voltage ripple with twice line-frequency. This affects the voltage control loop and leads to the converter input current distortion. The purposed method is designed to avoid the effect of the output voltage ripple. To verify the proposed control method, MATLAB/Simulink is used for system simulation. A hardware prototype is setup. A low cost digital signal processing chip dsPIC30F4011 is employed as a digital controller to control a CUK AC/DC converter. The converter specifications are 48V output voltage and 250W output power. From the simulation and the experimental results shown that the input current distortion of the purposed system is reduced and lower than the AC/DC converter that controlled by the conventional proportional-integral controller.

  19. An Improved Distributed Secondary Control Method for DC Microgrids With Enhanced Dynamic Current Sharing Performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Panbao; Lu, Xiaonan; Yang, Xu; Wang, Wei; Xu, Dianguo

    2016-09-01

    This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportional load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 × 1 kW prototype with three interface converters.

  20. Design and modelling of high gain DC-DC converters for fuel cell hybrid electric vehicles

    Science.gov (United States)

    Elangovan, D.; Karthigeyan, V.; Subhanu, B.; Ashwin, M.; Arunkumar, G.

    2017-11-01

    Transportation (Diesel and petrol internal combustion engine vehicles) approximately contributes to 25.5% of total CO2 emission. Thus diesel and petrol engine vehicles are the most dominant contributors of CO2 emission which leads global warming which causes climate change. The problem of CO2 emission and global warming can be reduced by focusing on renewable energy vehicles. Out of the available renewable energy sources fuel cell is the only source which has reasonable efficiency and can be used in vehicles. But the main disadvantage of fuel cell is its slow response time. So energy storage systems like batteries and super capacitors are used in parallel with the fuel cell. Fuel cell is used during steady state vehicle operation while during transient conditions like starting, acceleration and braking batteries and super capacitors can supply or absorb energy. In this paper a unidirectional fuel cell DC-DC converter and bidirectional energy storage system DC-DC converter is proposed, which can interface dc sources at different voltage levels to the dc bus and also it can independently control the power flow from each energy source to the dc bus and vice versa. The proposed converters are designed and simulated using PSIM version 9.1.1 and gate pulse pattern, input and output voltage waveforms of the converters for steady state operation are studied.

  1. Electrical and mechanical performance difference on piezoelectric segmentation in a passive MEMS DC current sensor applicable to two-wire DC appliances

    Science.gov (United States)

    Yang, Xu; Fu, Yupeng; Wang, Dong F.

    2017-01-01

    As society develops in intelligence, DC is being widely used in all kinds of field in modern life, which means that a sensitive and convenient DC sensor is necessary to monitor it. Compared with other kinds of current sensor, the proposed passive MEMS DC current sensor has several significant features: power-free passive sensing, small size and low cost. In this work, the performance difference of a cantilever-based bending MEMS DC current sensor among three segmentation PZT plates was first experimentally discovered. The distribution difference of X-dir (X-direction) stress along the Y axis is confirmed through FEM analysis. An optimized structure with two slots at the root of the cantilever has been proposed to minimize the difference of average X-dir stress on an area attached to three PZT plates. A nearly linear relationship between the output voltage V output and the AC current has been obtained through both theoretical calculation and experimental verification. The sensitivity of the developed MEMS DC current sensor is 40-25 mV A-1 in the current range of 0-400 mA. It is found that there is a good consistency among the calculation, experiment and simulation results.

  2. Acoustic noise alters selective attention processes as indicated by direct current (DC) brain potential changes.

    Science.gov (United States)

    Trimmel, Karin; Schätzer, Julia; Trimmel, Michael

    2014-09-26

    Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information) versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes). This study investigated brain direct current (DC) potential shifts-which are discussed to represent different states of cortical activation-of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest-besides some limitations-that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested "attention shift". Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  3. Acoustic Noise Alters Selective Attention Processes as Indicated by Direct Current (DC Brain Potential Changes

    Directory of Open Access Journals (Sweden)

    Karin Trimmel

    2014-09-01

    Full Text Available Acoustic environmental noise, even of low to moderate intensity, is known to adversely affect information processing in animals and humans via attention mechanisms. In particular, facilitation and inhibition of information processing are basic functions of selective attention. Such mechanisms can be investigated by analyzing brain potentials under conditions of externally directed attention (intake of environmental information versus internally directed attention (rejection of environmental stimuli and focusing on memory/planning processes. This study investigated brain direct current (DC potential shifts—which are discussed to represent different states of cortical activation—of tasks that require intake and rejection of environmental information under noise. It was hypothesized that without background noise rejection tasks would show more positive DC potential changes compared to intake tasks and that under noise both kinds of tasks would show positive DC shifts as an expression of cortical inhibition caused by noise. DC potential shifts during intake and rejection tasks were analyzed at 16 standard locations in 45 persons during irrelevant speech or white noise vs. control condition. Without noise, rejection tasks were associated with more positive DC potential changes compared to intake tasks. During background noise, however, this difference disappeared and both kinds of tasks led to positive DC shifts. Results suggest—besides some limitations—that noise modulates selective attention mechanisms by switching to an environmental information processing and noise rejection mode, which could represent a suggested “attention shift”. Implications for fMRI studies as well as for public health in learning and performance environments including susceptible persons are discussed.

  4. Mapping the human DC lineage through the integration of high-dimensional techniques

    NARCIS (Netherlands)

    See, Peter; Dutertre, Charles-Antoine; Chen, Jinmiao; Günther, Patrick; McGovern, Naomi; Irac, Sergio Erdal; Gunawan, Merry; Beyer, Marc; Händler, Kristian; Duan, Kaibo; Sumatoh, Hermi Rizal Bin; Ruffin, Nicolas; Jouve, Mabel; Gea-Mallorquí, Ester; Hennekam, Raoul C. M.; Lim, Tony; Yip, Chan Chung; Wen, Ming; Malleret, Benoit; Low, Ivy; Shadan, Nurhidaya Binte; Fen, Charlene Foong Shu; Tay, Alicia; Lum, Josephine; Zolezzi, Francesca; Larbi, Anis; Poidinger, Michael; Chan, Jerry K. Y.; Chen, Qingfeng; Rénia, Laurent; Haniffa, Muzlifah; Benaroch, Philippe; Schlitzer, Andreas; Schultze, Joachim L.; Newell, Evan W.; Ginhoux, Florent

    2017-01-01

    Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional

  5. Mapping the human DC lineage through the integration of high-dimensional techniques.

    Science.gov (United States)

    See, Peter; Dutertre, Charles-Antoine; Chen, Jinmiao; Günther, Patrick; McGovern, Naomi; Irac, Sergio Erdal; Gunawan, Merry; Beyer, Marc; Händler, Kristian; Duan, Kaibo; Sumatoh, Hermi Rizal Bin; Ruffin, Nicolas; Jouve, Mabel; Gea-Mallorquí, Ester; Hennekam, Raoul C M; Lim, Tony; Yip, Chan Chung; Wen, Ming; Malleret, Benoit; Low, Ivy; Shadan, Nurhidaya Binte; Fen, Charlene Foong Shu; Tay, Alicia; Lum, Josephine; Zolezzi, Francesca; Larbi, Anis; Poidinger, Michael; Chan, Jerry K Y; Chen, Qingfeng; Rénia, Laurent; Haniffa, Muzlifah; Benaroch, Philippe; Schlitzer, Andreas; Schultze, Joachim L; Newell, Evan W; Ginhoux, Florent

    2017-06-09

    Dendritic cells (DC) are professional antigen-presenting cells that orchestrate immune responses. The human DC population comprises two main functionally specialized lineages, whose origins and differentiation pathways remain incompletely defined. Here, we combine two high-dimensional technologies-single-cell messenger RNA sequencing (scmRNAseq) and cytometry by time-of-flight (CyTOF)-to identify human blood CD123+CD33+CD45RA+ DC precursors (pre-DC). Pre-DC share surface markers with plasmacytoid DC (pDC) but have distinct functional properties that were previously attributed to pDC. Tracing the differentiation of DC from the bone marrow to the peripheral blood revealed that the pre-DC compartment contains distinct lineage-committed subpopulations, including one early uncommitted CD123high pre-DC subset and two CD45RA+CD123low lineage-committed subsets exhibiting functional differences. The discovery of multiple committed pre-DC populations opens promising new avenues for the therapeutic exploitation of DC subset-specific targeting. Copyright © 2017, American Association for the Advancement of Science.

  6. The influence of internal current loop on transient response performance of I-V droop controlled paralleled DC-DC converters

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Guerrero, Josep M.

    2017-01-01

    The external droop control loop of I-V droop control is designed as a voltage loop with embedded virtual impedance, so the internal current loop plays a major role in the system bandwidth. Thus, in this paper, the influence of internal current loop on transient response performance of I-V droop...... controlled paralleled dc-dc converters is analyzed, which is guided and significant for its industry application. The model which is used for dynamic analysis is built, and the root locus method is used based on the model to analyze the dynamic response of the system by shifting different control parameters...

  7. Space Vector Modulation for DC-Link Current Ripple Reduction in Back-To-Back Current Source Converters for Microgrid Applications

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Xu, David; Guerrero, Josep M.

    2015-01-01

    Back-to-back converters have been typically used to interconnect the microgrids. For a back-to-back current source converter, the dc-link current ripple is one of the important parameters. A large ripple will cause the electromagnetic interference, undesirable high-frequency losses, and system in...... be significantly reduced by adjusting the gate patterns of space vector modulation (SVM) between the rectifier and inverter in a back-to-back converter. The experimental results verify the effectiveness of the proposed method....

  8. PV source based high voltage gain current fed converter

    Science.gov (United States)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  9. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  10. Optimal Design and Tradeoffs Analysis for Planar Transformer in High Power DC-DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2010-01-01

    A planar magnetic is a low profile transformer or inductor utilizing planar windings instead of the traditional windings made of Cu-wires. In this paper, the important factors for planar transformer design including winding loss, core loss, leakage inductance and stray capacitance have been.......2-kW full-bridge DC-DC converter prototype employing the improved planar transformer structure has been constructed, over 96% efficiency is achieved and a 2.7% improvement compared to the non-interleaving structure is obtained....

  11. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    Science.gov (United States)

    Wilson, T. G.

    1981-01-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  12. Research on design feasibility of high-power light-weight dc-to-dc converters for space power applications

    Science.gov (United States)

    Wilson, T. G.

    1981-11-01

    Utilizing knowledge gained from past experience with experimental current-or-voltage step-up dc-to-dc converter power stages operating at output powers up to and in excess of 2 kW, a new experimental current-or-voltage step-up power stage using paralleled bipolar junction transistors (BJTs) as the controlled power switch, was constructed during the current reporting period. The major motivation behind the construction of this new experimental power stage was to improve the circuit layout so as to reduce the effects of stray circuit parasitic inductances resulting from excess circuit lead lengths and circuit loops, and to take advantage of the layout improvements which could be made when some recently-available power components, particularly power diodes and polypropylene filter capacitors, were incorporated into the design.

  13. An Improved Droop Control Method for DC Microgrids Based on Low Bandwidth Communication with DC Bus Voltage Restoration and Enhanced Current Sharing Accuracy

    DEFF Research Database (Denmark)

    Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai

    2014-01-01

    of the dc microgrid operation, a low bandwidth communication (LBC) based improved droop control method is proposed. In contrast with the conventional approach, the control system does not require a centralized secondary controller. Instead, it uses local controllers and the LBC network to exchange......, and the LBC system is only used for changing the values of the dc voltage and current. Hence, a decentralized control scheme is accomplished. The simulation test based on Matlab/Simulink and the experimental validation based on a 2×2.2 kW prototype were implemented to demonstrate the proposed approach....

  14. Analysis of Three-Phase Rectifier Systems with Controlled DC-Link Current Under Unbalanced Grids

    DEFF Research Database (Denmark)

    Kumar, Dinesh; Davari, Pooya; Zare, Firuz

    2017-01-01

    Voltage unbalance is the most common disturbance in distribution networks, which give undesirable effects on many grid connected power electronics systems including Adjustable Speed Drive (ASD). Severe voltage unbalance can force three-phase rectifiers into almost single-phase operation, which...... degrades the grid power quality and also imposes a significant negative impact on the ASD system. This major power quality issue affecting the conventional rectifiers can be attenuated by controlling the DC-link current based on an Electronic Inductor (EI) technique. The purpose of this digest...

  15. High voltage performance of a dc photoemission electron gun with centrifugal barrel-polished electrodes

    Science.gov (United States)

    Hernandez-Garcia, C.; Bullard, D.; Hannon, F.; Wang, Y.; Poelker, M.

    2017-09-01

    The design and fabrication of electrodes for direct current (dc) high voltage photoemission electron guns can significantly influence their performance, most notably in terms of maximum achievable bias voltage. Proper electrostatic design of the triple-point junction shield electrode minimizes the risk of electrical breakdown (arcing) along the insulator-cable plug interface, while the electrode shape is designed to maintain interior surface of superconducting radio frequency cavities but implemented here for the first time to polish electrodes for dc high voltage photoguns. The technique reduced polishing time from weeks to hours while providing surface roughness comparable to that obtained with diamond-paste polishing and with unprecedented consistency between different electrode samples. We present electrode design considerations and high voltage conditioning results to 360 kV (˜11 MV/m), comparing barrel-polished electrode performance to that of diamond-paste polished electrodes. Tests were performed using a dc high voltage photogun with an inverted-geometry ceramic insulator design.

  16. Virtual Resistance-Based Control Strategy for DC link Regeneration Protection and Current Sharing in Uninterruptible Power Supply

    DEFF Research Database (Denmark)

    Lu, Jinghang; Guan, Yajuan; Savaghebi, Mehdi

    2017-01-01

    To address the DC link voltage regeneration issue in parallel Uninterruptible Power Supply (UPS) system, a DC link voltage protection (DCVP) method through online virtual resistance regulation is proposed. The proposed control strategy is able to protect the DC link from overvoltage that may...... trigger the protection mechanism of the UPS system. Moreover, a current sharing control strategy by regulating the virtual resistance is proposed to address the circulating current caused by the active power feeding. Finally, the feasibility of the proposed method is verified by experimental results from...... a parallel UPS prototype....

  17. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    Science.gov (United States)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  18. Containment-based Distributed Coordination Control to Achieve Both Bounded Voltage and Precise Current Sharing in Reverse-Droop-based DC Microgrid

    DEFF Research Database (Denmark)

    Han, Renke; Wang, Haojie; Jin, Zheming

    2017-01-01

    A highly flexible and reliable control strategy is proposed to achieve bounded voltage and precise current sharing, which is implemented in a reverse-droop-based dc Micro-Grid. To acquire the fast-dynamic response, the reverse droop control is used to replace the V-I droop control in the primary ...

  19. A broadband reflective filter for applying dc biases to high-Q superconducting microwave cavities

    Science.gov (United States)

    Hao, Yu; Rouxinol, Francisco; Lahaye, Matt

    2015-03-01

    The integration of dc-bias circuitry into low-loss microwave cavities is an important technical issue for topics in many fields that include research with qubit- and cavity-coupled mechanical system, circuit QED and quantum dynamics of nonlinear systems. The applied potentials or currents serve a variety of functions such as maintaining the operating state of device or establishing tunable electrostatic interactions between devices (for example, in order to couple a nanomechanical resonator to a superconducting qubit to generate and detect quantum states of a mechanical resonator). Here we report a bias-circuit design that utilizes a broadband reflective filter to connect to a high-Q superconducting coplanar waveguide (CPW) cavity. Our design allows us to apply dc-voltages to the center trace of CPW, with negligible changes in loaded quality factors of the fundamental mode. Simulations and measurements of the filter demonstrate insertion loss greater than 20 dB in the range of 3 to 10 GHz. Transmission measurements of the voltage-biased CPW show that loaded quality factors exceeding 105 can be achieved for dc-voltages as high as V = +/- 20V for the cavity operated in the single photon regime. National Science Foundation under Grant No. DMR-1056423 and Grant No. DMR-1312421.

  20. High voltage DC switchgear development for multi-kW space power system: Aerospace technology development of three types of solid state power controllers for 200-1100VDC with current ratings of 25, 50, and 80 amperes with one type utilizing an electromechanical device

    Science.gov (United States)

    Billings, W. W.

    1981-01-01

    Three types of solid state power controllers (SSPC's) for high voltage, high power DC system applications were developed. The first type utilizes a SCR power switch. The second type employes an electromechanical power switch element with solid state commutation. The third type utilizes a transistor power switch. Significant accomplishments include high operating efficiencies, fault clearing, high/low temperature performance and vacuum operation.

  1. STATISTIC, PROBABILISTIC, CORRELATION AND SPECTRAL ANALYSES OF REGENERATIVE BRAKING CURRENT OF DC ELECTRIC ROLLING STOCK

    Directory of Open Access Journals (Sweden)

    A. V. Nikitenko

    2014-04-01

    Full Text Available Purpose. Defining and analysis of the probabilistic and spectral characteristics of random current in regenerative braking mode of DC electric rolling stock are observed in this paper. Methodology. The elements and methods of the probability theory (particularly the theory of stationary and non-stationary processes and methods of the sampling theory are used for processing of the regenerated current data arrays by PC. Findings. The regenerated current records are obtained from the locomotives and trains in Ukraine railways and trams in Poland. It was established that the current has uninterrupted and the jumping variations in time (especially in trams. For the random current in the regenerative braking mode the functions of mathematical expectation, dispersion and standard deviation are calculated. Histograms, probabilistic characteristics and correlation functions are calculated and plotted down for this current too. It was established that the current of the regenerative braking mode can be considered like the stationary and non-ergodic process. The spectral analysis of these records and “tail part” of the correlation function found weak periodical (or low-frequency components which are known like an interharmonic. Originality. Firstly, the theory of non-stationary random processes was adapted for the analysis of the recuperated current which has uninterrupted and the jumping variations in time. Secondly, the presence of interharmonics in the stochastic process of regenerated current was defined for the first time. And finally, the patterns of temporal changes of the correlation current function are defined too. This allows to reasonably apply the correlation functions method in the identification of the electric traction system devices. Practical value. The results of probabilistic and statistic analysis of the recuperated current allow to estimate the quality of recovered energy and energy quality indices of electric rolling stock in the

  2. Interactions Between Indirect DC-Voltage Estimation and Circulating Current Controllers of MMC-Based HVDC Transmission Systems

    DEFF Research Database (Denmark)

    Wickramasinghe, Harith R.; Konstantinou, Georgios; Pou, Josep

    2018-01-01

    Estimation-based indirect dc-voltage control in MMCs interacts with circulating current control methods. This paper proposes an estimation-based indirect dc-voltage control method for MMC-HVDC systems and analyzes its performance compared to alternative estimations. The interactions between......-state and transient performance is demonstrated using a benchmark MMC-HVDC transmission system, implemented in a real-time digital simulator. The results verify the theoretical evaluations and illustrate the operation and performance of the proposed indirect dc-voltage control method....

  3. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    voltage and efficiency of classical HV converters. This paper deals with extra high-voltage (EHV) dc-dc boost converter by the application of voltage-lift technique to overcome the aforementioned deficiencies. The control strategy is based on classical proportional-integral (P-I) and fuzzy logic closed......-loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP) TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM) signals for N-channel MOSFET device...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....

  4. Single Switch Nonisolated Ultra-Step-Up DC-DC Converter with an Integrated Coupled Inductor for High Boost Applications

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Blaabjerg, Frede

    2017-01-01

    This paper introduces a new single-switch nonisolated dc-dc converter with very high voltage gain and reduced semiconductor voltage stress. The converter utilizes an integrated autotransformer and a coupled inductor on the same core in order to achieve a very high voltage gain without using extreme...... duty cycle. Furthermore, a passive lossless clamp circuit recycles the leakage energy of the coupled magnetics and alleviates the voltage spikes across the main switch. This feature along with low stress on the switching device enables the designer to use a low voltage and low RDS-on MOSFET, which...... reduces cost, as well as conduction and turn on losses of the switch. The principle of operation, theoretical analysis, and comparison supported by some key simulation and experimental results of a 500 W prototype are presented....

  5. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  6. Development of an efficient DC-DC SEPIC converter using wide bandgap power devices for high step-up applications

    Science.gov (United States)

    Al-bayati, Ali M. S.; Alharbi, Salah S.; Alharbi, Saleh S.; Matin, Mohammad

    2017-08-01

    A highly efficient high step-up dc-dc converter is the major requirement in the integration of low voltage renewable energy sources, such as photovoltaic panel module and fuel cell stacks, with a load or utility. This paper presents the development of an efficient dc-dc single-ended primary-inductor converter (SEPIC) for high step-up applications. Three SEPIC converters are designed and studied using different combinations of power devices: a combination based on all Si power devices using a Si-MOSFET and a Si-diode and termed as Si/Si, a combination based on a hybrid of Si and SiC power devices using the Si-MOSFET and a SiC-Schottky diode and termed as Si/SiC, and a combination based on all SiC power devices using a SiC-MOSFET and the SiC-Schottky diode and termed as SiC/SiC. The switching behavior of the Si-MOSFET and SiC-MOSFET is characterized and analyzed within the different combinations at the converter level. The effect of the diode type on the converter's overall performance is also discussed. The switching energy losses, total power losses, and the overall performance effciency of the converters are measured and reported under different switching frequencies. Furthermore, the potential of the designed converters to operate efficiently at a wide range of input voltages and output powers is studied. The analysis and results show an outstanding performance efficiency of the designed SiC/SiC based converter under a wide range of operating conditions.

  7. Elimination of DC-Link Current Ripple for Modular Multilevel Converters With Capacitor Voltage-Balancing Pulse-Shifted Carrier PWM

    DEFF Research Database (Denmark)

    Deng, Fujin; Chen, Zhe

    2015-01-01

    The modular multilevel converter (MMC) is attractive for medium- and high-power applications because of its high modularity, availability, and power quality. In this paper, the current ripple on the dc link of the three-phase MMC derived from the phase-shifted carrier-based pulse-width modulation...... scheme is analyzed. A control strategy is proposed for the current ripple elimination. Through the regulation of the phase-shifted angles of the carrier waves in the three phases of the MMC, the current ripple on the dc link of the three-phase MMC can be effectively eliminated. Simulations...... and experimental studies of the MMC were conducted, and the results confirm the effectiveness of the proposed current ripple elimination control....

  8. Design and power management of an offshore medium voltage DC microgrid realized through high voltage power electronics technologies and control

    Science.gov (United States)

    Grainger, Brandon Michael

    The growth in the electric power industry's portfolio of Direct Current (DC) based generation and loads have captured the attention of many leading research institutions. Opportunities for using DC based systems have been explored in electric ship design and have been a proven, reliable solution for transmitting bulk power onshore and offshore. To integrate many of the renewable resources into our existing AC grid, a number of power conversions through power electronics are required to condition the equipment for direct connection. Within the power conversion stages, there is always a requirement to convert to or from DC. The AC microgrid is a conceptual solution proposed for integrating various types of renewable generation resources. The fundamental microgrid requirements include the capability of operating in islanding mode and/or grid connected modes. The technical challenges associated with microgrids include (1) operation modes and transitions that comply with IEEE1547 without extensive custom engineering and (2) control architecture and communication. The Medium Voltage DC (MVDC) architecture, explored by the University of Pittsburgh, can be visualized as a special type of DC microgrid. This dissertation is multi-faceted, focused on many design aspects of an offshore DC microgrid. The focal points of the discussion are focused on optimized high power, high frequency magnetic material performance in electric machines, transformers, and DC/DC power converters---all components found within offshore, power system architectures. A new controller design based upon model reference control is proposed and shown to stabilize the electric motor drives (modeled as constant power loads), which serve as the largest power consuming entities in the microgrid. The design and simulation of a state-of-the-art multilevel converter for High Voltage DC (HVDC) is discussed and a component sensitivity analysis on fault current peaks is explored. A power management routine is

  9. Method and system for a gas tube-based current source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Bray, James William; Sommerer, Timothy John; Zhou, Rui; Zhang, Di

    2017-08-29

    A high-voltage direct-current (HVDC) transmission system includes an alternating current (AC) electrical source and a power converter channel that includes an AC-DC converter electrically coupled to the electrical source and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and the DC-AC inverter each include a plurality of legs that includes at least one switching device. The power converter channel further includes a commutating circuit communicatively coupled to one or more switching devices. The commutating circuit is configured to "switch on" one of the switching devices during a first portion of a cycle of the H-bridge switching circuits and "switch off" the switching device during a second portion of the cycle of the first and second H-bridge switching circuits.

  10. High speed, high current pulsed driver circuit

    Science.gov (United States)

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  11. A DC excited waveguide multibeam CO2 laser using high frequency ...

    Indian Academy of Sciences (India)

    A DC excited waveguide multibeam CO2 laser is reported having six glass discharge tubes. Simultaneous excitation of DC discharge in all sections is achieved by producing pre-ionization using an auxiliary high frequency pulsed discharge along with its other advantages. Maximum 170 W output power is obtained with all ...

  12. Final report on key comparison CCEM-K12: AC-DC current transfer standards

    Science.gov (United States)

    Budovsky, Ilya

    2012-01-01

    The circulation of the travelling standards in the CIPM key comparison CCEM-K12 of AC-DC current transfer difference began in March 2005 and was completed in April 2007. The travelling standards were lost on their way from the last participant to the pilot laboratory. Since, prior to their disappearance, the travelling standards exhibited exceptional stability, the CCEM Working Group on Low-Frequency Quantities decided in June 2008 to accept the results of the comparison as valid without the final measurement by the pilot laboratory. The AC-DC transfer differences of the travelling standards have been measured at 10 mA and 5 A, and at the frequencies 10 Hz, 55 Hz, 1 kHz, 10 kHz, 20 kHz, 50 kHz and 100 kHz. The key comparison reference values were calculated as the weighted means of the results of the National Metrology Institutes (NMIs) with independent realizations of primary standards and low reported uncertainties. The degrees of equivalence relative to the key comparison reference values, as well as between pairs of NMIs, have been determined for the measurement points and show very good agreement. All but three of the calculated degrees of equivalence relative to the key comparison reference values are within the limits of the expanded uncertainties. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCEM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  13. A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter

    Directory of Open Access Journals (Sweden)

    Cheng-Shan Wang

    2017-07-01

    Full Text Available In this paper, an isolated multi-resonant three-port bidirectional direct current-direct current (DC-DC converter is proposed, which is composed of three full bridges, two inductor-capacitor-inductor-capacitor (LCLC multi-resonant tanks and a three-winding transformer. The phase shift control method is employed to manage the power transmission among three ports. Relying on the appropriate parameter selection, both of the fundamental and the third order power can be delivered through the multi-element LCLC resonant tanks, and consequently, it contributes to restrained circulating energy and the desirable promoted efficiency. Besides, by adjusting the driving frequency under different load conditions, zero-voltage-switching (ZVS characteristics of all the switches of three ports are guaranteed. Therefore, lower switching loss and higher efficiency are achieved in full load range. In order to verify the feasibility of the proposed topology, a 1.5 kW prototype is established, of which the maximum efficiencies under forward and reverse operating conditions are 96.7% and 96.9% respectively. In addition, both of the bidirectional efficiencies maintain higher than 95.5% when the power level is above 0.5 kW.

  14. Ion Back-Bombardment of GaAs Photocathodes Inside DC High Voltage Electron Guns

    CERN Document Server

    Grames, Joseph M; Brittian, Joshua; Charles, Daniel; Clark, Jim; Hansknecht, John; Lynn Stutzman, Marcy; Poelker, Matthew; Surles-Law, Kenneth E

    2005-01-01

    The primary limitation for sustained high quantum efficiency operation of GaAs photocathodes inside DC high voltage electron guns is ion back-bombardment of the photocathode. This process results from ionization of residual gas within the cathode/anode gap by the extracted electron beam, which is subsequently accelerated backwards to the photocathode. The damage mechanism is believed to be either destruction of the negative electron affinity condition at the surface of the photocathode or damage to the crystal structure by implantation of the bombarding ions. This work characterizes ion formation within the anode/cathode gap for gas species typical of UHV vacuum chambers (i.e., hydrogen, carbon monoxide and methane). Calculations and simulations are performed to determine the ion trajectories and stopping distance within the photocathode material. The results of the simulations are compared with test results obtained using a 100 keV DC high voltage GaAs photoemission gun and beamline at currents up to 10 mA D...

  15. A Modified High-Efficient Step-Up Sepic for DC Motor Drives

    Directory of Open Access Journals (Sweden)

    P. Dhanasekaran

    2013-12-01

    Full Text Available In this paper, Single-Ended Primary Inductor Converter (SEPIC fed DC motor is proposed. Soft-switching technique such as Zero-Voltage-Switching (ZVS and Zero-Current-Switching (ZCS operation plays a vital role in high voltage applications. Zero-Current-Switching (ZCS operation achieved due to resonance between the resonant inductor and the capacitor by using output diode and its reverse-recovery loss is subsequently reduced. Zero-Voltage-Switching (ZVS operation is achieved by using coupled inductor and auxiliary inductor. The model has been simulated through MATLAB/SIMULINK using Diode Bridge, SEPIC topology and closed loop DC motor load and it is modeled analytically. The proposed system is modeled with input side Diode Bridge Rectifier and SEPIC Topology with Proportional Integral (PI controller. The soft switching scheme for the proposed topology is developed with closed loop motor load. The motor voltage is achieved twice the rated voltage. The results are generated in MATLAB/SIMULINK and are shown.

  16. Design Considerations for a High Power Medium Frequency Transformer for a DC-DC Converter Stage of a Solid State Transformer

    Science.gov (United States)

    Mumuluh, Roland Nshieteh

    In recent years, the solid state transformer concept has challenged the conventional low frequency transformer. The conventional transformer cannot store energy and its output is easily distorted as a result of perturbations at its input. In same manner, disturbances from the output unit such as harmonics along with reactive power, as well as load transients are reflected back to the input of the conventional transformer. The size of the low frequency transformer is significantly larger. The Solid state transformer challenges the traditional low frequency transformer in that it eradicates the aforementioned drawbacks and provides multifunctional features. In this thesis a reliable model to design and optimize a high power medium frequency transformer for a dc-dc converter that forms part of a solid state transformer is researched and established. The aim is to use this model to investigate how high can be the operating frequency for a medium frequency transformer to achieve maximum efficiency and minimum volume. The dc-dc converter consists of a transformer that provides isolation between a medium-voltage circuit and a low-voltage circuit in a distribution system, and power semiconductor devices. Transformer operation at medium frequency reduces size and volume due to the inverse relationship of transformer area product and frequency. However, at medium frequency, the transformer is less efficient as a result of increased losses due to skin and proximity effects and the temperature rise constraint. Unlike low power magnetic cores where there are standard sizes and dimensions, high power magnetic cores for medium frequency maybe designed depending on demand or in certain cases, using limited dimensional references. Thus, an optimised transformer design for high power medium frequency relies on how its dimensions are defined. The characteristics expected of a core material for high power medium frequency are that it should have a high saturation flux density; low

  17. SUPER-CHANDRASEKHAR-MASS LIGHT CURVE MODELS FOR THE HIGHLY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, Yasuomi [Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tanaka, Masaomi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Nomoto, Ken' ichi [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Blinnikov, Sergei I. [Institute for Theoretical and Experimental Physics, 117218 Moscow (Russian Federation); Sorokina, Elena I. [Sternberg Astronomical Institute, Lomonosov Moscow State University, 119992 Moscow (Russian Federation); Suzuki, Tomoharu, E-mail: yasuomi.kamiya@ipmu.jp [College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 (Japan)

    2012-09-10

    Several highly luminous Type Ia supernovae (SNe Ia) have been discovered. Their high luminosities are difficult to explain with the thermonuclear explosions of Chandrasekhar-mass white dwarfs (WDs). In the present study, we estimate the progenitor mass of SN 2009dc, one of the extremely luminous SNe Ia, using the hydrodynamical models as follows. Explosion models of super-Chandrasekhar-mass (super-Ch-mass) WDs are constructed, and multi-color light curves (LCs) are calculated. The comparison between our calculations and the observations of SN 2009dc suggests that the exploding WD has a super-Ch mass of 2.2-2.4 M{sub Sun }, producing 1.2-1.4 M{sub Sun} of {sup 56}Ni, if the extinction by its host galaxy is negligible. If the extinction is significant, the exploding WD is as massive as {approx}2.8 M{sub Sun }, and {approx}1.8 M{sub Sun} of {sup 56}Ni is necessary to account for the observations. Whether the host-galaxy extinction is significant or not, the progenitor WD must have a thick carbon-oxygen layer in the outermost zone (20%-30% of the WD mass), which explains the observed low expansion velocity of the ejecta and the presence of carbon. Our estimate of the mass of the progenitor WD, especially for the extinction-corrected case, is challenging to the current scenarios of SNe Ia. Implications for the progenitor scenarios are also discussed.

  18. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch......This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has...

  19. Design, Assembly, and Commissioning of a Cryogenic DC Current Transformer Designed for Measuring Currents of up to 80 kA

    CERN Document Server

    Montenero, G; Bottura, L; Arpaia, P

    2015-01-01

    A new cryogenic dc current transformer (Cryo-DCCT) has recently been designed and assembled at CERN. The device, whose design is based on that of a high-accuracy 600 A market solution suitable for room temperature applications, is optimized for measuring currents of up to 80 kA and for operation at 4.2 K. The CryoDCCT has been conceived with the objective of preserving the metrological performance of the original commercial device in the new extended range of operation. For reducing the effect of interfering magnetic fields arising from test conditions, it incorporates ferromagnetic and MgB2 superconducting shields. In this paper, the design of the CryoDCCT and the results of the commissioning of the device at CERN are reported. The effectiveness of the current transducer is analysed and discussed. This new device will be used for measuring the secondary current of a 80 kA superconducting transformer feeding a sample of NbSn3 cable at the Facility for Research on Superconducting Cables (FRESCA) at CERN.

