WorldWideScience

Sample records for high coupling degree

  1. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    J C D Hoenderkamp

    2012-08-01

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and cores will reduce primary bending moments in the coupled shear wall bents of MSW structures thereby increasing the degree of coupling. They will also change the location and magnitude of the maximum shear in and rotation of the coupling beams. These changes in the coupled wall bents may increase the demand on their performance beyond capacity. It is, therefore, important to have an indication of the change in the coupling beam design parameters at an early stage of the design. The proposed graphical method is based on the continuous medium theory and allows a rapid assessment of the structural behaviour of coupled shear wall bents in mixed shear wall structures that are subject to horizontal loading.

  2. A novel model of interaction between high frequency electromagnetic non-ionizing fields and microtubules viewed as coupled two-degrees of freedom harmonic oscillators.

    Science.gov (United States)

    Caligiuri, Luigi Maxmilian

    2015-01-01

    The question regarding the potential biological and adverse health effects of non-ionizing electromagnetic fields on living organisms is of primary importance in biophysics and medicine. Despite the several experimental evidences showing such occurrence in a wide frequency range from extremely low frequency to microwaves, a definitive theoretical model able to explain a possible mechanism of interaction between electromagnetic fields and living matter, especially in the case of weak and very weak intensities, is still missing. In this paper it has been suggested a possible mechanism of interaction involving the resonant absorption of electromagnetic radiation by microtubules. To this aim these have been modeled as non-dissipative forced harmonic oscillators characterized by two coupled "macroscopic" degrees of freedom, respectively describing longitudinal and transversal vibrations induced by the electromagnetic field. We have shown that the proposed model, although at a preliminary stage, is able to explain the ability of even weak electromagnetic radiating electromagnetic fields to transfer high quantities of energy to living systems by means of a resonant mechanism, so capable to easily damage microtubules structure.

  3. Rank of loop, constraint degree of path, coupling degree of graph and their application

    Institute of Scientific and Technical Information of China (English)

    YANG Tingli; LUO Yufeng; ZHANG Ce; YAO Fanghua

    2005-01-01

    Some new concepts (rank of a loop, degree of freedom of a graph, path unit and ordered path arrangement, constraint degree of path, coupling degree of a graph, basic graph, etc. ), formulas, and algorithms, are proposed in this paper. Based on these concepts, a new systematic theory and practical method for the design of topological structure, kinematics and dynamics of mechanical systems is established. Some conjectures and problems needed to be researched are also put forward. The concepts, formulae and algorithms presented in this paper will find wide potential applications.

  4. New High in Engineering Degree Production. Facts

    Science.gov (United States)

    Connecticut Department of Higher Education (NJ1), 2010

    2010-01-01

    Several of the state's key industry sectors depend heavily on employees with advanced scientific, analytic and technical knowledge. Among the fields closely related to these sectors, engineering degrees have posted the largest gain. This paper presents details on the following facts: (1) 2009 represented a record high for engineering degrees; (2)…

  5. Coupling of polarization and spatial degrees of freedom of highly divergent emission in broad-area square vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Babushkin, I V; Schulz-Ruhtenberg, M; Loiko, N A; Huang, K F; Ackemann, T

    2008-05-30

    The polarization of highly divergent modes of broad-area square vertical-cavity surface-emitting lasers is shown to be only marginally affected by material anisotropies but determined by an interplay of the polarization properties of the Bragg cavity mirrors and of the transverse boundary conditions. This leads to a locking of the polarization direction to the boundaries and its indeterminacy for wave vectors oriented along the diagonal. We point out a non-Poissonian character of nearest-neighbor frequency spacing distribution and the impossibility of single-wave number solutions.

  6. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  7. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    Science.gov (United States)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-09-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures.

  8. Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester

    Science.gov (United States)

    Kim, Pilkee; Nguyen, Minh Sang; Kwon, Ojin; Kim, Young-Jin; Yoon, Yong-Jin

    2016-01-01

    A system of magnetically coupled oscillators has been recently considered as a promising compact structure to integrate multiple bistable energy harvesters (BEHs), but its design is not straightforward owing to its varying potential energy pattern, which has not been understood completely yet. This study introduces the concept of phase-dependent dynamic potential in a magnetically coupled BEH system with two degrees of freedom (DOFs) to explain the underlying principle of the complicated dynamics of the system. Through theoretical simulations and analyses, two distinct dynamic regimes, called the out-of-phase and in-phase mode regimes in this report, are found to exist in the frequency regions of the 1st and 2nd primary intrawell resonances. For the out-of-phase mode regime, the frequency displacement (and output power) responses of the 2-DOF BEH system exhibit typical double-well dynamics, whereas for the in-phase mode regime, only single-well dynamics is observed though the system is statically bistable. These dynamic regimes are also revealed to be caused by the difference in the dynamic potential energy trajectories propagating on a high-dimensional potential energy surface. The present approach to the dynamics of the 2-DOF BEH system can be extended and applied to higher-DOF systems, which sheds light on compact and efficient designs of magnetically coupled BEH chain structures. PMID:27677356

  9. Model-Based Degree Estimation of Unbalance and Misalignment in Flexible Coupling-rotor System

    Institute of Scientific and Technical Information of China (English)

    LI Changyou; XU Minqiang; GUO Song; WANG Yuewu; WANG Rixin

    2009-01-01

    The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.

  10. Analysis of High Degree Nodes in a Social Network

    Directory of Open Access Journals (Sweden)

    Nadeem Akhtar

    2013-05-01

    Full Text Available Online Social Network platforms(e.g. Facebook, LinkedIn, Flickr, Instant Messenger etc provide a deeper comprehension of social networks and hence render the basis for social network analysis. The huge amount of data from these sites has given a boost to the researchers who examine a network from different perspectives through various SNA methods. The development of network analysis tools have further helped to extract actionable patterns which are useful for business, consumers, and users. This study is a part of the growing body of research on Social Network Analysis and make use of a Facebook network to analyze the attributes of high degree nodes (users having greater number of friends and to uncover the hidden relationships of that network. Results show that there is little association among high degree nodes

  11. HIGH DEGREE SPONDYLOLISTHESIS IN ADULTS: MONOSEGMENTAL REDUCTION AND FIXATION

    Directory of Open Access Journals (Sweden)

    Eduardo Henrique Chiovato Abdala

    2015-09-01

    Full Text Available Objective:To evaluate a method to reduce high degree spondylolisthesis in adults with monosegmental fixing preserving the adjacent level and the improvement of sagittal balance.Methods:A prospective study, with 12 adult patients with high degree spondylolisthesis (III and IV in adults who underwent surgery by the same team. We included 7 women and 5 men with a mean age of 37 years and lombosciatalgy that had no improvement with conservative treatment. The surgical technique used was total or partial reduction by Spondylolisthesis Reduction Instrument (SRI system, with instrumentation only in the affected level, thus sparing the adjacent level, associated with 360ofusion.Results:The L5-S1 level was involved in nine patients, L4-L5 in two, and VT-S1 in one patient. The isthmic type predominated in nine patients, followed by dysplastic type in two, and one iatrogenic spondylolisthesis. These patients were assessed by the Oswestry scale, which showed a preoperative average of 59% and postoperative average of 12.4% (P<0.05. A significant improvement in the average slip angle from 54.66% to 9.5% (35% to 0% was found. No major complications such as infection, neurological damage or material breaks were observed.Conclusion:The reduction of high degree listhesis instrumenting only the affected level produces good results, with good control of pain and functional improvement of patients. However, a larger follow-up is required to better evaluation.

  12. Precision analysis of a weakly-coupled parallel mechanism with three translational degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    MA Lv-zhong; GUO Zong-he; YANG Qi-zhi; YIN Xiao-qin; HAN Ya-li; SHEN Hui-ping

    2006-01-01

    This paper analyzes the precision of the dissymmetrical parallel mechanism of 3-RRRP(4R) with three translational degrees of freedom (DOF).The parallel mechanism has weakly-coupled,decoupled and real-time characteristics,thus error compensation can be done using control software.Based on topology structure analysis,the inverse and forward solutions are analyzed and the precision is studied using complete differential method.The influencing factors of the manipulator's precision are studied carefully and the means to enhance the precision are also discussed.It is found that the position errors of the moving platform have nonlinear relation with the position of the mechanism.The δθ3 error has the biggest influence on the nonlinear errors of the position.Otherwise,the original errors of the mechanism are the main reason leading to more errors.Thus enhancing machining and assembling precision is an important method to enhance the precision of the mechanism.

  13. Multi-degree-of-freedom coupling dynamic characteristic of TBM disc cutter under shock excitation

    Institute of Scientific and Technical Information of China (English)

    霍军周; 孙晓龙; 李广庆; 李涛; 孙伟

    2015-01-01

    When the tunneling boring machine (TBM) cutterhead tunnels, the excessive vibration and damage are a severe engineering problem, thereby the anti-vibration design is a key technology in the disc cutter system. The structure of disc cutter contains many joint interfaces among cutter ring, cutter body, bearings and cutter shaft. On account of the coupling for dynamic contact and the transfer path among joint interface, mechanical behavior of disc cutter becomes extremely complex under the impact of heavy-duty, which puts forward higher requirements for disc cutter design. A multi-degree-of-freedom coupling dynamic model, which contains a cutter ring, a cutter body, two bearings and cutter shaft, is established, considering the external stochastic excitations, bearing nonlinear contact force, multidirectional mutual coupling vibration, etc. Based on the parameters of an actual project and the strong impact external excitations, the modal properties and dynamic responses are analyzed, as well as the cutter shaft and bearings’ loads and load transmission law are obtained. Numerical results indicate the maximum radial and axial cutter ring amplitudes of dynamic responses are 0.568 mm and 0.112 mm;the maximum radial and axial vibration velocities are 41.1 mm/s and 38.9 mm/s;the maximum radial and axial vibration accelerations are 94.7 m/s2 and 58.6 m/s2;the maximum swing angle and angular velocity of cutter ring are 0.007° and 0.0074 rad/s, respectively. Finally, the maximum load of bearing roller is 40.3 kN. The proposed research lays a foundation for structure optimization design of disc cutter and cutter base, as well as model selection, modification and fatigue life of the cutter bearing.

  14. Dielectric properties of ferroelectric betaine phosphite crystals with a high degree of deuteration

    Science.gov (United States)

    Balashova, E. V.; Krichevtsov, B. B.; Yurko, E. I.; Svinarev, F. B.; Pankova, G. A.

    2015-12-01

    The dielectric properties of deuterated betaine phosphite crystals with a high degree of deuteration in the region of the antiferrodistorsive (at T = T c1) and ferroelectric (at T = T c2) phase transitions have been investigated. The temperature behavior of the dielectric permittivity of betaine phosphite and deuterated betaine phosphite has been described within the framework of the Landau thermodynamic model taking into account the biquadratic coupling between the polar order parameter of the ferroelectric transition and the nonpolar order parameter of the antiferrodistorsive phase transition. It has been shown that an increase in the degree of deuteration leads to a decrease in the coupling between the order parameters. An increase in the temperature of the ferroelectric phase transition due to the deuteration of betaine phosphite is caused by an increase in the dielectric permittivity in the symmetric phase above the temperature of the antiferrodistorsive phase transition.

  15. A stereographic projection path integral study of the coupling between the orientation and the bending degrees of freedom of water.

    Science.gov (United States)

    Curotto, E; Freeman, David L; Doll, J D

    2008-05-28

    A Monte Carlo path integral method to study the coupling between the rotation and bending degrees of freedom for water is developed. It is demonstrated that soft internal degrees of freedom that are not stretching in nature can be mapped with stereographic projection coordinates. For water, the bending coordinate is orthogonal to the stereographic projection coordinates used to map its orientation. Methods are developed to compute the classical and quantum Jacobian terms so that the proper infinitely stiff spring constant limit is recovered in the classical limit, and so that the nonconstant nature of the Riemann Cartan curvature scalar is properly accounted in the quantum simulations. The theory is used to investigate the effects of the geometric coupling between the bending and the rotating degrees of freedom for the water monomer in an external field in the 250 to 500 K range. We detect no evidence of geometric coupling between the bending degree of freedom and the orientations.

  16. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling

    Science.gov (United States)

    Wang, Hongyan; Tang, Lihua

    2017-03-01

    The operating bandwidth of energy harvesters is one main concern in vibration energy harvesting due to the random and time-varying nature of most vibration sources. Recent research efforts have been made to address this issue including exploiting multimodal structures and nonlinear dynamics. These ideas have yielded some exciting results to leverage the broadband performance. Hybrid configurations combining these ideas are expected to provide an even better operating bandwidth and yet to be studied. In this paper, a bistable two-degree-of-freedom (2-DOF) piezoelectric energy harvester (PEH) with magnetic coupling is proposed, in which a linear parasitic oscillator attached to the main energy harvesting beam is used to generate two resonant peaks and the magnetic coupling is used to generate nonlinear dynamics, thus to achieve broadband electrical outputs. A nonlinear electromechanical model of the proposed harvester is established and the parametric study is conducted for various parasitic oscillator configurations. Experiment is subsequently performed to validate the theoretical analysis. The results indicate that nonlinear responses can appear at any of the two peaks or at both. One strong nonlinear peak in addition to a quasi-linear peak can be achieved by adequate adjustment of the parasitic oscillator. This is advantageous over the optimal linear 2-DOF PEH in terms of wider bandwidth thanks to the involved nonlinear dynamics. In addition, the load resistance has significant influence around the peak with strong nonlinear responses, resulting in evident peak shift. The best power output is accompanied with a shrunk bandwidth due to the peak shift.

  17. Coupling output of multichannel high power microwaves

    Science.gov (United States)

    Li, Guolin; Shu, Ting; Yuan, Chengwei; Zhang, Jun; Yang, Jianhua; Jin, Zhenxing; Yin, Yi; Wu, Dapeng; Zhu, Jun; Ren, Heming; Yang, Jie

    2010-12-01

    The coupling output of multichannel high power microwaves is a promising technique for the development of high power microwave technologies, as it can enhance the output capacities of presently studied devices. According to the investigations on the spatial filtering method and waveguide filtering method, the hybrid filtering method is proposed for the coupling output of multichannel high power microwaves. As an example, a specific structure is designed for the coupling output of S/X/X band three-channel high power microwaves and investigated with the hybrid filtering method. In the experiments, a pulse of 4 GW X band beat waves and a pulse of 1.8 GW S band microwave are obtained.

  18. Frequencies and amplitudes of high-degree solar oscillations

    Science.gov (United States)

    Kaufman, James Morris

    Measurements of some of the properties of high-degree solar p- and f-mode oscillations are presented. Using high-resolution velocity images from Big Bear Solar Observatory, we have measured mode frequencies, which provide information about the composition and internal structure of the Sun, and mode velocity amplitudes (corrected for the effects of atmospheric seeing), which tell us about the oscillation excitation and damping mechanisms. We present a new and more accurate table of the Sun's acoustic vibration frequencies, nunl, as a function of radial order n and spherical harmonic degree l. These frequencies are averages over azimuthal order m and approximate the normal mode frequencies of a nonrotating spherically symmetric Sun near solar minimum. The frequencies presented here are for solar p- and f-modes with 180 less than or = l less than or = 1920, 0 less than or = n less than or = 8, and 1.7 mHz less than or = nunl less than or = 5.3 mHz. The uncertainties, sigmanl, in the frequencies areas are as low as 3.1 micro-Hz. The theoretically expected f-mode frequencies are given by omega squared = gkh approx. = gl/R, where g is the gravitational acceleration at the surface, kh is the horizontal component of the wave vector, and R is the radius of the Sun. We find that the observed frequencies are significantly less than expected for l greater than 1000, for which we have no explanation. Observations of high-degree oscillations, which have very small spatial features, suffer from the effects of atmospheric image blurring and image motion (or 'seeing'), thereby reducing the amplitudes of their spatial-frequency components. In an attempt to correct the velocity amplitudes for these effects, we simultaneously measured the atmospheric modulation transfer function (MTF) by looking at the effects of seeing on the solar limb. We are able to correct the velocity amplitudes using the MTF out to l approx. = 1200. We find that the frequency of the peak velocity power (as a

  19. Coupling dynamic modeling and simulation of three-degree-of-freedom micromanipulator based on piezoelectric ceramic of fuzzy PID

    Science.gov (United States)

    Li, Dongjie; Fu, Yu; Yang, Liu

    2017-08-01

    For further research on the microparticles trajectory in the process of micromanipulation, the paper modeled on the coupling dynamic of three-degree-of-freedom micromanipulator which is based on piezoelectric ceramic. In the micromanipulation, the transformation of certain movement direction can generate a corresponding change in the coupling in three-degree-of-freedom micromanipulator movement, the fuzzy PID method was adopted by the control system of this study, and the modeling analysis was performed on the control system. After completing the above modeling, the simulation model is built by the MATLAB Simulink software. The simulation output results are basically in accordance with the actual trajectory, which achieve the successful research purposes of coupling dynamics model for three-degree-of-freedom micromanipulator and application of fuzzy PID method.

  20. 360-degrees profilometry using strip-light projection coupled to Fourier phase-demodulation.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-11

    360 degrees (360°) digitalization of three dimensional (3D) solids using a projected light-strip is a well-established technique in academic and commercial profilometers. These profilometers project a light-strip over the digitizing solid while the solid is rotated a full revolution or 360-degrees. Then, a computer program typically extracts the centroid of this light-strip, and by triangulation one obtains the shape of the solid. Here instead of using intensity-based light-strip centroid estimation, we propose to use Fourier phase-demodulation for 360° solid digitalization. The advantage of Fourier demodulation over strip-centroid estimation is that the accuracy of phase-demodulation linearly-increases with the fringe density, while in strip-light the centroid-estimation errors are independent. Here we proposed first to construct a carrier-frequency fringe-pattern by closely adding the individual light-strip images recorded while the solid is being rotated. Next, this high-density fringe-pattern is phase-demodulated using the standard Fourier technique. To test the feasibility of this Fourier demodulation approach, we have digitized two solids with increasing topographic complexity: a Rubik's cube and a plastic model of a human-skull. According to our results, phase demodulation based on the Fourier technique is less noisy than triangulation based on centroid light-strip estimation. Moreover, Fourier demodulation also provides the amplitude of the analytic signal which is a valuable information for the visualization of surface details.

