WorldWideScience

Sample records for high curie temperature

  1. High Curie temperature BiInO3-PbTiO3 films.

    Science.gov (United States)

    Lee, Sun Young; Wang, Wei; Trolier-McKinstry, Susan

    2014-06-14

    High Curie temperaturepiezoelectricthin films of xBiInO3-(1-x)PbTiO3 (x = 0.10, 0.15, 0.20, and 0.25) were prepared by pulsed laser deposition. It was found that the tetragonality of films decreased with increasing BI content. The dielectric constant and transverse piezoelectric coefficient (e31,f ) exhibit the highest values of 665 and -13.6 C/m(2) at x = 0.20. Rayleigh analyses were performed to identify the extrinsic contributions to dielectric nonlinearity with different x. The composition with x = 0.20 also exhibits the largest extrinsic contributions to dielectric nonlinearity. The Curie temperature (TC ) is increased with increasing x content from 558 to 633 °C; TC at x = 0.20 is about 584 °C.

  2. Magnetic properties of N-doped graphene with high Curie temperature

    Science.gov (United States)

    Miao, Qinghua; Wang, Lidong; Liu, Zhaoyuan; Wei, Bing; Xu, Fubiao; Fei, Weidong

    2016-01-01

    N-doped graphene with Curie temperature higher than room temperature is a good candidate for nanomagnetic applications. Here we report a kind of N-doped graphene that exhibits ferromagnetic property with high Curie temperature (>600 K). Four graphene samples were prepared through self-propagating high-temperature synthesis (SHS), and the doped nitrogen contents of in the samples were 0 at.%, 2.53 at.%, 9.21 at.% and 11.17 at.%. It has been found that the saturation magnetization and coercive field increase with the increasing of nitrogen contents in the samples. For the sample with the highest nitrogen content, the saturation magnetizations reach 0.282 emu/g at 10 K and 0.148 emu/g at 300 K; the coercive forces reach 544.2 Oe at 10 K and 168.8 Oe at 300 K. The drop of magnetic susceptibility at ~625 K for N-doped graphene is mainly caused by the decomposition of pyrrolic N and pydinic N. Our results suggest that SHS method is an effective and high-throughput method to produce N-doped graphene with high nitrogen concentration and that N-doped graphene produced by SHS method is promising to be a good candidate for nanomagnetic applications. PMID:26907569

  3. In-Situ Alignment of MnBi Crystals Induced by High Magnetic Field above Curie Temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-Sheng; ZHANG Jin-Cang; REN Zhong-Ming; CAO Shi-Xun

    2007-01-01

    @@ Above Curie temperature, MnBi crystals are aligned in situ along the c-axis in a Bi matrix by a high fabrication magnetic field Hf of 10 T. Magnetic testing shows a pronounced anisotropy in magnetization in directions normal and parallel to the fabrication field, resulting from the alignment. The successful alignment may result from the fact that the easy magnetization direction is along the c-axis of MnBi and the high fabrication field of 10 T is large enough to rotate the MnBi crystal to this direction even though the temperature is above the Curie temperature.

  4. High Curie temperature of Ce-Fe-Si compounds with ThMn12 structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C; Pinkerton, FE; Herbst, JF

    2015-01-15

    We report the discovery of ternary CeFe(12-x)Si(x)compounds possessing the ThMn12 structure. The samples were prepared by melt spinning followed by annealing. In contrast to other known Ce Fe-based binary and ternary compounds, CeFe12-xSix compounds exhibit exceptionally high Curie temperatures whose values increase with added Si substitution. The highest T. = 583 K in CeFe10Si2 rivals that of the well-established Nd2Fe14B compound. We ascribe the T-c behavior to a combination of Si-induced 3d band structure changes and partial Ce3+ stabilization. (C) 2014 Published by Elsevier Ltd.

  5. High Curie temperature Mn5Ge3 thin films produced by non-diffusive reaction

    Science.gov (United States)

    Assaf, E.; Portavoce, A.; Hoummada, K.; Bertoglio, M.; Bertaina, S.

    2017-02-01

    Polycrystalline Mn5Ge3 thin films were produced on SiO2 using magnetron sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ X-ray diffraction and atomic force microscopy were used to determine the layer structures, and magnetic force microscopy, superconducting quantum interference device, and ferromagnetic resonance were used to determine their magnetic properties. RD-mediated layers exhibit similar magnetic properties as molecular beam epitaxy-grown monocrystalline Mn5Ge3 thin films, while NDR-mediated layers show magnetic properties similar to monocrystalline C-doped Mn5Ge3Cx thin films with 0.1 ≤ x ≤ 0.2. NDR appears as a complementary metal oxide semi-conductor-compatible efficient method to produce good magnetic quality high-Curie temperature Mn5Ge3 thin films.

  6. Large magnetization and high Curie temperature in highly disordered nanoscale Fe2CrAl thin films

    Science.gov (United States)

    Dulal, Rajendra P.; Dahal, Bishnu R.; Forbes, Andrew; Pegg, Ian L.; Philip, John

    2017-02-01

    We have successfully grown nanoscale Fe2CrAl thin films on polished Si/SiO2 substrates using an ultra-high vacuum deposition with a base pressure of 9×10-10 Torr. The thickness of thin films ranges from 30 to 100 nm. These films exhibit cubic crystal structure with lattice disorder and display ferromagnetic behavior. The Curie temperature is greater than 400 K, which is much higher than that reported for bulk Fe2CrAl. The magnetic moments of the films varies from 2.5 to 2.8 μB per formula unit, which is larger than the reported bulk values. Thus, the disordered nanoscale Fe2CrAl films exhibit strong Fe-Fe exchange interactions through Fe-Cr-Fe and Fe-Al-Fe layers, resulting in both a large magnetization and a high Curie temperature.

  7. High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns.

    Science.gov (United States)

    Jamet, Matthieu; Barski, André; Devillers, Thibaut; Poydenot, Valier; Dujardin, Romain; Bayle-Guillemaud, Pascale; Rothman, Johan; Bellet-Amalric, Edith; Marty, Alain; Cibert, Joël; Mattana, Richard; Tatarenko, Serge

    2006-08-01

    The emerging field of spintronics would be dramatically boosted if room-temperature ferromagnetism could be added to semiconductor nanostructures that are compatible with silicon technology. Here, we report a high-TC (>400K) ferromagnetic phase of (Ge,Mn) epitaxial layer. The manganese content is 6%, and careful structural and chemical analyses show that the Mn distribution is strongly inhomogeneous: we observe eutectoid growth of well-defined Mn-rich nanocolumns surrounded by a Mn-poor matrix. The average diameter of these nanocolumns is 3nm and their spacing is 10nm. Their composition is close to Ge(2)Mn, which corresponds to an unknown germanium-rich phase, and they have a uniaxially elongated diamond structure. Their Curie temperature is higher than 400K. Magnetotransport reveals a pronounced anomalous Hall effect up to room temperature. A giant positive magnetoresistance is measured from 7,000% at 30K to 200% at 300K and 9T, with no evidence of saturation.

  8. CoxC nanorod magnets: Highly magnetocrystalline anisotropy with lower Curie temperature for potential applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, AA; Almugaiteeb, T; Carpenter, EE

    2013-12-01

    Magnetic CoxC nanorods with larger magnetocrystalline anisotropy of 5 x 10(5) J/m(3) as well as larger coercivity and lower Curie temperature are introduced. The particles have an average diameter of 8 nm and shows three different magnetic behaviors. The sample shows ferromagnetism up to 400 K, superparamagnetism at temperature > 400 K and

  9. High Curie temperatures in (Ga,Mn)N from Mn clustering

    OpenAIRE

    Hynninen, Teemu; Raebiger, Hannes; Ayuela, Andres; von Boehm, J.

    2005-01-01

    The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormally large variations in experimental Tc values from a few K to well above room temperature. The partially dimerized Mn_2-Mn_1 distribution is found to give the highest Tc > 500 K, and in general, the presence of the Mn_2 dimer has a tendency to enh...

  10. CURIE-TEMPERATURE "SLATER-PAULING CURVE"

    OpenAIRE

    Kakehashi, Y.; Hosohata, O.

    1988-01-01

    The systematic variation of the Curie-temperature "Slater-Pauling curve" has been explained for the first time on the basis of the finite-temperature theory of the local environment effect. The peculiarity of the Curie temperatures in Fe-V, Fe-Ni, and Ni-Mn alloys is elucidated by using the effective exchange couplings.

  11. Nd-doped ZnO monolayer: High Curie temperature and large magnetic moment

    Science.gov (United States)

    Tan, Changlong; Sun, Dan; Zhou, Long; Tian, Xiaohua; Huang, Yuewu

    2016-10-01

    We performed first-principles calculations within density-functional theory to study the structural, electronic, and magnetic properties of Nd-doped ZnO monolayer. The calculated results reveal that Nd-doped ZnO monolayer exhibits stable room temperature ferromagnetism with a large saturation magnetic moment of 3.99 μB per unit in ZnO monolayer. The magnetic property is contributed to the localized f sates of Nd atoms. When two Zn atoms are substituted by two Nd dopants, they tend to form ferromagnetic (FM) coupling and the estimated Curie temperature is higher than room temperature. More interesting, the impurity bands appear within the band gap of ZnO monolayer due to the introduction of Nd dopant. Our results may provide a reference for modifying the material property of ZnO monolayer and are promising as nanoscale building block in spintronic devices.

  12. Nanoengineering of an Si/MnGe quantum dot superlattice for high Curie-temperature ferromagnetism.

    Science.gov (United States)

    Nie, Tianxiao; Kou, Xufeng; Tang, Jianshi; Fan, Yabin; Lee, Shengwei; He, Qinglin; Chang, Li-Te; Murata, Koichi; Gen, Yin; Wang, Kang L

    2017-02-14

    The realization and application of spintronic devices would be dramatically advanced if room-temperature ferromagnetism could be integrated into semiconductor nanostructures, especially when compatible with mature silicon technology. Herein, we report the observation of such a system - an Si/MnGe superlattice with quantum dots well aligned in the vertical direction successfully grown by molecular beam epitaxy. Such a unique system could take full advantage of the type-II energy band structure of the Si/Ge heterostructure, which could trap the holes inside MnGe QDs, significantly enhancing the hole-mediated ferromagnetism. Magnetic measurements indeed found that the superlattice structure exhibited a Curie temperature of above 400 K. Furthermore, zero-field cooling and field cooling curves could confirm the absence of ferromagnetic compounds, such as Ge8Mn11 (Tc ∼ 270 K) and Ge3Mn5 (Tc ∼ 296 K) in our system. Magnetotransport measurement revealed a clear magnetoresistance transition from negative to positive and a pronounced anomalous Hall effect. Such a unique Si/MnGe superlattice sets a new stage for strengthening ferromagnetism due to the enhanced hole-mediation by quantum confinement, which can be exploited for realizing the room-temperature Ge-based spin field-effect transistors in the future.

  13. The study of high Curie temperature ferromagnetism properties in Mn-doped SiC thin film

    Directory of Open Access Journals (Sweden)

    Chaoyang Kang

    2015-01-01

    Full Text Available Mn-doped 3C-SiC film has been prepared onto the Si (111 substrate by employing a molecular beam epitaxy method. The experimental analysis establishes that the prepared sample shows the ferromagnetic property with a relatively high Curie temperature (Tc of 355 K, which is an exciting phenomenon on account of the scarceness in the SiC-based diluted magnetic semiconductor. The analysis derived from the X-ray diffraction and absorption spectroscopy patterns indicates that Mn atoms should react with Si atoms and then form Mn4Si7 compounds. Combined with the theoretical simulation, it is speculated that a new alloy phase of Mn4Si7Cx maybe appear, which should be responsible for the exceptionally high Tc ferromagnetic behavior in the sample.

  14. Recent Developments on High Curie Temperature PIN-PMN-PT Ferroelectric Crystals.

    Science.gov (United States)

    Zhang, Shujun; Li, Fei; Sherlock, Nevin P; Luo, Jun; Lee, Hyeong Jae; Xia, Ru; Meyer, Richard J; Hackenberger, Wesley; Shrout, Thomas R

    2011-03-01

    Pb(In(0.5)Nb(0.5))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) (PIN-PMN-PT) ferroelectric crystals attracted extensive attentions in last couple years, due to their higher usage temperatures range (> 30°C) and coercive fields (~5kV/cm), meanwhile maintaining similar electromechanical couplings (k(33)> 90%) and piezoelectric coefficients (d(33)~1500pC/N), when compared to their binary counterpart Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3). In this article, we reviewed recent developments on the PIN-PMN-PT single crystals, including the Bridgman crystal growth, dielectric, electromechanical, piezoelectric and ferroelectric behaviors as function of temperature and dc bias. Mechanical quality factor Q was studied as function of orientation and phase. Of particular interest is the dynamic strain, which related to the Q and d(33), was found to be improved when compared to binary system, exhibiting the potential usage of PIN-PMN-PT in high power application. Furthermore, PIN-PMN-PT crystals exhibit improved thickness dependent properties, due to their small domain size, being on the order of 1μm. Finally, the manganese acceptor dopant in the ternary crystals was investigated and discussed briefly in this paper.

  15. Co{sub x}C nanorod magnets: Highly magnetocrystalline anisotropy with lower Curie temperature for potential applications

    Energy Technology Data Exchange (ETDEWEB)

    El-Gendy, Ahmed A., E-mail: aelgendy@vcu.edu [Department of Chemistry, Virginia Commonwealth University (VCU), Richmond, VA (United States); Nanotechnology and Nanometrology Lab., National Institute for Standards (NIS), Giza (Egypt); Almugaiteeb, Turki [Department of Chemistry, Virginia Commonwealth University (VCU), Richmond, VA (United States); Carpenter, Everett E., E-mail: ecarpenter2@vcu.edu [Department of Chemistry, Virginia Commonwealth University (VCU), Richmond, VA (United States)

    2013-12-15

    Magnetic Co{sub x}C nanorods with larger magnetocrystalline anisotropy of 5×10{sup 5} J/m{sup 3} as well as larger coercivity and lower Curie temperature are introduced. The particles have an average diameter of 8 nm and shows three different magnetic behaviors. The sample shows ferromagnetism up to 400 K, superparamagnetism at temperature >400 K and

  16. Structural and magnetic properties of GeMn layers; High Curie temperature ferromagnetism induced by self organized GeMn nano-columns

    Energy Technology Data Exchange (ETDEWEB)

    Devillers, T.; Jamet, M.; Barski, A.; Poydenot, V.; Dujardin, R.; Bayle Guillemaud, P.; Bellet Amalric, E.; Mattana, R. [Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique des Materiaux et Microstructures, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Rothman, J. [Laboratoire d' Electronique de Technologie de l' Information, Laboratoire Infrarouge, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); Cibert, J. [Laboratoire Louis Neel, CNRS, BP166, 38042 Grenoble Cedex 9 (France); Tatarenko, S. [Laboratoire de Spectrometrie Physique, BP 87, 38402 Saint-Martin d' Heres (France)

    2007-01-15

    In this paper we report on the structural and magnetic properties of GeMn layers grown on Ge(001). We show that for the optimized Mn concentration (6%) and for optimized growth temperature (close to 130 C), GeMn samples exhibit a high Curie temperature (higher than 400 K) and Anomalous Hall Effect up to room temperature. Our GeMn layers grown at low temperature (70 C to 130 C) are composed of vertical Mn-rich nano-columns. Samples grown at temperatures higher than 130 C contain GeMn nanoclusters. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Ultra-high Curie temperature (>800 °C) low sintering temperature Bi2(1-x)La2xWO6 piezoelectric material for the applications of seafloor hydrothermal vents detection

    Science.gov (United States)

    Liao, Qingwei; An, Zhao; Huang, Haining; Fang, Mingwei; Chen, Zhongjun; Peng, Shasha; Li, Kun

    2016-10-01

    Searching low sintering temperature material with ultra-high Curie temperature (>800 °C) is urgent to seafloor hydrothermal vents detection. Bi2WO6, as the simplest member of the Aurivillius family was improved to possess ultra-high Curie temperature and ultra-high depolarization temperature by experiment at first time. The crystal structure was determined by ab initio and Rietveld refinement calculations. The symmetry group of ultra-high Curie temperature Bi2WO6 is Aba2 (41). The Curie temperatures of Bi2(1-x)La2xWO6 (x = 0, 0.005, 0.01, 0.02, 0.04) with increasing x are 952 °C, 1008 °C, 905 °C, 853 °C, 822 °C, respectively, and depolarization temperatures of them are around 915 °C, 905 °C, 880 °C, 800 °C, and 725 °C, respectively. The typical properties are as follows: Curie temperature T c = 905 °C, depolarization temperature T d = 880 °C, mechanical quality factor Q m = 621.8, d 33 = 17 pC/N, K 33 = 82.01, tanδ = 0.19 × 10-2 with x value of 0.01.

  18. Controlling temperature in magnetic hyperthermia with low Curie temperature particles

    Science.gov (United States)

    Astefanoaei, Iordana; Dumitru, Ioan; Chiriac, Horia; Stancu, Alexandru

    2014-05-01

    Hyperthermia induced by the heating of magnetic particles (MPs) in alternating magnetic field receives a considerable attention in cancer therapy. An interesting development in the studies dedicated to magnetically based hyperthermia is the possibility to control the temperature using MPs with selective magnetic absorption properties. This paper analyzes the temperature field determined by the heating of MPs having low Curie temperature (a FeCrNbB particulate system) injected within a malignant tissue, subjected to an ac magnetic field. The temperature evolution within healthy and tumor tissues was analyzed by finite element method simulations in a thermo-fluid model. The cooling effect produced by blood flowing in blood vessels was considered. This effect is intensified at the increase of blood velocity. The FeCrNbB particles, having the Curie temperature close to the therapeutic range, transfer the heat more homogeneous in the tumor keeping the temperature within the therapeutic range in whole tumor volume. Having the possibility to automatically control the temperature within a tumor, these particle type opens new research horizons in the magnetic hyperthermia.

  19. Size and shape effects on Curie temperature of ferromagnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified model was developed to describe the Curie temperature suppression of ferromagnetic nanoparticles. Based on a size and shape dependent model of cohesive energy, the critical temperature variations of ferromagnetic nanoparticles were deduced. It is predicted that the Curie temperature of nanoparticles depends on both size and shape conditions, among which the temperature suppression is strongly influenced by the particle size and the shape effect is comparably minor. The calculation values for freestanding nanoparticles are in good agreement with other theoretical model and the experimental results. The model is also potential for predictions for the nanoparticles embedded in different substrates.

  20. Magnetocaloric effect in high Gd content Gd-Fe-Al based amorphous/nanocrystalline systems with enhanced Curie temperature and refrigeration capacity

    Directory of Open Access Journals (Sweden)

    Linlin Zhang

    2016-03-01

    Full Text Available The Gd-Fe-Al amorphous/nanocrystalline composites were successfully designed and obtained with both high Curie temperature (Tc and large magnetic entropy change (ΔSM. The Tc can be tuned from 172 to 280 K and refrigeration capacity (RC has a value between 690 and 867 J/kg under a field change of 0–5 T by changing the Gd contents and the formation of Gd nanocrystallites. And, ΔSM in Gd-Fe-Al amorphous/nanocrystalline composites reached a value of 7.2 J kg−1 K−1 under a field change of 0–5 T. The high RC in Gd-Fe-Al system were ascribed to the widening full width at half maximum (δFWHM up to 240 K of the magnetic entropy change (ΔSMmax peak because of the combination contribution of amorphous matrix and the precipitated Gd-riched nanocrystalline. Our research would shed light on how to design attractive candidates for magnetic refrigeration materials with high performance at near room temperature.

  1. The mysterious malleability of titanomagnetite Curie temperatures: An update

    Science.gov (United States)

    Jackson, M. J.; Bowles, J.; Lappe, S. C.; Berquo, T. S.; Solheid, P.

    2015-12-01

    Intermediate-composition titanomagnetites (TM30-TM50) have recently been shown to have Curie temperatures (Tc) that depend not only on composition but also quite strongly on thermal history, with increases of 100°C or more in Tc produced by moderate-temperature (300-400° C) annealing in the lab or in slow natural cooling, and equally large decreases produced by more rapid cooling ("quenching") from higher temperatures [e.g., Bowles et al 2013, Nature Communications]. The phenomenon is robustly defined and repeatable, but the underlying mechanism remains enigmatic, although it presumably involves some rearrangement of metal cations within the spinel lattice. New high-and low-temperature measurements, including hysteresis, frequency-dependent AC susceptibility (k(f,T)) and Mössbauer spectroscopy, were carried out to help shed light on the nanoscale mechanisms responsible for the observed changes in Tc. Fabian et al [2015, GJI] have shown for ferrimagnetic compositions in the hematite-ilmenite system that high-T hysteresis measurements exhibit a peak in high-field slope at the Curie temperature, and that the magnitude (area) of this peak is a strong function of cation ordering degree. Our data for synthetic titanomagnetites in quenched and annealed states show some indications of this, although the relationship is not perfectly systematic. On the other hand, our new low-T Mössbauer spectra, measured in the quenched and annealed states, are indistinguishable and argue against any change in site occupancy. Church et al [2011, G3] have proposed that the sharp change in low-T magnetic behavior of intermediate titanomagnetites is a "pinning transition" due to redistribution and localization of ferrous ions within the octahedral sites. Our new k(f,T) results show that the pinning transition in some samples is strongly affected by prior annealing or quenching, suggesting that these treatments affect the intrasite cation distributions. Such an idea is consistent with

  2. Calculation of exchange integrals and Curie temperature for La-substituted barium hexaferrites

    Science.gov (United States)

    Wu, Chuanjian; Yu, Zhong; Sun, Ke; Nie, Jinlan; Guo, Rongdi; Liu, Hai; Jiang, Xiaona; Lan, Zhongwen

    2016-10-01

    As the macro behavior of the strength of exchange interaction, state of the art of Curie temperature Tc, which is directly proportional to the exchange integrals, makes sense to the high-frequency and high-reliability microwave devices. Challenge remains as finding a quantitative way to reveal the relationship between the Curie temperature and the exchange integrals for doped barium hexaferrites. Here in this report, for La-substituted barium hexaferrites, the electronic structure has been determined by the density functional theory (DFT) and generalized gradient approximation (GGA). By means of the comparison between the ground and relative state, thirteen exchange integrals have been calculated as a function of the effective value Ueff. Furthermore, based on the Heisenberg model, the molecular field approximation (MFA) and random phase approximation (RPA), which provide an upper and lower bound of the Curie temperature Tc, have been adopted to deduce the Curie temperature Tc. In addition, the Curie temperature Tc derived from the MFA are coincided well with the experimental data. Finally, the strength of superexchange interaction mainly depends on 2b-4f1, 4f2-12k, 2a-4f1, and 4f1-12k interactions.

  3. Utilizing Materials With Controllable Curie Temperatures for Magnetic Actuation Purposes

    DEFF Research Database (Denmark)

    Eriksen, Dan; Bahl, Christian R.H.; Smith, Anders

    2013-01-01

    The magnetic force between a permanent magnet and different blocks of ferromagnetic materials was measured and calculated as a function of distance and temperature in the vicinity of the Curie temperature of the materials. The calculations were carried out using a 3-D finite-element model...... of the system. On the basis of forces predicted by the model a number of equilibrium points were calculated for a system where the magnetic force on a ferromagnetic block of material is balanced by a linear spring force. It is shown how these calculation procedures can be used as a tool for designing autonomous...

  4. Curie temperatures of dilute magnetic semiconductors from LDA+U electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. [ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)]. E-mail: ksato@cmp.sanken.osaka-u.ac.jp; Dederichs, P.H. [IFF, Forschungszentrum Juelich, D-52425 Juelich (Germany); Katayama-Yoshida, H. [ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2006-04-01

    The magnetic properties of dilute magnetic semiconductors (DMS) are calculated by using the local density approximation +U(LDA+U) method. In the LDA+U, occupied d-states in (Ga, Mn)As are predicted at lower energy than in the LDA and p-d exchange interaction explains calculated concentration dependence of Curie temperature very well. In (Ga, Mn)N, unoccupied d states are predicted at higher energy by LDA+U, resulting in higher Curie temperatures than in LDA at high concentrations due to the suppression of the anti-ferromagnetic super-exchange interaction.

  5. Curie temperature rising by fluorination for Sm2Fe17

    Directory of Open Access Journals (Sweden)

    Matahiro Komuro

    2013-02-01

    Full Text Available Fluorine atoms can be introduced to Sm2Fe17 using XeF2 below 423 K. The resulting fluorinated Sm2Fe17 powders have ferromagnetic phases containing Sm2Fe17FY1(0Curie temperature from 403 K for Sm2Fe17 to 675 K. This increase can be explained by the magneto-volume effect.

  6. Critical behavior of the resistivity of GaMnAs near the Curie temperature

    Science.gov (United States)

    Yuldashev, Sh. U.; Yunusov, Z. A.; Kwon, Y. H.; Lee, S. H.; Ahuja, R.; Kang, T. W.

    2017-09-01

    The effect of the magnetization fluctuations on the resistivity of GaMnAs near the Curie temperature TC was experimentally studied. It is shown that the determination of TC from the maximum of the temperature derivative of the resistivity is valid for the samples with a high concentration of free carries. Whereas, for the samples with low concentration of free carriers the TC coincides with the resistivity maximum. The magnetic specific heat for T>TC demonstrates the crossover from the one dimensional to the three dimensional critical behavior when the temperature become closer to the Curie temperature. This is explained by the formation of the ferromagnetic phase in the paramagnetic side of the phase transition which is started from Mn-Mn dimers oriented along one direction.

  7. Effect of Gd doping and O deficiency on the Curie temperature of EuO

    KAUST Repository

    Jutong, Nuttachai

    2015-01-27

    The effect of Gd doping and O deficiency on the electronic structure, exchange interaction, and Curie temperature of EuO in the cubic and tetragonal phases is studied by means of density functional theory. For both defects, the Curie temperature is found to exhibit a distinct maximum as a function of the defect concentration. The existence of optimal defect concentrations is explained by the interplay of the on-site, RKKY, and superexchange contributions to the magnetism.

  8. Ab initio and Monte Carlo investigations of structural, electronic and magnetic properties of new ferromagnetic Heusler alloys with high Curie temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dannenberg, Antje

    2011-08-30

    The mechanism which causes many of the unusual thermomechanical properties of martensitic alloys, as for example, superelasticity and the shape-memory effect, is the martensitic transformation. The prototype ferromagnetic shape memory alloy (FSMA) is Ni{sub 2}MnGa. But a technological breakthrough is missing due to its poor ductility and low operation temperatures. The goal of this thesis is the proposal of new FSMA appropriate for future technological applications. I focus on X{sub 2}YZ Heusler alloys which are mainly based on Mn, Fe, Co, and Ni for the X and Y sites and Z=Ga or Zn. The big challenge of this work is to find material classes which combine the unique magnetomechanical properties of FSMA which are large recoverable magnetostrictive strains, high magnetocrystalline anisotropy energy, and highly mobile twin boundaries with transformation temperatures clearly above room temperature and a reduced brittleness. Such a study, providing material classes which from a theoretical point of view are promising candidates for future FSMA, will help the experimental physicists to select interesting subgroups in the vast number of possible chemical compositions of X{sub 2}YZ Heusler alloys. I have systematically varied the composition in the new Heusler alloys in order to find trends indicating generic tendencies of the material properties, for instance, as a function of the valence electron concentration e/a. A main feature of this thesis is the attempt to find the origin of the competing structural ordering tendencies between conventional X{sub 2}YZ and inverse (XY)XZ Heusler structures which are observed for all systems investigated. In the first part of this work the accuracy and predictive power of ab initio and Monte Carlo simulations is demonstrated by reproducing the experimental phase diagram of Ni-Mn-(Ga,In,Sn,Sb). The linear increasing and decreasing slopes of T{sub M} and T{sub C} can be reproduced by total and free energy calculations and the analysis

  9. Synthesis and characterization of Ni–Cu alloy nanoparticles with a tunable Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ferk, Gregor [Faculty of Chemistry and Chemical Engineering, University of Maribor (Slovenia); Stergar, Janja [Faculty of Medicine, University of Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana (Slovenia); Hamler, Anton [Faculty of Electrical Engineering and Computer Science, University of Maribor (Slovenia); Jagličić, Zvonko [Institute of Mathematics, Physics and Mechanics and Faculty of Civil and Geodetic Engineering, University of Ljubljana (Slovenia); Drofenik, Miha [Faculty of Chemistry and Chemical Engineering, University of Maribor (Slovenia); Department for Materials Synthesis, Jožef Stefan Institute, Ljubljana (Slovenia); Ban, Irena [Faculty of Chemistry and Chemical Engineering, University of Maribor (Slovenia); Center of Excellence NAMASTE, Ljubljana (Slovenia)

    2015-11-05

    A series of nickel–copper alloy magnetic nanoparticles with a range of Curie points from 51 °C to 63 °C were prepared by the reduction of intimately mixed nickel and copper oxides in a silica matrix using the sol–gel method. The silica matrix was subsequently removed with an etching solution, assisted by sonication. The alloy nanoparticles were characterized using X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA/SDTA), thermomagnetic analysis (TMA), transmission electron microscopy (TEM), magnetic measurements (SQUID, vibrating-sample magnetometer) and specific absorption rate measurements (SAR). The synthesized nanoparticles show a size in the range 15–20 nm, exhibited superparamagnetic behavior with a blocking temperature (T{sub B}) of approximately 135 K and a room-temperature magnetization of 3–9 emu/g, depending on the composition. The nanoparticles showed a relatively high effective anisotropy constant (K{sub eff}) and a significant heating ability in an alternating magnetic field. The synthesis method is straightforward and allows the preparation of homogeneous Ni–Cu alloy nanoparticles with a relatively narrow particle size distribution. - Highlights: • Straightforward so-gel synthesis of homogeneous Ni–Cu alloy nanoparticles. • Narrow particle size distribution and controlled Curie point. • Applications in “self-regulating magnetic fluid hyperthermia”. • Heating efficiency of nanoparticles as a function of composition and size.

  10. Co-doped LaLa1-xSrxTiO3-d : A Diluted Magnetic Oxide System with High Curie Temperature

    OpenAIRE

    2002-01-01

    Ferromagnetism is observed at and above room temperature in pulsed laser deposited epitaxial films of Co-doped Ti-based oxide perovskite (La1-xSrxTiO3-d). The system has the characteristics of an intrinsic diluted magnetic semiconductor (metal) at low concentrations (

  11. Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations

    Directory of Open Access Journals (Sweden)

    Manju Sharma

    2014-07-01

    Full Text Available Curie temperature of polycrystalline barium hexaferrite (BaFe12O19, prepared by conventional solid state technique, is anomalously and significantly enhanced (by nearly 15% by energetic heavy ion irradiation (150 MeV, Ag12+ at ambient temperature due to dense electronic excitations Moderate fluence (1 × 1012 ions/cm2 induces structural defects giving rise to above enhancement. As established by X-ray diffraction, scanning electron microscopy and Raman studies, higher fluence (1 × 1013 ions/cm2 has structurally transformed the sample to amorphous phase with marginal change in magnetization and Curie temperature.

  12. Enhancement of Curie temperature of barium hexaferrite by dense electronic excitations

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Manju; Kashyap, Subhash C.; Gupta, Hem C. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Dimri, Mukesh C. [Ajay Kumar Garg Engineering College, Ghaziabad - 201009 (India); Asokan, K. [Materials Science Group, Inter University Accelerator Center, New Delhi-110067 (India)

    2014-07-15

    Curie temperature of polycrystalline barium hexaferrite (BaFe{sub 12}O{sub 19}), prepared by conventional solid state technique, is anomalously and significantly enhanced (by nearly 15%) by energetic heavy ion irradiation (150 MeV, Ag{sup 12+}) at ambient temperature due to dense electronic excitations Moderate fluence (1 × 10{sup 12} ions/cm{sup 2}) induces structural defects giving rise to above enhancement. As established by X-ray diffraction, scanning electron microscopy and Raman studies, higher fluence (1 × 10{sup 13} ions/cm{sup 2}) has structurally transformed the sample to amorphous phase with marginal change in magnetization and Curie temperature.

  13. Structural and magnetic properties of some pseudo-binary and ternary compounds at high curie temperature prepared in the systems: -) rare earth (Nd, Sm) iron hydrogen, -) gadolinium iron aluminium, and -) uranium iron or cobalt silicon or germanium; Proprietes structurales et magnetiques de quelques composes pseudobinaires et ternaires ferromagnetiques a temperature de curie elevee prepares dans les systemes: -) terres rares Nd Sm fer hydrogene, -) gadolinium fer aluminium, and -) uranium fer ou cobalt silicium ou germanium

    Energy Technology Data Exchange (ETDEWEB)

    Berlureau, T

    1991-07-15

    This work highlights the importance of crystal and chemical studies for understanding the magnetic properties of systems as complex as inter-metallic compounds involving rare-earth elements, uranium, silicon or germanium. With a view of finding new compounds with high Curie temperature and strong magneto-crystal anisotropy, it appears that uranium compounds such as UFe{sub 10}Si{sub 2}, UCo{sub 10}Si{sub 2}, U(Fe{sub 10-x}Co{sub x})Si{sub 2} and U{sub 2}M{sub 17-y}X{sub y} where M is Fe or Co and Y is Si or Ge, are interesting because of the 5f orbital that can form bands through direct overlapping and can link itself very strongly with orbitals of nearby atoms.

