WorldWideScience

Sample records for high critical temperature

  1. Critical fields in high temperature superconductors

    International Nuclear Information System (INIS)

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  2. Weak links in high critical temperature superconductors

    Science.gov (United States)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  3. Weak links in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  4. Searching for superconductors with high critical temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C

    1977-08-18

    Critical temperature of superconductors can be and must be raised so that their range of application can be broadened. It was estimated that, in 3 to 5 years, superconductor electric generators might be used in nuclear submarines and/or other applications where the requirements of small volume and light weight are critical. The BCS theory was recapitulated. Possible methods of achieving higher critical temperature were proposed and discussed.

  5. Thermal conductivity in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Castello, D.J.

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow the removal of the sample in clean fashion, so that further heat treatments could be performed, and therefore no adhesives were used in the mounting of the thermocouples or heat sinks, etc. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. Based on this analysis, the developed measuring method allows a precise and reliable measurements, in a continuous fashion, for temperatures above 25K. The same setup is used in a stationary mode at low temperatures, so the sample needs to be mounted only once. κ(T) has been measured in two ceramic samples of La 2 CuO 4 : the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit a strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T N ' ≅ 40K and T N '' ≅ 240K. The low temperature dependence is T 1 .6 and T 2 .3 respectively. It was interpreted that the former sample presents a greater dispersion due to localized excitations, characteristic of amorphouus materials, 'tunneling two-level systems' (TS). A third syntherized sample of CuO exhibits a typical behaviour of an insulator, with T 2 .6 at low temperatures, a maximum at 40K and a decrease in T -1 at high temperatures. κ(T) in a SC sample of La 1 .85Sr 1 .15CuO 4 with T c =35.5K has also been measured, observing a small increase below T c because of the diminishing of the phonon dispersion due to the condensating electrons. κ(T) is lower than in the previous samples and thus a greater number of defects was inferred. At low temperatures, its dependence is T 1 .4 in agreement with the

  6. High temperature superconductivity the road to higher critical temperature

    CERN Document Server

    Uchida, Shin-ichi

    2015-01-01

    This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field.   Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been...

  7. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  8. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  9. Critical transport current in granular high temperature superconductors

    International Nuclear Information System (INIS)

    Bogolyubov, N.A.

    1999-01-01

    The temperature and size dependence of the critical current in a zero magnetic field of three bismuth-based ceramic samples with round cross section and one sample with rectangular triangle cross section have been studied by a contactless technique. It is shown that the critical current can be presented as a product of the temperature and size dependent factors. The temperature-dependent multiplier reflects the individual peculiarities of the Josephson net of each sample, while the size factor is a homogeneous function of the cross-section sizes. The index of this function is independent of the cross-section form, the temperature and individual properties of HTSC samples. The radial distribution of critical current density in round samples and dependence of the critical current density on the magnetic conduction in granular HTSC have been found from the analysis of experimental data

  10. High critical temperature superconductors: Progress achieved after two years

    International Nuclear Information System (INIS)

    Maillard, J.M.; Rammal, R.; Vittorge, M.C.

    1989-01-01

    Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given [fr

  11. High critical temperature superconducting composite and fabrication process

    International Nuclear Information System (INIS)

    Dubots, P.; Legat, D.

    1989-01-01

    The core comprises a high temperature superconducting sintered oxide coated with alumina or barium oxide covered with a first sheath in aluminum, a second sheath in niobium and a third sheath in copper [fr

  12. Potentialities in electronics of new high critical temperature superconductors

    International Nuclear Information System (INIS)

    Hartemann, P.

    1989-01-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed [fr

  13. Thin Film Technology of High-Critical-Temperature Superconducting Electronics.

    Science.gov (United States)

    1985-12-11

    ANALISIS OF THIN-FILM SUPERCONDUCTORS J. Talvacchio, M. A. Janocko, J. R. Gavaler, and A...in the areas of substrate preparation, niobum nitride, nlobium-tin, and molybdenum-rhenium. AN INTEGRATED DEPOSITION AND ANALISI - FACILITT The four...mobility low (64). The voids are separating 1-3 nm clusters of dense deposit. At low deposition temperatures this microstructure will persist near

  14. Stable superconducting magnet. [high current levels below critical temperature

    Science.gov (United States)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  15. Theoretical upper critical field Hc2 for inhomogeneous high temperature superconductors

    International Nuclear Information System (INIS)

    Caixeiro, E.S.; Gonzalez, J.L.; Mello, E.V.L. de

    2004-01-01

    We present the theoretical upper critical field H c2 (T) of the high temperature superconductors (HTSC), calculated through a linearized Ginzburg-Landau equation modified to consider the intrinsic inhomogeneity of the HTSC. The unusual behavior of H c2 (T) for these compounds, and other properties like the Meissner and Nernst effects detected at temperatures much higher than the critical temperature T c of the sample, are explained by the approach

  16. Quantum critical point in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl

    2009-02-02

    Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.

  17. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (Hc2) and critical temperature (Tc). The critical current (Ic) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new Ic measurement system that can carry out accurate Ic measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The Ic measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa2Cu3O7-x(YBCO) tapes Ic determination with different temperatures and magnetic fields.

  18. Critical current measurements of high-temperature superconducting short samples at a wide range of temperatures and magnetic fields.

    Science.gov (United States)

    Ma, Hongjun; Liu, Huajun; Liu, Fang; Zhang, Huahui; Ci, Lu; Shi, Yi; Lei, Lei

    2018-01-01

    High-Temperature Superconductors (HTS) are potential materials for high-field magnets, low-loss transmission cables, and Superconducting Magnetic Energy Storage (SMES) due to their high upper critical magnetic field (H c2 ) and critical temperature (T c ). The critical current (I c ) of HTS, which is one of the most important parameters for superconductor application, depends strongly on the magnetic fields and temperatures. A new I c measurement system that can carry out accurate I c measurement for HTS short samples with various temperatures (4.2-80 K), magnetic fields (0-14 T), and angles of the magnetic field (0°-90°) has been developed. The I c measurement system mainly consists of a measurement holder, temperature-control system, background magnet, test cryostat, data acquisition system, and DC power supply. The accuracy of temperature control is better than ±0.1 K over the 20-80 K range and ±0.05 K when measured below 20 K. The maximum current is over 1000 A with a measurement uncertainty of 1%. The system had been successfully used for YBa 2 Cu 3 O 7-x (YBCO) tapes I c determination with different temperatures and magnetic fields.

  19. Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors

    Science.gov (United States)

    Lykov, A. N.

    2008-06-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.

  20. Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2008-01-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors

  1. The study on a new superconductor (oxide Ba-Y-Cu) with high critical temperature Tc by positron annihilation

    International Nuclear Information System (INIS)

    Zhang Caigu; Yu Zhuxing; Wang Zhu; Huang Zhe; Zhou Jun

    1987-01-01

    The study on a new superconductor oxide Ba-Y-Cu with high critical temperature Tc is described. The experimental results show that positron lifetime reducing reflects variable curve of resistance with temperature. A peak of positron lifetime is appeared at critical temperature

  2. Kiloampere, Variable-Temperature, Critical-Current Measurements of High-Field Superconductors.

    Science.gov (United States)

    Goodrich, L F; Cheggour, N; Stauffer, T C; Filla, B J; Lu, X F

    2013-01-01

    We review variable-temperature, transport critical-current (I c) measurements made on commercial superconductors over a range of critical currents from less than 0.1 A to about 1 kA. We have developed and used a number of systems to make these measurements over the last 15 years. Two exemplary variable-temperature systems with coil sample geometries will be described: a probe that is only variable-temperature and a probe that is variable-temperature and variable-strain. The most significant challenge for these measurements is temperature stability, since large amounts of heat can be generated by the flow of high current through the resistive sample fixture. Therefore, a significant portion of this review is focused on the reduction of temperature errors to less than ±0.05 K in such measurements. A key feature of our system is a pre-regulator that converts a flow of liquid helium to gas and heats the gas to a temperature close to the target sample temperature. The pre-regulator is not in close proximity to the sample and it is controlled independently of the sample temperature. This allows us to independently control the total cooling power, and thereby fine tune the sample cooling power at any sample temperature. The same general temperature-control philosophy is used in all of our variable-temperature systems, but the addition of another variable, such as strain, forces compromises in design and results in some differences in operation and protocol. These aspects are analyzed to assess the extent to which the protocols for our systems might be generalized to other systems at other laboratories. Our approach to variable-temperature measurements is also placed in the general context of measurement-system design, and the perceived advantages and disadvantages of design choices are presented. To verify the accuracy of the variable-temperature measurements, we compared critical-current values obtained on a specimen immersed in liquid helium ("liquid" or I c liq) at 5

  3. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  4. Numerical solutions to the critical state in a magnet-high temperature superconductor interaction

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Alonso, D; Coombs, T A; Campbell, A M [Cambridge University Engineering Department, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2005-02-01

    This paper presents an algorithm to simulate the electromagnetic behaviour of devices containing high temperature superconductors in axially symmetric problems. The numerical method is built within the finite element method. The electromagnetic properties of HTSCs are described through the critical-state model. Measurements of the axial force between a permanent magnet and a melt-textured YBCO puck are obtained in order to validate the method. This simple system is modelled so that the proposed method obtains the current distribution and electromagnetic fields in the HTSC. The forces in the interaction between the magnet and the HTSC puck can then be calculated. A comparison between experimental and simulation results shows good matching. The simplification of using the critical-state model and ignoring flux creep in this type of configuration is also explored.

  5. Interlaboratory comparison on high-temperature superconductor critical-current measurements

    International Nuclear Information System (INIS)

    Wiejaczka, J.A.; Goodrich, L.F.

    1997-01-01

    An extensive interlaboratory comparison was conducted on high temperature superconductor (HTS) critical-current measurements. This study was part of an international cooperative effort through the Versailles Project on Advanced Materials and Standards (VAMAS). The study involved six US laboratories that are recognized leaders in the field of HTS. This paper includes the complete results from this comparison of critical-current measurements on Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10-x (2223) tapes. The effects of sample characteristics, specimen mounting, measurement technique, and specimen damage were studied. The future development of a standard HTS measurement method is also discussed. Most of the evolution of this emerging technology has occurred in improvement of the performance of the conductors. The successful completion of this interlaboratory comparison is an important milestone in the evolution of HTS technology and marks a level of maturity that the technology has reached

  6. Very high temperature gas-cooled reactor critical facility for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Ishihara, Noriyuki

    1985-01-01

    The outline of the critical facility, its construction, the results of the basic studies and experiments on the graphite material, and the results obtained from the test conducted on the overall functions of the critical facility were reported. With the completion of the critical facility, it has been made possible to demonstrate the establishment of the manufacturing techniques and product-quality guarantee for extremely pure isotropic graphite in addition to the reliability of the structural design and analytical techniques for the main unit of the critical facility. It is expected that the present facility will prove instrumental in the verification of the nuclear safety of the very high temperature gas-cooled nuclear reactor and in the acquisition of experimental data on the reactor physics pertaining to the improvement of the reactor characteristics. The tasks which remain to be accomplished hereafter are the improvements of the performance and quality features with regard to the oxidization of graphite, the heat-resisting structural materials, and the welded structures. (Kubozono, M.)

  7. Ductile long range ordered alloys with high critical ordering temperature and wrought articles fabricated therefrom

    Science.gov (United States)

    Liu, Chain T.; Inouye, Henry

    1979-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Fe, Co).sub.3 and V(Fe, Co, Ni).sub.3 systems. These alloys have the following compositions comprising by weight: 22-23% V, 14-30% Fe, and the remainder Co or Co and Ni with an electron density no more than 7.85. The maximum combination of high temperature strength, ductility and creep resistance are manifested in the alloy comprising by weight 22-23% V, 14-20% Fe and the remainder Co and having an atomic composition of V(Fe .sub.0.20-0.26 C Co.sub.0.74-0.80).sub.3. The alloy comprising by weight 22-23% V, 16-17% Fe and 60-62% Co has excellent high temperature properties. The alloys are fabricable into wrought articles by casting, deforming, and annealing for sufficient time to provide ordered structure.

  8. Research on reactor physics using the Very High Temperature Reactor Critical Assembly (VHTRC)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1988-01-01

    The High Temperature Engineering Test Reactor (HTTR), of which the research and development are advanced by Japan Atomic Energy Research Institute, is planned to apply for the permission of installation in fiscal year 1988, and to start the construction in the latter half of fisical year 1989. As the duty of reactor physics research, the accuracy of the nuclear data is to be confirmed, the validity of the nuclear design techniques is to be inspected, and the nuclear safety of the HTTR core design is to be verified. Therefore, by using the VHTRC, the experimental data of the reactor physics quantities are acquired, such as critical mass, the reactivity worth of simulated control rods and burnable poison rods, the temperature factor of reactivity, power distribution and so on, and the experiment and analysis are advanced. The cores built up in the VHTRC so far were three kinds having different lattice forms and degrees of uranium enrichment. The calculated critical mass was smaller by 1-5 % than the measured values. As to the power distribution and the reactivity worth of burnable poison rods, the prospect of satisfying the required accuracy for the design of the HTTR core was obtained. The experiment using a new core having axially different enrichment degree is planned. (K.I.)

  9. Criticality assessment for prismatic high temperature reactors by fuel stochastic Monte Carlo modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Jitka [Department of Nuclear and Reactor Physics, Royal Institute of Technology, KTH, Roslagstullsbacken 21, S-10691 Stockholm (Sweden)], E-mail: jitka.zakova@neutron.kth.se; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, ANL, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov

    2008-05-15

    Modeling of prismatic high temperature reactors requires a high precision description due to the triple heterogeneity of the core and also to the random distribution of fuel particles inside the fuel pins. On the latter issue, even with the most advanced Monte Carlo techniques, some approximation often arises while assessing the criticality level: first, a regular lattice of TRISO particles inside the fuel pins and, second, the cutting of TRISO particles by the fuel boundaries. We utilized two of the most accurate Monte Codes: MONK and MCNP, which are both used for licensing nuclear power plants in United Kingdom and in the USA, respectively, to evaluate the influence of the two previous approximations on estimating the criticality level of the Gas Turbine Modular Helium Reactor. The two codes exactly shared the same geometry and nuclear data library, ENDF/B, and only modeled different lattices of TRISO particles inside the fuel pins. More precisely, we investigated the difference between a regular lattice that cuts TRISO particles and a random lattice that axially repeats a region containing over 3000 non-cut particles. We have found that both Monte Carlo codes provide similar excesses of reactivity, provided that they share the same approximations.

  10. Organic superconductors with high transition temperatures and high critical magnetic fields

    International Nuclear Information System (INIS)

    Wolf, A.A.; Halpern, E.H.

    1976-01-01

    Organic compounds exhibit superconducting-like behavior, as to magnetic and electrical properties, at elevated temperatures above 21 0 K, where 21 0 K is the transition temperature of most known metallic superconducting materials. The structure of the organic materials according to this invention is a plurality of superconducting clusters, forming islands within a matrix of insulating material. The ratio of the clusters to the matrix material is a minimum at 1 : 10 4 . The organic compound comprises two distinct atomic groups termed an R group and COOM group combining as R-COOM with the COOM group clustering to form superconducting islands, within the R material matrix. 15 claims, 6 figures

  11. An investigation of texturing by magnetic and mechanical techniques in high critical temperature superconducting ceramics

    International Nuclear Information System (INIS)

    Deschanels, X.

    1992-11-01

    The principal goal of this work is to quantify the influence of texture of ceramic superconductors ReBaCuO (Re=Dy, Y) on their critical current density (Jc). The magnetic alignment of particles at ambient temperature is the first technique who has allowed us to produce superconducting (Meissner effect) and textured ceramics. However, these materials are very brittle because of their porosity and this makes it impossible to measure their Jc. Press-forging (or creep sintering) is the second technique who has allowed us to prepare highly textured ceramics materials which are also dense. We have studied the influence of various conditions of thermomechanical treatment (sintering time and temperature, applied load, rate of deformation, density of the material at the beginning) on the texture quality. We have shown that at 900 deg, the eutectic liquid formed by BaCuO 2 , CuO and YBa 2 Cu 3 0 7-Y various mechanisms that help explain the formation of observed texture. After the oxidation stage which requires heat treatment under controlled atmospheres, we obtain superconducting ceramics (Tc=85 K). Moreover, this study also shows that the texture can improve the Jc by 400%, to 750 A/cm 2 at 77 K in the best specimens. This low value is explained by the presence of non-superconducting secondary phases and amorphous phases at the grain boundaries. (Author). 120 refs., figs., tabs

  12. Effect of sheath material on critical current characteristics of MgB2 at high temperatures

    International Nuclear Information System (INIS)

    Kiuchi, M.; Yamauchi, K.; Kurokawa, T.; Otabe, E.S.; Matsushita, T.; Okada, M.; Tanaka, K.; Kumakura, H.; Kitaguchi, H.

    2004-01-01

    Critical current density and irreversibility field were measured at various temperatures and magnetic fields for MgB 2 PIT tape specimens with different sheaths materials. The experimental results were compared with theoretical estimations using the flux creep-flow model. It is found that the hardness of sheath material indirectly affects the pinning property only through the packing density of MgB 2 . It is considered that the critical current density is mainly determined by a low value of distributed local critical current density determined by grain connectivity. On the other hand, the irreversibility field which is approximately the same among the three tapes is mainly determined by the average pinning strength

  13. Vortex lines in layered superconductors. II. Pinning and critical currents in high temperature superconductors

    Science.gov (United States)

    Manuel, P.

    1994-02-01

    In this article, a qualitative survey is given on the various phenomena which influence the critical current of high temperature superconductors. Critical current is defined as a property related to a non-zero electric field criterion, the level of which is fixed by experimental considerations, or efficiency requirements of applications. The presentation is restricted to extrinsic intragranular critical current, which depends in a complex way on the interplay between the characteristics of pinning centres and the properties of the vortex lattice. The discussion is focussed on the configuration {B} / / {c}, which contains the main elements of this problem. Differences of behaviour between Y(123) and BSCCO (Bi(2212) or Bi(2223)) are analysed in the context of their respective anisotropy factors. Possible regimes for pinning and creep are discussed in various temperature domains. From critical current results, a strong pinning regime is found to occur in BSCCO, whereas the pinning strength in Y(123) is still an open question. The thermal decrease of critical current allows a collective creep regime to appear in both materials, but at different temperature ranges. The disappearance of correlation effects near the irreversibility line results in a fall of the effective pinning energy. We show that in BSCCO, the effective pinning energy deduced from experimental results is not in agreement with pinning by randomly dispersed oxygen vacancies. Finally, we shortly describe the microstructures which could allow a more efficient pinning in future materials. On effectue une présentation qualitative des divers phénomènes qui contrôlent la valeur du courant critique dans les supraconducteurs à haute température. La notion de courant critique qui est utilisée est reliée à un critère de champ électrique non nul, fixé par des considérations expérimentales ou des exigences de rendement pour les applications. On se restreint au problème des courants critiques

  14. Superconducting critical temperature under pressure

    Science.gov (United States)

    González-Pedreros, G. I.; Baquero, R.

    2018-05-01

    The present record on the critical temperature of a superconductor is held by sulfur hydride (approx. 200 K) under very high pressure (approx. 56 GPa.). As a consequence, the dependence of the superconducting critical temperature on pressure became a subject of great interest and a high number of papers on of different aspects of this subject have been published in the scientific literature since. In this paper, we calculate the superconducting critical temperature as a function of pressure, Tc(P), by a simple method. Our method is based on the functional derivative of the critical temperature with the Eliashberg function, δTc(P)/δα2F(ω). We obtain the needed coulomb electron-electron repulsion parameter, μ*(P) at each pressure in a consistent way by fitting it to the corresponding Tc using the linearized Migdal-Eliashberg equation. This method requires as input the knowledge of Tc at the starting pressure only. It applies to superconductors for which the Migdal-Eliashberg equations hold. We study Al and β - Sn two weak-coupling low-Tc superconductors and Nb, the strong coupling element with the highest critical temperature. For Al, our results for Tc(P) show an excellent agreement with the calculations of Profeta et al. which are known to agree well with experiment. For β - Sn and Nb, we found a good agreement with the experimental measurements reported in several works. This method has also been applied successfully to PdH elsewhere. Our method is simple, computationally light and gives very accurate results.

  15. Potentialities in electronics of new high critical temperature superconductors. Potentialites en electronique des nouveaux supraconducteurs a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Hartemann, P [Thomson-CSF, 75 - Paris (FR)

    1989-09-01

    The main electronic applications of superconductors involve the signal processing, the electromagnetic wave detection and the magnetometry. Characteristics of devices based on conventional superconductors cooled by liquid helium are given and the changes induced by incorporating high-temperature superconductors are estimated. After a survey of new superconductor properties, the superconducting devices for analog or digital signal processing are reviewed. The gains predicted for high-temperature superconducting analog devices are considered in greater detail. Different sections deal with the infrared or (sub)millimeter wave detection. The most sensitive apparatuses for magnetic measurements are based on SQUIDs. Features of SQUIDs made of granular high-temperature superconducting material samples (grain boundaries behave as barriers of intrinsic junctions) are discussed.

  16. Critical current measurements of high Tc superconductors in a scanning low temperature cryostat

    International Nuclear Information System (INIS)

    Telschow, K.L.; O'Brien, T.K.

    1991-01-01

    Maintaining uniformity of properties over long distances is one of the fabrication problems encountered with the new high T c superconductors. Uniform properties are crucial in long tapes or wires with high critical current since local nonuniformities can limit the current carrying capacity of the whole piece. Transport critical currents in high T c superconductors are conventionally measured with the contact 4-point probe DC current-voltage technique. This technique requires contact with the sample and and spatially averages over the region between the two voltage contacts. Two techniques have been used to infer the critical state model. The first uses the net magnetization of a suitably shaped sample in an external magnetic field. The second combines a DC magnetic field with AC induced currents to infer spatial flux profiles. The AC magnetization technique offers an advantage in that it is noncontacting; however, it also averages the measurement over a large area and requires that the sample be shaped and positioned such that it exhibits zero demagnetizing factor. This paper describes a measurement technique and a scanning cryostat assembly that are capable of determining local critical current in a tape or wire with high resolution and without any direct sample electrical contact. A small compensated coil was used to induce AC currents in slab-shaped samples. The coil was situated near the surface on one side of the slab. With this method, the AC probe can be used as a noncontacting dissipation probe, replacing the voltage probe in the 4-point contact method, when an externally driven transport current is used, or by itself as a local critical state generator and dissipation detector. The results are shown to be meaningful even when the internal magnetic field is not uniform due to shape demagnetizing effects. 10 refs., 5 figs

  17. Critical currents and thermally activated flux motion in high-temperature superconductors

    NARCIS (Netherlands)

    Palstra, T.T.M.; Batlogg, B.; Dover, R.B. van; Schneemeyer, L.F.; Waszczak, J.V.

    1989-01-01

    We have measured the resistance below Tc of single crystals of the high-temperature superconductors Ba2YCu3O7 and Bi2.2Sr2Ca0.8Cu2O8+δ in magnetic fields up to 12 T. The resistive transition of both compounds is dominated by intrinsic dissipation which is thermally activated, resulting in an

  18. Structural studies of aqueous solutions at high temperatures. Critical opalescence and hydration

    International Nuclear Information System (INIS)

    Sullivan, D.M.