  1. High degree of duodenal inflammation in Nigerians with functional dyspepsia

    Directory of Open Access Journals (Sweden)

    Nwokediuko SC

    2013-12-01

    Full Text Available Sylvester Chuks Nwokediuko,1 Uchenna N Ijoma,1 Olive Obienu,1 Gideon E Anigbo,1 Okechukwu Okafor21Department of Medicine, 2Department of Morbid Anatomy, University of Nigeria Teaching Hospital, Ituku/Ozalla Enugu, NigeriaBackground: Functional dyspepsia (FD is a heterogeneous disorder associated with diverse pathophysiological mechanisms, including immune activation and low-grade mucosal inflammation. Genetic factors, physiological functions, and environmental factors may determine the relative importance of various pathophysiological mechanisms. This study was designed to determine the histological alterations in the duodenal mucosa of Nigerian patients with FD.Methods: Consecutive patients with dyspepsia seen over a 27-month period in two gastrointestinal endoscopy facilities in Enugu, South-East Nigeria were further evaluated with upper gastrointestinal endoscopy and duodenal mucosal biopsies if no lesion was found in the upper gastrointestinal tract. Patients with heartburn and/or regurgitation who did not have any dyspeptic symptoms and did not have any lesion in the upper gastrointestinal tract on endoscopy were presumed to have non-erosive reflux disease (NERD and they served as controls. The control subjects also had duodenal biopsies. The histopathological findings in the cases and controls were compared.Results: There were 68 patients with FD and 52 patients with NERD. The total inflammatory score was 242 in FD and 66 in NERD (Mann-Whitney U =1168, P=0.0011. Similarly, the scores for chronic inflammation, gastric metaplasia, neutrophilic activity, eosinophilic infiltration, and Helicobacter pylori were significantly higher in FD than NERD.Conclusion: Functional dyspepsia is associated with a high degree of inflammation in the duodenal mucosa. This may reflect the high prevalence of gastrointestinal infections in a tropical environment such as Nigeria. These findings may have therapeutic potential that further studies might elucidate

  2. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  3. The total chromatic number of regular graphs of high degree

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The total chromatic number χT (G) of a graph G is the minimum number of colors needed to color the edges and the vertices of G so that incident or adjacent elements have distinct colors. We show that if G is a regular graph and d(G) 32 |V (G)| + 263 , where d(G) denotes the degree of a vertex in G, then χT (G) d(G) + 2.

  4. Strongly coupled partitioned six degree-of-freedom rigid body motion solver with Aitken's dynamic under-relaxation

    Directory of Open Access Journals (Sweden)

    Jeng Hei Chow

    2016-07-01

    Full Text Available An implicit method of solving the six degree-of-freedom rigid body motion equations based on the second order Adams-Bashforth-Moulten method was utilised as an improvement over the leapfrog scheme by making modifications to the rigid body motion solver libraries directly. The implementation will depend on predictor-corrector steps still residing within the hybrid Pressure Implicit with Splitting of Operators - Semi-Implicit Method for Pressure Linked Equations (PIMPLE outer corrector loops to ensure strong coupling between fluid and motion. Aitken's under-relaxation is also introduced in this study to optimise the convergence rate and stability of the coupled solver. The resulting coupled solver ran on a free floating object tutorial test case when converged matches the original solver. It further allows a varying 70%–80% reduction in simulation times compared using a fixed under-relaxation to achieve the required stability.

  5. High-degree Gravity Models from GRAIL Primary Mission Data

    Science.gov (United States)

    Lemoine, Frank G.; Goossens, Sander J.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Caprette, Douglas S.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2013-01-01

    We have analyzed Ka?band range rate (KBRR) and Deep Space Network (DSN) data from the Gravity Recovery and Interior Laboratory (GRAIL) primary mission (1 March to 29 May 2012) to derive gravity models of the Moon to degree 420, 540, and 660 in spherical harmonics. For these models, GRGM420A, GRGM540A, and GRGM660PRIM, a Kaula constraint was applied only beyond degree 330. Variance?component estimation (VCE) was used to adjust the a priori weights and obtain a calibrated error covariance. The global root?mean?square error in the gravity anomalies computed from the error covariance to 320×320 is 0.77 mGal, compared to 29.0 mGal with the pre?GRAIL model derived with the SELENE mission data, SGM150J, only to 140×140. The global correlations with the Lunar Orbiter Laser Altimeter?derived topography are larger than 0.985 between l = 120 and 330. The free?air gravity anomalies, especially over the lunar farside, display a dramatic increase in detail compared to the pre?GRAIL models (SGM150J and LP150Q) and, through degree 320, are free of the orbit?track?related artifacts present in the earlier models. For GRAIL, we obtain an a posteriori fit to the S?band DSN data of 0.13 mm/s. The a posteriori fits to the KBRR data range from 0.08 to 1.5 micrometers/s for GRGM420A and from 0.03 to 0.06 micrometers/s for GRGM660PRIM. Using the GRAIL data, we obtain solutions for the degree 2 Love numbers, k20=0.024615+/-0.0000914, k21=0.023915+/-0.0000132, and k22=0.024852+/-0.0000167, and a preliminary solution for the k30 Love number of k30=0.00734+/-0.0015, where the Love number error sigmas are those obtained with VCE.

  6. Measurement of high-degree solar oscillation frequencies

    Science.gov (United States)

    Bachmann, K. T.; Duvall, T. L., Jr.; Harvey, J. W.; Hill, F.

    1995-01-01

    We present m-averaged solar p- and f-mode oscillation frequencies over the frequency range nu greater than 1.8 and less than 5.0 mHz and the spherical harmonic degree range l greater than or equal to 100 and less than or equal to 1200 from full-disk, 1000 x 1024 pixel, Ca II intensity images collected 1993 June 22-25 with a temporal cadence of 60 s. We itemize the sources and magnitudes of statistical and systematic uncertainties and of small frequency corrections, and we show that our frequencies represent an improvement in accuracy and coverage over previous measurements. Our frequencies agree at the 2 micro Hz level with Mount Wilson frequencies determined for l less than or equal to 600 from full-disk images, and we find systematic offsets of 10-20 micro Hz with respect to frequencies measured from Big Bear and La Palma observations. We give evidence that these latter offsets are indicative of spatial scaling uncertainties associated with the analysis of partial-disk images. In comparison with theory, our p-mode frequencies agree within 10 micro Hz of frequencies predicted by the Los Alamos model but are as much as 100 micro Hz smaller than frequencies predicted by the Denmark and Yale models at degrees near 1000. We also find systematic differences between our n = 0 frequencies and the frequencies closely agreed upon by all three models.

  7. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Plenio, M B [Blackett Laboratory, Imperial College London, Prince Consort Rd, London SW7 2BW (United Kingdom); Hartley, J [Blackett Laboratory, Imperial College London, Prince Consort Rd, London SW7 2BW (United Kingdom); Eisert, J [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, D-14469 Potsdam (Germany)

    2004-03-01

    We study the entanglement dynamics of a system consisting of a large number of coupled harmonic oscillators in various configurations and for different types of nearest-neighbour interactions. For a one-dimensional chain, we provide compact analytical solutions and approximations to the dynamical evolution of the entanglement between spatially separated oscillators. Key properties such as the speed of entanglement propagation, the maximum amount of transferred entanglement and the efficiency for the entanglement transfer are computed. For harmonic oscillators coupled by springs, corresponding to a phonon model, we observe a non-monotonic transfer efficiency in the initially prepared amount of entanglement, i.e. an intermediate amount of initial entanglement is transferred with the highest efficiency. In contrast, within the framework of the rotating-wave approximation (as appropriate, e.g. in quantum optical settings) one finds a monotonic behaviour. We also study geometrical configurations that are analogous to quantum optical devices (such as beamsplitters and interferometers) and observe characteristic differences when initially thermal or squeezed states are entering these devices. We show that these devices may be switched on and off by changing the properties of an individual oscillator. They may therefore be used as building blocks of large fixed and pre-fabricated but programmable structures in which quantum information is manipulated through propagation. We discuss briefly possible experimental realizations of systems of interacting harmonic oscillators in which these effects may be confirmed experimentally.

  8. Betatron motion with coupling of horizontal and vertical degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, V.A.; /Fermilab; Bogacz, S.A.; /Jefferson Lab

    2010-09-01

    Presently, there are two most frequently used parameterizations of linear x-y coupled motion used in the accelerator physics. They are the Edwards-Teng and Mais-Ripken parameterizations. The article is devoted to an analysis of close relationship between the two representations, thus adding a clarity to their physical meaning. It also discusses the relationship between the eigen-vectors, the beta-functions, second order moments and the bilinear form representing the particle ellipsoid in the 4D phase space. Then, it consideres a further development of Mais-Ripken parameteresation where the particle motion is described by 10 parameters: four beta-functions, four alpha-functions and two betatron phase advances. In comparison with Edwards-Teng parameterization the chosen parametrization has an advantage that it works equally well for analysis of coupled betatron motion in circular accelerators and in transfer lines. Considered relationship between second order moments, eigen-vectors and beta-functions can be useful in interpreting tracking results and experimental data. As an example, the developed formalizm is applied to the FNAL electron cooler and Derbenev's vertex-to-plane adapter.

  9. Distributed coupling high efficiency linear accelerator

    Science.gov (United States)

    Tantawi, Sami G.; Neilson, Jeffrey

    2016-07-19

    A microwave circuit for a linear accelerator includes multiple monolithic metallic cell plates stacked upon each other so that the beam axis passes vertically through a central acceleration cavity of each plate. Each plate has a directional coupler with coupling arms. A first coupling slot couples the directional coupler to an adjacent directional coupler of an adjacent cell plate, and a second coupling slot couples the directional coupler to the central acceleration cavity. Each directional coupler also has an iris protrusion spaced from corners joining the arms, a convex rounded corner at a first corner joining the arms, and a corner protrusion at a second corner joining the arms.

  10. Spectral coupling issues in a two-degree-of-freedom system with clearance non-linearities

    Science.gov (United States)

    Padmanabhan, C.; Singh, R.

    1992-06-01

    In an earlier study [14], the frequency response characteristics of a multi-degree-of-freedom system with clearance non-linearities were presented. The current study is an extension of this prior work and deals specifically with the issue of dynamic interactions between resonances. The harmonic balance method, digital solutions and analog computer simulation are used to investigate a two-degree-of-freedom system under a mean load, when subjected to sinusoidal excitations. The existence of harmonic, periodic and chaotic solutions is demonstrated using digital simulation. The method of harmonic balance is employed to construct approximate solutions at the excitation frequency which are then used to classify weak, moderate and strong non-linear spectral interactions. The effects of parameters such as damping ratio, mean load, alternating load and frequency spacing between the resonances have been quantified. The applicability of the methodology is demonstrated through the following practical examples: (i) neutral gear rattle in an automotive transmission system; and (ii) steady state characteristics of a spur gear pair with backlash. In the second case, measured dynamic transmission error data at the gear mesh frequency are used to investigate spectral interactions. Limitations associated with solution methods and interaction classification schemes are also discussed.

  11. Collective dynamics in atomistic models with coupled translational and spin degrees of freedom

    Science.gov (United States)

    Perera, Dilina; Nicholson, Don M.; Eisenbach, Markus; Stocks, G. Malcolm; Landau, David P.

    2017-01-01

    Using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom, we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons and magnons on their respective frequency spectra and lifetimes in ferromagnetic bcc iron. By calculating the Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the linewidths of the vibrational and magnetic excitation modes were determined. Comparison of the results with that of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between the phonons and magnons leads to a shift in the respective frequency spectra and a decrease in the lifetimes. Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with the same frequencies as the longitudinal phonons.

  12. Highly Valued Degrees at California State University, Long Beach

    Science.gov (United States)

    Dowell, David A.

    2016-01-01

    In 2014, California State University, Long Beach (CSULB) received the national award from the American Association of State Colleges and Universities (AASCU) for Excellence and Innovation in Student Success and Completion, recognizing record high graduation rates with a diverse student population, significantly above comparable institutions.…

  13. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology.

    Science.gov (United States)

    Yu, Xiangzhi; Gillmer, Steven R; Woody, Shane C; Ellis, Jonathan D

    2016-06-01

    A compact, fiber-coupled, six degree-of-freedom measurement system which enables fast, accurate calibration, and error mapping of precision linear stages is presented. The novel design has the advantages of simplicity, compactness, and relatively low cost. This proposed sensor can simultaneously measure displacement, two straightness errors, and changes in pitch, yaw, and roll using a single optical beam traveling between the measurement system and a small target. The optical configuration of the system and the working principle for all degrees-of-freedom are presented along with the influence and compensation of crosstalk motions in roll and straightness measurements. Several comparison experiments are conducted to investigate the feasibility and performance of the proposed system in each degree-of-freedom independently. Comparison experiments to a commercial interferometer demonstrate error standard deviations of 0.33 μm in straightness, 0.14 μrad in pitch, 0.44 μradin yaw, and 45.8 μrad in roll.

  14. High degree gravitational sensitivity from Mars orbiters for the GMM-1 gravity model

    Science.gov (United States)

    Lerch, F. J.; Smith, D. E.; Chan, J. C.; Patel, G. B.; Chinn, D. S.

    1994-01-01

    Orbital sensitivity of the gravity field for high degree terms (greater than 30) is analyzed on satellites employed in a Goddard Mars Model GMM-1, complete in spherical harmonics through degree and order 50. The model is obtained from S-band Doppler data on Mariner 9 (M9), Viking Orbiter 1 (VO1), and Viking Orbiter 2 (VO2) spacecraft, which were tracked by the NASA Deep Space Network on seven different highly eccentric orbits. The main sensitivity of the high degree terms is obtained from the VO1 and VO2 low orbits (300 km periapsis altitude), where significant spectral sensitivity is seen for all degrees out through degree 50. The velocity perturbations show a dominant effect at periapsis and significant effects out beyond the semi-latus rectum covering over 180 degrees of the orbital groundtrack for the low altitude orbits. Because of the wideband of periapsis motion covering nearly 180 degrees in w and +39 degrees in latitude coverage, the VO1 300 km periapsis altitude orbit with inclination of 39 degrees gave the dominant sensitivity in the GMM-1 solution for the high degree terms. Although the VO2 low periapsis orbit has a smaller band of periapsis mapping coverage, it strongly complements the VO1 orbit sensitivity for the GMM-1 solution with Doppler tracking coverage over a different inclination of 80 degrees.

  15. Multidimensionally-constrained relativistic mean-field study of spontaneous fission: coupling between shape and pairing degrees of freedom

    CERN Document Server

    Zhao, Jie; Niksic, Tamara; Vretenar, Dario; Zhou, Shan-Gui

    2016-01-01

    Studies of fission dynamics, based on nuclear energy density functionals, have shown that the coupling between shape and pairing degrees of freedom has a pronounced effect on the nonperturbative collective inertia and, therefore, on dynamic (least-action) spontaneous fission paths and half-lives. Collective potentials and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic mean-field (MDC-RMF) model. Pairing correlations are treated in the BCS approximation using a separable pairing force of finite range. Pairing fluctuations are included as a collective variable using a constraint on particle-number dispersion. Fission paths are determined with the dynamic programming method by minimizing the action in multidimensional collective spaces. The dynamics of spontaneous fission of $^{264}$Fm and $^{250}$Fm are explored. Fission paths, action integrals and corresponding half-lives computed in the three-dimensional collective space of shape and pa...

  16. Random-lattice models and simulation algorithms for the phase equilibria in two-dimensional condensed systems of particles with coupled internal and translational degrees of freedom

    DEFF Research Database (Denmark)

    Nielsen, Morten; Miao, Ling; Ipsen, John Hjorth;

    1996-01-01

    In this work we concentrate on phase equilibria in two-dimensional condensed systems of particles where both translational and internal degrees of freedom are present and coupled through microscopic interactions, with a focus on the manner of the macroscopic coupling between the two types...

  17. High-degree pulse compression and high-coherence supercontinuum generation in a convex dispersion profile

    Science.gov (United States)

    Li, Qian; Kutz, J. Nathan; Wai, P. K. A.

    2013-08-01

    We consider the non-adiabatic pulse compression of cascaded soliton propagating in three consecutive optical fiber segments, each of which has a convex dispersion profile with two zero-dispersion wavelengths. The convex dispersion profile provides an accurate description of the chromatic dispersion over the whole frequency range, thus allowing for a comprehensive theoretical treatment of the cascaded third order soliton compression when ultrashort pulses (DFDF) has a convex curvature in its dispersion profile which varies along length of fiber. Compared to DFDF, the cascading of fiber segments with convex dispersion that stays constant along the fiber length greatly reduces the manufacture difficulties and provides a much simpler engineering design in practice. High-degree pulse compression and high-coherence supercontinuum generation are demonstrated.