  20. High Efficiency Non-isolated Three Port DC-DC Converter for PV-Battery Systems

    DEFF Research Database (Denmark)

    Tomas Manez, Kevin; Anthon, Alexander; Zhang, Zhe

    2016-01-01

    This paper presents a nonisolated Three Port Converter (TPC) with a unidirectional port for photovoltaic (PV) panels and a bidirectional port for energy storage. With the proposed topology single power conversion is performed between each port, so high efficiencies are obtained. A theoretical...... analysis is carried out to analyze all operating modes and design considerations with the main equations are given. A 4kW laboratory prototype is developed and tested under all operating conditions. Results obtained feature on efficiencies higher than 97% for all operating modes and all power levels from...

  1. Power Sharing Control between Load-Side Inverters in DC Microgrid for Super High Quality Electric Power Distribution System

    Science.gov (United States)

    Kakigano, Hiroaki; Nada, Kaho; Miura, Yushi; Ise, Toshifumi; Uchida, Ryohei

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality electric power. The dc distribution system is suitable for dc output type distributed generations such as photovoltaic and fuel cells, and energy storages such as batteries and electric double layer capacitors. Power is distributed through dc distribution line and converted to required ac or dc voltage by converters placed near loads. Load-side single phase inverters are connected through transformers in order to share active and reactive power. In this paper, a power sharing control scheme was proposed, and the power sharing characteristics were demonstrated by experimental results.

  2. Two high accuracy digital integrators for Rogowski current transducers

    Science.gov (United States)

    Luo, Pan-dian; Li, Hong-bin; Li, Zhen-hua

    2014-01-01

    The Rogowski current transducers have been widely used in AC current measurement, but their accuracy is mainly subject to the analog integrators, which have typical problems such as poor long-term stability and being susceptible to environmental conditions. The digital integrators can be another choice, but they cannot obtain a stable and accurate output for the reason that the DC component in original signal can be accumulated, which will lead to output DC drift. Unknown initial conditions can also result in integral output DC offset. This paper proposes two improved digital integrators used in Rogowski current transducers instead of traditional analog integrators for high measuring accuracy. A proportional-integral-derivative (PID) feedback controller and an attenuation coefficient have been applied in improving the Al-Alaoui integrator to change its DC response and get an ideal frequency response. For the special design in the field of digital signal processing, the improved digital integrators have better performance than analog integrators. Simulation models are built for the purpose of verification and comparison. The experiments prove that the designed integrators can achieve higher accuracy than analog integrators in steady-state response, transient-state response, and temperature changing condition.

  3. Compherensive Design of a 100 kW/400 V High Performance AC-DC Converter

    Directory of Open Access Journals (Sweden)

    Ghasem Esfandiari

    2015-01-01

    Full Text Available In this paper, a comprehensive design for a 100kW/400V, three-phase pulse-width modulated (PWM AC-DC converter is presented that serves as the front-end power supply for wide-range varying active load. This power supply includes two series stages; a six-switch AC-DC boost converter and a DC-DC buck converter to regulate 400VDC at load side. The design of all inductors and capacitors is fulfilled using mathematical expressions. In addition, small signal modelling and controller design are presented in order to raise the design efficiency of the proposed converter. Also, due to the high power application, improved soft-switching techniques are applied. Furthermore, systematic approach to design an input EMI filter for DC-DC converter is explained. The simulation results performed by PSCAD software show that high performance of the proposed power supply is obtained in terms of stability, high power factor, high efficiency and low total harmonic distortion (THD.

  4. Active pre-filters for dc/dc Boost regulators

    Directory of Open Access Journals (Sweden)

    Carlos Andrés Ramos-Paja

    2014-05-01

    Full Text Available This paper proposes an active pre-filter to mitigate the current harmonics generated by classical dc/dc Boost regulators, which generate current ripples proportional to the duty cycle. Therefore, high output voltage conditions, i.e., high voltage conversion ratios, produce high current harmonics that must be filtered to avoid damage or source losses. Traditionally, these current components are filtered using electrolytic capacitors, which introduce reliability problems because of their high failure rate. The solution introduced in this paper instead uses a dc/dc converter based on the parallel connection of the Boost canonical cells to filter the current ripples generated by the Boost regulator, improving the system reliability. This solution provides the additional benefits of improving the overall efficiency and the voltage conversion ratio. Finally, the solution is validated with simulations and experimental results.

  5. Grain boundary high-T{sub c} dc-SQUIDs with self-organized nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Stefanie; Michalowski, Peter; Katzer, Christian; Westerhausen, Markus; Schmidl, Frank; Seidel, Paul [Friedrich-Schiller-Universitaet Jena, Institut fuer Festkoerperphysik, Helmholtzweg 5, 07743 Jena (Germany)

    2012-07-01

    We fabricated and investigated direct current superconducting quantum interference devices (dc-SQUIDs) based on YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) grain boundary Josephson junctions. Directed embedding of gold nanoparticles different sizes can modify the crystalline structure and thus the superconducting properties of the YBCO thin films and grain boundaries. We investigated the growth conditions of these particles as well as their influence on the properties of the YBCO thin films. The variation of the size and distribution of the gold nanoparticles changes the electrical properties of the dc-SQUIDs. For this kind of device the normal resistance, critical current density, the resulting I{sub c}R{sub N}-product, the London penetration depth and transfer function are analyzed. Furthermore we show noise properties for such modified dc-SQUIDs.

  6. High current and high power superconducting rectifiers

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Bunk, P.B.; Britton, R.B.; van de Klundert, L.J.M.

    1981-01-01

    Results on three experimental superconducting rectifiers are reported. Two of them are 1 kA low frequency flux pumps, one thermally and magnetically switched. The third is a low-current high-frequency magnetically switched rectifier which can use the mains directly.

  7. Dual-Input Soft-Switched DC-DC Converter with Isolated Current-Fed Half-Bridge and Voltage-Fed Full-Bridge for Fuel Cell or Photovoltaic Systems

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2013-01-01

    This paper introduces a new zero-voltage-switching (ZVS) isolated DC-DC converter with two input ports which can be utilized in hybrid energy systems, for instance, in a fuel cell and super-capacitor system. By fully using two high frequency transformers, the proposed converter can effectively...

  8. modes of current conduction in 2-pulse pwm ac/dc converter

    African Journals Online (AJOL)

    Dr Obe

    gate insulated transistors (IGBTs) are used as the converter semiconductor switches while the switches in Fig. 2b are a combination of line commutated high speed ... types or modes of continuous and discontinuous load current operation are mainly determined, for a given ac input supply voltage, by the load parameters ...

  9. High power, medium voltage, series resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2017-01-01

    A new modulation scheme is introduced for a single-phase series-resonant converter, which permits continuous regulation of power from nominal level to zero, in presence of variable input and output dc voltage levels. Rearranging the circuit to locate the resonant LC tank on the rectifier side...... of the high turns-ratio transformer combined with frequency control and phase-shifted inverter modulation keep transformer flux constant from nominal frequency down to DC, always in sub-resonant continuous or discontinuous conduction mode. This overcomes the principal deficit of series-resonant converters......, and the resulting compact and efficient transformer, and soft-commutated inverter, present particular advantages in high-power, high-voltage applications, like DC offshore wind turbines. With transformer excitation frequency in hundreds of Hz range, line-frequency diodes can be employed in the high-voltage...

  10. High performance AC–DC control power supply for low voltage ride ...

    Indian Academy of Sciences (India)

    systems of a HPC, using ..... in input current is minimized to 1% of 100Hz com- ponent to dc value in output of voltage error amplifier and .... rent limit of 12.5A which causes the output voltage to drop. Hence any load fault will not cause damage to ...

  11. Effects of the PWM carrier signals synchronization on the DC-link current in back-to-back converters

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, L.G. [Departamento de Electronica y Comunicaciones, Universidad de los Andes, Nucleo la Hechicera, 5101 Merida (Venezuela); Garcera, G.; Figueres, E.; Gonzalez, R. [Grupo de Sistemas Electronicos Industriales del Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2010-08-15

    This paper presents a study about the synchronization effects of the PWM carrier signals of a back-to-back converter for grid connection of Wind Energy Conversion Systems based on Permanent Magnet Synchronous Generators. It is demonstrated by means of a spectral analysis that, with the proper synchronization of the carrier signals of both the rectifier and inverter stages, the rms value of the current through the DC-link capacitors is greatly reduced. As a result, the number of capacitors needed to build the back-to-back converter decreases, whereas its life cycle is expanded, so that the Wind Energy Conversion System becomes more cost effective. It is shown that the worst case occurs when the phase difference between both carrier signals is {+-}{pi}/2, yielding the highest rms value of the DC-link capacitors current. In that case the harmonic with the highest rms value is located at twice the switching frequency. The theoretical analysis is compared with experimental results from a 10 kW back-to-back converter in order to validate the effects of the carrier signals phase shift on the DC-link capacitors current. (author)

  12. A Circulating-Current Suppression Method for Parallel-Connected Voltage-Source Inverters With Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    This paper presents a theoretical study with experimental validation of a circulating-current suppression method for parallel operation of three-phase voltage source inverters (VSI), which may be suitable for modular parallel uninterruptible power supply systems or hybrid AC/DC microgrid...... applications. The basic concept of the proposed circulating-current suppression method is to modify the original current references by using the current difference among the parallel inverters. In the proposed approach, both of cross circulating-current and zero-sequence circulating-current are considered......, and added into the conventional droop plus virtual impedance control. In the control architecture, the reference voltages of the inverters are generated by the primary control loop which consists of a droop control and a virtual impedance. The secondary control is used to compensate the voltage drop...

  13. USING A 100 KV DC LOAD LOCK PHOTOGUN TO MEASURE PHOTOCATHODE LIFETIME OF HIGH POLARIZATION STRAINED SUPERLATTICE GAAS/GAASP AT BEAM INTENSITY >1 MILLIAMP

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Grames; Benard Poelker; Philip Adderley; Joshua Brittian; James Clark; John Hansknecht; Danny Machie; Marcy Stutzman; Kenneth Surles-law; Riad Suleiman

    2007-07-02

    A new GaAs DC high voltage load lock photogun has been constructed at Jefferson Laboratory (JLab), with improved vacuum and photocathode preparation capabilities. As reported previously, this gun was used to study photocathode lifetime with bulk GaAs at DC beam currents between 1 and 10 mA. In this submission, lifetime measurements were performed using high polarization strained-superlattice GaAs photocathode material at beam currents up to 1 mA, with near bandgap light from a fiber based drive laser having picosecond optical pulses and RF time structure.

  14. Chaos analysis and chaotic EMI suppression of DC-DC converters

    CERN Document Server

    Zhang, Bo

    2014-01-01

    Introduces chaos theory, its analytical methods and the means to apply chaos to the switching power supply design DC-DC converters are typical switching systems which have plenty of nonlinear behaviors, such as bifurcation and chaos. The nonlinear behaviors of DC-DC converters have been studied heavily over the past 20 years, yet researchers are still unsure of the practical application of bifurcations and chaos in switching converters. The electromagnetic interference (EMI), which resulted from the high rates of changes of voltage and current, has become a major design criterion in DC-DC co

  15. Comparative Study on  Paralleled vs. Scaled Dc-dc Converters  in High Voltage Gain Applications

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2008-01-01

    Today power converters are present in many commercial, medical and industrial applications. A lot of them are high power and high current applications. In order to increase power handling capability several transistors or diodes are paralleled often. However such paralleling may lead to converter...

  16. Modular AC Nano-Grid with Four-Quadrant Micro-Inverters and High-Efficiency DC-DC Conversion

    Science.gov (United States)

    Poshtkouhi, Shahab

    A significant portion of the population in developing countries live in remote communities, where the power infrastructure and the required capital investment to set up local grids do not exist. This is due to the fuel shipment and utilization costs required for fossil fuel based generators, which are traditionally used in these local grids, as well as high upfront costs associated with the centralized Energy Storage Systems (ESS). This dissertation targets modular AC nano-grids for these remote communities developed at minimal capital cost, where the generators are replaced with multiple inverters, connected to either Photovoltaic (PV) or battery modules, which can be gradually added to the nano-grid. A distributed droop-based control architecture is presented for the PV and battery Micro-Inverters (MIV) in order to achieve frequency and voltage stability, as well as active and reactive power sharing. The nano-grid voltage is regulated collectively in either one of four operational regions. Effective load sharing and transient handling are demonstrated experimentally by forming a nano-grid which consists of two custom 500 W MIVs. The MIVs forming the nano-grid have to meet certain requirements. A two-stage MIV architecture and control scheme with four-quadrant power-flow between the nano-grid, the PV/battery and optional short-term storage is presented. The short-term storage is realized using high energy-density Lithium-Ion Capacitor (LIC) technology. A real-time power smoothing algorithm utilizing LIC modules is developed and tested, while the performance of the 100 W MIV is experimentally verified under closed-loop dynamic conditions. Two main limitations of the DAB topology, as the core of the MIV architecture's dc-dc stage, are addressed: 1) This topology demonstrates poor efficiency and limited regulation accuracy at low power. These are improved by introducing a modified topology to operate the DAB in Flyback mode, achieving up to an 8% increase in

  17. Comparison microstructure and sliding wear properties of nickel-cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition

    Science.gov (United States)

    Karslioglu, Ramazan; Akbulut, Hatem

    2015-10-01

    Nickel-cobalt (Ni-Co) alloys and Ni-Co/multiwalled carbon nanotube (MWCNT) composite coatings were prepared under direct current (DC), pulse current (PC) and pulse reverse current (PRC) methods. The effect of different deposition currents on the surface microstructure, crystallographic structure, microhardness, and reciprocating sliding wear behavior were investigated. MWCNT co-deposition caused to modify Ni-Co surface morphology, decrease in grain size, and increase in surface roughness, since MWCNTs effected the deposition mechanisms of Ni-Co alloy. The nanocomposite coatings deposited using PC and PRC deposition exhibited significant improvement in microhardness and wear resistance due to unique enhanced reinforcement of MWCNTs in Ni-Co coatings. Reciprocating sliding wear tests evidenced that co-deposition of MWCNTs provided effective load bearing ability and self-lubrication between the friction surfaces. However, the friction coefficient increases for all the nanocomposites produced with DC, PC and PRC methods showed to be increased. In the Ni-Co alloy coatings, the predominant wear mechanisms was delamination caused by fatigue micro cracking whereas in the MWCNT co-deposited composites wear mechanism showed abrasive grooves and plastic deformation due to decreased real contact area.

  18. High current test facility for superconductors at Saclay

    CERN Document Server

    Berriaud, C; Vieillard, L

    2001-01-01

    A high DC current (100 kA-design) test facility for superconducting material is under realisation. Aluminum stabilised conductor (as for LHC detectors) can be tested Including the stabiliser in a 4.75 T dipole field of 0.8 m length which can be rotated in both cable perpendicular directions. A superconductor transformer creates the high current with a primary current from -200 A to +200 A. The output power useable is 25 kJ so that junctions between cables or conductors can be measured at high current. Samples, with a cross sections up to 12 mm*30 mm, were 0.8 m long and were equipped with soldered cables of 0.4 m length at both ends. To test different samples without warming the dipole magnet, samples are placed in a separate dewar. The conception design is described and the first results without external dipole magnetic field are reported. (9 refs).

  19. Feasibility analysis of the application and positioning of DC HTS FCL in a DC microgrid through modeling and simulation using Simulink and SimPowerSystem

    Science.gov (United States)

    Khan, U. A.; Shin, W. J.; Seong, J. K.; Oh, S. H.; Lee, S. H.; Lee, B. W.

    2011-11-01

    DC fault current limitation in DC distribution network is one of the critical issues which need to be taken care of before they can be practically implemented. High temperature superconductors could be efficiently installed to cope with the problem of DC fault currents. In this paper, a generalized DC high temperature superconducting fault current limiter (SFCL) is modeled by integrating Simulink and SimPowerSystem blocks. This model is designed for limiting DC fault currents in low voltage DC distribution networks. A DC microgrid having a low voltage DC distribution network, an integrated photovoltaic plant and domestic customer load is modeled. Transient analysis of the DC microgrid is performed by generating fault and measuring DC fault currents at critical points. The designed DC SFCL is placed at different strategic locations in DC microgrid and fault current limitation performance of DC SFCL in DC microgrid has been analyzed. Moreover, the affects of rapid impedance changing in the distribution network due to the fault followed by DC SFCL activation is investigated. Finally, the best suitable position and affects of DC SFCL in a DC microgrid along with suggestions for implementation have been proposed.

  20. Liquid helium boil-off measurements of heat leakage from sinter-forged BSCCO current leads under DC and AC conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Y.S.; Niemann, R.C.; Hull, J.R.; Youngdahl, C.A.; Lanagan, M.T. [Argonne National Lab., IL (United States); Nakade, M.; Hara, T. [Tokyo Electric Power Co., Yokohama (Japan)

    1995-06-01

    Liquid helium boil-off experiments are conducted to determine the heat leakage rate of a pair of BSCCO 2223 high-temperature superconductor current leads made by sinter forging. The experiments are carried out in both DC and AC conditions and with and without an intermediate heat intercept. Current ranges are from 0-500 A for DC tests and 0-1,000 A{sub rms} for AC tests. The leads are self-cooled. Results show that magnetic hysteresis (AC) losses for both the BSCCO leads and the low-temperature superconductor current jumper are small for the current range. It is shown that significant reduction in heat leakage rate (liquid helium boil-off rate) is realized by using the BSCCO superconductor leads. At 100 A, the heat leakage rate of the BSCCO/copper binary lead is approximately 29% of that of the conventional copper lead. Further reduction in liquid helium boil-off rate can be achieved by using an intermediate heat intercept. For example, at 500 K, the heat leakage rate of the BSCCO/copper binary lead is only 7% of that of the conventional copper lead when an intermediate heat intercept is used.

  1. Synthesis of Automatic Control System of Step-Up DC Voltage Converter Operating in Boundary-Continuous Current Conduction Mode

    Directory of Open Access Journals (Sweden)

    A. V. Mironovich

    2007-01-01

    Full Text Available The paper investigates an operation of a step-up DC voltage converter in the mode of boundary-continuous restrictor current. Functional diagram of a logic unit ensuring boundary-continuous mode has been developed. A mathematical model of a converter operating in a boundary-continuous mode, has been built in the paper. Comparative transient simulation in a linear structure and a model on the basis of power element library have been carried out with the help of a computer.

  2. High-current electron accelerator

    Science.gov (United States)

    Alekseyev, B. V.; Gorelikov, I. M.; Kazurov, V. I.; Mashkov, L. V.; Greshko, A. G.; Soklakov, G. I.; Fedorenko, A. I.; Yurekevich, K. B.

    1986-02-01

    A high current electron accelerator was developed and built on the basis of computer aided design calculations and electrolytic trough simulation. A 15 stage Arkadyev/Marx pulse voltage generator serves as the primary energy storing device. Each stage consists of two IK-100-0.4 capacitors connected in parallel and all immersed in transformer oil inside a metal container on electrically insulating posts. Each stage is shielded on both the positive and negative potential side. The shields, made of copper foil, not only smooth the electric field in the clearances but also constitute part of the commutating circuit and contribute to reduction of the overall generator size. The pulse voltage generator is triggered by a synchronizer through the conventional firing circuit of a TGI1-350/16 thyratron. To operate the accelerator in the nanosecond mode, the generator discharges into a diode through a twin shaping line. In this mode the accelerator can produce 0.8 MeV to 240 kA electron beams of 0.8 ns duration. To operate in the microsecond mode, the shaping line acts as storing capacitor, and the discharge gaps must be charged with polarity reversal in each stage. In this mode the accelerator can produce 0.5 MeV to 10 kA electron beams of 1 microsecond duration.

  3. Structure transformations in cold rolled ferromagnetic alloys upon heating in high DC magnetic field

    Science.gov (United States)

    Gervasyeva, I. V.; Milyutin, V. A.; Beaugnon, E.

    2017-11-01

    The processes of recovery and recrystallization in the coldrolled alloys Fe-3%Si, Fe-50%Ni, and Ni-30%Co subjected to annealing at temperatures below and above the Curie point under a high direct current (DC) magnetic field of 10-29 Т have been studied. It is established that application of external magnetic field in the course of heat treatment at temperatures below the recrystallization temperature and Curie point retards the processes of material softening. The formation of crystallographic texture initiated by magnetic field starts upon the recovery during the pre-recrystallization magnetic annealing. Then, in the course of subsequent annealing at the recrystallization temperatures without magnetic field, there takes place the development of preferable orientations. The magnetic field annealing favors the formation of such texture components in which the easy-magnetization axis coincides with the direction of the magnetic field applied. This is evidenced by the textures formed in the Fe-50%Ni alloy (easy axis) and Ni-30%Co alloy (easy axis).

  4. Feasibility study of cellulose nanofiber alignment by high DC magnetic field

    Science.gov (United States)

    Kim, Hyun Chan; Kang, Jinmo; Park, Jung Ho; Akther, Asma; Kim, Jaehwan

    2017-04-01

    Cellulose nanofiber (CNF) has taken center stage as a future material with high specific strength, specific modulus and environmentally friendly behavior. However, natural CNFs are so randomly oriented that once CNFs are used in composites, their mechanical properties are not the same as expected from the CNFs. Thus, CNF alignment is important in fabricating composites and fibers. Interestingly, CNFs have negative diamagnetic anisotropy. In the presence of high magnetic field, the fiber axis of CNF can be aligned perpendicular to the applied field. This paper reports a preliminary study of CNF alignment by high dc magnetic field. The CNF emulsion is prepared by aqueous counter collision method and centrifugation. The CNF emulsion is placed in the high dc magnet and cured for a certain time. The alignment of CNF is investigated by scanning electron microscopy, mechanical tensile test.

  5. Electrical Structure of Future Off-shore Wind Power Plant with a High Voltage Direct Current Power Transmission

    DEFF Research Database (Denmark)

    Sharma, Ranjan

    to control and as such a high current capacity of the WPP side VSC might be required. Detailed simulation results are included in the report. The other option is to use a DC chopper, the results of which are also presented in detail in the report. It is observed that a DC chopper can provide a simple...

  6. A Novel High Step-Up DC-DC Converter with Coupled Inductor and Switched Clamp Capacitor Techniques for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Yong-Seng Wong

    2017-03-01

    Full Text Available In this study, a novel high step-up DC-DC converter was successfully integrated using coupled inductor and switched capacitor techniques. High step-up DC-DC gain was achieved using a coupled inductor when capacitors charged and discharged energy, respectively. In addition, energy was recovered from the leakage inductance of the coupled inductor by using a passive clamp circuit. Therefore, the voltage stress of the main power switch was almost reduced to 1/7 Vo (output voltage. Moreover, the coupled inductor alleviated the reverse-recovery problem of the diode. The proposed circuit efficiency can be further improved and high voltage gain can be achieved. The operation principle and steady-state analysis of the proposed converter were discussed. Finally, a hardware prototype circuit with input voltage of 24 V, output voltage of up to 400 V, and maximum power of 150 W was constructed in a laboratory; the maximum efficiency was almost 96.2%.

  7. Highly sensitive vacuum ion pump current measurement system

    Science.gov (United States)

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  8. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    Science.gov (United States)

    Purwins, H.-G.; Stollenwerk, L.

    2014-12-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  9. High-Current Rotating Contactor

    Science.gov (United States)

    Hagan, David W.; Wolff, Edwin D.

    1996-01-01

    Rotating electrical contactor capable of carrying 1,000 amperes of current built for use in rotating large workpiece in electroplating bath. Electrical contact made by use of 24 automotive starter motor brushes adapted to match inside diameter of shell electrode.

  10. DC high voltage to drive helium plasma jet comprised of repetitive streamer breakdowns

    CERN Document Server

    Wang, Xingxing

    2016-01-01

    This paper demonstrates and studies helium atmospheric pressure plasma jet comprised of series of repetitive streamer breakdowns, which is driven by a pure DC high voltage (auto-oscillations). Repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV/cm. Repetition frequency of the streamer breakdowns excited using this principle can be simply tuned by reconfiguring the discharge electrode geometry. This custom-designed type of the helium plasma jet, which operates on the DC high voltage and is comprised of the series of the repetitive streamer breakdowns at frequency about 13 kHz, is demonstrated.

  11. Influence of DC arc current on the formation of cobalt-based ...

    Indian Academy of Sciences (India)

    P B ORPE

    2017-07-06

    Jul 6, 2017 ... It can be inferred from EDAX characterization that the heat generated at 100A discharge current is suffi- cient to form maximum number of cobalt metal atoms which further nucleate to form separate phase of cobalt along with cobalt monoxide. But in the case of 150 A dis- charge current, as the heat energy is ...

  12. Second Ripple Current Suppression by Two Bandpass Filters and Current Sharing Method for Energy Storage Converters in DC Microgrid

    DEFF Research Database (Denmark)

    Yang, Ling; Chen, Yandong; Luo, An

    2017-01-01

    by introducing two band-pass filters (BPFs) into the output voltage and inductance current feedback of the ESC is proposed. Compared with the traditional dual-loop control method, the proposed method effectively reduces the SRC and improves the dynamic performance in case of a lower cut-off frequency...

  13. Direct Current as an Integrating Platform for ZNE Buildings with EVs and Storage: DC Direct Systems – A Bridge to a Low Carbon Future?

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl [California Inst. for Energy and the Environment, Berkeley, CA (United States); Vossos, Vagelis [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kloss, Margarita [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-01

    Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for an ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.

  14. A High-Frequency Isolation (HFI Charging DC Port Combining a Front-End Three-Level Converter with a Back-End LLC Resonant Converter

    Directory of Open Access Journals (Sweden)

    Guowei Cai

    2017-09-01

    Full Text Available The high-frequency isolation (HFI charging DC port can serve as the interface between unipolar/bipolar DC buses and electric vehicles (EVs through the two-power-stage system structure that combines the front-end three-level converter with the back-end logical link control (LLC resonant converter. The DC output voltage can be maintained within the desired voltage range by the front-end converter. The electrical isolation can be realized by the back-end LLC converter, which has the bus converter function. According to the three-level topology, the low-voltage rating power devices can be adapted for half-voltage stress of the total DC grid, and the PWM phase-shift control can double the equivalent switching frequency to greatly reduce the filter volume. LLC resonant converters have advance characteristics of inverter-side zero-voltage-switching (ZVS and rectifier-side zero-current switching (ZCS. In particular, it can achieve better performance under quasi-resonant frequency mode. Additionally, the magnetizing current can be modified following different DC output voltages, which have the self-adaptation ZVS condition for decreasing the circulating current. Here, the principles of the proposed topology are analyzed in detail, and the design conditions of the three-level output filter and high-frequency isolation transformer are explored. Finally, a 20 kW prototype with the 760 V input and 200–500 V output are designed and tested. The experimental results are demonstrated to verify the validity and performance of this charging DC port system structure.

  15. Current characteristic signals of aqueous solution transferring through microfluidic channel under non-continuous DC electric field

    Directory of Open Access Journals (Sweden)

    HongWei Ma

    2014-10-01

    Full Text Available The surface effect is becoming apparently significant as the miniaturization of fluidic devices. In the micro/nanochannel fluidics, the electrode surface effects have the same important influence on the current signals as the channel surface effects. In this paper, when aqueous solution are driven with non-continuous DC electric field force, the characteristics of current signals of the fluid transferring through microfluidic channel are systematically studied. Six modes of current signal are summarized, and some new significant phenomena are found, e.g. there exists a critical voltage at which the steady current value equals to zero; the absolute value of the steady current decreases at first, however, it increases with the external voltage greater than the critical voltage as the electrode area ratio of cathode and anode is 10 and 20; the critical voltage increases with the enhancing of electrode area ratio of cathode and anode and solution pH, while it decreases with the raising of ion concentration. Finally, the microscopic mechanism of the electrode surface charge effects is discussed preliminarily. The rules will be helpful for detecting and manipulating single biomolecules in the micro/nanofluidic chips and biosensors.

  16. High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Petersen, Lars Press

    2017-01-01

    The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....

  17. AUTOMATED MEASURING COMPLEX FOR ACCEPTANCE TESTING OF DC AND UNDULATED-CURRENT TRACTION MOTORS

    Directory of Open Access Journals (Sweden)

    A. Yu. Drubetskyi

    2016-12-01

    Full Text Available Purpose. In the paper it is necessary: 1 to familiarize the reader with the modern classification of measurement and diagnostics, familiarize with problems of automating the measurement of basic parameters during program execution of qualification tests of traction motors; 2 to make recommendations to improve the measurement ac-curacy, reduce labor intensity of work for carrying out measurements, and reduce the requirements for the qualification of the staff; 3 to provide practical implementation of measurement system, built on the basis of the practical recommendations contained in the article. Methodology. The work presents the classification of measurement and diagnostic tools. The author considered a list of equipment that can be used in measurement systems, as well as third-party options for measuring complex and measuring complex using stand management system. Their functional schemes were proposed. The author compared the advantages and disadvantages of these schemes to make recommendations on areas of their optimal use. Findings. Having analyzed the functional scheme of measuring systems, it was found that the use of the control system microcontroller as a measuring complex is expedient if the measurements have largely a test process control function. The use of a third-party measuring complex is more appropriate in cases when it is required: to eliminate dependence on the stand management system, to provide high mobility and reduce the requirements for the qualification of the staff. Originality. The work presents a brief over-view of the measurement means. The author developed the functional schemes of measuring systems using stand management system and third-party measuring complex, proposed the criteria for evaluating their optimal use. Practical value. Based on the proposed functional diagram, the measuring system on National Instruments hard-ware and software basis was set up. The sensors by LEM Company were used as primary

  18. Feasibility analysis of the application and positioning of DC HTS FCL in a DC microgrid through modeling and simulation using Simulink and SimPowerSystem

    Energy Technology Data Exchange (ETDEWEB)

    Khan, U.A.; Shin, W.J.; Seong, J.K.; Oh, S.H.; Lee, S.H. [School of Electrical Engineering and Computer Science, Hanyang University, Ansan-Shi, Gyeonggi-do 426-791 (Korea, Republic of); Lee, B.W., E-mail: bangwook@hanyang.ac.kr [School of Electrical Engineering and Computer Science, Hanyang University, Ansan-Shi, Gyeonggi-do 426-791 (Korea, Republic of)

    2011-11-15

    We modeled DC SFCL by use of SimPowerSystem blocks. We examine the DC fault current limitation in low voltage DC distribution networks. SFCL's affects at critical points were measured. SFCL installed at the substation rectifier branch resulted in abnormal increase of fault current. The strategic location of SFCL is the point of integration of the PV plant with the power grid. DC fault current limitation in DC distribution network is one of the critical issues which need to be taken care of before they can be practically implemented. High temperature superconductors could be efficiently installed to cope with the problem of DC fault currents. In this paper, a generalized DC high temperature superconducting fault current limiter (SFCL) is modeled by integrating Simulink and SimPowerSystem blocks. This model is designed for limiting DC fault currents in low voltage DC distribution networks. A DC microgrid having a low voltage DC distribution network, an integrated photovoltaic plant and domestic customer load is modeled. Transient analysis of the DC microgrid is performed by generating fault and measuring DC fault currents at critical points. The designed DC SFCL is placed at different strategic locations in DC microgrid and fault current limitation performance of DC SFCL in DC microgrid has been analyzed. Moreover, the affects of rapid impedance changing in the distribution network due to the fault followed by DC SFCL activation is investigated. Finally, the best suitable position and affects of DC SFCL in a DC microgrid along with suggestions for implementation have been proposed.

  19. High temperature superconductor current leads

    Science.gov (United States)

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  20. Significant Improvements in Pyranometer Nighttime Offsets Using High-Flow DC Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Kutchenreiter, Mark; Michalski, J.J.; Long, C.N.; Habte, Aron

    2017-05-22

    Accurate solar radiation measurements using pyranometers are required to understand radiative impacts on the Earth's energy budget, solar energy production, and to validate radiative transfer models. Ventilators of pyranometers, which are used to keep the domes clean and dry, also affect instrument thermal offset accuracy. This poster presents a high-level overview of the ventilators for single-black-detector pyranometers and black-and-white pyranometers. For single-black-detector pyranometers with ventilators, high-flow-rate (50-CFM and higher), 12-V DC fans lower the offsets, lower the scatter, and improve the predictability of nighttime offsets compared to lower-flow-rate (35-CFM), 120-V AC fans operated in the same type of environmental setup. Black-and-white pyranometers, which are used to measure diffuse horizontal irradiance, sometimes show minor improvement with DC fan ventilation, but their offsets are always small, usually no more than 1 W/m2, whether AC- or DC-ventilated.

  1. Current barriers to confine high frequency common mode currents

    NARCIS (Netherlands)

    Moonen, Dominicus Johannes Guilielmus; Buesink, Frederik Johannes Karel; Leferink, Frank Bernardus Johannes

    2016-01-01

    A commercially produced three phase power line filter is submitted to a Current Barrier (CB) Electro-Magnetic Compatibility (EMC) zoning strategy as an attempt to confine high frequency common mode currents. The intent of the paper is not to show how to build a ’perfect’ filter, since this is known.