    2000-09-01

    Neutron scattering techniques were used to study aspects of the static, or equilibrium, structure at microscopic scales in a number of aqueous solutions at non ambient conditions (Temperature, T > 300 K, and pressure, P > 1 bar). Critical opalescence was observed in both pure D 2 O and a NaCI-D 2 O mixture by means of small-angle neutron scattering (SANS), as described in Part I. The dependence of the correlation length, ξ, and the long wavelength limit, S(0), was measured at a number of state points on the critical isochore. The results are interpreted in terms of theories of critical phenomena; in particular the expected power law behaviour of ξ and S(0) with respect to reduced temperature, t, on the critical isochore. In the case of D 2 O, we observe the expected 3d-Ising behaviour with exponents (ν = 0.623 ± 0.030, γ = 1.14 ± 0.05) and amplitudes in agreement with theoretical and semi-empirical predictions. We performed measurements on aqueous sodium chloride, equivalent to those on pure 020, with the intention of classifying the critical behaviour. Although strong power-law divergence of the quantities ξ and S(0) was not observed, we find that the value of S(0) for a given ξ is strongly reduced in the ionic solution with respect to the pure solvent. Such behaviour is inconsistent with a thermodynamic model of aqueous sodium chloride, based on experimental thermodynamic data and the expected asymptotic 3d-Ising behaviour. Short-range structural correlations between solute and solvent atoms in aqueous solutions were studied by the technique of neutron diffraction and isotopic substitution (NDIS), as described in Part II. The anion hydration structure in 1.5 molal aqueous NaCl, was investigated at (T = 580 K, P = 800 bar) and (T = 380 K, P = 200 bar). Isotopic substitution was performed on the chloride ion, enabling the difference between scattering functions to be interpreted in terms of CI-H and CI-O correlation functions. The results show the chloride

  19. Structural studies of aqueous solutions at high temperatures. Critical opalescence and hydration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.M

    2000-09-01

    Neutron scattering techniques were used to study aspects of the static, or equilibrium, structure at microscopic scales in a number of aqueous solutions at non ambient conditions (Temperature, T > 300 K, and pressure, P > 1 bar). Critical opalescence was observed in both pure D{sub 2}O and a NaCI-D{sub 2}O mixture by means of small-angle neutron scattering (SANS), as described in Part I. The dependence of the correlation length, {xi}, and the long wavelength limit, S(0), was measured at a number of state points on the critical isochore. The results are interpreted in terms of theories of critical phenomena; in particular the expected power law behaviour of {xi} and S(0) with respect to reduced temperature, t, on the critical isochore. In the case of D{sub 2}O, we observe the expected 3d-Ising behaviour with exponents ({nu} = 0.623 {+-} 0.030, {gamma} = 1.14 {+-} 0.05) and amplitudes in agreement with theoretical and semi-empirical predictions. We performed measurements on aqueous sodium chloride, equivalent to those on pure 020, with the intention of classifying the critical behaviour. Although strong power-law divergence of the quantities {xi} and S(0) was not observed, we find that the value of S(0) for a given {xi} is strongly reduced in the ionic solution with respect to the pure solvent. Such behaviour is inconsistent with a thermodynamic model of aqueous sodium chloride, based on experimental thermodynamic data and the expected asymptotic 3d-Ising behaviour. Short-range structural correlations between solute and solvent atoms in aqueous solutions were studied by the technique of neutron diffraction and isotopic substitution (NDIS), as described in Part II. The anion hydration structure in 1.5 molal aqueous NaCl, was investigated at (T = 580 K, P = 800 bar) and (T = 380 K, P = 200 bar). Isotopic substitution was performed on the chloride ion, enabling the difference between scattering functions to be interpreted in terms of CI-H and CI-O correlation functions

  20. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections

    International Nuclear Information System (INIS)

    Gourdji, Sharon M; Sibley, Adam M; Lobell, David B

    2013-01-01

    Long-term warming trends across the globe have shifted the distribution of temperature variability, such that what was once classified as extreme heat relative to local mean conditions has become more common. This is also true for agricultural regions, where exposure to extreme heat, particularly during key growth phases such as the reproductive period, can severely damage crop production in ways that are not captured by most crop models. Here, we analyze exposure of crops to physiologically critical temperatures in the reproductive stage (T crit ), across the global harvested areas of maize, rice, soybean and wheat. Trends for the 1980–2011 period show a relatively weak correspondence (r = 0.19) between mean growing season temperature and T crit exposure trends, emphasizing the importance of separate analyses for T crit . Increasing T crit exposure in the past few decades is apparent for wheat in Central and South Asia and South America, and for maize in many diverse locations across the globe. Maize had the highest percentage (15%) of global harvested area exposed to at least five reproductive days over T crit in the 2000s, although this value is somewhat sensitive to the exact temperature used for the threshold. While there was relatively little sustained exposure to reproductive days over T crit for the other crops in the past few decades, all show increases with future warming. Using projections from climate models we estimate that by the 2030s, 31, 16, and 11% respectively of maize, rice, and wheat global harvested area will be exposed to at least five reproductive days over T crit in a typical year, with soybean much less affected. Both maize and rice exhibit non-linear increases with time, with total area exposed for rice projected to grow from 8% in the 2000s to 27% by the 2050s, and maize from 15 to 44% over the same period. While faster development should lead to earlier flowering, which would reduce reproductive extreme heat exposure for wheat on a

  1. An investigation into preparation of silver sheathed superconducting wires with a high critical temperature

    International Nuclear Information System (INIS)

    Chaffron, Laurent

    1992-01-01

    We have shown that the critical current density of YBaCuO superconducting wires prepared using 'powder in tube' method is limited by the following principal factors: - cracks and porosity arising from the shrinkage of the powder during sintering, - irregularities in the wire section, - presence of secondary phases in the phase diagram of the three oxides, - incomplete re-oxidation at the centre of the wire, - insufficient, or complete lack of, texture in the wire, - presence of amorphous, non superconducting phase across the grains that blocks grain boundary migration. We have reduced the deleterious effects due to the first four factors by modifying prior nature of the powder, by reinforcing the sheath and by modifying the thermal treatments. We also used creep sintering to produce a strong texture; however, our study shows that texture, though necessary, is not a sufficient condition for a high current. This is because the latter is limited by the presence of the amorphous phase at too many grain boundaries. Finally, we have obtained wires in which grain boundaries are clean and which have very high critical currents by melting the wire in a thermal gradient and by passing it through the gradient very slowly. Such a technique, however, is too slow for producing superconductors. (author) [fr

  2. High-Temperature Gas-Cooled Reactor Critical Experiment and its Application to Thorium Absorption Rates

    International Nuclear Information System (INIS)

    Bardes, R.G.; Brown, J.R.; Drake, M.K.; Fischer, P.U.; Pound, D.C.; Sampson, J.B.; Stewart, H.B.

    1964-01-01

    In developing the concept of the HTGR and its first prototype at Peach Bottom, General Atomic made the decision that a critical experiment was required to provide adequately certain necessary input data for the nuclear analysis. The specific needs of the nuclear design theory for input data relating to thorium absorptions led to an experimental design consisting of a central lattice-type critical assembly with surrounding buffer and driver regions. This type of assembly, in which the spectrum of interest can be established in the relatively small central lattice having a desired geometry, provides a useful tool for obtaining a variety of input data for nuclear analysis surveys of new concepts. The particular advantages of this approach over that of constructing a mock-up assembly will be discussed, as well as the role of the theory in determining what experiments are most useful and how these experiments are then used in verifying design techniques. Two relatively new techniques were developed for use in the lattice assembly. These were a reactivity oscillation technique for determining the thorium Doppler coefficient, and an activation technique for determining both the resonance integral of thorium dispersed in graphite and its temperature dependence (activation Doppler coefficient). The Doppler coefficient measurement by reactivity oscillation utilized the entire central fuel element in a technique which permitted heating this fuel element to 800°F and accurately subtracting experimentally the thermal-base effects, that is, those effects not contributing to the thorium resonance capture. Comparison of results with theory for a range of conditions shows excellent agreement. The measurement of the thorium resonance integral and its temperature dependence will be described. The technique developed for measuring resonance capture makes use of gold as the standard and vanadium as die material giving the 1/v absorption rate. This technique is dictated by the fact

  3. Thermal conductivity in high critical temperature superconductors. Conductividad termica en los superconductores de alta temperatura critica

    Energy Technology Data Exchange (ETDEWEB)

    Castello, D J

    1990-01-01

    A measuring procedure to obtain the electrical resistivity, thermal conductivity and thermoelectric power of samples of low conductivity has been developed. The setup was designed to allow removal of the sample in clean fashion so that further heat treatments could be performed. The heat equation has been analyzed with time-dependent boundary conditions, with the purpose of developing a dynamic measuring method which avoids the long delays involved in reaching thermal equilibrium above 30K. The developed measuring method allows precise, reliable measurements in a continuous fashion for temperatures above 25K. The same setup is used in a stationary mode at low temperatures. {kappa}(T) has been measured in two ceramic samples of La{sub 2}CuO{sub 4}: the first semiconducting, the other superconducting (SC) as a consequence of an oxygen annealing. Both exhibit strong thermal resistivity due to defects, though lower in the SC, where two maxima are observed and are attributed to an AF ordering: T{sub N}' {approx equal} 40K and T{sub N}'' {approx equal} 240K. A third synthesized sample of CuO exhibits a typical behavior of an insulator, with T{sup 2}.6 at low temperatures, a maximum at 40K and a decrease in T{sup -1} at high temperatures. {kappa}(T) in a SC sample of La{sub 1}.85Sr{sub 1}.15CuO{sub 4} with T{sub c}=35.5K has also been measured. {kappa}(T) is lower than in the previous samples and thus a greater number of defects was inferred.

  4. Normal-state Nernst effect of a high-critical-temperature superconductor

    International Nuclear Information System (INIS)

    Lambrecht, S.; Ausloos, M.

    1996-01-01

    We have analyzed the data of Clayhold et al. for the Nernst effect in the normal state of a high critical superconductor, i.e., Tl 2 Ba 2 CaCu 2 O 8+δ . This requested to derive a kinetic expression for the Nernst effect, an expression able to take into account inelastic scattering and magnetic-field dependence. This was done along a relaxation time formalism for the solution of the Boltzmann equation but leaving a background term which can be calculated by the most appropriate method. The final calculation leads to the evaluation of the background term resulting from the thermoelectric field-free effect. In order to do this we have considered a model of Livanov and Sergeev. The Nernst effect is explained by a simple two band model for electrons and holes with different mobilities. The resulting fit to the experimental data looks rather convincing. Several predictions are made thereafter. copyright 1996 The American Physical Society

  5. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Yung Moo Huh

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H(parallel)c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ζ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic fields near H c2

  6. Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

    International Nuclear Information System (INIS)

    Finnemore, Douglas K.

    2001-01-01

    Thermodynamics has been studied systematically for the high temperature cuprate superconductor La 2-x Sr x CuO 4-δ , La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H (parallel) c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T c , magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T c0 vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La 2-x Sr x CuO 4 (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to T c . The dimensional character of the fluctuations depends on both applied magnetic fields and the density of charge carriers. The dimensional crossover from 2D to 3D occurs in the strongly underdoped regime when the c-axis coherence distance ξ c becomes comparable to the spacing between adjacent CuO 2 layers s at sufficiently high magnetic field near H c2

  7. Microstructural factors influencing critical-current densities of high-temperature superconductors

    International Nuclear Information System (INIS)

    Suenaga, M.

    1992-01-01

    Microstructural defects are the primary determining factors for the values of critical current densities in superconductors. A review is made to assess, (1) what would be the maximum achievable critical-current density in the oxide superconductors if nearly ideal pinning sites were introduced? and (2) what types of pinning defects are currently introduced in these superconductors and how effective are these in pinning the vortices? Only the case where the applied field is parallel to the c-axis is considered here

  8. Realization of multilayers for superconductors at critical high temperature by chemical method

    International Nuclear Information System (INIS)

    Guibadj, A.

    2009-09-01

    The aim of this research is to study buffer layers made of CeO 2 and La 2 Zr 2 O 7 for high Tc superconductors devoted to energy transportation (coated conductors). We used Metal Organic Decomposition method (MOD) for the synthesis of layers of CeO 2 /SrTiO 3 and La 2 Zr 2 O 7 /LaAlO 3 , because it is a soft and economic method well adapted to manufacture buffers layers for coated conductors. The comparison of various precursors of Cerium was made with the aim of obtaining the adequate precursor for the MOD process. Spin coating was used for depositing precursor solutions of Ce(EH) 3 and LZ(propionic) on various substrates. Thermal analyzes of these precursors allowed to determine their decomposition mode (weight loss analysis) according to the temperature, to estimate the quantity of absorbed moisture by the precursors and to determine the temperature of crystallization of the oxide. It was also used to discuss the mixed nature or not of the lanthanum-zirconium proprionate. The analyses of the microstructure and of the texture of CeO 2 and La 2 Zr 2 O 7 films are established by X-ray diffraction (scans θ-2θ, ω-scan, Φ-scan and pole figures). AFM and MEB allowed us to study roughness, topology and morphology of the surface. Heat treatments of the layers of C(EH) 3 /SrTiO 3 and (La(prop) 3 + Zr(prop) 4 )/LAO, under various atmospheres enabled us to differentiate the poly-crystalline growth from the epitaxial growth. The elimination of residual carbon in the grain boundaries, blocking the grain growth, was carried out by a control of the partial pressure of oxygen at the stage of crystallization; this step makes possible an improvement of the layers' texture. The heating rate has an influence on the nucleation which was studied. Increasing the heating rate favor the heterogeneous nucleation and decreases the number of nuclei, supporting the growth of larger epitaxial grains. Finally, we carried out the multi-layers CeO 2 /La 2 Zr 2 O 7 /LaAlO 3 and YBaCuO/CeO 2

  9. Transport critical current measurement apparatus using liquid nitrogen cooled high-T(c) superconducting magnet with variable temperature insert.

    Science.gov (United States)

    Nishijima, G; Kitaguchi, H; Tshuchiya, Y; Nishimura, T; Kato, T

    2013-01-01

    We have developed an apparatus to investigate transport critical current (I(c)) as a function of magnetic field and temperature using only liquid nitrogen. The apparatus consists of a (Bi,Pb)(2)Sr(2)Ca(2)Cu(3)O(10) (Bi-2223) superconducting magnet, an outer dewar, and a variable temperature insert (VTI). The magnet, which is operated in depressurized liquid nitrogen, generates magnetic field up to 1.26 T. The sample is also immersed in liquid nitrogen. The pressure in the VTI is controlled from 0.02 to 0.3 MPa, which corresponds to temperature ranging from 66 to 88 K. We have confirmed the long-term stable operation of the Bi-2223 magnet at 1 T. The temperature stability of the sample at high transport current was also demonstrated. The apparatus provides easy-operating I(c) measurement environment for a high-T(c) superconductor up to 500 A in magnetic fields up to 1 T and in temperatures ranging from 66 to 88 K.

  10. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    International Nuclear Information System (INIS)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A.; Mondal, K.

    2012-01-01

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M S ) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T 0 ) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M S temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  11. Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Misra, A.; Sharma, S.; Sangal, S.; Upadhyaya, A. [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India); Mondal, K., E-mail: kallol@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016 (India)

    2012-12-15

    The redistribution of carbon during partitioning between retained austenite and bainitic ferrite decides the stability of the retained austenite. The martensitic start temperature (M{sub S}) based on the carbon enriched retained austenite is observed to be the deciding factor for the volume fraction of the constituent phases obtained on isothermal bainitic transformation. The volume fraction of the phases is also calculated on the basis of metastable equi-free energy (T{sub 0}) curve. A good agreement is found between experimentally and theoretically calculated fractions of the phases. The isothermal holding temperature and time, the fraction of phases based on initial carbon content of the steel and M{sub S} temperatures have a close relation with the optimum mechanical properties of bainitic steels.

  12. Preparation of high critical temperature YBa2Cu3O7 superconducting coatings by thermal spray

    International Nuclear Information System (INIS)

    Lacombe, Jacques

    1991-01-01

    The objective of this research thesis is the elaboration of YBa 2 Cu 3 O 7 superconducting coatings by thermal spray. These coatings must have a high adherence, a high cohesion, and the best possible electrical characteristics. The author first briefly presents physical-chemical characteristics of this ceramic, and proposes a bibliographical synthesis on thick coatings prepared by thermal spray. In the next parts, he studies and describes conditions of elaboration of poly-granular coatings of YBa 2 Cu 3 O 7 , and their structural and electric characteristics [fr

  13. Critical temperatures Tc estimated by Josephson-junction array model of layered high Tc superconductors

    International Nuclear Information System (INIS)

    Kawabata, C.; Shenoy, S.R.; Bishop, A.R.

    1994-11-01

    We model high T c superconductors (HTS) by quantum capacitive Josephson junction arrays (JJA), with Angstrom-scale parameters, to obtain an estimate of Tc trends. The basic idea is as follows. Number (or change) and phase are conjugate variables, with the uncertainty products obeying ΔN · Δ Θ > 1. Thus, in HTS, global phase coherence is opposed by charging-energy induced quantum phase fluctuations, especially across Josephson-coupled CuO 2 planes. These have separation d 1 and effective interplanar dielectric constant ε, e.g. from Y atoms in YBaCuO. Decreasing the interplane charging energy E 0 perpendicular to ∼ d 1 /ε, raises Tc. In Section 1, we motivate a modelling of HTS phase excitations by a quantum capacitive 3D JJA model, with XY planar phases. Section 2 gives a physical picture of the HTS transition, relating the complex layered HTS structure to a simpler ''intermediate level'' quantum 3D JJA/XY model. Section 3 sets up a path integral (3+1)D model that reduces to a previously studied anisotropic 3D XY/JJA model, with constants renormalized in some way, by the capacitance. Postponing a detailed analysis to elsewhere, we make a heuristic estimate for the reduction of the previous Tc, by the charging energy. (author). 30 refs, 8 figs

  14. Critical Causes of Degradation in Integrated Laboratory Scale Cells during High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Sohal; J.E. O' Brien; C.M. Stoots; J. J. Hartvigsen; D. Larsen; S. Elangovan; J.S. Herring; J.D. Carter; V.I. Sharma; B. Yildiz

    2009-05-01

    An ongoing project at Idaho National Laboratory involves generating hydrogen from steam using solid oxide electrolysis cells (SOEC). This report describes background information about SOECs, the Integrated Laboratory Scale (ILS) testing of solid-oxide electrolysis stacks, ILS performance degradation, and post-test examination of SOECs by various researchers. The ILS test was a 720- cell, three-module test comprised of 12 stacks of 60 cells each. A peak H2 production rate of 5.7 Nm3/hr was achieved. Initially, the module area-specific resistance ranged from 1.25 Ocm2 to just over 2 Ocm2. Total H2 production rate decreased from 5.7 Nm3/hr to a steady state value of 0.7 Nm3/hr. The decrease was primarily due to cell degradation. Post test examination by Ceramatec showed that the hydrogen electrode appeared to be in good condition. The oxygen evolution electrode does show delamination in operation and an apparent foreign layer deposited at the electrolyte interface. Post test examination by Argonne National Laboratory showed that the O2-electrode delaminated from the electrolyte near the edge. One possible reason for this delamination is excessive pressure buildup with high O2 flow in the over-sintered region. According to post test examination at the Massachusetts Institute of Technology, the electrochemical reactions have been recognized as one of the prevalent causes of their degradation. Specifically, two important degradation mechanisms were examined: (1) transport of Crcontaining species from steel interconnects into the oxygen electrode and LSC bond layers in SOECs, and (2) cation segregation and phase separation in the bond layer. INL conducted a workshop October 27, 2008 to discuss possible causes of degradation in a SOEC stack. Generally, it was agreed that the following are major degradation issues relating to SOECs: • Delamination of the O2-electrode and bond layer on the steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites

  15. Improved critical current densities in bulk FeSe superconductor using ball milled powders and high temperature sintering

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhar, M.; Furutani, K.; Murakami, M. [Graduate School of Science and Engineering, Superconducting Materials Laboratory, Shibaura Institute of Technology, Tokyo (Japan); Kumar, Dinesh; Rao, M.S. Ramachandra [Department of Physics, Nano Functional Materials Technology Centre and Materials Science Research Centre, Indian Institute of Technology Madras, Chennai (India); Koblischka, M.R. [Institute of Experimental Physics, Saarland University, Saarbruecken (Germany)

    2016-12-15

    The present study is investigating the effect of high temperature sintering combined with ball milled powders for the preparation of FeSe material via solid state sintering technique. The commercial powders of Fe (99.9% purity) and Se (99.9% purity) were mixed in a nominal ratio Fe:Se = 1:1 and thoroughly ground and ball-milled in a glove box during 6 h. Then, the powder mixture was pressed into pellets of 5 mm in diameter and 2 mm thickness using an uniaxial pressure of 100 MPa. The samples were sealed in quartz tubes and sintered at 600 C for 24 h. Then, the pellets were again thoroughly ground and ball-milled in the glove box and pressed into pellets, and the final sintering was performed at two different temperatures, namely at 900 C for 24 h and at 950 C for 24 h. X-ray diffraction results confirmed that both samples showed mainly of the β-FeSe with tetragonal structure. The temperature dependence of magnetization (M-T) curves revealed a sharp superconducting transition T{sub c,} {sub onset} = 8.16 K for the sample sintered at 900 C. Further, scanning electron microscopy observations proved that samples sintered at 900 C show a platelike grain structure with high density. As a result, improved irreversibility fields around 5 T and the critical current density (J{sub c}) values of 6252 A cm{sup -2} at 5 K and self-field are obtained. Furthermore, the normalized volume pinning force versus the reduced field plots indicated a peak position at 0.4 for the sample sintered at 900 C. Improved flux pinning and the high J{sub c} values are attributed to the textured microstructure of the material, produced by a combination of high temperature sintering and ball milling. (copyright 2016 The Authors. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  17. Criticality Analysis of the U-H2O Subcritical Assembly Modified for Rand D of the High Temperature Reactor

    International Nuclear Information System (INIS)

    Syarip; Tri-Wulan-Tjiptono; Tegas-Sutondo

    2000-01-01

    A criticality analysis of the natural uranium - light water sub-criticalassembly available at the P3TM-BATAN Yogyakarta, converted into a naturaluranium - graphite system has been performed. The purpose of this study is toprovide the research facility on the basic static and kinetics studies forthe high temperature reactor (HTR) in which the HTR fuel system is underdevelopment at the P3TM. For the purpose of this study, a neutroniccalculation was performed using WIMSD/4 code, to determine the neutronmultiplication factor for various fuel configurations of the sub-criticalassemblies. The results show that the effective neutron multiplication factor(k ef ) for U-Be-H 2 O and U-Be-He systems are 1.0474 and 1.4666 respectively,while for the graphite moderated systems with coolants of H 2 O or He(U-C-H 2 O and U-C-He) systems, the corresponding k ef are 0.787 and 0.4211respectively. The results conclude that the modification of U-H 2 O toU-C-H 2 O system, in accordance with neutronic is quite feasible, safe, cheapand practical, and in addition, the treatment of H 2 O is relatively easy.(author)

  18. High pressure driven superconducting critical temperature tuning in Sb{sub 2}Se{sub 3} topological insulator

    Energy Technology Data Exchange (ETDEWEB)

    Anversa, Jonas [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Escola de Engenharia Civil, Faculdade Meridional, 99070-220, Passo Fundo, RS (Brazil); Chakraborty, Sudip, E-mail: sudiphys@gmail.com [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Piquini, Paulo [Departamento de Física, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Ahuja, Rajeev [Condensed Matter Theory Group, Department of Physics and Astronomy, Box 516, Uppsala University, S-75120 Uppsala (Sweden); Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2016-05-23

    In this letter, we are reporting the change of superconducting critical temperature in Sb{sub 2}Se{sub 3} topological insulator under the influence of an external hydrostatic pressure based on first principles electronic structure calculations coupled with Migdal–Eliashberg model. Experimentally, it was shown previously that Sb{sub 2}Se{sub 3} was undergoing through a transition to a superconducting phase when subjected to a compressive pressure. Our results show that the critical temperature increases up to 6.15 K under the pressure unto 40 GPa and, subsequently, drops down until 70 GPa. Throughout this pressure range, the system is preserving the initial Pnma symmetry without any structural transformation. Our results suggest that the possible relevant mechanism behind the superconductivity in Sb{sub 2}Se{sub 3} is primarily the electron–phonon coupling.