  18. Spatio-temporal Difference of Coupling Coordinative Degree of Ecological Carrying Capacity in the Dongting Lake Region%洞庭湖区生态承载力系统耦合协调度时空分异

    Institute of Scientific and Technical Information of China (English)

    熊建新; 陈端吕; 彭保发; 邓素婷; 谢雪梅

    2014-01-01

    Ecological carrying capacity is a complex dynamic system including natural-economy-society, and its intrinsic coordination is the key to sustainable carrying capacity of ecosystem. In different spatio-temporal scales, the coupling coordinative degree of ecological carrying capacity presents different differences and changes. On the basis of coupling coordinative development interactive mechanism of ecological carrying ca-pacity, the article constructs an evaluation index system of coupling coordinative degree, and analyzes the tem-poral and spatial difference of coupling coordinative degree of ecological carrying capacity in the Dongting Lake region by using capacitive coupling model. The results show that:1) The trends of coupling degree and coupling coordinative degree of ecological carrying capacity in the Dongting Lake region from 2001 to 2012 seemed to be the same, and presented roughly steady upward trend. The mean of coupling degree was 0.499, in antagonistic stage; the mean of coupling coordinative degree was 0.463, in the moderate coupling coordina-tive phase;the average annual growth rate of coupling degree was 3.35%, greater than coupling coordinative degree, which was 3.05%. It indicated that the internal coupling and synergies of the ecological carrying capac-ity was obvious, and the coupling strength was greater than the internal coordination. 2) As to spatial variation, there were three states of coupling degree in three different years in 17 counties of the Dongting Lake area, which were a low coupling, antagonistic phase and running-in phase, each coupling state had different county number and interval change. The coupling coordinative degree appeared three states of low coupling coordina-tion, moderate coupling coordination and highly coupling coordination, the variation was substantially similar to the coupling degree, however the change of the county number and interval change in coordinative state laged behind the coupling degree. The spatial

  19. Results of U-xMo (x=7, 10, 12 wt.%) Alloy versus Al-6061 Cladding Diffusion Couple Experiments Performed at 500, 550 and 600 Degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Perez; Dennis D. Keiser, Jr.; Yongho Sohn

    2013-04-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been developing low enrichment fuel systems encased in Al 6061 for use in research and test reactors. U–Mo alloys in contact with Al and Al alloys can undergo diffusional interactions that can result in the development of interdiffusion zones with complex fine-grained microstructures composed of multiple phases. A monolithic fuel currently being developed by the RERTR program has local regions where the U–Mo fuel plate is in contact with the Al 6061 cladding and, as a result, the program finds information about interdiffusion zone development at high temperatures of interest. In this study, the microstructural development of diffusion couples consisting of U-7wt.%Mo, U-10wt.%Mo, and U-12wt.%Mo vs. Al 6061 (or 6061 aluminum) cladding, annealed at 500, 550, 600 degrees C for 1, 5, 20, 24, or 132 hours, was analyzed by backscatter electron microscopy and x-ray energy dispersive spectroscopy on a scanning electron microscope. Concentration profiles were determined by standardized wavelength dispersive spectroscopy and standardless x-ray energy dispersive spectroscopy. The results of this work shows that the presence of surface layers at the U–Mo/Al 6061 interface can dramatically impact the overall interdiffusion behavior in terms of rate of interaction and uniformity of the developed interdiffusion zones. It further reveals that relatively uniform interaction layers with higher Si concentrations can develop in U–Mo/Al 6061 couples annealed at shorter times and that longer times at temperature result in the development of more non-uniform interaction layers with more areas that are enriched in Al. At longer annealing times and relatively high temperatures, U–Mo/Al 6061 couples can exhibit more interaction compared to U–Mo/pure Al couples. The minor alloying constituents in Al 6061 cladding can result in the development of many complex phases in the interaction layer of U

  20. Quick detection of high-degree entities in large directed networks

    NARCIS (Netherlands)

    Avrachenkov, K.; Litvak, N.; Ostroumova Prokhorenkova, L.; Suyargulova, E.

    2014-01-01

    In this paper we address the problem of quick detection of high-degree entities in large online social networks. Practical importance of this problem is attested by a large number of companies that continuously collect and update statistics about popular entities, usually using the degree of an enti

  1. Multiple sensor estimation using a high-degree cubature information filter

    Science.gov (United States)

    Jia, Bin; Xin, Ming; Pham, Khanh; Blasch, Erik; Chen, Genshe

    2013-05-01

    In this paper, a high-degree cubature information filter (CIF) is proposed for multiple sensor estimation. Astatistical linear error propagation method incorporates the high-degree cubature integration rule into the extended information filtering (EIF) framework such that more accurate estimation can be achieved than the extended information filter as well as the unscented information filter (UIF). In addition, the high-degree CIF maintains close performance to the Gauss-Hermite Quadrature information filter (GHQIF) but uses significantly fewer quadrature points. As a result, the curse of dimensionality problem existing in the tensor product based GHQIF can be greatly alleviated. Besides the improved estimation accuracy and computational efficiency, the high-degree CIF also exhibits the desirable robustness under unknown noise statistics. The proposed CIF is compared with other information filters (e.g., EIF, UIF, GHQIF) via a target tracking problem and demonstrates the best performance.

  2. Phase transitions in a frustrated biquadratic Heisenberg model with coupled orbital degrees of freedom for iron-based superconductors

    Science.gov (United States)

    Zhuo, W. Z.; Qin, M. H.; Dong, S.; Li, X. G.; Liu, J.-M.

    2016-03-01

    In this paper, we study a biquadratic Heisenberg model with coupled orbital degrees of freedom by using a Monte Carlo simulation to investigate the phase transitions in iron-based superconductors. The antiferroquadrupolar state, which may be related to the magnetism of FeSe [R. Yu and Q. Si, Phys. Rev. Lett. 115, 116401 (2015), 10.1103/PhysRevLett.115.116401], is stabilized by the anisotropic biquadratic interaction induced by a ferro-orbital-ordered state. It is revealed that the orbital and nematic transitions occur at the same temperature for all the cases, supporting the mechanism of the orbital-driven nematicity as revealed in most recent experiments [S. H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Nat. Mater. 14, 210 (2015), 10.1038/nmat4138]. In addition, it is suggested that the orbital interaction may lead to the separation of the structural and magnetic phase transitions, as observed in many families of iron pnictides.

  3. Sea Ice Sensitivities in the 0.72 degrees and 0.08 degrees Arctic Cap Coupled HYCOM/CICE Models

    Science.gov (United States)

    2013-09-30

    Coordinate Ocean Model (HYCOM) and the Los Alamos National Laboratory ( LANL ) CICE model. OBJECTIVES The objectives of the project are to optimize...together with NRL implement and test new versions of CICE in these coupled model set-ups as they become available from the LANL developers. APPROACH...fields will be compared with independent ice Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  4. High Degree Cubature Federated Filter for Multisensor Information Fusion with Correlated Noises

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2016-01-01

    Full Text Available This paper proposes an improved high degree cubature federated filter for the nonlinear fusion system with cross-correlation between process and measurement noises at the same time using the fifth-degree cubature rule and the decorrelated principle in its local filters. The master filter of the federated filter adopts the no-reset mode to fuse local estimates of local filters to generate a global estimate according to the scalar weighted rule. The air-traffic maneuvering target tracking simulations are performed between the proposed filter and the fifth-degree cubature federated filter. Simulations results demonstrate that the proposed filter not only can achieve almost the same accuracy as the fifth-degree cubature federated filter with independent white noises, but also has superior performance to the fifth-degree cubature federated filter while the noises are cross-correlated at the same time.

  5. Ultra-high degree spectral modelling of Earth and planetary topography

    Science.gov (United States)

    Rexer, Moritz; Hirt, Christian

    2016-04-01

    New methods for ultra-high degree spherical harmonic analyses and syntheses have been developed and studied over the past years. The focus group "High-resolution Gravity Modelling", established in 2013 at TU Munich, has implemented ultra-high degree spectral modelling techniques and used successfully to transform high-resolution topography grids of Earth, Moon and Mars into spherical harmonics. For Earth, a new set of 1 arc-min topography models, developed by our group and released under the name Earth2014, was expanded into a spherical harmonic series to degree 10,800. For the 15 arc-sec resolution SRTM15_plus topography and bathymetry, a spectral resolution of degree 43,200 was achieved. For Moon and Mars, topography grids from laser altimetry were harmonically analysed up to degree ~46,000. The spectral representations of the topography grids presented in this contribution are required in the context of spectral gravity forward modelling with ultra-high degree, where the topographic potential is computed as a function of the spherical harmonic series of the topography and its integer powers. References: Hirt, C., and M. Rexer (2015) Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models - available as gridded data and degree-10,800 spherical harmonics, International Journal of Applied Earth Observation and Geoinformation 39, 103-112, doi:10.1016/j.jag.2015.03.001. Rexer, M. and C. Hirt (2015), Ultra-high degree surface spherical harmonic analysis using the Gauss-Legendre and the Driscoll/Healy quadrature theorem and application to planetary topography models of Earth, Moon and Mars. Surveys in Geophysics 36(6), 803-830, doi: 10.1007/s10712-015-9345-z.

  6. Coupling ideality of integrated planar high-Q microresonators

    CERN Document Server

    Pfeiffer, Martin H P; Geiselmann, Michael; Kippenberg, Tobias J

    2016-01-01

    Chipscale microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear and quantum optical devices. Loss reduction through improving fabrication processes has resulted in several integrated micro resonator platforms attaining quality (Q) factors of several millions. However only few studies have investigated design-dependent losses, especially with regard to the resonator coupling section. Here we investigate design-dependent parasitic losses, described by the coupling ideality, of the commonly employed microresonator design consisting of a microring resonator waveguide side-coupled to a straight bus waveguide. By systematic characterization of multi-mode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing full 3D simulations to numerically investigate the resonator to bus waveguide coupling, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic loss...

  7. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, P. Ben [Massachusetts Institute of Technology (MIT); Murphy, Ryan [Lincoln Laboratory, Massachusetts Institute of Technology (MIT); Rosenberg, Danna [Massachusetts Institute of Technology (MIT); Grein, Matthew E. [Massachusetts Institute of Technology (MIT); Stelmakh, Veronika [Massachusetts Institute of Technology (MIT); Bennink, Ryan S [ORNL; Wong, Franco N. C. [Massachusetts Institute of Technology (MIT)

    2015-01-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  8. Thermally induced nonlinear mode coupling in high power fiber amplifiers

    DEFF Research Database (Denmark)

    Johansen, Mette Marie; Hansen, Kristian Rymann; Alkeskjold, Thomas T.;

    2013-01-01

    Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W.......Thermally induced nonlinear mode coupling leads to transverse mode instability (TMI) in high power fiber amplifiers. A numerical model including altering mode profiles from thermal effects and waveguide perturbations predicts a TMI threshold of ~200W....

  9. High Costs, Uncertain Benefits: What Do Americans without a College Degree Think about Postsecondary Education?

    Science.gov (United States)

    Kelly, Andrew P.

    2015-01-01

    The path to economic mobility increasingly runs through postsecondary education. Although the combination of rising tuition prices and a difficult labor market have raised questions about the value of education after high school, degree and certificate holders are still better off than those with just a high school diploma. As a group, young…

  10. Professional Learning Communities and the Degree of Teamness in Riverside County High Schools

    Science.gov (United States)

    Roberts, Benjamin A.

    2013-01-01

    Purpose. The purpose of this study was to determine if a significant difference in the degree of teamness in high school teams whose schools have strong evidence of the five dimensions of a Professional Learning Community, compared to high school teams in schools that do not have strong evidence of the five dimensions of a Professional Learning…

  11. Coupled-Mode Flutter of Bending-Bending Type in Highly-Flexible Uniform Airfoils

    Science.gov (United States)

    Pourazarm, Pariya; Modarres-Sadeghi, Yahya

    2016-11-01

    We study the behavior of a highly flexible uniform airfoil placed in wind both numerically and experimentally. It is shown that for a non-rotating highly-flexible cantilevered airfoil, placed at very small angles of attack (less than 1 degree), the airfoil loses its stability by buckling. For slightly higher angles of attack (more than 1 degree) a coupled-mode flutter in which the first and the second flapwise modes coalesce toward a flutter mode is observed, and thus the observed flutter has a bending-bending nature. The flutter onset and frequency found experimentally matched the numerical predictions. If the same airfoil is forced to rotate about its fixed end, the static deflection decreases and the observed couple-mode flutter becomes of flapwise-torsional type, same as what has already been observed for flutter of rotating wind turbine blades. The support provided by the National Science Foundation, CBET-1437988, is greatly acknowledged.

  12. High Power Fiber Bundle Array Coupled LDA Module

    Institute of Scientific and Technical Information of China (English)

    QU Zhou; LIU Yang; ZHAO Chong-guang; WANG Ji; YIN Hong-he; WANG Li-jun

    2006-01-01

    An optical fiber bundle array coupling module with high output power is presented in this paper. The device integrated the coupling technique of the high power laser diode array (LDA) and the micro-ball lenses fiber array. This module can efficiently couple the output laser of the LDA into 19 fibers array with micro-ball lens endsurface. The difference of the couple efficiency between the flat-end fiber and micro-ball-end fiber is discussed.The micro-ball lenses fiber array made of 19 fibers have the same fiber core diameter of 200 μm, and then the endsurfaces of 19 fibers are fused to 19 micro-ball lenses. The micro-ball lenses fiber array are fixed precisely in the neighborhood on the V-grooves, and the fiber array has the same arrange period with the semiconductor laser units of LDA. This configuration of micro-ball lens fiber array can greatly reduce the divergence of the laser beam from all directions, and a very efficient laser beam homogenizer and shaper are obtained. Finally, high output power of 30.1 W of the fiber coupled LDA is achieved, and the maximal coupling efficiency is >83% with the numeral aperture (NA) of 0.16.

  13. High Degree Spherical Harmonic Synthesis Over Geographic Rectangles: A Simple Approach

    Science.gov (United States)

    Holmes, S. A.; Featherstone, W. E.; Kuhn, M.

    Future spherical harmonic models of the geopotential and other quantities, such as digital elevation models, are likely extend to degree 2160 (corresponding to 5' by 5' geographic rectangles), and beyond. Simple techniques have been developed by the first two authors (Journal of Geodesy, in press) for high-degree (2700) `point' synthesis of gravimetric quantities, in IEEE double precision, pole to pole. Numerical underflows are avoided by modifying exiting recursive algorithms to generate scaled, fully normalised, associated Legendre functions [ALFs] and their first and second derivatives. Final point-synthesis and rescaling was achieved using Horner's scheme. This simple approach has now been extended to stabilise high-degree (2700) `integral' synthesis over geographic rectangles (bound by meridians and parallels). Existing recursive routines compute definite integrals of ALFs for constant orders (`column- wise'). New routines have been designed to compute definite integrals of ALFs for constant degrees (`row-wise'). Both routines have been modified to generate scaled in- tegrals. Final synthesis and rescaling is achieved using Horner's scheme. Preliminary tests indicate that this approach allows, in IEEE double precision, integral synthesis to degree and order 2700, pole to pole, without underflow or overflow errors. Numer- ical tests suggest the new row-wise routines to be more precise than the column-wise routines, especially in polar regions.

  14. Increasing complexity while maintaining a high degree of symmetry in nanocrystal growth.

    Science.gov (United States)

    Liz-Marzán, Luis M

    2015-03-23

    Learning from classics: Crystal growth is a complex process, and there are multiple paths for going from dissolved ions to solid crystals. Highlighted herein is the application of traditional chemistry concepts to new ways for increasing the complexity of nanocrystals while maintaining a high degree of symmetry.

  15. A tri-junction diffusion couple analysis of the Nb-Cr-Ti system at 950{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, D.J. [Los Alamos National Lab., NM (United States); Perepezko, J.H. [Wisconsin Univ., Madison, WI (United States). Dept. of Materials Science and Engineering

    1993-11-01

    With a three-way diffusion couple consisting of a tri-junction between three elements, a whole spectrum of phase development and ternary equilibria is available within a single isothermal sample. Binary equilibria (for the three binary systems) are also available in single sample by analyzing diffusion zones at composition limits outside the field of ternary interaction. The tri-junction approach was employed to evaluate ternary phase formation, ternary solubility limits of binary phases, and diffusion paths in a candidate high-temperature structural system (Nb-Cr-Ti). Ternary phase equilibria and tie lines have been defined at 950C and results confirmed with isothermal anneals of two-phase ternary alloys. The continuous solubility in TiCr{sub 2}-NbCr{sub 2} region is broadened by at least 5 at. % from binary intermetallic phase fields. No new ternary phases were detected in the Nb-CrTi system at 950C. By examining the relative shifts in the diffusion interfaces, a qualitative ranking of interdiffusion suggests that addition of Nb restricts diffusion of Cr into Ti compared to binary (Cr/Ti) behavior.

  16. STDUY ON RETENTION AND DRAINAGE PROPERTIES OF THE HIGH SUBSTITUTED DEGREE CATIONIC STARCH

    Institute of Scientific and Technical Information of China (English)

    Qijie Chen; Fushan Chen; Gaosheng Wang; Huiren Hu

    2004-01-01

    This paper deals with the retention and drainage properties of the high substituted degree cationic starch (HCS) prepared by half-dry process. The experiments show that HCS has remarkable effects on filler retention and drainage in papermaking industry. With the degree of substitution (DS) of HCS increasing, the effects on filler retention and drainage increase. When the DS of HCS is 0.509 and the dosage is 0.08%, the freeness decreases about 12oSR and the filler retention is 79.82%.

  17. Moving State Marine SINS Initial Alignment Based on High Degree CKF

    Directory of Open Access Journals (Sweden)

    Yong-Gang Zhang

    2014-01-01

    Full Text Available A new moving state marine initial alignment method of strap-down inertial navigation system (SINS is proposed based on high-degree cubature Kalman filter (CKF, which can capture higher order Taylor expansion terms of nonlinear alignment model than the existing third-degree CKF, unscented Kalman filter and central difference Kalman filter, and improve the accuracy of initial alignment under large heading misalignment angle condition. Simulation results show the efficiency and advantage of the proposed initial alignment method as compared with existing initial alignment methods for the moving state SINS initial alignment with large heading misalignment angle.

  18. Preparing cationic cotton linter cellulose with high substitution degree by ultrasonic treatment.

    Science.gov (United States)

    Zhang, Fulong; Pang, Zhiqiang; Dong, Cuihua; Liu, Zong

    2015-11-05

    As an important cellulose derivative, cationic cellulose has becoming an attractive material. However, it remains challenging to produce cationic cellulose with high substitute degree. In this paper, we successfully increased the substitute degree of cationic cellulose by introducing ultrasonic treatment, which efficiently breaks hydrogen bonds of the chemical structure of cationic cellulose. Properties of cationic cellulose were studied by scanning electron spectroscope (SEM), contact angle, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Experimental results show that the cationic cellulose has rougher surface and lower crystallinity degree as compared to the original sample. TGA analysis verifies that the thermostability of CLC decreases after the cationic modification. The residual of the cationic cellulose (25 wt%) after pyrolysis increases significantly as compared to that of the original cellulose (15 wt%).