  14. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Daming [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States); College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan (China); Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, Colorado 80918 (United States)

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (T{sub c}). We prepared aluminum doped barium ferrite ceramics (BaAl{sub x}Fe{sub 12−x}O{sub 19}, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate T{sub c} and magnetic properties of BaFe{sub 12−x}Al{sub x}O{sub 19}. It is found that T{sub c} decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πM{sub s}) decreases with increasing x, while the coercivity (H{sub c}) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement. - Highlights: • The Curie temperature and magnetic properties of aluminum doped barium ferrite particles were studied systemically. • The relation between 4πM{sub s} and composition x at 50 K (both experimental value and theoretical calculation) was revealed. • Occupation number for spin up and spin down as a function of temperature was shown. • The relation between 4πM{sub s} and composition x from 50 K to room temperature was revealed.

  15. Extrinsic Curie temperature and spin reorientation changes in Nd{sub 2}Fe{sub 14}B/{alpha}-Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, L.H. [Brookhaven National Lab., Upton, NY (United States); Panchanathan, V. [Magnequench International, Inc., Anderson, IN (United States)

    1998-05-01

    The Curie temperatures and spin reorientation temperatures of a series of four melt-spun nanocomposite materials comprised of Nd{sub 2}Fe{sub 1}4B and varying amounts of {alpha}-Fe were measured using independent techniques. The phase constitution and grain size was assessed with synchrotron x-ray diffraction; the Curie temperatures were measured by differential thermal analysis (DTA) and dc SQUID magnetometry in the temperature range 375 K {le} T {le} 800 K, whereas the spin reorientation transition temperature was determined from ac susceptibility measurements taken in the range 10 K {le} T {le} 300 K. The Curie temperature increases with increasing excess iron content, resulting in a 18 {degree} enhancement over the Curie temperature of pure Nd{sub 2}Fe{sub 14}B for 27 wt% excess {alpha}-Fe. The spin reorientation temperatures are depressed from the single-crystal value by an average of 10 degrees. Both anomalous effects are attributed to intergranular exchange coupling present in the alloys, although the effects of uncompensated stress between the constituent phases cannot be ruled out The experimental results suggest that while the Curie temperature of the Nd{sub 2}Fe{sub 14}B phase may be extrinsically enhanced significantly beyond the bulk value, possibly extending the range of applications of this compound, the anisotropy may be simultaneously lowered, impeding the attainment of high coercivities in these alloys.

  16. Nickel Curie Point Engine

    Science.gov (United States)

    Chiaverina, Chris; Lisensky, George

    2014-01-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient…

  17. Stress-induced large Curie temperature enhancement in Fe(sub 64)Ni(sub 36) Invar alloy.

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, P.; Martinez-Blanco, D.; Perez, M. J.; Blanco, J. A.; Hernando, A.; Laguna-Marco, M. A.; Haskel, D.; Souza-Neto, N. M.; Xmith, R. I.; Marshall, W. G.; Garbarino, G.; Mezouar, M.; Fernandez-Martinez, A.; Chaboy, J.; Fernandez Barquin, L.; Rodriguez Castrillon, J. A.; Moldovan, M.; Garcia Alonso, J. I.; Zhang, J.; Llobet, A.; Jiang, J. S.; Univ. de Oviedo; Inst. de Magnetismo Aplicado; ISIS Facility; ESRF; Univ.Grenoble and CNRS; CSIC-Univ. de Zaragoza; Univ. de Cantabria; LANL

    2009-01-01

    We have succeeded in increasing up to 150 K the Curie temperature in the Fe{sub 64}N{sub 36}6 invar alloy by means of a severe mechanical treatment followed by a heating up to 1073 K. The invar behavior is still present as revealed by the combination of magnetic measurements with neutron and x-ray techniques under extreme conditions, such as high temperature and high pressure. The proposed explanation is based in a selective induced microstrain around the Fe atoms, which causes a slight increase in the Fe-Fe interatomic distances, thus reinforcing ferromagnetic interactions due to the strong magnetoelastic coupling in these invar compounds.

  18. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles.

    Science.gov (United States)

    Zhang, Chuanqian; Johnson, Duane T; Brazel, Christopher S

    2008-12-01

    This study develops and solves two-dimensional convective-conductive coupled partial differential equations based on Pennes' bio-heat transfer model using low Curie temperature nanoparticles (LCTNPs) to illustrate thermal behavior quantitatively within tumor-normal composite tissue by establishing a multi-region finite difference algorithm. The model combines NEel relaxation and temperature-variant saturation magnetization derived from Brillouin Equation and Curie-Weiss Law. The numerical results indicate that different deposition patterns of LCTNP and boundary conditions directly effect the steady state temperature distribution. Compared with high Curie temperature nanoparticles (HCTNPs), optimized distributions of LCTNPs within tumorous tissue can be used to control the temperature increase in tumors for hyperthermia treatment using an external magnetic field while healthy tissue surrounding a tumor can be kept closer to normal body tissue, reducing the side effects observed in whole body and regional hyperthermia therapy.

  19. Influence of inherent strain on the curie temperature of rare earth ion-doped bismuth vanadate

    OpenAIRE

    Sooryanarayana, K; Row, TNG; R. Somashekar; Varma, KBR

    1998-01-01

    X-ray line broadening is found to be an effective parameter to estimate the strain associated with rare earth ion (Gd3+)-doped polycrystalline bismuth vanadate(Bi2VO5.5). The strain increases with increasing Gd3+ concentration. It is anisotropic and found to be maximum in (111) plane. The Curie temperature which is known to decrease with increase in the rare earth ion concentration in these compounds is correlated with increase in strain.

  20. Investigations on electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl

    Science.gov (United States)

    Wei, Xiao-Ping; Sun, Weiwei; Zhang, Ya-Ling; Sun, Xiao-Wei; Song, Ting; Wang, Ting; Zhang, Jia-Liang; Su, Hao; Deng, Jian-Bo; Zhu, Xing-Feng

    2017-03-01

    Using full-potential local-orbital minimum-basis along with spin-polarized relativistic Korringa-Kohn-Rostoker methods, we study the electronic, Fermi surface, Curie temperature and optical properties of Zr2CoAl alloy. The alloy with Li2AgSb and Cu2MnAl structures are compared in terms of magnetic properties, and the electronic structures in two structures are also discussed. According to the calculated electronic states, it finds that the Zr2CoAl with Li2AgSb structure is half-metallic ferromagnet with an integral magnetic moment of 2.00μB , meanwhile we also notice the d-d and p-d hybridizations are responsible for the formation of minority-spin gap, furthermore, the fat-bands are applied to discuss the mixture between d and p electrons in the vicinity of the Fermi level. The Fermi surfaces related to the valence bands are constructed, and it is found that the spin-up valence bands 26, 27 and 28 across the Fermi energy dominate the nature of electrons. By mapping the system onto a Heisenberg Hamiltonian, we obtain the exchange coupling parameters, and observe that the Zr(A)-Co(C) and Zr(A)-Zr(B) interactions provide a major contribution for exchange interactions. Based on the calculated exchange coupling parameters, the Curie temperature is estimated to be 287.86 K at equilibrium, and also the dependence of Curie temperature on lattice constant related to the tunable Curie temperature in Zr2CoAl alloy is studied. Finally, we report the optical properties of Zr2CoAl alloy, and present the photon energy dependence of the absorption, the optical conductivity and the loss function.

  1. A new approach to increase the Curie temperature of Fe-Mo double perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Rubi, D. [Institut de Ciencia de Materials de Barcelona, Campus UAB, E-08193, Bellaterra (Spain); Frontera, C. [Institut de Ciencia de Materials de Barcelona, Campus UAB, E-08193, Bellaterra (Spain); Roig, A. [Institut de Ciencia de Materials de Barcelona, Campus UAB, E-08193, Bellaterra (Spain); Nogues, J. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalunya (Spain); Institut Catala de Recerca i Estudis Avancats (ICREA), 08193 Bellaterra, Catalunya (Spain); Munoz, J.S. [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Catalunya (Spain); Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona, Campus UAB, E-08193, Bellaterra (Spain)]. E-mail: fontcuberta@icmab.es

    2006-01-25

    Sr{sub 2}FeMoO{sub 6} and related double perovskites are nowadays intensely investigated due to their potential in the field of spintronics. It has been previously shown that the Curie temperature (T {sub C}) of double perovskites can be increased by injecting carriers in the conduction band. We report here on an alternative approach to reinforce the magnetic interaction, and thus raise T {sub C}. It can be suspected that the introduction of Fe excess in the Fe-Mo sub-lattice, which would lead into the appearance of nearest neighbour Fe-O-Fe antiferromagnetic spin coupling, could reinforce the next-near neighbour Fe-O-Fe-O-Fe ferromagnetic ordering and thus raise the Curie temperature. The plausibility of this mechanism was checked, in the first place, by means of Monte Carlo simulations. Afterwards, Nd{sub 2x}Ca{sub 2-2x}Fe{sub 1+x}Mo{sub 1-x}O{sub 6} series was prepared and fully characterized, being found that the Curie temperature rises as much as {delta}T {sub C} {approx} 75 K when the Fe content is increased. We argue that this is a genuine magnetic exchange effect, not related neither to steric distortions nor band filling.

  2. Local radiofrequency-induced hyperthermia using CuNi nanoparticles with therapeutically suitable Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Leontiev, Vladimir G. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Brukvin, Vladimir A. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Vorozhtsov, Georgy N. [NIOPIK Organic Intermediates and Dyes Institute, Moscow 103787 (Russian Federation); Kogan, Boris Ya. [NIOPIK Organic Intermediates and Dyes Institute, Moscow 103787 (Russian Federation); Shlyakhtin, Oleg A. [Institute of Chemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Yunin, Alexander M. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Tsybin, Oleg I. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation)]. E-mail: kuznetsov_oa@yahoo.com

    2007-04-15

    Copper-nickel (CuNi) alloy nanoparticles with Curie temperatures (T{sub c}) from 40 to 60{sup o}C were synthesized by several techniques. Varying the synthesis parameters and post-treatment, as well as separations by size and T{sub c}, allow producing mediator nanoparticles for magnetic fluid hyperthermia with parametric feedback temperature control with desired parameters. In vitro and in vivo animal experiments have demonstrated the feasibility of the temperature-controlled heating of the tissue, laden with the particles, by an external alternating magnetic field.

  3. Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method

    Science.gov (United States)

    Chen, Daming; Harward, Ian; Baptist, Joshua; Goldman, Sara; Celinski, Zbigniew

    2015-12-01

    Barium ferrite has attracted considerable interest in the fields of permanent magnets and perpendicular magnetic recording due to its strong uniaxial anisotropy and high Curie temperature (Tc). We prepared aluminum doped barium ferrite ceramics (BaAlxFe12-xO19, 0≤x≤6) by the ball mill method. The powder was milled for 96 h, and after forming pellets, annealed for 48 h in air at 1000 °C. The X-ray diffraction (XRD) data show that there are only single hexagonal phases in the samples without any impurity phase. The crystal lattice constants, a and c, were calculated by Cohen's method. Both a and c decrease with increasing x, ranging from 0.588 nm and 2.318 nm to 0.573 nm and 2.294 nm, respectively. A Vibrating Sample Magnetometer (VSM) and Superconducting Quantum Interference Device (SQUID) were used to investigate Tc and magnetic properties of BaFe12-xAlxO19. It is found that Tc decreases with increasing x, from 425 °C to 298 °C. It is also found that the saturated magnetization (4πMs) decreases with increasing x, while the coercivity (Hc) increases with the increase in x. The anisotropy field was also determined from the SQUID measurement.

  4. ESR study of thermal demagnetization processes in ferromagnetic nanoparticles with Curie temperatures between 40 and 60 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Oleg A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation)]. E-mail: kuznetsov_oa@yahoo.com; Sorokina, Olga N. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Leontiev, Vladimir G. [Institute of Metallurgy, Russian Academy of Sciences (RAS), Moscow 119991 (Russian Federation); Shlyakhtin, Oleg A. [Institute of Chemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Kovarski, Alexander L. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation); Kuznetsov, Anatoly A. [Institute of Biochemical Physics, Russian Academy of Sciences (RAS), Kosygin St. 4, Moscow 119991 (Russian Federation)

    2007-04-15

    Thermal demagnetization in the vicinity of the Curie temperature of silver and sodium manganite nanoparticles, as well as copper-nickel and palladium-nickel alloy nanoparticles were studied by both static magnetic measurements and by electron spin resonance (ESR). ESR data indicate that some magnetic ordering remains even above the Curie temperature, determined by static magnetometry. Mechanisms of thermal demagnetization in alloy nanoparticles appear to be different from that in manganites.

  5. Using ferromagnetic nanoparticles with low Curie temperature for magnetic resonance imaging-guided thermoablation

    Directory of Open Access Journals (Sweden)

    Herynek V

    2016-08-01

    Full Text Available Vít Herynek,1 Karolína Turnovcová,2 Pavel Veverka,3 Tereza Dědourková,4,5 Pavel Žvátora,6 Pavla Jendelová,2 Andrea Gálisová,1 Lucie Kosinová,7 Klára Jiráková,2 Eva Syková2 1MR-Unit, Radiodiagnostic and Interventional Radiology Department, Institute for Clinical and Experimental Medicine, Prague, 2Department of Neuroscience, Institute of Experimental Medicine, 3Department of Magnetics and Superconductors, Institute of Physics, Czech Academy of Sciences, Prague, 4Department of Inorganic Technology, Faculty of Chemical Technology, University of Pardubice, 5SYNPO, akciová společnost, Pardubice, 6Department of Analytical Chemistry, Institute of Chemical Technology, 7Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic Introduction: Magnetic nanoparticles (NPs represent a tool for use in magnetic resonance imaging (MRI-guided thermoablation of tumors using an external high-frequency (HF magnetic field. To avoid local overheating, perovskite NPs with a lower Curie temperature (Tc were proposed for use in thermotherapy. However, deposited power decreases when approaching the Curie temperature and consequently may not be sufficient for effective ablation. The goal of the study was to test this hypothesis. Methods: Perovskite NPs (Tc =66°C–74°C were characterized and tested both in vitro and in vivo. In vitro, the cells suspended with NPs were exposed to a HF magnetic field together with control samples. In vivo, a NP suspension was injected into a induced tumor in rats. Distribution was checked by MRI and the rats were exposed to a HF field together with control animals. Apoptosis in the tissue was evaluated. Results and discussion: In vitro, the high concentration of suspended NPs caused an increase of the temperature in the cell sample, leading to cell death. In vivo, MRI confirmed distribution of the NPs in the tumor. The temperature in the tumor with injected NPs did not increase

  6. Studies on the Relation between the Composition of Thermal Sensitive MnZn Ferrite and Curie Temperature

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Thermal sensitive MnZn ferrite is a kind of soft magnetic ferrite material with lower Curie temperature (Tc) and can be used to make many kinds of magnetic thermal sensitive sensors with high sensitivity. In this paper, the relation between the composition of thermal sensitive ferrite and Tc was studied. It was found that Tc changes linearly with ZnO extent when the content of Fe2O3 is fixed. Based on lots of experiments, an experimential formula to determine Tc was given out.

  7. Growth and pyroelectric properties of high Curie temperature relaxor-based ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary single crystal

    Science.gov (United States)

    Yu, Ping; Wang, Feifei; Zhou, Dan; Ge, Wenwei; Zhao, Xiangyong; Luo, Haosu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2008-06-01

    To enhance the service temperature of relaxor-PbTiO3 pyroelectric single crystals, high quality ternary perovskite single crystal was grown by a modified Bridgman technique. Analyzed by x-ray fluorescence, the as-grown crystal is 0.41Pb(In1/2Nb1/2)O3-0.17Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 [PIMNT(41/17/42)], which appears to be a tetragonal ferroelectric phase with relatively high Curie temperature of 253°C. It exhibits the relative permittivity of 487 and low dielectric loss of 0.3% at 50Hz and room temperature. The pyroelectric properties with a pyroelectric coefficient of 5.7×10-4C /m2K and a detectivity of 6.34×10-5Pa-1/2 would satisfy the needs of operation as a high Curie temperature material. The results show that PIMNT crystal with better temperature stability, compared with the pure PMNT single crystals, is a good candidate as an infrared detector material.

  8. Structure and Curie temperature of Y2Fe17-xCrx

    Institute of Scientific and Technical Information of China (English)

    郝世强; 陈难先

    2003-01-01

    The structures of Y2Fe17-xCrx are simulated by the ab initio potentials. The site preference of Cr atom in Y2Fe17 is evaluated and the order is determined as 4f, 12j, which is close to the experimental result. Based on the site preference behavior, the calculated parameters and the atom sites of Y-Fe-Cr system are studied. The result corresponds well to observed data. Further, the DOS of the relaxed structures are calculated and the variation in Curie temperature is explained qualitatively by the spin-fluctuation theory.

  9. First-principles calculation of the Curie temperature Slater-Pauling curve.

    Science.gov (United States)

    Takahashi, C; Ogura, M; Akai, H

    2007-09-12

    It is well known that the magnetizations as a function of the valence electron number per atom of 3d transition metal substitutional alloys form the so-called Slater-Pauling curve. Similarly, the Curie temperatures of these alloys also show systematic behaviour against the valence electron number. Though this fact has long been known, no attempt has been made so far to explain this behaviour from first principles. In this paper we calculate T(C) of 3d transition metal alloys in the framework of first-principles electronic structure calculation based on the local density approximation.

  10. Curie Temperature of the Intergranular Amorphous Phase in Nanocrystalline Fe89Zr7B4 Alloy

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The FeZrB amorphous alloys for simulating the intergranular amorphous phase in the nanocrystalline Fe89Zr7B4 soft magnetic materials were obtained by mechanical alloying of a mixture of elemental Fe, Zr and B powdersfor 25 h. It is shown that the Curie temperature of the simulated intergranular phase alloy is much lower than thatof the intergranular phase with the same chemical composition in the nanocrystalline Fe89Zr7B4 alloy. The possiblemechanism is mainly due to the strong ferromagnetic exchange force among the nanocrystalline α-Fe grains.

  11. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering.

    Science.gov (United States)

    Chen, Lin; Yang, Xiang; Yang, Fuhua; Zhao, Jianhua; Misuraca, Jennifer; Xiong, Peng; von Molnár, Stephan

    2011-07-13

    We demonstrate by magneto-transport measurements that a Curie temperature as high as 200 K can be obtained in nanostructures of (Ga,Mn)As. Heavily Mn-doped (Ga,Mn)As films were patterned into nanowires and then subject to low-temperature annealing. Resistance and Hall effect measurements demonstrated a consistent increase of T(C) with decreasing wire width down to about 300 nm. This observation is attributed primarily to the increase of the free surface in the narrower wires, which allows the Mn interstitials to diffuse out at the sidewalls, thus enhancing the efficiency of annealing. These results may provide useful information on optimal structures for (Ga,Mn)As-based nanospintronic devices operational at relatively high temperatures.

  12. Structure and Curie temperature of Y2Fe17-xCrx

    Institute of Scientific and Technical Information of China (English)

    HAO; Shiqiang; (

    2003-01-01

    -ion microscopy image Fe3Al, Phys. Rev. B, 1998, 57: 14203-14208.[14]Hao, Y. M., Zhang, P. L., Zhang, J. X. et al., A high-resolution neutron study of Y2Fe15Cr2 at 77K including magnetic properties, J. Phys.: Condens. Matter, 1996, 8: 1321-1324.[15]http://www.accelrys.com/cerius2/cerius246/index.html.[16]Mohn, P., Wohlfarth, E. P., The Curie temperature of the ferromagnetic transition metals and their compounds, J. Phys. F: Metal Phys., 1987, 17: 2421-2430.

  13. Marie Curie; Marie Curie

    Energy Technology Data Exchange (ETDEWEB)

    Trotereau, J.

    2011-07-01

    The legend has only retained from Marie Curie (1867-1934) the image of a hard and brilliant worker, pioneer in the radioactivity domain, and who awarded twice the Nobel Price. Behind the scientist, there is a women, Marya Salomea Sklodowska, the 'Polish', who was considered during some time as an 'alien', an 'atheistic intellectual', an 'emancipated women'. When she died alone in July 1934, after an exhausting life of labour, her funeral led to no official ceremony or speech. This small book summarizes the biography of the most famous female scientist in the world

  14. Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization

    Science.gov (United States)

    Bouligand, C.; Glen, J.M.G.; Blakely, R.J.

    2009-01-01

    We have revisited the problem of mapping depth to the Curie temperature isotherm from magnetic anomalies in an attempt to provide a measure of crustal temperatures in the western United States. Such methods are based on the estimation of the depth to the bottom of magnetic sources, which is assumed to correspond to the temperature at which rocks lose their spontaneous magnetization. In this study, we test and apply a method based on the spectral analysis of magnetic anomalies. Early spectral analysis methods assumed that crustal magnetization is a completely uncorrelated function of position. Our method incorporates a more realistic representation where magnetization has a fractal distribution defined by three independent parameters: the depths to the top and bottom of magnetic sources and a fractal parameter related to the geology. The predictions of this model are compatible with radial power spectra obtained from aeromagnetic data in the western United States. Model parameters are mapped by estimating their value within a sliding window swept over the study area. The method works well on synthetic data sets when one of the three parameters is specified in advance. The application of this method to western United States magnetic compilations, assuming a constant fractal parameter, allowed us to detect robust long-wavelength variations in the depth to the bottom of magnetic sources. Depending on the geologic and geophysical context, these features may result from variations in depth to the Curie temperature isotherm, depth to the mantle, depth to the base of volcanic rocks, or geologic settings that affect the value of the fractal parameter. Depth to the bottom of magnetic sources shows several features correlated with prominent heat flow anomalies. It also shows some features absent in the map of heat flow. Independent geophysical and geologic data sets are examined to determine their origin, thereby providing new insights on the thermal and geologic crustal

  15. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.

    2013-03-28

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting antiferromagnetic martensite to ferromagnetic state, a 200 K Curie-temperature window was established between Curie temperatures of austenite and martensite phases. In the window, a first-order magnetostructural transition between paramagnetic austenite and ferromagnetic martensite occurs with a sharp jump in magnetization, showing a magnetic entropy change as large as −40 J kg−1 K−1 in a 50 kOe field change. This giant magnetocaloric effect enables Mn1− x Co x NiGe to become a potential magnetic refrigerant.

  16. Curie temperature of Co-doped TiO2 as functions of carrier density and Co content evaluated from electrical transport and magnetization at low temperature regime

    Directory of Open Access Journals (Sweden)

    Thantip S. Krasienapibal

    2016-05-01

    Full Text Available Curie temperature (TC of anatase Co-doped TiO2 epitaxial thin films was systematically investigated as functions of carrier density (n and Co content (x by electrical transport and magnetization measurements at low temperature regime. The estimated TC from both measurements showed similar TC. For x = 0.03, 0.05, and 0.07, non-monotonic TC vs. n relations were observed, whereas TC was monotonically increasing function of n for x = 0.10. Possible mechanism of high TC ferromagnetism for this compound was discussed.

  17. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 lead-free piezoelectric ceramics with high Curie temperature

    Science.gov (United States)

    Tsai, Cheng-Che; Chao, Wei-Hsiang; Chu, Sheng-Yuan; Hong, Cheng-Shong; Weng, Chung-Ming; Su, Hsiu-Hsien

    2016-12-01

    In this work, the process of two-stage modifications for (Ba0.97Ca0.03)(Ti0.96Sn0.04-xHfx)O3 (BCTS4-100xH100x) ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification) which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC) of about 112 °C, a piezoelectric charge constant (d33) of 313 pC/N, an electromechanical coupling factor (kp) of 0.49, a mechanical quality factor (Qm) of 122, and a remnant polarization (Pr) of 19 μ C /cm2 . In addition, the temperature stability of the resonant frequency (fr), kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C) was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn) piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ˜ 0.39, d33 ˜ 230 pC/N, Qm ˜ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03)(Ti0.96Sn0.04)O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  18. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03(Ti0.96Sn0.04O3 lead-free piezoelectric ceramics with high Curie temperature

    Directory of Open Access Journals (Sweden)

    Cheng-Che Tsai

    2016-12-01

    Full Text Available In this work, the process of two-stage modifications for (Ba0.97Ca0.03(Ti0.96Sn0.04-xHfxO3 (BCTS4-100xH100x ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC of about 112 °C, a piezoelectric charge constant (d33 of 313 pC/N, an electromechanical coupling factor (kp of 0.49, a mechanical quality factor (Qm of 122, and a remnant polarization (Pr of 19μC/cm2. In addition, the temperature stability of the resonant frequency (fr, kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ∼ 0.39, d33 ∼ 230 pC/N, Qm ∼ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03(Ti0.96Sn0.04O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  19. Band filling dependence of the Curie temperature in CrO2

    Science.gov (United States)

    Solovyev, I. V.; Kashin, I. V.; Mazurenko, V. V.

    2016-06-01

    Rutile CrO2 is an important half-metallic ferromagnetic material, which is also widely used in magnetic recording. In an attempt to find the conditions, which lead to the increase of the Curie temperature (T C), we study theoretically the band-filling dependence of interatomic exchange interactions in the rutile compounds. For these purposes, we use the effective low-energy model for the magnetic t 2g bands, derived from the first-principles electronic structure calculations in the Wannier basis, which is solved by means of dynamical mean-field theory. After the solution, we calculate the interatomic exchange interactions, by using the theory of infinitesimal spin rotations, and evaluate T C. We argue that, as far as the Curie temperature is concerned, the band filling realized in CrO2 is far from being the optimal one and much higher T C can be obtained by decreasing the number of t 2g electrons (n) via the hole doping. We find that the optimal n is close to 1, which should correspond to the case of VO2, provided that it is crystallized in the rutile structure. This finding was confirmed by using the experimental rutile structure for both CrO2 and VO2 and reflects the general tendency towards ferromagnetism for the narrow-band compounds at the beginning of the band filling. In particular, our results suggest that the strong ferromagnetism can be achieved in the thin films of VO2, whose crystal structure is controlled by the substrate.

  20. Influence of Non—Magnetic Substitutional Atoms on Spontaneous Moment and Curie Temperature of Ce2Co17Compounds

    Institute of Scientific and Technical Information of China (English)

    胡社军; 刘正义; 等

    2002-01-01

    The structure and magnetic properties of Ce2Co17-xMx(M=Ga,Al and Si)compounds for Mcomcentrations up to x=5 were studied by means of X-ray diffraction and magnetic measurements,The experimental results show that the Curie temperatures and Co spontaneous magnetization decrease significantly with increasing the addition of non-magnetic substitutional atoms,and that Si which has a minimum solid solubility ic Ce2Co17causes a largest reduction of Curie temperature,spontaneous magnetization and moment perCo atom compared with Ga and Al.

  1. Influence of Non-Magnetic Substitutional Atoms on Spontaneous Moment and Curie Temperature of Ce2Co17 Compounds

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure and magnetic properties of Ce2Co17-xMx(M=Ga,Al and Si) compounds for M concentrations up to x=5 were studied by means of X-ray diffraction and magnetic measurements. The experimental results show that the Curie temperatures and Co spontaneous magnetization decrease significantly with increasing the addition of non-magnetic substitutional atoms, and that Si which has a minimum solid solubility in Ce2Co17 causes a largest reduction of Curie temperature, spontaneous magnetization and moment per Co atom compared with Ga and Al.

  2. Stress-induced Curie temperature increase in the Fe{sub 64}Ni{sub 36} invar alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gorria, Pedro; Martinez-Blanco, David; Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo (Spain); Boada, Roberto; Chaboy, Jesus [ICMA and Departamento de Fisica de la Materia Condensada, CSIC - Universidad de Zaragoza (Spain); Fernandez-Martinez, Alejandro [LGIT, University of Grenoble and CNRS, Maison des Geosciences, Grenoble (France); Institut Laue-Langevin, Grenoble (France); Garbarino, Gaston; Castro, German R.; Mezouar, Mohamed [European Synchrotron Radiation Facility (ESRF), Grenoble (France); Smith, Ronald I. [ISIS Facility, RAL, Chilton, Didcot, Oxon (United Kingdom); Alonso, J.I.G. [Department of Physical and Analytical Chemistry, University of Oviedo (Spain); Hernando, Antonio [Instituto de Magnetismo Aplicado, UCM-ADIF-CSIC, Madrid (Spain)

    2009-05-15

    Structural and magnetic changes on invar Fe{sub 64}Ni{sub 36} alloy (T{sub C}=500 K) produced by mechanical milling followed by heating up to 1073 K, were investigated by neutron diffraction, magnetization measurements, X-ray diffraction under high pressures and X-ray absorption at both Fe and Ni K-edges. We argue that the strain induced in the Fe{sub 64}Ni{sub 36} material after this treatment mainly affects the Fe sites due to the magnetovolume coupling, the most notorious feature being the increase of the Curie temperature ({delta}T{sub C}=70 K). (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Structure, electrical properties of Bi(Fe, Co)O3-BaTiO3 piezoelectric ceramics with improved Curie temperature

    Science.gov (United States)

    Zhou, Changrong; Cen, Zhenyong; Yang, Huabin; Zhou, Qin; Li, Weizhou; Yuan, Changlai; Wang, Hua

    2013-02-01

    Dense (1-y)BiFe1-xCoxO3-yBaTiO3 (BFC-BTx, y=0.29, x=0-0.012) high-temperature lead-free ceramics were prepared by the conventional oxide-mixed method and the effects of BiCoO3 modification on microstructural, electrical properties and their Curie temperatures were investigated. The solid solutions show a single phase perovskite structure, and the content of BiCoO3 has a significant effect on the microstructure of ceramics. The BFC-BTx ceramics exhibit improved Curie temperature Tc, together with increased piezoelectric properties. In particular, x=0.6% BFC-BTx ceramics, with a Curie temperature, Tc, of ∼488 °C, show optimum piezoelectric properties of d33=167 pC/N, kp=0.32. The combination of good piezoelectric properties and high Tc makes these ceramics suitable for elevated temperature piezoelectric devices.

  4. Structure, electrical properties of Bi(Fe, Co)O{sub 3}-BaTiO{sub 3} piezoelectric ceramics with improved Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Changrong, E-mail: zcr750320@yahoo.com.cn [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Cen Zhenyong [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Yang Huabin [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zhou Qin [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Li Weizhou [School of Materials Science and Engineering, Guangxi University, Nanning, Guangxi 530004 (China); Yuan Changlai; Wang Hua [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China)

    2013-02-01

    Dense (1-y)BiFe{sub 1-x}Co{sub x}O{sub 3}-yBaTiO{sub 3} (BFC-BTx, y=0.29, x=0-0.012) high-temperature lead-free ceramics were prepared by the conventional oxide-mixed method and the effects of BiCoO{sub 3} modification on microstructural, electrical properties and their Curie temperatures were investigated. The solid solutions show a single phase perovskite structure, and the content of BiCoO{sub 3} has a significant effect on the microstructure of ceramics. The BFC-BTx ceramics exhibit improved Curie temperature T{sub c}, together with increased piezoelectric properties. In particular, x=0.6% BFC-BTx ceramics, with a Curie temperature, T{sub c}, of {approx}488 Degree-Sign C, show optimum piezoelectric properties of d{sub 33}=167 pC/N, k{sub p}=0.32. The combination of good piezoelectric properties and high T{sub c} makes these ceramics suitable for elevated temperature piezoelectric devices.

  5. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    Science.gov (United States)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Alqahtani, Abdullah; Aldhafferi, Nahier

    2016-10-01

    Magnetic refrigeration (MR) technology stands a good chance of replacing the conventional gas compression system (CGCS) of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE) of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC). Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR) hybridized with gravitational search algorithm (GSA). Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  6. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    Directory of Open Access Journals (Sweden)

    Taoreed O. Owolabi

    2016-10-01

    Full Text Available Magnetic refrigeration (MR technology stands a good chance of replacing the conventional gas compression system (CGCS of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC. Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR hybridized with gravitational search algorithm (GSA. Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  7. Tailoring Curie temperature and magnetic anisotropy in ultrathin Pt/Co/Pt films

    Directory of Open Access Journals (Sweden)

    Vineeth Mohanan Parakkat

    2016-05-01

    Full Text Available The dependence of perpendicular magnetization and Curie temperature (Tc of Pt/Co/Pt thin films on the thicknesses of Pt seed (Pts and presence of Ta buffer layer has been investigated in this work. Pt and Co thicknesses were varied between 2 to 8 nm and 0.35 to 1.31 nm (across the spin reorientation transition thickness respectively and the Tc was measured using SQUID magnetometer. We have observed a systematic dependence of Tc on the thickness of Pts. For 8nm thickness of Pts the Co layer of 0.35nm showed ferromagnetism with perpendicular anisotropy at room temperature. As the thickness of the Pts was decreased to 2nm, the Tc went down below 250K. XRD data indicated polycrystalline growth of Pts on SiO2. On the contrary Ta buffer layer promoted the growth of Pt(111. As a consequence Ta(5nm/Pt(3nm/Co(0.35nm/Pt(2nm had much higher Tc (above 300K with perpendicular anisotropy when compared to the same stack without the Ta layer. Thus we could tune the ferromagnetic Tc and anisotropy by varying the Pts thickness and also by introducing Ta buffer layer. We attribute these observations to the micro-structural evolution of Pts layer which hosts the Co layer.