  19. High critical temperature superconductors: Progress achieved after two years. Les supraconducteurs haute temperature critique: L'etat des lieux deux ans apres

    Energy Technology Data Exchange (ETDEWEB)

    Maillard, J M; Rammal, R; Vittorge, M C

    1989-01-01

    Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given.

  20. Phase diagrams of high-order critical phenomene and high-temperature equilibria in the H2O-HgI2-PbI2 system

    International Nuclear Information System (INIS)

    Valyashko, V.M.; Urusova, M.A.

    1996-01-01

    The paper studies the principal schemes of complete state diagram of volatile component-two non-volatile components three-component system with tricritical point and sequence of phase transformations at variation of temperature, pressure and composition of mixture. H 2 O-HgI 2 -PbI 2 system, solid phase dissolving process, stratification of solutions and critical phenomena under 200-400 deg C are studied experimentally. General nature of the system phase diagram and parameters of three-phase equilibrium critical point (tricritical point), that is, gas-liquid 1 -liquid 2 are determined. 17 refs., 8 figs., 3 tabs

  1. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd, Y)Ba2Cu3Ox superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V; Yao, Y; Chen, Y; Shi, T; Liu, Y; Khatri, ND; Liu, J; Lei, C; Galstyan, E; Majkic, G

    2012-10-26

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20-77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1-9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18-23% higher than those of the latter in the temperature range of 20-40 K and in magnetic fields of 3-5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications.

  2. The low-temperature, high-magnetic-field critical current characteristics of Zr-added (Gd,Y)Ba2Cu3Ox superconducting tapes

    International Nuclear Information System (INIS)

    Selvamanickam, V; Yao, Y; Shi, T; Liu, Y; Khatri, N D; Liu, J; Galstyan, E; Majkic, G; Chen, Y; Lei, C

    2012-01-01

    Critical current performances of state-of-the-art Zr-added (Gd, Y)BaCuO tapes have been investigated over a temperature range of 20–77 K, in magnetic fields up to 9 T and over a wide angular range of magnetic field orientations. The peak in critical current that is commonly observed in the field orientation perpendicular to the tape in BaZrO 3 (BZO) containing superconducting tapes is found to vanish at 30 K in magnetic fields at 1–9 T. While the critical current of 15% Zr-added tapes was about 40% lower than that of 7.5% Zr-added tapes at 77 K, the pinning force values of the former were found to be 18–23% higher than those of the latter in the temperature range of 20–40 K and in magnetic fields of 3–5 T. The results from this study emphasize the importance of optimization of coated conductor fabrication processes for optimum performance not just in low magnetic fields at 77 K but also at the operating conditions of low temperatures and high magnetic fields that are of interest, especially for rotating superconducting machinery applications. (paper)

  3. Calculating the critical temperature for Coleman-Weinberg GUTS

    International Nuclear Information System (INIS)

    Easther, R.; Moreau, W.

    1992-01-01

    We study the finite-temperature effective potential of the Higgs scalar in GUTs with Coleman-Weinberg symmetry breaking. The critical temperature is derived without employing a high-temperature approximation to the effective potential, and the limitations of such approximations are discussed. (author)

  4. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    Science.gov (United States)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  5. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  6. Temperature oscillations at critical temperature in two-phase flow

    International Nuclear Information System (INIS)

    Brevi, R.; Cumo, M.; Palmieri, A.; Pitimada, D.

    Some experiments on the temperature oscillations, or thermal cycling, which occur with steam-water flow in once-through cooling systems at the critical temperature zone, i.e., when dryout occurs, are described. A theoretical analysis is done on the characteristic frequency of the oscillations, and the parameters upon which the operating characteristics and the physical properties of the fluid depend. Finally, the temperature distribution in the critical zone is analyzed, examining the thermal transitions that occur due to the rapid variations in the coefficient of heat transfer

  7. High temperature coatings from post processing Fe-based chips and Ni-based alloys as a solution for critical raw materials

    Science.gov (United States)

    Dudziak, T.; Olbrycht, A.; Polkowska, A.; Boron, L.; Skierski, P.; Wypych, A.; Ambroziak, A.; Krezel, A.

    2018-03-01

    Due to shortage of natural resources worldwide, it is a need to develop innovative technologies, to save natural resources and secure Critical Raw Materials (CRM). On the other hand, these new technologies should move forward materials engineering in order to develop better materials for extreme conditions. One way to develop new materials is to use post processing chips of austenitic steels (i.e. 304L stainless steel: 18/10 Cr/Ni) and other materials such as Ni-based alloy with high Cr content. In this work, the results of the preliminary study on the High Velocity Oxy Fuel (HVOF) coatings developed from 304L stainless steel chips and Haynes® 282® Ni- based alloys are shown. The study obeys development of the powder for HVOF technology. The produced coatings were exposed at high temperature at 500 and 700 °C for 100 and 300 hours respectively to assess corrosion behaviour.

  8. Method and apparatus for forming high-critical-temperature superconducting layers on flat and/or elongated substrates

    Science.gov (United States)

    Ciszek, Theodore F.

    1994-01-01

    An elongated, flexible superconductive wire or strip is fabricated by pulling it through and out of a melt of metal oxide material at a rate conducive to forming a crystalline coating of superconductive metal oxide material on an elongated, flexible substrate wire or strip. A coating of crystalline superconductive material, such as Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.8, is annealed to effect conductive contact between adjacent crystalline structures in the coating material, which is then cooled to room temperature. The container for the melt can accommodate continuous passage of the substrate through the melt. Also, a second pass-through container can be used to simultaneously anneal and overcoat the superconductive coating with a hot metallic material, such as silver or silver alloy. A hollow, elongated tube casting method of forming an elongated, flexible superconductive wire includes drawing the melt by differential pressure into a heated tubular substrate.

  9. Modeling the effect in of criticality from changes in key parameters for small High Temperature Nuclear Reactor (U-BatteryTM) using MCNP4C

    International Nuclear Information System (INIS)

    Pauzi, A M

    2013-01-01

    The neutron transport code, Monte Carlo N-Particle (MCNP) which was wellkown as the gold standard in predicting nuclear reaction was used to model the small nuclear reactor core called U -battery TM, which was develop by the University of Manchester and Delft Institute of Technology. The paper introduces on the concept of modeling the small reactor core, a high temperature reactor (HTR) type with small coated TRISO fuel particle in graphite matrix using the MCNPv4C software. The criticality of the core were calculated using the software and analysed by changing key parameters such coolant type, fuel type and enrichment levels, cladding materials, and control rod type. The criticality results from the simulation were validated using the SCALE 5.1 software by [1] M Ding and J L Kloosterman, 2010. The data produced from these analyses would be used as part of the process of proposing initial core layout and a provisional list of materials for newly design reactor core. In the future, the criticality study would be continued with different core configurations and geometries.

  10. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    NARCIS (Netherlands)

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  11. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  12. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  13. Calculation of Critical Temperatures by Empirical Formulae

    Directory of Open Access Journals (Sweden)

    Trzaska J.

    2016-06-01

    Full Text Available The paper presents formulas used to calculate critical temperatures of structural steels. Equations that allow calculating temperatures Ac1, Ac3, Ms and Bs were elaborated based on the chemical composition of steel. To elaborate the equations the multiple regression method was used. Particular attention was paid to the collection of experimental data which was required to calculate regression coefficients, including preparation of data for calculation. The empirical data set included more than 500 chemical compositions of structural steel and has been prepared based on information available in literature on the subject.

  14. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  15. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  16. Study of superconductors with high critical temperature by using the vibrating blade technique: anelastic properties, vortices dynamics; Etude des supraconducteurs a haute temperature critique par la technique de la lame vibrante: - proprietes anelastiques, - dynamique des vortex

    Energy Technology Data Exchange (ETDEWEB)

    De Brion, Sophie

    1991-10-04

    This research thesis reports the application of the vibrating blade technique to the study of high critical temperature superconductors, first for the anelastic properties, and then for vortices dynamics. As far as the study of anelastic properties is concerned, the author reports the measurement of dissipation and of Young modulus, between 4 K and 300 K and at about 1 khz, in YbaCuO ceramics with various oxygen content. A detailed study of the tetragonal phase reveals the existence of a single relaxation process, the magnitude of which depends on the compound oxygen content and on its thermal treatment. In the second part, the author reports the measurement, under magnetic field and within a temperature range lower than the superconducting critical temperature, of a YbaCuO crystal with two different oxygen concentrations. At low temperature, the author studies the contribution of vortices trapped in an irreversible state. At high temperature, this contribution disappears and thus defines an irreversibility line beyond which vortices are in a reversible regime. This line is studied for different magnetic field orientations with respect to CuO planes. It is interpreted in terms of de-trapping thermally activated by vortices [French] La technique de la lame vibrante a ete appliquee a l'etude des supraconducteurs a haute temperature critique, pour leurs proprietes anelastiques d'abord, pour la dynamique des vortex ensuite. Dans la gamme de temperature 4 K - 300 K, nous avons mesure la dissipation et le module d'Young, a une frequence de 1 kHz environ, dans des ceramiques YBaCuO (phase 123) de differentes teneurs en oxygene (variant de O{sub 6} a O{sub 7}). Nous avons observe plusieurs pics de dissipation. Une etude detaillee de la phase tetragonale (de O{sub 6} a O{sub 6,4}) a mis en evidence un seul processus de relaxation, active thermiquement avec une energie de 0,1 eV et dont l'ampleur depend de la teneur en oxygene du compose et de son traitement thermique. Cette

  17. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  18. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  19. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  20. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet.

    Science.gov (United States)

    Sunwong, P; Higgins, J S; Hampshire, D P

    2014-06-01

    We present the designs of probes for making critical current density (Jc) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ~0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J(c) measurements, made by uniformly ramping the current up to a maximum current (I(max)) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b'), and the maximum safe temperature for the critical-current leads (T(max)). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI(max)/A = [1.46D(-0.18)L(0.4)(T(max) - 300)(0.25D(-0.09)) + 750(b'/I(max))D(10(-3)I(max)-2.87b') × 10⁶ A m⁻¹ where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm(2) is obtained when I(max) = 1000 A, T(max) = 400 K, D = 0.2, b' = 0.3 l h(-1) and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h(-1). When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I(max)  ≈ (1.35 × 10(-3))D(0.41) l h(‑1) A(-1). A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high

  1. Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet

    International Nuclear Information System (INIS)

    Sunwong, P.; Higgins, J. S.; Hampshire, D. P.

    2014-01-01

    We present the designs of probes for making critical current density (J c ) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ∼0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J c measurements, made by uniformly ramping the current up to a maximum current (I max ) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b ′ ), and the maximum safe temperature for the critical-current leads (T max ). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI max /A=[1.46D −0.18 L 0.4 (T max −300) 0.25D −0.09 +750(b ′ /I max )D 10 −3 I max −2.87b ′ ]× 10 6 A m −1 where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm 2 is obtained when I max = 1000 A, T max = 400 K, D = 0.2, b ′ = 0.3 l h −1 and L = 1.0 m. The optimized helium consumption was found to be 0.7 l h −1 . When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I max  ≈ (1.35 × 10 −3 )D 0.41 l h ‑1  A −1 . A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in

  2. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  3. Low critical temperature superconductors for electromagnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-01-01

    After a brief history of the main discoveries in applied superconductivity (section 1), we discuss the structure and properties of NbTi and Nb3 Sn (section 2). Then, we explain why low critical-temperature superconductors are produced under the form of multifilamentary composites (section 3), and we review the manufacturing processes of NbTi and Nb3Sn wires (section 4). We follow by a description of the transition from the superconducting to the normal resistive state of multifilamentary composite wires (section 5) and we detail their magnetization properties section 6). Last, we present the most commonly used cable configurations (section 7) and we provide simple formulae illustrating on a few examples the computation of losses generated under time-varying magnetic fields (section 8). (author)

  4. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  5. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  6. Correlation of Critical Temperatures and Electrical Properties in Titanium Films

    Science.gov (United States)

    Gandini, C.; Lacquaniti, V.; Monticone, E.; Portesi, C.; Rajteri, M.; Rastello, M. L.; Pasca, E.; Ventura, G.

    Recently transition-edge sensors (TES) have obtained an increasing interest as light detectors due to their high energy resolution and broadband response. Titanium (Ti), with transition temperature up to 0.5 K, is among the suitable materials for TES application. In this work we investigate Ti films obtained from two materials of different purity deposited by e-gun on silicon nitride. Films with different thickness and deposition substrate temperature have been measured. Critical temperatures, electrical resistivities and structural properties obtained from x-ray are related to each other.

  7. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  8. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  9. High Critical Current Coated Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M. P.; Selvamanickam, V. (SuperPower, Inc.)

    2011-12-27

    One of the important critical needs that came out of the DOE’s coated conductor workshop was to develop a high throughput and economic deposition process for YBCO. Metal-organic chemical vapor deposition (MOCVD) technique, the most critical steps in high technical micro fabrications, has been widely employed in semiconductor industry for various thin film growth. SuperPower has demonstrated that (Y,Gd)BCO films can be deposited rapid with world record performance. In addition to high critical current density with increased film thickness, flux pinning properties of REBCO films needs to be improved to meet the DOE requirements for various electric-power equipments. We have shown that doping with Zr can result in BZO nanocolumns, but at substantially reduced deposition rate. The primary purpose of this subtask is to develop high current density MOCVD-REBCO coated conductors based on the ion-beam assisted (IBAD)-MgO deposition process. Another purpose of this subtask is to investigate HTS conductor design optimization (maximize Je) with emphasis on stability and protection issues, and ac loss for REBCO coated conductors.

  10. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  11. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  12. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  13. On the critical temperature of superconductors

    International Nuclear Information System (INIS)

    Poon, S.J.

    1975-06-01

    An exact expression for the superconducting transition temperature is derived from the Eliashberg equation at T = T/sub c/ taking the energy gap function in the two-square-well form. The expression is improved for self-consistency by using available tunneling data. It is found to give more restricted values of T/sub c/ than the McMillan equation. The prospects of obtaining high T/sub c/ in alloy systems are discussed within the framework of the new equation. (6 figures, 2 tables) (U.S.)

  14. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  15. High Temperature Piezoelectric Drill

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  16. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    International Nuclear Information System (INIS)

    Fujita, H; Maeji, Y; Yamagata, K; Itoh, M; Kezuka, H; Kikuchi, M; Atou, T; Kawasaki, M; Fukuoka, K

    2006-01-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm 2 in the absence of an excitation magnetic field B ex . The superconducting state was then broken and the specimen exposed to a B ex value of 40x10 -4 T. That is, the resistance R meas of the specimen occurred when exposed to 40x10 -4 T under a constant J of 40 A/cm 2 . The magnetic sensitivity S of the specimen was approximately 13 %/(10 -4 T) over the range of measurement of the magnetic field B meas from 0 to ±5x10 -4 T, under a constant 40x10 -4 T for the value of B ex , being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor

  17. Characteristics of a Bulk High-Critical Temperature Superconductor Fabricated by the Shock Compaction Method: Possible Use as a Highly Sensitive Magnetic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, H [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Maeji, Y [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Yamagata, K [Relia. Eval. Technol. Center, Nitto Denko Corp., Onomichi, Hiroshima 722-0212 (Japan); Itoh, M [Interdisci. Grad. School of Sci. and Engi., Grad. School of Kinki University, Higashi-Osaka, Osaka 577-8502 (Japan); Kezuka, H [Faculty of Bionics, Tokyo University of Technol., Hachioji, Tokyo 192-0982 (Japan); Kikuchi, M [Kansen Fukushi Research Center, Tohoku Fukushi University Sendai, Miyagi 989-3201 (Japan); Atou, T [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Kawasaki, M [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan); Fukuoka, K [Insti. for Mate. Research, Tohoku University Sendai, Miyagi 980-8577 (Japan)

    2006-06-01

    A magnetic sensor, constructed of bulk Bi-Pb-Sr-Ca-Cu-O (BPSCCO), was fabricated by use of the shock compaction method, employing a propellant gun-system, and then sintered under through use of an electronic furnace. The specimen as a magnetic sensor was maintained in the superconducting state at 77.4 K, under a current density J of approximately 40 A/cm{sup 2} in the absence of an excitation magnetic field B{sub ex}. The superconducting state was then broken and the specimen exposed to a B{sub ex} value of 40x10{sup -4} T. That is, the resistance R{sub meas} of the specimen occurred when exposed to 40x10{sup -4} T under a constant J of 40 A/cm{sup 2}. The magnetic sensitivity S of the specimen was approximately 13 %/(10{sup -4} T) over the range of measurement of the magnetic field B{sub meas} from 0 to {+-}5x10{sup -4} T, under a constant 40x10{sup -4} T for the value of B{sub ex}, being approximately 13 times greater than that of a giant magnetoresistance (GMR) sensor. It was, consequently, determined that it was possible to apply the bulk BPSCCO specimen as a highly sensitive magnetic sensor.

  18. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  19. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  20. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  1. Critical temperature: A quantitative method of assessing cold tolerance

    Science.gov (United States)

    D.H. DeHayes; M.W., Jr. Williams

    1989-01-01

    Critical temperature (Tc), defined as the highest temperature at which freezing injury to plant tissues can be detected, provides a biologically meaningful and statistically defined assessment of the relative cold tolerance of plant tissues. A method is described for calculating critical temperatures in laboratory freezing studies that use...

  2. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  3. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  4. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  5. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  6. Critical temperature gradient and critical current density in thin films of a type I superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Heubener, R P

    1968-12-16

    Measurements of the critical temperature gradient and the critical current density in superconducting lead films in a transverse magnetic field indicate that the critical current flows predominantly along the surface of the films and that the critical surface currents contribute only very little to the Lorentz force on a fluxoid.

  7. An investigation into preparation of silver sheathed superconducting wires with a high critical temperature; Etude des problemes poses par l'elaboration de fils supraconducteurs gaines argent a haute temperature critique

    Energy Technology Data Exchange (ETDEWEB)

    Chaffron, Laurent

    1992-04-03

    We have shown that the critical current density of YBaCuO superconducting wires prepared using 'powder in tube' method is limited by the following principal factors: - cracks and porosity arising from the shrinkage of the powder during sintering, - irregularities in the wire section, - presence of secondary phases in the phase diagram of the three oxides, - incomplete re-oxidation at the centre of the wire, - insufficient, or complete lack of, texture in the wire, - presence of amorphous, non superconducting phase across the grains that blocks grain boundary migration. We have reduced the deleterious effects due to the first four factors by modifying prior nature of the powder, by reinforcing the sheath and by modifying the thermal treatments. We also used creep sintering to produce a strong texture; however, our study shows that texture, though necessary, is not a sufficient condition for a high current. This is because the latter is limited by the presence of the amorphous phase at too many grain boundaries. Finally, we have obtained wires in which grain boundaries are clean and which have very high critical currents by melting the wire in a thermal gradient and by passing it through the gradient very slowly. Such a technique, however, is too slow for producing superconductors. (author) [French] Nous avons montre que les principales causes qui limitent l'intensite que peuvent transporter les fils supraconducteurs d'YBaCuO elabores selon la technique dite de la poudre dans le tube sont: - la fissuration et la porosite engendrees par le retrait de la poudre lors du frittage, - l'irregularite de la section de la ceramique, - la presence des phases secondaires du diagramme d'equilibre des oxydes d'yttrium, de baryum et de cuivre, - la difficulte de reoxygener a coeur la ceramique, - la faiblesse voire l'absence de texturation, - la presence de phase amorphe non supraconductrice traversant les grains ou bloquant la migration de leurs joints. En jouant sur le

  8. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  9. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  10. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  11. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-04-15

    The IAEA has facilitated an extensive programme that addresses the technical development of advanced gas cooled reactor technology. Included in this programme is the coordinated research project (CRP) on Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance, which is the focus of this TECDOC. This CRP was established to foster the sharing of research and associated technical information among participating Member States in the ongoing development of the HTGR as a future source of nuclear energy. Within it, computer codes and models were verified through actual test results from operating reactor facilities. The work carried out in the CRP involved both computational and experimental analysis at various facilities in IAEA Member States with a view to verifying computer codes and methods in particular, and to evaluating the performance of HTGRs in general. The IAEA is grateful to China, the Russian Federation and South Africa for providing their facilities and benchmark programmes in support of this CRP.

  12. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to the PBMR-400, PBMM, GT-MHR, HTR-10 and the ASTRA Critical Facility

    International Nuclear Information System (INIS)

    2013-04-01

    The IAEA has facilitated an extensive programme that addresses the technical development of advanced gas cooled reactor technology. Included in this programme is the coordinated research project (CRP) on Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance, which is the focus of this TECDOC. This CRP was established to foster the sharing of research and associated technical information among participating Member States in the ongoing development of the HTGR as a future source of nuclear energy. Within it, computer codes and models were verified through actual test results from operating reactor facilities. The work carried out in the CRP involved both computational and experimental analysis at various facilities in IAEA Member States with a view to verifying computer codes and methods in particular, and to evaluating the performance of HTGRs in general. The IAEA is grateful to China, the Russian Federation and South Africa for providing their facilities and benchmark programmes in support of this CRP.

  13. Study of magnetic excitations in the high critical temperature La2-xSrxCuO4 superconductor with neutrons inelastic scattering

    International Nuclear Information System (INIS)

    Petit, S.

    1997-01-01

    In this work, we question the relevance of spin correlations in the problem of high-T c superconductivity. To characterize these correlations, we present a detailed inelastic neutron scattering study of the magnetic excitations spectrum, in the high T c La 2-x Sr x CuO 4 copper oxide superconductor, as a function of temperature and strontium content x. Our study demonstrates the existence of two distinct types of fluctuations. The first type corresponds to two-dimensional isotropic fluctuations peaked at incommensurate points around the antiferromagnetic wavevector. These fluctuations show a gap below T c . The second type of fluctuations corresponds to two-dimensional very low energy, typically 1 MeV, antiferromagnetic correlations. They arise at low temperatures, for T ≤T f ∼ 10 K ≤T c . Different scenarios are discussed, namely particle-hole excitation arising because of nesting properties of the Fermi surface, stripes, and localized carriers in the CuO 2 plane because of the La/Sr substitution disorder. Next, aiming to study the interrelation between magnetism and superconductivity, we present a theoretical perturbative treatment of the t-t'-J model. This model is believed to describe the physics of the CuO 2 plane. The considered quasiparticles describe the motion of a doped hole, followed by localized spins on the copper sites. For a given doping x, two phases can exist, containing either x or 1 + x of these quasiparticles. We show at in the second phase, the exchange interaction between localized spins, combined to the intrinsic anharmonicity of these quasiparticles leads to an attractive interaction between them. We study the stability and the symmetry of a superconducting phase based on this mechanism. (author)

  14. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  15. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  16. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala; Ockendon, John; Howell, Peter; Surovyatkina, Elena

    2013-01-01

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  17. Transitions through critical temperatures in nematic liquid crystals

    KAUST Repository

    Majumdar, Apala

    2013-08-06

    We obtain estimates for critical nematic liquid crystal (LC) temperatures under the action of a slowly varying temperature-dependent control variable. We show that biaxiality has a negligible effect within our model and that these delay estimates are well described by a purely uniaxial model. The static theory predicts two critical temperatures: the supercooling temperature below which the isotropic phase loses stability and the superheating temperature above which the ordered nematic states do not exist. In contrast to the static problem, the isotropic phase exhibits a memory effect below the supercooling temperature in the dynamic framework. This delayed loss of stability is independent of the rate of change of temperature and depends purely on the initial value of the temperature. We also show how our results can be used to improve estimates for LC material constants. © 2013 American Physical Society.