  19. Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Hsun; Wang, Shyh-Hau [Department of Computer Science and Information Engineering, and Institute of Medical Informatics, National Cheng Kung University, No 1, University Road, Tainan City 70101, Taiwan (China); Huang, Chih-Chung, E-mail: shyhhau@mail.ncku.edu.tw [Department of Electrical Engineering, Fu Jen Catholic University, 510, Chung Cheng Rd, Hsin Chuang, Taipei County 24205, Taiwan (China)

    2011-02-07

    An accurate and quantitative modality to assess the burn degree is crucial for determining further treatments to be properly applied to burn injury patients. Ultrasounds with frequencies higher than 20 MHz have been applied to dermatological diagnosis due to its high resolution and noninvasive capability. Yet, it is still lacking a substantial means to sensitively correlate the burn degree and ultrasonic measurements quantitatively. Thus, a 50 MHz ultrasound system was developed and implemented to measure ultrasonic signals backscattered from the burned skin tissues. Various burn degrees were achieved by placing a 100 deg. C brass plate onto the dorsal skins of anesthetized rats for various durations ranged from 5 to 20 s. The burn degrees were correlated with ultrasonic parameters, including integrated backscatter (IB) and Nakagami parameter (m) calculated from ultrasonic signals acquired from the burned tissues of a 5 x 1.4 mm (width x depth) area. Results demonstrated that both IB and m decreased exponentially with the increase of burn degree. Specifically, an IB of -79.0 {+-} 2.4 (mean {+-} standard deviation) dB for normal skin tissues tended to decrease to -94.0 {+-} 1.3 dB for those burned for 20 s, while the corresponding Nakagami parameters tended to decrease from 0.76 {+-} 0.08 to 0.45 {+-} 0.04. The variation of both IB and m was partially associated with the change of properties of collagen fibers from the burned tissues verified by samples of tissue histological sections. Particularly, the m parameter may be more sensitive to differentiate burned skin due to the fact that it has a greater rate of change with respect to different burn durations. These ultrasonic parameters in conjunction with high-frequency B-mode and Nakagami images could have the potential to assess the burn degree quantitatively.

  20. Coupling Ideality of Integrated Planar High-Q Microresonators

    Science.gov (United States)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  1. Coriolis coupling as a source of non-RRKM effects in triatomic near-symmetric top molecules: Diffusive intramolecular energy exchange between rotational and vibrational degrees of freedom.

    Science.gov (United States)

    Kryvohuz, M; Marcus, R A

    2010-06-14

    A classical theory is proposed to describe the non-RRKM effects in activated asymmetric top triatomic molecules observed numerically in classical molecular dynamics simulations of ozone. The Coriolis coupling is shown to result in an effective diffusive energy exchange between the rotational and vibrational degrees of freedom. A stochastic differential equation is obtained for the K-component of the rotational angular momentum that governs the diffusion.

  2. An Event to Encourage High School Students to Pursue College Degrees in Physics and Math

    Science.gov (United States)

    Bukiet, Bruce; Thomas, Gordon

    2003-04-01

    We discuss a Math and Physics Day for high school students and teachers, with hands-on activities and seminars involving mathematics and physics. Participants also learn about careers for those who go on to major in physics and mathematics in college. The New York State Section of the APS has provided generous support for this workshop through its Outreach grant program. Approximately a dozen high schools and 100 students attend each year. The program, which runs from 9:15 AM until 2:15 PM, includes an introduction to undergraduate degree programs in Mathematics, Statistics, Optics, Actuarial Science and Applied Physics, a group physics experiment/contest, brief talks over lunch by speakers from industry who have degrees in Math or Physics, and an afternoon seminar. Teachers earn Professional Development credit.

  3. Enhancing speed of pinning synchronizability: low-degree nodes with high feedback gains

    CERN Document Server

    Zhou, Ming-Yang; Liao, Hao; Fu, Zhong-Qian; Cai, Shi-Min

    2015-01-01

    Controlling complex networks is of paramount importance in science and engineering. Despite recent efforts to improve controllability and synchronous strength, little attention has been paid to the speed of pinning synchronizability (rate of convergence in pinning control) and the corresponding pinning node selection. To address this issue, we propose a hypothesis to restrict the control cost, then build a linear matrix inequality related to the speed of pinning controllability. By solving the inequality, we obtain both the speed of pinning controllability and optimal control strength (feedback gains in pinning control) for all nodes. Interestingly, some low-degree nodes are able to achieve large feedback gains, which suggests that they have high influence on controlling system. In addition, when choosing nodes with high feedback gains as pinning nodes, the controlling speed of real systems is remarkably enhanced compared to that of traditional large-degree and large-betweenness selections. Thus, the proposed...

  4. Obtaining water with a high degree of purity by using reverse osmosis

    Directory of Open Access Journals (Sweden)

    Nicolae Chirilă

    2011-12-01

    Full Text Available In this paper, we used the method of reverse osmosis in order to obtain water with a high degree of purity. For this aim, we used the TKA 20-120ECO device. We completed physic-chemical determinations for the water of supply, as well as for the water obtained after the osmosis process. The results that we obtained are relevant and interesting.

  5. Annealing of natural metamict zircons: II high degree of radiation damage

    CERN Document Server

    Colombo, M

    1998-01-01

    In situ time-dependent high-temperature X-ray powder diffraction was used to study the amorphous to crystalline transition in natural zircons which are characterized by a high degree of radiation damage. It was possible to distinguish two stages of the annealing process: (i) the recovery of the heavily disturbed but still crystalline domains and (ii) the recrystallization of the amorphous regions. The first stage is very fast under the chosen experimental conditions and, at least apparently, is not thermally activated. The second stage is a diffusion-controlled process, whose products (zircon or zircon and zirconia phases) are strongly correlated to the annealing temperature.

  6. Analysis of MDI High-Degree Mode Frequencies and their Rotational Splittings

    CERN Document Server

    Rabello-Soares, M C; Schou, J

    2008-01-01

    Here we present a detailed analysis of solar acoustic mode frequencies and their rotational splittings for modes with degree up to 900. They were obtained by applying spherical harmonic decomposition to full-disk solar images observed by the Michelson Doppler Imager onboard the Solar and Heliospheric Observatory spacecraft. Global helioseismology analysis of high-degree modes is complicated by the fact that the individual modes cannot be isolated, which has limited so far the use of high-degree data for structure inversion of the near-surface layers (r > 0.97 R). In this work, we took great care to recover the actual mode characteristics using a physically motivated model which included a complete leakage matrix. We included in our analysis the following instrumental characteristics: the correct instantaneous image scale, the radial and non-radial image distortions, the effective position angle of the solar rotation axis and a correction to the Carrington elements. We also present variations of the mode frequ...

  7. Generation of basis sets with high degree of fulfillment of the Hellmann-Feynman theorem.

    Science.gov (United States)

    Rico, J Fernández; López, R; Ema, I; Ramírez, G

    2007-03-01

    A direct relationship is established between the degree of fulfillment of the Hellman-Feynman (electrostatic) theorem, measured as the difference between energy derivatives and electrostatic forces, and the stability of the basis set, measured from the indices that characterize the distance of the space generated by the basis functions to the space of their derivatives with respect to the nuclear coordinates. On the basis of this relationship, a criterion for obtaining basis sets of moderate size with a high degree of fulfillment of the theorem is proposed. As an illustrative application, previously reported Slater basis sets are extended by using this criterion. The resulting augmented basis sets are tested on several molecules finding that the differences between energy gradient and electrostatic forces are reduced by at least one order of magnitude.

  8. New Exoplanet Surveys in the Canadian High Arctic at 80 Degrees North

    CERN Document Server

    Law, Nicholas M; Murowinski, Richard; Carlberg, Raymond; Ngan, Wayne; Salbi, Pegah; Ahmadi, Aida; Steinbring, Eric; Halman, Mark; Graham, James

    2012-01-01

    Observations from near the Eureka station on Ellesmere Island, in the Canadian High Arctic at 80 degrees North, benefit from 24-hour darkness combined with dark skies and long cloud-free periods during the winter. Our first astronomical surveys conducted at the site are aimed at transiting exoplanets; compared to mid-latitude sites, the continuous darkness during the Arctic winter greatly improves the survey's detection efficiency for longer-period transiting planets. We detail the design, construction, and testing of the first two instruments: a robotic telescope, and a set of very wide-field imaging cameras. The 0.5m Dunlap Institute Arctic Telescope has a 0.8-square-degree field of view and is designed to search for potentially habitable exoplanets around low-mass stars. The very wide field cameras have several-hundred-square-degree fields of view pointed at Polaris, are designed to search for transiting planets around bright stars, and were tested at the site in February 2012. Finally, we present a concep...

  9. Recovering parity-time symmetry in highly dispersive coupled optical waveguides

    Science.gov (United States)

    Nguyen, Ngoc B.; Maier, Stefan A.; Hong, Minghui; Oulton, Rupert F.

    2016-12-01

    Coupled photonic systems satisfying parity-time symmetry (PTS) provide flexibility to engineer the flow of light including non-reciprocal propagation, perfect laser-absorbers, and ultra-fast switching. Achieving the required index profile for an optical system with ideal PTS, i.e. n(x)=n{(-x)}* , has proven to be difficult due to the challenge of controlling gain, loss and material dispersion simultaneously. Consequently, most research has focused on dilute or low gain optical systems where material dispersion is minimal. In this paper, we study a model system of coupled inorganic semiconductor waveguides with potentially high gain (>1500 cm-1) and dispersion. Our analysis makes use of coupled mode theory’s parameters to quantify smooth transitions between PTS phases under imperfect conditions. We find that the detrimental influence of gain-induced dispersion is counteracted and the key features of PTS optical systems are recovered by working with non-identical waveguides and bias pumping of the optical waveguides. Our coupled mode theory results show excellent agreement with numerical solutions, proving the robustness of coupled mode theory in describing various degrees of imperfection in systems with PTS.

  10. An improved local immunization strategy for scale-free networks with a high degree of clustering

    Science.gov (United States)

    Xia, Lingling; Jiang, Guoping; Song, Yurong; Song, Bo

    2017-01-01

    The design of immunization strategies is an extremely important issue for disease or computer virus control and prevention. In this paper, we propose an improved local immunization strategy based on node's clustering which was seldom considered in the existing immunization strategies. The main aim of the proposed strategy is to iteratively immunize the node which has a high connectivity and a low clustering coefficient. To validate the effectiveness of our strategy, we compare it with two typical local immunization strategies on both real and artificial networks with a high degree of clustering. Simulations on these networks demonstrate that the performance of our strategy is superior to that of two typical strategies. The proposed strategy can be regarded as a compromise between computational complexity and immune effect, which can be widely applied in scale-free networks of high clustering, such as social network, technological networks and so on. In addition, this study provides useful hints for designing optimal immunization strategy for specific network.

  11. Alternation of regular and chaotic dynamics in a simple two-degree-of-freedom system with nonlinear inertial coupling.

    Science.gov (United States)

    Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A

    2012-03-01

    We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.

  12. Pooling designs with surprisingly high degree of error correction in a finite vector space

    CERN Document Server

    Guo, Jun

    2011-01-01

    Pooling designs are standard experimental tools in many biotechnical applications. It is well-known that all famous pooling designs are constructed from mathematical structures by the "containment matrix" method. In particular, Macula's designs (resp. Ngo and Du's designs) are constructed by the containment relation of subsets (resp. subspaces) in a finite set (resp. vector space). Recently, we generalized Macula's designs and obtained a family of pooling designs with more high degree of error correction by subsets in a finite set. In this paper, as a generalization of Ngo and Du's designs, we study the corresponding problems in a finite vector space and obtain a family of pooling designs with surprisingly high degree of error correction. Our designs and Ngo and Du's designs have the same number of items and pools, respectively, but the error-tolerant property is much better than that of Ngo and Du's designs, which was given by D'yachkov et al. \\cite{DF}, when the dimension of the space is large enough.

  13. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    Science.gov (United States)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  14. High electronic couplings of single mesitylene molecular junctions

    Directory of Open Access Journals (Sweden)

    Yuki Komoto

    2015-12-01

    Full Text Available We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene molecular junctions. The electronic conductance and the current–voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10−1G0 and of more than 10−3G0 (G0 = 2e2/h in the electronic conductance measurements. We further performed a statistical analysis of the current–voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current–voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV. Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I–V analysis, we proposed two structural models, in which (i mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii mesitylene has tilted from the perpendicular orientation.

  15. Weak Coupling Electron-Phonon for High Tc Superconductors

    Science.gov (United States)

    Labbe, J.

    1989-01-01

    Our opinion is that, in the high Tc copper oxides, the electronic correlations are not large enough to allow the localization of the electrons of the half-filled d-p sub-band. Thus, we treat them as itinerant electrons, in a bidimensional structure. And we show that, contrary to a widely held opinion, the electron-phonon interaction can induce high Tc superconductivity in these compounds, even in the weak coupling limit. This is due to the fact that, because of the bidimensionality, the electronic density of states is sharply peaked in the neighbourhood of the Fermi energy. A small coupling between nearest neighbouring CuO2 planes is sufficient to prevent a very large reduction of Tc by the critical fluctuations. The calculated isotope effect is much smaller than usually in the BCS theory. And, in our weak coupling theory, the antiferromagnetic (AF) phase is much more rapidly destabilized by dopping or internal charge transfer than the superconducting phase, which takes place when the AF phase has vanished.

  16. High electronic couplings of single mesitylene molecular junctions.

    Science.gov (United States)

    Komoto, Yuki; Fujii, Shintaro; Nishino, Tomoaki; Kiguchi, Manabu

    2015-01-01

    We report on an experimental analysis of the charge transport properties of single mesitylene (1,3,5-trimethylbenzene) molecular junctions. The electronic conductance and the current-voltage characteristics of mesitylene molecules wired into Au electrodes were measured by a scanning tunnelling microscopy-based break-junction method at room temperature in a liquid environment. We found the molecular junctions exhibited two distinct conductance states with high conductance values of ca. 10(-1) G 0 and of more than 10(-3) G 0 (G 0 = 2e (2)/h) in the electronic conductance measurements. We further performed a statistical analysis of the current-voltage characteristics of the molecular junctions in the two states. Within a single channel resonant tunnelling model, we obtained electronic couplings in the molecular junctions by fitting the current-voltage characteristics to the single channel model. The origin of the high conductance was attributed to experimentally obtained large electronic couplings of the direct π-bonded molecular junctions (ca. 0.15 eV). Based on analysis of the stretch length of the molecular junctions and the large electronic couplings obtained from the I-V analysis, we proposed two structural models, in which (i) mesitylene binds to the Au electrode perpendicular to the charge transport direction and (ii) mesitylene has tilted from the perpendicular orientation.

  17. Transient voltage sharing in series-coupled high voltage switches

    Directory of Open Access Journals (Sweden)

    Editorial Office

    1992-07-01

    Full Text Available For switching voltages in excess of the maximum blocking voltage of a switching element (for example, thyristor, MOSFET or bipolar transistor such elements are often coupled in series - and additional circuitry has to be provided to ensure equal voltage sharing. Between each such series element and system ground there is a certain parasitic capacitance that may draw a significant current during high-speed voltage transients. The "open" switch is modelled as a ladder network. Analy­sis reveals an exponential progression in the distribution of the applied voltage across the elements. Overstressing thus oc­curs in some of the elements at levels of the total voltage that are significantly below the design value. This difficulty is overcome by grading the voltage sharing circuitry, coupled in parallel with each element, in a prescribed manner, as set out here.

  18. Test of Convective Frequency Effects with SOI/MDI High-Degree Data

    CERN Document Server

    Rosenthal, C S; Kosovichev, A G; Nordlund, A A; Reiter, J; Rhodes, E J; Schou, J; Stein, R F; Trampedach, R

    1998-01-01

    Advances in hydrodynamical simulations have provided new insights into the effects of convection on the frequencies of solar oscillations. As more accurate observations become available, this may lead to an improved understanding of the dynamics of convection and the interaction between convection and pulsation (\\cite{Rosenthal+99}) . Recent high-resolution observations from the SOI/MDI instrument on the SOHO spacecraft have provided the so-far most-detailed observations of high-degree modes of solar oscillations, which are particularly sensitive to the near-surface properties of the Sun. Here we present preliminary results of a comparison between these observations and frequencies computed for models based on realistic simulations of near-surface convection. Such comparisons may be expected to help in identifying the causes of the remaining differences between the observed frequencies and those of solar models.

  19. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Defaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Merilä, Juha

    2013-09-01

    Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes.

  20. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies

    Science.gov (United States)

    Balmino, G.; Vales, N.; Bonvalot, S.; Briais, A.

    2012-07-01

    The availability of high-resolution global digital elevation data sets has raised a growing interest in the feasibility of obtaining their spherical harmonic representation at matching resolution, and from there in the modelling of induced gravity perturbations. We have therefore estimated spherical Bouguer and Airy isostatic anomalies whose spherical harmonic models are derived from the Earth's topography harmonic expansion. These spherical anomalies differ from the classical planar ones and may be used in the context of new applications. We succeeded in meeting a number of challenges to build spherical harmonic models with no theoretical limitation on the resolution. A specific algorithm was developed to enable the computation of associated Legendre functions to any degree and order. It was successfully tested up to degree 32,400. All analyses and syntheses were performed, in 64 bits arithmetic and with semi-empirical control of the significant terms to prevent from calculus underflows and overflows, according to IEEE limitations, also in preserving the speed of a specific regular grid processing scheme. Finally, the continuation from the reference ellipsoid's surface to the Earth's surface was performed by high-order Taylor expansion with all grids of required partial derivatives being computed in parallel. The main application was the production of a 1' × 1' equiangular global Bouguer anomaly grid which was computed by spherical harmonic analysis of the Earth's topography-bathymetry ETOPO1 data set up to degree and order 10,800, taking into account the precise boundaries and densities of major lakes and inner seas, with their own altitude, polar caps with bedrock information, and land areas below sea level. The harmonic coefficients for each entity were derived by analyzing the corresponding ETOPO1 part, and free surface data when required, at one arc minute resolution. The following approximations were made: the land, ocean and ice cap gravity spherical

  1. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    Directory of Open Access Journals (Sweden)

    Shih-Hsiang Hsu

    2010-12-01

    Full Text Available To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  2. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain

    Science.gov (United States)

    Pellegrini, Maura; Pouncett, John; Jay, Mandy; Pearson, Mike Parker; Richards, Michael P.