  8. Ab initio theory of exchange interactions and the Curie temperature of bulk Gd

    CERN Document Server

    Turek, I; Bihlmayer, G; Bluegel, S

    2003-01-01

    An ab initio approach to the magnetic properties of bulk hexagonal Gd is developed that is based on the local spin-density approximation with the 4f electrons treated as localized core electrons. The effective one-electron problem is solved using the tight-binding linear muffin-tin orbital method in the atomic-sphere approximation with the valence basis consisting of s-, p-and d-type orbitals. The approach leads to a correct description of the ground-state properties like the stability of the ferromagnetic structure, the magnetic moment and the equilibrium lattice constant. Application of a real-space Green-function formalism yields the exchange pair interactions between distant neighbours that are inevitable for quantitative studies of magnetic excitations. The distance dependence and anisotropy of the exchange pair interactions are presented and the Curie temperature in the mean-field approximation is evaluated. The obtained value of 334 K is in much better agreement with the experimental value of 293 K tha...

  9. High Curie temperature and enhanced magnetoelectric properties of the laminated Li0.058(Na0.535K0.48)0.942NbO3/Co0.6 Zn0.4Fe1.7Mn0.3O4 composites

    Science.gov (United States)

    Yang, Haibo; Zhang, Jintao; Lin, Ying; Wang, Tong

    2017-03-01

    Laminated magnetoelectric composites of Li0.058(Na0.535K0.48)0.942NbO3 (LKNN)/Co0.6Zn0.4Fe1.7Mn0.3O4 (CZFM) prepared by the conventional solid-state sintering method were investigated for their dielectric, magnetic, and magnetoelectric properties. The microstructure of the laminated composites indicates that the LKNN phase and CZFM phase can coexist in the composites. Compared with the particulate magnetoelectric composites, the laminated composites have better piezoelectric and magnetoelectric properties due to their higher resistances and lower leakage currents. The magnetoelectric behaviors lie on the relative mass ratio of LKNN phase and CZFM phase. The laminated composites possess a high Curie temperature (TC) of 463 °C, and the largest ME coefficient of 285 mV/cm Oe, which is the highest value for the lead-free bulk ceramic magnetoelectric composites so far.

  10. Effect of pressure on the Curie temperature of Mn2RuSn and Mn2PdSn

    Science.gov (United States)

    Adachi, Y.; Watanabe, T.; Kanomata, T.; Hayasaka, M.; Endo, K.; Nishihara, H.; Xu, X.; Kainuma, R.

    2017-04-01

    Effect of pressure on the Curie temperature TC of the Mn-rich Heusler alloys Mn2RuSn and Mn2PdSn has been investigated by measuring the temperature dependence of initial permeability at various pressures up to 10 kbar. It was found that the Curie temperatures of Mn2RuSn and Mn2PdSn decrease with increasing pressure. The pressure derivatives of TC were estimated to be -0.59 K/kbar for Mn2RuSn and -0.80 K/kbar for Mn2PdSn. On the basis of the experimental results, the relationship between the magnetic transition temperature and the Mn-Mn distance is discussed.

  11. Observation of a low Curie temperature ferromagnetic phase of ultrathin epitaxial Fe films on GaAs(0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Spangenberg, M. [Joule Physics Laboratory, The Crescent, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Neal, J.R. [Joule Physics Laboratory, The Crescent, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom); Shen, T.-H. [Joule Physics Laboratory, The Crescent, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom)]. E-mail: t.shen@salford.ac.uk; Morton, S.A. [Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, CA 94550 (United States); Tobin, J.G. [Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, CA 94550 (United States); Waddill, G.D. [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States); Matthew, J.A.D. [Department of Physics, University of York, York YO1 5DD (United Kingdom); Greig, D. [Department of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Malins, A.E.R. [CLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Seddon, E.A. [CLRC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Hopkinson, M. [EPSRC National Centre for III-V Technologies, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2005-04-15

    The magnetic properties of epitaxial Fe films on GaAs in the range of the first few monolayers have been the subject of a considerable number of investigations in recent years. The absence of magnetic signatures at room temperature has been attributed to the existence of a magnetic 'dead' layer as well as superparamagnetism. By examining the temperature dependence of the magnetic linear dichroism of the Fe core level photoelectrons, we found a ferromagnetic regime with a Curie temperature, T {sub c} substantially lower than room temperature, e.g., a T {sub c} of about 240 K for thin films of a nominal thickness of 0.9 nm. The values of Curie temperature were sensitive to the initial GaAs substrate conditions and the thickness of the Fe over-layer with a layer of thickness of 1.25 nm showing a T {sub c} above room temperature. The data suggest that the thin Fe films on GaAs(0 0 1) may have ferromagnetic character at an earlier stage of growth than previously expected, although a weaker exchange interaction in the films leads to a substantial reduction in Curie temperature.

  12. Curie Temperature and Microstructural Changes Due to the Heating Treatment of Magnetic Amorphous Materials

    Directory of Open Access Journals (Sweden)

    Gondro J.

    2016-03-01

    Full Text Available Three distinct alloys: Fe86Zr7Nb1Cu1B5, Fe82Zr7Nb2Cu1B8, and Fe81Pt5Zr7Nb1Cu1B5 were characterized both magnetically and structurally. The samples, obtained with spinning roller method as a ribbons 3 mm in width and 20 μm thick, were investigated as-quenched and after each step of a multi steps heating treatment procedure. Each sample was annealed at four steps, fifteen minutes at every temperature, starting from 573K+600K up to +700K depending on type of alloy. Mössbauer spectroscopy data and transmission electron microscope (HRE M pictures confirmed that the as-quenched samples are fully amorphous. This is not changed after the first stages of treatment heating leads to a reduction of free volumes. The heating treatment has a great influence on the magnetic susceptibilities. The treatment up to 600K improves soft magnetic properties: an χ increase was observed, from about 400 to almost 1000 for the samples of alloys without Pt, and from about 200 to 450 at maximum, for the Fe81Pt5Zr7Nb1Cu1B5. Further heating, at more elevated temperatures, leads to magnetic hardening of the samples. Curie temperatures, established from the location of Hopkinson’s maxima on the χ(T curve are in very good agreement with those obtained from the data of specific magnetization, σ(T, measured in a field of 0.75T. As a critical parameter β was chosen to be equal 0.36 for these calculations, it confirmed that the alloys may be considered as ferromagnetic of Heisenberg type. Heating treatment resulted in decreasing of TC. These changes are within a range of several K.

  13. Enhancement of Curie temperature and transition temperature range induced by Al doping in Mn1-xAlxCoGe

    Science.gov (United States)

    Si, Xiaodong; Liu, Yongsheng; Lei, Wei; Xu, Juan; Du, Wenlong; Lin, Jia; Zhou, Tao; Lu, Xiaofei

    2016-12-01

    Mn1-xAlxCoGe alloys with a second order transition were produced by arc-melting method. The substitution of Mn by Al increased the Curie temperature (TC) from 260.5 K to 300.8 K, the magnetic entropy change (|ΔSM|) decreased from 3.78 J·Kg-1K-1 to 2.35 J·Kg-1K-1 under a field change of Δμ0H=5 T. In addition, the |ΔSM| well linearly depends on the H2/3 around TC. Furthermore, the relative cooling power (RCP) can reach 242.3 J·Kg-1 with a large full width at half maximum of |ΔSM| (75.5 K) for x=0.02. The decrease of |ΔSM| is explained by the corresponding monotonical decrease of magnetic moment per formula unit.

  14. Marie Curie

    National Research Council Canada - National Science Library

    Serna M., Edgar

    2011-01-01

    Maria Sklodowska--Marie Curie--fue pionera en la ciencia de la radiactividad; es mejor conocida como la descubridora de los elementos radiactivos polonio y radio, y como el primer cientifico en ganar dos premios Nobel: Fisica y Quimica...

  15. Effect of P-anion codoping on the Curie temperature of GaMnAs diluted magnetic semiconductors

    Science.gov (United States)

    Bouzerar, Richard; Máca, Frantisek; Kudrnovský, Josef; Bergqvist, Lars

    2010-07-01

    Recent measurements of GaMnAs alloy samples with a very small content of P atoms prepared by ion-implanted pulsed laser melting (II-PLM) [Phys. Rev. Lett. 101, 087203 (2008)10.1103/PhysRevLett.101.087203] have shown surprisingly low Curie temperature as compared to undoped samples. An explanation based on a possible metal-insulator transition at constant Mn doping was proposed based on a dramatic increase of the sample resistivity. However, no quantitative calculations supporting such a picture as concerns the Curie temperature were shown. We will present a parameter-free theory of the Curie temperature (TC) which assumes that possible defects due to the II-PLM such as, e.g., space inhomogeneities, vacancies, clustering, and also conventional compensating defects will reduce the sample hole concentration. Their effect was first qualitatively modeled in the framework of the rigid-band model by adjusting the system Fermi level due to the reduction of the carrier concentration which is considered as a parameter of the theory. In addition, the effect of possible conventional compensating defects, such as, e.g., As and P antisites or P and Mn interstitials was also investigated. TC ’s are calculated within the self-consistent local RPA (SCLRPA) and Monte Carlo (MC) simulations. We will demonstrate that a reasonable agreement of calculated and measured TC can be obtained for reduced hole concentrations which are known to exist in GaMnAs samples. As concerns possible specific defects, we have shown that P and Mn interstitials are particularly effective in the reduction of the sample Curie temperature.

  16. Effect of ionic radii on the Curie temperature in Ba1-x-ySrxCayTiO3 compounds

    Science.gov (United States)

    Berenov, A.; Le Goupil, F.; Alford, N.

    2016-06-01

    A series of Ba1-x-ySrxCayTiO3 compounds were prepared with varying average ionic radii and cation disorder on A-site. All samples showed typical ferroelectric behavior. A simple empirical equation correlated Curie temperature, TC, with the values of ionic radii of A-site cations. This correlation was related to the distortion of TiO6 octahedra observed during neutron diffraction studies. The equation was used for the selection of compounds with predetermined values of TC. The effects of A-site ionic radii on the temperatures of phase transitions in Ba1-x-ySrxCayTiO3 were discussed.

  17. Significantly enhanced piezoelectricity in low-temperature sintered Aurivillius-type ceramics with ultrahigh Curie temperature of 800 °C

    Science.gov (United States)

    Cai, Kai; Huang, Chengcheng; Guo, Dong

    2017-04-01

    We report an Aurivillius-type piezoelectric ceramic (Ca1‑2x (LiCe) x Bi4Ti3.99Zn0.01O15) that has an ultrahigh Curie temperature (T c) around 800 °C and a significantly enhanced piezoelectric coefficient (d 33), comparable to that of textured ceramics fabricated using the complicated templating method. Surprisingly, the highest d 33 of 26 pC/N was achieved at an unexpectedly low sintering temperature (T s) of only 920 °C (~200 °C lower than usual) despite the non-ideal density. Study of different synthesized samples indicates that a relatively low T s is crucial for suppressing Bi evaporation and abnormal grain growth, which are indispensable for high resistivity and effective poling due to decreased carrier density and restricted anisotropic conduction. Because the layered structure is sensitive to lattice defects, controlled Bi loss is considered to be crucial for maintaining structural order and spontaneous polarization. This low-T s system is very promising for practical applications due to its high piezoelectricity, low cost and high reproducibility. Contrary to our usual understanding, the results reveal that a delicate balance of density, Bi loss and grain morphology achieved by adjusting the sintering temperature is crucial for the enhancing performance in Aurivillius-type high-T c ceramics.

  18. Madame Curie

    CERN Document Server

    Eve, Curie

    1942-01-01

    Marie Curie is a women who changed the face of science for all time, not just because of her discovery of the radioactive element Radium and her work with it, but because of her incredible strides forward in a such a male dominated world as laboratory science at the turn of the 19th century. This is the Madame Curie many people know but here is a biography written by her daughter Eve that shows her human side, in a way that can only be viewed and admired from a family member describing her as a caring mother, devoted and passionate wife. Many of the earliest books, particularly those dating back to the 1900s and before, are now extremely scarce and increasingly expensive.

  19. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    Science.gov (United States)

    Li, Jiawei; Huo, Juntao; Law, Jiayan; Chang, Chuntao; Du, Juan; Man, Qikui; Wang, Xinmin; Li, Run-Wei

    2014-08-01

    The effects of heavy rare earth (RE) additions on the Curie temperature (TC) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune TC in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔSM) and refrigerant capacity (RC) of the alloys. The observed values of ΔSM and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd5Ge1.9Si2Fe0.1. The tunable TC and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  20. DFT+ U study of electronic structure and Curie temperature of A2 B ReO6 (A=Sr, Ca and B=Cr, Fe)

    Science.gov (United States)

    Lee, Alex; Marianetti, Chris

    Re-based double perovskites (DPs) have attracted much attention due to their high Curie temperature (TC) and colossal magneto resistance with large potential for spintronic applications. Here we investigate the electronic and magnetic properties of the Re-based DPs A2 B ReO6 (A=Sr, Ca and B=Cr, Fe) using density functional theory + U (DFT+ U) calculations. While monoclinic Ca2CrReO6 and Ca2FeReO6 (monoclinic) are insulating within GGA+ U, tetragonal Sr2CrReO6 (a0a0c0) and Sr2FeReO6 (a0a0c-) remain metallic. We show that both on-site interaction U and octahedral tilting are critical to obtain the insulating phases. The a0a0c- -phase of Sr2CrReO6 is most stable and insulating with nonzero U, suggesting that the high quality Sr2CrReO6 film on STO substrate can be a semiconductor as reported in recent experiments. We explain that the insulator-to-metal transition (MIT) of Ca2FeReO6 at 140K is predominantly due to a structural phase transition which drives the insulating state. Curie temperatures of Re-based DPs are calculated using the classical Monte Carlo simulations based on the Heisenberg model.

  1. Strongly enhanced Curie temperature in carbon-doped Mn{sub 5}Ge{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Gajdzik, M.; Suergers, C. E-mail: christoph.suergers@physik.uni-karlsruhe.de; Kelemen, M.T.; Loehneysen, H. von

    2000-11-01

    The structural and magnetic properties of Mn{sub 5}Ge{sub 3}C{sub x} films prepared at elevated substrate temperatures T{sub S} are investigated. In particular, films with x{>=}0.5 and T{sub S}=680 K exhibit a strongly enhanced Curie temperature T{sub C}=445 K compared to bulk Mn{sub 5}Ge{sub 3} with T{sub C}=304 K while at the same time the average Mn moment decreases from 2.6 to 1 {mu}{sub B}. Structural analysis of these films suggests that the carbon is interstitially incorporated into the voids of Mn octahedra of the hexagonal Mn{sub 5}Si{sub 3}-type structure giving rise to a lattice compression. The enhanced ferromagnetic stability in connection with the lattice compression is interpreted in terms of an Mn-Mn interaction mediated by C based on a change in the electronic structure.

  2. Low-temperature dynamics of the Curie-Weiss Model: Periodic orbits, multiple histories, and loss of Gibbsianness

    CERN Document Server

    Ermolaev, Victor

    2010-01-01

    We consider the Curie-Weiss model at a given initial temperature in vanishing external field evolving under a Glauber spin-flip dynamics corresponding to a possibly different temperature. We study the limiting conditional probabilities and their continuity properties and discuss their set of points of discontinuity (bad points). We provide a complete analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time, extending earlier work for the case of independent spin-flip dynamics. For initial temperature bigger than one we prove that the time-evolved measure stays Gibbs forever, for any (possibly low) temperature of the dynamics. In the regime of heating to low-temperatures from even lower temperatures, when the initial temperature is smaller than the temperature of the dynamics, and smaller than 1, we prove that the time-evolved measure is Gibbs initially and becomes non-Gibbs after a sharp transition time. We find this regime is further divided into a region where only symmetr...

  3. Curie temperature of GaMnN and GaMnAs from LDA-SIC electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toyoda, Masayuki; Sato, Kazunori; Katayama-Yoshida, Hiroshi [Department of Computational Nanomaterials Design, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Akai, Hisazumi [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2006-07-01

    We present the electronic structures, magnetic exchange interactions and Curie temperature (T{sub C}) of GaMnN and GaMnAs calculated by self-interaction-corrected local-density approximation (LDA-SIC). In GaMnAs, the LDA-SIC results of T{sub C} do not differ so much from the LDA results. Both the LDA and LDA-SIC values are in a good agreement with the experimental data. In GaMnN, on the other hand, the ferromagnetic exchange interactions are enhanced due to the suppression of antiferromagnetic super-exchange interaction, resulting in T{sub C} higher than the LDA results. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Thickness dependent Curie temperature and power-law behavior of layering transitions in ferromagnetic classical and quantum thin films described by Ising, XY and Heisenberg models

    Energy Technology Data Exchange (ETDEWEB)

    Yüksel, Yusuf, E-mail: yusuf.yuksel@deu.edu.tr; Akıncı, Ümit

    2015-04-01

    Ferromagnetic–paramagnetic phase transitions in classical and quantum thin films have been studied up to 50 mono-layers using effective field theory with two-site cluster approximation. Variation of the Curie temperature as a function of film thickness has been examined. The relative shift of the Curie temperature from the corresponding bulk value has been investigated in terms of the shift exponent λ. We have found that shift exponent λ clearly depends on the strength of the ferromagnetic exchange coupling of the surface. Moreover, we have not observed any significant difference between classical and quantum exponents for a particular model.

  5. Magnetocaloric effect in heavy rare-earth elements doped Fe-based bulk metallic glasses with tunable Curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiawei; Huo, Juntao; Chang, Chuntao, E-mail: ctchang@nimte.ac.cn, E-mail: dujun@nimte.ac.cn; Du, Juan, E-mail: ctchang@nimte.ac.cn, E-mail: dujun@nimte.ac.cn; Man, Qikui; Wang, Xinmin; Li, Run-Wei [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201 (China); Law, Jiayan [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2014-08-14

    The effects of heavy rare earth (RE) additions on the Curie temperature (T{sub C}) and magnetocaloric effect of the Fe-RE-B-Nb (RE = Gd, Dy and Ho) bulk metallic glasses were studied. The type of dopping RE element and its concentration can easily tune T{sub C} in a large temperature range of 120 K without significantly decreasing the magnetic entropy change (ΔS{sub M}) and refrigerant capacity (RC) of the alloys. The observed values of ΔS{sub M} and RC of these alloys compare favorably with those of recently reported Fe-based metallic glasses with enhanced RC compared to Gd{sub 5}Ge{sub 1.9}Si{sub 2}Fe{sub 0.1}. The tunable T{sub C} and large glass-forming ability of these RE doped Fe-based bulk metallic glasses can be used in a wide temperature range with the final required shapes.

  6. Spin correlations in (Mn,Fe2(P,Si magnetocaloric compounds above Curie temperature

    Directory of Open Access Journals (Sweden)

    X.F. Miao

    2016-06-01

    Full Text Available The longitudinal-field muon-spin relaxation (LF-μSR technique was employed to study the spin correlations in (Mn,Fe2(P,Si compounds above the ferromagnetic transition temperature (TC. The (Mn,Fe2(P,Si compound under study is found to show itinerant magnetism. The standard deviation of the magnetic field distribution of electronic origin increases with a decrease in temperature, which is attributed to the development of spin correlations. The anomalously low magnetic fluctuation rate is suggested to be another signature of the spin correlations. The development of pronounced magnetic fluctuations is in agreement with the observed deviation of the paramagnetic susceptibility from Curie–Weiss behavior. Our study sheds light on the magneto-elastic transition and the mixed magnetism in (Mn,Fe2(P,Si compounds.

  7. An efficient control of Curie temperature $T_C$ in Ni-Mn-Ga alloys

    OpenAIRE

    Khovailo, V. V.; Chernenko, V. A.; Cherechukin, A. A.; Takagi, T.; Abe, T.

    2003-01-01

    We have studied the influence of alloying with a fourth element on the temperature of ferromagnetic ordering $T_C$ in Ni-Mn-Ga Heusler alloys. It is found that $T_C$ increases or decreases, depending on the substitution. The increase of $T_C$ is observed when Ni is substituted by either Fe or Co. On the contrary, the substitution of Mn for V or Ga for In strongly reduces $T_C$.

  8. Effect of pressure on the Curie temperature of Mn{sub 2}RuSn and Mn{sub 2}PdSn

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Y., E-mail: adachy@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510 (Japan); Watanabe, T. [Faculty of Engineering, Yamagata University, Yonezawa 992-8510 (Japan); Kanomata, T. [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Research Institute for Engineering and Technology, Tohoku Gakuin University, 985-8537 (Japan); Hayasaka, M.; Endo, K. [Faculty of Engineering, Tohoku Gakuin University, Tagajo 985-8537 (Japan); Nishihara, H. [Faculty of Science and Technology, Ryukoku University, Otsu 520-2194 (Japan); Xu, X.; Kainuma, R. [Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2017-04-15

    Effect of pressure on the Curie temperature T{sub C} of the Mn-rich Heusler alloys Mn{sub 2}RuSn and Mn{sub 2}PdSn has been investigated by measuring the temperature dependence of initial permeability at various pressures up to 10 kbar. It was found that the Curie temperatures of Mn{sub 2}RuSn and Mn{sub 2}PdSn decrease with increasing pressure. The pressure derivatives of T{sub C} were estimated to be −0.59 K/kbar for Mn{sub 2}RuSn and −0.80 K/kbar for Mn{sub 2}PdSn. On the basis of the experimental results, the relationship between the magnetic transition temperature and the Mn-Mn distance is discussed.

  9. Engineering of the Curie temperature of epitaxial Sr1-xBaxTiO3 films via strain

    Science.gov (United States)

    Dai, Y.; Schubert, J.; Hollmann, E.; Mussler, G.; Wördenweber, R.

    2016-09-01

    The impact of strain on the structural and electrical properties of epitaxial Sr1-xBaxTiO3 films grown on single crystalline DyScO3 (110), TbScO3 (110), and GdScO3 (110) substrates is presented. X-ray diffraction measurements demonstrate that all films are grown epitaxially. The tensile in-plane strain is only partially compensated by a contraction of the out-of-plane lattice parameter. As a result, the volume of the unit cell of the Sr1-xBaxTiO3 film increases due to the tensile strain, and the resulting Poisson ratio of the film is ν ≈ 0.33, which is larger than but still close to the literature values of ν ≈ 0.23 for unstrained defect-free SrTiO3. The Curie temperature derived from the temperature dependence of the in-plane dielectric response leads to a strain-temperature phase diagram for the epitaxial Sr1-xBaxTiO3 films. The experimental data show a deviation from the linear dependence predicted by the Landau thermodynamic theory for large strain (>1.2%). However, using the equilibrium thermodynamic analysis, we can demonstrate that this deviation arises from the relaxation of the strain due to defect formation in the film. The result reveals that in addition to the nominal misfit strain, the defect formation strongly affects the effective strain and, thus, the dielectric response of epitaxially grown ferroelectric films.

  10. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  11. Magnetization and magnetic entropy change of a three-dimensional isotropic ferromagnet near the Curie temperature in the random phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kokorina, E.E., E-mail: kokorina@iep.uran.ru [Institute of Electrophysics, Russian Academy of Sciences-Ural Division, 620016 Ekaterinburg (Russian Federation); Medvedev, M.V. [Institute of Electrophysics, Russian Academy of Sciences-Ural Division, 620016 Ekaterinburg (Russian Federation); Department of Theoretical Physics, Ural Federal University, 620083 Ekaterinburg (Russian Federation)

    2013-05-01

    The behavior of a three-dimensional isotropic Heisenberg ferromagnet in the presence of a magnetic field H is investigated in the random phase approximation (RPA) near the Curie temperature T{sub c}. It is shown that the magnetization M at the Curie temperature T{sub c} is described by the law M(T=T{sub c})∼H{sup 1/5} and the initial magnetic susceptibility χ{sub 0} at temperatures T≥T{sub c} is given by χ{sub 0}(T≥T{sub c})∼(T−T{sub c}){sup −2}. It means that in the RPA the critical exponents for a three-dimensional Heisenberg ferromagnet coincide with the critical exponents for the Berlin-Kac spherical model of a ferromagnet rather than with the critical exponents of the mean field approximation (MFA). Hence it follows as well that, when a magnetic field H is risen from H=0 to H=H{sub a}, the magnetic entropy S{sub M} will be decreased as ΔS{sub M}(T=T{sub c})∼−H{sub a}{sup 4/5} at the Curie temperature T{sub c} and as ΔS{sub M}(T>T{sub c})∼−(T−T{sub c}){sup −3}H{sub a}{sup 2} at temperatures T>T{sub c}.

  12. CURIE: Cubesat Radio Interferometry Experiment

    Science.gov (United States)

    Sundkvist, D. J.; Saint-Hilaire, P.; Bain, H. M.; Bale, S. D.; Bonnell, J. W.; Hurford, G. J.; Maruca, B.; Martinez Oliveros, J. C.; Pulupa, M.

    2016-12-01

    The CUbesat Radio Interferometry Experiment (CURIE) is a proposed two-element radio interferometer, based on proven and developed digital radio receivers and designed to fit within a Cubesat platform. CURIE will launch as a 6U Cubesat and then separate into two 3U Cubesats once in orbit. CURIE measures radio waves from 0.1-19MHz, which must be measured from space, as those frequencies fall below the cutoff imposed by Earth's ionosphere. The principal science objective for CURIE is to use radio interferometry to study radio burst emissions from solar eruptive events such as flares and coronal mass ejections (CMEs) in the inner heliosphere, providing observations important for our understanding of the heliospheric space weather environment. The influence of space weather can be felt at Earth and other planets, as radiation levels increase and lead to auroral activity and geomagnetic effects. CURIE will be able to determine the location and size of radio burst source regions and then to track their movement outward from the Sun. In addition to the primary objective CURIE will measure the gradients of the local ionospheric density and electron temperature on the spatial scale of a few kilometers, as well as create an improved map of the radio sky at these unexplored frequencies. A space based radio interferometry observatory has long been envisioned, in orbit around the Earth or the Moon, or on the far side of the Moon. Beyond its important science objectives, CURIE will prove that the concept of a dedicated space-based interferometer can be realized by using relatively cheap Cubesats. CURIE will therefore not only provide new important science results but also serve as a pathfinder in the development of new space-based radio observation techniques for helio- and astro-physics.

  13. Study by neutron diffusion of magnetic fluctuations in iron in the curie temperature region; Etude des fluctuations d'aimantation dans le fer au voisinage de la temperature de curie par diffusion des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Ericson-Galula, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-12-15

    The critical diffusion of neutrons in iron is due to the magnetisation fluctuations which occur in ferromagnetic substances in the neighbourhood of the Curie temperature. The fluctuations can be described in correlation terms; a correlation function {gamma}{sub R{sub vector}} (t) is defined, {gamma}{sub R{sub vector}} (t) = mean value of the scalar product of a reference spin and a spin situated at a distance (R) from the first and considered at the instant t. In chapter I we recall the generalities on neutron diffusion cross-sections; a brief summary is given of the theory of VAN HOVE, who has shown that the magnetic diffusion cross section of neutrons is the Fourier transformation of the correlation function. In chapter Il we study the spatial dependence of the correlation function, assumed to be independent of time. It can then be characterised by two parameters K{sub 1} and r{sub 1}, by means of which the range and intensity of the correlations can be calculated respectively. After setting out the principle of the measurement of these parameters, we shall describe the experimental apparatus. The experimental values obtained are in good agreement with the calculations, and the agreement is better if it is supposed that the second and not the first neighbours of an iron atom are magnetically active, as proposed by Neel. In chapter III we study the evolution with time of the correlation function; this evolution is characterised by a parameter {lambda} depending on the temperature, which occurs in the diffusion equation obeyed by the magnetisation fluctuations: {delta}M{sub vector}/{delta}t = {lambda} {nabla}{sup 2} M{sub vector}. The principle of the measurement of {lambda} is given, after which the modifications carried out on the experimental apparatus mentioned in chapter II are described. The results obtained are then discussed and compared with the theoretical forecasts of De Gennes, mode by using the

  14. Characterization of mechano-thermally synthesized Curie temperature-adjusted La{sub 0.8}Sr{sub 0.2}MnO{sub 3} nanoparticles coated with (3-aminopropyl) triethoxysilane

    Energy Technology Data Exchange (ETDEWEB)

    Salili, S.M. [Chemical Physics Interdisciplinary Program, Liquid Crystal Institute, Kent State University, Kent, OH 44242 (United States); School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Ataie, A., E-mail: aataie@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Barati, M.R. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Sadighi, Z. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2015-08-15

    This research aimed to synthesize nanostructured strontium-doped lanthanum manganite, La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSMO), with its Curie temperature (T{sub c}) adjusted to the therapeutic range, through a mechanothermal route. In order to investigate the effect of heat treatment temperature and duration on the resulting crystallite size, morphology, magnetic behavior and Curie temperature, the starting powder mixture was milled in a planetary ball mill before being subsequently heat treated at distinct temperatures for different time lengths. The composition, morphology, and magnetic behavior were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and vibrating sample magnetometer (VSM). In addition, magnetic properties were further investigated using an alternating current (AC) susceptometer and thermo-magnetic analyzer. 20 h of milling produced a crystallite size reduction leading to a decrease in the heat treatment temperature of LSMO synthesis to 800 °C. Moreover, SEM analysis has shown the morphology of a strong agglomeration of fine nanoparticles. HRTEM showed clear lattice fringes of high crystallinity. The mean crystallite and particle size of 20-hour milled sample heat treated at 1100 °C for 10 h are relatively 69 and 100 nm, respectively. The VSM data at room temperature, indicated a paramagnetic behavior for samples heat treated at 800 °C. However, by increasing heat treatment temperature to 1100 °C, LSMO indicates a ferromagnetic behavior with well-adjusted Curie temperature of 320 K, suitable for hyperthermia applications. Also, reentrant spin glass (RSG) behavior has been found in heat treated samples. The particles are coated with (3-aminopropyl) triethoxysilane (APTES) for biocompatibility purposes; Fourier transform infrared spectroscopy (FTIR) and thermo

  15. Forearc structure in the Lesser Antilles inferred from depth to the Curie temperature and thermo-mechanical simulations

    Science.gov (United States)

    Gailler, Lydie; Arcay, Diane; Münch, Philippe; Martelet, Guillaume; Thinon, Isabelle; Lebrun, Jean-Frédéric

    2017-06-01

    Imaging deep active volcanic areas remains a challenge in our understanding of their activity and evolution, especially in subduction zones. Study of magnetic anomalies is appropriate to access such dynamics in depth. The magnetic anomaly pattern of the Lesser Antilles Arc (LAA) subduction is studied through Curie Point Depth (CPD), interpreted as the depth of the 580 °C isotherm, and developed to better assess the deep thermal structure of the arc. The depth of the estimated CPD exhibits a complex topography. Keeping in mind the overall uncertainty associated with this method, a main doming is evidenced below the Guadeloupe archipelago. Its apex is shifted towards the ancient arc, suggesting a very hot state of the fore-arc/arc domain. To better understand the LAA thermal state, we perform 2D thermo-mechanical simulations of the subduction zone. Recalling that magnetite is a serpentinization by-product, we simulate water transfer triggered by slab dehydration to test the assumption of fore-arc serpentinization suggested by the positive magnetic anomaly in the vicinity of the Guadeloupe archipelago. In this area, the subduction-induced arc lithosphere hydration and related weakening trigger a fast heating of the upper plate by basal convective removal. This process of fast arc lithosphere thinning may apply where simultaneously the volcanic arc is split in two and normal convergence is high enough. As serpentinization strongly decreases P-wave velocity, we propose a new interpretation of a published seismic profile below Guadeloupe. The seismic layer previously interpreted as the arc lower crust may rather be a layer of serpentinized mantle, as supported by spatial correlations between gravimetric and magnetic anomalies. Consequently, at the scale of Guadeloupe Island, the fore-arc Moho would be shallower than initially assumed, with a dome shape more consistent with both the extensive deformation active since the Oligocene in the inner fore-arc and the CPD doming.

  16. Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce-Fe-B amorphous ribbons

    Science.gov (United States)

    Li, Zhu-bai; Zhang, Le-le; Zhang, Xue-feng; Li, Yong-feng; Zhao, Qian; Zhao, Tong-yun; Shen, Bao-gen

    2017-01-01

    Ce13-x Fe81+x B6 (x  =  0, 0.5, 1, 1.5, and 2) amorphous magnets were prepared by melt-spinning method. These magnets are magnetically soft at low temperature, and undergo a second-order phase transition from ferromagnetic to paramagnetic state near room temperature with a broad temperature span. The phase-transition temperature is tunable by the variation of the Ce/Fe atomic ratio, which is mainly due to the change of the coordination number of Fe atoms in these ternary Ce-Fe-B amorphous magnets. Though the entropy change is low, the refrigeration capacities are in the ranges of 116-150 J kg-1 and 319-420 J kg-1, respectively, for the magnetic field changes of 0-2 T and 0-5 T, which is comparable with those of conventional magnetic materials for room-temperature refrigeration. Given the low cost of Fe and Ce, Ce-Fe-B amorphous magnets are attractive magnetic refrigerant candidates.