  18. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  19. The measurement and calculation of the kinetic parameter {beta}{sub eff}/{Lambda} of a small high-temperature like, critical system

    Energy Technology Data Exchange (ETDEWEB)

    Wallerbos, E.J.M.; Hoogenboom, J.E. [Interfaculty Reactor Inst., Delft Univ. of Technology, Delft (Netherlands)

    1998-01-01

    This paper demonstrates that it is well possible to determine the kinetic parameter {beta}{sub eff}/{Lambda} in a neutronically very slow system by means of noise measurements in the critical state. The advantages of this technique are that it can be conducted in a critical reactor directly, and that no special measurement equipment is needed. The comparison to calculated values for four configurations, which differ in the amount of moderation in the core region, shows a satisfactory agreement. (author)

  20. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  1. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  2. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  3. Enhancement of critical temperature in fractal metamaterial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)

    2017-04-15

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  4. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  5. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  6. Development of a method for high temperature reactor calculations tested at the critical facility Kahter using the program system RSYST. Entwicklung einer Rechenmethode zur HTR-Auslegung im Rahmen des Programmsystems RSYST und deren Erprobung an der kritischen Anlage 'Kahter'

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, R

    1979-08-15

    In this report the neutron- and reactor physical aspects of the high temperature pebble bed reactor are studied. For this purpose appropriate HTR-nuclear data sets are generated and applied in a calculation model, which is developed on the basis of neutron transport and diffusion theory. This model includes the complete reactor calculation for determination of neutron flux, reactivity and reaction rates. This reactor calculation is based on following: evaluation of resonance absorption in double heterogeneity, cell calculation in spherical geometry, zone spectral calculation and subsequent 2-dimensional diffusion calculation. All calculations are performed in the modular program system RSYST, which accommodates simplified treatment of reactor physics problems through its data transfer and treatment techniques and through its calculations control features. In this report the neutron- and reactor physical aspects of the high temperature pebble bed reactor are studied. For this purpose appropriate HTR-nuclear data sets are generated and applied in a calculation model, which is developed on the basis of neutron transport and diffusion theory. This model includes the complete reactor calculation for determination of neutron flux, reactivity and reaction rates. This reactor calculation is based on following: evaluation of resonance absorption in double heterogeneity, cell calculation in spherical geometry, zone spectral calculation and subsequent 2-dimensional diffusion calculation. All calculations are performed in the modular program system RSYST, which accommodates simplified treatment of reactor physics problems through its data transfer and treatment techniques and through its calculations control features. The results of the calculations are compared with measured values of different core configurations of the critical facility for the high temperature pebble bed reactor (KAHTER). This comparison shows how a critical facility is used to verify and to adjust

  7. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S [CNR-INFM Laboratorio Regionale SuperMat, Via Salvador Allende, I-84081 Baronissi (Italy)], E-mail: grimaldi@sa.infn.it

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  8. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  9. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  10. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  11. Critical Temperature tuning of Ti/TiN multilayer films suitable for low temperature detectors

    OpenAIRE

    Giachero, A.; Day, P.; Falferi, P.; Faverzani, M.; Ferri, E.; Giordano, C.; Marghesin, B.; Mattedi, F.; Mezzena, R.; Nizzolo, R.; Nucciotti, A.

    2013-01-01

    We present our current progress on the design and test of Ti/TiN Multilayer for use in Kinetic Inductance Detectors (KIDs). Sensors based on sub-stoichiometric TiN film are commonly used in several applications. However, it is difficult to control the targeted critical temperature $T_C$, to maintain precise control of the nitrogen incorporation process and to obtain a production uniformity. To avoid these problems we investigated multilayer Ti/TiN films that show a high uniformity coupled wit...

  12. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  13. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Zander, Kathryn; Osofsky, M S; Kim, Heungsoo; Saha, Shanta; Greene, R L; Smolyaninov, Igor I

    2014-12-04

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  14. Experimental demonstration of superconducting critical temperature increase in electromagnetic metamaterials

    Science.gov (United States)

    Smolyaninova, Vera N.; Yost, Bradley; Zander, Kathryn; Osofsky, M. S.; Kim, Heungsoo; Saha, Shanta; Greene, R. L.; Smolyaninov, Igor I.

    2014-12-01

    A recent proposal that the metamaterial approach to dielectric response engineering may increase the critical temperature of a composite superconductor-dielectric metamaterial has been tested in experiments with compressed mixtures of tin and barium titanate nanoparticles of varying composition. An increase of the critical temperature of the order of ΔT ~ 0.15 K compared to bulk tin has been observed for 40% volume fraction of barium titanate nanoparticles. Similar results were also obtained with compressed mixtures of tin and strontium titanate nanoparticles.

  15. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  16. Critical acceleration of finite temperature SU(2) gauge simulations

    International Nuclear Information System (INIS)

    Ben-Av, R.; Marcu, M.; Hamburg Univ.; Solomon, S.

    1991-04-01

    We present a cluster algorithm that strongly reduces critical slowing down for the SU(2) gauge theory on one time slice. The idea that underlies the new algorithm is to perform efficient flips for the signs of Polyakov loops. Ergodicity is ensured by combining it with a standard local algorithm. We show how to quantify critical slowing down for such a mixed algorithm. At the finite temperature transition, the dynamical critical exponent z is ≅0.5, whereas for the purely local algoirthm z ≅ 2. (orig.)

  17. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  18. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  19. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  20. The approximate determination of the critical temperature of a liquid by measuring surface tension versus the temperature

    International Nuclear Information System (INIS)

    Maroto, J A; Nieves, F J de las; Quesada-Perez, M

    2004-01-01

    A classical experience in a physics student laboratory is to determine the surface tension of a liquid versus the temperature and to check the linear appearance of the obtained graph. In this work we show a simple method to estimate the critical temperature of three liquids by using experimental data of surface tension at different temperatures. By a logarithm fitting between surface tension and temperature, the critical temperature can be determined and compared with data from the literature. For two liquids (butanol and nitrobenzene) the comparison is acceptable but the differences are too high for the third liquid (water). By discussing the results it seems to be clear that the difference between the critical temperature of the liquid and the maximum temperature of the surface tension measurements is the determining factor in obtaining acceptable results. From this study it is possible to obtain more information on the liquid characteristics from surface tension measurements that are currently carried out in a student laboratory. Besides, in this paper it is shown how to select the most suitable liquids which provide both acceptable values for the critical temperature and measurements of the surface tension at moderate temperatures. The complementary use of numerical methods permits us to offer a complete experience for the students with a simple laboratory experiment which we recommend for physics students in advanced university courses

  1. The Use of OXYGEN-18 in the Development of Methods for Controlled Sputter Deposition of High Critical Transition Temperature Material Thin Films of Predicted Composition and Good Uniformity

    Science.gov (United States)

    Tidrow, Steven Clay

    Two primary concerns, in the sputter deposition of high T_{c} material films, are the prevention of oxygen deficiency in the films and the elimination of the negative ion effect. "Oxygen deficiency" occurs when the amount of oxygen incorporated into the film is less than the amount of oxygen required to form the superconducting material lattice. Oxygen deficiency is due to the volatile nature of oxygen. The negative ion effect occurs when an atom or molecule (typically oxygen) gains an extra electron, is accelerated away from the target and impinges upon a film being grown directly in front of the sputtering target. The impinging particle has enough energy to cause resputtering of the deposited film. The presence of Sr and to a greater extent Ba, may enhance the negative ion effect in these materials. However, it is oxygen which readily forms negative ions that is primarily responsible for the negative ion effect. Thus, oxygen must be given special attention in the sputter deposition of high T_{c} material films. A specially designed sputtering system is used to demonstrate that the negative ion effect can be reduced such that large uniform high T_{c} material films possessing predicted and repeated composition can be grown in an on-axis arrangement. Utilizing this same sputtering system and the volatile nature of oxygen, it is demonstrated that oxygen processes occurring in the chamber during growth of high T_ {c} material films can be investigated using the tracer ^{18}O. In particular, it is shown that ^{18}O can be utilized as a tool for (1) investigating the negative ion effect, (2) investigating oxygen incorporation into high T_{c} material films, (3) investigating oxygen incorporation into the target, (4) tailoring films for oxygen migration and interface investigations and (5) tailoring films for the other specific oxygen investigations. Such sputtering systems that utilize the tracer ^{18}O are necessary for systematic growth of high T_ {c} material films

  2. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  3. The external field dependence of the BCS critical temperature

    DEFF Research Database (Denmark)

    Frank, Rupert L.; Hainzl, Christian; Seiringer, Robert

    2016-01-01

    We consider the Bardeen-Cooper-Schrieffer free energy functional for particles interacting via a two-body potential on a microscopic scale and in the presence of weak external fields varying on a macroscopic scale. We study the influence of the external fields on the critical temperature. We show...

  4. Temperature dependence of critical resolved shear stress for cubic metals

    International Nuclear Information System (INIS)

    Rashid, H.; Fazal-e-Aleem; Ali, M.

    1996-01-01

    The experimental measurements for critical resolved shear stress of various BCC and FCC metals have been explained by using Radiation Model. The temperature dependence of CRSS for different cubic metals is found to the first approximation, to upon the type of the crystal. A good agreement between experimental observations and predictions of the Radiation Model is found. (author)

  5. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  6. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R

    2003-01-01

    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  7. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  8. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  9. Size, Shape and Impurity Effects on Superconducting critical temperature.

    Science.gov (United States)

    Umeda, Masaki; Kato, Masaru; Sato, Osamu

    Bulk superconductors have their own critical temperatures Tc. However, for a nano-structured superconductor, Tc depends on size and shape of the superconductor. Nishizaki showed that the high pressure torsion on bulks of Nb makes Tc higher, because the torsion makes many nano-sized fine grains in the bulks. However the high pressure torsion on bulks of V makes Tc lower, and Nishizaki discussed that the decrease of Tc is caused by impurities in the bulks of V. We studied size, shape, and impurity effects on Tc, by solving the Gor'kov equations, using the finite element method. We found that smaller and narrower superconductors show higher Tc. We found how size and shape affects Tc by studying spacial order parameter distributions and quasi-particle eigen-energies. Also we studied the impurity effects on Tc, and found that Tc decreases with increase of scattering rate by impurities. This work was supported in part of KAKENHI Grant Number JP26400367 and JP16K05460, and program for leading graduate schools of ministry of education, culture, sports, science and technology-Japan.

  10. Aspects of high temperature superconductivity

    International Nuclear Information System (INIS)

    Deutscher, G.

    1989-01-01

    We present some remarks on special features that distinguish the phenomenology of the new high T c oxides from that of the conventional superconductors. They include a measurable width of the critical region and a high sensitivity to crystallographic defects. A consistent Landau Ginsburg interpretation is possible, with a short coherence length <15 A and a penetration depth <900 A. The latter is somewhat smaller than the currently accepted value, and implies a broad band scheme

  11. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  12. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  13. Parachors in terms of critical temperature, critical pressure and acentric factor

    Energy Technology Data Exchange (ETDEWEB)

    Broseta, D.; Ragil, K.

    1995-12-31

    The method of parachors is widely used in conventional thermodynamic codes and reservoir simulators to calculate oil/gas interfacial tensions of complex hydrocarbon mixtures. In the low-to-moderate interfacial tension regime, a value p{approx}11/3 has previously been shown to be the {open_quotes}best{close_quotes} parachor exponent. This exponent is a critical exponent and its value is consistent with the values of critical exponents characterizing the liquid/vapor critical behavior. Therefore parachors may be viewed as critical amplitudes. By using critical scaling theory, parachors are related to other critical amplitudes and critical parameters that describe the bulk thermodynamic behavior of fluids. A simple expression relating the parachor of a pure compound to its critical temperature T{sub c}, critical pressure P{sub c}, and acentric factor {omega} is proposed: P= (0.85-0.19{omega})T{sub c}{sup 12/11}/P{sub c}{sup 9/11} where the parachor P is in units of (dyn/cm){sup 3/11}cm{sup 3}/mol, T{sub c} in K and P{sub c} in MPa. This equation matches (within experimental error) the known parachor values of normal fluids (e.g. alkanes, aromatics, CO{sub 2}, N{sub 2}, H{sub 2}S, etc...).

  14. Critical temperature transitions in laser-mediated cartilage reshaping

    Science.gov (United States)

    Wong, Brian J.; Milner, Thomas E.; Kim, Hong H.; Telenkov, Sergey A.; Chew, Clifford; Kuo, Timothy C.; Smithies, Derek J.; Sobol, Emil N.; Nelson, J. Stuart

    1998-07-01

    In this study, we attempted to determine the critical temperature [Tc] at which accelerated stress relaxation occurred during laser mediated cartilage reshaping. During laser irradiation, mechanically deformed cartilage tissue undergoes a temperature dependent phase transformation which results in accelerated stress relaxation. When a critical temperature is attained, cartilage becomes malleable and may be molded into complex new shapes that harden as the tissue cools. Clinically, reshaped cartilage tissue can be used to recreate the underlying cartilaginous framework of structures such as the ear, larynx, trachea, and nose. The principal advantages of using laser radiation for the generation of thermal energy in tissue are precise control of both the space-time temperature distribution and time- dependent thermal denaturation kinetics. Optimization of the reshaping process requires identification of the temperature dependence of this phase transformation and its relationship to observed changes in cartilage optical, mechanical, and thermodynamic properties. Light scattering, infrared radiometry, and modulated differential scanning calorimetry (MDSC) were used to measure temperature dependent changes in the biophysical properties of cartilage tissue during fast (laser mediated) and slow (conventional calorimetric) heating. Our studies using MDSC and laser probe techniques have identified changes in cartilage thermodynamic and optical properties suggestive of a phase transformation occurring near 60 degrees Celsius.

  15. Spotlighting quantum critical points via quantum correlations at finite temperatures

    International Nuclear Information System (INIS)

    Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo

    2011-01-01

    We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.

  16. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  17. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  18. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  19. High critical magnetic field superconductor La3S4

    International Nuclear Information System (INIS)

    Westerholt, K.; Bach, H.; Wendemuth, R.; Methfessel, S.

    1979-01-01

    A report is presented on electrical conductivity, specific heat and magnetization measurements on La 3 S 4 single crystals. The results show that La 3 S 4 is a strong coupling superconductor with a BCS coherence length of 132 A. This extremely low value makes La 3 S 4 an intrinsic high critical magnetic field superconductor with a Landau-Ginsburg parameter of 20. For the temperature gradient of the upper critical magnetic field at the transition temperature values are found up to 35 kG/K. (author)

  20. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  1. Theoretical modeling of critical temperature increase in metamaterial superconductors

    Science.gov (United States)

    Smolyaninov, Igor; Smolyaninova, Vera

    Recent experiments have demonstrated that the metamaterial approach is capable of drastic increase of the critical temperature Tc of epsilon near zero (ENZ) metamaterial superconductors. For example, tripling of the critical temperature has been observed in Al-Al2O3 ENZ core-shell metamaterials. Here, we perform theoretical modelling of Tc increase in metamaterial superconductors based on the Maxwell-Garnett approximation of their dielectric response function. Good agreement is demonstrated between theoretical modelling and experimental results in both aluminum and tin-based metamaterials. Taking advantage of the demonstrated success of this model, the critical temperature of hypothetic niobium, MgB2 and H2S-based metamaterial superconductors is evaluated. The MgB2-based metamaterial superconductors are projected to reach the liquid nitrogen temperature range. In the case of an H2S-based metamaterial Tc appears to reach 250 K. This work was supported in part by NSF Grant DMR-1104676 and the School of Emerging Technologies at Towson University.

  2. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  3. High-Temperature Vibration Damper

    Science.gov (United States)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  4. Containment of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  5. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  6. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  7. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  8. Modelling of HTR (High Temperature Reactor Pebble-Bed 10 MW to Determine Criticality as A Variations of Enrichment and Radius of the Fuel (Kernel With the Monte Carlo Code MCNP4C

    Directory of Open Access Journals (Sweden)

    Hammam Oktajianto

    2014-12-01

    Full Text Available Gas-cooled nuclear reactor is a Generation IV reactor which has been receiving significant attention due to many desired characteristics such as inherent safety, modularity, relatively low cost, short construction period, and easy financing. High temperature reactor (HTR pebble-bed as one of type of gas-cooled reactor concept is getting attention. In HTR pebble-bed design, radius and enrichment of the fuel kernel are the key parameter that can be chosen freely to determine the desired value of criticality. This paper models HTR pebble-bed 10 MW and determines an effective of enrichment and radius of the fuel (Kernel to get criticality value of reactor. The TRISO particle coated fuel particle which was modelled explicitly and distributed in the fuelled region of the fuel pebbles using a Simple-Cubic (SC lattice. The pebble-bed balls and moderator balls distributed in the core zone using a Body-Centred Cubic lattice with assumption of a fresh fuel by the fuel enrichment was 7-17% at 1% range and the size of the fuel radius was 175-300 µm at 25 µm ranges. The geometrical model of the full reactor is obtained by using lattice and universe facilities provided by MCNP4C. The details of model are discussed with necessary simplifications. Criticality calculations were conducted by Monte Carlo transport code MCNP4C and continuous energy nuclear data library ENDF/B-VI. From calculation results can be concluded that an effective of enrichment and radius of fuel (Kernel to achieve a critical condition was the enrichment of 15-17% at a radius of 200 µm, the enrichment of 13-17% at a radius of 225 µm, the enrichments of 12-15% at radius of 250 µm, the enrichments of 11-14% at a radius of 275 µm and the enrichment of 10-13% at a radius of 300 µm, so that the effective of enrichments and radii of fuel (Kernel can be considered in the HTR 10 MW. Keywords—MCNP4C, HTR, enrichment, radius, criticality 

  9. High transition temperature superconducting integrated circuit

    International Nuclear Information System (INIS)

    DiIorio, M.S.

    1985-01-01

    This thesis describes the design and fabrication of the first superconducting integrated circuit capable of operating at over 10K. The primary component of the circuit is a dc SQUID (Superconducting QUantum Interference Device) which is extremely sensitive to magnetic fields. The dc SQUID consists of two superconductor-normal metal-superconductor (SNS) Josephson microbridges that are fabricated using a novel step-edge process which permits the use of high transition temperature superconductors. By utilizing electron-beam lithography in conjunction with ion-beam etching, very small microbridges can be produced. Such microbridges lead to high performance dc SQUIDs with products of the critical current and normal resistance reaching 1 mV at 4.2 K. These SQUIDs have been extensively characterized, and exhibit excellent electrical characteristics over a wide temperature range. In order to couple electrical signals into the SQUID in a practical fashion, a planar input coil was integrated for efficient coupling. A process was developed to incorporate the technologically important high transition temperature superconducting materials, Nb-Sn and Nb-Ge, using integrated circuit techniques. The primary obstacles were presented by the metallurgical idiosyncrasies of the various materials, such as the need to deposit the superconductors at elevated temperatures, 800-900 0 C, in order to achieve a high transition temperature

  10. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  11. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  12. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  13. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  14. Development of high temperature turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, Kitao; Nouse, Hiroyuki; Yoshida, Toyoaki; Minoda, Mitsuhiro; Matsusue, Katsutoshi; Yanagi, Ryoji

    1988-07-01

    For the contribution to the development of FJR710, high by-pass ratio turbofan engine, with the study for many years of the development of high efficiency turbine for the jet engine, the first technical prize from the Energy Resource Research Committee was awarded in April, 1988. This report introduced its technical contents. In order to improve the thermal efficiency and enlarge the output, it is very effective to raise the gas temperature at the inlet of gas turbine. For its purpose, by cooling the nozzle and moving blades and having those blades operate at lower temperature than that of the working limitation, they realized, for the first time in Japan, the technique of cooling turbine to heighten the operational gas temperature. By that technique, it was enabled to raise the gas temperature at the inlet of turbine, to 1,350/sup 0/C from 850/sup 0/C. This report explain many important points of study covering the basic test, visualizing flow experiment, material discussion and structural design in the process of development. (9 figs)

  15. Critical current enhancement in high Tc superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Graebner, J.E.; Tiefel, T.H.

    1990-01-01

    Progress toward major technological applications of the bulk, high T c superconductors has been hindered by two major barriers, i.e., the Josephson weak-links at grain boundaries and the lack of sufficient intragrain flux pinning. It has been demonstrated that the weak link problem can be overcome by extreme alignment of grains such as in melt-textured-growth (MTG) materials. Modified or improved processing by various laboratories has produced further increased critical currents. However, the insufficient flux pinning seems to limit the critical current density in high fields to about 10 4 --10 5 A/cm 2 at 77K, which is not satisfactory for many applications. In this paper, processing, microstructure, and critical current behavior of the MTG type superconductors are described, and various processing possibilities for flux pinning enhancement are discussed

  16. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  17. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  18. High-temperature geothermal cableheads

    Science.gov (United States)

    Coquat, J. A.; Eifert, R. W.

    1981-11-01

    Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.

  19. Temperature variation of criticality of thermal reactor lattices

    International Nuclear Information System (INIS)

    Velner, S.; Rothenstein, W.

    1975-01-01

    Departures from the asymptotic mode in the experimental setup have been examined in detail for two assemblies, one exponential, the other critical. It was found that the flux shape differed noticeably from the asymptotic mode in the core region especially for the exponential assemblies. On the other hand the departure from the fundamental mode has very little effect on the change of material buckling with temperature. Results of the calculations and their comparison with experiment are presented. The variation of material buckling with temperature is the same for ENDF/B-II and for ENDF/B-IV data, both for asymptotic reactor theory and for the buckling values derived from the flux calculated with the SN code. The results obtained with ENDF/B-IV data for both lattices are shown. In the small exponential assembly the results derived from S-4 calculations are compared with experiment. In the critical assembly the ratio of U-238 to U-235 fissions delta 28 and the relative conversion ratio - the ratio of U-238 captures to U-235 fissions in the lattice compared with the same quantity in a thermal column - are also shown. In both cases the experimental change of buckling with temperature is smaller than the calculated change. (B.G.)

  20. Method And Apparatus For Evaluatin Of High Temperature Superconductors

    Science.gov (United States)

    Fishman, Ilya M.; Kino, Gordon S.

    1996-11-12

    A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.

  1. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  2. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  3. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  4. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  5. High temperature superconductors and method

    International Nuclear Information System (INIS)

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  6. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  7. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  8. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  9. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  10. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  11. Container floor at high temperatures

    International Nuclear Information System (INIS)

    Reutler, H.; Klapperich, H.J.; Mueller-Frank, U.