    2016-10-01

    A geostatistical model to predict human skeletal oxygen isotope values (δ18Op) in Britain is presented here based on a new dataset of Chalcolithic and Early Bronze Age human teeth. The spatial statistics which underpin this model allow the identification of individuals interpreted as ‘non-local’ to the areas where they were buried (spatial outliers). A marked variation in δ18Op is observed in several areas, including the Stonehenge region, the Peak District, and the Yorkshire Wolds, suggesting a high degree of human mobility. These areas, rich in funerary and ceremonial monuments, may have formed focal points for people, some of whom would have travelled long distances, ultimately being buried there. The dataset and model represent a baseline for future archaeological studies, avoiding the complex conversions from skeletal to water δ18O values-a process known to be problematic.

  3. Bone-anchored hearing aids are effective and associated with a high degree of satisfaction

    DEFF Research Database (Denmark)

    Gardell, Ida Sofie Kristina; Andresen, Kathrine; Faber, Christian Emil;

    2015-01-01

    INTRODUCTION: The objective of this study was to evaluate patients' satisfaction with bone-anchored hearing aids (BAHA). METHODS: This study was retrospective and based on a postal questionnaire. The study sample consisted of patients undergoing surgery at Odense University Hospital in the 1992......-2013-period. The questionnaire was a combination of Satisfaction with Amplification in Daily Life questions from the Hearing Aid Research Lab at the University of Memphis and questions used in a previous Danish study. We also used data from each patient's medical records. All information was collected...... in one-on-one conversations. CONCLUSION: BAHA is helpful in one-on-one conversations in quiet surroundings. Sound quality in group situations seems to be the main problem associated with BAHA. However, this study showed that BAHA is an effective hearing aid that is associated with a high degree...

  4. A Kaldorian approach to catch up and structural change in economies with high degree of heterogeneity

    Directory of Open Access Journals (Sweden)

    Carmem Aparecida Feijo

    2013-06-01

    Full Text Available This paper, based on Kaldor’s main contributions, discusses the specificities in the catch up process of developing economies with high degree of structural heterogeneity. The theoretical model developed shows that developing economies, when modernizing the domestic versus external stock of capital, can reduce the technological gap and thus obtain a faster growth rate without producing disequilibrium in the balance of payments in the long run. As income distribution explains the incentive to the introduction of innovations through capital accumulation, the model is well succeed in connecting capital accumulation, income distribution, technological gap and long term external constraint. We conclude that capital accumulation, under certain circumstances, can overcome external constraint if the accumulation effort promotes structural change increasing the importance of sectors more technological-intensive.

  5. A fast high-precision six-degree-of-freedom relative position sensor

    Science.gov (United States)

    Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan

    2016-03-01

    Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.

  6. 一种基于回归分析的弱化系统耦合度方法%A Coupling Degree Weakening Method Based on Regression Analysis

    Institute of Scientific and Technical Information of China (English)

    孙灵芳; 孟祥华; 刘倩

    2011-01-01

    提出了一种基于回归分析弱化系统耦舍度的方法,将以精确数学模型为基础进行耦合度分析的问题转化为建立输入输出之间最优回归方程的问题,通过回归方程系数的显著性检验来确定对输出影响显著的输入量.与已有的方法比,回归分析方法不要求精确的数学模型,而且适用于输入与输出变量个数不同的非方形系统的耦合度分析.理论与实验分析验证了所提方法的有效性.%A regression analysis-based method was proposed to weaken linear system' s coupling degree, and transform the accurate mathematical model-based coupled analysis into establishing an optimal regression equation between the input and output, and to determine the input quantity that significantly influences the output through a significance test of regression equation coefficient. Compared with existing methods, the theory analysis and simulation results show that regression analysis-based method requires no precise mathematical model, and can be applied to the coupling degree analysis of non-square systems boasting of different input and output variables.

  7. Injection coupling with high amplitude transverse modes: Experimentation and simulation

    Science.gov (United States)

    Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien

    2009-06-01

    High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).

  8. Modeling particle-laden turbulent flows with two-way coupling using a high-order kernel density function method

    Science.gov (United States)

    Smith, Timothy; Lu, Xiaoyi; Ranjan, Reetesh; Pantano, Carlos

    2016-11-01

    We describe a two-way coupled turbulent dispersed flow computational model using a high-order kernel density function (KDF) method. The carrier-phase solution is obtained using a high-order spatial and temporal incompressible Navier-Stokes solver while the KDF dispersed-phase solver uses the high-order Legendre WENO method. The computational approach is used to model carrier-phase turbulence modulation by the dispersed phase, and particle dispersion by turbulence as a function of momentum coupling strength (particle loading) and number of KDF basis functions. The use of several KDF's allows the model to capture statistical effects of particle trajectory crossing to high degree. Details of the numerical implementation and the coupling between the incompressible flow and dispersed-phase solvers will be discussed, and results at a range of Reynolds numbers will be presented. This work was supported by the National Science Foundation under Grant DMS-1318161.

  9. High speed single charge coupled device Cranz-Schardin camera

    Science.gov (United States)

    Deblock, Y.; Ducloux, O.; Derbesse, L.; Merlen, A.; Pernod, P.

    2007-03-01

    This article describes an ultrahigh speed visualization system based on a miniaturization of the Cranz-Schardin principle. It uses a set of high power light emitting diodes (LEDs) (Golden Dragon) as the light source and a highly sensitive charge coupled device (CCD) camera for reception. Each LED is fired in sequence and images the refraction index variation between two relay lenses, on a partial region of a CCD image sensor. The originality of this system consists in achieving several images on a single CCD during a frame time. The number of images is 4. The time interval between successive firings determines the speed of the imaging system. This time lies from 100nsto10μs. The light pulse duration lies from 100nsto10μs. The principle and the optical and electronic parts of such a system are described. As an example, some images of acoustic waves propagating in water are presented.

  10. Light Subgraphs in the Family of 1-Planar Graphs with High Minimum Degree

    Institute of Scientific and Technical Information of China (English)

    Xin ZHANG; Gui Zhen LIU; Jian Liang WU

    2012-01-01

    A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge.In this paper,it is shown that each 1-planar graph with minimum degree 7 contains a copy of K2∨(K1∪K2) with all vertices of degree at most 12.In addition,we also prove the existence of a graph K1∨(K1∪K2) with relatively small degree vertices in 1-planar graphs with minimum degree at least 6.

  11. Preparation and Physical Properties of Starch Stearates of Low to High Degree of Substitution

    Science.gov (United States)

    Starch stearates of degree of substitution (DS) 0.07-2.40 were prepared by heating dry starch and vinyl stearate in the ionic liquid BMIM dca at 75 Degrees C. Starch stearate of low DS (0.07) was insoluble in water but formed a gel and absorbed over seven times its weight of water. Starch stearate...

  12. Study of hydrogen generation plant coupled to high temperature gas cooled reactor

    Science.gov (United States)

    Brown, Nicholas Robert

    Hydrogen generation using a high temperature nuclear reactor as a thermal driving vector is a promising future option for energy carrier production. In this scheme, the heat from the nuclear reactor drives an endothermic water-splitting plant, via coupling, through an intermediate heat exchanger. While both high temperature nuclear reactors and hydrogen generation plants have high individual degrees of development, study of the coupled plant is lacking. Particularly absent are considerations of the transient behavior of the coupled plant, as well as studies of the safety of the overall plant. The aim of this document is to contribute knowledge to the effort of nuclear hydrogen generation. In particular, this study regards identification of safety issues in the coupled plant and the transient modeling of some leading candidates for implementation in the Nuclear Hydrogen Initiative (NHI). The Sulfur Iodine (SI) and Hybrid Sulfur (HyS) cycles are considered as candidate hydrogen generation schemes. Several thermodynamically derived chemical reaction chamber models are coupled to a well-known reference design of a high temperature nuclear reactor. These chemical reaction chamber models have several dimensions of validation, including detailed steady state flowsheets, integrated loop test data, and bench scale chemical kinetics. Eight unique case studies are performed based on a thorough literature review of possible events. The case studies are: (1) feed flow failure from one section of the chemical plant to another, (2) product flow failure (recycle) within the chemical plant, (3) rupture or explosion within the chemical plant, (4) nuclear reactor helium inlet overcooling due to a process holding tank failure, (5) helium inlet overcooling as an anticipated transient without SCRAM, (6) total failure of the chemical plant, (7) parametric study of the temperature in an individual reaction chamber, and (8) control rod insertion in the nuclear reactor. Various parametric

  13. Iterative coupling reservoir simulation on high performance computers

    Institute of Scientific and Technical Information of China (English)

    Lu Bo; Wheeler Mary F

    2009-01-01

    In this paper, the iterative coupling approach is proposed for applications to solving multiphase flow equation systems in reservoir simulation, as it provides a more flexible time-stepping strategy than existing approaches. The iterative method decouples the whole equation systems into pressure and saturation/concentration equations, and then solves them in sequence, implicitly and semi-implicitly. At each time step, a series of iterations are computed, which involve solving linearized equations using specific tolerances that are iteration dependent. Following convergence of subproblems, material balance is checked. Convergence of time steps is based on material balance errors. Key components of the iterative method include phase scaling for deriving a pressure equation and use of several advanced numerical techniques. The iterative model is implemented for parallel computing platforms and shows high parallel efficiency and scalability.

  14. Information sources used by high school students in the college degree choice.

    Science.gov (United States)

    Areces, Débora; Rodríguez Muñiz, Luis J; Suárez Álvarez, Javier; de la Roca, Yolanda; Cueli, Marisol

    2016-08-01

    Searching for information is a necessary step for young people to decide what to study and prevent school drop-out. The aim of this study is to identify the main sources of information used by students in choosing a university career and to assess the degree of usefulness of these sources. A new measuring instrument to assess the use and usefulness of the information sources used in choosing university studies was developed. 2,005 high school students aged 17 to 24 (M = 17.56, SD = .77) participated in the study, representing 44.95 % of the total of school centers of the Principality of Asturias (Spain). The new instrument has adequate psychometric properties and shows that the information from parents and web pages by universities are the most used and most useful information sources for pre-university students. Obtaining this type of information is very important, as it encourages investing in those activities or resources that are important for pre-university students.

  15. Construction of a Smart Medication Dispenser with High Degree of Scalability and Remote Manageability

    Directory of Open Access Journals (Sweden)

    JuGeon Pak

    2012-01-01

    Full Text Available We propose a smart medication dispenser having a high degree of scalability and remote manageability. We construct the dispenser to have extensible hardware architecture for achieving scalability, and we install an agent program in it for achieving remote manageability. The dispenser operates as follows: when the real-time clock reaches the predetermined medication time and the user presses the dispense button at that time, the predetermined medication is dispensed from the medication dispensing tray (MDT. In the proposed dispenser, the medication for each patient is stored in an MDT. One smart medication dispenser contains mainly one MDT; however, the dispenser can be extended to include more MDTs in order to support multiple users using one dispenser. For remote management, the proposed dispenser transmits the medication status and the system configurations to the monitoring server. In the case of a specific event such as a shortage of medication, memory overload, software error, or non-adherence, the event is transmitted immediately. All these operations are performed automatically without the intervention of patients, through the agent program installed in the dispenser. Results of implementation and verification show that the proposed dispenser operates normally and performs the management operations from the medication monitoring server suitably.

  16. The immunogenicity of colorectal cancers with high-degree microsatellite instability

    Directory of Open Access Journals (Sweden)

    Dorudi Sina

    2005-05-01

    Full Text Available Abstract Background High-degree microsatellite instability (MSI-H is a feature of approximately 15% of sporadic colorectal cancers. Patients with MSI-H cancers have been reported to have a better prognosis than those with non-MSI-H cancers. The MSI-H subset is also characterised by a dense infiltrate of intra-epithelial lymphocytes and the hypothesis that the latter represents an efficacious immune response contributing to improved outcome is very attractive. Methods Data for this review were identified by searches of MEDLINE, PubMed, and cross references from relevant articles using the search terms 'microsatellite instability', 'colorectal cancer' and 'immunology', 'immune response' or 'immunogenicity'. Results A total of 38 articles were identified by the search criteria and a further 95 articles by cross-referencing. The relevance of the articles to be interviewed was established by hand searching. Out of a total of 133 articles identified, 47 articles were rejected due to lack of relevance. A total of 86 articles were included in the review, pertaining to microsatellite instability in colorectal cancer, and immune mechanisms in colorectal cancer. Conclusion It is suggested that this distinct group of colorectal cancers may have inherent immunogenic properties and that further elucidation of these may be invaluable to the development of successful immunotherapy.

  17. Relative equilibria of full dynamics of a rigid body with gravitational orbit-attitude coupling in a uniformly rotating second degree and order gravity field

    Science.gov (United States)

    Wang, Yue; Xu, Shijie

    2014-12-01

    The motion of a rigid body in a uniformly rotating second degree and order gravity field is a good model for the gravitationally coupled orbit-attitude motion of a spacecraft in the close proximity of an asteroid. The relative equilibria of this full dynamics model are investigated using geometric mechanics from a global point of view. Two types of relative equilibria are found based on the equilibrium conditions: one is the Lagrangian relative equilibria, at which the circular orbit of the rigid body is in the equatorial plane of the central body; the other is the non-Lagrangian relative equilibria, at which the circular orbit is parallel to but not in the equatorial plane of central body. The existences of the Lagrangian and non-Lagrangian relative equilibria are discussed numerically with respect to the parameters of the gravity field and the rigid body. The effect of the gravitational orbit-attitude coupling is especially assessed. The existence region of the Lagrangian relative equilibria is given on the plane of the system parameters. Numerical results suggest that the negative C 20 with a small absolute value and a negative C 22 with a large absolute value favor the existence of the non-Lagrangian relative equilibria. The effect of the gravitational orbit-attitude coupling of the rigid body on the existence of the non-Lagrangian relative equilibria can be positive or negative, which depends on the harmonics C 20 and C 22, and the angular velocity of the rotation of the gravity field.

  18. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  19. Obtaining high degree of circular polarization at X-ray FELs via a reverse undulator taper

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2013-08-15

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.

  20. Testing the functional equations of a high-degree Euler product

    CERN Document Server

    Farmer, David W; Schmidt, Ralf

    2010-01-01

    We study the L-functions associated to Siegel modular forms (equivalently, automorphic representations of ${\\rm GSp}(4,\\mathbb{A}_{\\mathbb{Q}})$) both theoretically and numerically. For the L-functions of degrees 10, 14, and 16 we perform representation theoretic calculations to cast the Langlands L-function in classical terms. We develop a precise notion of what it means to test a conjectured functional equation for an L-function, and we apply this to the degree 10 adjoint L-function associated to a Siegel modular form.

  1. Do couples at high risk of relationship problems attend premarriage education?

    Science.gov (United States)

    Halford, W Kim; O'Donnell, Charlotte; Lizzio, Alf; Wilson, Keithia L

    2006-03-01

    The effectiveness of premarriage education is limited by whether couples at high risk of future marital problems attend such education. In the current study, 374 newly married couples were assessed on a range of risk factors for future marital problems as well as whether they had attended marriage education. Couples with certain indices of relationship risk (nonreligious and premarital cohabitation) were underrepresented in premarriage education. Suggestions are offered to attract more couples, particularly those at high risk for future problems, to relationship education.

  2. Treatment of the QCD coupling in high energy processes

    CERN Document Server

    Ermolaev, B I; Troyan, S I

    2001-01-01

    The treatment of the running QCD coupling in evolution equations is discussed. It is shown that the use of the virtuality of ladder (vertical) partons as the scale for QCD coupling in every rung of ladder graphs is an approximation that holds for DIS at large x only. On the contrary, in the small x region the coupling depends on the virtuality of s -channel (horizontal) gluons. This observation leads to different results for the Regge-like processes and DIS structure functions at small x.

  3. Highly efficient fiber-to-chip evanescent coupling based on subwavelength-diameter optical fibers

    Institute of Scientific and Technical Information of China (English)

    Xiaowei Shen; Xinwan Li; Lijie Zhou; Zehua Hong; Xiaocao Yu; Ying Zhang; Jianping Chen

    2011-01-01

    @@ A novel, compact, and highly efficient fiber-to-chip evanescent coupling structure is proposed based on a subwavelength-diameter fiber.The coupling structure is characterized by a large misalignment tolerance and easy fabrication.The dependence of coupling efficiency on various parameters is calculated and analyzed.%A novel, compact, and highly efficient fiber-to-chip evanescent coupling structure is proposed based on a subwavelength-diameter fiber. The coupling structure is characterized by a large misalignment tolerance and easy fabrication. The dependence of coupling efficiency on various parameters is calculated and analyzed. The simulation results show that a coupling efficiency as high as 95% can be obtained within a coupling length of <4 μm.

  4. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of the proposed effort is maximizing the brightness of fiber coupled laser diode pump sources at a minimum cost. The specific innovation proposed is to...

  5. Isolation and characterization of inulin with a high degree of polymerization from roots of Stevia rebaudiana (Bert.) Bertoni.