  17. Tuning the Curie temperature of L1{sub 0} ordered FePt thin films through site-specific substitution of Rh

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Dongbin, E-mail: dongbin.xu@seagate.com [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg; Heald, Steve M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Chen, Jing-Sheng; Chow, Gan Moog, E-mail: cjsun@aps.anl.gov, E-mail: msecgm@nus.edu.sg [Department of Materials Science and Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhou, Tie-Jun [Data Storage Institute, Agency for Science, Technology and Research (A-STAR), Singapore 117608 (Singapore); Bergman, Anders; Sanyal, Biplab [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2014-10-14

    In structurally ordered magnetic thin films, the Curie temperature (T{sub C}) of ferromagnetic films depends on the exchange integral of the short range ordered neighboring atoms. The exchange integral may be adjusted by controlling the elemental substitutional concentration at the lattice site of interest. We show how to control the T{sub C} in high anisotropy L1{sub 0} Fe{sub 50}Pt{sub 50} magnetic thin films by substituting Rh into the Pt site. Rh substitution in L1{sub 0} FePt modified the local atomic environment and the corresponding electronic properties, while retaining the ordered L1{sub 0} phase. The analysis of extended x-ray Absorption Fine Structure spectra shows that Rh uniformly substitutes for Pt in L1{sub 0} FePt. A model of antiferromagnetic defects caused by controlled Rh substitution of the Pt site, reducing the T{sub C,} is proposed to interpret this phenomenon and its validity is further examined by ab initio density functional calculations.

  18. Mechanism for Curie temperature variation in La{sub x}Sr{sub 2-x}FeMoO{sub 6} and Ca{sub x}Sr{sub 2-x}FeMoO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Frontera, C.; Rubi, D.; Navarro, J.; Garcia-Munoz, J.L.; Ritter, C.; Fontcuberta, J

    2004-07-15

    By means of high-resolution neutron powder diffraction at 10 K, we have characterized the structural details of La{sub x}Sr{sub 2-x}FeMoO{sub 6} (0{<=}x{<=}0.5) and Ca{sub x}Sr{sub 2-x}FeMoO{sub 6} (0{<=}x{<=}0.6) series of compounds. The Curie temperature (T{sub C}) raises in the La series and slightly decreases in the Ca one. The enhancement of T{sub C} in the La series is attributed to the effect of the conduction band-filling when doping with La.

  19. Angular dependence of dipole-dipole-Curie-spin cross-correlation effects in high-spin and low-spin paramagnetic myoglobin.

    Science.gov (United States)

    Pintacuda, Guido; Hohenthanner, Karin; Otting, Gottfried; Müller, Norbert

    2003-10-01

    The (15)N-HSQC spectra of low-spin cyano-met-myoglobin and high-spin fluoro-met-myoglobin were assigned and dipole-dipole-Curie-spin cross-correlated relaxation rates measured. These cross-correlation rates originating from the dipolar (1)H-(15)N interaction and the dipolar interaction between the (1)H and the Curie spin of the paramagnetic center contain long-range angular information about the orientation of the (1)H-(15)N bond with respect to the iron-(1)H vector, with information measurable up to 11 A from the metal for the low-spin complex, and between 10 to 25 A for the high-spin complex. Comparison of the experimental data with predictions from crystal structure data showed that the anisotropy of the magnetic susceptibility tensor in low spin cyano-met-myoglobin significantly influences the cross-correlated dipole-dipole-Curie-spin relaxation rates.

  20. Enhancement of Curie Temperature and Magnetoresistance in the Perovskites La2/3Ca1/3Mn1-xSixO3

    Institute of Scientific and Technical Information of China (English)

    LI Run-Wei; WANG Zhi-Hong; SUN Ji-Rong; CHEN Xin; SHEN Bao-Gen

    2000-01-01

    Structural, magnetic, and transport properties of perovskite La2/3Ca1/3Mn1-xSixO3 (x=0, 0.025, 0.05) have been studied. The incorporation of Si decreases the overall resistivity, but obviously increases the Curie temperature (Tc), metal-insulator transition temperature (Tp), and the magnetoresistance ratio MR (defined as [R(0)-R(H)]/R(O)) near room temperature. Comparing with La2/3Ca1/3MnO3, the Tc, Tp, and MR of the sample with x=0.05 increase by 30, 45K, and 20%, respectively. Lattice effects may play a more important role than the magnetic dilution in the case of low Si substitution.

  1. Increasing the Curie temperature of Ca{sub 2}FeMoO{sub 6} double perovskite by introducing near-neighbour antiferromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rubi, D [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra (Spain); Frontera, C [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra (Spain); Roig, A [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra (Spain); Nogues, J [Institut Catala de Recerca i Estudis Avancats (ICREA), 08193, Bellaterra, Catalunya (Spain); Munoz, J S [Departament de Fisica, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalunya (Spain); Fontcuberta, J [Institut de Ciencia de Materials de Barcelona, CSIC, Campus UAB, 08193, Bellaterra (Spain)

    2005-12-21

    We report on the magnetic, magnetotransport and structural characterization of (Ca{sub 1-y}Nd{sub y}){sub 2}Fe{sub 1+x}Mo{sub 1-x}O{sub 6} (x<0.5) ferromagnetic double perovskites. It is found that the presence of an excess (x>0) of Fe ions in the metallic sublattice produces a remarkable increase, by more than 90 K, of the Curie temperature. Moessbauer spectroscopy data indicate a reinforcement of the magnetic interactions. We argue that this dramatic enhancement of the ferromagnetic order is due to the strong antiferromagnetic superexchange coupling between near-neighbour Fe-Fe occupying regular and antisite positions in the structure. Moreover, the results indicate that the excess of magnetic ions (Fe) is essential to overcome the dilution effects caused by antisite defects.

  2. Pierre y Marie Curie

    OpenAIRE

    Guevara, Juan de Dios; Facultad de Farmacia y Bioquímica de la Universidad Nacional Mayor de San Marcos, Lima, Perú.

    2014-01-01

    Pocas veces se encuentran dos vidas tan profundamente identificadas como las de Pierre Curie y María Sklodowska.Pierre Curie, nació en París el 15 de mayo de 1859; realiza sus estudios preparatorios privadamente, hasta que a los 16 años aprueba su bachillerato, para seguir luego sus estudios en la Facultad de Ciencias donde obtiene su licenciatura en Física en 1877. Su amor a las ciencias naturales parece haberlo adquirido de su padre, Eugenio, con quien realiza sus primeras experiencias. Con...

  3. Effect of Mn-site vacancies on the magnetic entropy change and the Curie temperature of La0.67Ca0.33Mn1-xO3 perovskite

    DEFF Research Database (Denmark)

    Chen, Wei; Nie, L.Y.; Xu, Zhao;

    2006-01-01

    Single-phase polycrystalline samples of La0.67Ca0.33Mn1-xO3 (x = 0.00, 0.02, 0.04, 0.06) have been prepared using the sol-gel method. The structure, magnetocaloric properties and the Curie temperature of the samples with different Mn vacancy concentrations have been investigated. The experimental...

  4. Precise tuning of the Curie temperature of (Ga,Mn)As-based magnetic semiconductors by hole compensation: Support for valence-band ferromagnetism

    Science.gov (United States)

    Zhou, Shengqiang; Li, Lin; Yuan, Ye; Rushforth, A. W.; Chen, Lin; Wang, Yutian; Böttger, R.; Heller, R.; Zhao, Jianhua; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.; Timm, C.; Helm, M.

    2016-08-01

    For the prototype diluted ferromagnetic semiconductor (Ga,Mn)As, there is a fundamental concern about the electronic states near the Fermi level, i.e., whether the Fermi level resides in a well-separated impurity band derived from Mn doping (impurity-band model) or in the valence band that is already merged with the Mn-derived impurity band (valence-band model). We investigate this question by carefully shifting the Fermi level by means of carrier compensation. We use helium-ion implantation, a standard industry technology, to precisely compensate the hole doping of GaAs-based diluted ferromagnetic semiconductors while keeping the Mn concentration constant. We monitor the change of Curie temperature (TC) and conductivity. For a broad range of samples including (Ga,Mn)As and (Ga,Mn)(As,P) with various Mn and P concentrations, we observe a smooth decrease of TC with carrier compensation over a wide temperature range while the conduction is changed from metallic to insulating. The existence of TC below 10 K is also confirmed in heavily compensated samples. Our experimental results are naturally explained within the valence-band picture.

  5. Strong pressure dependences of the magnetization and Curie temperature for CrTe and MnAs with NiAs-type structure

    CERN Document Server

    Yamada, H; Kondo, K; Goto, T

    2002-01-01

    To study the strong magneto-volume effects observed in CrTe and MnAs with NiAs-type crystal structure, first-principle band calculations are carried out by a self-consistent linear muffin-tin orbital method within the atomic sphere approximation. The equilibrium volume of the unit cell is obtained as a function of the magnetization M, which gives the volume magnetostriction. The dependence on M of the bulk modulus is also estimated. The coefficients a sub 0 and b sub 0 in the Landau expansion, DELTA E(M) = a sub 0 M sup 2 /2 + b sub 0 M sup 4 /4, are estimated by the fixed-spin-moment method. The calculated results for CrTe and MnAs are compared with those for bcc Fe. It is shown that the values of vertical bar a sub 0 vertical bar and b sub 0 for CrTe and MnAs are so small that the correction term from the magneto-volume coupling constants becomes significant. This fact gives a strong pressure dependence of the spontaneous magnetization. The pressure dependence of the Curie temperature is also discussed by m...

  6. Volume dependence of the exchange interaction and Curie temperature in Co2MGa (M = Ti and Fe): A first-principles study

    Science.gov (United States)

    Liu, X. B.; Altounian, Z.

    2011-04-01

    Magnetic moment, exchange interaction and Curie temperature (TC) have been calculated for Co2TiGa and Co2FeGa by a first-principles density functional calculation combined with a linear response method. The exchange interaction is dominated by Co-Co pairs in Co2TiGa while that of Co2FeGa is mainly contributed by Fe-Co pairs. Based on the mean field multiple-sublattices model, the estimated TC is about 114 K for M = Ti and 1270 K for M = Fe, calculated with the experimental lattice constant, in good agreement with the experimental values (128 K and 1093 K for M = Ti and Fe, respectively). With increasing lattice constant, a, from 95% to 105% of the experimental value (aexp .), the moment per formula unit mf.u. changes from 0.43 μB to 1.0 μB and TC increases from 27 K to 142 K in Co2TiGa. However, mf.u. increases slightly from 4.98 μB to 5.40 μB while TC decreases from 1330 K to 1190 K with increasing a from 95% to 105% of aexp . in Co2FeGa. These different volume dependences of TC are ascribed to the weak ferromagnetism in Co2TiGa and the strong ferromagnetism in Co2FeGa.

  7. Significant increase of Curie temperature and large piezoelectric coefficient in Ba(Ti0.80Zr0.20)O3-0.5(Ba0.70Ca0.30)TiO3 nanofibers

    Science.gov (United States)

    Fu, Bi; Yang, Yaodong; Gao, Kun; Wang, Yaping

    2015-07-01

    Ba(Ti0.80Zr0.20)O3-0.5(Ba0.7Ca0.3)TiO3 (abbreviated as BTZ-0.5BCT) is a piezoelectric ceramic with a high piezoelectric coefficient d33 (˜620 pC N-1) and has been regarded as one of the most promising candidates to replace PZT-based materials (200-710 pC N-1). However, its Curie temperature TC is relatively low (93 °C) limiting its application. In this letter, we found a temperature dependent Raman spectrum in BTZ-0.5BCT nanofibers (NFs), demonstrating a diffused tetragonal-to-cubic phase transition at 300 °C. This means that the TC of the NFs is nearly 207 °C higher than that of the normal bulk material. The increased TC is considered to be associated with the size effect of BTZ-0.5BCT nanoceramic subunits and the nanoporous nature of the fiber, resulting in discontinuous physical properties. The variation of the ferro/piezoelectricity over the fiber surface is attributed to the polycrystalline structure. The d33 (173.32 pm V-1) is improved in terms of the decreased Q factor result in an increase in d33 of 236.54 pm V-1 after polarization. With a high TC and a very large d33, BTZ-0.5BCT NFs are capable of providing electromechanical behavior used in moderate temperatures.

  8. Curie surface of Borborema Province, Brazil

    Science.gov (United States)

    Correa, Raphael T.; Vidotti, Roberta M.; Oksum, Erdinc

    2016-06-01

    The Curie surface interpreted from magnetic data through spatial frequency domain techniques is used to provide information on the thermal structure of Borborema Province. The Borborema Province is part of the neoproterozoic collision of an orogenic system situated between the São Francisco-Congo and São Luís-West Africa cratons, which formed the Gondwana Supercontinent. The Curie surface of Borborema Province varies from 18 to 59 km, which reveals the complexity in the crustal composition of the study area. The thermal structure shows different crustal blocks separated by the main shear zones, which corroborates the evolution model of allochthonous terranes. The Curie surface signature for the west portion of Pernambuco Shear Zone may indicate processes of mantle serpentinization, once the Curie isotherm is deeper than Mohorovic discontinuity. In this region, the amplitude of Bouguer anomaly decreases, which corroborates long wavelength anomaly observed in the magnetic anomaly. We interpreted this pattern as evidence of the Brasiliano-Pan-Africano's subduction/collision event. Earthquakes in the region are concentrated mainly in shallow Curie surface regions (less resistant crust) and in transition zones between warm and cold blocks. We calculated the horizontal gradient of the Curie depth to emphasize the signature of contact between the thermal blocks. These regions mark possible crustal discontinuities, and have high correlation with orogenic gold occurrence in the study area.

  9. Atomic long-range order effects on Curie temperature and adiabatic spin-wave dynamics in strained Fe-Co alloy films

    Science.gov (United States)

    Schönecker, Stephan; Li, Xiaoqing; Johansson, Börje; Vitos, Levente

    2016-08-01

    The strained Fe-Co alloy in body-centered tetragonal (bct) structure has raised considerable interest due to its giant uniaxial magnetocrystalline anisotropy energy. On the basis of the classical Heisenberg Hamiltonian with ab initio interatomic exchange interactions, we perform a theoretical study of fundamental finite temperature magnetic properties of Fe1 -xCox alloy films as a function of three variables: chemical composition 0.3 ≤x ≤0.8 , bct geometry [a ,c (a )] arising from in-plane strain and associated out-of-plane relaxation, and atomic long-range order (ALRO). The Curie temperatures TC(x ,a ) obtained from Monte Carlo simulations display a competition between a pronounced dependence on tetragonality, strong ferromagnetism in the Co-rich alloy, and the beginning instability of ferromagnetic order in the Fe-rich alloy when c /a →√{2 } . Atomic ordering enhances TC and arises mainly due to different distributions of atoms in neighboring coordination shells rather than altering exchange interactions significantly. We investigate the ordering effect on the shape of the adiabatic spin-wave spectrum for selected pairs (x ,a ) . Our results indicate that long-wavelength acoustic spin-wave excitations show dependencies on x , a , and ALRO similar to those of TC. The directional anisotropy of the spin-wave stiffness d (x ,a ) peaks in narrow ranges of composition and tetragonality. ALRO exhibits a strong effect on d for near equiconcentration Fe-Co. We also discuss our findings in the context of employing Fe-Co as perpendicular magnetic recording medium.

  10. Effect of Mn-site vacancies on the magnetic entropy change and the Curie temperature of La0.67Ca0.33Mn1-xO3 perovskite

    DEFF Research Database (Denmark)

    Chen, Wei; Nie, L.Y.; Xu, Zhao

    2006-01-01

    results show that vacancy doping at the Mn-sites has a significant influence on the magnetic properties of La0.67Ca0.33Mn1-xO3. The Curie temperature decreases monotonically with increasing the Mn-site vacancy concentration x. A remarkable enhancement of the magnetic entropy change has been obtained...... in the La0.67Ca0.33W0.98O3 sample. The entropy change reaches vertical bar Delta S-M vertical bar = 3.10 J kg(-1) K-1 at its Curie temperature (264 K) under an applied magnetic field H = 10 kOe, which is almost the same value as that of pure Gd....

  11. High Temperature Materials Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The High Temperature Materials Lab provides the Navy and industry with affordable high temperature materials for advanced propulsion systems. Asset List: Arc Melter...

  12. Pioneers of nuclear medicine, Madame Curie.

    Science.gov (United States)

    Grammaticos, Philip C

    2004-01-01

    , she is not known neither by that full name nor as Maria Sklodowska but as Marie Curie. Madame Curie was the second of five children. At the age of 24 she went to Sorbonne-Paris after being invited by her sister Bronja to study for about 2-3 years; instead she stayed in Paris for her whole life. Her doctorate was on the subject: "Research on radioactive substances" which she completed in six years under the supervision of H. Becquerel. Pierre Curie was Director of the Physics Laboratory of the Ecole Municipale of Physics and Industrial Chemistry when he married M. Curie in 1895. Pierre Curie left his other research projects and worked full time with his wife. In this laboratory M. Curie and her husband Pierre discovered radium and polonium. In 1901 Pierre Curie induced a radiation burn on his forearm by applying on his skin radiferous barium chloride for 10 hours. During World War I, M.Curie organized for the Red Cross a fleet of radiological ambulances each with X-ray apparates which were called "Little Curies". The X-ray tubes of these apparates were unshielded and so M.Curie was exposed to high doses of radiation. Once an ambulance fell into a ditch and M.Curie who was inside the ambulance was badly bruised and stayed at home for 3 days. M. Curie with her daughters, Irene and Eve, was invited and visited America in 1921. She led a successful campaign to collect radium for her experiments. Before leaving America, President Harding donated through her to the Radium Institute of Paris 1 g of radium for research purposes. At that time the process to obtain 0.5 g of pure radium bromide required 1 ton of ore and 5 tons of chemicals. No measures of radiation protection were taken back then. In 1929 Madame Curie visited the United States for a second time. She met with President Hoover and with the help of the Polish women's association in America collected funds for another gram of radium. Madame Curie died of leukemia on July 4, 1934. Sixty years after her death her

  13. Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la Réunion hot spot

    Science.gov (United States)

    Gailler, Lydie-Sarah; Lénat, Jean-François; Blakely, Richard J.

    2016-09-01

    We present an innovative study to generalize Curie Point Depth (CPD) determinations at the scale of oceanic volcanic islands, an approach which has previously focused largely on continental areas. In order to determine the validity of this technique in oceanic environments, we first tested the approach on sets of sea-floor-spreading anomalies. Assuming that magnetic anomalies are concentrated within the oceanic crust and uppermost mantle, the Curie depth should deepen as oceanic lithosphere increases in age and thickness away from spreading centers. The calculated depths to the magnetic bottom are in agreement with this general pattern. On the basis of this test, we then applied the method to La Réunion Island and surrounding oceanic lithosphere. The calculated extent of magnetic sources lies at depths between 10 and 30 km and exhibits a complex topography, presumably caused by a combination of various magmatic and tectonic lithospheric structures. These calculations indicate that magnetic sources extend well below the crust-mantle interface at this location. To the first order, the bottom of the magnetic surface shallows beneath Réunion and Mauritius Islands due to the thermal effect of the hot spot, and deepens away from La Réunion edifice. On the scale of the Mascarene Basin, several discontinuities in the CPD correlate well with major fracture zones.

  14. Pierre curie, 1859-1906.

    Science.gov (United States)

    Mould, R F

    2007-04-01

    The year 2006 marked 100 years since the death of Pierre Curie. It is therefore appropriate that we remember his life and his work, which was cut short by his untimely death from an accident on the Pont Neuf, Paris, on April 19, 1906. He had already accomplished much during his life, both before the discovery of radium with Marie Curie, in work co-authored with his brother Jacques on piezoelectricity, and afterwards, when he published the results of several experimental studies with radium and radon. He came from a medical family, and his grandfather Pierre Curie was a famous homeopathic physician. He has, in print, unfairly been relegated to the background-his own scientific contributions having been overtaken by the fame of Marie Curie, probably because she outlived him by 28 years.

  15. HIGH TEMPERATURE DISPLACEMENT SENSOR

    Institute of Scientific and Technical Information of China (English)

    Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard

    2005-01-01

    A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90~350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2~3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.

  16. High Temperature Ferroelectrics for Actuators: Recent Developments and Challenges

    Science.gov (United States)

    Sehirlioglu, Alp; Kowalski, Benjamin

    2014-01-01

    A variety of piezoelectric applications have been driving the research in development of new high temperature ferroelectrics; ranging from broader markets such as fuel and gas modulation and deep well oil drilling to very specific applications such as thermoacoustic engines and ultrasonic drilling on the surface of Venus. The focus has been mostly on increasing the Curie temperature. However, greater challenges for high temperature ferroelectrics limit the operating temperature to levels much below the Curie temperature. These include enhanced loss tangent and dc conductivity at high fields as well as depoling due to thermally activated domain rotation. The initial work by Eitel et al. [Jpn. J. Appl. Phys., 40 [10, Part 1] 59996002 (2001)] increased interest in investigation of Bismuth containing perovskites in solid solution with lead titanate. Issues that arise vary from solubility limits to increased tetragonality; the former one prohibits processing of morphotropic phase boundary, while the latter one impedes thorough poling of the polycrystalline ceramics. This talk will summarize recent advances in development of high temperature piezoelectrics and provide information about challenges encountered as well as the approaches taken to improve the high temperature behavior of ferroelectrics with a focus on applications that employ the converse piezoelectric effect.

  17. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  18. A nanocrystalline Sm-Co compound for high-temperature permanent magnets.

    Science.gov (United States)

    Zhang, Zhexu; Song, Xiaoyan; Qiao, Yinkai; Xu, Wenwu; Zhang, Jiuxing; Seyring, Martin; Rettenmayr, Markus

    2013-03-21

    The inherently high magnetic anisotropy and nanoscale grain size in a Sm5Co19 compound result in an intrinsic coercivity far higher than those of known Sm-Co compounds prior to orientation treatment. The combination of ultrahigh intrinsic coercivity, high Curie temperature and low coercivity temperature coefficient of nanocrystalline Sm5Co19 as a single phase material shows it to be a very promising compound to develop outstanding high-temperature permanent magnets.

  19. Curie law for systems described by kappa distributions

    Science.gov (United States)

    Livadiotis, George

    2016-01-01

    We derive the magnetization of a system, Pierre Curie's law, for paramagnetic particles out of thermal equilibrium described by kappa distributions. The analysis uses the theory and formulation of the kappa distributions that describe particle systems with a non-zero potential energy. Among other results, emphasis is placed on the effect of kappa distribution on the phenomenon of having strong magnetization at high temperatures. At thermal equilibrium, high temperature leads to weak magnetization. Out of thermal equilibrium, however, strong magnetization at high temperatures is rather possible, if the paramagnetic particle systems reside far from thermal equilibrium, i.e., at small values of kappa. The application of the theory to the space plasma at the outer boundaries of our heliosphere, the inner heliosheath, leads to an estimation of the ion magnetic moment for this space plasma, that is, μ ≈ 138+/-7 \\text{eV/nT} .

  20. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard;

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  1. Marie and Pierre Curie. Life in extremes; Marie and Pierre Curie. Leben in Extremen

    Energy Technology Data Exchange (ETDEWEB)

    Roethlein, Brigitte

    2008-07-01

    In Paris in 1894, two young physicists fall in love: Marie Sklodowska and Pierre Curie. They get married and make great contributions to science, research radioactivity and discover new chemical elements. The marriage of Marie and Pierre Curie is quite modern: They work together as equals, share their thoughts and pursue their plans together as partners. They share an absolute interest in science, a love of nature, and a sceptic attitude towards the sophisticated society of the Belle Epoque. They are together 24 hours a day with hardly ever any disagreement. Whenever one of them is ill - which is quite often because of the high level of radioactivity in their laboratory -, the other will nurse him or her. After only twelve years of mutual love, Pierre Curie dies. Marie raises their two daughters on her own and continues her research. In 1911, she will be the first scientist that ever gets a second Nobel Prize. (orig.) [German] Im Paris des Jahres 1894 verlieben sich zwei junge Physiker: Marie Sklodowska und Pierre Curie. Sie heiraten und leisten gemeinsam Grosses fuer die Wissenschaft, erforschen die Radioaktivitaet und entdecken neue chemische Elemente. Zusammen erhalten sie den Nobelpreis. Marie und Pierre Curie fuehren eine Ehe, die ihrer Zeit weit voraus ist: Sie arbeiten gleichberechtigt miteinander, teilen ihre Gedanken und verfolgen ihre Plaene gemeinsam. Beiden eigen ist die absolute wissenschaftliche Neugier, die Liebe zur Natur und die Skepsis gegenueber der mondaenen Gesellschaft der Belle Epoque. Fast jeden Tag sind sie rund um die Uhr zusammen, dabei gibt es selten Spannungen. Wenn einer von beiden gesundheitliche Probleme hat - und das haben sie wegen der radioaktiven Belastung im Labor oft - ist der andere fuer ihn da und pflegt ihn. Nach nur zwoelf gemeinsamen Jahren der Liebe und Arbeit stirbt Pierre Curie. Marie zieht ihre beiden Toechter alleine gross und fuehrt die Forschungen weiter. 1911 erhaelt sie als erster Mensch zum zweiten Mal den

  2. Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia

    Science.gov (United States)

    Li, Chun-Feng; Wang, Jian

    2016-03-01

    The Eastern and Southeastern Asian regions witness the strongest land-ocean and lithosphere-asthenosphere interactions. The extreme diversity of geological features warrants a unified study for a better understanding of their geodynamic uniqueness and/or ubiquity from a regional perspective. In this paper we have explored a large coverage of potential field data and have detected high resolution Moho and Curie depths in the aforementioned regions. The oldest continental and oceanic domains, i.e. the North China craton and the Pacific and Indian Ocean have been found thermally perturbed by events probably linked to small-scale convection or serpentinization in the mantle and to numerous volcanic seamounts and ridges. The thermal perturbation has also been observed in proximity of the fossil ridge of the western Philippine Sea Basin, which shows anomalously small Curie depths. The western Pacific marginal seas have the lowest Moho temperature, with Curie depths generally larger than Moho depths. The contrary is true in most parts of easternmost Eurasian continent. Magmatic processes feeding the Permian Emeishan large igneous province could have also been genetically linked to deep mantle/crustal processes beneath the Sichuan Basin. The regionally elongated magnetic features and small Curie depths along the Triassic Yangtze-Indochina plate boundary suggest that the igneous province could be caused by tectonic processes along plate margins, rather than by a deep mantle plume. At the same time, we interpret the Caroline Ridge, the boundary between the Pacific and the Caroline Sea, as a structure having a continental origin, rather than as hotspot or arc volcanism. The surface heat flow is primarily modulated by a deep isotherm through thermal conduction. This concordance is emphasized along many subduction trenches, where zones of large Curie depths often correspond with low heat flow. Local or regional surface heat flow variations cannot be faithfully used in inferring

  3. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  4. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, K.; Cheng, C. W.; Chern, G. [Physics Department and SPIN Research Center, National Chung Cheng University, Chia-Yi, Taiwan, 621 (China)

    2012-04-01

    Mn{sub 3}O{sub 4} is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (T{sub c}) of {approx}43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn{sub 3}O{sub 4} is 0.944 nm, with a c/a ratio {approx}1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the T{sub c} whereas Mg reduces the T{sub c} (Cr shows no effect on the T{sub c}). These changes to the T{sub c} are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  5. High Temperature Capacitor Development

    Energy Technology Data Exchange (ETDEWEB)

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  6. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  7. High Temperature ESP Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  8. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  9. Transition-metal embedded carbon nitride monolayers: high-temperature ferromagnetism and half-metallicity

    Science.gov (United States)

    Choudhuri, Indrani; Kumar, Sourabh; Mahata, Arup; Rawat, Kuber Singh; Pathak, Biswarup

    2016-07-01

    High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices.High-temperature ferromagnetic materials with planar surfaces are promising candidates for spintronics applications. Using state-of-the-art density functional theory (DFT) calculations, transition metal (TM = Cr, Mn, and Fe) incorporated graphitic carbon nitride (TM@gt-C3N4) systems are investigated as possible spintronics devices. Interestingly, ferromagnetism and half-metallicity were observed in all of the TM@gt-C3N4 systems. We find that Cr@gt-C3N4 is a nearly half-metallic ferromagnetic material with a Curie temperature of ~450 K. The calculated Curie temperature is noticeably higher than other planar 2D materials studied to date. Furthermore, it has a steel-like mechanical stability and also possesses remarkable dynamic and thermal (500 K) stability. The calculated magnetic anisotropy energy (MAE) in Cr@gt-C3N4 is as high as 137.26 μeV per Cr. Thereby, such material with a high Curie temperature can be operated at high temperatures for spintronics devices. Electronic supplementary information (ESI

  10. Strangeness at high temperatures

    CERN Document Server

    Schmidt, Christian

    2013-01-01

    We use up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number fluctuations to extract information on the strange meson and baryon contribution to the low temperature hadron resonance gas, the dissolution of strange hadronic states in the crossover region of the QCD transition and the quasi-particle nature of strange quark contributions to the high temperature quark-gluon plasma phase.

  11. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  12. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  13. On the Fulfillment of Curie's Law in Magnetic Fluids

    Science.gov (United States)

    Zhernovoi, A. I.; Dyachenko, S. V.

    2015-05-01

    A fulfillment of Curie's law in magnetic fluids provides an option of their thermometric applications to measure thermodynamic temperature. On the other hand, it was shown elsewhere that the initial magnetic susceptibility χ of magnetic fluids follows Curie-Weiss's law rather than Curie's law. To obtain its values, use was made of the formula χ = M/N0, where M is magnetization, and N0 is the external magnetic field strength without any specimen. This work deals with investigations of the dependence of magnetic susceptibility of magnetic fluid on temperature for the cases where its values are found via the following formulas: 1) χ = M/N0, and 2) χ = Mμ0/M, where M is the magnetic field induction inside the specimen. It is found that in the first case the temperature dependence of χ obeys Curie-Weiss's law while in the second case - Curie's law. The reason for this results from the fact that induction M acting on the particles of magnetic fluid is noticeably higher than that of the external field, M0.

  14. Desulfurization at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Panula-Nikkilae, E.; Kurkela, E.; Mojtahedi, W.

    1987-01-01

    Two high-temperature desulfurization methods, furnace injection and gasification-desulfurization are presented. In furnace injection, the efficiency of desulfurization is 50-60%, but this method is applied in energy production plants, where flue gas desulfurization cannot be used. Ca-based sorbents are used as desulfurization material. Factors affecting desulfurization and the effect of injection on the boiler and ash handling are discussed. In energy production based on gasification, very low sulfur emissions can be achieved by conventional low-temperature cleanup. However, high-temperature gas cleaning leads to higher efficiency and can be applied to smaller size classes. Ca-, Fe-, or Zn-based sorbents or mixed metals can be used for desulfurization. Most of the methods under development are based on the use of regenerative sorbents in a cleanup reactor located outside the gasifier. So far, only calcium compounds have been used for desulfurization inside the gasifier.

  15. Long-term results of exclusive low-dose rate curie-therapy for a high-grade vaginal intraepithelial neoplasia; Resultats a long terme de la curietherapie exclusive de bas debit de dose pour neoplasie vaginale intraepitheliale de haut grade

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P.; Monnier, L.; Dumas, I.; Azoury, F.; Mazeron, R.; Haie-Meder, C. [Institut Gustave-Roussy, 94 - Villejuif (France)

    2010-10-15

    The authors report the results of an exclusive low dose rate curie therapy for female patients treated for a grade 3 vaginal intraepithelial neoplasia. They reviewed the medical files of patients treated since 1983, i.e. 28 women. They analysed demographic characteristics, the clinic description of lesions, possible treatments which occurred before this high-grade vaginal intraepithelial neoplasia, possible previous history of cervical or endometrial cancer, curie therapy detailed data, presence of tumorous relapse. According to that, they conclude that a 60 Gy exclusive low- vaginal dose-rate curie-therapy is an efficient and well tolerated treatment for high-grade vaginal intraepithelial neoplasia. Short communication

  16. The Pasteurization of Marie Curie: A (meta)biographical experiment.

    Science.gov (United States)

    Wirtén, Eva Hemmungs

    2015-08-01

    Biographies of scientists occupy a liminal space, highly popular with general readers but questioned in academia. Nonetheless, in recent years, historians of science have not only embraced the genre with more enthusiasm and less guilt, they have also turned to the metabiography in order to renew the study and story of scientists' roles. This essay focuses on Marie Curie, the world's most famous female scientist, in order to unpack some of the theoretical and methodological claims of the science biography, and especially to address the sexing mechanisms at play in the construction of the biographical subject. Pierre Curie (1923), Marie's biography of her husband Pierre, paid tribute to her dead husband and collaborator, but also allowed Curie a legitimate outlet to construct her own persona and legacy. Categories such as personhood, person, and persona are not only central to the biography genre but also are essential to the sense of self and self-fashioning of scientists. Looking at how Marie Curie negotiated these categories in Pierre Curie not only gives new insight into Curie's self-fashioning strategies but may also shed some light on the more general analytical lacunae of the science biography.

  17. Irreversible structure change of the as prepared FeMnP{sub 1−x}Si{sub x}-structure on the initial cooling through the curie temperature

    Energy Technology Data Exchange (ETDEWEB)

    Höglin, Viktor, E-mail: viktor.hoglin@kemi.uu.se [Department of Chemistry – Ångström Laboratory, Box 538, 751 21 Uppsala (Sweden); Cedervall, Johan [Department of Chemistry – Ångström Laboratory, Box 538, 751 21 Uppsala (Sweden); Andersson, Mikael Svante; Sarkar, Tapati; Nordblad, Per [Department of Engineering Sciences, Solid State Physics, Box 534, 751 21 Uppsala (Sweden); Sahlberg, Martin [Department of Chemistry – Ångström Laboratory, Box 538, 751 21 Uppsala (Sweden)

    2015-01-15

    FeMnP{sub 0.75}Si{sub 0.25} experiences a first order para- to ferromagnetic transition at about 200 K. In common with some other alloy compositions crystallizing in the Fe{sub 2}P structure, the magnetic transition of the as prepared alloy occurs at a lower temperature than on subsequent cooling events. This virgin effect is found to be accompanied by a magnetostrictively induced irreversible structure change that persists on succeeding cooling heating cycles. These findings provide means to understand and control the thermal hysteresis of the (Fe{sub 1−x}Mn{sub x}){sub 2}P{sub 1−y}Si{sub y} alloy system which is a promising material class for use in magnetocaloric refrigerators. - Highlights: • FeMnP{sub 1−x}Si{sub x} exhibits a first order phase transition at the Curie temperature (T{sub c}). • The lattice parameters exhibit a discontinuous change at the transition. • The structure is permanently altered by the initial cooling through T{sub c}. • The transition temperature on cooling is enhanced by initial cooling. • Subsequent cooling/heating does not cause further changes of T{sub c}.