  2. Impurity Deionization Effects on Surface Recombination DC Current-Voltage Characteristics in MOS Transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zuhui [Lee-Kuan-Yew Postdoctoral Fellow, 2007-2010, Nanyang Technological University, Singapore 639798 (Singapore); Jie Binbin; Sah Chihtang, E-mail: bb_jie@msn.com [Department of Physics, Xiamen University, Xiamen 361005 (China)

    2010-12-15

    Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO{sub 2}/Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)

  3. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2017-01-01

    In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor...... scenarios. In this paper, plug’n’play modules and cycle control are discussed and validated through experimental results. Moreover, potential zero sequence circulating current impact on power semiconductor devices thermal performance is also analyzed in this paper.......In modular uninterruptible power supplies (UPSs), several DC/AC modules are required to work in parallel. This structure allows the system to be more reliable and flexible. These DC/AC modules share the same DC bus and AC critical bus. Module differences, such as filter inductor, filter capacitor......, control parameters, and so on, will make it possible for the potential zero sequence current to flow among the modules. This undesired type of circulating current will bring extra losses to the power semiconductor devices in the system, which should be paid special attention in high power application...

  4. Research on Two-channel Interleaved Two-stage Paralleled Buck DC-DC Converter for Plasma Cutting Power Supply

    DEFF Research Database (Denmark)

    Yang, Xi-jun; Qu, Hao; Yao, Chen

    2014-01-01

    As for high power plasma power supply, due to high efficiency and flexibility, multi-channel interleaved multi-stage paralleled Buck DC-DC Converter becomes the first choice. In the paper, two-channel interleaved two- stage paralleled Buck DC-DC Converter powered by three-phase AC power supply is...... and the use of phase-shift driving technology and current sharing technology....

  5. DC-quick charging of electromobiles. Direct current for shortening of charging time; DC-Schnellladung fuer Elektrofahrzeuge. Gleichstrom zur Verkuerzung der Ladezeiten

    Energy Technology Data Exchange (ETDEWEB)

    Felsenstein, Simon [ABB Ltd., Zuerich (Switzerland). Smart Grid Initiative, Elektromobilitaet

    2010-10-04

    There are a number of questions concerning electric-powered passengercars, in particular the problem of acceptable solutions for battery charging. Especially from the view of the end user, the charging time is a critical factor. Recent developments in battery technology promise to shorten the charging time. The Japanese car industry is leading here; it has founded a standardization initiative for dc quick charging which is also gaining momentum in Europe. Japan can already provide practical experience with this technology. (orig.)

  6. Modelling the electric field and the current density generated by cerebellar transcranial DC stimulation in humans.

    Science.gov (United States)

    Parazzini, Marta; Rossi, Elena; Ferrucci, Roberta; Liorni, Ilaria; Priori, Alberto; Ravazzani, Paolo

    2014-03-01

    Transcranial Direct Current Stimulation (tDCS) over the cerebellum (or cerebellar tDCS) modulates working memory, changes cerebello-brain interaction, and affects locomotion in humans. Also, the use of tDCS has been proposed for the treatment of disorders characterized by cerebellar dysfunction. Nonetheless, the electric field (E) and current density (J) spatial distributions generated by cerebellar tDCS are unknown. This work aimed to estimate E and J distributions during cerebellar tDCS. Computational electromagnetics techniques were applied in three human realistic models of different ages and gender. The stronger E and J occurred mainly in the cerebellar cortex, with some spread (up to 4%) toward the occipital cortex. Also, changes by ±1cm in the position of the active electrode resulted in a small effect (up to 4%) in the E and J spatial distribution in the cerebellum. Finally, the E and J spreads to the brainstem and the heart were negligible, thus further supporting the safety of this technique. Despite inter-individual differences, our modeling study confirms that the cerebellum is the structure mainly involved by cerebellar tDCS. Modeling approach reveals that during cerebellar tDCS the current spread to other structures outside the cerebellum is unlike to produce functional effects. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    Science.gov (United States)

    Tripp, John S.; Daniels, Taumi S.

    1990-08-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  8. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    Science.gov (United States)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  9. High temperature superconducting fault current limiter

    Science.gov (United States)

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  10. Triple voltage dc-to-dc converter and method

    Science.gov (United States)

    Su, Gui-Jia

    2008-08-05

    A circuit and method of providing three dc voltage buses and transforming power between a low voltage dc converter and a high voltage dc converter, by coupling a primary dc power circuit and a secondary dc power circuit through an isolation transformer; providing the gating signals to power semiconductor switches in the primary and secondary circuits to control power flow between the primary and secondary circuits and by controlling a phase shift between the primary voltage and the secondary voltage. The primary dc power circuit and the secondary dc power circuit each further comprising at least two tank capacitances arranged in series as a tank leg, at least two resonant switching devices arranged in series with each other and arranged in parallel with the tank leg, and at least one voltage source arranged in parallel with the tank leg and the resonant switching devices, said resonant switching devices including power semiconductor switches that are operated by gating signals. Additional embodiments having a center-tapped battery on the low voltage side and a plurality of modules on both the low voltage side and the high voltage side are also disclosed for the purpose of reducing ripple current and for reducing the size of the components.

  11. 75 FR 35611 - Airworthiness Directives; McDonnell Douglas Corporation Model DC-10-10, DC-10-10F, and MD-10-10F...

    Science.gov (United States)

    2010-06-23

    ... Corporation Model DC- 10-10, DC-10-10F, and MD-10-10F Airplanes AGENCY: Federal Aviation Administration (FAA... DC-10-10, DC-10-10F, and MD-10-10F airplanes. This AD requires a one-time high frequency eddy current... instances of Model DC-10-10F airplanes having fuel leaks in the wing rear spar lower cap at station Xors=345...

  12. Chemical mechanisms inducing a dc current measured in the flowing post-discharge of an RF He-O2 plasma torch

    CERN Document Server

    Dufour, Thierry; Vandencasteele, N; Reniers, F

    2016-01-01

    The post-discharge of an RF plasma torch supplied with helium and oxygen gases is characterized by mass spectrometry, optical emission spectroscopy and electrical measurements. We have proved the existence of a dc current in the post-discharge (1--20 A), attributed to the Penning ionization of atmospheric nitrogen and oxygenated species. The mechanisms ruling this dc current are investigated through experiments in which we discuss the influence of the O2 flow rate, the He flow rate and the distance separating the plasma torch from a material surface located downstream.

  13. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    Energy Technology Data Exchange (ETDEWEB)

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  14. Characteristics of contact resistance for Ag, Cu and Al spot contact under DC current flow of 300A; Gin, do oyobi arumi tensesshokushi no chokuryu 300A tsudenji ni okeru sesshoku teiko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Aichi, H. [Daido Institute of Technology, Nagoya (Japan); Matsumura, T. [Nagoya University, Nagoya (Japan); Miyachi, I. [Aichi Inst. of Technology, Aichi (Japan)

    1997-07-01

    The temperature rise of the contact spot by Joule`s heat under high current flow may result in the softening or welding of the contact materials. Contact resistances of Ag, Cu and Al spot contacts have been observed under the current flow of up to 300A DC. The contact resistances of Ag and Cu with clean surfaces were revealed to be kept constant independent of the magnitude of the applied current flow. On the other hand, contact resistances of Al and Cu with oxidized surfaces were greatly reduced with the increasing current flow. 7 refs., 5 figs., 2 tabs.

  15. A study on stimulation of DC high voltage power of LCC series parallel resonant in projectile velocity measurement system

    Science.gov (United States)

    Lu, Dong-dong; Gu, Jin-liang; Luo, Hong-e.; Xia, Yan

    2017-10-01

    According to specific requirements of the X-ray machine system for measuring velocity of outfield projectile, a DC high voltage power supply system is designed for the high voltage or the smaller current. The system comprises: a series resonant circuit is selected as a full-bridge inverter circuit; a high-frequency zero-current soft switching of a high-voltage power supply is realized by PWM output by STM32; a nanocrystalline alloy transformer is chosen as a high-frequency booster transformer; and the related parameters of an LCC series-parallel resonant are determined according to the preset parameters of the transformer. The concrete method includes: a LCC series parallel resonant circuit and a voltage doubling circuit are stimulated by using MULTISM and MATLAB; selecting an optimal solution and an optimal parameter of all parts after stimulation analysis; and finally verifying the correctness of the parameter by stimulation of the whole system. Through stimulation analysis, the output voltage of the series-parallel resonant circuit gets to 10KV in 28s: then passing through the voltage doubling circuit, the output voltage gets to 120KV in one hour. According to the system, the wave range of the output voltage is so small as to provide the stable X-ray supply for the X-ray machine for measuring velocity of outfield projectile. It is fast in charging and high in efficiency.

  16. NAMMA DC-8 DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The DC-8 dropsonde system uses an integrated, highly accurate, GPS-located atmospheric profiling dropsonde, which measures and records current atmospheric conditions...

  17. Influence of inductance induced noise in an YBa2Cu3O7 dc-SQUID at high operation temperatures

    DEFF Research Database (Denmark)

    Nilsson, P. Å.; Claeson, T.; Hansen, J. B.

    1994-01-01

    The voltage modulation depth of a high T(c) dc-SQUID was measured at temperatures close to T(c) and compared to a model by Enpuku et al. where the flux noise from the SQUID inductance is taken into account. The device was an YBa2Cu3O7 dc-SQUID made on a bicrystal substrate of SrTiO3. The design...

  18. Three new DC-to-DC Single-Switch Converters

    OpenAIRE

    Barry W. Williams; Mona Fouad Moussa

    2017-01-01

    This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations ...

  19. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  20. Adaptive slope compensation for high bandwidth digital current mode controller

    DEFF Research Database (Denmark)

    Taeed, Fazel; Nymand, Morten

    2015-01-01

    An adaptive slope compensation method for digital current mode control of dc-dc converters is proposed in this paper. The compensation slope is used for stabilizing the inner current loop in peak current mode control. In this method, the compensation slope is adapted with the variations...... in converter duty cycle. The adaptive slope compensation provides optimum controller operation in term of bandwidth over wide range of operating points. In this paper operation principle of the controller is discussed. The proposed controller is implemented in an FPGA to control a 100 W buck converter...

  1. Analysis of crowbar action of high voltage DC power supply in the LHD ICRF system

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaodong [Southwestern Institute of Physics, Chengdu, Sichuan (China); Mutoh, T.; Kumazawa, R.; Watari, T.; Seki, T.; Shimpo, F.; Nomura, G.; Saito, K.

    1999-04-01

    Ion Cyclotron Range of Frequency (ICRF) heating will be applied to the Large Helical Device (LHD) at the 2nd experimental campaign in 1998. The LHD ICRF system is characterised by its high power (up to 12 MW at final stage) and steady state operation for more than 30 minutes. One of the main R and D items was a high power and steady state transmitter. The RF transmitter system having a wide frequency range from 25 to 95 MHz was designed and fabricated. This report describes the analysis of the DC power supply that contains the crowbar circuit protecting the tetrode from the arcing inside the tube. The DC power supply of the transmitter is fed from the commercial AC electric line which also supply the power to the LHD helical and poloidal coil power supplies. The voltage drop of the commercial line when the ICRF crowbar action happened is the serious problem for all experimental system. This paper analyses the crowbar effect on the commercial line with and without leakage transformer between the step-up transformer of transmitter and the commercial line. (author)

  2. Soft switched DC-DC converter

    Science.gov (United States)

    Subramanian, K.; Kavitha, K. V. N.; Saravanan, K.

    2017-11-01

    A soft switched single switch isolated dc-dc conveys proposed in this paper. This converter works on the principle of zero current switching (zcs) and zero voltage switching (zvs). The circuit comprises lossless snubber with low rating. The switch works on zcs during turn on and zvs during turnoff. The diodes are based on zcs turn on and turnoff conditions. This paper presents the concept of soft switching and its applications to dc-dc converter. The losses due to soft switching and hard switching are compared.

  3. Neutral-point current modeling and control for Neutral-Point Clamped three-level converter drive with small DC-link capacitors

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, Sergio

    2011-01-01

    A Neutral-Point-Clamped (NPC) three-level inverter with small DC-link capacitors is presented in this paper. This inverter requires zero average neutral-point current for stable neutral-point potential. A simple carrier based modulation strategy is proposed for achieving zero average neutral-poin...

  4. Three new DC-to-DC Single-Switch Converters

    Directory of Open Access Journals (Sweden)

    Barry W. Williams

    2017-06-01

    Full Text Available This paper presents a new family of three previously unidentified dc-to-dc converters, buck, boost, and buck-boost voltage-transfer-function topologies, which offer advantageous transformer coupling features and low capacitor dc voltage stressing. The three single-switch, single-diode, converters offer the same features as basic dc-to-dc converters, such as the buck function with continuous output current and the boost function with continuous input current. Converter time-domain simulations and experimental results (including transformer coupling support and extol the dc-to-dc converter concepts and analysis presented.

  5. The Applications of Current Comparators in the Measurements on High Voltage Insulation

    Directory of Open Access Journals (Sweden)

    Fei Yi-jun

    2016-01-01

    Full Text Available This paper describes the basic structure of the current comparator used for high voltage insulation measurements. Further applications for the current comparator in high voltage insulation are investigated and developed. A measuring system for the measurement of harmonics in the loss current of water tree aged insulation is described, as well as the principles to measure partial discharges with the current comparator bridge. A new system for the measurement of the DC component in the leakage current of insulation is de1veloped and presented. The results of experiments on XLPE cable insulation are also given.

  6. Method and system for a gas tube switch-based voltage source high voltage direct current transmission system

    Energy Technology Data Exchange (ETDEWEB)

    She, Xu; Chokhawala, Rahul Shantilal; Zhou, Rui; Zhang, Di; Sommerer, Timothy John; Bray, James William

    2016-12-13

    A voltage source converter based high-voltage direct-current (HVDC) transmission system includes a voltage source converter (VSC)-based power converter channel. The VSC-based power converter channel includes an AC-DC converter and a DC-AC inverter electrically coupled to the AC-DC converter. The AC-DC converter and a DC-AC inverter include at least one gas tube switching device coupled in electrical anti-parallel with a respective gas tube diode. The VSC-based power converter channel includes a commutating circuit communicatively coupled to one or more of the at least one gas tube switching devices. The commutating circuit is configured to "switch on" a respective one of the one or more gas tube switching devices during a first portion of an operational cycle and "switch off" the respective one of the one or more gas tube switching devices during a second portion of the operational cycle.

  7. A highly sensitive RF-to-DC power converter with an extended dynamic range

    KAUST Repository

    Almansouri, Abdullah Saud Mohammed

    2017-10-24

    This paper proposes a highly sensitive RF-to-DC power converter with an extended dynamic range that is designed to operate at the medical band 433 MHz and simulated using 0.18 μm CMOS technology. Compared to the conventional fully cross-coupled rectifier, the proposed design offers 3.2× the dynamic range. It is also highly sensitive and requires −18 dBm of input power to produce a 1 V-output voltage when operating with a 100 kΩ load. Furthermore, the proposed design offers an open circuit sensitivity of −23.4 dBm and a peak power conversion efficiency of 67%.

  8. DFPI-based Control of the DC-bus Voltage and the AC-side Current of a Shunt Active Power Filter

    OpenAIRE

    Elhaj, Nabil; Sedra, M. Brahim; Djeghloud, Hind

    2016-01-01

    The current paper presents a continuation of an earlier research and purposes to enhance the performances of the studied system. While the double fuzzy PI (DFPI) control was applied only on the DC capacitor bus in a previous work it is applied here also on the output current of shunt active power filter (SAPF). The nonlinear load disrupts the electrical distribution system by the generation of harmonics, which requires an efficient SAPF intervention to minimize the effects of harmonics on the...

  9. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2017-03-01

    Full Text Available In this paper, a novel isolated bidirectional DC-DC converter is proposed, which is able to accomplish high step-up/down voltage conversion. Therefore, it is suitable for hybrid electric vehicle, fuel cell vehicle, energy backup system, and grid-system applications. The proposed converter incorporates a coupled inductor to behave forward-and-flyback energy conversion for high voltage ratio and provide galvanic isolation. The energy stored in the leakage inductor of the coupled inductor can be recycled without the use of additional snubber mechanism or clamped circuit. No matter in step-up or step-down mode, all power switches can operate with soft switching. Moreover, there is a inherit feature that metal–oxide–semiconductor field-effect transistors (MOSFETs with smaller on-state resistance can be adopted because of lower voltage endurance at primary side. Operation principle, voltage ratio derivation, and inductor design are thoroughly described in this paper. In addition, a 1-kW prototype is implemented to validate the feasibility and correctness of the converter. Experimental results indicate that the peak efficiencies in step-up and step-down modes can be up to 95.4% and 93.6%, respectively.

  10. Design of Single-Stage AC/DC Converter with High Efficiency and High Power Factor for Low Power Level Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Young; Moon, Gun Woo; Youn, Myung Joong [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-06-01

    Design of single stage AC/DC converter with high power factor for low power level applications is proposed. The proposed converter gives the good power factor correction, low line current harmonic distortions, and tight output voltage regulations. This converter also has a high efficiency by employing an active clamp method and synchronous rectifiers. To verify the performance of the proposed converter, a 90W-converter has been designed. The modelling of this proposed converter is performed using an averaging technique and based on this model, a detailed analysis is carried out. This prototype meets the IEC555-2 requirements satisfactorily with nearly unity power factor and high efficiency. (author). 9 refs., 16 figs.

  11. A high voltage DC-DC converter driving a Dielectric Electro Active Polymer actuator for wind turbine flaps

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2012-01-01

    The Dielectric Electro Active Polymer (DEAP) material is a very thin (~80 μm) silicone elastomer film with a compliant metallic electrode layer on both sides. The DEAP is fundamentally a capacitor that is capable of very high strain. The property that the polymer changes its shape, as a result...

  12. Design of a high power, resonant converter for DC wind turbines

    DEFF Research Database (Denmark)

    Dincan, Catalin Gabriel; Kjær, Philip Carne; Chen, Yu-Hsing

    2018-01-01

    This paper presents a design procedure and loss estimation for a high power, medium voltage series resonant converter (entitled SRC#), intended for application in megawatt medium-voltage DC wind turbines. The converter is operated with a novel method of operation, entitled pulse removal technique......, characterized by variable frequency and phase shift modulation, below the resonant point of the LC tank. A step by step design procedure is proposed and circuit component ratings and efficiency are compared for two variants. The new method of operation reduces transformer size to below 50% while losses are kept...... below 1.5% from zero to nominal power, due to soft-switching characteristics. An experimental setup, rated for 10 kW and 5 kV output was assembled to extract losses and validate the semiconductor loss model....

  13. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  14. High voltage threshold for stable operation in a dc electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp [High Energy Accelerator Research Organization (KEK), Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp [National Institutes for Quantum and Radiological Science and Technology (QST), Tokai, Naka, Ibaraki 319-1195 (Japan)

    2016-07-04

    We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge model based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.

  15. On the modelling of linear-assisted DC-DC voltage regulators for photovoltaic solar energy systems

    Science.gov (United States)

    Martínez-García, Herminio; García-Vílchez, Encarna

    2017-11-01

    This paper shows the modelling of linear-assisted or hybrid (linear & switching) DC/DC voltage regulators. In this kind of regulators, an auxiliary linear regulator is used, which objective is to cancel the ripple at the output voltage and provide fast responses for load variations. On the other hand, a switching DC/DC converter, connected in parallel with the linear regulator, allows to supply almost the whole output current demanded by the load. The objective of this topology is to take advantage of the suitable regulation characteristics that series linear voltage regulators have, but almost achieving the high efficiency that switching DC/DC converters provide. Linear-assisted DC/DC regulators are feedback systems with potential instability. Therefore, their modelling is mandatory in order to obtain design guidelines and assure stability of the implemented power supply system.

  16. IGBT Based DC/DC Converter

    Directory of Open Access Journals (Sweden)

    M. Akherraz

    1997-12-01

    Full Text Available This paper presents an in-depth analytical and experimental investigation of an indirect DC-DC converter. The DC-AC conversion is a full bridge based on IGBT power modules, and the AC-DC conversion is done via a high  frequency AC link and a first diode bridge. The AC link, which consists of snubbing capacitors and a variable air-gap transformer, is analytically designed to fulfill Zero Voltage commutation requirement. The proposed converter is simulated using PSPICE and a prototype is designed built and tested in the laboratory. PSPICE simulation and experimental results are presented and compared.

  17. High conversion ratio DC-DC converter with isolated transformer and switched-clamp capacitor for Taiwan photon source

    Science.gov (United States)

    Wong, Y.-S.; Chen, J.-F.; Liu, K.-B.; Hsieh, Y.-P.

    2017-12-01

    A new high step-up voltage converter that combines a switch capacitor and isolated transformer, together with a passive clamp circuit, is employed to reduce voltage stress on the main power switch. The voltage stress of the power switch should be clamped to 1/4 Vo, and the proposed converter can achieve high step-up voltage gain with appropriate duty ratio. The energy of the leakage inductor can be recycled by the clamp capacitor because of the passive clamp circuit, and low On-state resistance RDS(on) of the power switch can be adopted to reduce the conduction loss. In this paper, several mathematical derivations are presented, CCM and DCM operating principle are discussed, and experimental results are provided to verify the effectiveness of converter topology. Finally, a 24-V-input voltage to 200-V-output voltage and a 150 W output power prototype converter are fabricated in the laboratory.

  18. A comprehensive analysis and hardware implementation of control strategies for high output voltage DC-DC boost power converter

    DEFF Research Database (Denmark)

    Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede

    2017-01-01

    -loop controller to get high and stable output voltage. Complete hardware prototype of EHV is implemented and experimental tasks are carried out with digital signal processor (DSP) TMS320F2812. The control algorithms P-I, fuzzy logic and the pulse-width modulation (PWM) signals for N-channel MOSFET device...... are performed by the DSP. The experimental results provided show good conformity with developed hypothetical predictions. Additionally, the presented study confirms that the fuzzy logic controller provides better performance than classical P-I controller under different perturbation conditions....

  19. Design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters

    CERN Document Server

    Cravero, Jean-Marc

    2013-01-01

    This technical report presents the design of the DC-DC power stage of the capacitor charger for MAXIDISCAP power converters. The power stage is based on a half bridge series resonant converter in Discontinuous Conduction Mode (DCM). This simple and robust topology allows obtaining a current source behavior with a low switching losses power stage. The associated control stage is implemented using a commercial controller which has differenti nternal circuits that allows a high integration of the converter control system. The report presents the design and tuning criteria for the DC-DC converter, including the power stage and the control system.

  20. On the Development of High Power DC-DC Step-Down Converter with Energy Recovery Snubber

    Directory of Open Access Journals (Sweden)

    Alok Singh

    2012-01-01

    Full Text Available The effect of switching losses on the efficiency of a switch mode power converter and methods adopted for its improvement using an energy recovery lossless snubber has been presented. A comparative analysis of various types of soft switching techniques along with effects of dissipative and nondissipative snubbers on efficiency of the converter has been carried out before zeroing in on the selected scheme. The selected snubber serves the dual function of a turn-on and turn-off snubber and thereby reducing the switching losses both during turn-on and turn-off transients, resulting in improved efficiency of the converter. A detailed design procedure of the snubber for high-power applications taking into account various effects such as diode reverse recovery, diode voltage stress, and minimum and maximum duty cycle limits, has been presented in this paper. Importance of practical aspects in layout to minimize wiring inductance is also highlighted. A high-power prototype of buck converter has been developed to experimentally validate the theoretical design and analytical observations.

  1. Digital Control Technologies for Modular DC-DC Converters

    Science.gov (United States)

    Button, Robert M.; Kascak, Peter E.; Lebron-Velilla, Ramon

    2002-01-01

    Recent trends in aerospace Power Management and Distribution (PMAD) systems focus on using commercial off-the-shelf (COTS) components as standard building blocks. This move to more modular designs has been driven by a desire to reduce costs and development times, but is also due to the impressive power density and efficiency numbers achieved by today's commercial DC-DC converters. However, the PMAD designer quickly learns of the hidden "costs" of using COTS converters. The most significant cost is the required addition of external input filters to meet strict electromagnetic interference (MIAMI) requirements for space systems. In fact, the high power density numbers achieved by the commercial manufacturers are greatly due to the lack of necessary input filters included in the COTS module. The NASA Glenn Research Center is currently pursuing a digital control technology that addresses this problem with modular DC-DC converters. This paper presents the digital control technologies that have been developed to greatly reduce the input filter requirements for paralleled, modular DC-DC converters. Initial test result show that the input filter's inductor size was reduced by 75 percent, and the capacitor size was reduced by 94 percent while maintaining the same power quality specifications.

  2. A Novel Transformerless DC–DC Converters With High Step-Up Voltage Gain And Low Voltage Stress On The Switch

    Directory of Open Access Journals (Sweden)

    hossein ajdarfaeghi

    2016-10-01

    Full Text Available In this paper, a single switch transformerless high step up dc-dc converter with low voltage stress on the switch is proposed. In the proposed converter only one switch is used which makes the control scheme simple as well as reducing the switching power loss. The voltage gain of the proposed converter is higher than the conventional boost converter and buck boost converter and Proposed converter works in wide rang than conventional converters. The proposed converter has low voltage stress on the switch which makes reducing the switching power loss. The proposed converter can be operated in the continuous conduction mode (CCM and the discontinuous conduction mode (DCM. In this paper, different operation modes of the proposed converter, calculation of the voltage gain, the currents that flow through the components, efficiency and capacitors voltage ripple are presented. To verify the operation of the proposed converter, simulation results via PSCAD software and experimental results are provided.

  3. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    Science.gov (United States)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  4. Evaluation of niobium as candidate electrode material for dc high voltage photoelectron guns

    Directory of Open Access Journals (Sweden)

    M. BastaniNejad

    2012-08-01

    Full Text Available The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirrorlike finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (<10  pA at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18.7  MV/m.

  5. Cold cracking in DC-cast high strength aluminum alloy ingots : An intrinsic problem intensified by casting process parameters

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Ruvalcaba, D.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2011-01-01

    For almost half a century the catastrophic failure of direct chill (DC) cast high strength aluminum alloys has been challenging the production of sound ingots. To overcome this problem, a criterion is required that can assist the researchers in predicting the critical conditions which facilitate the

  6. Distributed Nonlinear Control with Event-Triggered Communication to Achieve Current-Sharing and Voltage Regulation in DC Microgrids

    DEFF Research Database (Denmark)

    Han, Renke; Meng, Lexuan; Guerrero, Josep M.

    2018-01-01

    combining the state-dependent tolerance with a nonnegative offset. In order to design the event-triggered principle and guarantee the global stability, a generalized dc microgrid model is proposed and proven to be positive definite, based on which Lyapunov-based approach is applied. Furthermore, considering...... the effects from constant power loads, the damping performance of proposed controller is further improved and compared with the traditional V-I droop controller. The proposed event-triggered-based communication strategy can considerably reduce the communication traffic and significantly relax the requirement...... for precise real-time information transmission, without sacrificing system performance. Experimental results obtained from a dc microgrid setup show the robustness of the new proposal under normal, communication failure, communication delay and plug-and-play operation conditions. Finally, communication...

  7. Embedded Controlled Isolated Bidirectional Full-Bridge DC-DC Converter with Flyback Snubber

    Directory of Open Access Journals (Sweden)

    D. Kirubakaran

    2012-01-01

    Full Text Available An isolated bidirectional full-bridge DC-DC converter with flyback snubber for supplying a resistive load is simulated and experimentally verified. The DC-DC converter for high conversion ratio, high output power, and soft start-up capability is presented in this paper. The circuit consists of a capacitor, a diode, and a flyback converter. These components help to clamp the voltage spikes caused by the current difference between the current fed inductor and leakage inductance of the isolation transformer. The switches are operated by soft-switching technology. The suppression of inrush current which is usually found in the boost mode start-up transition is presented here. The simulated and experimental results for output voltage, output current, and power for both buck and boost modes are presented.

  8. High-Tc dc-SQUID gradiometers in flip-chip configuration

    Science.gov (United States)

    Peiselt, K.; Schmidl, F.; Linzen, S.; Anton, A. S.; Hübner, U.; Seidel, P.

    2003-12-01

    We describe a new design of a gradiometric flip-chip antenna, which is inductively coupled to a dc-SQUID gradiometer. Both components are patterned out of thin films of the high-Tc superconductor YBa2Cu3O7-x (YBCO). For the flip-chip antenna, a 40 mm × 10 mm SrTiO3 single crystalline substrate is used, while the gradiometer sensors are prepared on 10 mm × 10 mm SrTiO3 bicrystal substrates. Special attention is paid to the inductive coupling between the flip-chip antenna and the read-out gradiometer antenna. We investigate different designs of coupling loops in order to optimize the coupling inductance between both components of the sensor. With optimized coupling the sensor achieves a field-gradient resolution of 12 fT cm-1 Hz-1/2 in the white noise region and of 310 fT cm-1 Hz-1/2 at 1 Hz in the unshielded laboratory environment.

  9. Compound semiconductor field-effect transistors with improved dc and high frequency performance

    Energy Technology Data Exchange (ETDEWEB)

    Zolper, J.C.; Sherwin, M.E.; Baca, A.G.

    1995-12-31

    A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is deposited. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region the Si-channel tail, but does not contribute substantially to the acceptor concentration in the region of the buried p-implant. As a result, the invention provides for improved field effect transistor devices with enhancement of both DC and high-frequency performance.

  10. High spin injection polarization at an elevated dc bias in tunnel-junction-based lateral spin valves

    Science.gov (United States)

    Wang, X. J.; Zou, H.; Ocola, L. E.; Ji, Y.

    2009-07-01

    Submicron metallic lateral spin valves are fabricated with AlOx tunnel junctions as spin injection and detection barriers. The spin polarization is estimated to be ˜20%, determined by both Hanle effect and variations of device dimensions. The polarization is maintained at a large dc injection current density >2×106 A/cm2. Both the spin polarization and spin diffusion length are weakly temperature dependent.

  11. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  12. Expression of DC-SIGN and DC-SIGNRs in placentas of HIV-positive patients

    Directory of Open Access Journals (Sweden)

    Komala Pillay

    2014-09-01

    Full Text Available Background. Human dendritic cell-specific intracellular adhesion molecule-3 (ICAM3-grabbing non-integrin (DC-SIGN is a mannose-binding lectin that initiates interaction between dendritic cells and resting T-lymphocytes. DC-SIGN is highly expressed in placental tissue on dendritic cells and Hofbauer cells, and it is suggested that HIV may become adsorbed to DC-SIGN on Hofbauer cells as part of the mechanism of mother-to-child HIV transmission. A possible mechanism of transfer of the virus from the Hofbauer cells to the fetus is the subsequent adsorption to DC-SIGN-related molecules (DC-SIGNRs, present on immediately adjacent capillary vascular endothelium. However, data on DC-SIGN and DC-SIGNR expression in the placenta are few.Methods. Forty term placentas from HIV-positive mothers and 21 term placentas from HIV-negative mothers underwent immunohistochemistry staining for DC-SIGN and DC-SIGNR expression. Five random sets of 10 villi were assessed, and the average number of positive cells were counted in each case. In addition, where possible, maternal and cord blood viral loads and maternal CD4+ counts were performed in the HIV-positive group only.Results. The median maternal CD4+ count was 377 cells/µl and 27% of participants had undetectable viral loads; the median detectable viral load was 3.72 log. Most (97% of the cord bloods tested in infants from HIV-positive mothers had lower than detectable viral loads. HIV-positive cases had significantly greater expression of both DC-SIGNRs (median values in HIV-positive cases, 14.5 positive cells/10 villi (pc/10villi, compared with 11 pc/10villi in HIV-negative cases, p=0.020 and DC-SIGN (median value in HIV-positive cases, 26.5 pc/10villi, compared with 23 pc/10villi in HIV-negative cases, p=0.037. DC-SIGNR expression was also noted in Hofbauer cells and decidual macrophages in addition to endothelium (reported currently. There was no difference in expression of DC-SIGN and DC-SIGNRs in patients

  13. DC injection into low voltage AC networks

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This report summarises the results of a study investigating the impact of levels of injected DC current injections on a low voltage AC distribution network systems in order to recommend acceptable limits of DC from microgeneration. Relevant literature is reviewed, and the impact of DC levels in distribution transformers, transformer modelling, and instrumental transformers are discussed. The impact of DC in residual current devices (RCD) and in domestic electricity watt hour meters is examined along with DC enhanced corrosion, corrosion failure, and the measurement of DC current injection. Sources of DC injection outlined include DC from computer power supplies, network faults, geomagnetic phenomena, lighting circuits/dimmers, and embedded generators.

  14. High-frequency modelling of a three-phase pulse width modulation inverter towards the dc bus considering line and controller harmonics

    Directory of Open Access Journals (Sweden)

    Saeid Haghbin

    2014-10-01

    Full Text Available Closed-form analytical formulas are provided to calculate the dc bus harmonics of a three-phase sinusoidal pulse width modulation (SPWM inverter. The harmonic analysis is performed by using a double Fourier series approach to determine the dc bus current frequency spectrum. For an arbitrary modulation index and load power factor, the full harmonic components of the inverter dc side current are calculated. Based on the developed analytical model, an equivalent circuit is proposed for the inverter harmonic analysis towards the dc bus. Moreover, the impacts of line harmonics and zero sequence injection in controller towards the dc bus are presented. The results show that the 5th and 7th ac line harmonics on the dc side current is appearance of the 6th harmonic in the dc side. The impact of zero sequence injection to the controller on the dc side is negligible. In addition to analytical formulation, different simulations and extensive measurements performed which the results verified the presented analytical framework.