    Science.gov (United States)

    Lopes, Sheila M S; Krausová, Gabriela; Rada, Vojtěch; Gonçalves, José E; Gonçalves, Regina A C; de Oliveira, Arildo J B

    2015-06-26

    The polysaccharide inulin has great importance in the food and pharmaceutical industries. The degree of polymerization (DP) of inulin influences important properties, such as, solubility, thermal stability, sweetness power and prebiotic activity. Molecules with a high degree of polymerization are obtained through physical techniques for enrichment of the inulin chains because they are not commonly obtained from plants extract. Gas chromatography/Mass Spectrometry and (1)H Nuclear Magnetic Resonance analysis showed that inulin from Stevia rebaudiana roots has a degree of polymerization (DPn 28) higher than the value of DPn 12-15 for inulins from other plant species. Furthermore, the methodology of freeze/thaw to enrich the chains allowed us to increase the DP, similarly to other methodologies used for the enrichment of inulin chains. The prebiotic assays confirm that inulin from S. rebaudiana has a high DP. The combined use of these molecules with low degree of polymerization fructans seems to be advantageous to prolong the prebiotic effect in the colon. Our results suggest that S. rebaudiana roots are a promising source of high degree polymerization inulins.

  6. Stimulus encoding selectivity at high degrees of paired-associate learning.

    Science.gov (United States)

    Lovelace, E A; Savage, J D

    1973-12-01

    Sixty-two Ss learned six CCC trigram-digit pairs by the study-test method; 21 Ss continued the PA acquisition trials to a learning criterion of one errorless trial, while 41 Ss were carded to 300% overlearning or 24 trials, whichever came first. The Ss were then shown individual letters of the trigrams, with position cues provided, and were tested for their ability to provide the digit and produce the additional letters. Digit recall was much better to initial letters than to those in the second or third positions of the trigrams; with oveflearning, digit recall improved to the initial letters but not to letters in second and third positions. Production of additional letters of the trigrams was not appreciably related to either cue position or degree of PA learning. There was some evidence ofincreased selectivity with higher degrees of PA learning.

  7. Conductively cooled high-power high-brightness bars and fiber-coupled arrays

    Science.gov (United States)

    Zhou, Hailong; Mondry, Mark; Fouksman, Michael; Weiss, Eli; Anikitchev, Serguei; Kennedy, Keith; Li, Jun; Zucker, Erik; Rudy, Paul; Kongas, Jukka; Haapamaa, Jouko; Lehkonen, Sami

    2005-03-01

    Solid-state-laser and fiber laser pumping, reprographics, medical and materials processing applications require high power, high-brightness bars and fiber-coupled arrays. Conductively cooled laser diode bars allow customers to simplify system design and reduce operational size, weight, and costs. We present results on next generation high brightness, high reliability bars and fiber-coupled arrays at 790-830 nm, 940 nm and 980 nm wavelengths. By using novel epitaxial structures, we have demonstrated highly reliable 808 nm, 30% fill-factor conductively cooled bars operating at 60W CW mode, corresponding to a linear power density (LPD) of 20 mW/&mum. At 25°C, the bars have shown greater than 50% wall-plug-efficiency (WPE) when operating at 60W. Our novel approach has also reduced the fast-axis divergence FWHM from 31° to less than 24°. These bars have a 50% brightness improvement compared to our standard products with this geometry. At 980nm, we have demonstrated greater than 100W CW from 20% fill-factor conductively cooled bars, corresponding to a LPD of 50 mW/μm. At 25°C, the WPE for 976nm bars consistently peaks above 65% and remains greater than 60% at 100W. We coupled the beam output from those high-brightness bars into fiber-array-packages ("FAPs"), and we also achieved high-brightness and high-efficiency FAPs. We demonstrated 60W from a 600μm core-diameter fiber-bundle with a high WPE of 55%, and a low numerical aperture of 0.115. The brightness of such FAPs is four times higher than our standard high-power 40W FAP products at Coherent. Ongoing life test data suggests an extrapolated lifetime greater than 10,000 hours at 80W CW operating-condition based on 30%FF conductively cooled bar geometry.

  8. Nature of the Intermicellar Interactions in Ethoxylated Polysorbate Surfactants with High Degrees of Ethoxylation.

    Science.gov (United States)

    Penfold, J; Thomas, R K; Li, P X; Tucker, I; Petkov, J; Petkova, R E

    2016-02-09

    Ethoxylated polysorbate Tween nonionic surfactants are extensively used as foam and emulsion stabilizers and in aqueous solution form globular micelles. The ethoxylated polysorbate surfactants with higher degrees of ethoxylation than the Tween surfactants exhibit some interesting self-assembly properties. Small-angle neutron scattering, SANS, measurements have revealed intermicellar interactions which are more pronounced than the hard-sphere excluded volume interactions normally associated with nonionic surfactant micelles. The interactions are interpreted as arising from the partial charge on the ether oxygen of the ethylene oxide groups. This gives rise to an effective net negative charge on the micelles, which has been determined from the SANS data and zeta potential measurements. For degrees of ethoxylation of ⩽20, the effect is relatively small. The interaction increases with increasing ethoxylation such that for a degree of ethoxylation of 50 the interaction is comparable to that of ionic surfactant micelles. Unlike the intermicellar interaction in ionic surfactant micellar solutions, which results from the charge on the micelle arising from the partial binding of counterions, the interaction between ethoxthylated polysorbate surfactant micelles is unaffected by the addition of electrolyte.

  9. Dynamical dispersion engineering in coupled vertical cavities employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Chung, Il-Sug

    2017-01-01

    strength. This can be implemented by employing a high-contrast grating (HCG) as the coupling reflector in a system of two coupled vertical cavities, and engineering both the HCG reflection phase and amplitude response. Several examples of HCG-based coupled cavities with novel features are discussed...

  10. Highly efficient optical filter based on vertically coupled photonic crystal cavity and bus waveguide

    Science.gov (United States)

    Debnath, Kapil; Welna, Karl; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G.; O'Faolain, Liam

    2013-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  11. Highly efficient optical filter based on vertically coupled Photonic crystal cavity and bus waveguide

    CERN Document Server

    Debnath, Kapil; Ferrera, Marcello; Deasy, Kieran; Lidzey, David G; O'Faolain, Liam

    2012-01-01

    We experimentally demonstrate a new optical filter design based on a vertically coupled photonic crystal cavity and a bus waveguide monolithically integrated on the silicon on insulator platform. The use of a vertically coupled waveguide gives flexibility in the choice of the waveguide material and dimensions, dramatically lowering the insertion loss while achieving very high coupling efficiencies to wavelength scale resonators

  12. The Behavior Of Asymmetric Frontal Couplings With Permanent Magnets In Magnetic Powder And High Temperature Environments

    Directory of Open Access Journals (Sweden)

    Ion DOBROTA

    2002-12-01

    Full Text Available The main purpose of this paper is the comparative analysis of the behavior of frontal couplings with Nd-Fe-B permanent magnets in difficult environments, specific to metallurgy – such as environments with magnetic powders and high temperature – in two constructive variants: symmetric couplings and asymmetric couplings (with divided poles. The results show the superior performance of asymmetric couplings under the given conditions

  13. Treatment of corneal astigmatism with the new small-incision lenticule extraction (SMILE) laser technique: Is treatment of high degree astigmatism equally accurate, stable and safe as treatment of low degree astigmatism?

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Grauslund, Jakob; Lyhne, Niels

    Field: Ophthalmology Introduction: SMILE has proven effective in treatment of myopia and low degrees of astigmatism (less than 2 dioptres (D)), but there are no studies on treatment of high degrees of astigmatism (2 or more D). The aim of this study was to compare results after SMILE treatment.......6%) treated for low astigmatism and four eyes (3.2%) treated for high astigmatism (P=0.02) had lost two or more lines of BSCVA after three months. Conclusion: This study is the first of its kind, and our results indicate that SMILE treatment of high degree astigmatism is equally accurate and stable...... as treatment of low degree astigmatism. More eyes treated for high degree astigmatism lose two or more lines of BSCVA up to three months after surgery. Keywords Refractive surgery, astigmatism, SMILE...

  14. Connections through the Development of Mathematical Ideas: The Case of Solution to High Degree Polynomial Equations in Medieval Chinese Mathematics.

    Science.gov (United States)

    Fung, Chun-Ip; Wong, Ngai-Ying

    1998-01-01

    Discusses the importance of making connections among mathematical topics and connections between mathematics and other disciplines. Emphasizes that such connections naturally arise from historical development of mathematical concepts. Illustrates the idea by portraying the development from extracting roots to the solution of high-degree polynomial…

  15. The Effects of Moderate- and High-Fidelity Patient Simulator Use on Critical Thinking in Associate Degree Nursing Students

    Science.gov (United States)

    Vieck, Jana

    2013-01-01

    The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…

  16. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.

    2010-05-12

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  17. The QCD coupling and parton distributions at high precision

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2010-07-15

    A survey is given on the present status of the nucleon parton distributions and related precision calculations and precision measurements of the strong coupling constant {alpha}{sub s}(M{sup 2}{sub Z}). We also discuss the impact of these quantities on precision observables at hadron colliders. (orig.)

  18. Simulation of Hydraulic Fracture in Unsaturated Soils with High Degree of Saturation

    Directory of Open Access Journals (Sweden)

    Tielin Chen

    2014-01-01

    Full Text Available A numerical simulation approach of hydraulic fracture process, considering the couplings of the stress distribution, the fluid flow of the water-air mixture, the compression and dissolution of air, and the element damage evolution, has been developed to investigate the mechanisms of crack initiation and propagation in porous media during hydraulic fracturing. The concept of homogenized pore fluid has been adopted to represent the water air mixture. A large number of numerical analysis on hydraulic fracturing in clay with incipient injection slot have been carried out to study the mechanism of hydraulic fracturing in unsaturated soil with the characteristic of critical model I type of crack loading using stress intensity factor KIc. The results provide a numerical picture depicting the mechanisms of crack initiation and propagation during hydraulic fracturing. The numerical results are in good agreement with the experimental results, which confirms the adequacy and the power of the numerical approach.

  19. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    beta -Alanine synthase (EC 3.5.1.6), which catalyzes the final step of pyrimidine catabolism, has only been characterized in mammals. A Saccharomyces kluyveri pyd3 mutant that is unable to grow on N-carbamy-beta -alanine as the sole nitrogen source and exhibits diminished beta -alanine synthase...... no pyrimidine catabolic pathway, it enabled growth on N-carbamyl- beta -alanine as the sole nitrogen source. The D. discoideum and D. melanogaster PYD3 gene products are similar to mammalian beta -alanine synthases. In contrast, the S. kluyveri protein is quite different from these and more similar to bacterial...... N- carbamyl amidohydrolases. All three beta -alanine synthases are to some degree related to various aspartate transcarbamylases, which catalyze the second step of the de novo pyrimidine biosynthetic pathway. PYD3 expression in yeast seems to be inducible by dihydrouracil and N-carbamyl-beta...

  20. Total Chromatic Number of Graphs of High Degree%高度图的全色数

    Institute of Scientific and Technical Information of China (English)

    谢德政; 邱远

    2001-01-01

    证明了:如果图G的最大度顶点数r(G)满足r(G)≤|V(G)|-Δ(G)-1,且δ(G)+2Δ(G)≥(5)/(2)|V(G)|+(3. 则G的全色数xT(G)=Δ(G)+1.%It is proved that if the number r(G) of vertices with maximum degree Δ(G) in a graph G satisfies r(G)≤|V(G)|-Δ(G)- 1 and δ(G)+2Δ(G)≥(5)/(2)|V(G)|+(3)/(2), t hen xT(G)=δ(g)+1.

  1. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    -to-layer coupling and the comparison of the layout impacts have not been well established. This paper presents modeling of parasitic mutual coupling to analyze the parasitic capacitance directly coupled between two on-chip metal wires. The accurate 3D field solver analysis for the comparable dimensions shows......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...

  2. Dirac Coupled Channel Analyses of the high-lying excited states at $^{22}$Ne(p,p$'$)$^{22}$Ne

    CERN Document Server

    Shim, Sugie

    2015-01-01

    Dirac phenomenological coupled channel analyses are performed using an optical potential model for the high-lying excited vibrational states at 800 MeV unpolarized proton inelastic scatterings from $^{22}$Ne nucleus. Lorentz-covariant scalar and time-like vector potentials are used as direct optical potentials and the first-order vibrational collective model is used for the transition optical potentials to describe the high-lying excited vibrational collective states. The complicated Dirac coupled channel equations are solved phenomenologically using a sequential iteration method by varying the optical potential and the deformation parameters. Relativistic Dirac coupled channel calculations are able to describe the high-lying excited states of the vibrational bands in $^{22}$Ne clearly better than the nonrelativistic coupled channel calculations. The channel-coupling effects of the multistep process for the excited states of the vibrational bands are investigated. The deformation parameters obtained from the ...

  3. Heat-to-heat variability of irradiation creep and swelling of HT9 irradiated to high neutron fluence at 400-600{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Toloczko, M.B.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Irradiation creep data on ferritic/martensitic steels are difficult and expensive to obtain, and are not available for fusion-relevant neutron spectra and displacement rates. Therefore, an extensive creep data rescue and analysis effort is in progress to characterize irradiation creep of ferritic/martensitic alloys in other reactors and to develop a methodology for applying it to fusion applications. In the current study, four tube sets constructed from three nominally similar heats of HT9 subjected to one of two heat treatments were constructed as helium-pressurized creep tubes and irradiated in FFTF-MOTA at four temperatures between 400 and 600{degrees}C. Each of the four heats exhibited a different stress-free swelling behavior at 400{degrees}C, with the creep rate following the swelling according to the familiar B{sub o} + DS creep law. No stress-free swelling was observed at the other three irradiation temperatures. Using a stress exponent of n = 1.0 as the defining criterion, {open_quotes}classic{close_quotes} irradiation creep was found at all temperatures, but, only over limited stress ranges that decreased with increasing temperature. The creep coefficient B{sub o} is a little lower ({approx}50%) than that observed for austenitic steel, but the swelling-creep coupling coefficient D is comparable to that of austenitic steels. Primary transient creep behavior was also observed at all temperatures except 400{degrees}C, and thermal creep behavior was found to dominate the deformation at high stress levels at 550 and 600{degrees}C.

  4. Determination of Trace Elements in High Purity Gold by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; HUANG Kelong; NIE Xidu; FU Liang

    2009-01-01

    Trace elements were determined in high purity gold by high resolution inductively coupled plasma mass spectrometry(HR-ICP-MS).Sample were decomposed by aqua regia.To overcome some potentially problematic spectral interference,measurements were acquired in both medium and high resolution modes.The matrix effects due to the presence of excessive HCl and Au were evaluated.The optimum conditions for the determination was tested and discussed.The standard addition method was employed for quantitative analysis.The detection limits range from 0.01 μg/g to 0.28 μg/g depending on the elements.The method is accurate,quick and convenient.It has been applied to the determination of trace elements in high purity gold with satisfactory results.

  5. Mechanical Properties Variation of B500SD High Ductility Reinforcement Regarding its Corrosion Degree

    Directory of Open Access Journals (Sweden)

    Cobo, A.

    2011-12-01

    Full Text Available Corrosion effects on reinforcement become evident in the bar section reduction and in the variation of mechanical properties related to ductility. In this research work, 96 B500SD steel bars, previously subjected to different corrosion variables, have been tested. Results show that the elongation of the bars diminishes and the ratio between the maximum tensile stress and the elastic limit increases as the corrosion degree advances. These phenomena can be explained by studying the necking effect and the different steel composition through the manufacture process.

    Los efectos de la corrosión sobre las armaduras se manifiestan por la pérdida de sección y la variación de las propiedades mecánicas relacionadas con la ductilidad. En este trabajo se han ensayado a tracción 96 barras de acero B500SD que previamente se han sometido a niveles variables de corrosión. Los resultados muestran que los alargamientos de las barras disminuyen y el cociente entre la tensión máxima y el límite elástico aumenta conforme el nivel de corrosión avanza. A partir del estudio del efecto de entalla y de la distinta constitución metalográfica del acero a nivel de sección debido a su procedimiento de fabricación, se pueden explicar los fenómenos anteriores.

  6. Selection constraints on high redshift quasar searches in the VISTA kilo-degree infrared galaxy survey

    CERN Document Server

    Findlay, J R; Venemans, B P; Reyle, C; Robin, A C; Bonfield, D G; Bruce, V A; Jarvis, M J

    2011-01-01

    The European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) is a 4-m class survey telescope for wide-field near-infrared imaging. VISTA is currently running a suite of six public surveys, which will shortly deliver their first Europe wide public data releases to ESO. The VISTA Kilo-degree Infrared Galaxy Survey (VIKING) forms a natural intermediate between current wide shallow, and deeper more concentrated surveys, by targeting two patches totalling 1500 sq.deg in the northern and southern hemispheres with measured 5-sigma limiting depths of Z ~ 22.4, Y ~ 21.4, J ~ 20.9, H ~ 19.9 and Ks ~19.3 (Vega). This architecture forms an ideal working parameter space for the discovery of a significant sample of 6.5 <= z <= 7.5 quasars. In the first data release priority has been placed on small areas encompassing a number of fields well sampled at many wavelengths, thereby optimising science gains and synergy whilst ensuring a timely release of the first products. For rare...

  7. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree

    DEFF Research Database (Denmark)

    Leander, Gregor; Bracken, Carl

    2010-01-01

    cryptosystem should be a permutation. Also, it is required that the function is highly nonlinear so that it is resistant to Matsui’s linear attack. In this article we demonstrate that the highly nonlinear permutation f (x) = x22k+2k+1 on the field F24k , discovered by Hans Dobbertin (1998) [1], has...

  8. High-Tg TOPAS mPOF strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Markos, Christos; Stefani, Alessio;

    2013-01-01

    We demonstrate a mPOF made of high-Tg TOPAS grade 5013 with Tg = 135°C. We inscribe FBGs into the fiber and demonstrate strain sensing of 2.5% strain at 98°C, further we also demonstrate strain sensing at a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, whe...