  18. Compositional dependence of magnetization reversal mechanism, magnetic interaction and Curie temperature of Co{sub 1−x}Sr{sub x}Fe{sub 2}O{sub 4} spinel thin film

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Ali, E-mail: ali13912001@yahoo.com

    2015-10-05

    Highlights: • Nanoparticles and thin films of Co{sub 1−x}Sr{sub x}Fe{sub 2}O{sub 4} were successfully synthesized by a sol–gel process. • The value of strength of interaction was enhanced from −0.23 for x = 0 to −0.75 for x = 0.5. • The magnetization reversal process for x = 0, 0.1 was almost controlled by Kondorsky models. • The reversal mechanism for x = 0.2–0.5 obey the Stoner–Wohlfarth rule. - Abstract: Co{sub 1−x}Sr{sub x}Fe{sub 2}O{sub 4}, (x varies from 0 to 0.5 in a step of 0.1) nanoparticles were formed by means of sol–gel processing method. The morphological and structural features of nanoparticles were evaluated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) equipped by EDS analysis, Mössbauer spectroscopy and vibrating sample magnetometer. It was found that almost narrow size distribution of nanoparticles with cation distribution occupancy preference in octahedral site was synthesized. The nanoparticles were used for addition in subsequent solution for fabricating ferrite thin films with similar mentioned chemical composition. Several techniques including FE-SEM, atomic force microscopy and vibrating sample magnetometer were employed to find the role of strontium cation distribution on the structural and magnetic properties of films. The Curie temperature, coercivity and magnetic interaction which was evaluated by Henkel plot were reduced by an increase in substitution contents. Coercivity of thin films reduced from 0.65 MA/m to 0.39 MA/m and Curie temperature declined from 690 to 455 °C. The value of strength of interaction was enhanced from −0.23 for x = 0 to −0.75 for x = 0.5. Angular dependence of coercivity proved that the magnetization reversal process was accompanied by the combination of domain wall motion and Stoner–Wohlfarth rotation, however for thin film with x = 0.2–0.5, the reversal mechanism obey the Stoner–Wohlfarth rule.

  19. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  20. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  1. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  2. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  3. Cluster method calculation of the Curie temperature and exchange parameters for the magnetocaloric compounds MnFeAs {sub x} P{sub 1-x} (0.25≤ x ≤0.65) and hexagonal MnFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, Osvaldo F., E-mail: osvaldo.neto@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis (Brazil). Departamento de Fisica

    2013-08-15

    A wealth of experimental and theoretical data on the crystallographic and magnetic properties of the magnetocaloric compounds MnFeAs {sub x} P{sub 1-x} (0.25 ≤ x ≤0.65) and MnFeAs has become available in the last decade. By analyzing the data and treating the spin interactions with Callen's cluster expansion method, we extrapolate first-principle results for the exchange-coupling constants of MnFeAs to the P-substituted compounds and find Curie temperatures that agree, within 5 % deviation, with experiment. Simulations with different coupling parameters show that T{sub c} is weakly dependent on the Fe-Fe interactions. Analysis of lattice expansion as a function of composition shows that changes in the lattice parameters a and c have opposite effects upon the strength of the magnetic interactions between ions. The results indicate that the cluster expansion method provides reliable estimates of magnetic properties, even for metallic compounds characterized by multiple interactions among ions with distinct magnetic moments. (author)

  4. High Temperature Aquifer Storage

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  5. Spin injection into high temperature superconductor

    CERN Document Server

    Severac, C H L

    2000-01-01

    DELTA M versus pulse length was measured. It showed two regions: above 100 mu s DELTA M is the same for both magnetic and non-magnetic material and can be attributed to heating. Below 100 mu s, DELTA M is only significant for the CMR samples. This is attributed to the injection of highly spin polarised carriers that are believed to reduce the order parameter over the whole sample, and hence l sub C and the magnetic moment of the sample. As part of a search for colossal magneto-resistance (CMR) materials with Curie temperature below the superconducting transition of YBCO, we made an investigation of the magnetic and electrical characteristics of Chromium doped LCMO. We found that the conduction mechanism which depends on the orbital order via the double-exchange mechanism, is decoupled from the ferromagnetic behaviour, which is related to spin order. Work on the injection of dc-current from half metallic CMR material into YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) showed a shift and a compression in the ...

  6. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  7. Morphology and Curie temperature engineering in crystalline La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on Si by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nori, Rajashree, E-mail: rajsre@ee.iitb.ac.in; Ganguly, U.; Ravi Chandra Raju, N.; Pinto, R.; Ramgopal Rao, V. [Centre of Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology-Bombay (IIT-B), Mumbai 400076 (India); Kale, S. N. [Department of Applied Physics, Defence Institute of Advanced Technology (DIAT), Pune 411025 (India); Sutar, D. S. [Central Surface Analytical Facility, Indian Institute of Technology-Bombay (IIT-B), Mumbai 400076 (India)

    2014-01-21

    Of all the colossal magnetoresistant manganites, La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) exhibits magnetic and electronic state transitions above room temperature, and therefore holds immense technological potential in spintronic devices and hybrid heterojunctions. As the first step towards this goal, it needs to be integrated with silicon via a well-defined process that provides morphology and phase control, along with reproducibility. This work demonstrates the development of pulsed laser deposition (PLD) process parameter regimes for dense and columnar morphology LSMO films directly on Si. These regimes are postulated on the foundations of a pressure-distance scaling law and their limits are defined post experimental validation. The laser spot size is seen to play an important role in tandem with the pressure-distance scaling law to provide morphology control during LSMO deposition on lattice-mismatched Si substrate. Additionally, phase stability of the deposited films in these regimes is evaluated through magnetometry measurements and the Curie temperatures obtained are 349 K (for dense morphology) and 355 K (for columnar morphology)—the highest reported for LSMO films on Si so far. X-ray diffraction studies on phase evolution with variation in laser energy density and substrate temperature reveals the emergence of texture. Quantitative limits for all the key PLD process parameters are demonstrated in order enable morphological and structural engineering of LSMO films deposited directly on Si. These results are expected to boost the realization of top-down and bottom-up LSMO device architectures on the Si platform for a variety of applications.

  8. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  9. Marie Curie during ORT4

    Science.gov (United States)

    2003-01-01

    Marie Curie rover drives down the rear ramp during Operational Readiness Test (ORT) 4.Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. Marie Curie during ORT6

    Science.gov (United States)

    2003-01-01

    Marie Curie sits on the lander petal prior to deployment during the pre launch Operations Readiness Test (ORT) 6.Pathfinder, a low-cost Discovery mission, is the first of a new fleet of spacecraft that are planned to explore Mars over thenext ten years. Mars Global Surveyor, already en route, arrives at Mars on September 11 to begin a two year orbital reconnaissance of the planet's composition, topography, and climate. Additional orbiters and landers will follow every 26 months.The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  11. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  12. Curie and Pauli Spins in Lithium Intercalated MCMB

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ESR signal of lithium intercalated MCMB can be well simulated by combination of a Lorentz curve and a Gauss curve. The ESR intensity of the Lorentz component is essentially independent of temperature while the Gauss component shows a linear change with the reciprocal of temperature, indicative of Pauli spin and Curie spin, respectively. The former is probably associated with the ordered (graphitized) structures while the latter with the disordered structures in the sample.

  13. Radium, Marie Curie and modern science.

    Science.gov (United States)

    Langevin-Joliot, H

    1998-11-01

    In 1898, the discovery of two new elements, polonium and radium, reawakened interest in the topic of uranic rays discovered 2 years before by H. Becquerel. Radioactivity, a name coined by Marie Curie, became a major research field for decades. The contrasting personalities of Pierre Curie, already a first-rank physicist, and of the young Marie Curie-Sklodowska as they undertook their common work are described. It is shown how a well-chosen quantitative method and a systematic approach combining physics and chemistry led to the discovery within less than 1 year. The special role of radium and the determination of its atomic weight by Marie Curie followed by her long-term program for accumulating pure radium salts are emphasized. The first woman with a full professorship at a French University, Marie Curie created and managed the Radium Institute.

  14. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  15. Ultra-High Temperature Gratings

    Institute of Scientific and Technical Information of China (English)

    John Canning; Somnath Bandyopadhyay; Michael Stevenson; Kevin Cook

    2008-01-01

    Regenerated gratings seeded by type-Ⅰ gratings are shown to withstand temperatures beyond 1000 ℃. The method of regeneration offers a new approach to increasing temperature resistance of stable fibre Bragg and other gratings. These ultra-high temperature (UHT) gratings extend the applicability of silicate based components to high temperature applications such as monitoring of smelters and vehicle and aircraft engines to high power fibre lasers.

  16. High temperature nanoplasmonics

    Science.gov (United States)

    Alabastri, Alessandro; Toma, Andrea; Malerba, Mario; De Angelis, Francesco; Proietti Zaccaria, Remo

    2016-09-01

    Metallic nanostructures can be utilized as heat nano-sources which can find application in different areas such as photocatalysis, nanochemistry or sensor devices. Here we show how the optical response of plasmonic structures is affected by the increase of temperature. In particular we apply a temperature dependent dielectric function model to different nanoparticles finding that the optical responses are strongly dependent on shape and aspect-ratio. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature increase modifies the optical response of the particle and thus the heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting temperature but it would be not even possible to know, a priori, if the error is towards higher or lower values.

  17. Promising ferrimagnetic double perovskite oxides towards high spin polarization at high temperature

    Directory of Open Access Journals (Sweden)

    Si-Da Li

    2013-01-01

    Full Text Available We predict through our first-principles calculations that four double perovskite oxides of Bi2ABO6 (AB = FeMo, MnMo, MnOs, CrOs are half-metallic ferrimagnets. Our calculated results shows that the four optimized structures have negative formation energy, from -0.42 to -0.26 eV per formula unit, which implies that they could probably be realized. In the case of Bi2FeMoO6, the half-metallic gap and Curie temperature are predicted to reach to 0.71 eV and 650 K, respectively, which indicates that high spin polarization could be kept at high temperatures far beyond room temperature. It is believed that some of them could be synthesized soon and would prove useful for spintronic applications.

  18. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  19. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  20. Pierre Curie: the anonymous neurosurgical contributor.

    Science.gov (United States)

    Man, Karen; Sabourin, Victor M; Gandhi, Chirag D; Carmel, Peter W; Prestigiacomo, Charles J

    2015-07-01

    Pierre Curie, best known as a Nobel Laureate in Physics for his co-contributions to the field of radioactivity alongside research partner and wife Marie Curie, died suddenly in 1906 from a street accident in Paris. Tragically, his skull was crushed under the wheel of a horse-drawn carriage. This article attempts to honor the life and achievements of Pierre Curie, whose trailblazing work in radioactivity and piezoelectricity set into motion a wide range of technological developments that have culminated in the advent of numerous techniques used in neurological surgery today. These innovations include brachytherapy, Gamma Knife radiosurgery, focused ultrasound, and haptic feedback in robotic surgery.

  1. Thermal expansion of gadolinium in the vicinity of the Curie point. [270 to 320/sup 0/K, Curie point exponents

    Energy Technology Data Exchange (ETDEWEB)

    Dolejsi, D.A.

    1977-02-01

    The c- and a-axis linear thermal expansivities of high purity single crystals of gadolinium were measured in the temperature range 270/sup 0/K to 320/sup 0/K. Length changes were translated to capacitance changes with a modified normal geometry 3-terminal capacitance dilatometer. An ac 3-terminal capacitance bridge was employed to measure nominal 10 pF capacitances to a precision of 10/sup -7/ pF, which corresponds to a relative length change sensitivity of 10/sup -10/. A 25 ohm platinum resistance thermometer was used to detect the dilatometer temperature to a precision of 10 ..mu..K with an ac resistance bridge. The c-axis expansivity was negative and had a large (approximately equal to 10/sup -4/ K/sup -1/) peak at 293.435/sup 0/K, while the a-axis expansivity was positive and had a smaller (approximately equal to 10/sup -5/ K/sup -1/) peak at 293.363/sup 0/K. The values of the Curie temperatures (T/sub c/'s) and critical point exponents for the c- and a-axis crystals were obtained from fitting power law equations to the expansivities.

  2. High-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga,Fe)Sb

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Nguyen Thanh [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics, Ho Chi Minh City University of Pedagogy, 280, An Duong Vuong Street, District 5, Ho Chi Minh City 748242 (Viet Nam); Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-0033 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Anh, Le Duc [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-05-09

    We show high-temperature ferromagnetism in heavily Fe-doped ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 23% and 25%) thin films grown by low-temperature molecular beam epitaxy. Magnetic circular dichroism spectroscopy and anomalous Hall effect measurements indicate intrinsic ferromagnetism of these samples. The Curie temperature reaches 300 K and 340 K for x = 23% and 25%, respectively, which are the highest values reported so far in intrinsic III-V ferromagnetic semiconductors.

  3. The behaviour of physical quantities in thin films near the Curie point

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1982-05-01

    The Valenta model of a thin ferromagnetic film in the critical region above the Curie point has been considered. Spatial and temperature dependence for spin correlation time and magnetic susceptibility has been obtained and discussed. The results have been generalized and expressions describing the behaviour of any physical quantity in more complicated models of a thin ferromagnetic film near the Curie temperature have been given.

  4. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  5. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  6. Prototyping a new, high-temperature SQUID magnetometer system

    Science.gov (United States)

    Grappone, J. Michael; Shaw, John; Biggin, Andrew J.

    2017-04-01

    High-sensitivity Superconducting Quantum Inference Devices (SQUIDs) and μ-metal shielding have largely solved paleomagnetic noise problems. Combing the two allows successful measurements of previously unusable samples, generally sediments with very weak (primary factors have plagued previous developments: noise levels and temperature gradients. Our entire system is shielded from the environment using 4 layers of μ-metal. Our sample oven (designed for 7 mm diameter samples) sits inside a copper pipe and operates at high-frequency AC voltages. High frequency (10 kHz) AC current reduces the skin depth of radio frequency (RF) electromagnetic noise, which allows the 2 mm-thick copper shielding to reduce RF noise by ˜94%, leaving a residual field of ˜1.5 nT at the SQUID's location, 14.9 mm from the oven. A computer-controlled Eurotherm 3216 thermal controller regulates the temperature within ± 0.5 ˚ C. To reach 700 ˚ C, just above the Curie temperature of Hematite, a temperature difference of nearly 900 ˚ C between the sample and the SQUID is required. Since dipole fields decay rapidly with distance (∝ r -3 ), the equipment is designed to handle temperature gradients above 500 ˚ C cm-1 for maximum sensitivity using a passive double-vacuum separation system. All the parts used are commercially available to help reduce the operating costs and increase versatility.

  7. Spin dynamics in a Curie-switch.

    Science.gov (United States)

    Kravets, A F; Tovstolytkin, A I; Dzhezherya, Yu I; Polishchuk, D M; Kozak, I M; Korenivski, V

    2015-11-11

    Ferromagnetic resonance properties of F1/f/F2/AF multilayers, where weakly ferromagnetic spacer f is sandwiched between strongly ferromagnetic layers F1 and F2, with F1 being magnetically soft and F2-magnetically hard due to exchange pinning to antiferromagnetic layer AF, are investigated. Spacer-mediated exchange coupling is shown to strongly affect the resonance fields of both F1 and F2 layers. Our theoretical calculations as well as measurements show that the key magnetic parameters of the spacer, which govern the ferromagnetic resonance in F1/f/F2/AF, are the magnetic exchange length (Λ), effective saturation magnetization at T  =  0 (m0) and effective Curie temperature (T(C)(eff)). The values of these key parameters are deduced from the experimental data for multilayers with f  =  Ni(x)Cu(100-x), for the key ranges in the Ni-concentration (x = 54 ÷ 70 at. %) and spacer thickness (d = 3 ÷ 6 nm). The results obtained provide a deeper insight into thermally-controlled spin precession and switching in magnetic nanostructures, with potential applications in spin-based oscillators and memory devices.

  8. High Temperature Electrostrictive Ceramics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  9. Comparison of the impact on life quality of boosts in iodine-125 and high rate iridium-192 curie-therapy associated with a conformational radiotherapy in prostate cancers of stage II or III according to Amico; Comparaison de l'impact sur la qualite de vie des boosts par curietherapie par iode-125 et par iridium-192 de haut debit associee a une radiotherapie conformationnelle dans les cancers de la prostate de stade II ou III selon d'Amico

    Energy Technology Data Exchange (ETDEWEB)

    Guerif, S.; Chung, C.; Lavigne, B.; Boissonnade, O.; Lavigne, B.; Godon, J.B.; Bolan, G.; Fontaine, G.; Bensadoun, R.J. [Pole regional de cancerologie, Poitiers (France)

    2011-10-15

    As there is no consensus about the curie-therapy boost modality to be chosen in the case of prostate cancers of stage II or III according to Amico, and as two modalities are available (iodine-125 curie-therapy, and high dose rate curie-therapy), the authors report a comparison between these two modalities in terms of impact on life quality during the first year. They indicate the treatment procedures and discuss the results obtained in terms of urinary toxicity, an the influence of dose escalation. Life quality has also been assessed by questionnaires. Short communication

  10. High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x

    Science.gov (United States)

    Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.

    2017-02-01

    The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x  =  0.5  +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx  ≈  0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.

  11. Joliot-Curie School of Nuclear Physics, 1997; Ecole Joliot-Curie de Physique Nucleaire, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Abgrall, Y. [L`Institut National de Physique Nucleaire et de Physique des Particules du CNRS (India2P3), 75 - Paris (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    This document contains the lectures of the Joliot-Curie International School of Nuclear Physics held at Maubuisson, France on 8-13 September 1997. The following lectures of nuclear interest were given: The N-body problem (relativistic and non-relativistic approaches); The shell model (towards a unified of the nuclear structure); Pairing correlations in extreme conditions; Collective excitations in nuclei; Exotic nuclei (production, properties and specificities); Exotic nuclei (halos); Super and hyper deformation (from discrete to continuum, from EUROGAM to EUROBALL); and The spectroscopy of fission fragments. Important new facts are reported and discussed theoretically, concerning the nuclei in high excitation and high states and of the nuclei far off stability. Important technical achievements are reported among which the production of radioactive beams, sophisticated multi-detectors as well as significant advances in the nuclear theoretical methods. The double goal of training of young researchers and of permanent formation and information of the older ones seems to have been reached

  12. Simulations of magnetic hysteresis loops at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Plumer, M. L.; Whitehead, J. P.; Fal, T. J. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland and Labrador A1B 3X7 (Canada); Ek, J. van [Western Digital Corporation, San Jose, California 94588 (United States); Mercer, J. I. [Department of Computer Science, Memorial University of Newfoundland, St. John' s, Newfoundland and Labrador A1B 3X7 (Canada)

    2014-09-28

    The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700 Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680 K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300 K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

  13. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  14. High Temperature Bell Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Research Council (NRC) has identified the need for motors and actuators that can operate in extreme high and low temperature environments as a technical...

  15. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  16. Gallium phosphide high temperature diodes

    Science.gov (United States)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  17. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  18. Temperature optimization of high con

    Directory of Open Access Journals (Sweden)

    M. Sabry

    2016-06-01

    Full Text Available Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  19. Fusion neutron irradiation of Ni(Si) alloys at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.S.; Guinan, M.W.; Hahn, P.A.

    1987-09-01

    Two Ni-4% Si alloys, with different cold work levels, are irradiated with 14 MeV fusion neutrons at 623 K, and their Curie temperatures are monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2 MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14 MeV fusion neutrons is only 6 to 7% of that for an identical alloy irradiated by 2 MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6 to 7% for the fusion neutron irradiated sample. 17 refs., 4 figs., 1 tab.

  20. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  1. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  2. Women who Worked with Marie Curie.

    Science.gov (United States)

    Pigeard-Micault, Natalie

    2015-06-01

    Marie Curie directed a research laboratory for 28 years. Between 1906 and 1934, forty five women worked under her guidance. Some were, and are, well-known in their own countries as their first woman full professor such as Ellen Gleditsch or Margaret von Wrangel, but for twenty eight of them, who were often French, nothing has ever been written. The strong presence of women in Marie Curie's laboratory has often been highlighted and has been considered as an exception, and the result of deliberate choice. Of course, these women did not choose this workplace by accident. They knew its director was a woman, a laureate of one, and after 1911, two Nobel Prizes, who was leading a well-equipped laboratory with an important radioactive source. But how did Marie Curie selected her collaborators among the many applications she received? Was her choice influenced by gender? A prosopographical research based on genealogical researches and new sources explains this presence contextually and sheds light on several questions : where did these women come from, what were their social and geographic origins, did they occupy any specific cultural or technical area inside Curie's lab, what future did they have after the laboratory? Through their lives, we can question the existence, or not, of a one profile of the female researcher in scientific areas in France.

  3. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  4. High-Temperature Optical Sensor

    Science.gov (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  5. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  6. High temperature polymer matrix composites

    Science.gov (United States)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  7. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  8. The contribution of women to radiobiology: Marie Curie and beyond.

    Science.gov (United States)

    Gasinska, Anna

    2016-01-01

    Marie Sklodowska-Curie, an extraordinary woman, a Polish scientist who lived and worked in France, led to the development of nuclear energy and the treatment of cancer. She was the laureate of two Nobel Prizes, the first woman in Europe who obtained the degree of Doctor of Science and opened the way for women to enter fields which had been previously reserved for men only. As a result of her determination and her love of freedom, she has become an icon for many female scientists active in radiation sciences. They are successors of Maria Curie and without the results of their work, improvement in radiation oncology will not be possible. Many of them shared some elements of Maria Curie's biography, like high ethical and moral standards, passionate dedication to work, strong family values, and scientific collaboration with their husbands. The significance of Tikvah Alper, Alma Howard, Shirley Hornsey, Juliana Denekamp, Helen Evans, Eleanor Blakely, Elizabeth L. Travis, Fiona Stewart, Andree Dutreix, Catharine West, Peggy Olive, Ingela Turesson, Penny Jeggo, Irena Szumiel, Eleonor Blakely, Sara Rockwell and Carmel Mothersill contribution to radiation oncology is presented. All the above mentioned ladies made significant contribution to the development of radiotherapy (RT) and more efficient cancer treatment. Due to their studies, new schedules of RT and new types of ionizing radiation have been applied, lowering the incidence of normal tissue toxicity. Their achievements herald a future of personalized medicine.

  9. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan

    2016-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  10. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan

    2017-01-01

    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  11. Nonlinear plasmonics at high temperatures

    Science.gov (United States)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  12. High-temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    A.K. Gogia

    2005-04-01

    Full Text Available The development of high-temperature titanium alloys has contributed significantly to the spectacular progress in thrust-to-weight ratio of the aero gas turbines. This paper presents anoverview on the development of high-temperature titanium alloys used in aero engines and potential futuristic materials based on titanium aluminides and composites. The role of alloychemistry, processing, and microstructure, in determining the mechanical properties of titanium alloys is discussed. While phase equilibria and microstructural stability consideration haverestricted the use of conventional titanium alloys up to about 600 "C, alloys based on TiPl (or,, E,AINb (0, TiAl (y, and titaniumltitanium aluminides-based composites offer a possibility ofquantum jump in the temperature capability of titanium alloys.

  13. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  14. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  15. High temperature, high power piezoelectric composite transducers.

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  16. High Temperature, High Power Piezoelectric Composite Transducers

    Directory of Open Access Journals (Sweden)

    Hyeong Jae Lee

    2014-08-01

    Full Text Available Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  17. High Temperature Sorbents for Oxygen

    Science.gov (United States)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  18. Marie Curie: In the Laboratory and on the Battlefield

    Science.gov (United States)

    Badash, Lawrence

    2003-07-01

    This year is the centennial of the Nobel Prize in Physics shared by Henri Becquerel and the Curies for their pioneering work on radioactivity. But Marie Curie's contribution to the medical use of x rays is not widely known.

  19. High-temperature beryllium embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Fabritsiev, S.A. [D.V. Efremov Scientific Research Institute, 189631 St. Petersburg (Russian Federation); Bagautdinov, R.M. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation); Goncharenko, Yu.D. [Scientific Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1996-10-01

    The neutron irradiation effect on the mechanical properties, swelling and fracture surface structure of various beryllium grades was studied in the BOR-60 reactor at 340 to 350 C up to a fluence of 7.2 x 10{sup 21} n/cm{sup 2}. At a mechanical testing temperature of 400 C there was observed a strong anisotropy of plastic beryllium deformation depending on the direction of sample cutting relative to the pressing direction. An increase of the testing temperature up to 700 C resulted in an abrupt embrittlement of all irradiated samples. In the most part of the surface structure the intercrystallite fracture along the grain boundaries was covered entirely with large pores, 1 to 4 {mu}m in size. It was suggested that the increased rate of pore formation along the grain boundaries resulted from a high-temperature embrittlement under irradiation. (orig.).

  20. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  1. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  2. Motor for High Temperature Applications

    Science.gov (United States)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  3. High temperature catalytic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  4. Very High Temperature Sound Absorption Coating Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  5. Curie Transition of NC Nickel by Mechanical Spectroscopy and Magnetization Study

    Institute of Scientific and Technical Information of China (English)

    LI Ping-Yun; CAO Zhen-Hua; ZHANG Xi-Yan; WU Xiao-Lei; HUANG Yi-Neng; MENG Xiang-Kang

    2009-01-01

    Mechanical spectroscopy measurement is performed to study the internal friction of nanocrystalline (NC) nickel with an average grain size of 23 nm from room temperature to 610 K.An internal friction peak is observed at about 550 K,which corresponds to the Curie transition process of the NC nickel according to the result of magnetization test.Moreover,the fact that the Curie temperature of NC nickel is lower than that of coarse-grained nickel is explained by an analytical model based on the weakening of cohesive energy.

  6. Relationship between Curie isotherm surface and Moho discontinuity in the Arabian shield, Saudi Arabia

    Science.gov (United States)

    Aboud, Essam; Alotaibi, Abdulrahman M.; Saud, Ramzi

    2016-10-01

    The Arabian shield is a Precambrian complex of igneous and metamorphic rocks located approximately one-third of the way across the western Arabian Peninsula, with uncommon exposures along the Red Sea coast. We used aeromagnetic data acquired by others over the past several decades to estimate the depth to the Curie temperature isotherm throughout this region. Our goal was to further understand the lithospheric structure, thermal activity, and seismicity to assist in geothermal exploration. We also compared the Curie temperature isotherm with the crustal thickness to investigate the possibility that mantle rocks are magnetic in some parts of the Arabian shield. Depths to the Curie isotherm were estimated by dividing the regional aeromagnetic grid into 26 overlapping windows. Each window was then used to estimate the shape of the power spectrum. The windows had dimensions of 250 × 250 km to allow investigation of depths as deep as 50 km. The results show the presence of a Curie isotherm at a depth of 10-20 km near the Red Sea, increasing to 35-45 km in the interior of the Arabian shield. The Curie isotherm generally lies above the Moho in this region but deepens into the mantle in some locations, notably beneath the Asir Terrane.

  7. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be optim

  8. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  9. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  10. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  11. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  12. Marie Curie's contribution to Medical Physics.

    Science.gov (United States)

    Jean-Claude, Rosenwald; Nüsslin, Fridtjof

    2013-09-01

    On occasion of its 50th anniversary, the International Organization for Medical Physics (IOMP) from now on is going to celebrate annually an International Day of Medical Physics for which the 7th November, the birthday of Marie Sklodowska Curie, a most exceptional character in science at all and a pioneer of medical physics, has been chosen. This article briefly outlines her outstanding personality, sketches her fundamental discovery of radioactivity and emphasizes the impact of her various achievements on the development of medical physics at large.

  13. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  14. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  15. Near-Curie magnetic anomaly at the Ni/C interface observed by Electron Holography

    DEFF Research Database (Denmark)

    Ferrari, Loris; Matteucci, Giorgio; Schofield, Marvin A

    2010-01-01

    We analyze with electron holography carried out in a transmission electron microscope the near-Curie behavior of magnetism at the edge of a Nickel thin film coated with Carbon. In-situ experiments with finely controlled variations of the sample temperature reveal an anomaly in the ferromagnetic t...

  16. On the dielectric curie-weiss law and diffuse phase transition in ferroelectrics

    NARCIS (Netherlands)

    Jonker, G.H.

    1983-01-01

    A simple derivation of parabolic 1/εr-T curves is obtained by reconsidering the origin of the dielectric Curie-Weiss law. The only assumption needed is the introduction of a non-linear temperature dependance of the macroscopic dielectric polarization in the macroscopic Clausius-Mossotti equation

  17. High temperature control rod assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vollman, Russell E. (Solana Beach, CA)

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  18. Ultrasonic and elastic moduli evidence for Curie temperature (T{sub c}) in Sm{sub 1-x}Sr{sub x}MnO{sub 3} perovskite magnetic materials at x = 0.25, 0.30, 0.37, 0.40 and 0.44

    Energy Technology Data Exchange (ETDEWEB)

    Sankarrajan, S. [Department of Physics, National Engineering College, Kovilpatti 628503, Tamilnadu (India); Aravindan, S.; Rajkumar, M. [Centre for Nano Science and Technology, K.S. Rangasamy College of Technology, K S R Kalvi Nagar, Tiruchengode 637215, Tamilnadu (India); Rajendran, V., E-mail: veerajendran@gmail.co [Centre for Nano Science and Technology, K.S. Rangasamy College of Technology, K S R Kalvi Nagar, Tiruchengode 637215, Tamilnadu (India)

    2009-10-19

    Sm{sub 1-x}Sr{sub x}MnO{sub 3} perovskite manganite materials with different compositions (x = 0.25, 0.30, 0.37, 0.40 and 0.44) have been prepared using solid state reaction technique. On-line ultrasonic velocities and attenuation have been measured over a wide range of temperatures from 120 to 298 K employing through transmission method operated at a fundamental frequency of 5 MHz. In all compositions, Curie temperature (T{sub c}) and Jahn-Teller temperature (T{sub JT}) have been discussed in light of observed interesting results on temperature dependence of ultrasonic parameters. Phase transition from ferromagnetic to canted ferromagnetic state has been observed at T{sub c}. The increase in the magnitude of maximum velocities with change in Sr content at T{sub c} indicates the strength of linear magnetostriction effect. The observed results reveal that T{sub c} value decreases with an increase in Sr content. The existence of Jahn-Teller transition due to electron-phonon interaction and large lattice distortion which is due to the double exchange interactions have been demonstrated from the observed ultrasonic parameters as a function of temperature.

  19. High temperature autoclave vacuum seals

    Science.gov (United States)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  20. High temperature performance of sputter-deposited piezoelectric aluminum nitride thin films

    Science.gov (United States)

    Gillinger, M.; Schneider, M.; Bittner, A.; Nicolay, P.; Schmid, U.

    2015-05-01

    Aluminum nitride (AlN) is a promising material for sensor applications in harsh environments such as turbine exhausts or thermal power plants due to its piezoelectric properties, good thermal match to silicon and high temperature stability. Typically, the usage of piezoelectric materials in high temperature is limited by the Curie-temperature, the increase of the leakage current as well as by enhanced diffusion effects in the materials. In order to exploit the high temperature potential of AlN thin films, post deposition annealing experiments up to 1000°C in both oxygen and nitrogen gas atmospheres for 2 h were performed. X-ray diffraction measurements indicate that the thin films are chemically stable in a pure oxygen atmosphere for 2 h at annealing temperatures of up to 900°C. After a 2 h annealing step at 1000°C in pure oxygen. However, a 100 nm thin AlN film is completely oxidized. In contrast, the layer is stable up to 1000°C in pure nitrogen atmosphere. The surface topology changes significantly at annealing temperatures above 800°C independent of annealing atmosphere. The surface roughness is increased by about one order of magnitude compared to the "as deposited" state. This is predominantly attributed to recrystallization processes occurring during high temperature loading. Up to an annealing temperature of 700°C, a Poole-Frenkel conduction mechanism dominates the leakage current characteristics. Above, a mixture of different leakage current mechanisms is observed.

  1. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  2. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    Science.gov (United States)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  3. High-temperature thermocouples and related methods

    Science.gov (United States)

    Rempe, Joy L.; Knudson, Darrell L.; Condie, Keith G.; Wilkins, S. Curt

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  4. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  5. High temperature suppression of dioxins.

    Science.gov (United States)

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants.

  6. High temperature power electronics for space

    Science.gov (United States)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  7. The life and legacy of Marie Curie.