    1978-01-01

    The invention describes a floor for container which is stressed at high, changing temperatures and is intended for use in gas-cooled nuclear reactors. Due to the downward cooling gas flow in these types of reactor, the reactor floor is subjected to considerable dimensional changes during switching on and off. In the heating stage, the whole graphite structure of the reactor core and floor expands. In order to avoid arising constraining forces, sufficiently large expansion spaces must be allowed for furthermore restoring forces must be present to close the gaps again in the cooling phase. These restoring forces must be permanently present to prevent loosening of the core cuits amongst one another and thus uncontrollable relative movement. Spring elements are not suitable due to fast fatigue as a result of high temperatures and radiation exposure. It is suggested to have the floor elements supported on rollers whose rolling planes are downwards inclined to a fixed point for support. The construction is described in detail by means of drawings. (GL) [de

  12. High Temperature Radio Frequency Loads

    CERN Document Server

    Federmann, S; Grudiev, A; Montesinos, E; Syratchev, I

    2011-01-01

    In the context of energy saving and recovery requirements the design of reliable and robust RF power loads which permit a high outlet temperature and high pressure of the cooling water is desirable. Cooling water arriving at the outlet withmore than 150 ◦C and high pressure has a higher value than water with 50 ◦C under low pressure. Conventional RF power loads containing dielectric and magnetic materials as well as sensitive ceramic windows usually do not permit going much higher than 90 ◦C. Here we present and discuss several design concepts for "metal only" RF high power loads. One concept is the application of magnetic steel corrugated waveguides near cutoff – this concept could find practical use above several GHz. Another solution are resonant structures made of steel to be installed in large waveguides for frequencies of 500 MHz or lower. Similar resonant structures above 100 MHz taking advantage of the rather high losses of normal steel may also be used in coaxial line geometries with large di...

  13. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  14. The high-temperature reactor

    International Nuclear Information System (INIS)

    Kirchner, U.

    1991-01-01

    The book deals with the development of the German high-temperature reactor (pebble-bed), the design of a prototype plant and its (at least provisional) shut-down in 1989. While there is a lot of material on the HTR's competitor, the fast breeder, literature is very incomplete on HTRs. The author describes HTR's history as a development which was characterised by structural divergencies but not effectively steered and monitored. There was no project-oriented 'community' such as there was for the fast breeder. Also, the new technology was difficult to control there were situations where no one quite knew what was going on. The technical conditions however were not taken as facts but as a basis for interpretation, wishes and reservations. The HTR gives an opportunity to consider the conditions under which large technical projects can be carried out today. (orig.) [de

  15. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  16. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  17. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  18. Superconductors with low critical temperature for electro-magnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb 3 Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb 3 Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  19. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  20. Fluctuation induced critical behavior at nonzero temperature and chemical potential

    International Nuclear Information System (INIS)

    Splittorff, K.; Lenaghan, J.T.; Wirstam, J.

    2003-01-01

    We discuss phase transitions in relativistic systems as a function of both the chemical potential and temperature. The presence of a chemical potential explicitly breaks Lorentz invariance and may additionally break other internal symmetries. This introduces new subtleties in the determination of the critical properties. We discuss separately three characteristic effects of a nonzero chemical potential. First, we consider only the explicit breaking of Lorentz invariance using a scalar field theory with a global U(1) symmetry. Second, we study the explicit breaking of an internal symmetry in addition to Lorentz invariance using two-color QCD at nonzero baryonic chemical potential. Finally, we consider the spontaneous breaking of a symmetry using three-color QCD at nonzero baryonic and isospin chemical potential. For each case, we derive the appropriate three-dimensional effective theory at criticality and study the effect of the chemical potential on the fixed point structure of the β functions. We find that the order of the phase transition is not affected by the explicit breaking of Lorentz invariance but is sensitive to the breaking of additional symmetries by the chemical potential

  1. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  2. Critical pitting temperature for Type 254 SMO stainless steel in chloride solutions

    International Nuclear Information System (INIS)

    Abd El Meguid, E.A.; Abd El Latif, A.A.

    2007-01-01

    The variation with time of the open circuit potential of high molybdenum containing stainless steel (Type 254 SMO) was measured in 4% sodium chloride solution in the temperatures range 30-100 deg. C. The plot of steady state potentials as function of temperature showed an inflection at 50 deg. C, attributed to the decrease of oxygen solubility in test solution above 50 deg. C. Potentiodynamic cycling anodic polarization technique was used to determine the critical pitting potential (E pit ) and the critical protection potential (E prot ) of the steel in 4-30% NaCl solutions at temperatures between 30 and 100 deg. C. By plotting the two values versus solution temperature, the corresponding critical pitting (CPT) and the critical protection (CPrT) temperatures were determined. Both parameters decreased with increasing chloride content. Above the CPT, E pit and E prot decreased linearly with log[Cl - ]. The addition of bromide ions to the solution shifted both E pit and E prot towards positive values. In 4% NaCl, E pit increased linearly with pH in the range 1-10. The combined effect of chloride ion concentration and pH on the morphology of the pits was examined by scanning electron microscopy (SEM) following potentiodynamic cycling anodic polarization

  3. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  4. Structure, resistivity, critical field, specific-heat jump at Tc, Meissner effect, a.c. and d.c. Susceptibility of the high-temperature superconductor La2-xSrxCuO4

    International Nuclear Information System (INIS)

    Decroux, M.; Junod, A.; Bezinge, A.

    1987-01-01

    The temperature dependence of the resistivity, the magnetic properties and the specific heat were investigated on sintered samples of La 1.85 Sr 0.15 CuO 4 having zero resistance below 35 K. The crystal structure at 300K (tetragonal K 2 NiF 4 -type) was refined from X-ray powder diffraction data. The d.c. susceptibility shows no indication for the existence of localized Cu 2+ moments. The observation of a 60% Meissner effect and a smeared jump at T c in the specific-heat curve prove the intrinsic character of this superconducting state. The amplitude of this jump is compatible with the DOS estimated from the Pauli susceptibility. With a critical magnetic field slope dH c2 /dT| Tc = - 2.5 T/K, the orbital critical field is expected to be of the order of 64 T

  5. Bi-based superconducting fibers with high critical parameters

    International Nuclear Information System (INIS)

    Huo Yujing; He Yusheng; Liu Menglin; Mao Sining; Cai Liying; Wang Ying; Zhang Jincang; He Aisheng; Wang Jinsong

    1991-01-01

    Superconducting fibers of Bi(Pb)-Sr-Ca-Cu-O high Tc superconducting materials have been prepared by means of the laser-heated pedestal growth (LHPG) method. The highest zero resistance temperature T c0 reaches is 114K, and the highest critical current density J c (77K, O T) is greater than 5000 A/cm 2 . As-grown superconducting fibers were successfully fabricated without post growth heat treatment. Amorphous materials were used for the first time to make high quality fibers. The influence of growth conditions, thermal treatment and the composition of the fibers were discussed. (author). 5 refs., 7 figs., 3 tabs

  6. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  7. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  8. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  9. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  10. Measurement of critical temperatures and critical pressures for binary mixtures of methyl tert-butyl ether (MTBE) + alcohol and MTBE + alkane

    International Nuclear Information System (INIS)

    Han, Kewei; Xia, Shuqian; Ma, Peisheng; Yan, Fangyou; Liu, Tao

    2013-01-01

    Highlights: • The critical properties of seven binary mixtures related to gasoline were measured. • The critical properties of the five systems containing MTBE were reported for the first time. • Binary interaction parameters were fitted by experimental data using PR EOS with Wong–Sandler mixing rule. • Redlich–Kister equation was used to correlate the experimental data. -- Abstract: A set of high-pressure view apparatus was designed for determining the critical properties of chemicals. In order to check the reliability of the apparatus, the critical temperatures (T c ) and critical pressures (P c ) of pure n-heptane, cyclohexane, methanol, ethanol, 1-propanol, methyl tert-butyl ether (MTBE), and binary mixture n-hexane + ethanol were measured. The experimental data were in good agreement with the literature data, which proves the reliability of the apparatus used in the work. The critical temperatures and critical pressures of five binary mixtures containing gasoline additive (MTBE + n-heptane, MTBE + cyclohexane, MTBE + methanol, MTBE + ethanol, MTBE + 1-propanol) were measured using the high-pressure view cell with visual observation. The critical temperatures and critical pressures for the five binary mixtures were all reported for the first time. In addition, the critical temperatures and critical pressures of the binary mixture n-heptane + cyclohexane (two of main components in gasoline) were also measured. All the critical lines for the mixtures studied are continuous which connect the critical points of the two pure components, indicating their phase diagrams belong to type I proposed by Scott and van Konynenburg. The critical points of these systems were calculated by the Peng–Robinson equation of state with the Wong–Sandler mixing rule. This model could calculate the critical properties of the mixtures well with the binary interaction parameter k ij obtained by fitting the experimental critical data. And the experimental data were all

  11. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  12. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  13. The high temperature phase transition for the φ4 theory

    International Nuclear Information System (INIS)

    Tetradis, N.

    1994-01-01

    The use of the perturbative temperature dependent effective potential for the study of second order or weakly first order phase transitions is problematic, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. I review work done with C. Wetterich on the study of the high temperature phase transition for the N-component Φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. (orig.)

  14. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  15. Processing and critical currents of high-Tc superconductor wires

    International Nuclear Information System (INIS)

    Krauth, H.; Heine, K.; Tenbrink, J.

    1991-01-01

    High-Tc superconductors are expected to have a major impact on magnet and energy technology. For technical applications they have to fulfill the requirement of carrying sufficient current at a critical current density of the order of 10 5 A/cm 2 at operating temperature and magnetic field. At 77 K these values have not been achieved yet in bulk material or wires due to weak link problems and flux creep effects. Progress made so far and remaining problems will be discussed in detail concentrating on problems concerning development of technical wires. In Bi-based materials technically interesting critical current densities could be achieved at 4.2 K in fields above 20 T (1,2), rendering possible the use of such material for very high field application. (orig.)

  16. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  17. Thermal fluctuation effects far from the critical temperature

    International Nuclear Information System (INIS)

    Refai, T.F.

    1980-01-01

    We report the first measurements of thermal fluctuations in superconductors at temperatures far from the critical temperature T/sub c/ (T approx. 1/2 T/sub c/), and also the first measurements that use thermal fluctuations to probe the non-equilibrium dynamics of a superconductor. This is the first work that separately measures the fluctuations that cause a superconductor to switch to the dissipative state and those that cause it to switch back to the superconductor state. These unique measurements allowed: (1) The first measurement experimental confirmation of the theory of Langer, Ambegaokar, McCumber, and Halperin (LAMH) where T/sub c/ was not an adjustable parameter. This rigorous test of the theory was not previously possible because earlier measurements were carried out very near T/sub c/, where a change of many orders of magnitude of predicted effects occur if the assumed T/sub c/ changes a few millidegrees. Thus T/sub c/ in all previous work was always adjusted so as to get agreement with the theory. (2) The first verification of the LAMH model far from T/sub c/. (3) The first experimental confirmation of the relation between current and transition probability that was predicted in the LAMH model. (4) Confirmation that the Lamda model developed by Peters, Wolf, and Rachford (PWR) to explain the dynamics on the nonequilibrium region can be extended to explain fluctuation effects. This is based on an original phenomenological extension of the LAMH model that is developed in this work and on our data. (5) The most direct measurement to date of the nature of the decay of the dissipative region in a weak link. These measurements show that the region recovers exponentially in time as proposed in the Lamda model

  18. Possibility of high temperature superconducting phases in PdH

    Science.gov (United States)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-01

    Possible new superconducting phases with a high critical transition temperature (Tc) have been found in stable palladium-hydrogen (PdHx) samples for stoichiometric ratio x=H/Pd⩾1, in addition to the well-known low critical transition temperature (0⩽Tc⩽9) when x is in the range (0.75⩽x⩽1.00). Possible new measured superconducting phases with critical temperature in the range 51⩽Tc⩽295 K occur. This Tc varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density Jc⩾6.1×104 A cm-2 has been measured at 77 K with HDC=0 T.

  19. Possibility of high temperature superconducting phases in PdH

    Energy Technology Data Exchange (ETDEWEB)

    Tripodi, Paolo; Di Gioacchino, Daniele; Borelli, Rodolfo; Vinko, Jenny Darja

    2003-05-15

    Possible new superconducting phases with a high critical transition temperature (T{sub c}) have been found in stable palladium-hydrogen (PdH{sub x}) samples for stoichiometric ratio x=H/Pd{>=}1, in addition to the well-known low critical transition temperature (0{<=}T{sub c}{<=}9) when x is in the range (0.75{<=}x{<=}1.00). Possible new measured superconducting phases with critical temperature in the range 51{<=}T{sub c}{<=}295 K occur. This T{sub c} varies considerably with every milli part of x when x exceeds unit. A superconducting critical current density J{sub c}{>=}6.1x10{sup 4} A cm{sup -2} has been measured at 77 K with H{sub DC}=0 T.

  20. Non-critical strings at high energy

    CERN Document Server

    Aoki, Kenichiro; Aoki, Kenichiro; Hoker, Eric D'

    1996-01-01

    We consider scattering amplitudes in non-critical string theory of $N$ external states in the limit where the energy of all external states is large compared to the string tension. We argue that the amplitudes are naturally complex analytic in the matter central charge $c$ and we propose to define the amplitudes for arbitrary value of $c$ by analytic continuation. We show that the high energy limit is dominated by a saddle point that can be mapped onto an equilibrium electro-static energy configuration of an assembly of $N$ pointlike (Minkowskian) charges, together with a density of charges arising from the Liouville field. We argue that the Liouville charges accumulate on segments of curves, and produce quadratic branch cuts on the worldsheet. The electro-statics problem is solved for string tree level in terms of hyper-elliptic integrals and is given explicitly for 3- and 4-point functions. We show that the high energy limit should behave in a string-like fashion with exponential dependence on the energy sc...

  1. High temperature water chemistry monitoring

    International Nuclear Information System (INIS)

    Aaltonen, P.

    1992-01-01

    Almost all corrosion phenomena in nuclear power plants can be prevented or at least damped by water chemistry control or by the change of water chemistry control or by the change of water chemistry. Successful water chemistry control needs regular and continuous monitoring of such water chemistry parameters like dissolved oxygen content, pH, conductivity and impurity contents. Conventionally the monitoring is carried out at low pressures and temperatures, which method, however, has some shortcomings. Recently electrodes have been developed which enables the direct monitoring at operating pressures and temperatures. (author). 2 refs, 5 figs

  2. Investigation on the bisoliton mechanism of high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang Lingyun; Li Bozang; Pu Fucho; Lin Jiatih

    1996-01-01

    Microscopic parameters in the Davydov model are calculated on the basis of the bisoliton idea. The energy gap is obtained from combining the condition for the solution of Davydov's equation with the condensation energy of the superconductive state in zero field, and some characteristic parameters of high-temperature superconductors such as coherence length, penetration depth, and density of critical current for a thin film in weak magnetic field are given. It is also proved that lattice displacement in Davydov's equation satisfies the φ 4 field form. The critical temperature and the coefficient of linear specific heat of high-temperature superconductors are studied from the statistics of lattice kinks. The agreement between theoretical and experimental values for YBaCuO oxide ceramics suggests that the bisoliton model gives a reasonable explanation of high-temperature superconductivity. (orig.)

  3. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  4. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  5. Temperature and pinning strength dependence of the critical current of a superconductor with a square periodic array of pinning sites

    International Nuclear Information System (INIS)

    Benkraouda, M.; Obaidat, I.M.; Al Khawaja, U.

    2006-01-01

    We have conducted extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. In solving the over damped equation of vortex motion we took into account the vortex-vortex repulsion interaction, the attractive vortex-pinning interaction, and the driving Lorentz force at several values of temperature. We have studied the effect of varying the driving Lorentz force and varying the pinning strength on the critical current for several pinning densities, and temperature values. We have found that the pinning strength play an important role in enhancing the critical current over the whole temperature range. At low temperatures, the critical current was found to increase linearly with increasing the pinning strengths for all pinning densities. As the temperature increases, the effect of small pinning strengths diminishes and becomes insignificant at high temperatures

  6. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  7. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  8. Magnetic memory effects in high temperature superconductors

    International Nuclear Information System (INIS)

    Rockenbauer, A.

    1989-01-01

    Microwave absorption of high temperature oxide superconductors MBa 2 Cu 3 O 7 (M = Y, Er, Dy, Ho, Lu, Tm, Gd) at 77 K have been studied by ESR. In granular samples diamagnetic zero-field resonance and strong ESR baseline hysteresis have been observed: for increasing field sweep - a high, for decreasing one - a low, while in constant field the baseline approaches the middle position with kinetics typical of spin-glasses. The hysteresis amplitude, i.e. the deviation of high and low baselines, possesses maximum at zero field if the sample is cooled down in zero field. In case of field cooling both the diamagnetic resonance and hysteresis maximum are shifted as a function of relative direction of the fields where the samples are cooled and measured, respectively. The shift is caused by the remanent diamagnetism of trapped fluxons. The hysteresis critically depends on the modulation amplitude of magnetic field, and no hysteresis can be observed if the microwave absorption is detected without field modulation. By applying saw-tooth sweep the spin-glass can be driven between two extreme hysteresis states, and the ESR response is rectangular for large saw-tooth amplitude and linear - for small one, while for intermediate amplitudes the recording shows characteristic memory effects. The hysteresis memory is explained in terms of loop distribution of fluxons. In the single crystal the fluxon absorptions are also detected and the separation of fluxon lines can be related to the hysteresis in granular samples. (author)

  9. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  10. Development of High Temperature Solid Lubricant Coatings

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...

  11. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  12. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  13. Quantitative Temperature Dependence of Longitudinal Spin Seebeck Effect at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ken-ichi Uchida

    2014-11-01

    Full Text Available We report temperature-dependent measurements of longitudinal spin Seebeck effects (LSSEs in Pt/Y_{3}Fe_{5}O_{12} (YIG/Pt systems in a high temperature range from room temperature to above the Curie temperature of YIG. The experimental results show that the magnitude of the LSSE voltage in the Pt/YIG/Pt systems rapidly decreases with increasing the temperature and disappears above the Curie temperature. The critical exponent of the LSSE voltage in the Pt/YIG/Pt systems at the Curie temperature is estimated to be 3, which is much greater than that for the magnetization curve of YIG. This difference highlights the fact that the mechanism of the LSSE cannot be explained in terms of simple static magnetic properties in YIG.

  14. Time dependence of magnetization of high temperature superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Geshkenbein, V.B.

    1988-10-01

    Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs

  15. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  16. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  17. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  18. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  19. Optimization of the Neutronics of the Advanced High Temperature Reactor

    International Nuclear Information System (INIS)

    Zakova, Jitka; Talamo, Alberto

    2006-01-01

    In these studies, we have investigated the neutronic and safety performance of the Advanced High Temperature Reactor (AHTR) for plutonium and uranium fuels and we extended the analysis to five different coolants. The AHTR is a graphite-moderated and molten salt-cooled high temperature reactor, which takes advantage of the TRISO particles technology for the fuel utilization. The conceptual design of the core, proposed at the Oak Ridge National Laboratory, aims to provide an alternative to helium as coolant of high-temperature reactors for industrial applications like hydrogen production. We evaluated the influence of the radial reflector on the criticality of the core for the uranium and plutonium fuels and we focused on the void coefficient of 5 different molten salts; since the safety of the reactor is enhanced also by the large and negative coefficient of temperature, we completed our investigation by observing the keff changes when the graphite temperature varies from 300 to 1800 K. (authors)

  20. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  1. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  2. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  3. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  4. Low critical temperature superconductors for electromagnets; Supraconducteurs a basse temperature critique pour electroaimants

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    2002-07-01

    After a brief history of the main discoveries in applied superconductivity (section 1), we discuss the structure and properties of NbTi and Nb3 Sn (section 2). Then, we explain why low critical-temperature superconductors are produced under the form of multifilamentary composites (section 3), and we review the manufacturing processes of NbTi and Nb3Sn wires (section 4). We follow by a description of the transition from the superconducting to the normal resistive state of multifilamentary composite wires (section 5) and we detail their magnetization properties section 6). Last, we present the most commonly used cable configurations (section 7) and we provide simple formulae illustrating on a few examples the computation of losses generated under time-varying magnetic fields (section 8). (author)

  5. Theory of high temperature superconductivity

    International Nuclear Information System (INIS)

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  6. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  7. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  8. High temperature solar selective coatings

    Science.gov (United States)

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  9. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  10. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  11. Temperature dependence of the upper critical field of type II superconductors with fluctuation effects

    International Nuclear Information System (INIS)

    Mikitik, G.P.

    1992-01-01

    Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields

  12. Electric breakdown of high polymer insulating materials at cryogenic temperature

    International Nuclear Information System (INIS)

    Kim, Sanhyon; Yoshino, Katsumi

    1985-01-01

    Cryogenic properties : temperature dependence of E sub(b) and effects of media upon E sub(b) were investigated on several high polymers. Temperature conditions were provided by liquid He (4.2 K), liquid N 2 (77 K) and cryogen (dry ice-methyl alcohol, 194 K). Silicone oil was used also at ambient temperature and elevated temperature. Polymer film coated with gold by vacuum evaporation was placed in cryostat, and high tension from pulse generator was applied to the film. Dielectric breakdowns were detected by oscilloscope and observed visually. The results of experiment are summerized as follow. (1) E sub(b) of film in He is affected by medium remarkably, and covering with 3-methyl pentane is effective for increasing E sub(b). (2) Temperature dependence of E sub(b) was not recognized in cryogenic temperature below liquid N 2 . (3) Temperature characteristic of E sub(b) changes considerably at the critical temperature T sub(c), and T sub(c) is dependent on material. (4) Strength against dielectric breakdown under cryogenic temperature is not affected by bridging caused by irradiation of electron beam. (5) Dielectric breakdown is thought to be caused by electronic process such as electron avalanche. Consequently, for designing insulation for the temperature below liquid He, insulation design for liquid N 2 is thought to be sufficient. However, the degradation and breakdown by mechanical stress under cryogenic temperature must be taken into consideration. (Ishimitsu, A.)

  13. Present status of high temperature engineering test and research, 1994

    International Nuclear Information System (INIS)

    1994-10-01

    High temperature gas-cooled reactors have excellent features such as the generation of high temperature close to 1000degC, very high inherent safety and high fuel burnup. By the advanced basic research under high temperature irradiation condition, the creation of various new technologies which become the momentum of future technical innovation can be expected. The construction of the high temperature engineering test reactor (HTTR) was decided in 1987, which aims at the thermal output of 30 MW and the coolant temperature at reactor exit of 950degC. The initial criticality is scheduled in 1998. Japan Atomic Energy Research Institute has advanced the high temperature engineering test and research, and plans the safety verifying test of the HTTR, the test of connecting heat utilization plants and so on. In this report, mainly the results obtained for one year from May, 1993 are summarized. The outline of the high temperature engineering test and development of the HTTR technologies are reported. (K.I.)

  14. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  15. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  16. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  17. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  18. Dynamic Model of High Temperature PEM Fuel Cell Stack Temperature

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen

    2007-01-01

    cathode air cooled 30 cell HTPEM fuel cell stack developed at the Institute of Energy Technology at Aalborg University. This fuel cell stack uses PEMEAS Celtec P-1000 membranes, runs on pure hydrogen in a dead end anode configuration with a purge valve. The cooling of the stack is managed by running......The present work involves the development of a model for predicting the dynamic temperature of a high temperature PEM (HTPEM) fuel cell stack. The model is developed to test different thermal control strategies before implementing them in the actual system. The test system consists of a prototype...... the stack at a high stoichiometric air flow. This is possible because of the PBI fuel cell membranes used, and the very low pressure drop in the stack. The model consists of a discrete thermal model dividing the stack into three parts: inlet, middle and end and predicting the temperatures in these three...

  19. Temperature dependence of critical magnetic fields for the Abelian Higgs model

    International Nuclear Information System (INIS)

    Magpantay, J.; Mukku, C.; Sayed, W.A.