  15. Detection of DC currents and resistance measurements in longitudinal spin Seebeck effect experiments on Pt/YIG and Pt/NFO

    Directory of Open Access Journals (Sweden)

    Daniel Meier

    2016-05-01

    Full Text Available In this work we investigated thin films of the ferrimagnetic insulators Y 3Fe5O12 and NiFe2O4 capped with thin Pt layers in terms of the longitudinal spin Seebeck effect (LSSE. The electric response detected in the Pt layer under an out-of-plane temperature gradient can be interpreted as a pure spin current converted into a charge current via the inverse spin Hall effect. Typically, the transverse voltage is the quantity investigated in LSSE measurements (in the range of μV. Here, we present the directly detected DC current (in the range of nA as an alternative quantity. Furthermore, we investigate the resistance of the Pt layer in the LSSE configuration. We found an influence of the test current on the resistance. The typical shape of the LSSE curve varies for increasing test currents.

  16. A DC Transformer

    Science.gov (United States)

    Youngquist, Robert C.; Ihlefeld, Curtis M.; Starr, Stanley O.

    2013-01-01

    A component level dc transformer is described in which no alternating currents or voltages are present. It operates by combining features of a homopolar motor and a homopolar generator, both de devices, such that the output voltage of a de power supply can be stepped up (or down) with a corresponding step down (or up) in current. The basic theory for this device is developed, performance predictions are made, and the results from a small prototype are presented. Based on demonstrated technology in the literature, this de transformer should be scalable to low megawatt levels, but it is more suited to high current than high voltage applications. Significant development would be required before it could achieve the kilovolt levels needed for de power transmission.

  17. Impacts of an underwater high voltage DC power cable on fish migration movements in the San Francisco Bay.

    Science.gov (United States)

    Wyman, M. T.; Kavet, R.; Klimley, A. P.

    2016-02-01

    There is an increasingly strong interest on a global scale in offshore renewable energy production and transportation. However, there is concern that the electromagnetic fields (EMF) produced by these underwater cables may alter the behavior and physiology of marine species. Despite this concern, few studies have investigated these effects in free-living species. In 2009, a 85 km long high-voltage DC (HVDC) power cable was placed within the San Francisco Bay, running parallel, then perpendicular to, the migration route of anadromous species moving from the inland river system to the oceans. In this study, we assess the impacts of this HVDC cable on the migration behaviors of EMF-sensitive fish, including juvenile salmonids (Chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, Oncorhynchus mykiss) and adult green sturgeon, Acipenser medirostris. Acoustic telemetry techniques were used to track fish migration movements through the San Francisco Bay both before and after the cable was activated; individuals implanted with acoustic transmitters were detected on cross-channel hydrophone arrays at key locations in the system. Magnetic fields were surveyed and mapped at these locations using a transverse gradiometer, and models of the cable's magnetic field were developed that closely matched the empirically measured values. Here, we present our analyses on the relationships between migration-related behavioral metrics (e.g., percent of successful migrations, duration of migration, time spent near vs. far from cable location, etc.) and environmental parameters, such as cable activation and load level, local magnetic field levels, depth, and currents.

  18. Extremely High Current, High-Brightness Energy Recovery Linac

    CERN Document Server

    Ben-Zvi, Ilan; Beavis, Dana; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Grimes, Jacob T; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Kneisel, Peter; Lambiase, Robert; Litvinenko, Vladimir N; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Segalov, Zvi; Smith, Kevin T; Todd, Alan M M; Warren-Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2005-01-01

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  19. Loop heating by D.C. electric current and electromagnetic wave emissions simulated by 3-D EM particle zone

    Science.gov (United States)

    Sakai, J. I.; Zhao, J.; Nishikawa, K.-I.

    1994-01-01

    We have shown that a current-carrying plasma loop can be heated by magnetic pinch driven by the pressure imbalance between inside and outside the loop, using a 3-dimensional electromagnetic (EM) particle code. Both electrons and ions in the loop can be heated in the direction perpendicular to the ambient magnetic field, therefore the perpendicular temperature can be increased about 10 times compared with the parallel temperature. This temperature anisotropy produced by the magnetic pinch heating can induce a plasma instability, by which high-frequency electromagnetic waves can be excited. The plasma current which is enhanced by the magnetic pinch can also excite a kinetic kink instability, which can heat ions perpendicular to the magnetic field. The heating mechanism of ions as well as the electromagnetic emission could be important for an understanding of the coronal loop heating and the electromagnetic wave emissions from active coronal regions.

  20. Experimental observation of high-voltage, low-current vacuum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, R.Y.; Puzanov, S.V.; Yashnov, Y.M. [Scientific-Research Inst. Titan, Moscow (Russian Federation)

    1995-12-01

    A poorly explored type of discharge has been investigated in high vacuum (10{sup {minus}7} to 10{sup {minus}6} torr), with a DC high voltage across 0.2- to 0.8-mm gaps. The discharge has been found to be quite different from other widely known types of vacuum and gas discharges by the combination of its voltage-current characteristics (hyperbola-type), source and carriers of current (mostly electrons), and spatial potential distribution (a considerable electric field across the gap and a steep potential fall near the cathode).

  1. Rational-differential design of highly specific glycomimetic ligands: Targeting DC-SIGN and excluding Langerin recognition.

    Science.gov (United States)

    Porkolab, Vanessa; Chabrol, Eric; Varga, Norbert; Ordanini, Stefania; Sutkeviciute, Ieva; Thépaut, Michel; Garcia-Jiménez, Maria José; Girard, Eric; Nieto, Pedro M; Bernardi, Anna; Fieschi, Franck

    2017-12-22

    At the surface of dendritic cells, C-type lectin receptors (CLRs) allow the recognition of carbohydrate-based PAMPS or DAMPS (pathogen- or danger-associated molecular patterns respectively) and promote immune response regulation. However, some CLRs are hijacked by viral and bacterial pathogens. Thus, the design of ligands able to target specifically one CLR, to either modulate a immune response or to inhibit a given infection mechanism, has a great potential value in therapeutic design. A case study is the selective blocking of DC-SIGN, involved notably in HIV trans-infection of T lymphocytes, without interfering with Langerin-mediated HIV clearance. This is a challenging task due to their overlapping carbohydrate specificity. Towards the rational design of DC-SIGN selective ligands, we performed a comparative affinity study between DC-SIGN and Langerin with natural ligands. We found that GlcNAc is recognized by both CLRs, however, selective sulfatations are shown to increase the selectivity in favour of Langerin. With the combination of site-directed mutagenesis and X-ray structural analysis of Langerin/GlcNS6S complex, we highlighted that 6-sulfatation of the carbohydrate ligand induced Langerin specificity. Additionally, the K313 residue from Langerin was identified as a critical feature of its binding site. Using a rational and a differential approach in the study of CLR binding sites, we designed, synthetized and characterized a new glycomimetic which is highly specific for DC-SIGN vs Langerin. STD NMR, SPR and ITC characterizations show that compound 7 conserved the overall binding mode of the natural disaccharide while possessing an improved affinity and a strict specificity for DC-SIGN.

  2. Epoxy Based Nanodielectrics for High Voltage DC Applications : Synthesis, Dielectric Properties and Space Charge Dynamics

    NARCIS (Netherlands)

    Smit, J.J.; Andritsch, T.M.

    Main goal of the research described in this PhD thesis was to determine the influences of filler size, material and distribution on the DC breakdown strength, permittivity and space charge behaviour of nanocomposites. This should lay the groundwork for tailored insulation materials for HVDC

  3. Epoxy Based Nanodielectrics for High Voltage DC Applications : Synthesis, Dielectric Properties and Space Charge Dynamics

    NARCIS (Netherlands)

    Andritsch, T.M.

    2010-01-01

    Main goal of the research described in this PhD thesis was to determine the influences of filler size, material and distribution on the DC breakdown strength, permittivity and space charge behaviour of nanocomposites. This should lay the groundwork for tailored insulation materials for HVDC

  4. Harmonic Distortion Performance of Multi Three-Phase SCR-Fed Drive Systems with Controlled DC-Link Current under Unbalanced Grid

    DEFF Research Database (Denmark)

    Soltani, Hamid; Davari, Pooya; Blaabjerg, Frede

    2017-01-01

    . In this paper, the main aim is to analyze the effects of the grid unbalanced voltage on the multi-unit three-phase ASDs with the Silicon-Controlled Rectifier (SCR)-fed front-end rectifiers, where the DC-link current is controlled utilizing an Electronic Inductor (EI) technique. In this respect, the main...... effective factors on the drives harmonic performance are discussed. Moreover, the analysis is performed by considering an Equally-Pulse-Space (EPS) firing approach on the SCRs. Obtained simulation and experimental results verify the proposed theoretical analysis and mathematical modeling....

  5. Differential Mode EMI Filter Design for Isolated DC-DC Boost Converter

    DEFF Research Database (Denmark)

    Makda, Ishtiyaq Ahmed; Nymand, Morten

    2014-01-01

    A Differential Mode EMI filter for a low input voltage high-current isolated dc-dc boost converter is designed and presented in this paper. The primary side Differential Mode noise voltage is low due to the high transformer turn ratio, however, the input current is very high and since the EMI limit...... also does not change for such converters, it requires greatly optimized design approach for the filter including the correct sizing of the filter components. A complete analytical filter design process is carried out such a way that the Differential Mode noise voltage source in the converter...... is identified first. The DM noise model is then established and based on the harmonic analysis of the noise source voltage waveform, the complete Differential Mode EMI filter, including the filter resonance damping branch, is designed for a 3kW isolated dc-dc boost converter. The noise model and its theoretical...

  6. Overview of Multi-DC-Bus Solutions for DC Microgrids

    DEFF Research Database (Denmark)

    Ricchiuto, D.; Mastromauro, R.A.; Liserre, Marco

    2013-01-01

    DC Microgrids have recently received a lot of attention in the last years due to high penetration of renewable energy sources as well as distributed energy storage systems. In the future DC microgrids could be preferable respect to AC microgrids in terms of redundancy since multi-DC-Bus solutions...... could provide a continuative power supply to the loads. An overview of Multi-DC-Bus solutions is presented in this paper. The performances are compared on the basis of possible DC microgrid configurations, redundancy, different DC voltage levels....

  7. High current pelletron for ion implantation

    Science.gov (United States)

    Schroeder, James B.

    1989-04-01

    Since 1984, when the first production MeV ion implanter (an NEC model MV-T30) went on-line, interest in versatile electrostatic accelerator systems for MeV ion implantation has grown. The systems use a negative ion source to inject a tandem megavolt accelerator. In early systems the 0.4 mA of charging current from the two Pelletron charging chains in the accelerator was sufficient for the low intensity of beams from the ion source. This 2-chain system, however, is no longer adequate for the much higher beam intensities from today's improved ion sources. A 4-chain charging system, which delivers 1.3 mA to the high voltage terminal, was developed and is in operation in new models of NEC S Series Pelletron accelerators. This paper describes the latest beam performance of 1 MV and 1.7 MV Pelletron accelerators with this new 4-chain charging system.

  8. High Current Energy Recovery Linac at BNL

    CERN Document Server

    Litvinenko, Vladimir N; Ben-Zvi, Ilan; Blaskiewicz, Michael; Bluem, Hans; Brennan, Joseph M; Burger, Al; Burrill, Andrew; Calaga, Rama; Cameron, Peter; Chang, Xiangyun; Cole, Michael; Connolly, Roger; Delayen, Jean R; Favale, Anthony; Gassner, David M; Hahn, Harald; Hershcovitch, Ady; Holmes, Douglas; Hseuh Hsiao Chaun; Johnson, Peter; Kayran, Dmitry; Kewisch, Jorg; Lambiase, Robert; Mahler, George; McIntyre, Gary; Meng, Wuzheng; Nehring, Thomas; Nicoletti, Tony; Oerter, Brian; Pate, David; Phillips, Larry; Preble, Joseph P; Rank, Jim; Rao, Triveni; Rathke, John; Roser, Thomas; Russo, Thomas; Scaduto, Joseph; Schultheiss, Tom; Smith, Kevin T; Todd, Alan M M; Warren Funk, L; Williams, Neville; Wu, Kuo-Chen; Yakimenko, Vitaly; Yip, Kin; Zaltsman, Alex; Zhao, Yongxiang

    2004-01-01

    We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.

  9. High-resolution simulations of turbidity currents

    Science.gov (United States)

    Biegert, Edward; Vowinckel, Bernhard; Ouillon, Raphael; Meiburg, Eckart

    2017-12-01

    We employ direct numerical simulations of the three-dimensional Navier-Stokes equations, based on a continuum formulation for the sediment concentration, to investigate the physics of turbidity currents in complex situations, such as when they interact with seafloor topography, submarine engineering infrastructure and stratified ambients. In order to obtain a more accurate representation of the dynamics of erosion and resuspension, we have furthermore developed a grain-resolving simulation approach for representing the flow in the high-concentration region near and within the sediment bed. In these simulations, the Navier-Stokes flow around each particle and within the pore spaces of the sediment bed is resolved by means of an immersed boundary method, with the particle-particle interactions being taken into account via a detailed collision model. [Figure not available: see fulltext.

  10. High Current Energy Recovery Linac at BNL

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  11. DC-to-DC switching converter

    Science.gov (United States)

    Cuk, Slobodan M. (Inventor); Middlebrook, Robert D. (Inventor)

    1980-01-01

    A dc-to-dc converter having nonpulsating input and output current uses two inductances, one in series with the input source, the other in series with the output load. An electrical energy transferring device with storage, namely storage capacitance, is used with suitable switching means between the inductances to DC level conversion. For isolation between the source and load, the capacitance may be divided into two capacitors coupled by a transformer, and for reducing ripple, the inductances may be coupled. With proper design of the coupling between the inductances, the current ripple can be reduced to zero at either the input or the output, or the reduction achievable in that way may be divided between the input and output.

  12. The first muon beam from a new highly-intense DC muon source, MuSIC

    Science.gov (United States)

    Tran, Nam Hoai; MuSIC Collaboration

    2012-09-01

    A new DC muon source, MuSIC, is now under construction at Research Center for Nuclear Physics (RCNP), Osaka University, Japan. The MuSIC adopts a new pion/muon collection system and a curved transport solenoid. These techniques are important in realization of future muon programs such as the muon to electron conversion experiments (COMET/Mu2e), neutrino factories, and muon colliders. The pion capture magnet and a part of the transport solenoid have been built and beam tests were carried out to assess the MuSIC's performance. Muon lifetime measurements and muonic X-ray measurements have been used for estimation of muon yield of the MuSIC. The result indicates that the MuSIC would be one of the most intense DC muon beams in the world.

  13. Input and output filter design of current source PWM converter for high-precision magnet power supply

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Sung [Cheonan National Junior Technical College, Cheonan (Korea, Republic of); Choi, Jae Ho [Chungbuk National University, Chongju (Korea, Republic of)

    1996-01-01

    Current Source PWM converter is appropriate for the magnet power supply system which requests high power and high precision current control. Input and output filters should be installed to eliminate the current or voltage harmonics caused by the PWM switching for the current source PWM converter. But the input/output filters limit the output DC current range and may destroy the system with filter resonance, and make the system equation more complicated. In this paper, systematic and simple filter design method which considers not only the harmonic attenuation but also the total system good transfer function characteristics in the dc filter. The simulated and experimental results verify the proposed theory. (author). 14 refs., 12 figs., 8 tabs.

  14. Handbook for insulation coordination of high-voltage dc converter stations: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Flugum, R.W.; Reeve, J.; Hileman, A.R.; Breuer, G.D.; Elahi, H.; Brown, D.R.; Degenoff, R.C.

    1987-10-01

    Insulation coordination of HVDC converter stations, while using the same basic principles as are used for ac substations, is complicated by several factors; large ac var sources, harmonic filters, several voltage levels, and series surge arresters among others. This handbook provides, along with considerable background data, a step-by-step procedure for determining the appropriate surge arrester characteristics, and insulation withstand levels for both transmission and back-to-back dc systems. 29 refs., 86 figs., 54 tabs.

  15. Power Measurement and Data Logger with High-Resolution for Industrial DC-Grid Application

    Directory of Open Access Journals (Sweden)

    Apse-Apsitis Peteris

    2015-12-01

    Full Text Available Power and energy measurement and monitoring is a key factor for many industries in terms of energy and cost efficiency evaluation. Due to trends of Smart Grid concept application in industrial environment, including decentralized DC-Grid implementation, for precise evaluation – faster and low-cost measurement equipment is needed. Manufacturing industry widely uses industrial robots that have dynamic load characteristics for which faster measurement equipment is needed.

  16. DC + RSL

    DEFF Research Database (Denmark)

    Haxthausen, Anne

    1996-01-01

    This document gives some initial ideas of how the Duration Calculus (DC) can be integrated with the RAISE Specification Language (RSL).......This document gives some initial ideas of how the Duration Calculus (DC) can be integrated with the RAISE Specification Language (RSL)....

  17. Magnetoresistive Current Sensors for High Accuracy, High Bandwidth Current Measurement in Spacecraft Power Electronics

    Science.gov (United States)

    Slatter, Rolf; Goffin, Benoit

    2014-08-01

    The usage of magnetoresistive (MR) current sensors is increasing steadily in the field of power electronics. Current sensors must not only be accurate and dynamic, but must also be compact and robust. The MR effect is the basis for current sensors with a unique combination of precision and bandwidth in a compact package. A space-qualifiable magnetoresistive current sensor with high accuracy and high bandwidth is being jointly developed by the sensor manufacturer Sensitec and the spacecraft power electronics supplier Thales Alenia Space (T AS) Belgium. Test results for breadboards incorporating commercial-off-the-shelf (COTS) sensors are presented as well as an application example in the electronic control and power unit for the thrust vector actuators of the Ariane5-ME launcher.

  18. Analysis and design of a parallel-connected single active bridge DC-DC converter for high-power wind farm applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2013-01-01

    ripples without increasing switching losses or device stresses. Analysis of both the input and output current characteristics and design aspects of the transformer, the filter inductor, and the input and output filter capacitors will be presented. Considering the high maintenance cost and fault tolerant...

  19. High Precision Current Measurement for Power Converters

    CERN Document Server

    Cerqueira Bastos, M

    2015-01-01

    The accurate measurement of power converter currents is essential to controlling and delivering stable and repeatable currents to magnets in particle accelerators. This paper reviews the most commonly used devices for the measurement of power converter currents and discusses test and calibration methods.

  20. A Circulating Current Suppression Method for Parallel Connected Voltage-Source-Inverters (VSI) with Common DC and AC Buses

    DEFF Research Database (Denmark)

    Wei, Baoze; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez

    2016-01-01

    This paper describes a theoretical with experiment study on a control strategy for the parallel operation of threephase voltage source inverters (VSI), to be applied to uninterruptible power systems (UPS). A circulating current suppression strategy for parallel VSIs is proposed in this paper based...... on circulating current control loops used to modify the reference currents by compensating the error currents among parallel inverters. Both of the cross and zero-sequence circulating currents are considered. The proposed method is coordinated together with droop and virtual impedance control. In this paper......, droop control is used to generate the reference voltage of each inverter, and the virtual impedance is used to fix the output impedance of the inverters. In addition, a secondary control is used in order to recover the voltage deviation caused by the virtual impedance. And the auxiliary current control...

  1. Crafting glass vessels: current research on the ancient glass collections in the Freer Gallery of Art, Washington, D.C.

    Science.gov (United States)

    Nagel, Alexander; McCarthy, Blythe; Bowe, Stacy

    Our knowledge of glass production in ancient Egypt has been well augmented by the publication of recently excavated materials and glass workshops, but also by more recent materials analysis, and experiments of modern glass-makers attempting to reconstruct the production process of thin-walled coreformed glass vessels. From the mounting of a prefabricated core to the final glass product our understanding of this profession has much improved. The small but well preserved glass collection of the Freer Gallery of Art in Washington, D.C. is a valid tool for examining and studying the technology and production of ancient Egyptian core formed glass vessels. Charles Lang Freer (1854-1919) acquired most of the material from Giovanni Dattari in Cairo in 1909. Previously the glass had received only limited discussion, suggesting that most of these vessels were produced in the 18th Dynasty in the 15th and 14th centuries BCE, while others date from the Hellenistic period and later. In an ongoing project we conducted computed radiography in conjunction with qualitative x-ray fluorescence analysis on a selected group of vessels to understand further aspects of the ancient production process. This paper will provide an overview of our recent research and present our data-gathering process and preliminary results. How can the examinations of core formed glass vessels in the Freer Gallery contribute to our understanding of ancient glass production and technology? By focusing on new ways of looking at old assumptions using the Freer Gallery glass collections, we hope to increase understanding of the challenges of the production process of core-vessel technology as represented by these vessels.

  2. A Dual Active Bridge Converter with an Extended High-Efficiency Range by DC Blocking Capacitor Voltage Control

    DEFF Research Database (Denmark)

    Qin, Zian; Shen, Yanfeng; Loh, Poh Chiang

    2017-01-01

    A Dual Active Bridge (DAB) converter can achieve a wide high-efficiency range when its input and output voltages are equal, assuming a 1:1 turns ratio for its isolation transformer. If its input or output voltage is doubled, efficiency of the DAB will drop significantly, because of the introduction...... of hard switching and high circulating power. Thus, a new modulation scheme has been proposed, whose main idea is to introduce a voltage offset across the dc blocking capacitor connected in series with the transformer. Operational principle of the proposed modulation has been introduced, before analyzing...

  3. Current emitted by highly conducting Taylor cones

    Science.gov (United States)

    Delamora, J. Fernandez; Loscertales, I. G.

    1994-02-01

    When a liquid meniscus held at the exit of a metallic capillary tube is charged to a high voltage V, the free surface often takes the form of a cone whose apex emits a steady microjet, and thus injects a certain charge I and liquid volume Q per unit time into the surrounding gas. This work deals with liquids with relatively large conductivities K, for which the jet diameter d(j) is much smaller than the diameter d(n) of the capillary tube. In the limit d(j)/d(n) to O, the structure of the jet (d(j) and I, in particular) becomes independent of electrostatic parameters such as V or the electrode configuration, being governed mostly by the liquid properties and flow rate Q. Furthermore, the measured current is given approximately by I = f(epsilon)(gamma QK/epsilon)(exp 1/2) for a wide variety of liquids and conditions (epsilon, and gamma are, respectively, the dielectric constant of the liquid and the coefficient of interfacial tension, f(epsilon) is shown). A proposed explanation for this behavior is presented.

  4. Foundations of DC plasma sources

    Science.gov (United States)

    Tomas Gudmundsson, Jon; Hecimovic, Ante

    2017-12-01

    A typical dc discharge is configured with the negative cathode at one end and a positive anode at the other end, separated by a gas filled gap, placed inside a long glass cylinder. A few hundred volts between the cathode and anode is required to maintain the discharge. The type of discharge that is formed between the two electrodes depends upon the pressure of the working gas, the nature of the working gas, the applied voltage and the geometry of the discharge. We discuss the current–voltage characteristics of the discharge as well as the distinct structure that develops in the glow discharge region. The dc glow discharge appears in the discharge current range from μA to mA at 0.5–300 Pa pressure. We discuss the various phenomena observed in the dc glow discharge, including the cathode region, the positive column, and striations. The dc glow discharge is maintained by the emission of secondary electrons from the cathode target due to the bombardment of ions. For decades, the dc glow discharge has been used as a sputter source. Then it is often operated as an obstructed abnormal glow discharge and the required applied voltage is in the range 2–5 kV. Typically, the cathode target (the material to be deposited) is connected to a negative voltage supply (dc or rf) and the substrate holder faces the target. The relatively high operating pressure, in the range from 2 to 4 Pa, high applied voltages, and the necessity to have a conductive target limit the application of dc glow discharge as a sputter source. In order to lower the discharge voltage and expand the operation pressure range, the lifetime of the electrons in target vicinity is increased through applying magnetic field, by adding permanent magnets behind the cathode target. This arrangement is coined the magnetron sputtering discharge. The various configurations of the magnetron sputtering discharge and its applications are described. Furthermore, the use of dc discharges for chemical analysis, the

  5. Highly Sensitive Measurements of the Dark Current of Superconducting Cavities for TESLA Using a SQUID Based Cryogenic Current Comparator

    CERN Document Server

    Vodel, W; Nietzsche, S

    2004-01-01

    This contribution presents a Cryogenic Current Comparator (CCC) as an excellent tool for detecting dark currents generated, e.g. by superconducting cavities for the upcoming TESLA project (X-FEL) at DESY. To achieve the maximum possible energy the gradient of the superconducting RF cavities should be pushed close to the physical limit of 50 MV/m. The undesired field emission of electrons (so-called dark current) of the superconducting RF cavities at strong fields may limit the maximum gradient. The absolute measurement of the dark current in correlation with the gradient will give a proper value to compare and classify the cavities. The main component of the CCC is a highly sensitive LTS-DC SQUID system which is able to measure extremely low magnetic fields, e.g. caused by the dark current. For this reason the input coil of the SQUID is connected across a special designed toroidal niobium pick-up coil for the passing electron beam. A noise limited current resolution of nearly 2 pA/√(Hz) with a measu...

  6. Design of a kilowatt DC-DC converter

    Directory of Open Access Journals (Sweden)

    Liu Hongxing

    2017-01-01

    Full Text Available In view of the low power of traditional DC-DC converters, a DC-DC converter with a kilowatt power is designed. The input signal's frequency is 1 kHz and the duty cycle is 5%. The PWM signal controls the high-speed conduction or cut-off of the switch tube. The input DC voltage is 36V, and the output voltage is twice as high as the input voltage. The output power is greater than 1 KW; the circuit conversion efficiency is 87.21%.

  7. PENGGUNAAN FUZZY LOGIC UNTUK KONTROL PARALLEL CONVERTER DC-DC

    Directory of Open Access Journals (Sweden)

    Bambang Prio Hartono

    2012-09-01

    Full Text Available Abstract: Using system fuzzy logic as control  technology have been used on low load dc-dc converter with combined parallel compiled  dc-dc converter can  obtain big load.   With existence of differrence of component parameter and each parallel compiled converter can obtained different current  and voltage output.  Function of controller  for to do adjustment, so that current which is applied  to  load by each converter  can be obtained  difference error as small as possible or same. The object of research is developing design of large signal dc-dc converter which is  combined with using  FLC so that  obtain  better performance.  To get better performance have been made plant model and simulation with CDE method.  The more systematic  system and design is needed to overcome bigger load  on dc-dc converter, so that parallel  compiled current master slave control system on dc-dc converter with using fuzzy logic  controller is used. Result of  research showed that error or difference of  current  which is applied to load can handled by fuzzy logic  controller.  Technic of current and voltage controller co to do adjustment current and voltage distribution  equally to load.  Distribution of iL1,iL2 and  output voltage Vo on dc-dc  converter with load 2,25 until  7,875 and voltage  100  until 120 volt,  load current beetwen  12 until 48, % relatif  error  Vo  0,4% until  0,9%.

  8. Pulse pattern modulated strategy for harmonic current components reduction in three-phase AC-DC converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2015-01-01

    -phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable......Generated harmonic current as a consequence of employing power electronics converter is known as an important power quality issue in distribution networks. From industry point of view complying with international standards is mandatory, however cost and efficiency are two other important features...

  9. Pulse Pattern-Modulated Strategy for Harmonic Current Components Reduction in Three-Phase AC–DC Converters

    DEFF Research Database (Denmark)

    Davari, Pooya; Zare, Firuz; Blaabjerg, Frede

    2016-01-01

    -phase diode bridge rectifier, which still is preferred in many power electronic systems. This paper addresses a novel current modulation strategy using a single-switch boost three-phase diode bridge rectifier. The proposed method can selectively mitigate current harmonics, which makes it suitable......Generated harmonic current as a consequence of employing power electronics converter is known as an important power quality issue in distribution networks. From industry point of view complying with international standards is mandatory, however cost and efficiency are two other important features...

  10. The Drive Laser System for DC-SC Injector

    CERN Document Server

    Lu Xiang Yang; Quan, Shengwen; Wang, Fang; Zhao, Kui

    2004-01-01

    PKU-SCAF has developed a photoinjector which adopt a 1+1/2 cell super conducting cavity and DC electron gun. We also developed a low cost drive laser system for the photocathode DC gun to provide high average beam current. This laser system include a commercial high repetition rate, ps, all solid-state laser, the home made SHG and FHG, Fourier relay optics and the uniform illumination optics. The test results shows the output power at 266 nm of the laser system is more than 1.2W and got more than 500 A beam current from CsTe cathode from the DC gun.

  11. Design and Control of A DC Grid for Offshore Wind Farms

    DEFF Research Database (Denmark)

    Deng, Fujin

    , the high-voltage direct current (HVDC) is attractive. In addition, the DC grid may also be interested for interconnecting the wind turbines in the collection level. As a consequence, a DC grid can be established for the offshore wind farm, where the wind power collection system and power transmission...... system both adopt DC technology. S far, the existing grid codes for wind turbines are mainly focused on AC system. Therefore, the faults analysis in the DC grid and the appropriate fault protections are required for the DC grid. This thesis focuses on the design and control of the DC grid for offshore...... is proposed and designed for the HVDC system. Afterwards, the redundancy of the HVDC system under cable faults is studied, and a fault ride-through strategy is proposed for the DC grid under cable faults. Throughout the thesis, the DC grid for offshore wind farms examples are modeled with the professional...

  12. Operation of a Fuzzy Controlled Half-Bridge DC-Converter as a Welding Current-Source

    Directory of Open Access Journals (Sweden)

    Kourosh Mahmoodi

    2012-03-01

    Full Text Available In This paper a new Fuzzy Controlled Welding current source is introduced and the results of the new control method are explained. The Fuzzy controller is applied to the welding machine to improve some problems of welding process. The new intelligent controller guaranties a constant current during welding to improve welding quality. It also provides some features such as hot-start and anti-stuck function and a standby mode for energy saving. The effectiveness of this intelligent welding machine was proven by the experimental results and durable test. The results show that designed FCWM (Fuzzy Controlled Welding Machine can be used in mobile welding industries.

  13. Characterization of high-current, high-temperature superconductor current lead elements

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L. [Argonne National Lab., IL (United States); Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J. [American Superconductor Corp., Westborough, MA (United States)

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  14. Pulse-Width-Modulating Driver for Brushless dc Motor

    Science.gov (United States)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  15. Determination of Sudan I and a newly synthesized Sudan III positional isomer in the color additive D&C Red No. 17 using high-performance liquid chromatography.

    Science.gov (United States)

    Weisz, Adrian; James, India C; Tae, Christian J; Ridge, Clark D; Ito, Yoichiro

    2017-11-01

    Specifications in the Code of Federal Regulations for the color additive D&C Red No. 17 (Colour Index 26100) limit the levels of two subsidiary colors, 1-(phenylazo)-2-naphthol (Sudan I) and 1-[[2-(phenylazo)phenyl]azo]-2-naphthalenol (Sudan III o-isomer), to 3% and 2%, respectively. The present work reports the development of a high-performance liquid chromatography (HPLC) method for the quantitative determination of these subsidiary colors. Since Sudan III o-isomer needed to be synthesized for use as a reference material, a two-step procedure was devised: (i) preparative-scale synthesis of the intermediate 2-aminoazobenzene (2AAB) and its purification by counter-current chromatography and (ii) diazotization of 2AAB and coupling with 2-naphthol. Characterization of the newly synthesized Sudan III o-isomer is also reported. Sudan I and Sudan III o-isomer were quantified by using five-point calibration curves with data points ranging from 0.108 to 3.240% and 0.077 to 2.227% by weight, respectively. The HPLC method is rapid (14 min for the total analysis cycle) and simple to implement. It was applied to the analysis of test portions from 25 batches of D&C Red No. 17 submitted to the U.S. Food and Drug Administration (USFDA) for certification, and it has recently been implemented by USFDA for routine batch certification of that color additive.

  16. Effect of DC current polarization on the electrochemical behaviour of La{sub 2}NiO{sub 4+{delta}} and La{sub 3}Ni{sub 2}O{sub 7+{delta}}-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Coll, D.; Aguadero, A.; Escudero, M.J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/ Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-07-01

    The electrode performance of La{sub 2}NiO{sub 4} and La{sub 3}Ni{sub 2}O{sub 7} as cathode materials for solid oxide fuel cells (SOFC) was analyzed. The study was focused on the electrode polarization resistance of the interfaces formed by the cathodes with Ce{sub 0.8}Sm{sub 0.2}O{sub 2-{delta}} + 2%Co electrolyte. The study was extended to cathodes based on La{sub 2}NiO{sub 4}-Ce{sub 0.8}Sm{sub 0.2}O{sub 2-{delta}} composite and Pt to analyze the effect of changing the electronic and/or ionic transport properties on the electrode interface resistance. The electrode performance was studied in open circuit conditions and with DC current polarization. Important differences in the performance of the pure cathode materials were obtained as function of DC current flux. However, in La{sub 2}NiO{sub 4}-Ce{sub 0.8}Sm{sub 0.2}O{sub 2-{delta}} composite the DC current flux produces minor changes in the electrode polarization resistance. The aging process also affects the OCV electrode performance of cathodes based on Pt and pure ceramics, whereas the effect is practically invaluable in La{sub 2}NiO{sub 4}-Ce{sub 0.8}Sm{sub 0.2}O{sub 2-{delta}} composite. The electrode performance is higher for the composite cathode compared to pure ceramic electrodes for OCV or for low values of DC polarization. However, the important decrease in the interface resistance obtained for high values of DC current flux for La{sub 2}NiO{sub 4} and La{sub 3}Ni{sub 2}O{sub 7} cathodes increases their electrode performances to values close to those obtained in La{sub 2}NiO{sub 4}-Ce{sub 0.8}Sm{sub 0.2}O{sub 2-{delta}} composite. This retains the cathode overpotential with values as low as 140 mV at 750 C for values of current load of 530 mA cm{sup -2} for both pure and composite La{sub 2}NiO{sub 4}-based cathodes. The low cathode overpotential allows to estimate values of power density between 300 and 350 mW cm{sup -2} at 750 C for La{sub 2}NiO{sub 4}, La{sub 3}Ni{sub 2}O{sub 7} and La{sub 2}Ni

  17. Atmel Microcontroller Based Soft Switched PWM ZVS Full Bridge DC to DC Converter

    Directory of Open Access Journals (Sweden)

    DEEPAK KUMAR NAYAK

    2010-12-01

    Full Text Available This paper deals with the simulation and implementation of soft switched PWM ZVS full bridge DC to DC converter. The 48V DC is efficiently reduced to 12V DC using a DC to DC converter. This converter has advantages like reduced switching losses, stresses and EMI. Input DC is converted into high frequency AC and it is stepped down to 12V level. Later it is rectified using a full wave rectifier. Laboratory model of microcontroller based DC to DC converter is fabricated and tested. The experimental results are compared with the simulation results.