    Science.gov (United States)

    Rockwell, Sara

    2003-01-01

    Marie Curie was a remarkable woman whose discoveries broke new ground in physics and chemistry and also opened the door for advances in engineering, biology, and medicine. She broke new ground for women in science: she was, for example, the first woman to receive a doctor of science degree in France, the first woman to win Nobel Prize, the first woman to lecture at the Sorbonne, the first person to win two Nobel Prizes, and the first Nobel Laureate whose child also won a Nobel Prize. Her life offers insights into the changing role of women in science and academia over the past century. It also offers examples of many ways in which scientists can, and should, work to improve the educational programs and career opportunities available to those who follow in their footsteps.

  8. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  9. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  10. High-temperature intrinsic quantum anomalous Hall effect in rare Earth monohalide

    Science.gov (United States)

    Wu, Menghao

    2017-06-01

    Although the quantum anomalous Hall effect was verified in 2013, presently its experimental realization is limited to doped magnetic topological insulators under extremely low temperature, while its theoretical existence is limited within doped or functionalized materials, or heterostructures. Based on first-principles calculations, LaCl and LaBr monolayer and bulk forms, which were fabricated in 1980s (Mattausch et al 1980 Z. Anorg. Allg. Chem. 466 7-22 Araujo and Corbett 1981 Inorg. Chem. 20 3082-6), are both revealed to exhibit intrinsic 2D/3D quantum anomalous Hall effect with energy gaps up to 36 meV. These simple binary compounds are also revealed to be ferromagnets with high Curie temperature, which guarantees that the quantum anomalous Hall effect survives at ambient condictions. Besides holding promise for low-dissipation electronics and quantum computing, this proposal realizes 3D quantum anomalous Hall effect.

  11. Impact of curie-therapy timing in the treatment of cervical cancer; Impact du timing de la curietherapie dans le traitement du cancer du col uterin

    Energy Technology Data Exchange (ETDEWEB)

    Kochbati, L.; Bouzid, N.; Saidi, I.; Nasr, C.; Messai, T.; Hentati, D.; Gargouri, W.; Besbes, M.; Maalej, M. [Service de radiotherapie, institut Salah-Azaiz, Tunis (Tunisia)

    2011-10-15

    Curie-therapy conventionally comes before surgery in the treatment of cervical cancer, either alone or after a concomitant chemotherapy. The authors report a study of the impact of a reverse sequence (surgery before curie-therapy) on the exeresis quality and on the evolution of operable tumours. Among women treated between 2004 and 2009, 40 have been identified who had surgery before curie-therapy. Ages, tumour stages, average doses, and treatment procedures are discussed. The notably high rate of vaginal sections could be reduced or avoided by using the conventional protocol (curie-therapy before surgery). Short communication

  12. High-Temperature Magnetic Bearings for Gas Turbine Engines

    Science.gov (United States)

    1996-01-01

    Magnetic bearings are the subject of a new NASA Lewis Research Center and U.S. Army thrust with significant industry participation, and coordination with other Government agencies. The NASA/Army emphasis is on high-temperature applications for future gas turbine engines. Magnetic bearings could increase the reliability and reduce the weight of these engines by eliminating the lubrication system. They could also increase the DN (diameter of the bearing times rpm) limit on engine speed and allow active vibration cancellation systems to be used--resulting in a more efficient, "more electric" engine. Finally, the Integrated High-Performance Turbine Engine Technology (IHPTET) Program, a joint Department of Defense/industry program, identified a need for a hightemperature (as high as 1200 F) magnetic bearing that could be demonstrated in a phase III engine. This magnetic bearing is similar to an electric motor. It has a laminated rotor and stator made of cobalt steel. Wound around the stator are a series of electrical wire coils that form a series of electric magnets around the circumference. The magnets exert a force on the rotor. A probe senses the position of the rotor, and a feedback controller keeps it in the center of the cavity. The engine rotor, bearings, and case form a flexible structure that contains a large number of modes. The bearing feedback controller, which could cause some of these modes to become unstable, could be adapted to varying flight conditions to minimize seal clearances and monitor the health of the system. Cobalt steel has a curie point greater than 1700 F, and copper wire has a melting point beyond that. Therefore, practical limitations associated with the maximum magnetic field strength in the cobalt steel and the stress in the rotating components limit the temperature to about 1200 F. The objective of this effort is to determine the limits in temperature and speed of a magnetic bearing operating in an engine. Our approach is to use our in

  13. [Maria Skłodowska-Curie and Piotr Curie an epoch-makingin year 1898].

    Science.gov (United States)

    Wielogórski, Zbigniew

    2012-01-01

    For many reasons the year 1898 was unusual for Maria Skłodowska-Curie and her husband. After defining the subject of the doctoral thesis and choosing Henri Becqerel as thesis supervisor, Maria started intensive experimental work. In the allotted room called storeroom, in conditions that were far too inadequate, they managed to put up a unique measuring equipment composed of instruments whose originator was Pierre Curie. In the ionization chamber and in the piezoelectric quartz charges formed, whose mutual neutralization was shown by the quadrant electrometer. Ionization current, which was measured quantitatively, was proportional to the radiation of the sample. Studying many elements, their compounds and minerals enabled Maria to state that uranium is not the only element endowed with the power of radiation; the second one turned out to be thorium. Anomaly detected in the radiation of uranium minerals made it possible for Maria to draw an extremely important conclusion: radioactive uranium and thorium are not the only elements endowed with such an attribute. Pitchblende, which was studied by the Curie couple, had to contain also other radioactive substances. Gustave Bémont also participated in the chemical analysis of the uranium ore and it is worth reminding that he was involved in the discovery of polonium and uranium. The phenomenon of radioactivity couldn't have been explained if it was not for the sources of strong radioactivity. Those sources undoubtedly could have been the discovered elements but their scanty content in the uranium ore made their isolation very difficult and laborious. Access to industrial remains after procession of pitchblende from Jachymov (Sankt Joachimstahl), obtained owing to the mediation of Eduard Suess, provided the source of this raw material. From it, in a shack also called le hangar, the Curie couple isolated the first samples of the radium salt. This element, later extracted by discoverers on a grand scale and handed over in a

  14. Marie and Pierre Curie and radium: history, mystery, and discovery.

    Science.gov (United States)

    Mould, R F

    1999-09-01

    Commencing with Marie Curie's early life in Poland and the discovery of radium in the rue l'Homond "shed" in Paris in 1898, this paper includes some little known facts. It ends with some unusual uses of and claims for radium, and finally, because Medical Physics is an American journal, details are included of Marie Curie's two visits to the USA.

  15. Thermodynamics of High Temperature Plasmas

    Directory of Open Access Journals (Sweden)

    Ettore Minardi

    2009-03-01

    Full Text Available In this work we discuss how and to what extent the thermodynamic concepts and the thermodynamic formalism can be extended to the description of high temperature states of the plasma not necessarily associated with a Boltzmann distribution and with thermal equilibrium.The discussion is based on the “magnetic or electrostatic entropy concept”, an interpretative and predictive tool based on probability and information, defined in a suitably coarse-grained possibility space of all current density or of all electric charge density distributions under testable constraints, and whose variation properties are proven to be related under certain conditions to the equilibrium and the stability of the system. In the case of magnetic equilibrium the potentiality of the magnetic entropy concept is illustrated by comparing the predictions of the current density and pressure profiles with the observations in different tokamak machines and different tokamak regimes, as well as by showing how the equilibrium and the stability in devices as different as the reversed field pinch or the magnetic well are described by the variation properties of the same entropy functional applied to the different situations. In fact it emerges that the maximum of the entropy can be seen in these different cases as an optimization constraint for the minimum of the magnetic energy. The application of the entropy concept to the electrostatic processes shows in particular that the so-called reactive instabilities (non-dissipative, non-resonant instabilities with a marginal point admit a neighboring state with higher entropy and are therefore of special relevance from the point of view of the physical evolution of the system. In this case the thermodynamic formalism allows the introduction of the concept of “thermodynamic fluctuations” of the macroscopic charge density and provides a method for the calculation of the “thermodynamic” fluctuation levels both on the stable as

  16. High temperature superconducting fault current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  17. Theory of laser-induced demagnetization at high temperatures

    KAUST Repository

    Manchon, Aurelien

    2012-02-17

    Laser-induced demagnetization is theoretically studied by explicitly taking into account interactions among electrons, spins, and lattice. Assuming that the demagnetization processes take place during the thermalization of the subsystems, the temperature dynamics is given by the energy transfer between the thermalized interacting baths. These energy transfers are accounted for explicitly through electron-magnon and electron-phonon interactions, which govern the demagnetization time scale. By properly treating the spin system in a self-consistent random phase approximation, we derive magnetization dynamic equations for a broad range of temperature. The dependence of demagnetization on the temperature and pumping laser intensity is calculated in detail. In particular, we show several salient features for understanding magnetization dynamics near the Curie temperature. While the critical slowdown in dynamics occurs, we find that an external magnetic field can restore the fast dynamics. We discuss the implication of the fast dynamics in the application of heat-assisted magnetic recording.

  18. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    the various physical and chemical factors that may affect freshwater snails. However ... order to assess the effect of temperature on the organism, it is essential to ..... of snails by parasites is of cardinal importance to shed light on the population ...

  19. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  20. Magnetic, structural, and transport properties at very high temperature in manganites

    Energy Technology Data Exchange (ETDEWEB)

    Nima Ramirez, Fabian Enrique; Furlan Ferreira, Fabio; Andrade Alves, Wendel; Queiruga Rey, Jose Fernando [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre, CEP 09090-400, SP (Brazil); Souza, Jose Antonio, E-mail: joseantonio.souza@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre, CEP 09090-400, SP (Brazil)

    2012-07-15

    Magnetic, structural, and electric transport measurements at high temperatures were carried out on La{sub 1-x}Ca{sub x}MnO{sub 3}; x=0.20, 0.25, 0.30, 0.34, 0.40, and 0.45. All samples show a first-order structural phase transition from orthorhombic Pnma to rhombohedral R3{sup Macron }c space group at T{sub R-O}. Magnetic susceptibility measurements show that the Curie-Weiss law is strictly obeyed in the rhombohedral phase as opposed to the orthorhombic phase where the effective magnetic moment has a temperature dependence. The electrical resistivity is well described by the small polaron hopping mechanism in the samples up to x=0.34. As the charge carriers are introduced into the system (x=0.40 and 0.45), this mechanism of hopping ceases to be valid. The value of Grueneisen parameter obtained through analysis of high-resolution X-ray powder diffraction as a function of temperature increases abruptly for the sample with x=0.40. This is consistent with an increase in bending and stretchinglike frequency modes observed by Raman spectroscopy. - Highlights: Black-Right-Pointing-Pointer Curie-Weiss law is strictly obeyed in the R3c phase as opposed in the Pnma one. Black-Right-Pointing-Pointer The small polaron hopping ceases to be valid as charge carriers increases. Black-Right-Pointing-Pointer The Gruneisen parameter obtained through HR X-ray diffraction increases abruptly.

  1. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    and oxygen with a new type of alkaline electrolysis cell at high temperatures and pressures. To perform measurements under high pressure and at elevated temperatures it was necessary to build a measurement system around an autoclave which could stand high temperatures up to 250 °C and pressures up to 200 bar...... as well as extremely caustic environments. Based on a literature study to identify resistant materials for these conditions, Inconel 600 was selected among the metals which are available for autoclave construction. An initial single atmosphere high temperature and pressure measurement setup was build...... comprising this autoclave. A second high temperature and pressure measurement setup was build based on experiences from the first setup in order to perform automatized measurements. The conductivity of aqueous KOH at elevated temperatures and high concentrations was investigated using the van der Pauw method...

  2. Maria Sklodowska-Curie - scientist, friend, manager

    Science.gov (United States)

    Slavchev, A.

    2009-01-01

    Great names in science represent an inexhaustible source and richness of inspiration, satisfaction and consolation, a moving and victorious force. Throughout her exemplifying life, Maria Sklodowska remained modest but with a keen sense of humor, of an outstanding style, a mine of knowledge and experience, of innovative ideas and a rich inner life. Full of love, of passion to give and to share, of natural optimism, mixed with a light melancholy, so typical for sages. She vehemently defended the love of scientific research, of the spirit of adventure and entrepreneurship and fought for international culture, for the protection of personality and talent. Maria Sklodowska left her passion to science, her dedication to work including education and training of young people, her passionate adherence to her family, her belief in her friends, her pure and profound humanity and warmth! The paper should be a homage to her, an appreciation of her work over the years, but not less a correspondence, a conversation with her! On the other hand, the present solemn occasion resuscitates the personalities of Maria and Pierre Curie and their work, in particular of Maria Sklodowska in her own native land! In this manner, it truly contributes to her immortality!

  3. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  4. High Temperature Heterojunction Bipolar Transistors

    Science.gov (United States)

    1994-04-15

    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  5. A high temperature fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, A.; Nakai, M.; Ninomiya, Y.

    1982-12-21

    A solid electrolyte which conducts electricity with heating by oxygen ions and operates at a temperature of 1,000C is used in the element. The cathode, besides the ionic conductivity in oxygen, has an electron conductivity. The anode has electron conductivity. Substances such as Bi203, into which oxides of alkaline earth metals are added, are used for making the cathode. The electrolyte consists of ZrO2 and Y2O3, to which CaO is added. WC, to which an H2 type fuel is fed, serves as the anode. The element has a long service life.

  6. Ultrasonic Sensors for High Temperature Applications

    Science.gov (United States)

    Tittmann, Bernhard; Aslan, Mustafa

    1999-05-01

    Many processes take place under conditions other than ambient, and chief among these is high temperature. Examples of high temperature industrial processes are resin transfer molding, molten metal infiltration and rheocasting of composite metals alloys. The interaction of waves with viscous fluids is an additional complication adding to an already complicated problem of operating a sensor at high temperature for extended periods of time. This report attempts to provide an insight into the current state of the art of sensor techniques for in-situ high temperature monitoring.

  7. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  8. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  9. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  10. Alloys developed for high temperature applications

    Science.gov (United States)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  11. Piezoelectric properties of low loss and high Curie temperature (Bi, La)FeO_3-Pb(Ti, Mn)O_3 ceramics with Mn doping

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·...

  12. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  13. High temperature skin friction measurement

    Science.gov (United States)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  14. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  15. Experimental (155 K) and predicted (151 K) Curie temperature (T[sub c]) of K[sub 2]ZnBr[sub 4]: structural confirmation of ferroelectric state below T[sub c

    Energy Technology Data Exchange (ETDEWEB)

    Abrahams, S.C. (Physics Dept., Southern Oregon State Coll., Ashland, OR (United States))

    1994-04-01

    The temperature T[sub c] at which K[sub 2]ZnBr[sub 4] is predicted to transform from the paraelectric to the ferroelectric phase is 151 (19) K, based on the crystal structure determinations at 291 and 144 K by Fabry, Breczewski, Zuniga and Arnaiz and the Abrahams-Kurtz-Jamieson relationship. A dielectric and heat-capacity anomaly in this material at 155 K has been reported elsewhere. The locations reported for the ZnBr[sup 2-][sub 4] and K[sup +] ions fulfill the requirements of mirror plane symmetry above T[sub c]; ionic displacements along the polar direction that approach but do not exceed 0.1 A and that violate the mirror symmetry on cooling through T[sub c] form the basis of the prediction and satisfy the structural criteria for ferroelectricity in the phase below the transition. (orig.).

  16. High-Temperature Passive Power Electronics

    Science.gov (United States)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  17. Curie depth vs. flat subduction in Central Mexico

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad

    2010-05-01

    Forearcs located above active subduction zones are generally characterized by low heat flow values, and this is considered a consequence of the subduction of cold slabs beneath continental plates. In the case of Central Mexico, the geometry of the subducting Cocos plate is quite unusual, the slab runs flat for several hundreds of kilometers before plunging into the asthenosphere. This particular geometry has a strong influence on the temperature distribution of the overriding plate where very low heatflow values are recorded (15-30 mW/m2). In this paper we use the aeromagnetic map of Mexico in order to infer the maximum depth of magnetic source, regarded as Curie depth and corresponding to a temperature of 575-600C°. Our spectral analysis revealed the existence of a deep magnetic source (30-40 km). We compare these results with the thermal structure associated with flat slab subduction in the area. We obtained a good agreement between the two estimates and we conclude that flat slab subduction in Central Mexico controls the maximum depth of magnetic sources in the overriding plate.

  18. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  19. High Temperature Rechargeable Battery Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  20. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  1. High Temperature Solid State Lithium Battery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  2. Lightweight, High-Temperature Radiator Panels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  3. Ceramic fibres for high temperature insulation

    Energy Technology Data Exchange (ETDEWEB)

    Padgett, G.C.

    1986-03-01

    Traditionally, refractory linings for high temperature plant and furnaces have comprised either brick or some form of concrete. In recent years, energy conservation has encouraged the greater use of high temperature insulation which is also available in either brick or a lightweight concrete. As an alternative, insulation can also be achieved using fibrous products or fibres combining low heat transfer with low heat capacity.

  4. Properties of highly crystalline NiO and Ni nanoparticles prepared by high-temperature oxidation and reduction

    Science.gov (United States)

    Feygenson, Mikhail; Kou, Angela; Kreno, Lauren E.; Tiano, Amanda L.; Patete, Jonathan M.; Zhang, Fen; Kim, Moo Sung; Solovyov, Vyacheslav; Wong, Stanislaus S.; Aronson, Meigan C.

    2010-01-01

    We describe here the use of high-temperature oxidation and reduction to produce highly crystalline nanoparticles of Ni and NiO. Starting with an amorphous Ni powder, we demonstrate that oxidation at 900°C produces faceted NiO nanocrystals with sizes ranging from 20 to 60 nm. High-resolution transmission electron microscopy measurements indicate near-perfect atomic order, truncated by (200) surfaces. Magnetization measurements reveal that the Néel temperature of these NiO nanoparticles is 480 K, substantially reduced by finite-size effects from the bulk value of 523 K. The magnetization of these faceted NiO nanoparticles does not saturate in fields as large as 14 T while a loop offset is observed which increases from 1000 Oe at 300 K to its maximum value of 3500 Oe at 50 K. We have used high-temperature reduction to transform the faceted NiO nanoparticles into highly ordered Ni nanoparticles, with a Curie temperature of 720 K and blocking temperatures in excess of 350 K. Subsequent efforts to reoxidize these Ni nanoparticles into the core-shell morphology found that the Ni nanoparticles are much more resistant to oxidation than the original Ni powder, perhaps due to the relative crystalline perfection of the former. At 800°C , an unusual surface roughening and subsequent instability was observed, where 50-nm-diameter NiO rods grow from the Ni surfaces. We have demonstrated that high-temperature oxidation and reduction in Ni and NiO are both reversible to some extent and are highly effective for creating the highly crystalline nanomaterials required for applications such as exchange-bias devices.

  5. Properties of Highly Crystalline NiO and Ni Nanoparticles Prepared by High-temperature Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Feygenson, M.; Kou, A.; Kreno, L.E.; Tiano, A.L.; Patete, J.M.; Zhang, F.; Kim, M.S.; Solovyov, V.; Wong, S.S.; Aronson, M.C.

    2010-01-26

    We describe here the use of high-temperature oxidation and reduction to produce highly crystalline nanoparticles of Ni and NiO. Starting with an amorphous Ni powder, we demonstrate that oxidation at 900 C produces faceted NiO nanocrystals with sizes ranging from 20 to 60 nm. High-resolution transmission electron microscopy measurements indicate near-perfect atomic order, truncated by (200) surfaces. Magnetization measurements reveal that the Neel temperature of these NiO nanoparticles is 480 K, substantially reduced by finite-size effects from the bulk value of 523 K. The magnetization of these faceted NiO nanoparticles does not saturate in fields as large as 14 T while a loop offset is observed which increases from 1000 Oe at 300 K to its maximum value of 3500 Oe at 50 K. We have used high-temperature reduction to transform the faceted NiO nanoparticles into highly ordered Ni nanoparticles, with a Curie temperature of 720 K and blocking temperatures in excess of 350 K. Subsequent efforts to reoxidize these Ni nanoparticles into the core-shell morphology found that the Ni nanoparticles are much more resistant to oxidation than the original Ni powder, perhaps due to the relative crystalline perfection of the former. At 800 C, an unusual surface roughening and subsequent instability was observed, where 50-nm-diameter NiO rods grow from the Ni surfaces. We have demonstrated that high-temperature oxidation and reduction in Ni and NiO are both reversible to some extent and are highly effective for creating the highly crystalline nanomaterials required for applications such as exchange-bias devices.

  6. A bust of Marie Sklodowska Curie at CERN

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The Polish Deputy Minister of Energy and Nuclear Power, J. Felicki, presented the Directors General with a bust of Mme Marie Sklodowska Curie on behalf of physicists of Poland (CERN Courier 19 (1979) 164).

  7. Marie Curie's Doctoral Thesis: Prelude to a Nobel Prize.

    Science.gov (United States)

    Wolke, Robert L.

    1988-01-01

    Traces the life and research techniques of Marie Curie's doctoral dissertation leading to the discovery and purification of radium from ore. Reexamines the discoveries of other scientists that helped lead to this separation. (ML)

  8. A jolly good call for Marie Curie Fellows

    CERN Multimedia

    2009-01-01

    A new funding opportunity to train young researchers has just been announced by the European Commission. One of the calls within FP7 Marie Curie Actions requests proposals for Initial Training Network (ITN) projects, with a deadline of 22 December 2009. Project proposals are strongly encouraged at CERN and authors can receive support and guidance from the Marie Curie Steering Group. Winnie Wong: "I wouldn’t have considered a PhD if I hadn’t been a Marie Curie fellow" Dan Savu: "It’s the best of both worlds: training plus working in an international organisation" ITN projects have one key aim: training. Academic and industrial partners work together to form a network to recruit and train Marie Curie Fellows. Fellows are young researchers (typically PhD-level) from any country who combine project-based research with tailor-made training programmes, ...

  9. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  10. Referrals to the Marie Curie nursing service in North Yorkshire.

    Science.gov (United States)

    Hanratty, B; Feather, J; Ward, C

    2000-01-01

    District and Marie Curie nurses participated in a small-scale study to describe referrals to a Marie Curie service in one English health district over a 3-month period. The number of new patients referred was small; they were geographically clustered and had widely differing life expectancies. Anecdotal reports of difficulties with the 'Nurselink' referral system were not confirmed, and in situations where the system was in operation, Marie Curie nurses were more likely to speak directly to the referring nurse. The most frequently cited reason for referral was general nursing needs; however, Marie Curie nurses felt that they were most often involved to provide family support. These findings suggest that there may not be a shared understanding of the Marie Curie nurse's role, and that equity in community palliative nursing care merits examination. Defining and publicizing the role of the Marie Curie nurse, providing guidance for referrals and prioritizing communication between professionals are proposed not only to enhance the service locally but to ensure that the service is available to all. This article illustrates the value of research to identify ways to improve service delivery.

  11. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    Sanjay Upadhyay; Hem Chandra; Meenakashi Joshi; Deepika P Joshi

    2011-01-01

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended the Kumar’s formulation by taking into the account the concept of anharmonicity in minerals above the Debye temperature (D). In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as temperature-independent and then by treating T as temperature-dependent parameter. The results obtained when T is temperature-dependent are in close agreement with experimental data.

  12. Low to high temperature energy conversion system

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  13. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  14. Dimensionality of high temperature superconductivity in oxides

    Science.gov (United States)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  15. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  16. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  17. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...

  18. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  19. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  20. Influence of high-temperature annealing on the orientation of the unipolarity vector in lead zirconate titanate thin films

    Science.gov (United States)

    Kanareikin, A. G.; Kaptelov, E. Yu.; Senkevich, S. V.; Pronin, I. P.; Sergienko, A. Yu.; Sergeeva, O. N.

    2016-11-01

    The factors responsible for the change in the orientation of the natural unipolarity vector due to heating to the Curie temperature of a Pt/PZT/Pt thin-film capacitor (PZT—lead zirconate titanate) formed on a TiO2/SiO2/Si substrate have been considered. Lead zirconate titanate thin layers containing a small excess of lead oxide have been formed ex situ using high-frequency magnetron sputtering with a variation in the annealing temperature (crystallization of the perovskite phase) in the range from 580 to 650°C. It has been assumed that the reorientation of the unipolarity vector in the PZT layer is caused by the change in the mechanism of crystallization of the perovskite phase with an increase in the annealing temperature.

  1. Development of high temperature capable piezoelectric sensors

    Science.gov (United States)

    Suprock, Andrew D.; Tittmann, Bernhard R.

    2017-02-01

    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  2. Marie and Irene Curie. The first female Nobel Prize winners; Marie en IreneCurie. De eerste vrouwelijke Nobelprijswinnaars

    Energy Technology Data Exchange (ETDEWEB)

    Noordenbos, G. [Joke Smit Instituut voor Vrouwenstudies, Universiteit Leiden, Leiden (Netherlands)

    2003-07-01

    Marie Curie was awarded the Nobel Prize in 1903 and in 1911. Also her daughter, Irene Joliot-Curie, received a Nobel Prize for science in 1935. In this book an overview is given of the academic world at that time: limited access to universities for women, the carriers of both women in physics and their pioneering research and discoveries, the refusal of Marie Curie by the French Academy of Sciences, the awarding of the Nobel Prize and the assignment of Irene Joliot-Curie as the first female minister in France, the impact of the two World Wars, their married and private lives and the constant smear campaign of the press against both women. The lives and works of both women are hold against the light of the present position of women in physical sciences. [Dutch] In 1903, precies honderd jaar geleden, ontving Marie Curie als eerste vrouw de Nobelprijs voor de Wetenschap, gevolgd door een tweede Nobelprijs in 1911. Ook haar dochter Irene Joliot-Curie kreeg de Nobelprijs voor de wetenschap in 1935. Marie and Irene Curie schetst een breed beeld van de academische wereld waarin beide vrouwen zich bewogen: de beperkte toegang van vrouwen tot de universiteit, hun carrisres in de natuurkunde en baanbrekende ontdekkingen, de afwijzing van Marie door de Franse Academie des Sciences, de toekenning van de Nobelprijs en de benoeming van Irene als eerste vrouwelijke minister in Frankrijk, de invloed van de twee Wereldoorlogen, hun huwelijks- en priveleven en de niet aflatende hetze van de pers tegen beiden. In de door mannen gedomineerde wereld van de natuurwetenschappen liep de uitzonderingspositie van beide vrouwen als rode draad door hun curieuze levens. Het leven en werk van de Curies wordt geactualiseerd door deze tegen het licht te houden van de huidige positie van vrouwen in de natuurwetenschappen. Het bereiken van de top van de wetenschap door vrouwen blijkt nog steeds uitzonderlijk.

  3. Broadband, High-Temperature Ultrasonic Transducer

    Science.gov (United States)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  4. Anomalous curie response of impurities in quantum-critical spin-1/2 Heisenberg antiferromagnets.

    Science.gov (United States)

    Höglund, Kaj H; Sandvik, Anders W

    2007-07-13

    We consider a magnetic impurity in two different S=1/2 Heisenberg bilayer antiferromagnets at their respective critical interlayer couplings separating Néel and disordered ground states. We calculate the impurity susceptibility using a quantum Monte Carlo method. With intralayer couplings in only one of the layers (Kondo lattice), we observe an anomalous Curie constant C*, as predicted on the basis of field-theoretical work [S. Sachdev, Science 286, 2479 (1999)10.1126/science.286.5449.2479]. The value C* = 0.262 +/- 0.002 is larger than the normal Curie constant C=S(S+1)/3. Our low-temperature results for a symmetric bilayer are consistent with a universal C*.

  5. High Temperature Fiberoptic Thermal Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  6. High Temperature Self-Healing Metallic Composite

    Science.gov (United States)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.

    2012-01-01

    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  7. High Temperature Capacitors for Venus Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  8. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  9. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  10. Measuring Moduli Of Elasticity At High Temperatures

    Science.gov (United States)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  11. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  12. Novel High Temperature Strain Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  13. Ising Critical Behavior of Inhomogeneous Curie-Weiss Models and Annealed Random Graphs

    Science.gov (United States)

    Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; van der Hofstad, Remco; Prioriello, Maria Luisa

    2016-11-01

    We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant {J_{ij}(β)} for the edge {ij} on the complete graph is given by {J_{ij}(β)=β w_iw_j/( {sum_{kin[N]}w_k})}. We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature {β} replaced by {sinh(β)} ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights {(w_i)_{iin[N]}} are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent {τ} with {τin(3,5)}, then the critical exponents depend sensitively on {τ}. In addition, at criticality, the total spin {S_N} satisfies that {S_N/N^{(τ-2)/(τ-1)}} converges in law to some limiting random variable whose distribution we explicitly characterize.

  14. Properties of magnetocaloric materials with a distribution of Curie temperatures

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Bjørk, Rasmus; Smith, Anders;

    2012-01-01

    magnetic entropy change, Δs, and the heat capacity, cp, in zero magnetic field and an applied magnetic field of , have been calculated using the mean field model of ferromagnetism. Interestingly, both the peak position and amplitude of each of these parameters vary differently with the width...

  15. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  16. PLA recycling by hydrolysis at high temperature

    Science.gov (United States)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari; Fausto, Gironi

    2016-05-01

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  17. Recent developments in high temperature organic polymers

    Science.gov (United States)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  18. High-temperature discontinuously reinforced aluminum

    Science.gov (United States)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  19. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  20. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  1. Observation of Curie transition during spark plasma sintering of ferromagnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar Mani, Mahesh [Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University (United Kingdom); Viola, Giuseppe [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom); Nanoforce Technology Ltd., London (United Kingdom); Hall, Jeremy P. [Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University (United Kingdom); Grasso, Salvatore; Reece, Mike J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom); Nanoforce Technology Ltd., London (United Kingdom)

    2015-05-15

    The possibility of employing the ferromagnetic–paramagnetic phase transitions of magnetic materials to calibrate temperature during spark plasma sintering (SPS) was investigated using pure Fe and Fe–50Co alloy. A sharp and repeatable change was observed in the electrical current profile at the Curie temperature (T{sub c}) during both sintering and reheating of the sintered samples. Under a pulsed DC current, an abrupt change in the electrical resistance was observed at T{sub c} due to the sudden changes in the permeability and in turn, the skin depth during heating and cooling. These effects can be used to obtain a more accurate in-situ measurement of the sample temperature than the one provided by the pyrometers that are normally used for SPS processing. The temperature measured using a pyrometer was found to be significantly lower (up to 70 °C) than the actual temperature of the specimen. - Highlights: • Calibration of temperature during spark plasma sintering (SPS) remains a big challenge. • Temperature measured by non-contact pyrometers in SPS is not accurate. • Ferromagnetic materials exhibit abrupt change in permeability at Curie temperature (T{sub c}). • Iron and Fe–Co alloy showed sharp and reproducible changes in SPS electric current profiles at T{sub c}. • Ferromagnetic materials can be successfully used to calibrate pyrometers in SPS.

  2. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  3. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  4. High-temperature granulites and supercontinents

    Institute of Scientific and Technical Information of China (English)

    J.L.R. Touret; M. Santosh; J.M. Huizenga

    2016-01-01

    The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T) conditions of (ultra) high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting), and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting). Both events are separated from each other in time; the vertical accretion post-dating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines). These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  5. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  6. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  7. High-entropy alloys as high-temperature thermoelectric materials

    Science.gov (United States)

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-01

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  8. High-temperature superconducting conductors and cables

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  9. High Temperature VARTM of Phenylethynyl Terminated Imides

    Science.gov (United States)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  10. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    Science.gov (United States)

    1976-06-01

    involves essentially two steps, consolidation of boardy prepreg into sheet stock and thermoforming the sheet stock into structural components. A...problem associated with the fabrication process is the high temperatures required in both the consolidation and thermoforming operations. High processing

  11. Fluctuations and correlations in high temperature QCD

    CERN Document Server

    Bellwied, R; Fodor, Z; Katz, S D; Pasztor, A; Ratti, C; Szabo, K K

    2015-01-01

    We calculate second- and fourth-order cumulants of conserved charges in a temperature range stretching from the QCD transition region towards the realm of (resummed) perturbation theory. We perform lattice simulations with staggered quarks; the continuum extrapolation is based on $N_t=10\\dots24$ in the crossover-region and $N_t=8\\dots16$ at higher temperatures. We find that the Hadron Resonance Gas model predictions describe the lattice data rather well in the confined phase. At high temperatures (above $\\sim$250 MeV) we find agreement with the three-loop Hard Thermal Loop results.

  12. Ultra High Temperature Ceramics for aerospace applications

    OpenAIRE

    Jankowiak, A.; Justin, J.F.

    2014-01-01

    Après relecture une erreur est apparue dans le document et doit être retiré; International audience; The Ultra High Temperature Ceramics (UHTCs) are of great interest for different engineering sectors and notably the aerospace industry. Indeed, hypersonic flights, re-entry vehicles, propulsion applications and so on, require new materials that can perform in oxidizing or corrosive atmospheres at temperatures higher than 2000°C and sometimes, for long life-time. To fulfil these requirements, U...

  13. Effects of High Temperature on Collector Coatings

    Science.gov (United States)

    Lowery, J. R.

    1982-01-01

    Report reveals electroplated black chrome is good coating for concentrating collectors in which temperatures are in the 650 degrees-800 degrees F (340 degrees - 430 degrees C) range. Black chrome thermal emittance is low and solar-absorption properties are not seriously degraded at high temperatures. Black coatings are used to increase absorption of solar energy by base metal while decreasing emission of infrared energy. Coatings are intended to improve efficiency of solar collectors.