    1981-05-01

    One loop temperature and external electromagnetic field effects on the Abelian Higgs model are studied using the momentum space heat kernel. We obtain expressions for the critical fields necessary for symmetry restoration at some finite temperature and display the critical B vs. T curve separating the broken and restored phases in the B-T plane. (author)

  20. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  1. Effective model for deconfinement at high temperature

    International Nuclear Information System (INIS)

    Skokov, Vladimir

    2013-01-01

    In this talk I consider the deconfining phase transition at nonzero temperature in a SU(N) gauge theory, using a matrix model. I present some results including the position of the deconfining critical endpoint, where the first order transition for deconfinement is washed out by the presence of massive, dynamical quarks, and properites of the phase transition in the limit of large N. I show that the model is soluble at infinite N, and exhibits a Gross-Witten-Wadia transition

  2. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  3. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  4. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  5. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  6. Low-temperature approach to the renormalization-group study of critical phenomena

    International Nuclear Information System (INIS)

    Suranyi, P.

    1977-01-01

    A new method of exploring the contents of the renormalization-group equations for discrete spins is introduced. The equations are expanded in low-temperature series and the truncated series are used to obtain the critical exponents and critical temperature of a system. The method is demonstrated on the planar triangular Ising lattice and the critical parameters are found to be within a few percent of the exactly known values in third nonvanishing order of approximation

  7. Signature of electron-phonon interaction in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2011-09-01

    Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.

  8. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  9. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  10. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  11. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  12. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  13. TECHNICAL TRAINING SEMINAR: High Temperature Superconductors: Progress and Issues

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Monday 24 June from 14:30 to 15:30 - Training Centre Auditorium - bldg. 593-11 High Temperature Superconductors: Progress and Issues Prof. Jan Evetts / UNIVERSITY OF CAMBRIDGE, Department of Materials Science and Metallurgy, UK Grappling with grain boundaries: Current transport processes in granular High Temperature Superconductors (HTS) The development of High Temperature Superconductors, seen from a materials scientist's point of view, is relevant to the superconductivity community at CERN: their possible high current applications can include high performance magnets for future accelerators. There is an urgent need to develop a quantitative description of HTS conductors in terms of their complex anisotropy, inhomogeneity and dimensionality. This is essential both for the practical specification of a conductor and for charting routes to conductor optimisation. The critical current, the n-value, dissipation and quenching characteristics are amongst most important parameters that make up an engineering specifi...

  14. Instability and transport driven by an electron temperature gradient close to critical

    International Nuclear Information System (INIS)

    Dong, J.Q.; Jian, G.D.; Wang, A.K.; Sanuki, H.; Itoh, K.

    2003-01-01

    Electron temperature gradient (ETG) driven instability in toroidal plasmas is studied with gyrokinetic theory. The full electron kinetics is considered. The upgraded numerical scheme for solving the integral eigenvalue equations allows the study of both growing and damping modes, and thus direct calculation of critical gradient. Algebraic formulas for the critical gradient with respect to ratio of electron temperature over ion temperature and to toroidicity are given. An estimation for turbulence induced transport is presented. (author)

  15. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  16. High temperature superconductors for fusion magnets -influence of neutron irradiation

    International Nuclear Information System (INIS)

    Chudy, M.; Eisterer, M.; Weber, H. W.

    2010-01-01

    In this work authors present the results of study of influence of neutron irradiation of high temperature superconductors for fusion magnets. High temperature superconductors (type of YBCO (Yttrium-Barium-Copper-Oxygen)) are strong candidates to be applied in the next step of fusion devices. Defects induced by fast neutrons are effective pinning centres, which can significantly improve critical current densities and reduce J c anisotropy. Due to induced lattice disorder, T c is reduced. Requirements for ITER (DEMO) are partially achieved at 64 K.

  17. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  18. Some theories of high temperature superconductivity

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  19. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  20. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  1. Critical scaling of a jammed system after a quench of temperature.

    Science.gov (United States)

    Otsuki, Michio; Hayakawa, Hisao

    2012-09-01

    Critical behavior of soft repulsive particles after quench of temperature near the jamming transition is numerically investigated. It is found that the plateau of the mean-square displacement of tracer particles and the pressure satisfy critical scaling laws. The critical density for the jamming transition depends on the protocol to prepare the system, while the values of the critical exponents which are consistent with the prediction of a phenomenology are independent of the protocol.

  2. Superconductors with low critical temperature for electro-magnets; Supraconducteurs a basse temperature critique pour electroaimants

    Energy Technology Data Exchange (ETDEWEB)

    Devred, A

    2002-07-01

    Among the superconductors with low critical temperature that are used to build magnets, NbTi has reached a development state that allows a massive production for big equipment of physics and an industrial production in the domain of medicine imaging. The material that might challenge the supremacy of NbTi is Nb{sub 3}Sn but some technical difficulties have yet to be overcome. This report begins with a review of the different industrial processes used to produce superconducting wires based on the NbTi and Nb{sub 3}Sn materials. The transition from the superconducting state to the resistive normal state is described for both materials, the magnetizing of multi-wire superconducting cables is also presented. The author details the different patterns of wires in cables and proposes a formulary that allows the determination, in some simple cases,of energy losses that are generated in a superconducting cable by a variable magnetic field. (A.C.)

  3. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  4. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  5. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  6. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    Science.gov (United States)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest

  7. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium.

    Science.gov (United States)

    Buchner, Othmar; Neuner, Gilbert

    2010-07-01

    Leaflets of Sphagnum capillifolium were exposed to temperatures from -5 degrees C to +60 degrees C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at -1.1 degrees C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 microm indicates a cell volume reduction of approximately -82%. Simultaneous measurement of chlorophyll fluorescence of PS II was possible even through the frozen water in which the leaf samples were submersed. Freezing cytorrhysis was accompanied by a sudden rise of basic chlorophyll fluorescence. The critical freezing temperature threshold of PS II was identical to the ice nucleation temperature (-1.1 degrees C). This is significantly above the temperature threshold at which frost damage to S. capillifolium leaflets occurs (-16.1 degrees C; LT(50)) which is higher than observed in most higher plants from the European Alps during summer. High temperature thresholds of PS II were 44.5 degrees C which is significantly below the heat tolerance of chlorophyllous cells (49.9 degrees C; LT(50)). It is demonstrated that light and fluorescence microscopic techniques combined with simultaneous chlorophyll fluorescence

  8. Dependence of the brittle ductile transition on strain-rate-dependent critical homologous temperature

    Science.gov (United States)

    Davis, Paul M.

    2017-05-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, \\dot{e}_t, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity including large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc = T/TM above which earthquakes are rarely observed (where T, TM are temperature and average melting temperature of constituent minerals). We find that THc for ocean plates is ∼0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ∼50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2-D polynomial fits to a relocated catalogue, are ∼50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022-1023 Pa s, that is, where creep strain-rates become comparable to tectonic rates. The cut-off for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH > 0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are two to

  9. Quasispin model of itinerant magnetism: High-temperature theory

    International Nuclear Information System (INIS)

    Liu, S.H.

    1977-01-01

    The high-temperature properties of itinerant magnetic systems are examined by using the coherent-potential approximation. We assume a local moment on each atom so that at elevated temperatures there is a number of reversed spins. The coherent potential is solved, and from that the moment on each atom is determined self-consistently. It is found that when the condition for ferromagnetic ordering is satisfied, the local moments persist even above the critical temperature. Conversely, if local moments do not exist at high temperatures, the system can at most condense into a spin-density-wave state. Furthermore, spin-flip scatterings of the conduction electrons from the local moments give rise to additional correlation not treated in the coherent-potential approximation. This correlation energy is an important part of the coupling energy of the local moments. The relations between our work and the theories of Friedel, Hubbard, and others are discussed

  10. Proximity effect depression of the critical temperature in two-phase Nb-Ti superconductors

    International Nuclear Information System (INIS)

    Meingast, C.; Daeumling, M.; Lee, P.J.; Larbalestier, D.C.

    1987-01-01

    The superconducting critical temperature of high critical current density Nb-Ti composites has been measured at various stages in the critical current optimization process. This process involves heat treatment steps which cause precipitation of normal α-Ti and make the matrix more Nb rich. T/sub c/ rises from 9.1 to 9.5 K during this stage. The final optimization stage involves extensive wire drawing during which the α-Ti precipitates are reduced to less than a coherence length in thickness. This does not result in a reduction in J/sub c/ but T/sub c/ is found to fall from 9.44 to 8.7 K during this step. The depression of T/sub c/ is found to be in fair agreement with the predicted proximity effect suppression of T/sub c/. Wires of optimum transport critical current density are seen to have T/sub c/ of around 9 K

  11. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  12. Critical study of high efficiency deep grinding

    OpenAIRE

    Johnstone, lain

    2002-01-01

    The recent years, the aerospace industry in particular has embraced and actively pursued the development of stronger high performance materials, namely nickel based superalloys and hardwearing steels. This has resulted in a need for a more efficient method of machining, and this need was answered with the advent of High Efficiency Deep Grinding (HEDG). This relatively new process using Cubic Boron Nitride (CBN) electroplated grinding wheels has been investigated through experim...

  13. Lower critical solution temperature (LCST) phase separation of glycol ethers for forward osmotic control.

    Science.gov (United States)

    Nakayama, Daichi; Mok, Yeongbong; Noh, Minwoo; Park, Jeongseon; Kang, Sunyoung; Lee, Yan

    2014-03-21

    Lower critical solution temperature (LCST) phase transition of glycol ether (GE)-water mixtures induces an abrupt change in osmotic pressure driven by a mild temperature change. The temperature-controlled osmotic change was applied for the forward osmosis (FO) desalination. Among three GEs evaluated, di(ethylene glycol) n-hexyl ether (DEH) was selected as a potential FO draw solute. A DEH-water mixture with a high osmotic pressure could draw fresh water from a high-salt feed solution such as seawater through a semipermeable membrane at around 10 °C. The water-drawn DEH-water mixture was phase-separated into a water-rich phase and a DEH-rich phase at around 30 °C. The water-rich phase with a much reduced osmotic pressure released water into a low-salt solution, and the DEH-rich phase was recovered into the initial DEH-water mixture. The phase separation behaviour, the residual GE concentration in the water-rich phase, the osmotic pressure of the DEH-water mixture, and the osmotic flux between the DEH-water mixture and salt solutions were carefully analysed for FO desalination. The liquid-liquid phase separation of the GE-water mixture driven by the mild temperature change between 10 °C and 30 °C is very attractive for the development of an ideal draw solute for future practical FO desalination.

  14. High temperature microscope (1961); Microscopie a haute temperature (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-06-15

    The purpose of this work is the realization of an apparatus for observation of radioactive metallic samples at high temperature and low pressure. The operating conditions are as follows: to limit oxidation of the metal, pressure of about 10{sup -6} mm of Hg is maintained in the furnace. In case the oxidation of the sample would be too important, on ultra vacuum. device could be used; working temperatures range between room temperature and 1200 deg. C; furnace temperature is regulated; observation is done ever in polarized light or interference contrast; to insure protection of the operator, the apparatus is placed in a glove-box. With that apparatus, we have observed the {alpha}{yields}{beta}, {beta}{yields}{gamma} transformations of uranium. A movie has been done. (author) [French] Le but de ce travail est la realisation d'une appareillage permettant l'observation a chaud et sous vide d'echantillons metalliques radioactifs. Cet appareillage fonctionne dans les conditions suivantes: l'echantillon est chauffe sous une pression de l'ordre de 10{sup -6} mm de mercure afin de limiter l'oxydation du materiau examine. L'utilisation eventuelle d'un groupe de pompage pour ultra vide est prevue; l'echantillon peut etre porte a une temperature comprise entre quelques degres et 1200 deg. C; la temperature du four est regulee; l'observation s'effectue soit en lumiere polarisee soit en contraste interferentiel; l'appareil est dipose dans une boite a gants afin d'assurer la protection de l'operateur contre les poussieres radioactives; Les transformations {alpha}{yields}{beta}, {beta}{yields}{gamma} de l'uranium ont ete observees. Un film a ete realise. (auteur)

  15. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    International Nuclear Information System (INIS)

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  16. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  17. High-entropy alloys as high-temperature thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Shafeie, Samrand [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Guo, Sheng, E-mail: sheng.guo@chalmers.se [Surface and Microstructure Engineering Group, Materials and Manufacturing Technology, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Hu, Qiang [Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Fahlquist, Henrik [Bruker AXS Nordic AB, 17067 Solna (Sweden); Erhart, Paul [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Palmqvist, Anders, E-mail: anders.palmqvist@chalmers.se [Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  18. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  19. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  20. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  1. Criticality safety in high explosives dissolution

    International Nuclear Information System (INIS)

    Troyer, S.D.

    1997-01-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig

  2. Criticality issues with highly enriched fuels in a repository environment

    International Nuclear Information System (INIS)

    Taylor, L.L.; Sanchez, L.C.; Rath, J.S.

    1998-03-01

    This paper presents preliminary analysis of a volcanic tuff repository containing a combination of low enrichment commercial spent nuclear fuels (SNF) and DOE-owned SNF packages. These SNFs were analyzed with respect to their criticality risks. Disposal of SNF packages containing significant fissile mass within a geologic repository must comply with current regulations relative to criticality safety during transportation and handling within operational facilities. However, once the repository is closed, the double contingency credits for criticality safety are subject to unremediable degradation, (e.g., water intrusion, continued presence of neutron absorbers in proximity to fissile material, and fissile material reconfiguration). The work presented in this paper focused on two attributes of criticality in a volcanic tuff repository for near-field and far-field scenarios: (1) scenario conditions necessary to have a criticality, and (2) consequences of a nuclear excursion that are components of risk. All criticality consequences are dependent upon eventual water intrusion into the repository and subsequent breach of the disposal package. Key criticality parameters necessary for a critical assembly are: (1) adequate thermal fissile mass, (2) adequate concentration of fissile material, (3) separation of neutron poison from fissile materials, and (4) sufficient neutron moderation (expressed in units of moderator to fissile atom ratios). Key results from this study indicated that the total energies released during a single excursion are minimal (comparable to those released in previous solution accidents), and the maximum frequency of occurrence is bounded by the saturation and temperature recycle times, thus resulting in small criticality risks

  3. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  4. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  5. High-temperature cuprate superconductors. Experiment, theory, and applications

    International Nuclear Information System (INIS)

    Plakida, Nikolay

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)

  6. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  7. Modeling of concrete response at high temperature

    International Nuclear Information System (INIS)

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  8. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  9. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  10. Electron-beam damaged high-temperature superconductor Josephson junctions

    International Nuclear Information System (INIS)

    Pauza, A.J.; Booij, W.E.; Herrmann, K.; Moore, D.F.; Blamire, M.G.; Rudman, D.A.; Vale, L.R.

    1997-01-01

    Results are presented on the fabrication and characterization of high critical temperature Josephson junctions in thin films of YBa 2 Cu 3 O 7-δ produced by the process of focused electron-beam irradiation using 350 keV electrons. The junctions so produced have uniform spatial current densities, can be described in terms of the resistive shunted junction model, and their current densities can be tailored for a given operating temperature. The physical properties of the damaged barrier can be described as a superconducting material of either reduced or zero critical temperature (T c ), which has a length of ∼15nm. The T c reduction is caused primarily by oxygen Frenkel defects in the Cu - O planes. The large beam currents used in the fabrication of the junctions mean that the extent of the barrier is limited by the incident electron-beam diameter, rather than by scattering within the film. The properties of the barrier can be calculated using a superconductor/normal/superconductor (SNS) junction model with no boundary resistance. From the SNS model, we can predict the scaling of the critical current resistance (I c R n ) product and gain insight into the factors controlling the junction properties, T c , and reproducibility. From the measured I c R n scaling data, we can predict the I c R n product of a junction at a given operating temperature with a given current density. I c R n products of ∼2mV can be achieved at 4.2 K. The reproducibility of several junctions in a number of samples can be characterized by the ratio of the maximum-to-minimum critical currents on the same substrate of less than 1.4. Stability over several months has been demonstrated at room and refrigerator temperatures (297 and 281 K) for junctions that have been initially over damaged and then annealed at temperatures ∼380K. (Abstract Truncated)

  11. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  12. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  13. AC measurements on uranium doped high temperature superconductors

    International Nuclear Information System (INIS)

    Eisterer, M.

    1999-11-01

    The subject of this thesis is the influence of fission tracks on the superconducting properties of melt textured Y-123. The critical current densities, the irreversibility lines and the transition temperature were determined by means of ac measurements. The corresponding ac techniques are explored in detail. Deviations of the ac signal from the expectations according to the Bean model were explained by the dependence of the shielding currents on the electric field. This explanation is supported by the influence of the ac amplitude and frequency on the critical current density but also by a comparison of the obtained data with other experimental techniques. Y-123 has to be doped with uranium in order to induce fission tracks. Uranium forms normal conducting clusters, which are nearly spherical, with a diameter of about 300 nm. Fission of uranium-235 by thermal neutrons creates two high energy ions with a total energy of about 160 MeV. Each of these fission products induces a linear defect with a diameter of about 10 nm. The length of one fission track is 2-4 μm. At 77 K the critical current density is enhanced by the pinning action of the uranium clusters, compared to undoped samples. With decreasing temperature this influence becomes negligible. The critical current densities are strongly enhanced due to the irradiation. At low magnetic fields we find extremely high values for melt textured materials, e.g. 2.5x10 9 Am -2 at 77 K and 0.25 T or 6x10 10 Am -2 at 5 K. Since the critical current was found to be inverse proportional to the square root of the applied magnetic field it decreases rapidly as the field increases. This behavior is predicted by simple theoretical considerations, but is only valid at low temperatures as well as in low magnetic fields at high temperatures. At high fields the critical current drops more rapidly. The irreversibility lines are only slightly changed by this irradiation technique. Only a small shift to higher fields and temperatures

  14. A simple technique for measuring the superconducting critical temperature of small (>= 10 μg) samples

    International Nuclear Information System (INIS)

    Pereira, R.F.R.; Meyer, E.; Silveira, M.F. da.

    1983-01-01

    A simple technique for measuring the superconducting critical temperature of small (>=10μg) samples is described. The apparatus is built in the form of a probe, which can be introduced directly into a liquid He storage dewar and permits the determination of the critical temperature, with an imprecision of +- 0.05 K above 4.2 K, in about 10 minutes. (Author) [pt

  15. Dependence of Subduction Zone seismicity on Strain-Rate-Dependent Critical Homologous Temperature

    Science.gov (United States)

    Davis, P. M.

    2016-12-01

    Earthquakes mainly occur in crust or mantle that is below a critical temperature for the tectonic strain-rate, such that stress builds up to the breaking point before it can relax due to creep. Then long-range stress correlation gives rise to power law seismicity with large events. The limiting temperature depends on pressure, which is taken into account by finding a critical homologous temperature THc=T/TM above which earthquakes are rarely observed. We find that THc for ocean plates is ˜0.55. For California earthquakes, it is also close to 0.55. The uppermost mantle layer of oceanic plates of thickness ˜50 km is composed of harzburgite and depleted peridotite from which basalt has been removed to form ocean crust. Thus it has a higher melting temperature than the peridotite of the surrounding mantle, or the lower halves of plates. Thicknesses of seismicity in deep subduction zones, determined from 2D polynomial fits to a relocated catalog, are ˜50 km, which suggests that the earthquake channel is confined to this layer. We construct models to find homologous temperatures in slabs, and find that seismicity thicknesses are also, on average, confined to TH ≤ 0.55 ± 0.05. The associated rheology is compared with that obtained from flexure models of ocean lithosphere. The brittle-ductile transition occurs where viscosity drops from high values in the cold cores of slabs to values of 1022 to $1023 Pa s, i.e., where creep strain-rates become comparable to tectonic rates. The cutoff for deep earthquakes is not sharp. However they appear unlikely to occur if homologous temperature is high TH>0.55. Exceptions to the rule are anomalously deep earthquakes such as those beneath the Iceland and the Hawaiian hotspots, and the Newport Inglewood Fault. These are smaller events with short-range stress correlation, and can be explained if strain-rates are 2 to 3 orders of magnitude higher than those associated with earthquakes located where TH ≤0.55. We conclude that the

  16. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  17. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  18. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  19. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  20. Critical temperature for shape transition in hot nuclei within covariant density functional theory

    Science.gov (United States)

    Zhang, W.; Niu, Y. F.

    2018-05-01

    Prompted by the simple proportional relation between critical temperature for pairing transition and pairing gap at zero temperature, we investigate the relation between critical temperature for shape transition and ground-state deformation by taking even-even Cm-304286 isotopes as examples. The finite-temperature axially deformed covariant density functional theory with BCS pairing correlation is used. Since the Cm isotopes are the newly proposed nuclei with octupole correlations, we studied in detail the free energy surface, the Nilsson single-particle (s.p.) levels, and the components of s.p. levels near the Fermi level in 292Cm. Through this study, the formation of octupole equilibrium is understood by the contribution coming from the octupole driving pairs with Ω [N ,nz,ml] and Ω [N +1 ,nz±3 ,ml] for single-particle levels near the Fermi surfaces as it provides a good manifestation of the octupole correlation. Furthermore, the systematics of deformations, pairing gaps, and the specific heat as functions of temperature for even-even Cm-304286 isotopes are discussed. Similar to the relation between the critical pairing transition temperature and the pairing gap at zero temperature Tc=0.6 Δ (0 ) , a proportional relation between the critical shape transition temperature and the deformation at zero temperature Tc=6.6 β (0 ) is found for both octupole shape transition and quadrupole shape transition for the isotopes considered.

  1. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  2. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  3. Critical current of high Tc superconducting Bi223/Ag tapes

    NARCIS (Netherlands)

    Huang, Y.; ten Haken, Bernard; ten Kate, Herman H.J.

    1998-01-01

    The magnetic field dependence of the critical current of various high Tc superconducting Bi2223/Ag tapes indicates that the transport current is carried through two paths: one is through weakly-linked grain boundaries (Josephson junctions); another is through well-connected grains. The critical

  4. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  5. Critical shear stress for erosion of cohesive soils subjected to temperatures typical of wildfires

    Science.gov (United States)

    Moody, J.A.; Dungan, Smith J.; Ragan, B.W.

    2005-01-01

    [1] Increased erosion is a well-known response after wildfire. To predict and to model erosion on a landscape scale requires knowledge of the critical shear stress for the initiation of motion of soil particles. As this soil property is temperature-dependent, a quantitative relation between critical shear stress and the temperatures to which the soils have been subjected during a wildfire is required. In this study the critical shear stress was measured in a recirculating flume using samples of forest soil exposed to different temperatures (40??-550??C) for 1 hour. Results were obtained for four replicates of soils derived from three different types of parent material (granitic bedrock, sandstone, and volcanic tuffs). In general, the relation between critical shear stress and temperature can be separated into three different temperature ranges (275??C), which are similar to those for water repellency and temperature. The critical shear stress was most variable (1.0-2.0 N m-2) for temperatures 2.0 N m-2) between 175?? and 275??C, and was essentially constant (0.5-0.8 N m-2) for temperatures >275??C. The changes in critical shear stress with temperature were found to be essentially independent of soil type and suggest that erosion processes in burned watersheds can be modeled more simply than erosion processes in unburned watersheds. Wildfire reduces the spatial variability of soil erodibility associated with unburned watersheds by eliminating the complex effects of vegetation in protecting soils and by reducing the range of cohesion associated with different types of unburned soils. Our results indicate that modeling the erosional response after a wildfire depends primarily on determining the spatial distribution of the maximum soil temperatures that were reached during the wildfire. Copyright 2005 by the American Geophysical Union.

  6. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  7. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  8. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  9. Assessment of very high-temperature reactors in process applications

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Gambill, W.R.; Fox, E.C.