  18. A new optimum topology switching dc-to-dc converter

    Science.gov (United States)

    Cuk, S.; Middlebrook, R. D.

    1977-01-01

    A novel switching dc-to-dc converter is presented, which has the same general conversion property (increase or decrease of the input dc voltage) as does the conventional buck-boost converter, and which offers through its new optimum topology higher efficiency, lower output voltage ripple, reduced EMI, smaller size and weight, and excellent dynamic response. One of its most significant advantages is that both input and output current are not pulsating but are continuous (essentially dc with small superimposed switching current ripple), thus resulting in a close approximation to the ideal physically nonrealizable dc-to-dc transformer. The converter retains the simplest possible structure with the minimum number of components which, when interconnected in its optimum topology, yield the maximum performance.

  19. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  20. Design of a high DC voltage generator and D-T fuser based on particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wagner L.; Campos, Tarcisio P.R., E-mail: wagnerleite@ufmg.b, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/ UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear

    2011-07-01

    This paper approaches a design and simulation of a high voltage Cockcroft Walton multiplier and a compact size deuteron accelerator addressed in neutron generation by d-t fusion. We proposed a circuit arrangement, which was led to simulations. The particle accelerator was computer-generated providing particle transport and electric potential analysis. As results, the simulated voltage multiplier achieved 119 kV, and the accelerator presented a deuteron beam current up to 15 mA, achieving energies in order to 100 keV. In conclusion, the simulation motivates experimental essays in order to investigate the viability of a deuteron accelerator powered by a Cockcroft-Walton source. Such d-t fusor shall produce an interesting ion beam profile, reaching energy values near the d-t fusion cross section peak. (author)

  1. Improving sensitivity of residual current transformers to high frequency earth fault currents

    Directory of Open Access Journals (Sweden)

    Czapp Stanislaw

    2017-09-01

    Full Text Available For protection against electric shock in low voltage systems residual current devices are commonly used. However, their proper operation can be interfered when high frequency earth fault current occurs. Serious hazard of electrocution exists then. In order to detect such a current, it is necessary to modify parameters of residual current devices, especially the operating point of their current transformer. The authors proposed the modification in the structure of residual current devices. This modification improves sensitivity of residual current devices when high frequency earth fault current occurs. The test of the modified residual current device proved that the authors’ proposition is appropriate.

  2. The Clinical Significance of DC-SIGN and DC-SIGNR, which Are Novel Markers Expressed in Human Colon Cancer

    Science.gov (United States)

    Chen, Kai; Chen, Zhe; Sun, Zhigang; Zhang, Zhuqing; Ding, Dongbing; Ren, Shuangyi; Zuo, Yunfei

    2014-01-01

    Background Colon cancer has always been diagnosed at a late stage, which is associated with poor prognosis. The currently used serum tumor markers CEA and CA19-9 display low sensitivity and specificity and may not have diagnostic value in early stage colon cancer. Thus, there is an urgent need to identify novel serum biomarkers for use in the early detection of colon cancer. Methods In this study, the expression of DC-SIGN and DC-SIGNR in serum was detected by enzyme-linked immunosorbent assay (ELISA). DC-SIGN and DC-SIGNR expression was detected in cancer tissues by immunohistochemistry (IHC). Results The level of sDC-SIGN was lower in patients than in the healthy controls, while the level of sDC-SIGNR in patients was higher than in the healthy controls. Both sDC-SIGN and sDC-SIGNR had diagnostic significances for cancer patients, and the combined diagnosis of these two markers was higher than both of them alone. Furthermore, there were significant differences between both sDC-SIGN and sDC-SIGNR in stage I/II patients and the healthy controls. Moreover, high sDC-SIGN level was accompanied with the long survival time. Additionally, DC-SIGNR was negative in the cancer foci and matched normal colon tissues but was weakly positive between the cancer foci. DC-SIGN staining was faint in matched normal colon tissues, strong in the tumor stroma and the invasive margin of colon cancer tissues, and negatively correlated with the sDC-SIGN level in serum from the same patient. Interestingly, the percent survival of patients with a DC-SIGN mean density of>0.001219 (the upper 95% confidence interval of matched normal colon tissues) was higher than for all other patients. Conclusion DC-SIGN and DC-SIGNR are blood-based molecular markers that can potentially be used for the diagnosis of early stage patients. Moreover, expression of DC-SIGN in serum and cancer tissues may affect the survival time for colon cancer patients. PMID:25504222

  3. Design and Study of a DC/DC Converter for High Power, 14.4 V and 300 A for Automotive Applications

    OpenAIRE

    Julio Cesar Lopes de Oliveira; Carlos Henrique Gonc¸alves Treviso

    2014-01-01

    The shortage of the automotive market in relation to options for sources of high power car audio systems, led to development of this work. Thus, we developed a source with stabilized voltage with 4320 W effective power. Designed to the voltage of 14.4 V and a choice of two currents: 30 A load option in battery banks and 300 A at full load. This source can also be considered as a source of general use dedicated commercial with a simple control circuit in analog form based ...

  4. Protection for DC Distribution System with Distributed Generator

    Directory of Open Access Journals (Sweden)

    Shimin Xue

    2014-01-01

    Full Text Available DC distribution system has advantages of high power quality, large transmission capacity, high reliability, simple structure, economy and low energy consumption, and so forth. It has been a key part of smart grid nowadays. However, the development of DC distribution system is constrained by the lack of operational experience in DC system, the small interrupting capacity of DC circuit breaker (CB, and the lack of protection schemes for system itself. In this paper, protection for DC distribution system with distributed generator (DG is fully investigated and verified. Firstly, the electromagnetic transient model of DC distribution system with DG is presented. Simulation based on the electromagnetic transient model is carried out. Both the step response and the steady-state performance verify the accuracy of the model. Then the fault characteristic mechanism is analyzed, and the protection principles and scheme are investigated in detail, including voltage mutation principle as protection starting component, differential current protection principle for DC bus, and two-section current protection for distribution lines. Finally, transient responses with protection scheme are analyzed during faults. The results present that the protection principles and scheme are feasible for DC distribution system with DG.

  5. Current-voltage curve of a bipolar membrane at high current density

    NARCIS (Netherlands)

    Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.

    1996-01-01

    The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from

  6. DC-SC Photoinjector with Low Emittance at Peking University

    CERN Document Server

    Xiang Rong; Hao, J; Huang, Senlin; Lu Xiang Yang; Quan, Shengwen; Zhang, Baocheng; Zhao, Kui

    2005-01-01

    High average power Free Electron Lasers require the high quality electron beams with the low emittance and the sub-picosecond bunches. The design of DC-SC photoinjector, directly combining a DC photoinjector with an SRF cavity, can produce high average current beam with moderate bunch charge and high duty factor. Because of the DC gun, the emittance increases quickly at the beginning, so a carefully design is needed to control that. In this paper, the simulation of an upgraded design has been done to lower the normalized emittance below 1.5mm·mrad. The photoinjector consists of a DC gap and a 2+1/2-cell SRF cavity, and it is designed to produce 4.2 MeV electron beams at 100pC bunch charge and 81.25MHz repetition rate (8 mA average current).

  7. Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)

    Energy Technology Data Exchange (ETDEWEB)

    Prasad Enjeti; J.W. Howze

    2003-12-01

    This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

  8. Direct current in the future. HVDC better than a high-voltage alternating current cable; Gelijk in de toekomst. HVDC-verbonding beter dan hoogspanningskabel met wisselstroom

    Energy Technology Data Exchange (ETDEWEB)

    Van Velzen, T.

    2010-10-01

    For the development of a pan-European high-voltage grid the application of direct current (DC) technology is obvious. However, a series of incidents involving a link between the Netherlands and Norway raises questions about the reliability. An alternative conversion method seems more suited for a European supernetwork. DC transmission with insulated-gate bipolar transistor is the technology of the future. [Dutch] Voor de ontwikkeling van een pan-Europees hoogspanningsnet ligt toepassing van gelijkstroomtechnologie voor de hand. Een reeks incidenten met zo'n verbinding tussen Nederland en Noorwegen roept echter vragen op over de betrouwbaarheid. Een alternatieve conversietechniek lijkt echter geschikter voor een Europees supernet. Gelijkstroomtransmissie met 'insulated-gate bipolar' transistors is de techniek van de toekomst.

  9. Hydrodynamic and direct-current insulator-based dielectrophoresis (H-DC-iDEP) microfluidic blood plasma separation.

    Science.gov (United States)

    Mohammadi, Mahdi; Madadi, Hojjat; Casals-Terré, Jasmina; Sellarès, Jordi

    2015-06-01

    Evaluation and diagnosis of blood alterations is a common request for clinical laboratories, requiring a complex technological approach and dedication of health resources. In this paper, we present a microfluidic device that owing to a novel combination of hydrodynamic and dielectrophoretic techniques can separate plasma from fresh blood in a microfluidic channel and for the first time allows optical real-time monitoring of the components of plasma without pre- or post-processing. The microchannel is based on a set of dead-end branches at each side and is initially filled using capillary forces with a 2-μL droplet of fresh blood. During this process, stagnation zones are generated at the dead-end branches and some red blood cells (RBCs) are trapped there. An electric field is then applied and dielectrophoretic trapping of RBCs is used to prevent more RBCs entering into the channel, which works like a sieve. Besides, an electroosmotic flow is generated to sweep the rest of the RBCs from the central part of the channel. Consequently, an RBC-free zone of plasma is formed in the middle of the channel, allowing real-time monitoring of the platelet behavior. To study the generation of stagnation zones and to ensure RBC trapping in the initial constrictions, two numerical models were solved. The proposed experimental design separates up to 0.1 μL blood plasma from a 2-μL fresh human blood droplet. In this study, a plasma purity of 99 % was achieved after 7 min, according to the measurements taken by image analysis. Graphical Abstract Schematics of a real-time plasma monitoring system based on a Hydrodynamic and direct-current insulator-based dielectrophoresis microfluidic channel.

  10. High Current Beam Transport to SIS18

    CERN Document Server

    Richter, S; Dahl, L; Glatz, J; Groening, L; Yaramishev, S

    2004-01-01

    The optimized transversal and longitudinal matching of space charged dominated ion beams to SIS18 is essential for a loss free injection. This paper focuses on the beam dynamics in the transfer line (TK) from the post-stripper accelerator to the SIS18. Transverse beam emittance measurements at different positions along the TK were done. Especially, the different foil stripping modes were investigated. A longitudinal emittance measurement set-up was commissioned at the entry to the TK. It is used extensively to tune all the rebunchers along the UNILAC. An addition, a test bench is in use for measurements of longitudinal bunch profiles, which enables to monitor for the final debunching to SIS18. Multi particle simulations by means of PARMILA allow a detailed analysis of experimental results for different ion currents.

  11. Current Perspectives in High Energy Astrophysics

    Science.gov (United States)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  12. Preparation of carbon-encapsulated iron nanoparticles in high yield by DC arc discharge and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Cui, Lan; Lin, Kui [Center of Analysis, Tianjin University, Tianjin 300072 (China); Jin, Feng-min; Wang, Bin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Shi, Shu-xiu [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yang, De-an [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Hui [Center of Analysis, Tianjin University, Tianjin 300072 (China); He, Fei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Chen, Xiao-ping [Center of Analysis, Tianjin University, Tianjin 300072 (China); Cui, Shen, E-mail: cuishen@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2013-03-15

    Highlights: ► CEINPs with core–shell structure and high Fe content were prepared in high yield by DC arc discharge. ► The anode II with a mass ratio of total iron to carbon 8:1 was used in DC arc discharge. ► The possible process of formation of CEINPs is briefly discussed. ► The uniformity of composition of anode is very important for the formation of CEINPs. ► The MEF and MMF of iron element may also play an important role in the formation of CEINPs. -- Abstract: Carbon-encapsulated iron nanoparticles (CEINPs) were prepared by DC arc discharge under nitrogen atmosphere of high temperature. The products were characterized by transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscope, and X-ray photoelectron spectroscope (XPS), and their magnetic properties were measured by physical property measurement system (PPMS). The product B{sub I}, obtained from the anode I, contains the nanoparticles of iron and iron carbide, and carbon coating with imperfect and disordered layer structure. The product B{sub II}, obtained from the anode II, mainly consists of CEINPs, whose cores mainly consist of iron and iron carbide and shells contain about 3–7 graphitic layers. The iron contents in the products B{sub I} and B{sub II} are 44.8 and 82.6 wt.%, respectively. The products B{sub I} and B{sub II} have similar phase composition which includes carbon, iron, iron carbide, ferrous and ferric oxide, iron nitride, and carbon nitride. The saturation magnetization (Ms) of the products B{sub I} and B{sub II} are 29.35 and 88.66 emu/g and their coercivity (Hc) are 220 and 240 Oe, respectively. The total yields of all the products formed in the arc discharge chamber from anodes I and II, except for the cylinder-shaped deposits formed on the top of the cathode, are 25.8 and 22.3 wt.%, respectively. The possible process of formation of CEINPs is briefly discussed on

  13. DC electric springs with DC/DC converters

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2016-01-01

    The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi-directio......The concept of DC electric spring (DCES) was recently proposed to solve the stability issue caused by integrating intermittent renewable energy sources (RESs) to DC microgrids. In this paper, a new topology of DCES is proposed based on DC/DC converters. The proposed DCES consists of a bi...

  14. Droop Control of Solar PV, Grid and Critical Load using Suppressing DC Current Injection Technique without Battery Storage

    Science.gov (United States)

    Dama Mr., Jayachandra; (Mrs. , Lini Mathew, Dr.; Srikanth Mr., G.

    2017-08-01

    This paper presents design of a sustainable solar Photo voltaic system for an Indian cities based residential/community house, integrated with grid, supporting it as supplementary sources, to meet energy demand of domestic loads. The role of renewable energy sources in Distributed Generation (DG) is increasingly being recognized as a supplement and an alternative to large conventional central power supply. Though centralized economic system that solely depends on cities is hampered due to energy deficiency, the use of solar energy in cities is never been tried widely due to technical inconvenience and high installation cost. To mitigate these problems, this paper proposes an optimized design of grid-tied PV system without storage which is suitable for Indian origin as it requires less installallation cost and supplies residential loads when the grid power is unavailable. The energy requirement is mainly fulfilled from PV energy module for critical load of a city located residential house and supplemented by grid/DG for base and peak load. The system has been developed for maximum daily household demand of 50kWp and can be scaled to any higher value as per requirement of individual/community building ranging from 50kWp to 60kWp as per the requirement. A simplified control system model has been developed to optimize and control flow of power from these sources. The simulation work, using MATLAB Simulink software for proposed energy management, has resulted in an optimal yield leading efficient power flow control of proposed system.

  15. High current injector for heavy ion fusion

    Science.gov (United States)

    Yu, S.; Eylon, S.; Chupp, W. W.

    1993-05-01

    A 2 MV, 800 mA, K(+) injector for heavy ion fusion studies is under construction. This new injector is a one-beam version of the proposed 4-beam ILSE injector. A new 36-module MARX is being built to achieve a 5 micro-s flat top. The high voltage generator is stiff (less than 5k Omega) to minimize effects of beam-induced transients. A large (approximately 7 in. diameter) curved hot alumina-silicate source emits a 1 micro-s long beam pulse through a gridless extraction electrode, and the ions are accelerated to 1 MV in a diode configuration. Acceleration to 2 MV takes place in a set of electrostatic quadrupole (ESQ) units, arranged to simultaneously focus and accelerate the ion beam. Heavy shields and other protection devices have been built in to minimize risks of high voltage breakdown. Beam aberration effects through the ESQ have been studied extensively with theory, simulations, and scaled experiments. The design, simulations, experiments, and engineering of the ESQ injector will be presented.

  16. Dielectric and insulating properties of an acrylic DEA material at high near-DC electric fields

    Science.gov (United States)

    Di Lillo, L.; Schmidt, A.; Bergamini, A.; Ermanni, P.; Mazza, E.

    2011-04-01

    A number of adaptive structure applications call for the generation of intense electric fields (in excess of 70 MV/m). Such intense fields across the thickness of a thin polymer dielectric layer are typically used to exploit the direct electromechanical coupling in the form of a Maxwell stress: (see manuscript) Where V/d is the applied field, ɛ0 is the permittivity of vacuum and ɛ is the relative permittivity of the material. The field that can be applied to the dielectric is limited by the dielectric strength of the material. Below the limit set by the breakdown, the material is generally assumed to have a field independent dielectric constant and to be a perfect insulator, i.e. to have an infinite volume resistivity. While extensive investigations about the mechanical properties of the materials used for electronic Dielectric Elastomer Actuators (DEA) are available from literature, the results of the investigation of the insulating and dielectric properties of these materials, especially under conditions (electric field and frequency) similar to the ones encountered during operation are not available. In the present contribution, we present a method and a set-up for the measurement of the electric properties of thin polymer films, such as the ones used for the fabrication of electronic DEAs, under conditions close to operations. The method and setup where developed to investigate the properties of 'stiff' thin polymer films, such as Polyimide or Polyvinylidenefluoride, used for Electro-Bonded Laminates (EBLs). The properties of the well known VHB 4910 acrylic elastomer are presented to illustrate how the permittivity and the leakage current can be measured as a function of the electric field and the deformation state, using the proposed set-up. The material properties were measured on membranes under different fixed pre-stretch conditions (λ 1, λ2=3, 4, 5), in order to eliminate effects due to the change in sample geometry, using gold sputtered electrodes, 20

  17. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  18. THE METHOD OF SELECTION OF THE SETPOINT HIGH SPEED FEEDER SWITCH OF 3,3KV DC WITH MICROPROCESSOR-BASED PROTECTION SYSTEMS

    Directory of Open Access Journals (Sweden)

    P. Ye. Mykhalichenko

    2009-10-01

    Full Text Available In the article a new procedure of choice of minimum current jump for action of fast-acting switches of 3.3 kV DC traction substations intended for the use in the microprocessor protection system of feeders is described. This procedure is more perfect than existing one on the current increment and uses the results of mathematical simulation of the traction electric supply system.

  19. Active DC Bus Signaling Control Method for Coordinating Multiple Energy Storage Devices in DC Microgrid

    OpenAIRE

    Li, Fulong; Lin, Zhengyu; Qian, Zhongnan; Wu, Jiande

    2017-01-01

    This paper will be presented in 2017 Second IEEE International Conference on DC Microgrids (ICDCM) on 28th June 2017. Abstract: Management of multiple energy storage devices in a DC microgrid is a challenge. Conventional method, such as droop control, cannot ensure accurate current sharing in coordinating multiple battery banks, which limits the DC microgrid system performance. This paper proposed an active DC bus signaling (ADBS) method to coordinate multiple battery banks in a DC microg...

  20. High molecular weight components containing N-linked oligosaccharides of Ascaris suum extract inhibit the dendritic cells activation through DC-SIGN and MR.

    Science.gov (United States)

    Favoretto, Bruna C; Casabuono, Adriana A C; Portes-Junior, José A; Jacysyn, Jacqueline F; Couto, Alicia S; Faquim-Mauro, Eliana L

    2017-07-01

    Helminths, as well as their secretory/excretory products, induce a tolerogenic immune microenvironment. High molecular weight components (PI) from Ascaris suum extract down-modulate the immune response against ovalbumin (OVA). The PI exerts direct effect on dendritic cells (DCs) independent of TLR 2, 4 and MyD88 molecule and, thus, decreases the T lymphocytes response. Here, we studied the glycoconjugates in PI and the role of C-type lectin receptors (CLRs), DC-SIGN and MR, in the modulation of DCs activity. Our data showed the presence of glycoconjugates with high mannose- and complex-type N-linked oligosaccharide chains and phosphorylcholine residues on PI. In addition, these N-linked glycoconjugates inhibited the DCs maturation induced by LPS. The binding and internalization of PI-Alexa were decreased on DCs previously incubated with mannan, anti-DC-SIGN and/or anti-MR antibodies. In agreement with this, the incubation of DCs with mannan, anti-DC-SIGN and/or anti-MR antibodies abolished the down-modulatory effect of PI on these cells. It was also observed that the blockage of CLRs, DC-SIGN and MR on DCs reverted the inhibitory effect of PI in in vitro T cells proliferation. Therefore, our data show the involvement of DC-SIGN and MR in the recognition and consequent modulatory effect of N-glycosylated components of PI on DCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Thermal Impact Analysis of Circulating Current in High Power Modular Online Uninterruptible Power Supplies Application

    DEFF Research Database (Denmark)

    Zhang, Chi; Guerrero, Josep M.; Vasquez, Juan Carlos

    2015-01-01

    In a modular uninterruptible power supplies (UPS), each DC/AC module was designed to work in a circular way considering the reliability and power stress issues of the whole system. Thus unsynchronized PWMs will occur if any of the DC/AC modules is plugged in or out of the system at any time....... And thermal and loss distribution condition are investigated under different circulating current condition with conventional three phase H-bridge topology....

  2. Fault Tolerant Operation of ISOP Multicell Dc-Dc Converter Using Active Gate Controlled SiC Protection Switch

    OpenAIRE

    Yusuke Hayashi; Yoshikatsu Matsugaki; Tamotsu Ninomiya

    2016-01-01

    An active gate controlled semiconductor protection switch using SiC-MOSFET is proposed to achieve the fault tolerant operation of ISOP (Input Series and Output Parallel) connected multicell dc-dc converter. The SiC-MOSFET with high temperature capability simplifies the configuration of the protection circuit, and its on-resistance control by the active gate controller realizes the smooth protection without the voltage and the current surges. The first laboratory prototype of the protection sw...

  3. Design of high voltage DC power supply based on LCC resonant converter

    Science.gov (United States)

    Wang, Z. Q.; Liu, Z. G.; Wang, J. J.; Li, G. F.

    2013-03-01

    The aim of this paper is to design a small size, light weight high frequency high voltage (HFHV) power supply. It presents a comprehensive procedure for designing a high output voltage power supply based on series-parallel (LCC) resonant converter, aiming to realize the soft-switching. Through mathematical calculation based on an extensive of the first harmonic analysis, the paper derives the approach of determining the resonant parameters of the LCC converter. Then, a 35 kV power supply featuring a series-parallel resonant converter topology to compensate the distributed parameter is built to verify the correctness of the theory.

  4. High Average Current Electron Guns for High-Power FELs

    Science.gov (United States)

    2009-12-09

    FELs 10 Appendix B: Thermionic Injectors 11 Appendix C: Grid Fields and Bunch Emittance 13 Appendix D: PARMELA Simulation of an IOT Gun 16...Inductive Output Tube ( IOT ) amplifiers [32-34] and can generate average currents of ~1 A, peak currents of ~ 5-10 A, cathode-anode voltages of ~ 35...of grid wires, centered at z = zG and x = ±a, ±3a, ±5a, ..., is given by <D(JC,Z) = - X n = ±l.±3. Fa(x,z) Gn(x,z) ( C3 ) where *0 = (1 / 2

  5. DC Distribution Systems and Microgrids

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Anvari-Moghaddam, Amjad; Quintero, Juan Carlos Vasquez

    2017-01-01

    A qualitative overview of different hardware topologies and control systems for DC MGs has been presented in this chapter. Some challenges and design considerations of DC protections systems have also been discussed. Finally, applications of DC MGs in emerging smart grid applications have been su...... in different industries and gradually lead to new ways of rethinking of the future power distribution philosophies, especially with the emergence of SSTs. Research in DC systems, especially in the power electronics-based technologies will be highly attractive in the future....

  6. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    Science.gov (United States)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  7. CMOS-MEMS Microgravity Accelerometer with High-Precision DC Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II SBIR project a high-sensitivity low-noise all-silicon CMOS-MEMS accelerometer for quasi-steady measurements of accelerations at sub 1 micro-g levels...

  8. CMOS-MEMS Microgravity Accelerometer with High-Precision DC Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR effort initiates development of a high-sensitivity low-noise all-silicon CMOS-MEMS accelerometer for quasi-steady measurements of accelerations at...

  9. Dc-To-Dc Converter Uses Reverse Conduction Of MOSFET's

    Science.gov (United States)

    Gruber, Robert P.; Gott, Robert W.

    1991-01-01

    In modified high-power, phase-controlled, full-bridge, pulse-width-modulated dc-to-dc converters, switching devices power metal oxide/semiconductor field-effect transistors (MOSFET's). Decreases dissipation of power during switching by eliminating approximately 0.7-V forward voltage drop in anti-parallel diodes. Energy-conversion efficiency increased.

  10. Toward the Universal DC Distribution System

    NARCIS (Netherlands)

    Mackay, L.J.; van der Blij, N.H.; Ramirez Elizondo, L.M.; Bauer, P.

    2017-01-01

    AbstractDue to an increasing number of power generation units and load devices operating with direct current (DC) at distribution level, there is a potential benefit of leading efforts toward building a DC distribution system. However, the implementation of DC distribution systems faces important

  11. Optimal Design and Tradeoff Analysis of Planar Transformer in High-Power DC–DC Converters

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    The trend toward high power density, high operating frequency, and low profile in power converters has exposed a number of limitations in the use of conventional wire-wound magnetic component structures. A planar magnetic is a low-profile transformer or inductor utilizing planar windings, instead...... of the traditional windings made of Cu wires. In this paper, the most important factors for planar transformer (PT) design including winding loss, core loss, leakage inductance, and stray capacitance have individually been investigated. The tradeoffs among these factors have to be analyzed in order to achieve...

  12. Step-Up DC-DC converters

    DEFF Research Database (Denmark)

    Forouzesh, Mojtaba; Siwakoti, Yam P.; Gorji, Saman A.

    2017-01-01

    on the general law and framework of the development of next-generation step-up dc-dc converters, this paper aims to comprehensively review and classify various step-up dc-dc converters based on their characteristics and voltage-boosting techniques. In addition, the advantages and disadvantages of these voltage...

  13. High performance AC–DC control power supply for low voltage ride ...

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana; Volume 41; Issue 2 ... The CPS design presented here maintains a constant 24Vdc output even over a wide (90Vrms to 270Vrms ) ac voltage variation at its input for a High Power Converter (HPC). ... The CPS was tested for wide input voltage range (vin) and the performance validates the design.

  14. A Highly intense DC muon source, MuSIC and muon CLFV search

    Energy Technology Data Exchange (ETDEWEB)

    Hino, Y.; Kuno, Y.; Sato, A. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Sakamoto, H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Matsumoto, Y.; Tran, N.H.; Hashim, I.H. [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fukuda, M.; Hayashida, Y. [Research Center of Nuclear Physics, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Ogitsu, T.; Yamamoto, A.; Yoshida, M. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2014-08-15

    MuSIC is a new muon facility, which provides the world's highest intense muon beam with continuous time structure at Research Center of Nuclear Physics (RCNP), Osaka University. It's intensity is designed to be 10{sup 8} muons per second with only 0.4 kW proton beam. Such a high intense muon beam is very important for searches of rare decay processes, for example search for the muon to electron conversion.

  15. Ultra-High Voltage DC Convertor Station Equipment Condition Data Access Technology Based on multi-Source Heterogeneous Fusion

    Science.gov (United States)

    Wang, Feng; Zhang, Bo-wen; Han, Shuai; Ren, Wei; Xu, Hai-jun; Fu, Long-ming

    2017-07-01

    With the large-scale construction of special high-voltage project, as well as power supply reliability, security, economic and other increasingly demanding, state monitoring equipment involved in more and more monitoring projects and more and more monitoring data, because these data exist in multiple isolated systems in the Ultra-High Voltage(UHV) AC-DC substation, there is no data sharing mechanism, so a holistic analysis, application and sharing approach for the data set will need a deep consideration. In this paper, the equipment condition monitoring system frame of the UHV converter station and the scheme of the equipment state data access of UHV converter station based on the multi-source and heterogeneous data fusion are presented. Then, data exchange technology of UHV equipment state early warning center was introduced, and a data access and conversion device in the Zhongzhou converter station was deployed to solve the timeliness and functionality difficult of the existing system to meet the requirements of UHV operation and maintenance support.

  16. A Novel High-Frequency Voltage Standing-Wave Ratio-Based Grounding Electrode Line Fault Supervision in Ultra-High Voltage DC Transmission Systems

    Directory of Open Access Journals (Sweden)

    Yufei Teng

    2017-03-01

    Full Text Available In order to improve the fault monitoring performance of grounding electrode lines in ultra-high voltage DC (UHVDC transmission systems, a novel fault monitoring approach based on the high-frequency voltage standing-wave ratio (VSWR is proposed in this paper. The VSWR is defined considering a lossless transmission line, and the characteristics of the VSWR under different conditions are analyzed. It is shown that the VSWR equals 1 when the terminal resistance completely matches the characteristic impedance of the line, and when a short circuit fault occurs on the grounding electrode line, the VSWR will be greater than 1. The VSWR will approach positive infinity under metallic earth fault conditions, whereas the VSWR in non-metallic earth faults will be smaller. Based on these analytical results, a fault supervision criterion is formulated. The effectiveness of the proposed VSWR-based fault supervision technique is verified with a typical UHVDC project established in Power Systems Computer Aided Design/Electromagnetic Transients including DC(PSCAD/EMTDC. Simulation results indicate that the proposed strategy can reliably identify the grounding electrode line fault and has strong anti-fault resistance capability.

  17. Circuit for Communication over DC Power Line Using High Temperature Electronics

    Science.gov (United States)

    Krasowski, Michael J. (Inventor); Prokop, Norman F. (Inventor)

    2014-01-01

    A high temperature communications circuit includes a power conductor for concurrently conducting electrical energy for powering circuit components and transmitting a modulated data signal, and a demodulator for demodulating the data signal and generating a serial bit stream based on the data signal. The demodulator includes an absolute value amplifier for conditionally inverting or conditionally passing a signal applied to the absolute value amplifier. The absolute value amplifier utilizes no diodes to control the conditional inversion or passing of the signal applied to the absolute value amplifier.

  18. High Current, Low Voltage Power Converter [20kA, 6V] LHC Converter Prototype

    CERN Document Server

    Jørgensen, H E; Dupaquier, A; Fernqvist, G

    1998-01-01

    The superconducting LHC accelerator requires high currents (~12.5kA) and relatively low voltages (~10 V) for its magnets. The need to install the power converters underground is the driving force for reduced volume and high efficiency. Moreover, the LHC machine will require a very high level of performance from the power converters, particularly in terms of DC stability, dynamic response and also in matters of EMC. To meet these requirements soft-switching techniques will be used. This paper describes the development of a [20kA,6V] power converter intended as a stable high-current source for D CCT calibration and an evaluation prototype for the future LHC converters. The converter is made with a modular concept with five current sources [4kA,6V] in parallel. The 4kA sources are built as plu g-in modules: a diode rectifier on the AC mains with a damped L-C passive filter, a Zero Voltage Switching inverter working at 20 kHz and an output stage (high frequency transformers, Schottky rectifi ers and output filter...

  19. NAMMA DC-8 DROPSONDE V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA DC-8 Dropsonde dataset were collected by the DC-8 dropsonde system, which uses an integrated, highly accurate, GPS-located atmospheric profiling dropsonde...

  20. Electrical and structural R&D activities on high voltage dc solid insulator in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Marcuzzi, D.; Rizzolo, A.; Grando, L.; Gambetta, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Rosa, S. Dalla [Umicore – Italbras S.p.A., Strada del Balsego, n.6, 36100 Vicenza (Italy); Kraemer, V.; Quirmbach, T. [FRIATEC Ceramics Division, Steinzeugstrasse 50, 68229 Mannheim (Germany); Chitarin, G. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy); Gobbo, R.; Pesavento, G. [DII, Università di Padova, v. Gradenigo 6/A, I-35131 Padova (Italy); De Lorenzi, A.; Lotto, L.; Rizzieri, R.; Fincato, M.; Romanato, L.; Trevisan, L.; Cervaro, V.; Franchin, L. [Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2015-10-15

    Highlights: • A thorough R&D activity on the MITICA post insulator prototypes is being carried out. • The design has been numerically verified considering both mechanical and electrical aspects. • Experimental validation has been started, with positive results in both involved fields. • Alternative design solutions thickness have been proposed and successfully tested. - Abstract: This paper describes the R&D work performed in support of the design of the alumina insulators for the MITICA Neutral Beam Injector. The ceramic insulators are critical elements, both from the structural and electrical point of view, of the 1 MV electrostatic accelerator of the MITICA injector, as they are required to sustain both the mechanical loads due to the cantilevered weight of the ion source and the high electric field between the accelerator grids. This paper presents the results of numerical simulations and experimental tests on prototypes that have been carried out to validate the insulator design under realistic operating conditions.