  14. Low Temperature Heating and High Temperature Cooling in Buildings

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk

    , a single-family house designed for plus-energy targets and equipped with a radiant water-based floor heating and cooling system was studied by means of full-scale measurements, dynamic building simulations and thermodynamic evaluation tools. Thermal indoor environment and energy performance of the house...... performance of heating and cooling systems for achieving the same thermal indoor environment. The results show that it is crucial to minimize the heating and cooling demands in the design phase since these demands determine the terminal units and heat sources and sinks that could be used. Low temperature...... heating and high temperature cooling systems (a radiant water-based floor heating and cooling system in this study) proved to be superior to compared systems, evaluated with different system analysis tools; energy, exergy, and entransy. Radiant systems should be coupled to appropriate heating and cooling...

  15. Joining of ultra-high temperature ceramics

    OpenAIRE

    Silvestroni, Laura; Sciti, Diletta; Esposito, Laura; Glaeser, Andreas

    2012-01-01

    In the last decade, ultra-high temperature ceramics raised renewed interest after the first studies in the 60's. Thanks to their high melting point, superior to any group of materials, and to their set of interesting physical and engineering properties, they find application in aerospace industry, propulsion field, as cladding materials in generation IV nuclear reactors and solar absorbers in novel HT CSP systems. Recent efforts were devoted to the achievement of high strength and toughness m...

  16. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  17. Low toxicity high temperature PMR polyimide

    Science.gov (United States)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  18. Maria Sklodowska Curie - the precursor of radiation sterilization methods

    Energy Technology Data Exchange (ETDEWEB)

    Gluszewski, Wojciech; Zagorski, Zbigniew P. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Tran, Quoc Khoi; Cortella, Laurent [CEA Grenoble, ARC-Nucleart, Atelier Regional de Conservation, Grenoble (France)

    2011-06-15

    A resolution of the 63rd Assembly of the United Nations proclaimed the year 2011 as the International Year of Chemistry. The coordinators of the event are UNESCO and the International Union of Pure and Applied Chemistry (IUPAC). The patroness of this event is Marie Curie, nee Sklodowska. Among women scientists, she was the first recipient of the Novel Prize, and among all scientists, she is the only one who has received this award in different scientific fields (in 1903 in the field of physics with Pierre Curie and Henri Becquerel, in 1911 in the field of chemistry). Considering the former Polish nationality of Marie Curie, the year 2011 has been proposed by the Polish Parliament as her year, using the name Maria Sklodowska Curie, under which she is known in Poland. Celebrating the International Year of Chemistry is a good opportunity to remember the importance of the work of Maria Sklodowska Curie for the emergence and development of many fields of science. This article is an attempt to present a view of science, as taught through modern applications of the radiation chemistry of polymetric materials and radiation sterilization. Although the real development of both ''cold'' sterilization and polymer technology occurred in the 1950's long after the death of Marie Curie Sklodowska, the original ideas go back to ther work performed in the 1920s. Sometimes, and that is the present case, a single scientist creates a new field, in spite of the fact that at the time of discovery there are no applications. The parallel development of other branches of science and technology helps the application of the original idea. (orig.)

  19. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  20. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2013-01-01

    and pressures. Two measurement systems were built to perform measurements under high pressures and at elevated temperatures of up to 95 bar and 250 °C, respectively. The conductivity of aqueous KOH and aqueous KOH immobilized in a porous SrTiO3 structure were investigated at elevated temperatures and high...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... concentrations of the electrolyte using the van der Pauw method in combination with electrochemical impedance spectroscopy (EIS). Conductivity values as high as 2.9 S cm-1 for 45 wt% KOH aqueous KOH and 0.84 S cm-1 for the immobilized KOH of the same concentration were measured at 200 °C. Porous SrTiO3 was used...

  1. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  2. High Temperature Protonic Conductors by Melt Growth

    Science.gov (United States)

    2007-11-02

    ceramic materials of BaCe1 -xNdxO3-a and Ba3(CaNb2)O9 that exhibit high temperature protonic conductance and superior mechanical properties at elevated...TEM). The mechanical behavior BaCe1 -xNdxO3-a (x=0 to 0.2) and Ba3(CaNb2)O9 ceramics in the elastic, brittle and plastic regime will be studied...spatial variations of compositions in BaCe1 -xNdxO3-a and Ba3(CaNb2)O9 following high temperature wet atmosphere treatment will be measured using a

  3. High-temperature MAS-NMR at high spinning speeds.

    Science.gov (United States)

    Kirchhain, Holger; Holzinger, Julian; Mainka, Adrian; Spörhase, Andreas; Venkatachalam, Sabarinathan; Wixforth, Achim; van Wüllen, Leo

    2016-09-01

    A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

  4. High Temperature Mechanisms for Venus Exploration

    Science.gov (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  5. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  6. On-wafer high temperature characterization system

    Science.gov (United States)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.

    2016-12-01

    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  7. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  8. High-Temperature Capacitor Polymer Films

    Science.gov (United States)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  9. Magnetic and magnetocaloric properties of the high-temperature modification of TbTiGe.

    Science.gov (United States)

    Tencé, S; Gaudin, E; Isnard, O; Chevalier, B

    2012-07-25

    The high-temperature form (HT) of the ternary germanide TbTiGe was prepared by melting. The investigation of HT-TbTiGe by x-ray and neutron powder diffractions shows that the compound crystallizes in the tetragonal CeScSi-type structure (space group I4/mmm; a = 404.84(5) and c = 1530.10(9) pm as unit cell parameters). Magnetization and specific heat measurements as well as neutron powder diffraction performed on HT-TbTiGe reveal a ferromagnet having T(C) = 300(1) K as the Curie temperature; the Tb-moments are aligned along the c-axis. This magnetic ordering is associated with a modest magnetocaloric effect around room temperature. The isothermal magnetic entropy change ΔS(m) was determined from the magnetization data; ΔS(m) reaches, respectively, a maximum value of  - 4.3 and  - 2.0 J K(-1) kg(-1) for a magnetic field change of 5 and 2 T.

  10. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    K Bhanu Sankara Rao

    2003-06-01

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of property advantages they possess including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance, and their amenability for significant improvment in creep and fatigue resistance through alloying. Reliability of intermetallics when used as engineering materials has not yet been fully established. Ductility and fracture toughness at room and intermediate temperatures continue to be lower than the desired values for production implementation. In this paper, progress made towards improving strain-controlled fatigue resistance of nickel and titanium aluminides is outlined. The effects of manufacturing processes and micro alloying on low cycle fatigue behaviour of NiAl are addressed. The effects of microstructure, temperature of testing, section thickness, brittle to ductile transition temperature, mean stress and environment on fatigue behaviour of same -TiAl alloys are discussed.

  11. High Accuracy, Miniature Pressure Sensor for Very High Temperatures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SiWave proposes to develop a compact, low-cost MEMS-based pressure sensor for very high temperatures and low pressures in hypersonic wind tunnels. Most currently...

  12. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... of dissolved oxygen. A potential step method (hydrodynamic chronocoulometry) is evaluated for simultaneous measurement of diffusivity and solubility of oxygen by means of RDE. Finally, the ORR tests are extended to conc. H3PO4 at more relevant working temperatures and under increased oxygen pressure. Direct...... of platinumphosphoric acid. At room temperature, a relative slow ORR hindering process is active, which requires using a fast method (cyclic voltammetry with high scan rate / hydrodynamic chronocoulometry) to accurately measure the diffusion limited currents, and thus, oxygen diffusivity and solubility. In conc. H3PO4...

  13. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  14. Experimental investigation for an isolation technique on conducting the electromechanical impedance method in high-temperature pipeline facilities

    Science.gov (United States)

    Na, Wongi S.; Lee, Hyeonseok

    2016-11-01

    In general, the pipelines within a nuclear power plant facility may experience high temperatures up to several hundred degrees. Thus it is absolutely vital to monitor these pipes to prevent leakage of radioactive substances which may lead to a catastrophic outcome of the surrounding environment. Over the years, one of the structural health monitoring technique known as the electromechanical impedance (EMI) technique has been of great interests in various fields including civil infrastructures, mechanical and aerospace structures. Although it has one of the best advantages to be able for a single piezoelectric transducer to act as a sensor and an actuator, simultaneously, its low curie temperature makes it difficult for the EMI technique to be conducted at high temperature environment. To overcome this problem, this study shows a method to avoid attaching the piezoelectric transducer directly onto the target structure using a metal wire for damage detection at high temperature. By shifting the frequency to compensate the signature changes subjected to the variations in temperature, the experimental results indicate that damage identification is more successful above 200 oC, making the metal wire method suitable for the EMI technique at high temperature environment.

  15. Nuclear and Quark Matter at High Temperature

    CERN Document Server

    Biro, T S; Schram, Z

    2016-01-01

    We review important ideas on nuclear and quark matter description on the basis of high- temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the - partially still open - problems of the hadronization process.

  16. Technology of high temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Makin, R.S.; Vorobei, M.P.; Kuprienko, V.A.; Starkov, V.A.; Tsykanov, V.A.; Checketkin, Y.V. [Research Institute of Atomic Reactors, Ulyanovsk (Russian Federation)

    1993-12-31

    Research has been performed on the problems related to the use of high temperature organic coolants in small and medium nuclear power plants. The work performed and also the experience of operating the ARBUS reactor confirmed the inherent safety features, reliability, and enhanced safety margins of the plants with this type of coolants. The advantages of this system and research highlights are presented.

  17. Enamel for high-temperature superalloys

    Science.gov (United States)

    Levin, H.; Lent, W. E.

    1977-01-01

    Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.

  18. Nuclear and quark matter at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  19. Analysis of iron oxidation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, J.C.; Peng, K.Y.; Gadalla, A.M.; Gadalla, N. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering

    1995-10-01

    A new theory for the high-temperature oxidation of iron is proposed, in which the rate-limiting step is ternary diffusion of ferric, ferrous, and oxygen ions in the iron oxides that are formed. The predictions of this theory are compared with previously published experimental data. The only thermodynamic information required is a phase diagram.

  20. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray

  1. Photoemission studies of high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. (Inst. de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (CH))

    1990-11-01

    Photoemission spectroscopy has recently emerged as one of the leading techniques in the study of high-temperature superconductors. Relevant successes include the direct detection of the superconductivity gap, tests for departure from Fermi-liquid behavior, and many interface chemical studies with technological interest. The authors present a review of the fundamental and applied aspects of this technique.

  2. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  3. 10.3 High-temperature Instrumentation

    Science.gov (United States)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  4. Anharmonic phonons and high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Cohen, M.L. (Department of Physics, University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1993-07-01

    We examine a simple model of anharmonic phonons with application to the superconducting isotope effect. Linear and quadratic electron-phonon coupling are considered for various model potentials. The results of the model calculations are compared with the high-temperature superconductors La[sub 2[minus][ital x

  5. High-temperature langasite SAW oxygen sensor.

    Science.gov (United States)

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  6. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the Ray

  7. Solar-driven high temperature radiant cooling

    Institute of Scientific and Technical Information of China (English)

    SONG ZhaoPei; WANG RuZhu; ZHAI XiaoQiang

    2009-01-01

    Solar energy is widely used as one of the most important renewable energy. In addition to the growing applications of solar PV and solar water heater, solar cooling is also considered very valuable and the related researches are developing fast because of the synchronism between solar irradiance and building cooling load. Current studies mainly focus on the high temperature solar collector technique and heat-driven cooling technique, while little concern has been paid to the transport process of cooling power. In this paper, the high temperature radiant cooling is studied as an alternative way for transporting cooling power, and the performance of the combination of radiant ceiling and solar cooling is also studied. From simulation and theoretical analysis results, high temperature radiant cooling terminal shows better cooling power transportation ability against conventional air-conditioning terminal, and its thermal comfort is improved. Experiment results indicate that radiant cooling can enhance the chiller's COP (Coefficient of Performance) by 17% and cooling power regeneration by 50%.According to analysis in this paper, high temperature radiant cooling is proved to be suitable for solar cooling system, and out work can serve as a reference for later system design and promotion.

  8. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  9. The Evolution of High Temperature Gas Sensors.

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, F. H. (Fernando H.); Brosha, E. L. (Eric L.); Mukundan, R. (Rangachary)

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  10. High temperature internal friction measurements of 3YTZP zirconia polycrystals. High temperature background and creep

    OpenAIRE

    Simas, P.; Castillo-Rodríguez, Miguel; Nó, M. L.; De-Bernardi, S.; Gómez-García, D.; Domínguez-Rodríguez, Alejandro; San Juan, J.

    2014-01-01

    This work focuses on the high-temperature mechanic properties of a 3 mol % yttria zirconia polycrystals (3YTZP), fabricated by hot-pressureless sintering. Systematic measurements of mechanical loss as a function of temperature and frequency were performed. An analytical method, based on the generalised Maxwell rheological model, has been used to analyse the high temperature internal friction background (HTB). This method has been previously applied to intermetallic compounds...

  11. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  12. High temperature furnace modeling and performance verifications

    Science.gov (United States)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  13. High temperature superconductors applications in telecommunications

    Science.gov (United States)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  14. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  15. PARTNER: A Marie Curie Initial Training Network for hadron therapy

    CERN Document Server

    CERN BULLETIN; Nathalie Hospital; Manuela Cirilli

    2011-01-01

    PARTNER is a 4-year Marie Curie Training project funded by the European Commission with 5.6 million Euros aimed at the creation of the next generation of experts. Ten academic institutes and research centres and two leading companies are participating in PARTNER, that is coordinated by CERN, forming a unique multidisciplinary and multinational European network.

  16. Comments on theories of high temperature superconductivity

    Directory of Open Access Journals (Sweden)

    T. M. Rice

    2006-09-01

    Full Text Available   The recently discovered MgB2 superconductors have a record transition temperature for a BCS superconductor due to the high vibration frequencies associated with its light elements. The transition temperatures in the cuprate family of superconductors are much higher but these do not fit the BCS paradigm. The most promising microscopic origin for their many anomalous properties lies in magnetic pairing described by the RVB (Resonant Valence Bond ansatz. However a comprehensive theoretical description of the key anomalous properties of the cuprates remains to be an open challenge.

  17. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  18. Optically transparent high temperature shape memory polymers.

    Science.gov (United States)

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles.

  19. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  20. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  1. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  2. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... (RDE) and (ii) a gas diffusion electrode (GDE) setup designed for experiments in conc. H3PO4. The pressurized cell is demonstrated by tests on polycrystalline platinum electrodes up to 150 ºC. Functionality of the RDE system is proved studying the oxygen reduction reaction (ORR) at temperatures up...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...

  3. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  4. Effects of high-temperature annealing on magnetic properties of V-doped GaN thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Souissi, M., E-mail: mnawer.souissi@fsm.rnu.tn [Higher Institute of Computer Sciences and Communication Techniques of Hammam Sousse, Sousse 4011 (Tunisia); Schmerber, G.; Derory, A. [Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS) UMR7504 CNRS-UDS, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2 (France); El Jani, B. [URHEA, Faculte des Sciences de Monastir, Monastir 5000 (Tunisia)

    2012-08-15

    Metal organic chemical vapor deposition (MOCVD) has been used to grow vanadium-doped GaN (GaN:V) on c-sapphire substrate using VCl{sub 4} as the V source. The as-grown GaN:V exhibited a saturated magnetic moment (M{sub s}) of 0.28 emu/cm{sup 3} at room temperature. Upon high-temperature annealing treatment at 1100 Degree-Sign C for 7 min under N{sub 2} ambient, the M{sub s} of the GaN:V increased by 39.28% to 0.39 emu/cm{sup 3}. We found that rapid thermal annealing leads to a remarkable increase in surface roughness of the V-doped GaN as well as the electron concentration. The annealing also leads to a significant increase in the Curie temperature (T{sub C}), we have identified Curie temperatures about 350 K concluded from the difference between the field-cooled and zero-field-cooled magnetizations. Structure characterization by x-ray diffraction indicated that the ferromagnetic properties are not a result of secondary magnetic phases.

  5. Gasification of high ash, high ash fusion temperature bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  6. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  7. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  8. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  9. Electrochemical high-temperature gas sensors

    Science.gov (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  10. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can...

  11. Pulse Radiolysis at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Christensen, H.; Sehested, Knud

    1981-01-01

    A set-up enabling pulse radiolysis measurements at high temperatures (up to 320°C) and high pressures (up to 140 bar) has been constructed in collaboration between Risö National Laboratory and Studsvik Energiteknik. The cell has been used for experiments with aqueous solutions with the purpose...

  12. High temperature alloys: their exploitable potential

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.B.; Merz, M.; Nihoul, J.; Ward, J. (eds.) (Commission of the European Communities, Petten (Netherlands). Joint Nuclear Research Center; NET-TEAM, Garching (DE))

    1987-01-01

    This book is the proceedings of a conference dealing with fundamental and technical aspects of the applications of high temperature alloys. It is split into five sections which cover the opening session of the conference and four further sessions covering: the theoretical and practical limits for HT alloys; the potential for development in alloys and processing; engineering considerations; the future outlook. The different sessions each included a number of invited papers followed by a series of posters and were concluded by a presentation of a 'synthesis' by a session rapporteur and general discussion. This structure is retained in the proceedings, including the discussion points in those cases where the authors have provided written answers to the questions raised. This book will be of interest to metallurgists, materials scientists, physicists and research workers in high temperature materials.

  13. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  14. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  15. High temperature superconductor materials and applications

    Science.gov (United States)

    Doane, George B., III. (Editor); Banks, Curtis; Golben, John

    1991-01-01

    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.

  16. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...... and shape, composition, reactivity and burnout depend significantly on the operating conditions of the fast pyrolysis. Biomass fast pyrolysis experiments were performed in a laboratory-scale wire mesh reactor and bench scale atmospheric pressure drop tube / entrained flow reactors with the aim...

  17. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  18. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  19. Identifying the 'inorganic gene' for high-temperature piezoelectric perovskites through statistical learning.

    Science.gov (United States)

    Balachandran, Prasanna V; Broderick, Scott R; Rajan, Krishna

    2011-08-01

    This paper develops a statistical learning approach to identify potentially new high-temperature ferroelectric piezoelectric perovskite compounds. Unlike most computational studies on crystal chemistry, where the starting point is some form of electronic structure calculation, we use a data-driven approach to initiate our search. This is accomplished by identifying patterns of behaviour between discrete scalar descriptors associated with crystal and electronic structure and the reported Curie temperature (TC) of known compounds; extracting design rules that govern critical structure-property relationships; and discovering in a quantitative fashion the exact role of these materials descriptors. Our approach applies linear manifold methods for data dimensionality reduction to discover the dominant descriptors governing structure-property correlations (the 'genes') and Shannon entropy metrics coupled to recursive partitioning methods to quantitatively assess the specific combination of descriptors that govern the link between crystal chemistry and TC (their 'sequencing'). We use this information to develop predictive models that can suggest new structure/chemistries and/or properties. In this manner, BiTmO3-PbTiO3 and BiLuO3-PbTiO3 are predicted to have a TC of 730(°)C and 705(°)C, respectively. A quantitative structure-property relationship model similar to those used in biology and drug discovery not only predicts our new chemistries but also validates published reports.

  20. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.

    2001-04-01

    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  1. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  2. On quark number susceptibilities at high temperatures

    CERN Document Server

    Bazavov, A; Hegde, P; Karsch, F; Miao, C; Mukherjee, Swagato; Petreczky, P; Schmidt, C; Velytsky, A

    2013-01-01

    We calculated second and fourth order quark number susceptibilities for 2+1 flavor QCD in the high temperature region using two improved staggered fermion formulations. The calculations are performed at several lattice spacing and we show that in the continuum limit the two formulations give consistent results. We compare our continuum extrapolated results on quark number susceptibilities with recent weak coupling calculations, and find that these cannot simultaneously explain the lattice results for second and fourth order quark number susceptibilities.

  3. Intermetallic-based high-temperature materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-07-01

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminides are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  4. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  5. Hydrogen dominant metallic alloys: high temperature superconductors?

    Science.gov (United States)

    Ashcroft, N W

    2004-05-07

    The arguments suggesting that metallic hydrogen, either as a monatomic or paired metal, should be a candidate for high temperature superconductivity are shown to apply with comparable weight to alloys of metallic hydrogen where hydrogen is a dominant constituent, for example, in the dense group IVa hydrides. The attainment of metallic states should be well within current capabilities of diamond anvil cells, but at pressures considerably lower than may be necessary for hydrogen.

  6. High Temperature Superconducting Maglev Measurement System

    OpenAIRE

    Wang, Jia-Su; Wang, Su-Yu

    2010-01-01

    Three high temperature superconducting (HTS) Maglev measurement systems were successfully developed in the Applied Superconductivity Laboratory (ASCLab) of Southwest Jiaotong University, P. R. China. These systems include liquid nitrogen vessel, Permanent Magnet Guideway (PMG), data collection and processing, mechanical drive and Autocontrol features. This chapter described the three different measuring systems along with their theory of operations and workflow. The SCML-01 HTS Maglev measure...

  7. GRAPHENE PEEK COMPOSITES AS HIGH TEMPERATURE ADHESIVES

    Science.gov (United States)

    2017-09-05

    Price DW, Roberts JA, Scott JB, Wadhawan A, Ye Z, Tour JM. Nanotubes in microwave fields : light emission , intense heat, outgassing, and reconstruction...Arepalli S, Yowell LL, Tour JM. Carbon nanotube composite curing through absorption of microwave radiation. Composites Science and Technology. 2008 Dec...polymer that is suitable for high-temperature applications. Graphene is a two-dimensional form of carbon nanomaterial that has been studied

  8. Technological evolution of high temperature superconductors

    OpenAIRE

    White, Jordan R.

    2015-01-01

    Approved for public release; distribution is unlimited High temperature superconducting (HTS) cables are currently being used in the commercial energy industry primarily for demonstration purposes and to evaluate the feasibility of large-scale implementation into the electric grid. While still in the evaluation stage, the U.S. Navy is finding the test results promising and is investigating its potential use for future electric ships to supply power to electric propulsion motors and possibl...

  9. Development of High-Temperature Strain Gages.

    Science.gov (United States)

    1961-03-17

    lengths the article is either dipped in a slip (finely divided tend to require a support for the grid, while shorter coating material suspended in a...liquid) or the lengths require too many loops to achieve the slip is sprayed onto the article , followed in both cases by high-temperature fusion. An...Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. Metrology. Photometry and Colorimetry. Refractometry . Photographic Research

  10. Neutron diffraction and electrical transport studies on magnetic ordering in terbium at high pressures and low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Sarah [University of Alabama, Birmingham; Montgomery, Jeffrey M [University of Alabama, Birmingham; Tsoi, Georgiy [University of Alabama, Birmingham; Vohra, Yogesh [University of Alabama, Birmingham; Chesnut, Gary Neal [University of Alabama, Birmingham; Weir, S. T. [Lawrence Livermore National Laboratory (LLNL); Tulk, Christopher A [ORNL; Moreira Dos Santos, Antonio F [ORNL

    2013-01-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare-earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic (FM) order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the FM Curie temperature. The temperature of this FM transition decreases at a rate of-16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of FM order is suppressed. The neutron diffraction measurements as a function of pressure at temperatures ranging from 90 to 290 K confirm that the change of slope in the resistance is associated with the FM ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. A disappearance of FM ordering was observed as the pressure is increased above 3.6 GPa and is correlated with the phase transition from the ambient hexagonal close packed structure to an -Sm-type structure at high pressures.

  11. Current trends in high temperature design

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.L. (Illinois Univ., Urbana, IL (United States). Dept. of Mechanical Engineering)

    1992-01-01

    A review of high temperature design guidelines has been carried out in preparation for designing a solar storage module for the Freedom Spacelab. Three major guidelines, N47, R5 and RCC-MR form the basis of the survey. The main issues with current, mature design in the power industry appear to be adequately covered by these guidelines. A significant finding is that long established models of material damage have survived the test of time very well. A new design regime referred to as Very High Temperature Design (VHTD) is identified. The characteristics of this regime are changing material properties which require some changes in philosophy in drafting of future codes, particularly in regard to definitions of yield strengths and other design allowables. Finally, there is some discussion of the more general use of the stress/strain plane, e.g. isochronous curves, for representation of very complex material constitutive behaviour. A concept called the 'Relaxation Locus', which summarizes essential local constrained component behavior, is introduced and its application to high temperature design problems is discussed briefly. (author).

  12. High temperature inorganic membranes for separating hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  13. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  14. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  15. The NDT methods under high temperature service environment

    Directory of Open Access Journals (Sweden)

    Zhang Zhen-guo

    2016-01-01

    Full Text Available Concerning the detective requirement of the equipment under high temperature running status, this paper summarizes the technical characteristics and related applications of several non-destructive testing methods(NDT, such as thermal infrared imaging technology in high temperature, ultrasonic testing technique in high temperature, pulsed eddy current technology in high temperature and magnetic powder flaw detection technology in high temperature, penetration testing technique in high temperature and indirect visual detection in high temperature and on-line monitoring system in high temperature.

  16. Technology of high-temperature organic coolant

    Energy Technology Data Exchange (ETDEWEB)

    Vorobei, M.P.; Makin, R.S.; Kuprienko, V.A. [and others

    1993-12-31

    A wide range of studies were carried out in RIAR on the problems connected with the use of high-temperature organic coolant at nuclear power plants. The work performed and successful experience gained in persistent operation of the ARBUS reactor confirmed the inherent safety characteristics, high operational reliability, as well as improved safety of stations with similar reactors. A large scope of studies were carried out at the ARBUS pilot reactor and loop with the organic coolant of the MIR reactor and a wide range of problems were solved. The studies are described.

  17. Precipitation Hardenable High Temperature Shape Memory Alloy

    Science.gov (United States)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  18. High Temperature Sensing Systems--Characteristics of Rechargeable Batteries at High Temperature--

    OpenAIRE

    2001-01-01

     High temperature discharge characteristics were measured at 100℃ for commercial available Nickel Cadmium and Nickel Metal Hydride rechargeable batteries. A Nickel Cadmium battery has superior dis­charge characteristics than a Nickel Metal Hydride battery. A life cycle of rechargeable battery can be esti­mated by measuring an internal resistance of the battery during charge at room temperature.

  19. High Temperature Materials for Chemical Propulsion Applications

    Science.gov (United States)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  20. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  1. High-temperature alloys for high-power thermionic systems

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang S.; Jacobson, D.L.; D' cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  2. LHDAC setup for high temperature and high pressure studies

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nishant N., E-mail: nnpatel@barc.gov.in; Meenakshi, S., E-mail: nnpatel@barc.gov.in; Sharma, Surinder M., E-mail: nnpatel@barc.gov.in [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  3. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  4. Conformal Properties in High Temperature QCD

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, T

    2015-01-01

    We investigate the properties of quarks and gluons above the chiral phase transition temperature $T_c,$ using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a $32^3\\times 16$ lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively $Z(3)$ center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial $Z(3)$ center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature $\\beta=100.0 \\, (T \\simeq10^{58} T_c)$ remarkably agrees with the temporal propagator of free quarks with the $Z(3)$ twisted boundary condition for $t/L_t \\geq 0.2$, but differs from that with the $Z(3)$ trivial boundary condition. As we increase the mass of quarks $m_q$, we find that the thermal ensemble continues to be dominated by the $Z(3)$ twisted gauge fi...

  5. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  6. High Temperature Battery for Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  7. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  8. High-temperature insulation; Hochtemperatur-Waermeisolierung

    Energy Technology Data Exchange (ETDEWEB)

    Fuehres, M.

    1995-12-31

    For high-temperature insulations of industrial plants in the temperature range above 800 C preferably fibrous insulating materials are used. For this purpose ceramic fibres are more and more used. Apart from energy conservation possibilities up to 50% ceramic fibre products are characterized by a large field of the most different applications compared to conventional fire-resistant materials such as stone and compounds. The properties, production and the field of application are gone into in detail. (BWI) [Deutsch] In der Hochtemperaturisolierung industrieller Anlagen werden im Temperaturbereich oberhalb von 800 C bevorzugt faserfoermige Daemmstoffe eingesetzt. In zunehmendem Masse werden hierzu Keramikfasern eingesetzt. Neben den Einsparmoeglichkeiten im Energieverbrauch von bis zu 50% gegenueber konventionellen feuerfesten Werkstoffen wie Steinen und Massen zeichnen sich Keramikfaser-Produkte durch eine breite Palette vielfaeltigster Einsatzmoeglichkeiten aus. Es wird ausfuehrlich auf Eigenschaften, Herstellung und Einsatzmoeglichkeiten eingegangen. (BWI)

  9. Graphite thermal expansion reference for high temperature

    Science.gov (United States)

    Gaal, P. S.

    1974-01-01

    The design requirements of the aerospace and high-temperature nuclear reactor industries necessitate reliable thermal expansion data for graphite and other carbonaceous materials. The feasibility of an acceptable reference for calibration of expansion measuring systems that operate in carbon-rich atmospheres at temperatures ranging to 2500 C is the prime subject of this work. Present-day graphite technology provides acceptable materials for stable, reproducible references, as reflected by some of the candidate materials. The repeatability for a single specimen in a given expansion measuring system was found to be plus or minus 1%, while the combined results of several tests made on a number of samples fell within a plus or minus 2.5% band.

  10. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  11. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  12. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  13. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  14. Diamond based detectors for high temperature, high radiation environments

    Science.gov (United States)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  15. Cr-Doped InAs Self-Organized Diluted Magnetic Quantum Dots with Room-Temperature Ferromagnetism

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu-Hong; ZHAO Jian-Hua; BI Jing-Feng; WANG Wei-Zhu; JI Yang; WU Xiao-Guang; XIA Jian-Bai

    2007-01-01

    Cr-doped InAs self-organized diluted magnetic quantum dots (QDs) are grown by low-temperature molecularbeam epitaxy. Magnetic measurements reveal that the Curie temperature of all the InAs:Cr QDs layers with Cr/In flux ratio changing from 0.026 to 0.18 is beyond 400K. High-resolution cross sectional transmission electron microscopy images indicate that InAs:Cr QDs are of the zincblende structure. Possible origins responsible for the high Curie temperature are discussed.

  16. The legacy of Maria Curie Skłodowska

    Science.gov (United States)

    Sosnowski, Ryszard

    2011-01-01

    Maria Skłodowska Curie left us a great legacy. Her discovery of polonium and radium was incomparably greater than the mere discovery of new elements. Its significance lay in the discovery of a new form of matter, namely radioactive one, but also in her unveiling of the internal property of its atoms. Subsequently emitted radiation went on to play the role of a "natural accelerator" for both scientific research and in medical radiotherapy. It was thanks to these discoveries that the field of nuclear physics arose just a few decades later. As importantly the work of Maria Curie Skłodowska during the Great War demonstrated how important pure scientific discovery can be for society and its welfare.

  17. Fail Safe, High Temperature Magnetic Bearings

    Science.gov (United States)

    Minihan, Thomas; Palazzolo, Alan; Kim, Yeonkyu; Lei, Shu-Liang; Kenny, Andrew; Na, Uhn Joo; Tucker, Randy; Preuss, Jason; Hunt, Andrew; Carter, Bart; hide

    2002-01-01

    This paper contributes to the magnetic bearing literature in two distinct areas: high temperature and redundant actuation. Design considerations and test results are given for the first published combined 538 C (1000 F) high speed rotating test performance of a magnetic bearing. Secondly, a significant extension of the flux isolation based, redundant actuator control algorithm is proposed to eliminate the prior deficiency of changing position stiffness after failure. The benefit of the novel extension was not experimentally demonstrated due to a high active stiffness requirement. In addition, test results are given for actuator failure tests at 399 C (750 F), 12,500 rpm. Finally, simulation results are presented confirming the experimental data and validating the redundant control algorithm.

  18. Special Workshop of Marie Curie Fellows on Research and Training in Physics and Technology

    CERN Document Server

    Patrice Loiez

    2002-01-01

    Photo 0210004_1: Prof. Ugo Amaldi, University of Milano Bicocca and Tera Foundation, Italy. Addressing the Marie Curie Workshop held at CERN 3-4 October 2002. Title of this talk:"Research Developments on Medical Physics". Photo 0210004_2: Marie Curie Fellows at CERN. Participating in Marie Curie Workshop held at CERN 3-4 October 2002.

  19. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  20. High temperature flat plate solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, S.; Aso, S.; Ebisu, K.; Uchino, H.

    1981-04-01

    Improvements in the efficiency of collectors are of great importance for extending the utilization of solar energy for heating and cooling in homes. A highly efficient collector makes the system size small and decreases the system cost effectively. From the view of the amount of energy collected, the efficient collector has a multiple effect, not only because of the high increase in instantaneous efficiency, but also because of the large usable intensity range of the insolation. On the basis of a functional analysis for a flat collector, the materials and parameters were selected and optimized, and a new high temperature flat collector was designed. The collector has 2 panes. The first pane is low iron glass and the second pane is a thin film of fluorinated ethylene-propylene copolymer. The overall solar transmittance for the two panes is 0.89. The collecting panel and its water paths were formed by means of welding and hydraulic expansion. The selective absorbing surface consists of colored stainless steel whose absorption characteristic is 0.89 and emission characteristic is 0.16. The thermal insulator preventing backward heatloss consists of double layers of urethane foam and glass wool. Furthermore, the sustained method for the second pane is contrived so as to prevent water condensation on the panes and excessive elevation of the absorber temperature during no load heating.

  1. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode ......-based electrodes and one porous electrode based on the perovskite-structured strontium and vanadiumdoped lanthanum chromium oxide (LSCV) were investigated. The porous electrodes were applied on yttrium-stabilised zirconium oxide (YSZ) substrates in a collaboration with the company PBI...