    1976-11-01

    An overview is presented of the technical and economic feasibility for the development of a very high-temperature reactor (VHTR) and associated processes. A critical evaluation of VHTR technology for process temperatures of 1400 and 2000 0 F is made. Additionally, an assessment of potential market impact is made to determine the commercial viability of the reactor system. It is concluded that VHTR process heat in the range of 1400 to 1500 0 F is attainable with near-term technology. However, process heat in excess of 1600 0 F would require considerably more materials development. The potential for the VHTR could include a major contribution to synthetic fuel, hydrogen, steel, and fertilizer production and to systems for transport and storage of high-temperature heat. A recommended development program including projected costs is presented

  10. High-temperature superconductors induced by ion implantation. Final report

    International Nuclear Information System (INIS)

    Greenwald, A.C.; Johnson, E.

    1988-08-01

    High dose oxygen ion implantation (10 to the 17th power ions per sq. cm.) at elevated temperatures (300 C) has been shown to adjust the critical temperature of gamma-Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O materials. These results are in marked contrast to earlier work which showed complete destruction of superconducting properties for similar radiation doses, and marked reduction in superconducting properties at one-tenth this dose in the 1-2-3- compound only. Experiments also showed that the superconducting materials can be patterned into conducting and nonconducting areas without etching by ion implantation, allowing maintenance of planar geometries required for microcircuit fabrication. Experiments on deposition of thin films of high temperature superconductors for use with the ion implantation experiments showed that ion beam sputtering from a single target could achieve the correct stoichiometry. Variations of composition with ion beam energy and angle of sputtered ions were studied

  11. Crack growth by micropore coalescence at high temperatures

    International Nuclear Information System (INIS)

    Beere, W.

    1981-01-01

    At high temperatures in the creep regime the stress distribution around a crack is different from the low temperature elastically generated distribution. The stress distribution ahead of the crack is calculated for a crack preceded by an array of growing cavities. The cavities maintain a displacement wedge ahead of the crack. When the displacement wedge is less than one-tenth the crack length the driving force for crack growth is similar to an all elastically loaded crack. When the deforming wedge exceeds the crack length the net section stress controls crack growth. An expression is derived for a crack growing by the growth and coalescence of cavities situated in the crack plane. It is predicted that at high temperatures above a critical stress intensity, the crack propagates in a brittle fashion. (author)

  12. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  13. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  14. Evolution of sputtered tungsten coatings at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika; Rinnerbauer, Veronika; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan; Senkevich, Jay J. [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Tucker, Charles; Ives, Thomas; Shrader, Ronney [Materion Corporation, Buellton, California 93427 (United States)

    2013-11-15

    Sputtered tungsten (W) coatings were investigated as potential high temperature nanophotonic material to replace bulk refractory metal substrates. Of particular interest are materials and coatings for thermophotovoltaic high-temperature energy conversion applications. For such applications, high reflectance of the substrate in the infrared wavelength range is critical in order to reduce losses due to waste heat. Therefore, the reflectance of the sputtered W coatings was characterized and compared at different temperatures. In addition, the microstructural evolution of sputtered W coatings (1 and 5 μm thick) was investigated as a function of anneal temperature from room temperature to 1000 °C. Using in situ x-ray diffraction analysis, the microstrain in the two samples was quantified, ranging from 0.33% to 0.18% for the 1 μm sample and 0.26% to 0.20% for the 5 μm sample, decreasing as the temperature increased. The grain growth could not be as clearly quantified due to the dominating presence of microstrain in both samples but was in the order of 20 to 80 nm for the 1 μm sample and 50 to 100 nm for the 5 μm sample, as deposited. Finally, the 5 μm thick layer was found to be rougher than the 1 μm thick layer, with a lower reflectance at all wavelengths. However, after annealing the 5 μm sample at 900 °C for 1 h, its reflectance exceeded that of the 1 μm sample and approached that of bulk W found in literature. Overall, the results of this study suggest that thick coatings are a promising alternative to bulk substrates as a low cost, easily integrated platform for nanostructured devices for high-temperature applications, if the problem of delamination at high temperature can be overcome.

  15. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    Science.gov (United States)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  16. Estimation of the Critical Temperatures of Some More Deep Eutectic Solvents from Their Surface Tensions

    Directory of Open Access Journals (Sweden)

    Yizhak Marcus

    2018-01-01

    Full Text Available The critical temperatures of two dozen deep eutectic solvents, for only some of which these have been estimated previously, were estimated from the temperature dependences of their surface tensions and densities available in the literature according to the Eötvös and the Guggenheim expressions.

  17. Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings.

    Science.gov (United States)

    Rakhimov, Abdulla; Askerzade, Iman N

    2014-09-01

    We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.

  18. Methanol adsorption by amorphous silica alumina in the critical temperature range

    NARCIS (Netherlands)

    Kuczynski, M.; van Ooteghem, A.; Westerterp, K.R.

    1986-01-01

    The methanol adsorption capacity of an amorphous silica-alumina was measured using an equilibrium technique. The experimental temperature range was of 140 to 260°C and the pure methanol pressure range was 0.1 to 1.2 MPa. A multilayer adsorption was found, also for temperatures above the critical

  19. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  20. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  1. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  2. Nuclear and quark matter at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  3. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  4. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  5. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  6. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  7. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  8. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  9. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as ...

  10. Theory of high temperature plasmas. Final report

    International Nuclear Information System (INIS)

    Davidson, R.C.; Liu, C.S.

    1977-01-01

    This is a report on the technical progress in our analytic studies of high-temperature fusion plasmas. We also emphasize that the research summarized here makes extensive use of computational methods and therefore forms a strong interface with our numerical modeling program which is discussed later in the report

  11. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  12. High temperature reactor safety and environment

    International Nuclear Information System (INIS)

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  13. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  14. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  15. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  16. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  17. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  18. Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)

    2002-12-14

    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)

  19. Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures

    International Nuclear Information System (INIS)

    Albus, A P; Giorgini, S; Illuminati, F; Viverit, L

    2002-01-01

    We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)

  20. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  1. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    Science.gov (United States)

    Isliker, H.; Pisokas, Th.; Strintzi, D.; Vlahos, L.

    2010-08-01

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R /LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  2. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma

    International Nuclear Information System (INIS)

    Isliker, H.; Pisokas, Th.; Vlahos, L.; Strintzi, D.

    2010-01-01

    A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L T is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.

  3. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  4. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  5. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  6. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  7. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  8. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  9. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  10. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  11. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  12. Toroidal microinstability studies of high temperature tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  13. Upper critical field measurements in high-Tc superconducting oxides

    Science.gov (United States)

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  14. High-temperature study of superconducting hydrogen and deuterium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Durajski, A.P. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Szczesniak, R. [Institute of Physics, Czestochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czestochowa (Poland); Institute of Physics, Jan Dlugosz University, Ave. Armii Krajowej 13/15, 42-200 Czestochowa (Poland); Pietronero, L. [Sapienza, Universita di Roma, Dip. Fisica, P. le A. Moro 2, 00185 Roma (Italy); Institute of Complex Systems, CNR, Via dei Taurini 19 Roma (Italy); London Institute for Mathematical Sciences, South Street 22, Mayfair London (United Kingdom)

    2016-05-15

    Hydrogen-rich compounds are extensively explored as candidates for a high-temperature superconductors. Currently, the measured critical temperature of 203 K in hydrogen sulfide (H{sub 3}S) is among the highest over all-known superconductors. In present paper, using the strong-coupling Eliashberg theory of superconductivity, we compared in detail the thermodynamic properties of two samples containing different hydrogen isotopes H{sub 3}S and D{sub 3}S at 150 GPa. Our research indicates that it is possible to reproduce the measured values of critical temperature 203 K and 147 K for H{sub 3}S and D{sub 3}S by using a Coulomb pseudopotential of 0.123 and 0.131, respectively. However, we also discuss a scenario in which the isotope effect is independent of pressure and the Coulomb pseudopotential for D{sub 3}S is smaller than for H{sub 3}S. For both scenarios, the energy gap, specific heat, thermodynamic critical field and related dimensionless ratios are calculated and compared with other conventional superconductors. We shown that the existence of the strong-coupling and retardation effects in the systems analysed result in significant differences between values obtained within the framework of the Eliashberg formalism and the prediction of the Bardeen-Cooper-Schrieffer theory. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  16. High temperature deformation of silicon steel

    International Nuclear Information System (INIS)

    Rodríguez-Calvillo, Pablo; Houbaert, Yvan; Petrov, Roumen; Kestens, Leo; Colás, Rafael

    2012-01-01

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s −1 with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 °C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 °C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the γ-fibre tends to disappear and the α-fibre to increase towards the higher temperature range. -- Highlights: ► The plastic deformation of a silicon containing steel is studied by plane strain compression. ► Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. ► Texture, by EBSD, is revealed to be similar in either type of grains.

  17. Gasification of high ash, high ash fusion temperature bituminous coals

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  18. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  19. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  20. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  1. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  2. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  3. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  4. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  5. High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Cleemann, Lars Nilausen; Steenberg, T.

    2014-01-01

    High temperature operation of proton exchange membrane fuel cells under ambient pressure has been achieved by using phosphoric acid doped polybenzimidazole (PBI) membranes. To optimize the membrane and fuel cells, high performance polymers were synthesized of molecular weights from 30 to 94 kDa w...

  6. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  7. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    Science.gov (United States)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  8. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  9. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  10. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  11. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  12. Refractiry metal monocrystals in high temperature thermometry

    International Nuclear Information System (INIS)

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  13. Preparation of silver doped high temperature superconductors

    International Nuclear Information System (INIS)

    Stavek, Jiri; Zapletal, Vladimir

    1989-01-01

    High temperature superconductors were prepared by the controlled double-jet precipitation to manipulate the chemical composition, composition gradients, average grain size, grain size distribution, and other factors which contribute to the actual properties and performance of HTSC. The cations (Y-Ba-Cu or Bi-Pb-Ca-Sr-Cu) and oxalic anions solutions were simultaneously separately introduced to the crystallizer with a stirred solution of gelatin under conditions where the temperature, excess of oxalic anions in solution, pH, reactant addition rate, and other reaction conditions were tightly controlled to prepare the high sinterability powder. To increase the sinterability of submicron particles of produced precursor, the silver ions were introduced at the end of the controlled double-jet precipitation. This approach improves the electrical and mechanical properties of produced HTSC specimens. The controlled double jet precipitation provides a viable technique for preparation of oxide superconductors and the process is amenable for scaling up

  14. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  15. Transport measurements in superconductors: critical current of granular high TC ceramic superconductor samples

    International Nuclear Information System (INIS)

    Passos, W.A.C.

    2016-01-01

    This work presents a method to obtain critical current of granular superconductors. We have carried out transport measurements (ρxT curves and VxI curves) in a YBa_2Cu_3O_7_-_δ sample to determine critical current density of it. Some specimens reveal a 'semiconductor-like' behavior (electrical resistivity decreases with increasing temperatures above critical temperature T_c of material) competing with superconductor behavior. Due to high granular fraction of the sample, these competition is clearly noted in ρxT curves. Measurements carried out from 0 to 8500 Oe of applied field show the same behavior, and the critical current density of the samples is shown. (author)

  16. Criticality of mixtures of plutonium and high enriched uranium

    International Nuclear Information System (INIS)

    Grolleau, E.; Lein, M.; Leka, G.; Maidou, B.; Klenov, P.

    2003-01-01

    This paper presents a criticality evaluation of moderated homogeneous plutonium-uranium mixtures. The fissile media studied are homogeneous mixtures of plutonium and high enriched uranium in two chemical forms: aqueous mixtures of metal and mixtures of nitrate solutions. The enrichment of uranium considered are 93.2wt.% 235 U and 100wt.% 235 U. The 240 Pu content in plutonium varies from 0wt.% 240 Pu to 12wt.% 240 Pu. The critical parameters (radii and masses of a 20 cm water reflected sphere) are calculated with the French criticality safety package CRISTAL V0. The comparison of the calculated critical parameters as a function of the moderator-to-fuel atomic ratio shows significant ranges in which high enriched uranium systems, as well as plutonium-uranium mixtures, are more reactive than plutonium systems. (author)

  17. High Temperature Studies of La-Monazite

    Science.gov (United States)

    2004-07-01

    Hay, E. Boakeye, M. D. Petry, Y. Berta, K. Von Lehmden, and J. Welch, " 5 A. Meldrum , L. A. Boatner, and R. C. Ewing, "Electron-Irradiation-Induced... Meldrum , L. A. Boatner, and R. C. Ewing, "A Comparison of Radiation Alumina-based Fiber for High Temperature Composite Reinforcement," Ceram. Eng... acid . The processing included procedures that allowed the La/P ratio to be controlled to be very close to the stoichiometric value of unity (within less

  18. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  19. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  20. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  1. The modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  2. Establishment of Harrop, High-Temperature Viscometer

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    1999-11-05

    This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

  3. Apparatus for distilling dry solids. [high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Constant, M

    1873-09-09

    In the proposed system under the action of high temperature, the vapors commence to form, and on account of their density go toward the lower part of the retort, where they take the place of air; then they find the exit prepared for them and run out literally by their weight as they are formed and enter the coil where all that can are completely condensed into oil.

  4. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  5. The exponential critical state of high-Tc ceramics

    International Nuclear Information System (INIS)

    Castro, H.; Rinderer, L.

    1994-01-01

    The critical current in high-Tc materials is strongly reduced by a magnetic field. We studied this dependency for tubular YBCO samples. We find an exponential drop as the field is increased from zero up to some tens of oersted. This behavior was already observed by others, however little work has been done in this direction. We define what we call the ''exponential critical state'' of HTSC and compare the prediction for the magnetization with experimental data. Furthermore, the ''Kim critical state'' is obtained as the small field limit. (orig.)

  6. Room temperature ionic liquids: A simple model. Effect of chain length and size of intermolecular potential on critical temperature.

    Science.gov (United States)

    Chapela, Gustavo A; Guzmán, Orlando; Díaz-Herrera, Enrique; del Río, Fernando

    2015-04-21

    A model of a room temperature ionic liquid can be represented as an ion attached to an aliphatic chain mixed with a counter ion. The simple model used in this work is based on a short rigid tangent square well chain with an ion, represented by a hard sphere interacting with a Yukawa potential at the head of the chain, mixed with a counter ion represented as well by a hard sphere interacting with a Yukawa potential of the opposite sign. The length of the chain and the depth of the intermolecular forces are investigated in order to understand which of these factors are responsible for the lowering of the critical temperature. It is the large difference between the ionic and the dispersion potentials which explains this lowering of the critical temperature. Calculation of liquid-vapor equilibrium orthobaric curves is used to estimate the critical points of the model. Vapor pressures are used to obtain an estimate of the triple point of the different models in order to calculate the span of temperatures where they remain a liquid. Surface tensions and interfacial thicknesses are also reported.

  7. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  8. Elasticity of fluorite at high temperatures

    Science.gov (United States)

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  9. High temperature structure design for FBRs and analysis technology

    International Nuclear Information System (INIS)

    Iwata, Koji

    1986-01-01

    In the case of FBRs, the operation temperature exceeds 500 deg C, therefore, the design taking the inelastic characteristics of structural materials, such as plasticity and creep, into account is required, and the high grade and detailed evaluation of design is demanded. This new high temperature structure design technology has been advanced in respective countries taking up experimental, prototype and demonstration reactors as the targets. The development of FBRs in Japan was begun with the experimental reactor 'Joyo' which has been operated since 1977, and now, the prototype FBR 'Monju' of 280 MWe is under construction, which is expected to attain the criticality in 1992. In order to realize FBRs which can compete with LWRs through the construction of a demonstration FBR, the construction of large scale plants and the heightening of the economy and reliability are necessary. The features and the role of FBR structural design, the method of high temperature structure design and the trend of its standardization, the trend of the structural analysis technology for FBRs such as inelastic analysis, buckling analysis and fluid and structure coupled vibration analysis, the present status of structural analysis programs, and the subjects for the future of high temperature structure design are explained. (Kako, I.)

  10. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  11. Structural relationships in high temperature superconductors

    International Nuclear Information System (INIS)

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  12. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  13. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  14. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  15. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  16. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  17. High temperature measurement by noise thermometry

    International Nuclear Information System (INIS)

    Decreton, M.C.

    1982-06-01

    Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible

  18. Development of Very High Temperature Reactor Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  19. On the stability of critical state in hard superconductors with nonhomogeneous temperature profile

    CERN Document Server

    Tajlanov, N A

    2002-01-01

    One studied the problem on thermal and magnetic breaking of critical state in hard superconductors. One assumes that initial distribution of temperature and of electrical field is very nonhomogeneous one. In quasi-stationary approximation one determined the limit of occurrence of thermal and magnetic instability in a superconductor. The derived integral criterion is shown to take account of the effect of each segment of a superconductor on the threshold of occurrence of critical state instability on contrast to similar criterion for homogeneous temperature profile

  20. Exponential temperature dependence of the critical transport current in Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Yom, S.S.; Hahn, T.S.; Kim, Y.H.; Chu, H.; Choi, S.S.

    1989-01-01

    We have measured the critical currents in rf-sputtered YBa 2 Cu 3 O/sub 7-x/ thin films deposited on polycrystalline yttria-stabilized zirconia substrates as a function of temperature down to 10 K. The dependence of the granular films at low temperature indicated exponential behavior which is similar to the superconductor-normal metal-superconductor (S-N-S) type tunneling junctions. For the films with a grain size of approximately 1 μm, we observed two exponential decay constants, which suggest that Josephson junctions limiting the transport critical current are possible both at the grain boundaries and at twin boundaries

  1. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  2. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  3. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  4. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  5. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1976-01-01

    The results recently obtained from the Dragon program are presented to illustrate materials behavior: (a) effect of temperature on oxidation and carburisation in HTR helium (variation in oxide depth and in C content of AISI 321 after 5000 hours in HTR helium; effect of temperature on surface scale formation in the γ' strengthened alloys Nimonic 80A and 713LC); (b) effect of alloy composition on oxidation and carburisation behavior (influence of Nb and Ti on the corrosion of austenitic steels; influence of Ti and Al in IN-102; weight gain of cast high Ni alloys); (c) effect of environment on creep strength (results of tests for hastelloy X, grade I inconel 625, grade II inconel 625 and inconel 617 in He and air between 750 and 800 0 C)

  6. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  7. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  8. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  9. Corrosion of high temperature alloys in the primary circuit helium of high temperature gas cooled reactors. Pt. 2

    International Nuclear Information System (INIS)

    Quadakkers, W.J.

    1985-01-01

    The reactive impurities H 2 O, CO, H 2 and CH 4 which are present in the primary coolant helium of high temperature gas-cooled reactors can cause scale formation, internal oxidation and carburization or decarburization of the high temperature structural alloys. In Part 1 of this contribution a theoretical model was presented, which allows the explanation and prediction of the observed corrosion effects. The model is based on a classical stability diagram for chromium, modified to account for deviations from equilibrium conditions caused by kinetic factors. In this paper it is shown how a stability diagram for a commercial alloy can be constructed and how this can be used to correlate the corrosion results with the main experimental parameters, temperature, gas and alloy composition. Using the theoretical model and the presented experimental results, conditions are derived under which a protective chromia based surface scale will be formed which prevents a rapid transfer of carbon between alloy and gas atmosphere. It is shown that this protective surface oxide can only be formed if the carbon monoxide pressure in the gas exceeds a critical value. Psub(CO), which depends on temperature and alloy composition. Additions of methane only have a limited effect provided that the methane/water ratio is not near to, or greater than, a critical value of around 100/1. The influence of minor alloying additions of strong oxide forming elements, commonly present in high temperature alloys, on the protective properties of the chromia surface scales and the kinetics of carbon transfer is illustrated. (orig.) [de

  10. Characterization of high-current, high-temperature superconductor current lead elements

    International Nuclear Information System (INIS)

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures

  11. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silica high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.

  12. Proceedings of damage and oxidation protection in high temperature composites

    International Nuclear Information System (INIS)

    Haritos, G.K.; Ochoa, O.O.

    1991-01-01

    This book contains proceedings of Damage and Oxidation Protection in High Temperature Composites. Topics covered include: current issues in the development of new materials and structural concepts for the aerospace structures of the future; transportation vehicles of the future; materials and structural concepts; fundamental understanding and quantitative descriptions of the physical processes and mechanisms controlling the behavior of emerging materials and structures; and the critical need for advances in our understanding of how the interaction of service loads and environment influences the lifecycle of emerging structures and materials

  13. High Temperature Transducers for Online Monitoring of Microstructure Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Tittmann, Bernhard [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-03-30

    A critical technology gap exists relative to online condition monitoring (CM) of advanced nuclear plant components for damage accumulation; there are not capable sensors and infrastructure available for the high temperature environment. The sensory system, monitoring methodology, data acquisition, and damage characterization algorithm that comprise a CM system are investigated here. Thus this work supports the DOE mission to develop a fundamental understanding of advanced sensors to improve physical measurement accuracy and reduce uncertainty. The research involves a concept viability assessment, a detailed technology gap analysis, and a technology development roadmap.

  14. Flux-line cutting in granular high-temperature superconductors

    International Nuclear Information System (INIS)

    Perez-Rodriguez, F.; Perez-Gonzalez, A.; Clem, J.R.; Gandolfini, G.; LeBlanc, M.A.

    1997-01-01

    The magnetic response of granular high-temperature superconducting plates subjected to a dc-bias magnetic field and an increasing field perpendicular to it is studied both experimentally and theoretically. The theoretical model is based upon the double critical-state model, which considers not only flux transport but also flux-line cutting effects. Curves of magnetization for the system of grains decoupled by the applied magnetic field in sintered slabs of YBa 2 Cu 3 O 7-x and NdBa 2 Cu 3 O 7-x are analyzed. Good agreement between experimental results and theory is obtained. copyright 1997 The American Physical Society

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  16. High-temperature of thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A. Jr.

    1977-01-01

    The set of high-temperature thermodynamic properties for sodium in the two-phase and subcooled-liquid regions which was previously recommended, has been modified to incorporate recent experimental data. In particular, replacement of the previously estimated critical constants with experimentally-determined values has resulted in substantial differences in the region of the critical point. The following thermodynamic properties were determined: pressure, density, enthalpy, entropy, internal energy, compressibility (adiabatic and isothermal), thermal expansion coefficient, thermal pressure coefficient, and specific heat (constant-pressure and constant-volume). These properties were determined for the saturated liquid, saturated vapor, subcooled liquid, and superheated vapor. The superheated vapor properties are limited to low pressures and more work is required to extend them to higher pressures. The supercritical region was not investigated.

  17. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  18. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  19. Critical Science Education in a Suburban High School Chemistry Class

    Science.gov (United States)

    Ashby, Patrick

    To improve students' scientific literacy and their general perceptions of chemistry, I enacted critical chemistry education (CCE) in two "regular level" chemistry classes with a group of 25 students in a suburban, private high school as part of this study. CCE combined the efforts of critical science educators (Fusco & Calabrese Barton, 2001; Gilbert 2013) with the performance expectations of the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013a) to critically transform the traditional chemistry curriculum at this setting. Essentially, CCE engages students in the critical exploration of socially situated chemistry content knowledge and requires them to demonstrate this knowledge through the practices of science. The purpose of this study was to gauge these students development of chemistry content knowledge, chemistry interest, and critical scientific literacy (CSL) as they engaged in CCE. CSL was a construct developed for this study that necessarily combined the National Research Center's (2012) definition of scientific literacy with a critical component. As such, CSL entailed demonstrating content knowledge through the practices of science as well as the ability to critically analyze the intersections between science content and socially relevant issues. A mixed methods, critical ethnographic approach framed the collection of data from open-ended questionnaires, focus group interviews, Likert surveys, pre- and post unit tests, and student artifacts. These data revealed three main findings: (1) students began to develop CSL in specific, significant ways working through the activities of CCE, (2) student participants of CCE developed a comparable level of chemistry content understanding to students who participated in a traditional chemistry curriculum, and (3) CCE developed a group of students' perceptions of interest in chemistry. In addition to being able to teach students discipline specific content knowledge, the implications of this study are

  20. Finite-Size Scaling in a Two-Temperature Lattice Gas: a Monte Carlo Study of Critical Properties

    DEFF Research Database (Denmark)

    Larsen, Heine; Præstgaard, Eigil; Zia, R.K.P.