  1. Energy efficiency analysis of two-sided feed scheme of DC traction network with high asymmetry of feeders parameters

    Science.gov (United States)

    Abramov, E. Y.; Sopov, V. I.

    2017-10-01

    In a given research using the example of traction network area with high asymmetry of power supply parameters, the sequence of comparative assessment of power losses in DC traction network with parallel and traditional separated operating modes of traction substation feeders was shown. Experimental measurements were carried out under these modes of operation. The calculation data results based on statistic processing showed the power losses decrease in contact network and the increase in feeders. The changes proved to be critical ones and this demonstrates the significance of potential effects when converting traction network areas into parallel feeder operation. An analytical method of calculation the average power losses for different feed schemes of the traction network was developed. On its basis, the dependences of the relative losses were obtained by varying the difference in feeder voltages. The calculation results showed unreasonableness transition to a two-sided feed scheme for the considered traction network area. A larger reduction in the total power loss can be obtained with a smaller difference of the feeders’ resistance and / or a more symmetrical sectioning scheme of contact network.

  2. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  3. Stability analysis of direct current control in current source rectifier

    DEFF Research Database (Denmark)

    Lu, Dapeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Current source rectifier with high switching frequency has a great potential for improving the power efficiency and power density in ac-dc power conversion. This paper analyzes the stability of direct current control based on the time delay effect. Small signal model including dynamic behaviors...... of dc link is developed to identify the control plants of grid ac current control and dc current control. Analysis on the poles and zeros under dq frame is carried out. Base on this model, it turns out that the phase lag caused by the time delay can stabilized the grid ac current control while reduces...... the stable region for dc current control. Simulation and experimental results are presented to validate the theoretical analysis....

  4. Investigation into the Control Methods to Reduce the DC-Link Capacitor Ripple Current in a Back-to-Back Converter

    DEFF Research Database (Denmark)

    Qin, Zian; Wang, Huai; Blaabjerg, Frede

    2014-01-01

    Three-phase back-to-back converters have a wide range of applications (e.g. wind turbines) in which the reliability and cost-effectiveness are of great concern. Among other components and interconnections, DC-link capacitors are one of the weak links influenced by environmental stresses (e...

  5. A 20 kA Test Bench for High-Precision Current Measurements

    CERN Document Server

    Dahlerup-Petersen, K; Valbuena, R

    1998-01-01

    The d.c. currents in the LHC dipole and quadrupole chains will require settings and adjustments with a precision of a few ppm. For an ultimate current level of 13 kA this represents an unprecedented accuracy. Compared to the requirements of previous accelerators at CERN, such as the LEP, this is a factor of ten better in accuracy at more than twice the current. State-of-the-art, zero-flux current transducers from Industry will be used for the precision measurements. As no existing laboratory would be capable of performing the calibrations of these transducers to the required precision, a major upgrading of the current Standards laboratory at CERN was decided. The paper describes the various phases of the project, from field calculations and design to construction and final commissioning of this unique test bench. The highly automated facility allows determination of off-sets, linearity and drift of transducers up to 20 kA but provides equally the means to study the sensitivity of the transducers to external s...

  6. Multiple Modes of Binding Enhance the Affinity of DC-SIGN for High-Mannose N-Linked Glycans Found on Viral Glycoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, H.; Castelli, R.; Drickamer, K.; Seeberger, P.H.; Weis, W.I.; /Stanford U., Med. School /Zurich, ETH /Imperial Coll., London

    2007-07-09

    The dendritic cell surface receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR specifically recognize high mannose N-linked carbohydrates on viral pathogens. Previous studies have shown that these receptors bind the outer trimannose branch Man{alpha}1-3[Man{alpha}1-6]Man{alpha} present in high mannose structures. Although the trimannoside binds to DC-SIGN or DC-SIGNR more strongly than mannose, additional affinity enhancements are observed in the presence of one or more Man{alpha}1-2Man{alpha} moieties on the nonreducing termini of oligomannose structures. The molecular basis of this enhancement has been investigated by determining crystal structures of DC-SIGN bound to a synthetic six-mannose fragment of a high mannose N-linked oligosaccharide, Man{alpha}1-2Man{alpha}1-3[Man{alpha}1-2Man{alpha}1-6]Man{alpha}1-6Man and to the disaccharide Man{alpha}1-2Man. The structures reveal mixtures of two binding modes in each case. Each mode features typical C-type lectin binding at the principal Ca{sup 2+}-binding site by one mannose residue. In addition, other sugar residues form contacts unique to each binding mode. These results suggest that the affinity enhancement displayed toward oligosaccharides decorated with the Man{alpha}1-2Man{alpha} structure is due in part to multiple binding modes at the primary Ca{sup 2+} site, which provide both additional contacts and a statistical (entropic) enhancement of binding.

  7. A resonant dc-dc power converter assembly

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor of the s......The present invention relates to a resonant DC-DC power converter assembly comprising a first resonant DC-DC power converter and a second resonant DC-DC power converter having identical circuit topologies. A first inductor of the first resonant DC-DC power converter and a second inductor...

  8. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current.

    Science.gov (United States)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  9. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    Science.gov (United States)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  10. Bi-Directional DC-DC Converter for PHEV Applications

    Energy Technology Data Exchange (ETDEWEB)

    Abas Goodarzi

    2011-01-31

    Plug-In Hybrid Electric Vehicles (PHEV) require high power density energy storage system (ESS) for hybrid operation and high energy density ESS for Electric Vehicle (EV) mode range. However, ESS technologies to maximize power density and energy density simultaneously are not commercially feasible. The use of bi-directional DC-DC converter allows use of multiple energy storage, and the flexible DC-link voltages can enhance the system efficiency and reduce component sizing. This will improve fuel consumption, increase the EV mode range, reduce the total weight, reduce battery initial and life cycle cost, and provide flexibility in system design.

  11. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used...

  12. Elimination of output voltage oscillations in DC-DC converter using PWM with PI controller

    Directory of Open Access Journals (Sweden)

    Sreenivasappa Veeranna Bhupasandra

    2010-01-01

    Full Text Available In this paper the SIMULINK model of a PWM controlled DC-DC converter is modeled using switching function concept to control the speed of the DC motor. The presence of the voltage oscillation cycles due to higher switching frequency in the DC-DC converter is identified. The effect of these oscillations on the output voltage of the converter, Armature current, Developed torque and Speed of the DC motor is analyzed. In order to minimize the oscillation cycles the PI controller is proposed in the PWM controller.

  13. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  14. Early Oscillation Detection Technique for Hybrid DC/DC Converters

    Science.gov (United States)

    Wang, Bright L.

    2011-01-01

    Oscillation or instability is a situation that must be avoided for reliable hybrid DC/DC converters. A real-time electronics measurement technique was developed to detect catastrophic oscillations at early stages for hybrid DC/DC converters. It is capable of identifying low-level oscillation and determining the degree of the oscillation at a unique frequency for every individual model of the converters without disturbing their normal operations. This technique is specially developed for space-used hybrid DC/DC converters, but it is also suitable for most of commercial and military switching-mode power supplies. This is a weak-electronic-signal detection technique to detect hybrid DC/DC converter oscillation presented as a specific noise signal at power input pins. It is based on principles of feedback control loop oscillation and RF signal modulations, and is realized by using signal power spectral analysis. On the power spectrum, a channel power amplitude at characteristic frequency (CPcf) and a channel power amplitude at switching frequency (CPsw) are chosen as oscillation level indicators. If the converter is stable, the CPcf is a very small pulse and the CPsw is a larger, clear, single pulse. At early stage of oscillation, the CPcf increases to a certain level and the CPsw shows a small pair of sideband pulses around it. If the converter oscillates, the CPcf reaches to a higher level and the CPsw shows more high-level sideband pulses. A comprehensive stability index (CSI) is adopted as a quantitative measure to accurately assign a degree of stability to a specific DC/DC converter. The CSI is a ratio of normal and abnormal power spectral density, and can be calculated using specified and measured CPcf and CPsw data. The novel and unique feature of this technique is the use of power channel amplitudes at characteristic frequency and switching frequency to evaluate stability and identify oscillations at an early stage without interfering with a DC/DC converter s

  15. Hierarchical Power Sharing Control in DC Microgrids

    DEFF Research Database (Denmark)

    Peyghami, Saeed; Mokhtari, Hossein; Blaabjerg, Frede

    2016-01-01

    Because of the advances in power electronics, DC-based power systems, have been used in industrial applications such as data centers [18], space applications [10], aircraft [12], offshore wind farms, electric vehicles [56], DC home systems [5, 20], and high-voltage DC transmission systems...

  16. Control and dynamic analysis of a parallel-connected single active bridge DC-DC converter for DC-grid wind farm application

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2015-01-01

    This study presents a control strategy and its dynamic analysis of a high-power dc-dc converter, which is constructed with the parallel-connected single active bridge (SAB) dc-dc converters for dc-grid wind farm applications. The structural and operational characteristics of the SAB dc-dc convert...... for dc-grid wind farm applications, an input voltage control method based on the PI control will be introduced and the dynamics of the overall system will be analysed. The analysis results are to be verified by means of simulations and experiments.......This study presents a control strategy and its dynamic analysis of a high-power dc-dc converter, which is constructed with the parallel-connected single active bridge (SAB) dc-dc converters for dc-grid wind farm applications. The structural and operational characteristics of the SAB dc-dc converter...... have several advantages for high-power applications, and the modular concept of the parallel-connected converter is highly beneficial especially for offshore wind farm applications in terms of maintenance cost and fault tolerance. To justify the feasibility of the parallel-connected SAB dc-dc converter...

  17. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    Science.gov (United States)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost

  18. Ultra-Low-Voltage CMOS-Based Current Bleeding Mixer with High LO-RF Isolation

    Directory of Open Access Journals (Sweden)

    Gim Heng Tan

    2014-01-01

    Full Text Available This journal presents an ultra-low-voltage current bleeding mixer with high LO-RF port-to-port isolation, implemented on 0.13 μm standard CMOS technology for ZigBee application. The architecture compliments a modified current bleeding topology, consisting of NMOS-based current bleeding transistor, PMOS-based switching stage, and integrated inductors achieving low-voltage operation and high LO-RF isolation. The mixer exhibits a conversion gain of 7.5 dB at the radio frequency (RF of 2.4 GHz, an input third-order intercept point (IIP3 of 1 dBm, and a LO-RF isolation measured to 60 dB. The DC power consumption is 572 µW at supply voltage of 0.45 V, while consuming a chip area of 0.97 × 0.88 mm2.

  19. Children's Health in Washington, D.C.: Access and Health Challenges despite High Insurance Coverage Rates. Research Highlights

    Science.gov (United States)

    Adamson, David M.

    2009-01-01

    In Washington, D.C., the vast majority of children have health insurance. Yet District children often lack sufficient access to medical care and face significant health threats from chronic conditions and risk factors such as exposure to violence in schools and neighborhoods. These findings emerged from an assessment of children's health in…

  20. Single conversion audio amplifier and DC-AC converters with high performance and low complexity control scheme

    DEFF Research Database (Denmark)

    Poulsen, Søren; Andersen, Michael Andreas E.

    2004-01-01

    This paper proposes a novel control topology for a mains isolated single conversion audio amplifier and DC-AC converters. The topology is made for use in audio applications, and differs from prior art in terms of significantly reduced distortion as well as lower system complexity. The topology can...

  1. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley

    2017-08-21

    We present a decentralized control strategy that yields switch interleaving among parallel-connected dc-dc buck converters. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform and no communication between different controllers is needed. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work presents the first fully decentralized strategy for switch interleaving in paralleled dc-dc buck converters.

  2. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian B [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rodriguez, Miguel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sinha, Mohit [University of Minnesota; Dhople, Sairaj [University of Minnesota; Poon, Jason [University of California at Berkeley

    2017-09-01

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy for switch interleaving of paralleled dc-dc buck converters.

  3. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    employing the adiabatic bunching process. This process increases the capture effi- ciency of the RFQ to nearly 100%. Because of their high capture efficiency at low energies, the RFQs suite well as a first unit of high-current RF linear accelerators in many advanced applications, such as production of radioactive ion beams ...

  4. Molecular basis of the differences in binding properties of the highly related C-type lectins DC-SIGN and L-SIGN to Lewis X trisaccharide and Schistosoma mansoni egg antigens

    NARCIS (Netherlands)

    van Liempt, Ellis; Imberty, Anne; Bank, Christine M. C.; van Vliet, Sandra J.; van Kooyk, Yvette; Geijtenbeek, Teunis B. H.; van Die, Irma

    2004-01-01

    The dendritic cell-specific C-type lectin DC-SIGN functions as a pathogen receptor that recognizes Schistosoma mansoni egg antigens through its major glycan epitope Galbeta1,4(Fucalpha1,3)GlcNAc (Lex). Here we report that L-SIGN, a highly related homologue of DC-SIGN found on liver sinusoidal

  5. Molecular basis of the differences in binding properties of the highly related C-type lectins DC-SIGN and L-SIGN to Lewis X trisaccharide and Schistosoma mansoni egg antigens.

    NARCIS (Netherlands)

    Liempt, P.A.G.; Imberty, A; Bank, CM; Vliet, van SJ; Kooijk, van Y.; Geijtenbeek, T.B.H.; Die, van I.M.

    2004-01-01

    The dendritic cell-specific C-type lectin DC-SIGN functions as a pathogen receptor that recognizes Schistosoma mansoni egg antigens through its major glycan epitope Galbeta1,4(Fucalpha1,3)GlcNAc (Lex). Here we report that L-SIGN, a highly related homologue of DC-SIGN found on liver sinusoidal

  6. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  7. Zener diode controls switching of large direct currents

    Science.gov (United States)

    1965-01-01

    High-current zener diode is connected in series with the positive input terminal of a dc supply to block the flow of direct current until a high-frequency control signal is applied across the zener diode. This circuit controls the switching of large dc signals.

  8. Experimental Progress of DC-SC Photoinjector at Peking University

    CERN Document Server

    Wang, G M; Ding, Y T; Hao, J; Huang, S L; Lin, L; Lu, X Y; Quan, S W; Wang, L F; Xiang, R; Zhang, B C; Zhao, K; Jiao, F; Xie, D; Yang, L; Zhu, F; Liu, C; Wang, F; Xu, W; Liu, Z

    2005-01-01

    Beam loading experiments on DC-SC photoinjector test facility have been finished at 4.4 K. Upon the present experiments, the gradient of 6 MV/m is achieved. The maximum energy gain is 1.1 MeV at 4.4 K. With average beam current of 270 mA, the measured rms emittance is about 5 mm-mrad at the beam energy of 500 keV. Experiments on the test facility has validated that the DC-SC photoinjector is a good choice to provide moderate average current electron beams with low bunch charge and very high repetition rate.

  9. Development and application of network virtual instrument for emission spectrum of pulsed high-voltage direct current discharge

    Science.gov (United States)

    Gong, X.; Wu, Q.

    2017-12-01

    Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.

  10. High-voltage, high-current, solid-state closing switch

    Energy Technology Data Exchange (ETDEWEB)

    Focia, Ronald Jeffrey

    2017-08-22

    A high-voltage, high-current, solid-state closing switch uses a field-effect transistor (e.g., a MOSFET) to trigger a high-voltage stack of thyristors. The switch can have a high hold-off voltage, high current carrying capacity, and high time-rate-of-change of current, di/dt. The fast closing switch can be used in pulsed power applications.

  11. High-current pulses from inductive energy stores

    Science.gov (United States)

    Wipf, S. L.

    1981-11-01

    Superconducting inductive energy stores can be used for high power pulse supplies if a suitable current multiplication scheme is used. The concept of an inductive Marx generator is superior to a transformer. A third scheme, a variable flux linkage device, is suggested; in multiplying current it also compresses energy. Its function is in many ways analogous to that of a horsewhip. Superconductor limits indicate that peak power levels of TW can be reached for stored energies above 1 MJ.

  12. Solid Oxide Electrolysis Cells: Degradation at High Current Densities

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Traulsen, Marie Lund; Hauch, Anne

    2010-01-01

    The degradation of Ni/yttria-stabilized zirconia (YSZ)-based solid oxide electrolysis cells operated at high current densities was studied. The degradation was examined at 850°C, at current densities of −1.0, −1.5, and −2.0 A/cm2, with a 50:50 (H2O:H2) gas supplied to the Ni/YSZ hydrogen electrode...

  13. Microstructures and critical currents in high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Suenaga, Masaki

    1998-11-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high {Tc} superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa{sub 2}Cu{sub 3}O{sub 7} if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa{sub 2}Cu{sub 3}O{sub 7} and how effective are these in pinning vortices.

  14. Discharge current modes of high power impulse magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Zhongzhen Wu

    2015-09-01

    Full Text Available Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  15. Fault Characteristics and Control Strategies of Multiterminal High Voltage Direct Current Transmission Based on Modular Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Fei Chang

    2015-01-01

    Full Text Available The modular multilevel converter (MMC is an emerging voltage source converter topology suitable for multiterminal high voltage direct current transmission based on modular multilevel converter (MMC-MTDC. This paper presents fault characteristics of MMC-MTDC including submodule fault, DC line fault, and fault ride-through of wind farm integration. Meanwhile, the corresponding protection strategies are proposed. The correctness and effectiveness of the control strategies are verified by establishing a three-terminal MMC-MTDC system under the PSCAD/EMTDC electromagnetic transient simulation environment.

  16. Digital control of a high-voltage (2.5 kV) bidirectional DC-DC converter for driving a dielectric electro active polymer (DEAP) based capacitive actuator

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Zhang, Zhe; Andersen, Michael A. E.

    2014-01-01

    . The incremental actuator requires three highvoltage (~2.5 kV) bidirectional DC-DC converters, toaccomplish the incremental motion by charging anddischarging the capacitive actuators. The bidirectional flybackconverter employs a digital controller to improve efficiencyand charge/discharge speed using the valley...

  17. Human tolerogenic DC-10: perspectives for clinical applications.

    Science.gov (United States)

    Amodio, Giada; Gregori, Silvia

    2012-09-28

    Dendritic cells (DCs) are critically involved in inducing either immunity or tolerance. During the last decades efforts have been devoted to the development of ad hoc methods to manipulate DCs in vitro to enhance or stabilize their tolerogenic properties. Addition of IL-10 during monocyte-derived DC differentiation allows the induction of DC-10, a subset of human tolerogenic DCs characterized by high IL-10/IL-12 ratio and co-expression of high levels of the tolerogenic molecules HLA-G and immunoglobulin-like transcript 4. DC-10 are potent inducers of adaptive type 1 regulatory T cells, well known to promote and maintain peripheral tolerance. In this review we provide an in-depth comparison of the phenotype and mechanisms of suppression mediated by DC-10 and other known regulatory antigen-presenting cells currently under clinical development. We discuss the clinical therapeutic application of DC-10 as inducers of type 1 regulatory T cells for tailoring regulatory T-cell-based cell therapy, and the use of DC-10 as adoptive cell therapy for promoting and restoring tolerance in T-cell-mediated diseases.

  18. Final Results from the High-Current, High-Action Closing Switch Test Program at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Savage, M.E.

    1999-06-23

    We tested a variety of high-current closing switches for lifetime and reliability on a dedicated 2 MJ, 500 kA capacitor bank facility at Sandia National Laboratories. Our interest was a switch capable of one shot every few minutes, switching a critically damped, DC-charged 6.2 mF bank at 24 kV, with a peak current of 500 kA. The desired lifetime is 24 thousand shots. Typical of high-energy systems, particularly multi-module systems, the primary parameters of interest related to the switch are: (1) reliability, meaning absence of both pre-fires and no-fires, (2) total switch lifetime or number of shots between maintenance, and (3) cost. Cost was given lower priority at this evaluation stage because there are great uncertainties in estimating higher-quantity prices of these devices, most of which have been supplied before in only small quantities. The categories of switches tested are vacuum discharge, high-pressure discharge, and solid-state. Each group varies in terms of triggering ease, ease of maintenance, and tolerance to faults such as excess current and current reversal. We tested at least two variations of each technology group. The total number of shots on the switch test facility is about 50 thousand. We will present the results from the switch testing. The observed lifetime of different switches varied greatly: the shortest life was one shot; one device was still operating after six thousand shots. On several switches we measured the voltage drop during conduction and calculated energy dissipated in the switch; we will show these data also.

  19. High-current cyclotron to drive an electronuclear assembly

    CERN Document Server

    Alenitsky, Yu G

    2002-01-01

    The proposal on creation of a high-current cyclotron complex for driving an electronuclear assembly reported at the 17th Meeting on Accelerators of Charged Particles is discussed. Some changes in the basic design parameters of the accelerator are considered in view of new results obtained in the recent works. It is shown that the cyclotron complex is now the most real and cheapest accelerator for production of proton beams with a power of up to 10 MW. Projects on design of a high-current cyclotron complex for driving an electronuclear subcritical assembly are presented.

  20. High Current Ion Sources and Injectors for Heavy Ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  1. Predictive Current Control of a 7-level AC-DC back-to-back Converter for Universal and Flexible Power Management System

    DEFF Research Database (Denmark)

    Bifaretti, Steffano; Zanchetta, Pericle; Iov, Florin

    2008-01-01

    /or various distributed generation systems. Effective and accurate power flow control is demonstrated through simulation in Matlab- Simulink environment on a model based on a two-port structure and using a Predictive Control technique. Control of different Power flow profiles has been successfully tested......The paper proposes a novel power conversion system for Universal and Flexible Power Management (UNIFLEX-PM) in Future Electricity Network. Its structure is based on a back-to-back three-phase AC-DC 7-level converter; each AC side is connected to a different PCC, representing the main grid and...

  2. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    device fault, DC line faults as well as AC grid faults. Special attention is given to the comparison of the corresponding fault diagnosis and fault-tolerant control approaches. Further, focus is dedicated to control/protection strategies and topologies with fault ride-though capability for MMC...... of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...... strategies of MMC-HVDC systems for the most common faults happened in MMC-HVDC systems covering MMC faults, DC side faults as well as AC side faults. An important part of this paper is devoted to a discussion of the vulnerable spots as well as failure mechanism of the MMC-HVDC system covering switching...

  3. Simultaneous distribution of AC and DC power

    Science.gov (United States)

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  4. Isolated Full Bridge Boost DC-DC Converter Designed for Bidirectional Operation of Fuel Cells/Electrolyzer Cells in Grid-Tie Applications

    DEFF Research Database (Denmark)

    Pittini, Riccardo; Zhang, Zhe; Andersen, Michael A. E.

    2013-01-01

    Energy production from renewable energy sources is continuously varying, for this reason energy storage is becoming more and more important as the percentage of green energy increases. Newly developed fuel cells can operate in reverse mode as electrolyzer cells; therefore, they are becoming...... an attractive technology for energy storage grid-tie applications. In this application dc-dc converter optimization is very challenging due to the large voltage range that the converter is expected to operate. Moreover, the fuel-electrolyzer cell side of the converter is characterized by low voltage and high...... current. Dc-dc converter efficiency plays a fundamental role in the overall system efficiency since processed energy is always flowing through the converter; for this reason, loss analysis and optimization are a key component of the converter design. The paper presents an isolated full bridge boost dc...

  5. A CURRENT MIRROR BASED TWO STAGE CMOS CASCODE OP-AMP FOR HIGH FREQUENCY APPLICATION

    Directory of Open Access Journals (Sweden)

    RAMKRISHNA KUNDU

    2017-03-01

    Full Text Available This paper presents a low power, high slew rate, high gain, ultra wide band two stage CMOS cascode operational amplifier for radio frequency application. Current mirror based cascoding technique and pole zero cancelation technique is used to ameliorate the gain and enhance the unity gain bandwidth respectively, which is the novelty of the circuit. In cascading technique a common source transistor drive a common gate transistor. The cascoding is used to enhance the output resistance and hence improve the overall gain of the operational amplifier with less complexity and less power dissipation. To bias the common gate transistor, a current mirror is used in this paper. The proposed circuit is designed and simulated using Cadence analog and digital system design tools of 45 nanometer CMOS technology. The simulated results of the circuit show DC gain of 63.62 dB, unity gain bandwidth of 2.70 GHz, slew rate of 1816 V/µs, phase margin of 59.53º, power supply of the proposed operational amplifier is 1.4 V (rail-to-rail ±700 mV, and power consumption is 0.71 mW. This circuit specification has encountered the requirements of radio frequency application.

  6. Exploration of Charge Recycling DC-DC Conversion Using a Switched Capacitor Regulator

    Directory of Open Access Journals (Sweden)

    Mircea R. Stan

    2013-07-01

    Full Text Available The increasing popularity of DVFS (dynamic voltage frequency scaling schemes for portable low power applications demands highly efficient on-chip DC-DC converters. The primary aim of this work is to enable increased efficiency of on-chip DC-DC conversion for near-threshold operation of multicore chips. The idea is to supply nominal (high off-chip voltage to the cores which are then “voltage-stacked” to generate the near-threshold (low voltages based on Kirchhoff’s voltage law through charge recycling. However, the effectiveness of this implicit down-conversion is affected by the current imbalance among the cores. The paper presents a design methodology and optimization strategy for highly efficient charge recycling on-chip regulation using a push-pull switched capacitor (SC circuit. A dual-boundary hysteretic feedback control circuit has been designed for stacked loads. A stacked-voltage domain with its self-regulation capability combined with a SC converter has shown average efficiency of 78%–93% for 2:1 down-conversion with ILoad (max of 200 mA and workload imbalance varying from 0–100%.

  7. Improved Control Strategy for T-type Isolated DC/DC Converters

    DEFF Research Database (Denmark)

    Liu, Dong; Deng, Fujin; Wang, Yanbo

    2017-01-01

    . Under the proposed strategy, the primary circulating current flows through the auxiliary switches (metal–oxide–semiconductor field-effect transistors) instead of their body diodes in free-wheeling periods. Such feature can reduce conduction losses, thereby improving the efficiency of T-type isolated DC......T-type isolated DC/DC converters have recently attracted attention due to their numerous advantages, including few components, low cost, and symmetrical operation of transformers. This study proposes an improved control strategy for increasing the efficiency of T-type isolated DC/DC converters....../DC converters. The operation principles and performances of T-type isolated DC/DC converters under the proposed control strategy are analyzed in detail and verified through the simulation and experimental results....

  8. Interleaved DC-DC Converter with Discrete Duty Cycle and Open Loop Control

    Directory of Open Access Journals (Sweden)

    Kroics K.

    2016-08-01

    Full Text Available The authors present the control principle of the multiphase interleaved DC-DC converter that can be used to vastly reduce output current ripple of the converter. The control algorithm can be easily implemented by using microcontroller without current loop in each phase. The converter works in discontinuous conduction mode (DCM but close to boundary conduction mode (BCM. The DC-DC converter with such a control algorithm is useful in applications that do not require precise current adjustment. The prototype of the converter has been built. The experimental results of the current ripple are presented in the paper.

  9. Studi Komparasi Fungsi Keanggotaan Fuzzy sebagai Kontroler Bidirectional DC-DC Converter pada Sistem Penyimpan Energi

    Directory of Open Access Journals (Sweden)

    Eka Prasetyono

    2015-09-01

    Full Text Available Bidirectional DC-DC converter is needed in the energy storage system. The converter topology used in this paper was a non-isolated bidirectional DC-DC buck-boost converter. This converter worked in two ways, which the charging mode stored energy into battery when load current was less than nominal main DC current (set point and discharging mode transferred energy from battery to the load when its current exceeded set point value. Both of these modes worked automatically according to the load current. The charging and discharging currents were controlled by fuzzy logic controller which was implemented on microcontroller ARM Cortex-M4F STM32F407VG. This paper compares two types of fuzzy membership function (triangular and sigmoid in controlling bidirectional DC-DC converter. The results showed that fuzzy logic controller with triangle membership function and sigmoid as control bidirectional DC-DC converter had no significant different response, both had an average error for charging and discharging process under 4% with ripple current on the main DC bus around 0.5%. The computing time of program for fuzzy logic controller with triangular membership functions had 19.01% faster than sigmoid, and fuzzy logic computation time on a microcontroller with hardware floating point was 60% faster than software floating point.

  10. Rf Gun with High-Current Density Field Emission Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  11. High current gain silicon-based spin transistor

    CERN Document Server

    Dennis, C L; Ensell, G J; Gregg, J F; Thompson, S M

    2003-01-01

    A silicon-based spin transistor of novel operating principle has been demonstrated in which the current gain at room temperature is 1.4 (n-type) and 0.97 (p-type). This high current gain was obtained from a hybrid metal/semiconductor analogue to the bipolar junction transistor which functions by tunnel-injecting carriers from a ferromagnetic emitter into a diffusion driven silicon base and then tunnel-collecting them via a ferromagnetic collector. The switching of the magnetic state of the collector ferromagnet controls the collector efficiency and the current gain. Furthermore, the magnetocurrent, which is determined to be 98% (140%) for p-type (n-type) in -110 Oe, is attributable to the spin-polarized base diffusion current.

  12. Birkeland current effects on high-latitude groundmagnetic field perturbations

    CERN Document Server

    Laundal, K M; Lehtinen, N; Gjerloev, J W; Østgaard, N; Tenfjord, P; Reistad, J P; Snekvik, K; Milan, S E; Ohtani, S; Anderson, B J

    2016-01-01

    Magnetic perturbations on ground at high latitudes are directly associated only with the divergence-free component of the height-integrated horizontal ionospheric current, $\\textbf{J}_{\\perp,df}$. Here we show how $\\textbf{J}_{\\perp,df}$ can be expressed as the total horizontal current $\\textbf{J}_\\perp$ minus its curl-free component, the latter being completely determined by the global Birkeland current pattern. Thus in regions where $\\textbf{J}_\\perp = 0$, the global Birkeland current distribution alone determines the local magnetic perturbation. We show with observations from ground and space that in the polar cap, the ground magnetic field perturbations tend to align with the Birkeland current contribution in darkness but not in sunlight. We also show that in sunlight, the magnetic perturbations are typically such that the equivalent overhead current is anti-parallel to the convection, indicating that the Hall current system dominates. Thus the ground magnetic field in the polar cap relates to different c...

  13. High-quality lossy compression: current and future trends

    Science.gov (United States)

    McLaughlin, Steven W.

    1995-01-01

    This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.

  14. West India coastal current and Lakshadweep High/Low

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    , the West India Coastal Current is a superposition of annual and semiannual coastally-trapped Kelvin waves. The Lakshadweep High/Low forms when the Kelvin waves, on turning around Sri Lanka, and propagating northward along the west coast of India, radiate...

  15. Bottom mounted seabed mooring frame for high current field

    Digital Repository Service at National Institute of Oceanography (India)

    AshokKumar, K.; Chandramohan, P.; Pednekar, P.S.; Diwan, S.G.

    and direction on the sea surface and at a fixed five layers. The company supplied frame was not suitable to use at the proposed measurement location, owing to random oscillation in the seabed, strong currents and high concentration of sediments in the water...

  16. Observed currents at Bombay High during a winter

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, A.A; Chandramohan, P.; Nayak, B.U.

    Ten day records of Aanderaa current meters (24 Dec 1981 to 2 Jan. 1982) at four depths, viz. 30, 45, 60 and 75 m at Bombay High (19˚24.5'N, 71˚2.5'E) off the west coast of India, in a water depth of 80 m have been subjected to spectral, cross...

  17. Design studies of a high-current radiofrequency quadrupole for ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 2. Design studies of a high-current radiofrequency quadrupole for accelerator-driven systems programme ... We have followed the conventional design technique with slight modifications and compared that with the equipartitioned (EP) type of design.

  18. High-temperature performance of MoS{sub 2} thin-film transistors: Direct current and pulse current-voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-02-14

    We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.

  19. Automation of Aditya tokamak plasma position control DC power supply

    Energy Technology Data Exchange (ETDEWEB)

    Arambhadiya, Bharat, E-mail: bharat@ipr.res.in; Raj, Harshita; Tanna, R.L.; Edappala, Praveenlal; Rajpal, Rachana; Ghosh, Joydeep; Chattopadhyay, P.K.; Kalal, M.B.

    2016-11-15

    Highlights: • Plasma position control is very essential for obtaining repeatable high temperature, high-density discharges of longer durations in tokomak. • The present capacitor bank has limitations of maximum current capacity and position control beyond 200 ms. • The installation of a separate set of coils and a DC power supply can control the plasma position beyond 200 ms. • A high power thyristor (T588N1200) triggers for DC current pulse of 300 A fires precisely at required positions to modify plasma position. • The commissioning is done for the automated in-house, quick and reliable solution. - Abstract: Plasma position control is essential for obtaining repeatable high temperature, high-density discharges of longer duration in tokamaks. Recently, a set of external coils is installed in the vertical field mode configuration to control the radial plasma position in ADITYA tokamak. The existing capacitor bank cannot provide the required current pulse beyond 200 ms for position control. This motivated to have a DC power supply of 500 A to provide current pulse beyond 200 ms for the position control. The automatization of the DC power supply mandated interfaces with the plasma control system, Aditya Pulse Power supply, and Data acquisition system for coordinated discharge operation. A high current thyristor circuit and a timer circuit have been developed for controlling the power supply automatically for charging vertical field coils of Aditya tokamak. Key protection interlocks implemented in the development ensure machine and occupational safety. Fiber-optic trans-receiver isolates the power supply with other subsystems, while analog channel is optically isolated. Commissioning and testing established proper synchronization of the power supply with tokamak operation. The paper discusses the automation of the DC power supply with main circuit components, timing control, and testing results.