  2. High Temperature Sodium Thermal Convection Test Loop

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A project for the evaluation of compatibility characteristic of structural materials used in China experimental fast reactor(CEFR) has been in operation. The conditions which these structural materials contact with liquid sodium in reactor can be simulated by the tests in high temperature sodium thermal convection test loop. The main aims of designing and constructing the thermal convection test loop is for the corrosion test of CEFR materials, and the objective is to obtain the corrosion data of domestic materials.The main features of the test loop are shown in Fig.1. The primary components of the loop

  3. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  4. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...... number of biomass and refuse fired combined heat and power plant boilers, b) Laboratory exposures and metallurgical examinations of material specimens with ash deposits in well-defined gas environments with HCl and SO2 in a furnace....

  5. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  6. High temperature quark localization by Polyakov loops

    CERN Document Server

    Kovacs, Tamas G; Bruckmann, Falk; Schierenberg, Sebastian

    2011-01-01

    We study the low eigenmodes of the overlap and staggered Dirac operator at high temperature. We show that the recently found localized quark modes obeying Poisson statistics are connected to physical gauge field objects with their size and density scaling in the continuum limit. The localized modes are also strongly correlated with large fluctuations of the Polyakov loop. Based on that we construct a random matrix model of the low Dirac modes inspired by dimensional reduction. Our model reproduces the Poisson to random matrix transition seen in the lattice Dirac spectrum.

  7. Symmetry Non-restoration at High Temperature

    CERN Document Server

    Rius, N

    1998-01-01

    We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with $Z_2 \\times Z_2$ symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the $SU(2) \\otimes U(1)$ gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.

  8. High temperature decomposition of hydrogen peroxide

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  9. Aerospace applications of high temperature superconductivity

    Science.gov (United States)

    Heinen, V. O.; Connolly, D. J.

    1991-01-01

    Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications.

  10. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  11. Exhibition: Life and Achievements of Maria Sklodowska-Curie

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The exhibition "Life and Achievements of Maria Sklodowska-Curie” will be held at CERN (Pas Perdus Corridor, 1st floor, building 61) from the 8 to 24 March.   It is organised under the auspices of the Ambassador R. Henczel, Permanent Representative of the Republic of Poland to the UN Office at Geneva to celebrate the 100th anniversary of the Nobel Prize in Chemistry given to Maria Sklodowska-Curie. The exhibition is also one of the events celebrating the 20th anniversary of Poland joining CERN as a Member State. Maria Sklodowska-Curie, Nobel Prize winner both in physics and chemistry, is one of the greatest scientists of Polish origin. The exhibition, consisting of 20 posters, presents her not only as a brilliant scientist, but also an exceptional woman of great heart, character and organizational talents, sensitive to contemporary problems. The authors are Mrs M. Sobieszczak-Marciniak, the director of the Maria Sklodowska-Curie Museum in Warsaw and Mrs H. Krajewska, the direct...

  12. High power densities from high-temperature material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  13. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  14. High-Temperature, High-Load-Capacity Radial Magnetic Bearing

    Science.gov (United States)

    Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben

    2005-01-01

    A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).

  15. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  16. Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  17. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  18. High-Temperature Ionization in Protoplanetary Disks

    CERN Document Server

    Desch, Steven J

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (> 500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains' work functions. The charged species' abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks' dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge locat...

  19. Filter unit for use at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ciliberti, D.F.; Lippert, T.E.

    1988-04-05

    A filtering unit for the filtering of particulates from a particulate-containing high temperature gas stream is described comprising a ceramic, tubular filter element, having a closed bottom and side walls and an open top at the upper region thereof, disposed in an aperture in a tube sheet. The walls of the tube sheet about the aperature have an inwardly extending flange thereon, with the open top of the ceramic, tubular filter element adjacent one surface of the tube sheet where filtered gases are discharged, and the closed bottom and side walls exposed to the area of the opposite surface of the tube sheet where a particulate-containing high temperature gas stream to be filtered is present. A ceramic spiral spring is provided at an end of the ceramic, tubular filter element to bias the upper region of the ceramic, tubular filter element into contact with the flange so as to seal the ceramic, tubular filter element to the flange on the tube sheet.

  20. High density and high temperature plasmas in Large Helical Device

    Science.gov (United States)

    Komori, Akio

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than ~ 1 × 1021 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  1. High density and high temperature plasmas in Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Komori, Akio, E-mail: komori@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan)

    2010-11-01

    Recently a new confinement regime called Super Dense Core (SDC) mode was discovered in Large Helical Device (LHD). An extremely high density core region with more than {approx} 1 x 10{sup 21} m{sup -3} is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB is very high and the particle confinement in the core region is {approx} 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature up to 5.6 keV with the formation of the internal transport barrier (ITB). In the electron heating experiments with 77 GHz gyrotrons, the highest electron temperature more than 15 keV was achieved, where plasmas are in the neoclassical regime.

  2. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  3. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  4. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  5. High pressure/high temperature thermogravimetric apparatus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C and 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.

  6. Enhanced High Temperature Piezoelectrics Based on BiScO3-PbTiO3 Ceramics

    Science.gov (United States)

    Sehirlioglu, Alp; Sayir, Ali; Dynys, Fred

    2009-01-01

    High-temperature piezoelectrics are a key technology for aeronautics and aerospace applications such as fuel modulation to increase the engine efficiency and decrease emissions. The principal challenge for the insertion of piezoelectric materials is the limitation on upper use temperature which is due to low Curie-Temperature (TC) and increasing electrical conductivity. BiScO3-PbTiO3 (BS-PT) system is a promising candidate for improving the operating temperature for piezoelectric actuators due to its high TC (greater than 400 C). Bi2O3 was shown to be a good sintering aid for liquid phase sintering resulting in reduced grain size and increased resistivity. Zr doped and liquid phase sintered BS-PT ceramics exhibited saturated and square hysteresis loops with enhanced remenant polarization (37 microC per square centimeter) and coercive field (14 kV/cm). BS-PT doped with Mn showed enhanced field induced strain (0.27% at 50kV/cm). All the numbers indicated in parenthesis were collected at 100 C.

  7. High-temperature superconducting undulator magnets

    Science.gov (United States)

    Kesgin, Ibrahim; Kasa, Matthew; Ivanyushenkov, Yury; Welp, Ulrich

    2017-04-01

    This paper presents test results on a prototype superconducting undulator magnet fabricated using 15% Zr-doped rare-earth barium copper oxide high temperature superconducting (HTS) tapes. On an 11-pole magnet we demonstrate an engineering current density, J e, of more than 2.1 kA mm‑2 at 4.2 K, a value that is 40% higher than reached in comparable devices wound with NbTi-wire, which is used in all currently operating superconducting undulators. A novel winding scheme enabling the continuous winding of tape-shaped conductors into the intricate undulator magnets as well as a partial interlayer insulation procedure were essential in reaching this advance in performance. Currently, there are rapid advances in the performance of HTS; therefore, achieving even higher current densities in an undulator structure or/and operating it at temperatures higher than 4.2 K will be possible, which would substantially simplify the cryogenic design and reduce overall costs.

  8. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  9. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  10. Turbine vane with high temperature capable skins

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Jay A [Oviedo, FL

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  11. Electrode Kinetics in High Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Bay, Lasse

    1998-01-01

    The O_2 reduction on Pt electrode with an yttria stabilized zirconia (YSZ) electrolyte is examined with potential step, voltammetry and impedance measurements. Inductive hysteresis are observed in all cases, indicating an activation-deactivation process for the electrode reaction. The same is found...... when the electrolyte is Gd doped ceria. The activation is generated by current passage. The time constant for the hysteresis is large considering the high operating temperatures, 800- 1000^oC. For the activation process potential steps give two time constants 10^2s and 10^3s for an anodic current, 10...... treated by modelling. The phenomenological model proposed can explain the principal behaviour of the inductive hysteresis. The activation process has first order dependence of the current density and the deactivation first order with respect to the activation.AFM pictures of the electrode...

  12. High temperature superconductivity space experiment (HTSSE)

    Science.gov (United States)

    Ritter, J. C.; Nisenoff, M.; Price, G.; Wolf, S. A.

    1991-01-01

    An experiment dealing with high-temperature superconducting devices and components in space is discussed. A variety of devices (primarily passive microwave and millimeter-wave components) has been procured and will be integrated with a cryogenic refrigerating and data acquisition system to form the space package, which will be launched in late 1992. This space experiment is expected to demonstrate that this technology is sufficiently robust to survive the space environment and that the technology has the potential to improve the operation of space systems significantly. The devices for the initial launch have been evaluated electrically, thermally, and mechanically, and will be integrated into the final space package early in 1991. The performance of the devices is summarized, and some potential applications of this technology in space systems are outlined.

  13. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  14. HIGH TEMPERATURE OXIDATION PERFORMANCE OF ALUMINIDE COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Pint, B.A.; Zhang, Y.; Haynes, J.A.; Wright, I.G.

    2003-04-22

    In order to determine the potential benefits and limitations of aluminide coatings, coatings made by chemical vapor deposition (CVD) on Fe- and Ni-base alloy substrates are being evaluated in various high-temperature environments. Testing of coatings on representative ferritic (Fe-9Cr-1Mo) and austenitic (type 304L stainless steel) alloys has found that high frequency thermal cycling (1h cycle time) can significantly degrade the coating. Based on comparison with similar specimens with no thermal cycling or a longer cycle time (100h), this degradation was not due to Al loss from the coating but most likely because of the thermal expansion mismatch between the coating and the substrate. Several coated Ni-base alloys were tested in a high pressure (20atm) steam-CO2 environment for the ZEST (zero-emission steam turbine) program. Coated specimens showed less mass loss than the uncoated specimens after 1000h at 900 C and preliminary characterization examined the post-test coating structure and extent of attack.

  15. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  16. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running...... conduction through stack insulation, cathode air convection and heating of the inlet gasses in manifold. Various measurements are presented to validate the model predictions of the stack temperatures....

  17. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  18. Mechanical behavior of high strength ceramic fibers at high temperatures

    Science.gov (United States)

    Tressler, R. E.; Pysher, D. J.

    1991-01-01

    The mechanical behavior of commercially available and developmental ceramic fibers, both oxide and nonoxide, has been experimentally studied at expected use temperatures. In addition, these properties have been compared to results from the literature. Tensile strengths were measured for three SiC-based and three oxide ceramic fibers for temperatures from 25 C to 1400 C. The SiC-based fibers were stronger but less stiff than the oxide fibers at room temperature and retained more of both strength and stiffness to high temperatures. Extensive creep and creep-rupture experiments have been performed on those fibers from this group which had the best strengths above 1200 C in both single filament tests and tests of fiber bundles. The creep rates for the oxides are on the order of two orders of magnitude faster than the polymer derived nonoxide fibers. The most creep resistant filaments available are single crystal c-axis sapphire filaments. Large diameter CVD fabricated SiC fibers are the most creep and rupture resistant nonoxide polycrystalline fibers tested to date.

  19. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  20. High-temperature thermomagnetic properties of vivianite nodules, Lake El'gygytgyn, Northeast Russia

    Directory of Open Access Journals (Sweden)

    P. S. Minyuk

    2013-02-01

    Full Text Available Vivianite, a hydrated iron phosphate, is abundant in sediments of Lake El'gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Russia (67°30′ N, 172°05′ E. Magnetic measurements, including mass-specific low-field AC magnetic susceptibility, field-dependent magnetic susceptibility, hysteresis parameters, temperature dependence of the induced magnetization, as well as susceptibility in different heating media, provide ample information on vivianite nodules. Electron microprobe analyses, electron microscopy and energy dispersive spectroscopy were used to identify diagnostic minerals. Vivianite nodules are abundant in both sediments of cold (anoxic and warm (oxic stages. Magnetic susceptibility of the nodules varies from 0.78 × 10−6 m3 kg−1 to 1.72 × 10−6 m3 kg−1 (average = 1.05 × 10−6 m3 kg−1 and is higher than the susceptibility of sediments from the cold intervals. Magnetic properties of vivianite are due to the respective product of oxidation as well as sediment and mineral inclusions. Three types of curves for high-temperature dependent susceptibility of vivianite indicate different degrees of oxidation and inclusions in the nodules. Vivianite acts as a reductant and reduces hematite to magnetite and masks the goethite–hematite transition during heating. Heating vivianite and sulfur mixtures stimulates the formation of monoclinic pyrrhotite. An additive of arsenic inhibits the formation of magnetite prior to its Curie temperature. Heating selective vivianite and pyrite mixtures leads to formation of several different minerals – magnetite, monoclinic pyrrhotite, and hexagonal pyrrhotite, and makes it difficult to interpret the thermomagnetic curves.

  1. Electric-field assisted switching of magnetization in perpendicularly magnetized (Ga,Mn)As films at high temperatures

    Science.gov (United States)

    Wang, Hailong; Ma, Jialin; Yu, Xueze; Yu, Zhifeng; Zhao, Jianhua

    2017-01-01

    The electric-field effects on the magnetism in perpendicularly magnetized (Ga,Mn)As films at high temperatures have been investigated. An electric-field as high as 0.6 V nm-1 is applied by utilizing a solid-state dielectric Al2O3 film as a gate insulator. The coercive field, saturation magnetization and magnetic anisotropy have been clearly changed by the gate electric-field, which are detected via the anomalous Hall effect. In terms of the Curie temperature, a variation of about 3 K is observed as determined by the temperature derivative of the sheet resistance. In addition, electrical switching of the magnetization assisted by a fixed external magnetic field at 120 K is demonstrated, employing the gate-controlled coercive field. The above experimental results have been attributed to the gate voltage modulation of the hole density in (Ga,Mn)As films, since the ferromagnetism in (Ga,Mn)As is carrier-mediated. The limited modulation magnitude of magnetism is found to result from the strong charge screening effect introduced by the high hole concentration up to 1.10  ×  1021 cm-3, while the variation of the hole density is only about 1.16  ×  1020 cm-3.

  2. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.;

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 k...... showed enhanced chemical stability towards radical attacks under the Fenton test, reduced volume swelling upon the acid doping and improved mechanical strength at acid doping levels of as high as about 11 mol H3PO4 per molar repeat polymer unit. The PBI‐78kDa/10.8PA membrane, for example, exhibited...... tensile strength of 30.3 MPa at room temperature or 7.3 MPa at 130 °C and a proton conductivity of 0.14 S cm–1 at 160 °C. Fuel cell tests with H2 and air at 160 °C showed high open circuit voltage, power density and a low degradation rate of 1.5 μV h–1 at a constant load of 300 mA cm–2....

  3. Crystal structures at high pressures and temperatures

    Science.gov (United States)

    Caldwell, Wendel Alexander

    2000-10-01

    The diamond anvil cell (DAC) is a unique instrument that can generate pressures equivalent to those inside planetary interiors (pressures on the order of 1 million atmospheres) under sustained conditions. When combined with a bright source of collimated x-rays, the DAC can be used to probe the structure of materials in-situ at ultra-high pressures. An understanding of the high-pressure structure of materials is important in determining what types of processes may take place in the Earth at great depths. Motivated by previous studies showing that xenon becomes metallic at pressures above ˜1 megabar (100 GPa), we examined the stable structures and reactivity of xenon at pressures approaching that of the core-mantle boundary in the Earth. Our findings indicate the transformation of xenon from face-centered cubic (fcc) to hexagonal close-packed (hcp) structures is kinetically hindered at room temperature, with the equilibrium fcc--hcp phase boundary at 21 (+/-3) gigapascals, a pressure lower than was previously thought. Additionally, we find no tendency on the part of xenon to form a metal alloy with iron or platinum to at least 100 to 150 gigapascals, making it unlikely that the Earth's core serves as a reservoir for primordial xenon. Measurements of the compressibility of natural (Mg.75,Fe .25)2SiO4 gamma-spinel at pressures of the Earth's transition zone yield a pressure derivative of the bulk modulus K0 ' = 6.3 (+/-0.3). As gamma-spinel is considered to be a dominant mineral phase of the transition-zone of the Earth's mantle (400--670 km depth), the relatively high value of K0' for gamma-spinel may help explain the rapid increase with depth of seismic velocities through the transition zone. The thermodynamics, mechanisms and kinetics of pressure-induced amorphization are not well understood. We report here new studies indicating little or no entropy difference between the crystalline and glassy states of Ca(OH) 2 (portlandite). Additional work on the pressure

  4. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  5. High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  6. High temperature superconductors in electromagnetic applications

    CERN Document Server

    Richens, P E

    2000-01-01

    powder-in-tube and dip-coated, have been made using a novel single loop tensometer that enables the insertion of a reasonably long length of conductor into the bore of a high-field magnet. The design, construction, and characterization of a High Temperature Superconducting (HTS) magnet is described. The design stage has involved the development of computer software for the calculation of the critical current of a solenoid wound from anisotropic HTS conductor. This calculation can be performed for a variety of problems including those involving magnetic materials such as iron by the incorporation of finite element electromagnetic analysis software. This has enabled the optimization of the magnet's performance. The HTS magnet is wound from 190 m of silver-matrix Bi sub 2 Sr sub 2 Ca sub 2 Cu sub 3 O sub 1 sub 0 powder-in-tube tape conductor supplied by Intermagnetics General Corporation. The dimensions are 70 mm bore and 70 mm length, and it consists of 728 turns. Iron end-plates were utilized in order to reduc...

  7. Assessment of microelectronics packaging for high temperature, high reliability applications

    Energy Technology Data Exchange (ETDEWEB)

    Uribe, F.

    1997-04-01

    This report details characterization and development activities in electronic packaging for high temperature applications. This project was conducted through a Department of Energy sponsored Cooperative Research and Development Agreement between Sandia National Laboratories and General Motors. Even though the target application of this collaborative effort is an automotive electronic throttle control system which would be located in the engine compartment, results of this work are directly applicable to Sandia`s national security mission. The component count associated with the throttle control dictates the use of high density packaging not offered by conventional surface mount. An enabling packaging technology was selected and thermal models defined which characterized the thermal and mechanical response of the throttle control module. These models were used to optimize thick film multichip module design, characterize the thermal signatures of the electronic components inside the module, and to determine the temperature field and resulting thermal stresses under conditions that may be encountered during the operational life of the throttle control module. Because the need to use unpackaged devices limits the level of testing that can be performed either at the wafer level or as individual dice, an approach to assure a high level of reliability of the unpackaged components was formulated. Component assembly and interconnect technologies were also evaluated and characterized for high temperature applications. Electrical, mechanical and chemical characterizations of enabling die and component attach technologies were performed. Additionally, studies were conducted to assess the performance and reliability of gold and aluminum wire bonding to thick film conductor inks. Kinetic models were developed and validated to estimate wire bond reliability.

  8. Geochemistry of Aluminum in High Temperature Brines

    Energy Technology Data Exchange (ETDEWEB)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  9. High Temperature Oxidation and Corrosion Properties of High Entropy Superalloys

    Directory of Open Access Journals (Sweden)

    Te-Kang Tsao

    2016-02-01

    Full Text Available The present work investigates the high temperature oxidation and corrosion behaviour of high entropy superalloys (HESA. A high content of various solutes in HESA leads to formation of complex oxides, however the Cr and Al activities of HESA are sufficient to promote protective chromia or alumina formation on the surface. By comparing the oxidation and corrosion resistances of a Ni-based superalloy—CM247LC, Al2O3-forming HESA can possess comparable oxidation resistance at 1100 °C, and Cr2O3-forming HESA can exhibit superior resistance against hot corrosion at 900 °C. This work has demonstrated the potential of HESA to maintain surface stability in oxidizing and corrosive environments.

  10. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  11. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  12. Laser Brazing of High Temperature Braze Alloy

    Science.gov (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  13. Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure

    Science.gov (United States)

    Wang, Shuanhu; Zou, Lvkuan; Zhang, Xu; Cai, Jianwang; Wang, Shufang; Shen, Baogen; Sun, Jirong

    2015-10-01

    Based on unique experimental setups, the temperature dependences of the longitudinal spin Seebeck effect (LSSE) and spin Hall magnetoresistance (SMR) of the Pt/yttrium iron garnet (Pt/YIG) hybrid structure are determined in a wide temperature range up to the Curie temperature of YIG. From a theoretical analysis of the experimental relationship between the SMR and temperature, the spin mixing conductance of the Pt/YIG interface is deduced as a function of temperature. Adopting the deduced spin mixing conductance, the temperature dependence of the LSSE is well reproduced based on the magnon spin current theory. Our research sheds new light on the controversy about the theoretical models for the LSSE.

  14. Analytic Models of High-Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-11-29

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P{sub s} = [A{sub s}+(1{minus}{alpha}{sub W})A{sub W}+A{sub H}]{sigma}T{sub R}{sup 4} + (4V{sigma}/c)(dT{sub R}{sup r}/dt) where P{sub S} is the total power radiated by the source, A{sub s} is the source area, A{sub W} is the area of the cavity wall excluding the source and holes in the wall, A{sub H} is the area of the holes, {sigma} is the Stefan-Boltzmann constant, T{sub R} is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo {alpha}{sub W} {triple_bond} (T{sub W}/T{sub R}){sup 4} where T{sub W} is the brightness temperature of area A{sub W}. The net power radiated by the source P{sub N} = P{sub S}-A{sub S}{sigma}T{sub R}{sup 4}, which suggests that for laser-driven hohlraums the conversion efficiency {eta}{sub CE} be defined as P{sub N}/P{sub LASER}. The characteristic time required to change T{sub R}{sup 4} in response to a change in P{sub N} is 4V/C[(l{minus}{alpha}{sub W})A{sub W}+A{sub H}]. Using this model, T{sub R}, {alpha}{sub W}, and {eta}{sub CE} can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P{sub N} = {l_brace}(1{minus}{alpha}{sub W})A{sub W}+A{sub H}+[(1{minus}{alpha}{sub C})(A{sub S}+A{sub W}{alpha}{sub W})A{sub C}/A{sub T}]{r_brace}{sigma}T{sub RC}{sup 4} where {alpha}{sub C} is the capsule albedo, A{sub C} is the capsule area, A{sub T} {triple_bond} (A{sub S}+A{sub W}+A{sub H}), and T{sub RC} is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented.

  15. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hemrick, James Gordon [ORNL; Smith, Jeffrey D [ORNL; O' Hara, Kelley [University of Missouri, Rolla; Rodrigues-Schroer, Angela [Minteq International, Inc.; Colavito, [Minteq International, Inc.

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  16. Measuring Specific Heats at High Temperatures

    Science.gov (United States)

    Vandersande, Jan W.; Zoltan, Andrew; Wood, Charles

    1987-01-01

    Flash apparatus for measuring thermal diffusivities at temperatures from 300 to 1,000 degrees C modified; measures specific heats of samples to accuracy of 4 to 5 percent. Specific heat and thermal diffusivity of sample measured. Xenon flash emits pulse of radiation, absorbed by sputtered graphite coating on sample. Sample temperature measured with thermocouple, and temperature rise due to pulse measured by InSb detector.

  17. High Temperature Electrical Insulation Materials for Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's future space science missions cannot be realized without the state of the art high temperature insulation materials of which higher working temperature, high...

  18. Thermoelectric Powered High Temperature Wireless Sensing

    Science.gov (United States)

    Kucukkomurler, Ahmet

    This study describes use of a thermoelectric power converter to transform waste heat into electrical energy to power an RF receiver and transmitter, for use in harsh environment wireless temperature sensing and telemetry. The sensing and transmitting module employs a DS-1820 low power digital temperature sensor to perform temperature to voltage conversion, an ATX-34 RF transmitter, an ARX-34 RF receiver module, and a PIC16f84A microcontroller to synchronize data communication between them. The unit has been tested in a laboratory environment, and promising results have been obtained for an actual automotive wireless under hood temperature sensing and telemetry implementation.

  19. Critical Temperature Characteristics of Layered High-Temperature Superconductor Under Pressure

    Institute of Scientific and Technical Information of China (English)

    LIANG Fang-Ying

    2009-01-01

    We consider a Ginzburg-Landau modified model of layered high-temperature superconductor under pres-sure. We have theoretically studied the relation between the pressure and the temperature of layered high-temperature superconductor. If the pressure is not a constant, we have a relation of quadratic equation between the pressure and the temperature of layered high-temperature superconductor. In a special case, we find the critical temperature decreases with further increasing pressure. In another special case, the critical temperature increases with further increasing pressure.

  20. High temperature superconductivity induced by incipient magnetism

    Science.gov (United States)

    Weger, M.; Pereg, Y.

    1990-10-01

    We consider the BCS gap equation, with an attractive interaction λ with an upper cutoff ω 0 and lower cutoff ω 1, and a repulsive interaction μ with cutoffΓ. We consider parameters such that a superconducting solution does not exist. We add a repulsive interaction ν eith cutoff ω1 ( ω1 < ω0), and show that this repulsive interaction (that we attribute to incipient magnetism) induces a superconducting state possessing a high transition temperature. In this state, the gap function Δ(ɛ) oscillates as function of ɛ, with a period of order ω 0. We also find solutions antisymmetric in energy [ Δ( ɛ) = - Δ(- ɛ) ], which turn out to be almost degenerate with the normal, symmetric ones. We discuss the physical implications of this model. Our model thus combines a low frequency repulsion due to antiferromagnetic interactions, with excitonic attraction at intermediate frequencies, and ordinary Coulomb repulsion above that. All frequency ranges, and coupling strengths, are comparable with the bandwidth.

  1. High temperature bacterial leaching: HIOX project

    Energy Technology Data Exchange (ETDEWEB)

    Morin, D.; D' Hugues, P.; Bonney, C. F.; Norris, P.; Shwab, W.; Sundkvist, J-E.; Bridges, P. [Bureau de Recherhes Geologiques et Minieres, Orleans (France)

    2001-07-01

    The HIOX project was designed to investigate the use of thermophilic bacterial cultures for the leaching of chalcopyrite (CuFeS{sub 2}, the natural source of copper). Beyond bacterial leaching, the study also encompassed the downstream processing steps in an effort to develop a new method for the recovery of copper in an economical and environmentally-friendly process. Using the HIOX process copper recovery was increased to better than 90 per cent within 5 days with a 12 per cent solids culture, although some potentially limiting factors such as foam generation, nutrient concentrations and mixing/aeration efficiency were also identified. The study resulted in the establishment of a mass balance based on a simplified flowsheet of the process. Techno-economic evaluation carried out at three sites indicated technical feasibility using relatively conventional equipment and capital and operating costs in ranges that suggest that bioleaching with high temperature bacteria is an attractive alternative for the treatment of chalcopyrite concentrate. 5 tabs.

  2. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  3. High-temperature archeointensity measurements from Mesopotamia

    Science.gov (United States)

    Gallet, Yves; Le Goff, Maxime

    2006-01-01

    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  4. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  5. Development of Strengthened Bundle High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

    1997-12-31

    In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

  6. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  7. [Chronological table of Mr. and Mrs. Curie and Mr. and Mrs. Joliot-Curie--in connection with the 100-year anniversary since Dr. H. Becquerel discovered radial ray in 1896].

    Science.gov (United States)

    Yamada, M

    1996-01-01

    This year (1996) is the 100th year since Dr. Henri Becquerel discovered radial rays in 1896 in France. In 1897, Dr. Pierre Curie and Marie Curie preliminarily reported the existence of polonium and radium which have radioactivity. H. Becquerel, Pierre and Marie Curie were awarded the Nobel Chemical Prize for discovering artificial radioactivity in 1935. I report herein the chronological table of Mr. and Mrs. Curie and Mr. and Mrs. Joliot-Curie spanning about one century.

  8. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  9. Frederic Joliot-Curie: the scientist and politics; Frederic Joliot-Curie: le savant et la politique

    Energy Technology Data Exchange (ETDEWEB)

    Pinault, M

    2000-07-01

    This book presents the biography of the French scientist, founder of the French nuclear research, in its social, political, and scientific context. Frederic Joliot-Curie, with his wife Irene, discovered the artificial radioactivity in 1934, won the Nobel price of chemistry in 1935, and demonstrated the existence of the fission phenomenon. He studied the chain reactions and the conditions of realization of a nuclear reactor, called 'Zoe', which was built in 1948. He was the very first chief-commissary of the French atomic energy commission (CEA). (J.S.)

  10. Phase Transition in Conditional Curie-Weiss Model

    CERN Document Server

    Opoku, Alex A; Ansah, Richard

    2016-01-01

    This paper proposes a conditional Curie-Weiss model as a model for opinion formation in a society polarized along two opinions, say opinions 1 and 2. The model comes with interaction strength $\\beta>0$ and bais $h$. Here the population in question is divided into three main groups, namely: Group one consisting of individuals who have decided on opinion 1. Let the proportion of this group be given by $s$. Group two consisting of individauls who have chosen opinion 2. Let $r$ be their proportion. Group three consisting of individuals who are yet to decide and they will decide based on their environmental conditions. Let $1-s-r$ be the proportion of this group. We show that the specific magnetization of the associated conditional Curie-Weiss model has a first order phase transition (discontinuous jump in specific magnetization) at $\\beta^*=\\left(1-s-r\\right)^{-1}$. It is also shown that not all the discontinuous jumps in magnetization will result in phase change. We point out how an extention of this model could...

  11. Vortices in high-performance high-temperature superconductors

    Science.gov (United States)

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; Koshelev, Alexei E.; Kihlstrom, Karen J.; Crabtree, George W.

    2016-11-01

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design—a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

  12. Vortices in high-performance high-temperature superconductors.

    Science.gov (United States)

    Kwok, Wai-Kwong; Welp, Ulrich; Glatz, Andreas; Koshelev, Alexei E; Kihlstrom, Karen J; Crabtree, George W

    2016-11-01

    The behavior of vortex matter in high-temperature superconductors (HTS) controls the entire electromagnetic response of the material, including its current carrying capacity. Here, we review the basic concepts of vortex pinning and its application to a complex mixed pinning landscape to enhance the critical current and to reduce its anisotropy. We focus on recent scientific advances that have resulted in large enhancements of the in-field critical current in state-of-the-art second generation (2G) YBCO coated conductors and on the prospect of an isotropic, high-critical current superconductor in the iron-based superconductors. Lastly, we discuss an emerging new paradigm of critical current by design-a drive to achieve a quantitative correlation between the observed critical current density and mesoscale mixed pinning landscapes by using realistic input parameters in an innovative and powerful large-scale time dependent Ginzburg-Landau approach to simulating vortex dynamics.

  13. High performance internal reforming unit for high temperature fuel cells

    Science.gov (United States)

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  14. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance...

  15. Multi-Scale Porous Ultra High Temperature Ceramics

    Science.gov (United States)

    2015-01-08

    Final 3. DATES COVERED (From - To) 28-Mar-2013 - 27-Sep-2015 4. TITLE AND SUBTITLE Multi-Scale Porous Ultra High Temperature Ceramics ...report summarizes the main outcomes of research to develop multi-scale porosity Ultra High Temperature Ceramic materials. Processing conditions were...flights. 15. SUBJECT TERMS Ultra High Temperature Ceramics , Colloidal Powder Processing, Multi-scale Porous Materials, Lattice Monte

  16. Low Temperature Photoluminescence (PL) from High Electron Mobility Transistors (HEMTs)

    Science.gov (United States)

    2015-03-01

    TECHNICAL REPORT RDMR-WD-14-55 LOW TEMPERATURE PHOTOLUMINESCENCE (PL) FROM HIGH ELECTRON MOBILITY TRANSISTORS (HEMTS...DATE March 2015 3. REPORT TYPE AND DATES COVERED Final 4. TITLE AND SUBTITLE Low Temperature Photoluminescence (PL) From High Electron...temperature Photoluminescence (PL) from High Electron Mobility Transistor (HEMT) structures that have been modified by proton irradiation. The samples are

  17. Structural integrity and life extension of high-temperature components

    Institute of Scientific and Technical Information of China (English)

    WANG Chun; SHEN Shi-ming

    2005-01-01

    Four different topics for high-temperature components, namely the development of the assessment codes for the structural integrity of high-temperature components, the application of continuous damage mechanics and probabilistic damage mode on the life assessment of high-temperature components, the life extension for high-tem perature components and a proposed strategy for remanufacturing of high-temperature components were discussed in this paper. These topics should provide some important insights for the design and re-design of high- temperature components.

  18. Ultra-High Temperature Distributed Wireless Sensors

    Energy Technology Data Exchange (ETDEWEB)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O' Donnell, Alan; Bresnahan, Peter

    2013-03-31

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  19. Curie point depth from spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, México

    Science.gov (United States)

    Espinosa-Cardeña, J. M.; Campos-Enriquez, J. O.

    2008-10-01

    Using aeromagnetic data acquired in the area from the Cerro Prieto geothermal field, we estimated the depth to the Curie point isotherm, interpreted as the base of the magnetic sources, following statistical spectral-based techniques. According to our results the Curie point isotherm is located at a depths ranging from 14 to 17 km. Our result is somewhat deeper than that obtained previously based only in 2-D and 3-D forward modeling of previous low-quality data. However, our results are supported by independent information comprising geothermal gradients, seismicity distribution in the crust, and gravity determined crustal thickness. Our results imply a high thermal gradient (ranging between 33 and 38 °C/km) and high heat flow (of about 100 mW/m 2) for the study area. The thermal regime for the area is inferred to be similar to that from the Salton trough.

  20. Fusion reactors-high temperature electrolysis (HTE)

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A. (ed.)

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.