    1994-01-01

    We present computer studies of the critical properties of an Ising lattice gas driven to a non-equilibrium steady state by coupling to two temperature baths. Anisotropic scaling, a dominant feature near criticality, is used as a tool to extract the values of the critical temperature and some expo...

  1. Investigation of gadolinium monophosphide at high temperatures

    International Nuclear Information System (INIS)

    Gordienko, S.P.; Gol'nik, V.F.; Mironov, K.E.

    1982-01-01

    Gadolinium monophosphide has been studied in vacuum at high temperatures using mass-spectrometric, chemical, X-ray phase and derivatographical analyses. It is established that gadolinium monophosphide at 2080-2465 K dissociates into atomic gadolinium, phosphorus and, P 2 molecules. According to Vant-Hoff and Gibbs-Helmholtz equations standard enthalpy of atomization ΔHsub(at) deg (298)=1027.3 kJ/mol and of formation ΔHsub(f) deg (298)=313.8 kJ/mol of gadolinium monophosphide are determined

  2. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  3. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  4. Experimental needs of high temperature concrete

    International Nuclear Information System (INIS)

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370 0 C for operating reactor conditions and to about 900 0 C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs

  5. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  6. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  7. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  8. The moon as a high temperature condensate.

    Science.gov (United States)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  9. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    Science.gov (United States)

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  10. Fretting wear of Inconel 625 at high temperature and in high vacuum

    International Nuclear Information System (INIS)

    Iwabuchi, A.

    1985-01-01

    The purpose of this work was to investigate the fretting properties of Inconel 625 at high temperature and in high vacuum. Experiments were carried out under constant conditions with a normal load of 14 N and a peak-to-peak slip amplitude of 110 μm and through 6x10 4 cycles. Several environmental conditions were used. Pressure was varied between 10 -3 and 10 5 Pa at temperatures of 20 and 500 0 C. Temperatures up to 500 0 C were also used at pressures of 10 -3 and 10 5 Pa. At 10 -3 Pa and 500 0 C wear loss was negligible but wear scars showed severe damage consisting of deep cracks and accretion of transferred debris. The coefficient of friction then maintained a high value of 1.7 throughout the fretting test. The critical pressure below which oxidation rate becomes reduced is 10 Pa, a value independent of temperature. At pressures below this critical value the coefficient of friction increases steeply and the fretting mechanism changes from one of oxidative wear to one of adhesive wear. A compacted so-called 'glaze' oxide was formed at temperatures above 300 0 C in air (10 5 Pa) and at pressures above 10 3 Pa at 500 0 C. A comparison of results for Inconel 625 with those for S45C and SUS304 steels and Inconel 600 is given. (orig.)

  11. Evaluation of critical temperatures for heat damage in northern highbush blueberry

    Science.gov (United States)

    Overhead sprinklers are often used to cool blueberry fields in the Pacific Northwest, but more information is needed to determine exactly when cooling is needed. The objective of this study was to identify the critical temperatures for heat damage in northern highbush blueberry (Vaccinium corymbosum...

  12. Critical Temperature for the $\\LAMBDA (\\PHI^{4})_{4}$ Theory within the $\\DELTA$ -Expansion

    OpenAIRE

    Ramos, Rudnei O.

    1992-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi_{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute, in this perturbation approach, the renormalized mass at finite temperature from which we get the critical temperature. The results are compared with the usual loop-expansion at finite t...

  13. Temperature Gradients on the Cell Wall in the Critical Viscosity Experiment

    Science.gov (United States)

    Berg, Robert F.; Moldover, Michael R.

    1993-01-01

    Because of the diverging susceptibility delta rho/delta Tau near the liquid-vapor critical point, temperature gradients must be kept small to maintain adequate sample homogeneity. In our Science Requirements Document we paid particular attention to radial density gradients caused by equilibration of the xenon sample. Axial density gradients were addressed through the requirement that the cell's copper wall have a gradient less than 22 microK/m. This report re-examines the cell wall's temperature distribution in more detail by estimating all known significant contributions to temperature differences on the cell's wall.

  14. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  15. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  16. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  17. Testing and evaluation of high temperature superconductor current leads

    International Nuclear Information System (INIS)

    Yadav, Anand; Puntambekar, Avinash; Manekar, M.A.

    2009-01-01

    National Institute for Inter-disciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research, Trivandrum (formerly Regional Research Laboratory) has accomplished a DAE-BRNS project with Raja Ramanna Centre for Advanced Technology (RRCAT) as principal collaborator for the development of high temperature superconductor (HTS) current leads. These HTS current leads have self-field critical currents (Ic) ranging from 50 A to 1000 A at liquid nitrogen (LN 2 ) temperature. These HTS are made out of silver sheathed Bismuth Strontium Calcium Copper Oxide (BSCCO-2223), for direct application in superconducting (SC) systems involving transportation of high electric currents from power sources at room temperature to superconducting devices at cryogenic temperatures. RRCAT has participated in this project by testing and evaluation of these HTS current leads and carried out actual load trials. In this paper, we will describe the HTS testing setup, tests performed with their testing procedure and the test results. The testing of these HTS has been done with joint effort of Materials Advanced Accelerator Science and Cryogenics Div. and Superconducting Technology Lab (SCT Lab), Advanced Accelerator Module Development Div., using the test facility available at the SCT Lab. (author)

  18. High-temperature superconducting nanowires for photon detection

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, R. [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Göteborg (Sweden); CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Fisica, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli (Italy); Ejrnaes, M. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Parlato, L. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Fisica, Università degli Studi di Napoli ‘Federico II’, I-80125 Napoli (Italy); Tafuri, F. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, I-81031 Aversa, CE (Italy); Cristiano, R. [CNR SPIN Institute – Superconductors, Innovative Materials and Devices, UOS–Napoli, I-80100 Napoli (Italy); Golubev, D. [Low Temperature Laboratory (OVLL), Aalto University School of Science, P.O. Box 13500, FI-00076 Aalto (Finland); Sobolewski, Roman, E-mail: roman.sobolewski@rochester.edu [Institute of Electron Technology, PL-02668 Warszawa (Poland); Department of Electrical and Computer Engineering and Laboratory for Laser Energetics, University of Rochester, NY 14627-0231 (United States); Bauch, T.; Lombardi, F. [Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Göteborg (Sweden); and others

    2015-02-15

    Highlights: • Homogeneous YBCO nanowires have been fabricated for photon detection applications. • Serial-parallel nanowire configuration leads to a large detector active area. • The YBCO nanowires exhibit critical current densities up to 106 A/cm{sup 2}. • The devices have been excited using a 1550-nm wavelength, pulsed laser irradiation. • Photoresponse signals have been measured and analyzed from 4 K up to the device T{sub c}. - Abstract: The possible use of high-temperature superconductors (HTS) for realizing superconducting nanowire single-photon detectors is a challenging, but also promising, aim because of their ultrafast electron relaxation times and high operating temperatures. The state-of-the-art HTS nanowires with a 50-nm thickness and widths down to 130 nm have been fabricated and tested under a 1550-nm wavelength laser irradiation. Experimental results presenting both the amplitude and rise times of the photoresponse signals as a function of the normalized detector bias current, measured in a wide temperature range, are discussed. The presence of two distinct regimes in the photoresponse temperature dependence is clearly evidenced, indicating that there are two different response mechanisms responsible for the HTS photoresponse mechanisms.

  19. Archaeal Viruses from High-Temperature Environments.

    Science.gov (United States)

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  20. Archaeal Viruses from High-Temperature Environments

    Directory of Open Access Journals (Sweden)

    Jacob H. Munson-McGee

    2018-02-01

    Full Text Available Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  1. Apparatus for accurately measuring high temperatures

    Science.gov (United States)

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  2. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  3. What is strange about high-temperature superconductivity in cuprates?

    Science.gov (United States)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2017-10-01

    Cuprate superconductors exhibit many features, but the ultimate question is why the critical temperature (Tc) is so high. The fundamental dichotomy is between the weak-pairing, Bardeen-Cooper-Schrieffer (BCS) scenario, and Bose-Einstein condensation (BEC) of strongly-bound pairs. While for underdoped cuprates it is hotly debated which of these pictures is appropriate, it is commonly believed that on the overdoped side strongly-correlated fermion physics evolves smoothly into the conventional BCS behavior. Here, we test this dogma by studying the dependence of key superconducting parameters on doping, temperature, and external fields, in thousands of cuprate samples. The findings do not conform to BCS predictions anywhere in the phase diagram.

  4. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  5. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  6. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  7. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  8. Microstructures and critical currents in high-Tc superconductors

    International Nuclear Information System (INIS)

    Suenaga, Masaki

    1998-01-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high T c superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa 2 Cu 3 O 7 if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa 2 Cu 3 O 7 and how effective are these in pinning vortices

  9. Emission spectroscopy of highly ionized high-temperature plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Belevtsev, A A; Chinnov, V F; Isakaev, E Kh [Associated Institute for High Temperatures, Russian Academy of Sciences Izhorskaya 13/19, Moscow, 125412 (Russian Federation)

    2006-08-01

    This paper deals with advanced studies on the optical emission spectroscopy of atmospheric pressure highly ionized high-temperature argon and nitrogen plasma jets generated by a powerful arc plasmatron. The emission spectra are taken in the 200-1000 nm range with a spectral resolution of {approx}0.01-0.02 nm. The exposure times are 6 x 10{sup -6}-2 x 10{sup -2} s, the spatial resolution is 0.02-0.03 mm. The recorded jet spectra are abundant in spectral lines originating from different ionization stages. In nitrogen plasmas, tens of vibronic bands are also observed. To interpret and process these spectra such that plasma characteristics can be derived, a purpose-developed automated processing system is applied. The use of a CCD camera at the spectrograph output allows a simultaneous recording of the spectral and chord intensity distributions of spectral lines, which can yet belong to the overlapped spectra of the first and second orders of interference. The modern optical diagnostic means and methods used permit the determination of spatial distributions of electron number densities and temperatures and evaluation of rotational temperatures. The radial profiles of the irradiating plasma components can also be obtained. Special attention is given to the method of deriving rotational temperatures using vibronic bands with an incompletely identified rotational structure.

  10. High temperature oxidation kinetics of dysprosium particles

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-09-25

    Highlights: • The oxidation behavior of dysprosium particles was studied from 500 to 1000 °C. • Activation energy in initial region found as 8–25 kJ/mol, depending on atmosphere. • Activation energy in intermediate region found as 80–95 kJ/mol. • The oxide grows at the metal–oxide interface. • Generally, the formed oxide behaved as a p-type semiconductor. - Abstract: Rare earth elements have been recognized as critical materials for the advancement of many strategic and green technologies. Recently, the United States Department of Energy has invested many millions of dollars to enhance, protect, and forecast their production and management. The work presented here attempts to clarify the limited and contradictory literature on the oxidation behavior of the rare earth metal, dysprosium. Dysprosium particles were isothermally oxidized from 500 to 1000 °C in N{sub 2}–(2%, 20%, and 50%) O{sub 2} and Ar–20% O{sub 2} using simultaneous thermal analysis techniques. Two distinct oxidation regions were identified at each isothermal temperature in each oxidizing atmosphere. Initially, the oxidation kinetics are very fast until the reaction enters a slower, intermediate region of oxidation. The two regions are defined and the kinetics of each are assessed to show an apparent activation energy of 8–25 kJ/mol in the initial region and 80–95 kJ/mol in the intermediate oxidation reaction region. The effects of varying the oxygen partial pressure on the reaction rate constant are used to show that dysprosium oxide (Dy{sub 2}O{sub 3}) generally acts as a p-type semiconductor in both regions of oxidation (with an exception above 750 °C in the intermediate region)

  11. Flux transformers made of commercial high critical temperature superconducting wires.

    Science.gov (United States)

    Dyvorne, H; Scola, J; Fermon, C; Jacquinot, J F; Pannetier-Lecoeur, M

    2008-02-01

    We have designed flux transformers made of commercial BiSCCO tapes closed by soldering with normal metal. The magnetic field transfer function of the flux transformer was calculated as a function of the resistance of the soldered contacts. The performances of different kinds of wires were investigated for signal delocalization and gradiometry. We also estimated the noise introduced by the resistance and showed that the flux transformer can be used efficiently for weak magnetic field detection down to 1 Hz.

  12. Ceramic membranes for high temperature hydrogen separation

    Energy Technology Data Exchange (ETDEWEB)

    Fain, D.E.; Roettger, G.E. [Oak Ridge K-25 Site, TN (United States)

    1996-08-01

    Ceramic gas separation membranes can provide very high separation factors if the pore size is sufficiently small to separate gas molecules by molecular sieving and if oversized pores are adequately limited. Ceramic membranes typically have some pores that are substantially larger than the mean pore size and that should be regarded as defects. To assess the effects of such defects on the performance of ceramic membranes, a simple mathematical model has been developed to describe flow through a gas separation membrane that has a primary mode of flow through very small pores but that has a secondary mode of flow through undesirably large pores. This model permits separation factors to be calculated for a specified gas pair as a function of the molecular weights and molecular diameters of the gases, the membrane pore diameter, and the diameter and number of defects. This model will be described, and key results from the model will be presented. The separation factors of the authors membranes continue to be determined using a permeance test system that measures flows of pure gases through a membrane at temperatures up to 275{degrees}C. A primary goal of this project for FY 1996 is to develop a mixed gas separation system for measuring the separation efficiency of membranes at higher temperatures. Performance criteria have been established for the planned mixed gas separation system and design of the system has been completed. The test system is designed to measure the separation efficiency of membranes at temperatures up to 600{degrees}C and pressures up to 100 psi by separating the constituents of a gas mixture containing hydrogen. The system will accommodate the authors typical experimental membrane that is tubular and has a diameter of about 9 mm and a length of about 23 cm. The design of the new test system and its expected performance will be discussed.

  13. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  14. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  15. Development of high temperature superconductors for magnetic field applications

    International Nuclear Information System (INIS)

    Larbalestier, D.C.

    1991-01-01

    The key requirement for magnetic field applications of high temperature superconductor (HTS) materials is to have conductors with high transport critical current density available for magnet builders. After 3 or 4 years of being without any such object, conductor makers have had recent success in producing simple conductor prototypes. These have permitted the construction of simple HTS magnets having self fields exceeding 1 tesla at 4K. Thus the scientific feasibility of making powerful HTS magnets has been demonstrated. Attention to the technological aspects of making HTS conductors for magnets with strong flux pinning and reduced superconducting granularity is now sensible and attractive. However, extrinsic defects such as filament sausaging, cracking, misaligned grains and other perturbations to long range current flow must be controlled at a low level if the benefit of intrinsic improvements to the critical current density is to be maintained in the conductor form. Due to the great complexity of HTS materials, there is sometimes confusion as to whether a given sample has an intrinsically or extrinsically limited critical current density. Systematic microstructure variation experiments and resistive transition analysis are shown to be particularly helpful in this phase of conductor development

  16. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  17. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  18. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  19. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  20. High temperature mechanical forming of Mg alloys

    International Nuclear Information System (INIS)

    Mwembela, A.; McQueen, H.J.; Myshlyaev, M.

    2002-01-01

    Mg alloys are hot worked in the range 180-450 o C and 0.0-10 s -1 ; the present project data are compared with a wide selection of published results. The flow stresses and their dependence on temperature and strain rate are fairly similar to simple Al alloys: however, the hot ductility is much lower (≤3 in torsion). Twinning plays a significant role in Mg alloys almost independently of temperature; the twins initiate at low strains in grains poorly oriented for basal slip and in consequence become well disposed for such slip. As T rises, there is increasing formation of subgrains that spread toward the grain centers from grain and twin boundaries: this is indicative of stress concentrations inducing non-basal sup which helps provide the geometrically necessary dislocations. Above about 240 o C, dynamic (DRX) nucleates at grain and twin boundaries, preferentially at intersections; this again is evidence of non-basal slip that provides the highly misoriented cells. The boundaries in which further strain concentrates producing further DRX. The microstructure remains very heterogeneous compared to the uniform dynamically recovered substructure in Al alloys, thus giving rise to the reduced ductility. These results are employed to interpret the mechanical and microstructural behavior of Mg alloys in extrusion, rolling and forging. (author)

  1. Methods for very high temperature design

    International Nuclear Information System (INIS)

    Blass, J.J.; Corum, J.M.; Chang, S.J.

    1989-01-01

    Design rules and procedures for high-temperature, gas-cooled reactor components are being formulated as an ASME Boiler and Pressure Vessel Code Case. A draft of the Case, patterned after Code Case N-47, and limited to Inconel 617 and temperatures of 982/degree/C (1800/degree/F) or less, will be completed in 1989 for consideration by relevant Code committees. The purpose of this paper is to provide a synopsis of the significant differences between the draft Case and N-47, and to provide more complete accounts of the development of allowable stress and stress rupture values and the development of isochronous stress vs strain curves, in both of which Oak Ridge National Laboratory (ORNL) played a principal role. The isochronous curves, which represent average behavior for many heats of Inconel 617, were based in part on a unified constitutive model developed at ORNL. Details are also provided of this model of inelastic deformation behavior, which does not distinguish between rate-dependent plasticity and time-dependent creep, along with comparisons between calculated and observed results of tests conducted on a typical heat of Inconel 617 by the General Electric Company for the Department of Energy. 4 refs., 15 figs., 1 tab

  2. High temperature internal friction in pure aluminium

    International Nuclear Information System (INIS)

    Aboagye, J.K.; Payida, D.S.

    1982-05-01

    The temperature dependence of internal friction of nearly pure aluminium (99.99% aluminium) has been carefully measured as a function of annealing temperature and hence grain size. The results indicate that, provided the frequency and annealing temperature are held constant, the internal friction increases with temperature until some maximum value is attained and then begins to go down as the temperature is further increased. It is also noted that the internal friction decreases with annealing temperature and that annealing time has the same effect as annealing temperature. It is also noted that the internal friction peak is shifted towards higher temperatures as annealing temperature is increased. It is surmised that the grain size or the total grain boundary volume determines the height of the internal friction curve and that the order-disorder transitions at the grain boundaries induced by both entropy and energy gradients give rise to internal friction peaks in polycrystals. (author)

  3. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  4. Temperature dependence of the interband critical points of bulk Ge and strained Ge on Si

    Science.gov (United States)

    Fernando, Nalin S.; Nunley, T. Nathan; Ghosh, Ayana; Nelson, Cayla M.; Cooke, Jacqueline A.; Medina, Amber A.; Zollner, Stefan; Xu, Chi; Menendez, Jose; Kouvetakis, John

    2017-11-01

    Epitaxial Ge layers on a Si substrate experience a tensile biaxial stress due to the difference between the thermal expansion coefficients of the Ge epilayer and the Si substrate, which can be measured using asymmetric X-ray diffraction reciprocal space maps. This stress depends on temperature and affects the band structure, interband critical points, and optical spectra. This manuscripts reports careful measurements of the temperature dependence of the dielectric function and the interband critical point parameters of bulk Ge and Ge epilayers on Si using spectroscopic ellipsometry from 80 to 780 K and from 0.8 to 6.5 eV. The authors find a temperature-dependent redshift of the E1 and E1 + Δ1 critical points in Ge on Si (relative to bulk Ge). This redshift can be described well with a model based on thermal expansion coefficients, continuum elasticity theory, and the deformation potential theory for interband transitions. The interband transitions leading to E0‧ and E2 critical points have lower symmetry and therefore are not affected by the stress.

  5. Electrochemical investigations of high-Tc superconductors - low-temperature electrochemistry

    International Nuclear Information System (INIS)

    Lorenz, W.J.

    1992-01-01

    This research report presents a summary of results obtained by electrochemical investigations of high-Tc superconductors at room temperature and below the critical temperature (Tc). The studies were to reveal the behaviour of the ceramic superconducting materials at the interface between superconductor and ionic conductor. (MM) With 4 tabs., 8 figs [de

  6. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  7. High temperature superconductivity space experiment (HTSSE)

    International Nuclear Information System (INIS)

    Nisenoff, M.; Gubser, D.V.; Wolf, S.A.; Ritter, J.C.; Price, G.

    1991-01-01

    The Naval Research Laboratory (NRL) is exploring the feasibility of deploying high temperature superconductivity (HTS) devices and components in space. A variety of devices, primarily passive microwave and millimeter wave components, have been procured and will be integrated with a cryogenic refrigerator system and data acquisition system to form the space package, which will be launched late in 1992. This Space Experiment will demonstrate that this technology is sufficiently robust to survive the space environment and has the potential to significantly improved space communications systems. The devices for the initial launch (HTSSE-I) have been received by NRL and evaluated electrically, thermally and mechanically and will be integrated into the final space package early in 1991. In this paper the performance of the devices are summarized and some potential applications of HTS technology in space system are outlined

  8. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... to investigate the effects of operating parameters and biomass types on yields of char and soot, their chemistry and morphology as well as their reactivity using thermogravimetric analysis. The experimental study was focused on the influence of a wide range of operating parameters including heat treatment...... alkali metals. In this study, potassium lean pinewood (0.06 wt. %) produced the highest soot yield (9 and 7 wt. %) at 1250 and 1400°C, whereas leached wheat straw with the higher potassium content (0.3 wt. %) generated the lowest soot yield (2 and 1 wt. %). Soot yields of wheat and alfalfa straw at both...

  9. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  10. High temperature superconducting Maglev equipment on vehicle

    Science.gov (United States)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  11. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  12. High Temperature Particle Filtration Technology; TOPICAL

    International Nuclear Information System (INIS)

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  13. Multilayer ultra-high-temperature ceramic coatings

    Science.gov (United States)

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  14. Materials for high temperature reactor vessels

    International Nuclear Information System (INIS)

    Buenaventura Pouyfaucon, A.

    2004-01-01

    Within the 5th Euraton Framework Programme, a big effort is being made to promote and consolidate the development of the High Temperature Reactor (HTR). Empresarios Agrupados is participating in this project and among others, also forms part of the HTR-M project Materials for HTRs. This paper summarises the work carried out by Empresarios Agrupados regarding the material selection of the HTR Reactor Pressure Vessel (RPV). The possible candidate materials and the most promising ones are discussed. Design aspects such as the RPV sensitive zones and material damage mechanisms are considered. Finally, the applicability of the existing design Codes and Standards for the design of the HTR RPV is also discussed. (Author)

  15. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  16. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  17. Test of high temperature fuel element, (1)

    International Nuclear Information System (INIS)

    Akino, Norio; Shiina, Yasuaki; Nekoya, Shin-ichi; Takizuka, Takakazu; Emori, Koichi

    1980-11-01

    Heat transfer experiment to measure the characteristics of a VHTR fuel in the same condition of the reactor core was carried out using HTGL (High Temperature Helium Gas Loop) and its test section. In this report, the details of the test section, related problems of construction and some typical results are described. The newly developed heater with graphite heat transfer surface was used as a simulated fuel element to determine the heat transfer characteristics. Following conclusions were obtained; (1) Reynolds number between turbulent and transitional region is about 2600. (2) Reynolds number between transitional and laminar region is about 4800. (3) The laminarization phenomena have not been observed and are hardly occurred in annular tubes comparing with round tube. (4) Measured Nusselt numbers agree to the established correlations in turbulent and laminar regions. (author)

  18. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  19. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  20. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.