  20. Transient analysis and burnout of high temperature superconducting current leads

    Science.gov (United States)

    Seol, S. Y.; Hull, J. R.

    The transient behaviour of high-temperature superconductor (HTS) current leads operated between liquid helium and liquid nitrogen temperatures is analysed for burnout conditions upon transition of the HTS into the normal state. Leads composed of HTS only and of HTS sheathed by pure silver or silver alloy are investigated numerically for temperature-dependent properties and analytically for temperature-independent properties. For lower values of shape factor (current density times length), the lead can be operated indefinitely without burnout. At higher values of shape factor, the lead reaches burnout in a finite time. With high current densities, the leads heat adiabatically. For a fixed shape factor, low current densities are desired to achieve long burnout times. To achieve a low helium boil-off rate in the superconducting state without danger of burnout, there is a preferred temperature dependence for thermal conductivity, and silver alloy sheaths are preferred to pure silver sheaths. However, for a given current density, pure silver sheaths take longer to burn out.

  1. DC Proximal Newton for Nonconvex Optimization Problems.

    Science.gov (United States)

    Rakotomamonjy, Alain; Flamary, Rémi; Gasso, Gilles

    2016-03-01

    We introduce a novel algorithm for solving learning problems where both the loss function and the regularizer are nonconvex but belong to the class of difference of convex (DC) functions. Our contribution is a new general purpose proximal Newton algorithm that is able to deal with such a situation. The algorithm consists in obtaining a descent direction from an approximation of the loss function and then in performing a line search to ensure a sufficient descent. A theoretical analysis is provided showing that the iterates of the proposed algorithm admit as limit points stationary points of the DC objective function. Numerical experiments show that our approach is more efficient than the current state of the art for a problem with a convex loss function and a nonconvex regularizer. We have also illustrated the benefit of our algorithm in high-dimensional transductive learning problem where both the loss function and regularizers are nonconvex.

  2. Recent Improvements of a Cryogenic Current Comparator for nA Ion Beams with High Intensity Dynamics

    CERN Document Server

    Peters, A; Forck, P

    2000-01-01

    Former measurements of extracted ion beams from the GSI heavy ion synchrotron SIS showed large current fluctuations in the microsecond region with a high peak-to-average ratio. To adapt our Cryogenic Current Comparator (CCC) to this time structure the detector’s electronics have been carefully modified. The most important improvement of the new DC SQUID system affects the enlargement of the bandwidth and the slew rate of the measuring system. In addition the existing data acquisition system for e.g. SEMs (Secondary Emission Monitors) was extended to digitize the CCC signals simultaneously. Measurements of Argon beams will be shown to demonstrate the improved capabilities of the upgraded Cryogenic Current Comparator.

  3. Spot-welding solid targets for high current cyclotron irradiation

    Science.gov (United States)

    Ellison, Paul A.; Valdovinos, Hector F.; Graves, Stephen A.; Barnhart, Todd E.; Nickles, Robert J.

    2016-01-01

    Zirconium-89 finds broad application for use in positron emission tomography. Its cyclotron production has been limited by the heat transfer from yttrium targets at high beam currents. A spot welding technique allows a three-fold increase in beam current, without affecting 89Zr quality. An yttrium foil, welded to a jet-cooled tantalum support base accommodates a 50 μA proton beam degraded to 14 MeV. The resulting activity yield of 48 ± 4 MBq/(μA·hr) now extends the outreach of 89Zr for a broader distribution. PMID:27771445

  4. Simulation of high currents in x-ray flash tubes

    Science.gov (United States)

    Germer, R.; Sato, E.

    2008-11-01

    The discharge in linear plasma X-ray flash tubes ( Sato tubes ) is simulated. For the geometry of a cylinder cathode outside and an anode in the centre, the electrical fields and potentials are calculated and the propagation of electrons are studied. Space charge limits the current in the initial phase strongly. Replacing the vacuum by plasma from the anode evaporation, it is possible to get increasing current and strong X-ray pulses. Space charge is important for the high intensity X-ray production up to the end of the emission.

  5. High ambient dc and ac conductivities in solvent-free, low-dimensional polymer electrolyte blends with lithium salts

    Energy Technology Data Exchange (ETDEWEB)

    Yungui Zheng; Fusiong Chia; Ungar, G.; Wright, P.V. [Sheffield Univ. (United Kingdom). Dept. of Engineering Materials; Richardson, T.H. [Sheffield Univ. (United Kingdom). Dept. of Physics

    2001-07-01

    Measurements of dc conductivity on solvent-free, low dimensional polymer electrolyte complexes with lithium salts using Li metal electrodes and giving{sigma} = 10{sup -3} S cm{sup -1} at 25-40{sup o}C are reported. The materials are blends of the amphiphilic helical polyethers poly[2,5,8,11,14-pentaoxapentadecamethylene(5-alkyloxy-1,3-phenylene)] , coded CmO5 or (I) (where m = 16, 18 or equimolar 12/16 mixture is the number of carbon atoms in the n-alkyl side chains), and a polytetrahydrofuran copolymer (II) with various Li salts. Heptamer segments of II are in equimolar proportion to the repeating units of I. In Li | I:II:Li salt | Li cells, dc conductivities of 1 x 10{sup -3} to 3 x 10{sup -3} S cm{sup -1} are achieved by an apparent 'self-tracking' process from a low level (10{sup -7}-10{sup -6} S cm{sup -1}) over 12 to 24 h. The dc results are complemented by ac impedance spectroscopy measurements with ITO electrodes that show a 'transformation' from the low level up to 6 x 10{sup -4} S cm{sup -1} at 20{sup o}C after a heating excursion to 100{sup o}C. The ac data also demonstrate temperature-independent conductivity, with {sigma} = 8 x 10{sup -5} S cm{sup -1} at -5{sup o}C. X-ray diffraction, thermal analysis and molecular dynamics modelling suggest a structure that would allow Li{sup +} to be mobile in the polyether helices of I whilst anions are mobile in the unimpeded spaces between them. Ions transfer between the pathways of I via a matrix of II when the polymers are intimately blended. (author)

  6. Ventricular defibrillation combining DC electrical field and electrical pacing: an optical mapping study

    Science.gov (United States)

    Musunuri, Sai Shruthi; Tang, Liang; Joung, Boyoung; Berbari, Edward J.; Lin, Shien-Fong

    2009-02-01

    Although high voltage direct current (DC) shock is a standard technique to terminate ventricular fibrillation (VF), it can cause severe pain and tissue damage. The exact effect of the DC electric field, which can depolarize the heart during VF is still unknown. We hypothesized that low-energy DC field in combination with pacing (pacing+DC) could terminate VF by affecting the ventricular propagation pattern. In six Langendorff-perfused isolated rabbit hearts with the ablated sinoatrial (SA) node, the DC field was delivered to the left ventricle (cathode) and right ventricle (anode). We designed a timed protocol using LabVIEW programming that delivers pacing, DC and pacing+DC stimuli for two seconds time intervals each. The pacing pulse (with varying pacing cycle length: 300ms-30ms) was delivered to the apex. Transmembrane voltage was recorded with optical mapping technique for 16 seconds at a sampling rate of 2ms/frame. We crushed the sinoatrial node to reduce the heart rate. The baseline activation appeared to have endocardial origins with a mean escape ventricular rate of 60 +/- 5bpm at baseline. The DC field (30mA-60mA) alone increased the mean heart rate to 120+/-5bpm. Although DC alone terminated VF in a few cases, the rate of termination was very low (6.2%). However, when pacing+DC was applied, it was possible to terminate VF in 34 of 130 episodes in six rabbits. The rate of successful defibrillation of VF with pacing+DC was significantly higher than that with DC alone (20% vs 6.2%, pdefibrillation with lower energy requirements.

  7. Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS.

    Science.gov (United States)

    Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S; Diaz, Julian; Datta, Abhishek; Bikson, Marom

    2010-07-15

    Transcutaneous electrical stimulation is applied in a range of biomedical applications including transcranial direct current stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize "high-definition" electrode-gel parameters for electrode durability, skin safety and subjective pain. Anode and cathode electrode potential, temperature, pH and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 min on agar gel or subject forearms. A selection of five types of solid-conductors (Ag pellet, Ag/AgCl pellet, rubber pellet, Ag/AgCl ring and Ag/AgCl disc) and seven conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, rubber and Ag/AgCl pellet electrodes across all gels. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Electrodes for high-definition transcutaneous DC stimulation for applications in drug-delivery and electrotherapy, including tDCS

    Science.gov (United States)

    Minhas, Preet; Bansal, Varun; Patel, Jinal; Ho, Johnson S.; Diaz, Julian; Datta, Abhishek; Bikson, Marom

    2010-01-01

    Transcutaneous electrical stimulation is applied in a range of biomedical applications including Transcranial Direct Current Stimulation (tDCS). tDCS is a non-invasive procedure where a weak direct current (<2 mA) is applied across the scalp to modulate brain function. High-Definition tDCS (HD-tDCS) is a technique used to increase the spatial focality of tDCS by passing current across the scalp using <12 mm diameter electrodes. The purpose of this study was to design and optimize “high-definition” electrode-gel parameters for electrode durability, skin safety, and subjective pain. Anode and cathode electrode potential, temperature, pH, and subjective sensation over time were assessed during application of 2 mA direct current, for up to 22 minutes on agar gel or subject forearms. A selection of 5 types of solid-conductors (Ag pellet, Ag/AgCl pellet, Rubber pellet, Ag/AgCl ring, and Ag/AgCl disc) and 7 conductive gels (Signa, Spectra, Tensive, Redux, BioGel, Lectron, and CCNY-4) were investigated. The Ag/AgCl ring in combination with CCNY-4 gel resulted in the most favorable outcomes. Under anode stimulations, electrode potential and temperature rises were generally observed in all electrode-gel combinations except for Ag/AgCl ring and disc electrodes. pH remained constant for all solid-conductors except for both Ag and Rubber pellet electrodes with Signa and CCNY-4 gels. Sensation ratings were independent of stimulation polarity. Ag/AgCl ring electrodes were found to be the most comfortable followed by Ag, Rubber, and Ag/AgCl pellet electrodes across all gels. PMID:20488204

  9. Isolated step-down DC -DC converter for electric vehicles

    Science.gov (United States)

    Kukovinets, O. V.; Sidorov, K. M.; Yutt, V. E.

    2018-02-01

    Modern motor-vehicle industrial sector is moving rapidly now towards the electricity-driving cars production, improving their range and efficiency of components, and in particular the step-down DC/DC converter to supply the onboard circuit 12/24V of electric vehicle from the high-voltage battery. The purpose of this article - to identify the best circuitry topology to design an advanced step-down DC/DC converters with the smallest mass, volume, highest efficiency and power. And this will have a positive effect on driving distance of electric vehicle (EV). On the basis of computational research of existing and implemented circuit topologies of step-down DC/DC converters (serial resonant converter, full bridge with phase-shifting converter, LLC resonant converter) a comprehensive analysis was carried out on the following characteristics: specific volume, specific weight, power, efficiency. The data obtained was the basis for the best technical option - LLC resonant converter. The results can serve as a guide material in the process of components design of the traction equipment for electric vehicles, providing for the best technical solutions in the design and manufacturing of converting equipment, self-contained power supply systems and advanced driver assistance systems.

  10. Note: Ultra-high frequency ultra-low dc power consumption HEMT amplifier for quantum measurements in millikelvin temperature range.

    Science.gov (United States)

    Korolev, A M; Shnyrkov, V I; Shulga, V M

    2011-01-01

    We have presented theory and experimentally demonstrated an efficient method for drastically reducing the power consumption of the rf/microwave amplifiers based on HEMT in unsaturated dc regime. Conceptual one-stage 10 dB-gain amplifier showed submicrowatt level of the power consumption (0.95 μW at frequency of 0.5 GHz) when cooled down to 300 mK. Proposed technique has a great potential to design the readout amplifiers for ultra-deep-cooled cryoelectronic quantum devices.

  11. Analysis and Design of a Bidirectional Isolated DC-DC Converter for Fuel Cell and Super-Capacitor Hybrid System

    DEFF Research Database (Denmark)

    Zhang, Zhe; Ouyang, Ziwei; Thomsen, Ole Cornelius

    2012-01-01

    by the DC bus. In this paper, a bidirectional isolated DC-DC converter controlled by phase-shift and duty cycle for the fuel cell hybrid energy system is analyzed and designed. The proposed topology minimizes the number of switches and their associated gate driver components by using two high frequency......Electrical power system in future uninterruptible power supply (UPS) or electrical vehicle (EV) may employ hybrid energy sources, such as fuel cells and super-capacitors. It will be necessary to efficiently draw the energy from these two sources as well as recharge the energy storage elements...... transformers which combine a half-bridge circuit and a full-bridge circuit together on the primary side. The voltage doubler circuit is employed on the secondary side. The current-fed input can limit the input current ripple that is favorable for fuel cells. The parasitic capacitance of the switches is used...

  12. Pemodelan Dan Pembuatan Simulasi Kestabilan Respon Transien Motor Dc Menggunakan Graphical User Interface (Gui) Pada Matlab

    OpenAIRE

    Nurun Nayiroh, Mokhamad Tirono

    2008-01-01

    Motor DC (Direct Current) adalah motor yang digerakkan oleh energi listrik DC. Salah satu jenis motor DC tersebut ialah motor DC magnet permanen yang banyak ditemui penggunaannya baik di industri maupun di rumah tangga. Terapan motor DC kebanyakan merupakan sistem yang memerlukan pengatur kecepatan. Tujuan penelitian adalah untuk menghasilkan respon transien yang stabil dan performansi yang baik pada sistem motor DC.Sistem motor DC dimodelkan berdasarkan persamaan kesetimbangan torsi dan pers...

  13. Power Quality in DC Power Distribution Systems and Microgrids

    Directory of Open Access Journals (Sweden)

    Stephen Whaite

    2015-05-01

    Full Text Available This review paper discusses power quality considerations for direct current (DC electric power distribution systems, particularly DC microgrids. First, four selected sample DC architectures are discussed to provide motivation for the consideration of power quality in DC systems. Second, a brief overview of power quality challenges in conventional alternating current (AC distribution systems is given to establish the field of power quality. Finally, a survey of literature addressing power quality issues in DC systems is presented, and necessary power quality considerations in DC distribution system design and operation are discussed.

  14. High School Sport Specialization Patterns of Current Division I Athletes.

    Science.gov (United States)

    Post, Eric G; Thein-Nissenbaum, Jill M; Stiffler, Mikel R; Brooks, M Alison; Bell, David R; Sanfilippo, Jennifer L; Trigsted, Stephanie M; Heiderscheit, Bryan C; McGuine, Timothy A

    Sport specialization is a strategy to acquire superior sport performance in 1 sport but is associated with increased injury risk. Currently, the degree of high school specialization among Division I athletes is unknown. College athletes will display increased rates of specialization as they progress through their high school careers. Descriptive epidemiological study. Level 4. Three hundred forty-three athletes (115 female) representing 9 sports from a Midwest Division I University completed a previously utilized sport specialization questionnaire regarding sport participation patterns for each grade of high school. McNemar and chi-square tests were used to investigate associations of grade, sport, and sex with prevalence of sport specialization category (low, moderate, high) (a priori P ≤ 0.05). Specialization increased throughout high school, with 16.9% (n = 58) and 41.1% (n = 141) of athletes highly specialized in 9th and 12th grades, respectively. Football athletes were less likely to be highly specialized than nonfootball athletes for each year of high school ( P 0.23). The majority of Division I athletes were not classified as highly specialized throughout high school, but the prevalence of high specialization increased as athletes progressed through high school. Nonfootball athletes were more likely to be highly specialized than football athletes at each grade level. Most athletes who are recruited to participate in collegiate athletics will eventually specialize in their sport, but it does not appear that early specialization is necessary to become a Division I athlete. Athletes should be counseled regarding safe participation in sport during high school to minimize injury and maximize performance.

  15. Highly sensitive YBa2Cu3O7 dc SQUID magnetometer with thin-film flux transformer

    Science.gov (United States)

    Grundler, D.; David, B.; Eckart, R.; Dössel, O.

    1993-11-01

    We have designed and fabricated a thin-film flux transformer by a YBa2Cu3O7/SrTiO3 (YBCO/STO) multilayer process. The flux transformer consists of a 20-turn input coil of 10 μm linewidth and a single-turn pickup loop surrounding an area of 7.5 by 7.5 mm2. All device levels are patterned by standard photolithography and Ar-ion-beam etching. The flux transformer has been combined in flip-chip configuration with the square washer of a low-noise YBCO dc SQUID. The dc SQUID magnetometer exhibits a magnetic field sensitivity of 1.4 nT/Φ0. The intrinsic white flux noise level of 70μΦ0/√Hz at 77 K is mainly dominated by the SQUID corresponding to a magnetic field resolution of the magnetometer of 100 fT/√Hz for frequencies above 40 Hz. At 1 Hz we measured 200 fT/√Hz. Biomagnetic measurements were performed in a magnetically shielded chamber.

  16. An accurate continuous calibration system for high voltage current transformer.

    Science.gov (United States)

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  17. Compilation of current high-energy physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1981-05-01

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included.

  18. Compilation of current high-energy-physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  19. Three Phase Resonant DC Power Converter for Ion Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our phase 1 study has revealed many significant benefits of a new class of DC-to-DC power converters with performance that cannot be matched by current flight power...

  20. Quasi-DC electrical discharge characterization in a supersonic flow

    Science.gov (United States)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  1. Thermal regime of self-heated hollow cathode in a low-pressure high-current pulsed-periodic discharge

    Science.gov (United States)

    Gavrilov, N. V.; Emlin, D. R.

    2017-11-01

    We have studied the thermal regime of a self-heated hollow cathode in combined low-current (1-5 A) dc discharge and high-current (up to 100 A) pulsed-periodic discharge and the influence of the pulsed parameters on the current-voltage characteristic of the high-current discharge. It has been shown that, after the application of a voltage pulse (200-500 V), the discharge current attains its peak value and is stabilized over a time of 100 μs. The discharge voltage in the quasi-stationary discharge stage exceeds the continuous discharge voltage at the same current by many times and depends on the mean value of the current in the discharge gap. The interpretation of the form of the I-V characteristics of the pulsed discharge is based on the dynamics of heating and cooling of the cathode surface layer and on the variations in the integral temperature of the cathode.

  2. DC Microgrids—Part II

    DEFF Research Database (Denmark)

    Dragicevic, Tomislav; Lu, Xiaonan; Quintero, Juan Carlos Vasquez

    2016-01-01

    . Closely coupled with protection, conflicting grounding objectives, e.g. minimization of stray current and common mode voltage are explained and several practical solutions are presented. Also, standardization efforts for DC systems are addressed. Finally, concluding remarks and important future research...

  3. Voltage Weak DC Distribution Grids

    NARCIS (Netherlands)

    Hailu, T.G.; Mackay, L.J.; Ramirez Elizondo, L.M.; Ferreira, J.A.

    2017-01-01

    This paper describes the behavior of voltage weak DC distribution systems. These systems have relatively small system capacitance. The size of system capacitance, which stores energy, has a considerable effect on the value of fault currents, control complexity, and system reliability. A number of

  4. High risk of unprecedented UK rainfall in the current climate.

    Science.gov (United States)

    Thompson, Vikki; Dunstone, Nick J; Scaife, Adam A; Smith, Doug M; Slingo, Julia M; Brown, Simon; Belcher, Stephen E

    2017-07-24

    In winter 2013/14 a succession of storms hit the UK leading to record rainfall and flooding in many regions including south east England. In the Thames river valley there was widespread flooding, with clean-up costs of over £1 billion. There was no observational precedent for this level of rainfall. Here we present analysis of a large ensemble of high-resolution initialised climate simulations to show that this event could have been anticipated, and that in the current climate there remains a high chance of exceeding the observed record monthly rainfall totals in many regions of the UK. In south east England there is a 7% chance of exceeding the current rainfall record in at least one month in any given winter. Expanding our analysis to some other regions of England and Wales the risk increases to a 34% chance of breaking a regional record somewhere each winter.A succession of storms during the 2013-2014 winter led to record flooding in the UK. Here, the authors use high-resolution climate simulations to show that this event could have been anticipated and that there remains a high chance of exceeding observed record monthly rainfall totals in many parts of the UK.

  5. RECTIFICADORES CA/CC TIRISTORIZADOS CON FORMAS DE ONDA DE ALTA CALIDAD THYRISTOR-BASED AC/DC RECTIFIERS WITH HIGH-QUALITY WAVEFORMS

    Directory of Open Access Journals (Sweden)

    Miguel Villablanca

    2010-04-01

    Full Text Available En este artículo un método y un aparato son aplicados a distintas configuraciones de rectificadores ca/cc tiristorizados para reducir la distorsión de las corrientes en el lado de C.A. La carga puede ser inductiva o capacitiva. La tecnología consiste en darle una adecuada forma de onda a la corriente en el lado de C.C. a través de dos interruptores de conmutación forzada. Esta forma de onda lograda en la corriente en el lado de C.C. se refleja en la forma de onda de las corrientes en el lado de C.A., las cuales se transforman en perfectas ondas senoidales. El circuito de control es simple y es también capaz de manejar variaciones rápidas de corriente de carga y fallas en los interruptores de conmutación forzada. La conducción simultánea de los tiristores del puente rectificador es eliminada completamente. La validación experimental de la tecnología es mostrada a través de un prototipo de laboratorio de 400 V, 50 Hz y 30 KVA.In this paper both a method and apparatus are applied to different configurations of thyristor-based ac/dc rectifiers to reduce the distortion of currents flowing from the ac supply. The load may be either inductive or capacitive. The technology involves an accurate shaping of the dc current by using two self-commutated switches. This dc-current shaping is reflected back into the shaping of the ac input currents, which become pure sine waves. The control circuit is simple, and also able to deal with both rapid load variations and failures in the self-commutated switches. Furthermore, the overlap conduction of bridge thyristors is eliminated completely. Experimental verification is provided from a 400-V 50-Hz 30-kVA laboratory prototype.

  6. What happens in Josephson junctions at high critical current densities

    Science.gov (United States)

    Massarotti, D.; Stornaiuolo, D.; Lucignano, P.; Caruso, R.; Galletti, L.; Montemurro, D.; Jouault, B.; Campagnano, G.; Arani, H. F.; Longobardi, L.; Parlato, L.; Pepe, G. P.; Rotoli, G.; Tagliacozzo, A.; Lombardi, F.; Tafuri, F.

    2017-07-01

    The impressive advances in material science and nanotechnology are more and more promoting the use of exotic barriers and/or superconductors, thus paving the way to new families of Josephson junctions. Semiconducting, ferromagnetic, topological insulator and graphene barriers are leading to unconventional and anomalous aspects of the Josephson coupling, which might be useful to respond to some issues on key problems of solid state physics. However, the complexity of the layout and of the competing physical processes occurring in the junctions is posing novel questions on the interpretation of their phenomenology. We classify some significant behaviors of hybrid and unconventional junctions in terms of their first imprinting, i.e., current-voltage curves, and propose a phenomenological approach to describe some features of junctions characterized by relatively high critical current densities Jc. Accurate arguments on the distribution of switching currents will provide quantitative criteria to understand physical processes occurring in high-Jc junctions. These notions are universal and apply to all kinds of junctions.

  7. A direct power conversion topology for grid integrations of hybrid AC/DC resources

    DEFF Research Database (Denmark)

    Liu, Xiong; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    -switch converter can provide six input terminals for the connections of one three-phase ac source plus three dc sources to the grid. The three-phase utility grid is connected to the VMC's current source side. This configuration allows the input ac/dc sources' voltages lower than the grid voltage. The control...... and modulation schemes are proposed to extract the commanded current from the input ac/dc sources to the grid and guarantee high quality ac/dc inputs and ac output current waveforms with unity power factors. The proposed modulation scheme for sinusoidal outputs of the VMC is mathematically proved....... The experimental results are provided to validate the effectiveness of the control and modulation schemes for the proposed VMC....

  8. Modeling and analysis of fractional order DC-DC converter.

    Science.gov (United States)

    Radwan, Ahmed G; Emira, Ahmed A; AbdelAty, Amr M; Azar, Ahmed Taher

    2017-07-11

    Due to the non-idealities of commercial inductors, the demand for a better model that accurately describe their dynamic response is elevated. So, the fractional order models of Buck, Boost and Buck-Boost DC-DC converters are presented in this paper. The detailed analysis is made for the two most common modes of converter operation: Continuous Conduction Mode (CCM) and Discontinuous Conduction Mode (DCM). Closed form time domain expressions are derived for inductor currents, voltage gain, average current, conduction time and power efficiency where the effect of the fractional order inductor is found to be strongly present. For example, the peak inductor current at steady state increases with decreasing the inductor order. Advanced Design Systems (ADS) circuit simulations are used to verify the derived formulas, where the fractional order inductor is simulated using Valsa Constant Phase Element (CPE) approximation and Generalized Impedance Converter (GIC). Different simulation results are introduced with good matching to the theoretical formulas for the three DC-DC converter topologies under different fractional orders. A comprehensive comparison with the recently published literature is presented to show the advantages and disadvantages of each approach. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  9. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  10. Current status of high energy nucleon-meson transport code

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Hiroshi; Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Current status of design code of accelerator (NMTC/JAERI code), outline of physical model and evaluation of accuracy of code were reported. To evaluate the nuclear performance of accelerator and strong spallation neutron origin, the nuclear reaction between high energy proton and target nuclide and behaviors of various produced particles are necessary. The nuclear design of spallation neutron system used a calculation code system connected the high energy nucleon{center_dot}meson transport code and the neutron{center_dot}photon transport code. NMTC/JAERI is described by the particle evaporation process under consideration of competition reaction of intranuclear cascade and fission process. Particle transport calculation was carried out for proton, neutron, {pi}- and {mu}-meson. To verify and improve accuracy of high energy nucleon-meson transport code, data of spallation and spallation neutron fragment by the integral experiment were collected. (S.Y.)

  11. Common mode noise in three-level DC-DC converters

    CSIR Research Space (South Africa)

    Grobler, Inus

    2009-09-01

    Full Text Available that three-level buck DC-DC converters in general generate much lower common mode currents than conventional two-level buck converters. Further, reductions in common mode currents are achieved by using the improved three-level topologies that have been...

  12. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome.

    Science.gov (United States)

    Soltow, Quinlyn A; Strobel, Frederick H; Mansfield, Keith G; Wachtman, Lynn; Park, Youngja; Jones, Dean P

    2013-03-01

    Studies of gene-environment (G × E) interactions require effective characterization of all environmental exposures from conception to death, termed the exposome. The exposome includes environmental exposures that impact health. Improved metabolic profiling methods are needed to characterize these exposures for use in personalized medicine. In the present study, we compared the analytic capability of dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) to previously used liquid chromatography-FTMS (LC-FTMS) analysis for high-throughput, top-down metabolic profiling. For DC-FTMS, we combined data from sequential LC-FTMS analyses using reverse phase (C18) chromatography and anion exchange (AE) chromatography. Each analysis was performed with electrospray ionization in the positive ion mode and detection from m/z 85 to 850. Run time for each column was 10 min with gradient elution; 10 µl extracts of plasma from humans and common marmosets were used for analysis. In comparison to analysis with the AE column alone, addition of the second LC-FTMS analysis with the C18 column increased m/z feature detection by 23-36%, yielding a total number of features up to 7,000 for individual samples. Approximately 50% of the m/z matched to known chemicals in metabolomic databases, and 23% of the m/z were common to analyses on both columns. Database matches included insecticides, herbicides, flame retardants, and plasticizers. Modularity clustering algorithms applied to MS-data showed the ability to detection clusters and ion interactions. DC-FTMS thus provides improved capability for high-performance metabolic profiling of the exposome and development of personalized medicine.

  13. Open-circuit fault detection and tolerant operation for a parallel-connected SAB DC-DC converter

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2014-01-01

    This paper presents an open-circuit fault detection method and its tolerant control strategy for a Parallel-Connected Single Active Bridge (PCSAB) dc-dc converter. The structural and operational characteristics of the PCSAB converter lead to several advantages especially for high power applications...... also possesses better reliability under a certain open-circuit fault condition. The proposed fault diagnosis method identifies both location and type of a fault using one current sensor in the output. Depending on the type of the fault, the proposed fault-tolerant strategy tries to keep the capability...

  14. A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range

    Directory of Open Access Journals (Sweden)

    Wenzheng Xu

    2017-10-01

    Full Text Available Phase-shifted converters are practically important to provide high conversion efficiencies through soft-switching techniques. However, the limitation on a resonant inductor current in the converters often leads to a non-fulfillment of the requirement of minimum load current. This paper presents a new power electronics control technique to enable the dual features of bi-directional power flow and an extended load range for soft-switching in phase-shift-controlled DC-DC converters. The proposed technique utilizes two identical full bridge converters and inverters in conjunction with a new control logic for gate-driving signals to facilitate both Zero Current Switching (ZCS and Zero Voltage Switching (ZVS in a single phase-shift-controlled DC-DC converter. The additional ZCS is designed for light load conditions at which the minimum load current cannot be attained. The bi-directional phase-shift-controlled DC-DC converter can implement the function of synchronous rectification. Its fast dynamic response allows for quick energy recovery during the regenerative braking of traction systems in electrified trains.

  15. High temperature superconducting current leads for micro-SMES application

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, R.C.; Cha, Y.S.; Hull, J.R. [Argonne National Lab., IL (United States); Buckles, W.E.; Weber, B.R. [Suerconductivity, Inc., Madison, WI (United States); Daugherty, M.A. [Los Alamos National Lab., NM (United States)

    1993-09-01

    SMES is being applied on a microscale (1--10 Mj stored energy) to improve electrical power quality. A major portion of the SMES refrigeration load is for cooling the conventional (copper, vapor- cooled) current leads that transfer energy between the magnet and the power-conditioning equipment. The lead refrigeration load can be reduced significantly by the use of high-temperature superconductors (HTSs). A HTS current lead suitable for micro-SMES application has been designed. The lower stage of the lead employs HTSs. A transition between the lower stage and the conventional upper-stage lead is heat-intercepted by a cryocooler. Details of the design are presented. Construction and operating experiences are discussed.

  16. Survey of Digital Feedback Systems in High Current Storage Rings

    Energy Technology Data Exchange (ETDEWEB)

    Teytelman, Dmitry

    2003-06-06

    In the last decade demand for brightness in synchrotron light sources and luminosity in circular colliders led to construction of multiple high current storage rings. Many of these new machines require feedback systems to achieve design stored beam currents. In the same time frame the rapid advances in the technology of digital signal processing allowed the implementation of these complex feedback systems. In this paper I concentrate on three applications of feedback to storage rings: orbit control in light sources, coupled-bunch instability control, and low-level RF control. Each of these applications is challenging in areas of processing bandwidth, algorithm complexity, and control of time-varying beam and system dynamics. I will review existing implementations as well as comment on promising future directions.

  17. 76 FR 31462 - Airworthiness Directives; The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10...

    Science.gov (United States)

    2011-06-01

    ... Model DC-10-10, DC- 10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10-40, DC-10-40F.... Applicability (c) This AD applies to all The Boeing Company Model DC-10-10, DC-10-10F, DC-10-15, DC-10-30, DC-10-30F (KC-10A and KDC-10), DC-10- 40, DC-10-40F, MD-10-10F, MD-10-30F, MD-11, and MD-11F airplanes...

  18. Pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2008-01-01

    This book studies switch-mode power supplies (SMPS) in great detail. This type of converter changes an unregulated DC voltage into a high-frequency pulse-width modulated (PWM) voltage controlled by varying the duty cycle, then changes the PWM AC voltage to a regulated DC voltage at a high efficiency by rectification and filtering. Used to supply electronic circuits, this converter saves energy and space in the overall system. With concept-orientated explanations, this book offers state-of-the-art SMPS technology and promotes an understanding of the principle operations of PWM converters,

  19. Vector control of three-phase AC/DC front-end converter

    Indian Academy of Sciences (India)

    Voltage error is quite high. Hence the current reference is also high. The controller may even saturate because of this large error, causing large transient current. To overcome this problem, the dc bus reference is increased gradually from its initial value. (essentially equal to the peak line-line voltage) to its final value over a ...

  20. Control strategy and hardware implementation for DC–DC boost power circuit based on proportional–integral compensator for high voltage application

    Directory of Open Access Journals (Sweden)

    Sanjeevikumar Padmanaban

    2015-06-01

    Full Text Available For high-voltage (HV applications, the designers mostly prefer the classical DC–DC boost converter. However, it lacks due to the limitation of the output voltage by the gain transfer ratio, decreased efficiency and its requirement of two sensors for feedback signals, which creates complex control scheme with increased overall cost. Furthermore, the output voltage and efficiency are reduced due to the self-parasitic behavior of power circuit components. To overcome these drawbacks, this manuscript provides, the theoretical development and hardware implementation of DC–DC step-up (boost power converter circuit for obtaining extra output-voltage high-performance. The proposed circuit substantially improves the high output-voltage by voltage-lift technology with a closed loop proportional–integral controller. This complete numerical model of the converter circuit including closed loop P-I controller is developed in simulation (Matlab/Simulink software and the hardware prototype model is implemented with digital signal processor (DSP TMS320F2812. A detailed performance analysis was carried out under both line and load regulation conditions. Numerical simulation and its verification results provided in this paper, prove the good agreement of the circuit with theoretical background.