  9. High-degree atrioventricular block complicating ST-segment elevation myocardial infarction in the era of primary percutaneous coronary intervention

    DEFF Research Database (Denmark)

    Gang, Uffe Jakob Ortved; Hvelplund, Anders; Pedersen, Sune

    2012-01-01

    Primary percutaneous coronary intervention (pPCI) has replaced thrombolysis as treatment-of-choice for ST-segment elevation myocardial infarction (STEMI). However, the incidence and prognostic significance of high-degree atrioventricular block (HAVB) in STEMI patients in the pPCI era has been only...... sparsely investigated. The objective of this study was to assess the incidence, predictors and prognostic significance of HAVB in STEMI patients treated with pPCI....

  10. Ultra High Brightness/Low Cost Fiber Coupled Packaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High peak power, high efficiency, high reliability lightweight, low cost QCW laser diode pump modules with up to 1000W of QCW output become possible with nLight's...

  11. Beam shaping design for compact and high-brightness fiber-coupled laser-diode system.

    Science.gov (United States)

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-06-20

    Fiber-coupled laser diodes have become essential sources for fiber laser pumping and direct energy applications. A compact and high-brightness fiber-coupled system has been designed based on a significant beam shaping method. The laser-diode stack consists of eight mini-bars and is effectively coupled into a standard 100 μm core diameter and NA=0.22 fiber. The simulative result indicates that the module will have an output power over 440 W. Using this technique, compactness and high-brightness production of a fiber-coupled laser-diode module is possible.

  12. Direct transitions from high-K isomers to low-K bands -- {gamma} softness or coriolis coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R.; Narimatsu, Kanako; Ohtsubo, Shin-Ichi [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-12-31

    Recent measurements of direct transitions from high-K isomers to low-K bands reveal severe break-down of the K-selection rule and pose the problem of how to understand the mechanism of such K-violation. The authors recent systematic calculations by using a simple {gamma}-tunneling model reproduced many of the observed hindrances, indicating the importance of the {gamma} softness. However, there are some data which cannot be explained in terms of the {gamma}-degree of freedom. In this talk, the authors also discuss the results of conventional Coriolis coupling calculations, which is considered to be another important mechanism.

  13. Measure Synchronization of High-Cycle Islets in Coupled Hamiltonian Systems

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Ying; WANG Guang-Rui; CHEN Shi-Gang

    2004-01-01

    @@ Measure synchronization is a new phenomenon found in coupled Hamiltonian systems recently and it is interesting to understand its properties comprehensively. We discuss the measure synchronization of a coupled pair of standard maps in high period quasi-period orbits, and the measure synchronization transition is associated with the transition of coupled systems from quasi-periodicity to chaos. This behaviour is very different from that found by Hampton and Zanette [Phys. Rev. Lett. 83 (1999) 2179].

  14. Quest to validate and define performance for the high volume metallic stator PCP at 250 degrees Celsius

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, S.G. [ConocoPhillips Co., Houston, TX (United States); Klaczek, W.; Piers, K. [C-FER Technologies, Edmonton, AB (Canada); Seince, L. [PCM USA Inc., Houston, TX (United States); Jahn, S. [Kudu Industries, Calgary, AB (Canada)

    2008-10-15

    ConocoPhillips has been searching for a high volume artificial lift system that will reliably operate in a 250 degree Celsius downhole environment to meet the needs of steam assisted gravity drainage (SAGD) operations. This paper described the complexity of building and operating a high temperature flow loop rated for 250 degrees Celsius. It also described the lessons learned while upgrading an existing flow loop, from the initial design, procurement and construction through to the final commissioning phases. The paper described the issues encountered with the first artificial lit system tested at 250 degrees Celsius. The system consisted of a metallic progressing cavity pump system rated for 6919 barrels per day at 500 rotations per minute. The final upgraded capabilities of the flow loop were also listed. Images of the upgraded flow loop were also provided. It was concluded that the test program not only served to validate and define the pump's performance, but also provided valuable lessons on the completion configuration and operational procedures. Testing new artificial lift technology in a controlled flow loop, rather than in field installation, provided the opportunity to test these pumping systems under a large variety of conditions to truly understand the performance and limitations of each pump. 3 refs., 1 tab., 5 figs.

  15. Residual Stress Reversal in Highly Strained Shot Peened Structural Elements. Degree awarded by Florida Univ.

    Science.gov (United States)

    Mitchell, William S.; Throckmorton, David (Technical Monitor)

    2002-01-01

    The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.

  16. Open hole packer for high pressure service in a five hundred degree fahrenheit precambrian wellbore

    Energy Technology Data Exchange (ETDEWEB)

    Dreesen, D.S.; Miller, J.R.; Halbardier, F.A.; Nicholson, R.W.

    1985-01-01

    Massive hydraulic fracturing (MHF) from a lower wellbore (EE-2) created a large man-made reservoir which did not intersect the upper well (EE-3). To create a heat extraction flow loop, the upper well was sidetracked and redrilled (EE-3A) down into a microseismic cloud around EE-2 mapped during the MHF. The potential to intersect numerous fracture zones in the redrilled bore was apparent from seismicity. To economically and effectively isolate and test these microseismic zones required that a functional open hole packer be developed. The packer would be exposed to soak temperatures as high as 500/sup 0/F (260/sup 0/C) with cool down to 100/sup 0/F (40/sup 0/C) at differential pressures exceeding 5000 psi (35 Mpa). A functional packer has been designed, manufactured, and successfully used for the creation of a hot dry rock (HDR) reservoir. 5 figs., 1 tab.

  17. Lung density on high resolution computer tomography (HRCT) reflects degree of inflammation in smokers

    Science.gov (United States)

    2014-01-01

    Background Smokers have increased cell concentration in the lower respiratory tract indicating a chronic inflammatory state, which in some individuals may lead to development of chronic obstructive pulmonary disease (COPD). Computer tomography (CT) imaging provides means of quantifying pulmonary structure and early signs of disease. We investigated whether lung density on high resolution CT differs between smokers and never-smokers and if this were associated to intensity of inflammation. Methods Forty smoking volunteers with normal pulmonary function, 40 healthy never-smokers and 40 patients with COPD of GOLD stage I-II, were included. Mean lung attenuation and percentage of pixels in the lung with attenuation between −750 and −900 HU (percentage higher density spectrum (%HDS)) were calculated on inspiratory CT-scans. Markers of systemic inflammation in blood and cell counts in bronchoalveolar lavage (BAL) fluid were recorded. Results Lung density expressed as %HDS was increased in smokers (44.0 ± 5.8%) compared to both never-smokers (38.3 ± 5.8%) and patients with COPD (39.1 ± 5.8%), (p lungs than males, which was dependent on body height. Cell concentration in BAL were correlated to lung density in smokers (r = 0.50, p Lung density on CT is associated with cell concentration in BAL in smokers and may mirror an inflammatory response in the lung. Gender difference in lung density is dependent on height. In COPD with emphysema, loss of lung tissue may counterbalance the expected increase in density due to inflammation. The findings may help to interpret high resolution CT in the context of smoking and gender and highlight the heterogeneity of structural changes in COPD. PMID:24564813

  18. Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order

    Science.gov (United States)

    Fukushima, Toshio

    2017-02-01

    In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by 90° such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are 4 π fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271-285, 2012a). As an example, we obtained 2190× 2190 coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.

  19. Power Modulation Investigation for High Temperature (175-200 degrees Celcius) Automotive Application

    Energy Technology Data Exchange (ETDEWEB)

    McCluskey, F. P.

    2007-04-30

    Hybrid electric vehicles were re-introduced in the late 1990s after a century dominated by purely internal combustion powered engines[1]. Automotive players, such as GM, Ford, DaimlerChrysler, Honda, and Toyota, together with major energy producers, such as BPAmoco, were the major force in the development of hybrid electric vehicles. Most notable was the development by Toyota of its Prius, which was launched in Japan in 1997 and worldwide in 2001. The shift to hybrids was driven by the fact that the sheer volume of vehicles on the road had begun to tax the ability of the environment to withstand the pollution of the internal combustion engine and the ability of the fossil fuel industry to produce a sufficient amount of refined gasoline. In addition, the number of vehicles was anticipated to rise exponentially with the increasing affluence of China and India. Over the last fifteen years, major advances have been made in all the technologies essential to hybrid vehicle success, including batteries, motors, power control and conditioning electronics, regenerative braking, and power sources, including fuel cells. Current hybrid electric vehicles are gasoline internal combustion--electric motor hybrids. These hybrid electric vehicles range from micro-hybrids, where a stop/start system cuts the engine while the vehicle is stopped, and mild hybrids where the stop/start system is supplemented by regenerative braking and power assist, to full hybrids where the combustion motor is optimized for electric power production, and there is full electric drive and full regenerative braking. PSA Peugeot Citroen estimates the increased energy efficiency will range from 3-6% for the micro-hybrids to 15-25% for the full hybrids.[2] Gasoline-electric hybrids are preferred in US because they permit long distance travel with low emissions and high gasoline mileage, while still using the existing refueling infrastructure. One of the most critical areas in which technology has been

  20. Pattern formation of coupled spiral waves in bilayer systems: rich dynamics and high-frequency dominance.

    Science.gov (United States)

    Nie, Haichun; Gao, Jihua; Zhan, Meng

    2011-11-01

    The interaction of two spiral waves with independent frequencies in a bilayer oscillatory medium (one spiral in each layer) and with a symmetric coupling e is studied. If the spirals have different frequencies, the faster spiral is unaffected by the slower one, and the slower can show a variety of behaviors, which depend on e and include, in order of increasing e, phase drifting, amplitude modulation, amplitude domination, and phase synchronization. This high-frequency dominance, the asymmetric driving-response effect under the condition of a symmetric coupling, is generic and independent of whether the coupled spiral waves are outwardly rotating or inwardly rotating spirals. If the spirals have identical frequencies, they may even show complete synchronization, parallel drift, or circular drift, depending on the relative rotation direction of the two spirals and their initial separation distance. Comparisons with coupled spirals in monolayer media, previous works on coupled spirals in bilayer systems, and coupled phase oscillators are made.

  1. Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap

    Science.gov (United States)

    Hinks, Anne; Cobb, Joanna; Sudman, Marc; Eyre, Stephen; Martin, Paul; Flynn, Edward; Packham, Jonathon; Barton, Anne; Worthington, Jane; Langefeld, Carl D; Glass, David N; Thompson, Susan D; Thomson, Wendy

    2012-01-01

    Objectives Rheumatoid arthritis (RA) shares some similar clinical and pathological features with juvenile idiopathic arthritis (JIA); indeed, the strategy of investigating whether RA susceptibility loci also confer susceptibility to JIA has already proved highly successful in identifying novel JIA loci. A plethora of newly validated RA loci has been reported in the past year. Therefore, the aim of this study was to investigate these single nucleotide polymorphisms (SNP) to determine if they were also associated with JIA. Methods Thirty-four SNP that showed validated association with RA and had not been investigated previously in the UK JIA cohort were genotyped in JIA cases (n=1242), healthy controls (n=4281), and data were extracted for approximately 5380 UK Caucasian controls from the Wellcome Trust Case–Control Consortium 2. Genotype and allele frequencies were compared between cases with JIA and controls using PLINK. A replication cohort of 813 JIA cases and 3058 controls from the USA was available for validation of any significant findings. Results Thirteen SNP showed significant association (p<0.05) with JIA and for all but one the direction of association was the same as in RA. Of the eight loci that were tested, three showed significant association in the US cohort. Conclusions A novel JIA susceptibility locus was identified, CD247, which represents another JIA susceptibility gene whose protein product is important in T-cell activation and signalling. The authors have also confirmed association of the PTPN2 and IL2RA genes with JIA, both reaching genome-wide significance in the combined analysis. PMID:22294642

  2. Determination of xanthohumol in beer based on cloud point extraction coupled with high performance liquid chromatography.

    Science.gov (United States)

    Chen, Ligang; Zhao, Qi; Jin, Haiyan; Zhang, Xiaopan; Xu, Yang; Yu, Aimin; Zhang, Hanqi; Ding, Lan

    2010-04-15

    A method based on coupling of cloud point extraction (CPE) with high performance liquid chromatography separation and ultraviolet detection was developed for determination of xanthohumol in beer. The nonionic surfactant Triton X-114 was chosen as the extraction medium. The parameters affecting the CPE were evaluated and optimized. The highest extraction yield of xanthohumol was obtained with 2.5% of Triton X-114 (v/v) at pH 5.0, 15% of sodium chloride (w/v), 70 degrees C of equilibrium temperature and 10 min of equilibrium time. Under these conditions, the limit of detection of xanthohumol is 0.003 mg L(-1). The intra- and inter-day precisions expressed as relative standard deviations are 4.6% and 6.3%, respectively. The proposed method was successfully applied for determination of xanthohumol in various beer samples. The contents of xanthohumol in these samples are in the range of 0.052-0.628 mg L(-1), and the recoveries ranging from 90.7% to 101.9% were obtained. The developed method was demonstrated to be efficient, green, rapid and inexpensive for extraction and determination of xanthohumol in beer.

  3. Effects of high-frequency yoga breathing called kapalabhati compared with breath awareness on the degree of optical illusion perceived.

    Science.gov (United States)

    Telles, Shirley; Maharana, Kanchan; Balrana, Budhi; Balkrishna, Acharya

    2011-06-01

    Prior research has shown that methods of meditation, breath control, and different kinds of yoga breathing affect attention and visual perception, including decreasing the size of certain optical illusions. Evaluating relationships sheds light on the perceptual and cognitive changes induced by yoga and related methods, and the locus of the effects. In the present study, the degree of optical illusion was assessed using Müller-Lyer stimuli before and immediately after two different kinds of practice, a high frequency yoga breathing called kapalabhati, and breath awareness. A nonyoga, control session tested for practice effects. Thirty participants (with group M age = 26.9 yr., SD = 5.7) practiced the two techniques for 18 min. on two separate days. The control group had 15 nonyoga practitioners assessed before and after 18 min. in which they did not perform any specific activity but were seated and relaxed. After both kapalabhati and breath awareness there was a significant decrease in the degree of optical illusion. The possibility that this was due to a practice or repetition effect was ruled out when 15 nonyoga practitioners showed no change in the degree of illusion when retested after 18 min. The changes were interpreted as due to changes in perception related to the way the stimuli were judged.

  4. Consequences of Delay in Postsecondary Education: Degree Attainment for 1972, 1980, and 1982 High School Graduates. E.D. TABS. National Longitudinal Study 1972. High School and Beyond.

    Science.gov (United States)

    Eagle, Eva; Schmitt, Carl

    This Department of Education (ED) Tabulation provides data in six tables on the effect of delay in entering postsecondary education (PE) on degree attainment for 1972, 1980, and 1982 high school graduates. The data compare the patterns of delay in PE among these three cohorts by pattern of enrollment, type of institution, and selected student…

  5. Measurement of five-degrees-of-freedom error motions for a micro high-speed spindle using an optical technique

    Science.gov (United States)

    Murakami, Hiroshi

    2011-05-01

    We present an optical technique to measure five-degree-of-freedom error motions of a high-speed microspindle. The measurement system consists of a rod lens, a ball lens, four divided laser beams, and multiple divided photodiodes. When the spindle rotates with its concomitant rotation errors, the rod and ball lenses, which are mounted to the chuck of the spindle, are displaced, and this displacement is measured using an optical technique. In this study, the measuring system is manufactured for trial and is experimentally evaluated. The results clarify that the measuring system has a resolution of 5 nm and can be used to evaluate micro spindle rotation errors.

  6. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes.

    Science.gov (United States)

    Tipikin, D S; Earle, K A; Freed, J H

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.

  7. Directly coupled slotted high-Tc dc SQUIDs

    NARCIS (Netherlands)

    Jansman, A.B.M.; Izquierdo, M.; Flokstra, J.; Rogalla, H.

    1999-01-01

    A flux quantization model gives estimates for the effective area and washer inductance of slotted high-Tc dc SQUIDs. The inductance prediction has not been verified yet. Here, the theoretical dependence of washer inductance and effective area for four slotted SQUID types on the London penetration de

  8. Characteristics of High-power GaAs Laser Beams and Their Coupling with Fibers

    Institute of Scientific and Technical Information of China (English)

    YU Henry Hai-ying; CUI Bi-feng; TIAN Zeng-xia; LIU Ying; ZOU De-shu; SHEN Guang-di

    2005-01-01

    The beams of 980 nm high-power LDs are analyzed, and the reasons that aspect ratio of LD beams is high are explained. It is certified by the test that cylindrical lens can efficiently compress the perpendicular divergence angle of the beam. Some typical and popular lensed fibers were compared and analyzed according to coupling characteristics. The factors which affect the coupling efficiency and tolerance of the wedged-shaped GRIN tipped lensed fiber are pointed out, and some methods to reduce the coupling loss of the lensed fibers are proposed finally.

  9. Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 degrees C

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Emmett E.; Simon, John; Geisz, John F.; Lee, Minjoo Larry; Friedman, Daniel J.; Steiner, Myles A.

    2016-09-01

    In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased, we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.

  10. Computing highly correlated positions using mutual information and graph theory for G protein-coupled receptors.

    Directory of Open Access Journals (Sweden)

    Sarosh N Fatakia

    Full Text Available G protein-coupled receptors (GPCRs are a superfamily of seven transmembrane-spanning proteins involved in a wide array of physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of positions that share high mutual information. Using a multiple sequence alignment of the transmembrane (TM domains, we calculated the mutual information between all inter-TM pairs of aligned positions and ranked the pairs by mutual information. A mutual information graph was constructed with vertices that corresponded to TM positions and edges between vertices were drawn if the mutual information exceeded a threshold of statistical significance. Positions with high degree (i.e. had significant mutual information with a large number of other positions were found to line a well defined inter-TM ligand binding cavity for class A as well as class C GPCRs. Although the natural ligands of class C receptors bind to their extracellular N-terminal domains, the possibility of modulating their activity through ligands that bind to their helical bundle has been reported. Such positions were not found for class B GPCRs, in agreement with the observation that there are not known ligands that bind within their TM helical bundle. All identified key positions formed a clique within the MI graph of interest. For a subset of class A receptors we also considered the alignment of a portion of the second extracellular loop, and found that the two positions adjacent to the conserved Cys that bridges the loop with the TM3 qualified as key positions. Our algorithm may be useful for localizing topologically conserved regions in other protein families.