  1. Development of a high current high temperature SiC MOSFET based solid-state power controller

    Science.gov (United States)

    Guo, Yuanbo

    Solid-State Power Controllers (SSPCs) are critical components in the development of electric aircraft and must be small in size, fast in response, and have high reliability. They are also proposed for use in microgrids to improve the power quality and system reliability. The development of Silicon Carbide (SiC) semiconductor switches provides a series of improvements for the SSPCs in both electrical and thermal performances. In the proposed SSPC design investigation, SiC MOSFETs die are mounted on cast-aluminum traces, under which are an aluminum nitride (AlN) layer and an aluminum composite base plate. The concept of i2t and its application in solid state protection is discussed in detail. Transient thermal characterizations of SiC MOSFETs are provided for a nearly-all-aluminum package by Finite Element Analysis (FEA). The SSPC is targeted for 120A nominal, 1200A fault current, 270V DC system, and working at 105°C environment with a maximum 350°C transient junction temperature capability.

  2. DC grid for home applications

    Science.gov (United States)

    Elangovan, D.; Archana, R.; Jayadeep, V. J.; Nithin, M.; Arunkumar, G.

    2017-11-01

    More than fifty percent Indian population do not have access to electricity in daily lives. The distance between the power generating stations and the distribution centers forms one of the main reasons for lack of electrification in rural and remote areas. Here lies the importance of decentralization of power generation through renewable energy resources. In the present world, electricity is predominantly powered by alternating current, but most day to day devices like LED lamps, computers and electrical vehicles, all run on DC power. By directly supplying DC to these loads, the number of power conversion stages was reduced, and overall system efficiency increases. Replacing existing AC network with DC is a humongous task, but with power electronic techniques, this project intends to implement DC grid at a household level in remote and rural areas. Proposed work was designed and simulated successfully for various loads amounting to 250 W through appropriate power electronic convertors. Maximum utilization of the renewable sources for domestic and commercial application was achieved with the proposed DC topology.

  3. New progress of high current gasdynamic ion source (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga@ipfran.ru; Sidorov, A.; Vodopyanov, A. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina St., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, Russian Academy of Sciences (IAP RAS), 46 Ul‘yanova St., 603950 Nizhny Novgorod (Russian Federation); Tarvainen, O.; Koivisto, H.; Kalvas, T. [Department of Physics, University of Jyvaskyla, P.O. Box 35 (YFL), 40500 Jyvaskyla (Finland)

    2016-02-15

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller’s ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10{sup 13} cm{sup −3}) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10{sup −4}–10{sup −3} mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments.

  4. Modeling of leakage currents in high-k dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Jegert, Gunther Christian

    2012-03-15

    Leakage currents are one of the major bottlenecks impeding the downscaling efforts of the semiconductor industry. Two core devices of integrated circuits, the transistor and, especially, the DRAM storage capacitor, suffer from the increasing loss currents. In this perspective a fundamental understanding of the physical origin of these leakage currents is highly desirable. However, the complexity of the involved transport phenomena so far has prevented the development of microscopic models. Instead, the analysis of transport through the ultra-thin layers of high-permittivity (high-k) dielectrics, which are employed as insulating layers, was carried out at an empirical level using simple compact models. Unfortunately, these offer only limited insight into the physics involved on the microscale. In this context the present work was initialized in order to establish a framework of microscopic physical models that allow a fundamental description of the transport processes relevant in high-k thin films. A simulation tool that makes use of kinetic Monte Carlo techniques was developed for this purpose embedding the above models in an environment that allows qualitative and quantitative analyses of the electronic transport in such films. Existing continuum approaches, which tend to conceal the important physics behind phenomenological fitting parameters, were replaced by three-dimensional transport simulations at the level of single charge carriers. Spatially localized phenomena, such as percolation of charge carriers across pointlike defects, being subject to structural relaxation processes, or electrode roughness effects, could be investigated in this simulation scheme. Stepwise a self-consistent, closed transport model for the TiN/ZrO{sub 2} material system, which is of outmost importance for the semiconductor industry, was developed. Based on this model viable strategies for the optimization of TiN/ZrO{sub 2}/TiN capacitor structures were suggested and problem areas

  5. High-current Standing Wave Linac With Gyrocon Power Source

    CERN Document Server

    Karliner, M M; Makarov, I G; Nezhevenko, O A; Ostreiko, G N; Persov, B Z; Serdobintsev, G V

    2004-01-01

    A gyrocon together with high-voltage 1.5 MeV accelerator ELIT-3A represents a power generator at 430 MHz serving for linear electron accelerator pulse driving. The facility description and results of calorimetric measurements of ELIT-3A electron beam power and accelerated beam at the end of accelerator are presented in the paper. 2.2 amps of pulsed current have been obtained at electron energy of 20 MeV. The achieved energy conversion efficiency is about 55%.

  6. LTS and HTS high current conductor development for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Pierluigi, E-mail: pierluigi.bruzzone@psi.ch [EPFL-CRPP, Fusion Technology, CH-5232 Villigen-PSI (Switzerland); Sedlak, Kamil; Uglietti, Davide; Bykovsky, Nikolay [EPFL-CRPP, Fusion Technology, CH-5232 Villigen-PSI (Switzerland); Muzzi, Luigi; De Marzi, Gainluca; Celentano, Giuseppe; Della Corte, Antonio; Turtù, Simonetta [ENEA, Superconductivity Division, I-00044 Frascati (Italy); Seri, Massimo [TRATOS Cavi Spa, I-52036 Pieve Santo Stefano (Italy)

    2015-10-15

    Highlights: • Design and R&D for DEMO TF conductors. • Wind&react vs. react&wind options for Nb{sub 3}Sn high grade TF conductors. • Progress in the manufacture of short length Nb{sub 3}Sn proptotypes. • Design and prototype manufacture for high current HTS cabled conductors. - Abstract: The large size of the magnets for DEMO calls for very large operating current in the forced flow conductor. A plain extrapolation from the superconductors in use for ITER is not adequate to fulfill the technical and cost requirements. The proposed DEMO TF magnets is a graded winding using both Nb{sub 3}Sn and NbTi conductors, with operating current of 82 kA @ 13.6 T peak field. Two Nb{sub 3}Sn prototypes are being built in 2014 reflecting the two approaches suggested by CRPP (react&wind method) and ENEA (wind&react method). The Nb{sub 3}Sn strand (overall 200 kg) has been procured at technical specification similar to ITER. Both the Nb{sub 3}Sn strand and the high RRR, Cr plated copper wire (400 kg) have been delivered. The cabling trials are carried out at TRATOS Cavi using equipment relevant for long length production. The completion of the manufacture of the two 20 m long prototypes is expected in the end of 2014 and their test is planned in 2015 at CRPP. In the scope of a long term technology development, high current HTS conductors are built at CRPP and ENEA. A DEMO-class prototype conductor is developed and assembled at CRPP: it is a flat cable composed of 20 twisted stacks of coated conductor tape soldered into copper shells. The 10 kA conductor developed at ENEA consists of stacks of coated conductor tape inserted into a slotted and twisted Al core, with a central cooling channel. Samples have been manufactured in industrial environment and the scalability of the process to long production lengths has been proven.

  7. Analysis of a Hybrid DC Comparator

    Directory of Open Access Journals (Sweden)

    Li Web

    2006-06-01

    Full Text Available The traditional controllable saturation reactor (CSR consists of single toroidal core, DC (direct current controlled loop (including DC controlled winding and DC biasing source and AC (alternating current excitation loop (including excitation winding and AC source. A detection winding and secondary winding are added up to the CSR configuration and form a hybrid DC comparator. The excitation current is asymmetric waveform when the CSR core is commonly stimulated by both AC and DC biasing sources, which just is the fundamental characteristic for the proposed comparator. Research shows the terminal voltage of the detection winding is asymmetric waveform when the secondary winding of the comparator is open and the CSR core is stimulated both by AC and DC biasing sources. Both theory analysis and experiment verify the feasibility of the differential RMS (root-mean-square between positive and negative half waves of the terminal voltage from the detection winding fitting for the feedback variance to balance DC biasing magnetic potential and form a self-balancing comparator. The zero-flux technique that the primary ampere-turn is equal to the secondary is the function base for the comparator. The operation details of the comparator including the control characteristics both of open-loop and close loop, the satiability judgment criterion, static error property and test range are introduced. The experimental results testify to the truth of the principle of the proposed DC comparator.

  8. Observed currents on the earth's high-latitude magnetopause

    Science.gov (United States)

    Van Allen, J. A.; Adnan, J.

    1992-01-01

    A survey of electrical currents of the earth's magnetosphere, principally at high latitudes, as inferred from magnetic vector data acquired by the Hawkeye 1 satellite, is reported. A total of 536 candidate crossings of the magnetopause were examined. A reduced data set of 139 selected cases was analyzed in detail though solar wind dynamic pressure data were available for only 117 of these cases. Inferred values of the lineal current densities on the magnetopause are in the range 5.5 to 157.5 mA/m over a wide range of solar wind dynamic pressure from 1.17 to 16.1 nPa. The apparent normal thickness of the magnetopause current sheet ranges from 30 to 850 km with mean and median values of 185 and 158 km, respectively. It is argued that the radial rate of motion of the magnetopause is of the order of 2 km/s and hence that its true thickness is of similar magnitude. The relationship of these results to models of the geomagnetic field and to other related work is discussed.

  9. Geomagnetically induced currents in Norway: the northernmost high-voltage power grid in the world

    Directory of Open Access Journals (Sweden)

    Myllys Minna

    2014-03-01

    Full Text Available We have derived comprehensive statistics of geomagnetic activity for assessing the occurrence of geomagnetically induced currents (GIC in the Norwegian high-voltage power grid. The statistical study is based on geomagnetic recordings in 1994–2011 from which the geoelectric field can be modelled and applied to a DC description of the power grid to estimate GIC. The largest GIC up to a few 100 A in the Norwegian grid occur most likely in its southern parts. This follows primarily from the structure of the grid favouring large GIC in the south. The magnetic field has its most rapid variations on the average in the north, but during extreme geomagnetic storms they reach comparable values in the south too. The ground conductivity has also smaller values in the south, which further increases the electric field there. Additionally to results in 1994–2011, we performed a preliminary estimation of a once per 100 year event for geoelectric field by extrapolating the statistics. We found that the largest geoelectric field value would be twice the maximum in 1994–2011. Such value was actually reached on 13–14 July 1982.

  10. Compilation of current high energy physics experiments - Sept. 1978

    Energy Technology Data Exchange (ETDEWEB)

    Addis, L.; Odian, A.; Row, G. M.; Ward, C. E. W.; Wanderer, P.; Armenteros, R.; Joos, P.; Groves, T. H.; Oyanagi, Y.; Arnison, G. T. J.; Antipov, Yu; Barinov, N.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)

  11. Early Stage of Pulsed High Current Discharge with Copper Powder

    Science.gov (United States)

    Yokoyama, Takuma; Kuraoka, Takuya; Takano, Kazuya; Ibuka, Shinji; Yasuoka, Koichi; Ishii, Shozo

    Early phase of powder plasmas powered by a pulsed high current discharge was examined by use of high-speed cameras and a laser shadowgraph and schlieren techniques. Initial electrons created by a pre-ionization discharge collide with both an anode and powder particles, of which surfaces evaporate after then. Evaporation of the particle by electron collision initially occured in the hemisphere surface which is close to cathode side. Since vaporization of the anode far exceeds that of the particles, discharge characteristics is almost similar to that of vacuum sparks in which expanding anode plasmas are observed. In order to suppress the developpment of the anode plasma, reduction of the effective anode area by varying the anode shape was examined.

  12. The Transition to High School: Current Knowledge, Future Directions

    Science.gov (United States)

    2011-01-01

    In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a particular developmental domain (e.g., academics and socioemotional well-being) to the exclusion of a more integrated model. This review relies on life course theory to establish an organizational framework for interpreting and connecting the diffuse and sometimes disparate findings on the high school transition, including adolescent developmental trajectories and the influence of social ties, changing sociocultural contexts, and stratification systems. Conclusions identify aspects for future inquiry suggested by current knowledge and the tenets of the life course perspective. PMID:21966178

  13. A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids

    Directory of Open Access Journals (Sweden)

    Ching-Ming Lai

    2016-03-01

    Full Text Available This paper proposes a novel high-gain three-port power converter with fuel cell (FC, battery sources and stacked output for a hybrid electric vehicle (HEV connected to a dc-microgrid. In the proposed power converter, the load power can be flexibly distributed between the input sources. Moreover, the charging or discharging of the battery storage device can be controlled effectively using the FC source. The proposed converter has several outputs in series to achieve a high-voltage output, which makes it suitable for interfacing with the HEV and dc-microgrid. On the basis of the charging and discharging states of the battery storage device, two power operation modes are defined. The proposed power converter comprises only one boost inductor integrated with a flyback transformer; the boost and flyback circuit output terminals are stacked to increase the output voltage gain and reduce the voltage stress on the power devices. This paper presents the circuit configuration, operating principle, and steady-state analysis of the proposed converter, and experiments conducted on a laboratory prototype are presented to verify its effectiveness.

  14. Optical transponder DC probe [for pulsed power generator

    CERN Document Server

    Thompson, M C

    1999-01-01

    The Atlas Pulse Power, Marx Bank will produce significant electromagnetic interference potential (EMI) via its 192 spark-gaps and trigger systems (36 more spark gaps). The authors have a need to measure DC charge components to a fair degree of accuracy during charge to ensure a safe and balanced system. Isolation from elevated- deck and/or high EMI environments during DC voltage or current measurement has classically been approached using frequency modulation (FM) of an imposed carrier on an optical fiber coupled system. There are shortcomings in most systems that can generally be compensated for by various means. In their application of remote sensing, the power to run this remote probe was a central issue. As such the authors took another approach to monitor the DC charge record for the Atlas' Marx banks. (0 refs).

  15. High resolution modelling of the North Icelandic Irminger Current (NIIC

    Directory of Open Access Journals (Sweden)

    K. Logemann

    2006-01-01

    Full Text Available The northward inflow of Atlantic Water through Denmark Strait – the North Icelandic Irminger Current (NIIC – is simulated with a numerical model of the North Atlantic and Arctic Ocean. The model uses the technique of adaptive grid refinement which allows a high spatial resolution (1 km horizontal, 10 m vertical around Iceland. The model is used to assess time and space variability of volume and heat fluxes for the years 1997–2003. Passive tracers are applied to study origin and composition of NIIC water masses. The NIIC originates from two sources: the Irminger Current, flowing as part of the sub-polar gyre in 100–500 m depth along the Reykjanes Ridge and the shallow Icelandic coastal current, flowing north-westward on the south-west Icelandic shelf. The ratio of volume flux between the deep and shallow branch is around 2:1. The NIIC continues as a warm and saline branch northward through Denmark Strait where it entrains large amounts of polar water due to the collision with the southward flowing East Greenland Current. After passing Denmark Strait, the NIIC follows the coast line eastward being an important heat source for north Icelandic waters. At least 60% of the temporal temperature variability of north Icelandic waters is caused by the NIIC. The NIIC volume and heat transport is highly variable and depends strongly on the wind field north-east of Denmark Strait. Daily means can change from 1 Sv eastward to 2 Sv westward within a few days. Highest monthly mean transport rates occur in summer when winds from north are weak, whereas the volume flux is reduced by around 50% in winter. Summer heat flux rates can be even three times higher than in winter. The simulation also shows variability on the interannual scale. In particular weak winds from north during winter 2002/2003 combined with mild weather conditions south of Iceland led to anomalous high NIIC volume (+40% and heat flux (+60% rates. In this period, simulated north Icelandic

  16. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    Energy Technology Data Exchange (ETDEWEB)

    Darmann, Frank [Zenergy Power, Inc., Burlingame, CA (United States); Lombaerde, Robert [Zenergy Power, Inc., Burlingame, CA (United States); Moriconi, Franco [Zenergy Power, Inc., Burlingame, CA (United States); Nelson, Albert [Zenergy Power, Inc., Burlingame, CA (United States)

    2012-03-01

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with warm bore diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged spider design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP's product development program, the amount of HTS

  17. Linking DC together with TRSL

    DEFF Research Database (Denmark)

    Haxthausen, Anne; Yong, Xia

    1999-01-01

    for high-level specifications of real-time requirementsand TRSL for specifying real-time implementations in the form of timed communicating concurrent processes.In order to link DC and TRSL together in a well-founded way, we formally define what it means for a TRSL process to satisfy a DC requirement...... of constraints on the durations of states of the system, i.e. at a high level of abstraction.However, as a state-based logic, it lacks the ability to specifysequential programs and communicating concurrent processes at a concrete level. The Timed RAISE Specification Language (TRSL) [XG99] has this ability.......TRSL is a real-time extension of the RAISE Specification Language (RSL) [Rlg92] which together with its associated method [Rmg95]and tools has shown to be very useful in the industrial development of software systems. Therefore, a promising approach for the development of real-time systemscould be to use DC...

  18. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    Energy Technology Data Exchange (ETDEWEB)

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  19. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    Science.gov (United States)

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  20. Modular high voltage power supply for chemical analysis

    Science.gov (United States)

    Stamps, James F [Livermore, CA; Yee, Daniel D [Dublin, CA

    2008-07-15

    A high voltage power supply for use in a system such as a microfluidics system, uses a DC-DC converter in parallel with a voltage-controlled resistor. A feedback circuit provides a control signal for the DC-DC converter and voltage-controlled resistor so as to regulate the output voltage of the high voltage power supply, as well as, to sink or source current from the high voltage supply.

  1. TID and Displacement Damage Effects in Vertical and Lateral Power MOSFETs for Integrated DC-DC Converters

    CERN Document Server

    Faccio, F; Michelis, S; Faccio, Federico; Fuentes, C; Allongue, B; Sorge, R; Orlandi, S

    2010-01-01

    TID and displacement damage effects are studied for vertical and lateral power MOSFETs in five different technologies in view of the development of radiation-tolerant fully integrated DC-DC converters. Investigation is pushed to the very high level of radiation expected for an upgrade to the LHC experiments. TID induces threshold voltage shifts and, in n-channel transistors, source-drain leakage currents. Wide variability in the magnitude of these effects is observed. Displacement damage increases the on-resistance of both vertical and lateral high-voltage transistors. In the latter case, degradation at high particle fluence might lead to a distortion of the output characteristics curve. HBD techniques to limit or eliminate the radiation-induced leakage currents are successfully applied to these high-voltage transistors, but have to be used carefully to avoid consequences on the breakdown voltage.

  2. DC superimposed AC high voltage: A new strategy for transferring stable He atmospheric pressure cold plasma bullets through long dielectric tubes

    Science.gov (United States)

    Siadati, S. N.; Sohbatzadeh, F.; Valinataj Omran, Azadeh

    2017-06-01

    This study developed a stable transfer of He atmospheric pressure cold plasma bullets in a large dielectric tube with a length of 70 cm and an inner diameter of 0.4-1.6 cm. DC superimposed AC voltage was used for this purpose. The DC component of the applied voltage generated corona ionization through the tube, which helped in the ignition and transfer of the plasma as a pre-ionization background. The bullets followed the frequency of the AC component; therefore, very high applied energy was not required to ignite this large-scale plasma. To our knowledge, this is the first time such a complex waveform has been reported for the transfer of a plasma bullet. The characteristics of the transferring plasma bullet, such as the power, charge, propagation speed, resistance, AC electrical field (EF) of the plasma, and electrostatic field on the tube surface, were measured. The influence of the tube diameter on these characteristics was investigated. The results showed that the power applied, charge, and power deposited on the target increased as the tube diameter increased. Less plasma resistance and radiation were observed using larger diameters. The root mean square (RMS) values of the axial AC EF of the bullet along the jet axis were higher for the larger diameters, but no special relation between the propagation speed, radial AC EF, and static surface field and tube diameter was observed.

  3. Current status and future of high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Tu, T.

    1977-03-01

    With respect to the present knowledge of the internal structure of matter, nothing is known about the structure of leptons or photons, and just a little about the structure of hadrons. Some of the most important questions to be answered in high-energy physics are the following: how many kinds of quarks are there and how can they be isolated; how are quarks bound to form hadrons; can weak, electromagnetic, and strong interactions all be described by a single unified theory; are there new types of leptons; and are there new phenomena not conceived of yet. New particles may be discovered by large accelerators scheduled for completion in West Germany, the United States, and the Soviet Union about 1980. The factors vital to China's long-range development of high-energy physics are personnel well-versed in Marxism--Leninism and Mao Tse-tung's thought, particle accelerators with high energies, strong currents, and many kinds of particle beams, and an advanced particle detection and data processing technology.

  4. Improved Turn-on Characteristics of Fast High Current Thyristors

    CERN Document Server

    Ducimetière, L; Vossenberg, Eugène B

    1999-01-01

    The beam dumping system of CERN's Large Hadron Collider (LHC) is equipped with fast solid state closing switches, designed for a hold-off voltage of 30 kV and a quasi half sine wave current of 20 kA, with 3 ms rise time, a maximum di/dt of 12 kA/ms and 2 ms fall time. The design repetition rate is 20 s. The switch is composed of ten Fast High Current Thyristors (FHCT’s), which are modified symmetric 4.5 kV GTO thyristors of WESTCODE. Recent studies aiming at improving the turn-on delay, switching speed and at decreasing the switch losses, have led to test an asymmetric not fully optimised GTO thyristor of WESTCODE and an optimised device of GEC PLESSEY Semiconductor (GPS), GB. The GPS FHCT, which gave the best results, is a non irradiated device of 64 mm diameter with a hold-off voltage of 4.5 kV like the symmetric FHCT. Tests results of the GPS FHCT show a reduction in turn-on delay of 40 % and in switching losses of almost 50 % with respect to the symmetric FHCT of WESTCODE. The GPS device can sustain an i...

  5. Overvoltage protection in DC power systems; Ueberspannungsschutz in Gleichstromanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Birkl, Josef; Zahlmann, Peter [Dehn + Soehne GmbH + Co.KG, Neumarkt (Germany)

    2012-02-15

    The utilisation of DC power systems has increased dramatically in the recent years. In addition to traditional DC applications such as in telecommunications and railway engineering a variety of DC applications arise due to a rapid spread of photovoltaic systems. Current projects for the e-mobility expand the scope of application.

  6. Minimum component high frequency current mode rectifier | Sampe ...

    African Journals Online (AJOL)

    In this paper a current mode full wave rectifier circuit is proposed. The current mode rectifier circuit is implemented utilizing a floating current source (FCS) as an active element. The minimum component full wave rectifier utilizes only a single floating current source, two diodes and two grounded resistors. The extremely ...

  7. Ultra-high current density thin-film Si diode

    Science.gov (United States)

    Wang, Qi [Littleton, CO

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  8. PENETRATION AND DEFECT FORMATION IN HIGH CURRENT ARC WELDING

    Energy Technology Data Exchange (ETDEWEB)

    MENDEZ,P.F.; EAGAR, T.W.

    2003-01-01

    The work performed during the three previous years can be roughly divided into two main categories: (1) development of advanced modeling techniques; and (2) modeling of arc welding process. The work in the first category comprised the development of the Order of Magnitude Scaling (OMS) technique, which is complementary to numerical modeling techniques such as finite elements, but it provides approximate formulas instead of just numerical results. Borrowing concepts from OMS, another modeling technique based on empirical data was also developed. During this stage special software was also developed. The second category comprised the application of OMS to the three main subsystems of arc welding: the weld pool, the arc, and the electrode. For each of these subsystems they found scaling laws and regimes. With this knowledge, they analyzed the generation of weld pool defects during high current arc welding, proposed a mechanistic description of the process, and possible solutions.

  9. Gravity Currents with Convective Mixing: High-resolution Numerical Simulations

    Science.gov (United States)

    Voskov, D.; Elenius, M. T.; Tchelepi, H.

    2014-12-01

    Due to challenges in performing direct numerical simulations for gravity currents with convective mixing, different attempts have been made to simplify the problem. In this work, the full problem is investigated with direct numerical simulations. Our simulations employ a recently developed capability in our General Purpose Research Simulator (AD-GPRS). The compositional approach is based on K-values and a linear density model. A shared-memory parallel implementation allows for high resolution simulations in a reasonable time frame. Our results indicate that it is important to consider the reduction in the dissolution rate after the fingers begin to interact with the bottom of the aquifer. Another important observation suggests considering a reduction in the dissolution rate where the plume thickness increases in time. In addition to the large-scale simulations, we performed convective-mixing simulations in relatively small domains to support the analysis of large-scale plume migration and CO2 trapping.

  10. Comparative Study of DC and AC Microgrids in Commercial Buildings Across Different Climates and Operating Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Fregosi, Daniel; Ravula, Sharmila; Brhlik, Dusan; Saussele, John; Frank, Stephen; Bonnema, Eric; Scheib, Jennifer; Wilson, Eric

    2015-06-07

    Bosch has developed and demonstrated a novel direct current (DC) microgrid system that maximizes the efficiency of locally generated photovoltaic energy while offering high reliability, safety, redundancy, and reduced cost compared to equivalent alternating current (AC) systems. Several demonstration projects validating the system feasibility and expected efficiency gains have been completed and additional ones are in progress. This paper gives an overview of the Bosch DC microgrid system and presents key results from a large simulation study done to estimate the energy savings of the Bosch DC microgrid over conventional AC systems. The study examined the system performance in locations across the United States for several commercial building types and operating profiles. It found that the Bosch DC microgrid uses generated PV energy 6%-8% more efficiently than traditional AC systems.

  11. Investigation of DC current models in Co2+ and Ti4+ substituted M-type BaCox Tix Fe(12-2x) O19 ferrite

    Science.gov (United States)

    Bhikhan, Vikas; Singh, Charanjeet; Kaur, Rajneesh; Jaroszewski, Maciej; Bindra Narang, S.

    2015-12-01

    The static current density ( J)-electric field ( E) characteristics of BaCo x Ti x Fe(12-2 x)O19 ferrite compositions ( x = 0.1, 0.3, 0.5, 0.7, 0.9) have been investigated at an applied field from 0.003 kV/m to 4.98 kV/m at room temperature. Compositions x = 0.3, 0.5 and 0.7 exhibit ohmic behavior at low applied field and non-linear conduction is observed in compositions x = 0.1, 0.3, 0.7 and 0.9 at higher applied field. The various non-linear conduction models, associated with Schottky, Poole-Frenkel, Ionic Hopping and Space Charge Limited Current mechanisms, have been discussed. The large current density has been found at higher substitution.

  12. Analysis and design of single-phase power factor-corrected AC-DC Cuk converter with high-frequency isolation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bim; Agrawal, Mahima [Indian Inst. of Technology, Dept. of Electrical Engineering, New Delhi (India)

    2006-07-01

    In this paper, an analysis and design of a high-frequency transformer isolated single-phase buck-boost AC-DC Cuk converter is presented for both discontinuous and continuous conduction modes (DCM and CCM) of operation. Both modes of operation are considered for the design of 2.6-kW rating with high-level steady-state and dynamic performance. A comparative analysis of Cuk converter is also presented in both modes of operation of DCM and CCM from point of view of steady-state and dynamic behaviour, power quality, simplicity, control technique, device rating and converter size. It is observed that CCM is most suitable for higher power applications in which it requires a little complex control and sensing the additional variables. (Author)

  13. Maximum Safety Regenerative Power Tracking for DC Traction Power Systems

    Directory of Open Access Journals (Sweden)

    Guifu Du

    2017-02-01

    Full Text Available Direct current (DC traction power systems are widely used in metro transport systems, with running rails usually being used as return conductors. When traction current flows through the running rails, a potential voltage known as “rail potential” is generated between the rails and ground. Currently, abnormal rises of rail potential exist in many railway lines during the operation of railway systems. Excessively high rail potentials pose a threat to human life and to devices connected to the rails. In this paper, the effect of regenerative power distribution on rail potential is analyzed. Maximum safety regenerative power tracking is proposed for the control of maximum absolute rail potential and energy consumption during the operation of DC traction power systems. The dwell time of multiple trains at each station and the trigger voltage of the regenerative energy absorbing device (READ are optimized based on an improved particle swarm optimization (PSO algorithm to manage the distribution of regenerative power. In this way, the maximum absolute rail potential and energy consumption of DC traction power systems can be reduced. The operation data of Guangzhou Metro Line 2 are used in the simulations, and the results show that the scheme can reduce the maximum absolute rail potential and energy consumption effectively and guarantee the safety in energy saving of DC traction power systems.

  14. The high current transport experiment for heavy ion inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  15. High current transport experiment for heavy ion inertial fusion

    Directory of Open Access Journals (Sweden)

    L. R. Prost

    2005-02-01

    Full Text Available The High Current Experiment at Lawrence Berkeley National Laboratory is part of the U.S. program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density ∼0.2  μC/m over long pulse durations (4  μs in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo, and electron and gas cloud effects. We present the results for a coasting 1 MeV K^{+} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius for which the transverse phase space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor (≈80% is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  16. Improved DC Gun and Insulator Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-01-11

    Many user facilities such as synchrotron radiation light sources and free electron lasers rely on DC high voltage photoguns with internal field gradients as high as 10 to 15 MV/m. These high gradients often lead to field emission which poses serious problems for the photocathode used to generate the electron beam and the ceramic insulators used to bias the photocathode at high voltage. Ceramic insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic causing a buildup of charge and eventual puncture, and also because large diameter ceramics are difficult to braze reliably. The lifetimes of photo cathodes inside high current DC guns exhibiting field emission are limited to less than a hundred hours. Reducing the surface gradients on the metals reduces the field emission, which serves to maintain the required ultrahigh vacuum condition. A novel gun design with gradients around 5 MV/m and operating at 350 kV, a major improvement over existing designs, was proposed that allows for the in-situ replacement of photo cathodes in axially symmetric designs using inverted ceramics. In this project, the existing JLAB CEBAF asymmetric gun design with an inverted ceramic support was modeled and the beam dynamics characterized. An improved structure was designed that reduces the surface gradients and improves the beam optics. To minimize the surface gradients, a number of electrostatic gun designs were studied to determine the optimum configuration of the critical electrodes within the gun structure. Coating experiments were carried out to create a charge dissipative coating for cylindrical ceramics. The phase II proposal, which was not granted, included the design and fabrication of an axially symmetric DC Gun with an inverted ceramic that would operate with less than 5 MV/m at 350 kV and would be designed with an in-situ replaceable photo-cathode.

  17. A high current, short pulse electron source for wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  18. An Integrated Multifunctional Bidirectional AC/DC and DC/DC Converter for Electric Vehicles Applications

    Directory of Open Access Journals (Sweden)

    Liwen Pan

    2016-06-01

    Full Text Available This paper presents an on-board vehicular battery charger that integrates bidirectional AC/DC converter and DC/DC converter to achieve high power density for application in electric vehicles (EVs. The integrated charger is able to transfer electrical energy between the battery pack and the electric traction system and to function as an AC/DC battery charger. The integrated charger topology is presented and the design of passive components is discussed. The control schemes are developed for motor drive system and battery-charging system with a power pulsation reduction circuit. Simulation results in MATLAB/Simulink and experiments on a 30-kW motor drive and 3.3-kW AC/DC charging prototype validate the performance of the proposed technology. In addition, power losses, efficiency comparison and thermal stress for the integrated charger are illustrated. The results of the analyses show the validity of the advanced integrated charger for electric vehicles.

  19. Clipper for High-Impedance Current-Drive Line

    Science.gov (United States)

    Woodhouse, Christopher E.

    1987-01-01

    New circuit leakage reduced by shunting current through saturated input at operational-amplifier follower already part of Howland, or equivalent, current source. Typical application is in circuit of germanium resistance thermometer in cryogenic system.

  20. Nanosecond pulsed electric fields (nsPEFs) low cost generator design using power MOSFET and Cockcroft-Walton multiplier circuit as high voltage DC source

    Science.gov (United States)

    Sulaeman, M. Y.; Widita, R.

    2014-09-01

    Purpose: Non-ionizing radiation therapy for cancer using pulsed electric field with high intensity field has become an interesting field new research topic. A new method using nanosecond pulsed electric fields (nsPEFs) offers a novel means to treat cancer. Not like the conventional electroporation, nsPEFs able to create nanopores in all membranes of the cell, including membrane in cell organelles, like mitochondria and nucleus. NsPEFs will promote cell death in several cell types, including cancer cell by apoptosis mechanism. NsPEFs will use pulse with intensity of electric field higher than conventional electroporation, between 20-100 kV/cm and with shorter duration of pulse than conventional electroporation. NsPEFs requires a generator to produce high voltage pulse and to achieve high intensity electric field with proper pulse width. However, manufacturing cost for creating generator that generates a high voltage with short duration for nsPEFs purposes is highly expensive. Hence, the aim of this research is to obtain the low cost generator design that is able to produce a high voltage pulse with nanosecond width and will be used for nsPEFs purposes. Method: Cockcroft-Walton multiplier circuit will boost the input of 220 volt AC into high voltage DC around 1500 volt and it will be combined by a series of power MOSFET as a fast switch to obtain a high voltage with nanosecond pulse width. The motivation using Cockcroft-Walton multiplier is to acquire a low-cost high voltage DC generator; it will use capacitors and diodes arranged like a step. Power MOSFET connected in series is used as voltage divider to share the high voltage in order not to damage them. Results: This design is expected to acquire a low-cost generator that can achieve the high voltage pulse in amount of -1.5 kV with falltime 3 ns and risetime 15 ns into a 50Ω load that will be used for nsPEFs purposes. Further detailed on the circuit design will be explained at presentation.