  11. 区域科技创新与科技金融耦合协调度评价研究%Research on Coupling Coordinated Degree Evaluation of Regional Sci-tech Innovation and Sci-tech Finance

    Institute of Scientific and Technical Information of China (English)

    徐玉莲; 王玉冬; 林艳

    2011-01-01

    The coupling coordinated development of sci-tech innovation and sci-tech finance is the important sup- port for regional knowledge economy growth. Based on the definition of sci-tech finance, analyzes the coupling rela- tionship between regional sci-tech innovation and sci-tech finance. The paper constructs the evaluation model of cou- piing coordinated degree, and uses the model to evaluate the coupling coordinated degrees of provincial regions in China. The results show that the coupling coordinated degrees are on the low side, the development of sci-tech fi- nance lags behind sci-tech innovation in most provinces, and the gaps of the coupling coordinated degrees in East Middle West regions are relatively significant. According to the result of evaluation, some policy suggestions to pro- mote the coupling coordinated development of sci-tech innovation and sci-tech finance are put forward. The re- search provides scientific basis and decision reference for the coordinated and sustainable development of regional sci-tech innovation and sci-tech finance.%科技创新与科技金融耦合协调发展对区域知识经济增长具有强有力的支撑作用。通过对科技金融内涵的界定和区域科技创新与科技金融的互动耦合关系分析,构建区域科技创新与科技金融耦合协调度评价模型,并运用我国省级区域统计数据,对其耦合协调度进行实证分析。实证研究结果表明:我国各省市科技创新与科技金融耦合协调度整体偏低;大部分省市科技金融滞后于科技创新发展;东、中、西部地区耦合协调度差距较为显著。据此给出我国区域科技创新与科技金融耦合协调发展的相关政策建议。

  12. Analysis of clinical isolates of Helicobacter pylori in Pakistan reveals high degrees of pathogenicity and high frequencies of antibiotic resistance.

    Science.gov (United States)

    Rasheed, Faisal; Campbell, Barry James; Alfizah, Hanafiah; Varro, Andrea; Zahra, Rabaab; Yamaoka, Yoshio; Pritchard, David Mark

    2014-10-01

    Antibiotic resistance in Helicobacter pylori contributes to failure in eradicating the infection and is most often due to point and missense mutations in a few key genes. The antibiotic susceptibility profiles of H. pylori isolates from 46 Pakistani patients were determined by Etest. Resistance and pathogenicity genes were amplified, and sequences were analyzed to determine the presence of mutations. A high percentage of isolates (73.9%) were resistant to metronidazole (MTZ), with considerable resistance to clarithromycin (CLR; 47.8%) and amoxicillin (AML; 54.3%) also observed. Relatively few isolates were resistant to tetracycline (TET; 4.3%) or to ciprofloxacin (CIP; 13%). However, most isolates (n = 43) exhibited resistance to one or more antibiotics. MTZ-resistant isolates contained missense mutations in oxygen-independent NADPH nitroreductase (RdxA; 8 mutations found) and NADH flavin oxidoreductase (FrxA; 4 mutations found). In the 23S rRNA gene, responsible for CLR resistance, a new point mutation (A2181G) and 4 previously reported mutations were identified. Pathogenicity genes cagA, dupA, and vacA s1a/m1 were detected frequently in isolates which were also found to be resistant to MTZ, CLR, and AML. A high percentage of CagA and VacA seropositivity was also observed in these patients. Phylogenetic analysis of partial sequences showed uniform distribution of the 3' region of cagA throughout the tree. We have identified H. pylori isolates in Pakistan which harbor pathogenicity genes and worrying antibiotic resistance profiles as a result of having acquired multiple point and missense mutations. H. pylori eradication regimens should therefore be reevaluated in this setting. © 2014 John Wiley & Sons Ltd.

  13. Features of cerebral vascular reactivity in patients with different clinical course of a high degree of myopia

    Directory of Open Access Journals (Sweden)

    G. V. Shkrebets

    2014-07-01

    Full Text Available Purpose: to examine the state rate parameters of cerebral and ocular vessels in patients with glaucoma combined with myopia of high degree.Methods: the study involved 3 groups of patients aged 16-32 years: 1st — 30 patients (60 eyes — with a stationary myopia of 6.5 to 9.0 D and normal intraocular pressure (IOP; 2nd — 23 patients (46 eyes — with a high degree of progressive myopia and glaucoma with normalized intraocular pressure during instillation Azopt included 2 subgroups: subgroup A — 14 patients (28 eyes — with ischemic variant of glaucoma; subgroup B — 9 patients (18 eyes — with dyscirculatory variant of glaucoma; 3rd group (control — 10 somatically healthy individuals of similar age. Following a standard ophthalmic examination techniques, as well as color Doppler mapping of the main arteries of the brain and the eyeball on the unit Acuson 128 HR/10 (USA and hypocapnic (with O2 and hypercapnic (CO2 probe.Results: In subgroup 2A patients showed significant (p <0.05 decrease in Vs in the central retinal artery and short posterior cili- ary arteries respectively 38.0% and 32.8% and increase the resistance index (RI of vessels in 21.8% and 22.6%, increase Vs in the middle cerebral artery (MCA at 11.5% and RI by 11.8% compared to the patients the third and first groups, with а hypocapnic test Vs in the MCA decreased by 35.4%, and increased with hypercapnic test for 23.0%; of the subgroup B in central retinal vein to 33.9% and 19.6%, lower Vs and RI in the vertebral artery (VA by 20,0% and 9,1% respectively, with a hypercapnic test Vs in the MCA increased by 32.2%, and decreased during hypocapnic sample at 26.0%.Conclusion: the predominance of the ability of MCA to vasoconstriction combined with reduced blood flow in central retinal artery and short posterior ciliary arteries and cause ischemica variant of glaucoma, slowing blood flow in the vertebrobasilar basin combined with a reduction of venous outflow of the of the

  14. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  15. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  16. High brightness beam shaping and fiber coupling of laser-diode bars.

    Science.gov (United States)

    Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai

    2015-04-10

    The strong beam quality mismatch in the fast and slow axes of laser-diode bars requires a significant beam shaping method to reach the parameters needed for fiber coupling. An effective solution to this problem is proposed that is based on a right-angle prism array and a distributed cylinder-lens stack. Coupling 12 mini-bars into a standard 100 μm core diameter and 0.15 numerical aperture fiber is achieved, and the output power can reach 400 W. Using this technique, production of compact and high brightness fiber-coupled laser-diode modules is possible.

  17. High temperature oxidation of WC-CrN Nano-multilayered film at 700 and 800 degrees C.

    Science.gov (United States)

    Lee, Dong-Bok

    2009-12-01

    Nano-multilayered WC-CrN films were deposited onto steel substrates by an arc ion plating method. The oxidation characteristics of the films were studied at 700 and 800 degrees C for up to 60 h in air. In each case, during oxidation, carbon and nitrogen escaped from the film into the air, while oxygen from the air diffused into the film. Substrate elements diffused outwards towards the oxide surface. The high-temperature oxidation resistance was not satisfactory, mainly due to the formation of a non-protective, volatile W-oxide scale, and the escape of carbon and nitrogen from the film. The scale formed was prone to cracking and spallation. The oxidation resulted in the destruction of the original nano-multilayers.

  18. 360-degree 3D transvaginal ultrasound system for high-dose-rate interstitial gynaecological brachytherapy needle guidance

    Science.gov (United States)

    Rodgers, Jessica R.; Surry, Kathleen; D'Souza, David; Leung, Eric; Fenster, Aaron

    2017-03-01

    Treatment for gynaecological cancers often includes brachytherapy; in particular, in high-dose-rate (HDR) interstitial brachytherapy, hollow needles are inserted into the tumour and surrounding area through a template in order to deliver the radiation dose. Currently, there is no standard modality for visualizing needles intra-operatively, despite the need for precise needle placement in order to deliver the optimal dose and avoid nearby organs, including the bladder and rectum. While three-dimensional (3D) transrectal ultrasound (TRUS) imaging has been proposed for 3D intra-operative needle guidance, anterior needles tend to be obscured by shadowing created by the template's vaginal cylinder. We have developed a 360-degree 3D transvaginal ultrasound (TVUS) system that uses a conventional two-dimensional side-fire TRUS probe rotated inside a hollow vaginal cylinder made from a sonolucent plastic (TPX). The system was validated using grid and sphere phantoms in order to test the geometric accuracy of the distance and volumetric measurements in the reconstructed image. To test the potential for visualizing needles, an agar phantom mimicking the geometry of the female pelvis was used. Needles were inserted into the phantom and then imaged using the 3D TVUS system. The needle trajectories and tip positions in the 3D TVUS scan were compared to their expected values and the needle tracks visualized in magnetic resonance images. Based on this initial study, 360-degree 3D TVUS imaging through a sonolucent vaginal cylinder is a feasible technique for intra-operatively visualizing needles during HDR interstitial gynaecological brachytherapy.

  19. A study on high speed coupling design for wind turbine using a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Woo; Kang, Jong Hun [Dept. of Mechatronics Engineering, Jungwon University, Geosan (Korea, Republic of); Han, Jeong Young [Pusan Educational Center for Computer Aided Machine Design, Pusan University, Busan (Korea, Republic of)

    2016-08-15

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product.

  20. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  1. Nitrogen-doped carbon with a high degree of graphitization derived from biomass as high-performance electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Zhao, Jujiao; Liu, Yanming; Quan, Xie; Chen, Shuo; Yu, Hongtao; Zhao, Huimin

    2017-02-01

    It is of great interest to develop metal-free electrocatalysts derived from cheap and environmental friendly biomass for oxygen reduction reaction (ORR). Here we report a facile method to prepare graphene-like N-doped carbons with a high degree of graphitization and large surface area using chitosan as precursor and FeCl3 as soft template. The graphitization degree, surface area and the N species can be simply adjusted by controlling the annealing temperature. The soft template induced sample annealed at 800 °C (STS800) exhibits more positive onset potential than the samples annealed at 600 °C and 1000 °C (-0.08 V compared to -0.12 V and -0.15 V), which demonstrates that all of the high degree of graphitization, large surface area and the high percentages of pyridinic-N and graphitic-N play curial roles in the good ORR activity. The value of onset potential for STS800 is just 25 mV negative than that for Pt/C (-0.08 V to -0.055 V) and the ORR current density at merely -0.3 V for STS800 (-2.16 mA cm-2) is larger than that for Pt/C (-2.12 mA cm-2), which indicates its superior ORR activity even compared to Pt/C. Besides, the current for STS800 retains 95% at -0.2 V in 30000 s while that for Pt/C just retains 88%, which reveals its longer durability. With the addition of 3 M methanol, the CV curve of STS800 shows no noticeable current attenuation, indicating its good methanol tolerance. The excellent ORR activity, good methanol tolerance, and long durability demonstrate that STS800 could be a promising alternative for costly Pt-based electrocatalysts.

  2. Degree of Bilingualism Predicts Age of Diagnosis of Alzheimer's Disease in Low-Education but Not in Highly Educated Hispanics

    Science.gov (United States)

    Gollan, Tamar H.; Salmon, David P.; Montoya, Rosa I.; Galasko, Douglas R.

    2011-01-01

    The current study investigated the relationship between bilingual language proficiency and onset of probable Alzheimer's disease (AD) in 44 Spanish-English bilinguals at the UCSD Alzheimer's Disease Research Center. Degree of bilingualism along a continuum was measured using Boston Naming Test (BNT) scores in each language. Higher degrees of…

  3. Convergence in spectral forward modelling: Binominal series solutions vs. direct integral solutions at high degrees - spherical and ellipsoidal case

    Science.gov (United States)

    Rexer, Moritz; Claessens, Sten; Hirt, Christian

    2016-04-01

    The number of relevant terms of binominal series expansions used in spectral forward modelling of the gravitational potential is known to rise substantially as the resolution of the models increases. Here, we investigate and compare the binominal series expansions in forward modelling w.r.t. a sphere and w.r.t. an ellipsoid (Claessens and Hirt, 2013) in view of high degree forward modelling (d/o 10800). The series in each case depend on different parameters - such as elevation of the topographic function or ellipsoidal radius/co-latitude - and reveal different maximum orders of truncation for a 1% convergence level (=relative error). The results are verified in a real data scenario up to d/o 5400 by spot-checks using direct integral solutions that do not depend on binomial series expansions. As a conclusion, our study demonstrates that for d/o 10800 modelling up to 30 terms of the binominal series accounting for the radial integral are needed within the spherical and the ellipsoidal case, while up to 60 terms are needed for the binominal series accounting for the oblateness of Earth in the ellipsoidal case for a convergence at the 1% level. References: Claessens, S.J.; Hirt, C.: Ellipsoidal topographic potential - new solutions for spectral forward gravity modelling of topography with respect to a reference ellipsoid; Journal of Geophysical Research (JGR) - Solid Earth, Vol. 118, DOI: 10.1002/2013JB010457, 2013.

  4. Theoretical Design of High-spin Organic Molecules with Heterocycles as Ferromagnetic Coupling Units

    Institute of Scientific and Technical Information of China (English)

    WANG Li-min; ZHANG Jing-ping; WANG Rong-shun

    2003-01-01

    Novel stable high spin molecules possessing three different arranged fashions are designed with -*N-N< as a spin-containing(SC) fragment, phenylene as an end group and various aromatic molecules, such as benzene(1), 2,6-pyridine(2), 3,5-pyridine(3), pyridazine(4), 4,6-pyrimidine(5), 2,6-pyrimidine(6), pyrazine(7) and triazine(8), as a ferromagnetic coupling(FC) unit. The effects of the different coupling units on the spin multiplicities of the ground states and their stabilities were investigated by means of AM1-CI approach. It has been found that the spin densities on the two atoms of the SC fragment are different from delocalization results in the specific stability of -*N-N<. In these molecules, the stabilities of the triplet states decrease when the distance between the atoms of central SC(-N-) increases. It is shown that the heterocycles as the coupling units have influence on the stabilities of the high-spin ground states. That the heteroatom lying in m-phenyl can improve ferromagnetic coupling, while the heteroatom lying in o-phenyl or p-phenyl is not in favor of the ferromagnetic coupling.

  5. Numerical and Experimental Dynamic Analysis of IC Engine Test Beds Equipped with Highly Flexible Couplings

    Directory of Open Access Journals (Sweden)

    M. Cocconcelli

    2017-01-01

    Full Text Available Driveline components connected to internal combustion engines can be critically loaded by dynamic forces due to motion irregularity. In particular, flexible couplings used in engine test rig are usually subjected to high levels of torsional oscillations and time-varying torque. This could lead to premature failure of the test rig. In this work an effective methodology for the estimation of the dynamic behavior of highly flexible couplings in real operational conditions is presented in order to prevent unwanted halts. The methodology addresses a combination of numerical models and experimental measurements. In particular, two mathematical models of the engine test rig were developed: a torsional lumped-parameter model for the estimation of the torsional dynamic behavior in operative conditions and a finite element model for the estimation of the natural frequencies of the coupling. The experimental campaign addressed torsional vibration measurements in order to characterize the driveline dynamic behavior as well as validate the models. The measurements were achieved by a coder-based technique using optical sensors and zebra tapes. Eventually, the validated models were used to evaluate the effect of design modifications of the coupling elements in terms of natural frequencies (torsional and bending, torsional vibration amplitude, and power loss in the couplings.

  6. Halo Coupling and Cleaning by a Space Charge Resonance in High Intensity Beams

    CERN Document Server

    Hofmann, Ingo

    2013-01-01

    We show that the difference resonance driven by the space charge pseudo-octupole of high-intensity beams not only couples the beam core emittances; it can also lead to emittance exchange in the beam halo, which is of relevance for beam loss in high intensity accelerators. With reference to linear accelerators the "main resonance" kz/kxy =1 (corresponding to the Montague resonance 2Qx-2Qy=0 in circular accelerators) may lead to such a coupling and transfer of halo between planes. Coupling of transverse halo into the longitudinal plane - or vice versa - can occur even if the core (rms) emittances are exactly or nearly equal. This halo argument justifies additional caution in linac design including consideration of avoiding an equipartitioned design. At the same time, however, this mechanism may also qualify as active dynamical halo cleaning scheme by coupling a halo from the longitudinal plane into the transverse plane, where local scraping is accessible. We present semi-analytical emittance coupling rates and ...

  7. A study of parallelizing O(N) Green-function-based Monte Carlo method for many fermions coupled with classical degrees of freedom

    Science.gov (United States)

    Zhang, Shixun; Yamagia, Shinichi; Yunoki, Seiji

    2013-08-01

    Models of fermions interacting with classical degrees of freedom are applied to a large variety of systems in condensed matter physics. For this class of models, Weiße [Phys. Rev. Lett. 102, 150604 (2009)] has recently proposed a very efficient numerical method, called O(N) Green-Function-Based Monte Carlo (GFMC) method, where a kernel polynomial expansion technique is used to avoid the full numerical diagonalization of the fermion Hamiltonian matrix of size N, which usually costs O(N3) computational complexity. Motivated by this background, in this paper we apply the GFMC method to the double exchange model in three spatial dimensions. We mainly focus on the implementation of GFMC method using both MPI on a CPU-based cluster and Nvidia's Compute Unified Device Architecture (CUDA) programming techniques on a GPU-based (Graphics Processing Unit based) cluster. The time complexity of the algorithm and the parallel implementation details on the clusters are discussed. We also show the performance scaling for increasing Hamiltonian matrix size and increasing number of nodes, respectively. The performance evaluation indicates that for a 323 Hamiltonian a single GPU shows higher performance equivalent to more than 30 CPU cores parallelized using MPI.

  8. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Ouyang Shu

    2005-09-01

    Full Text Available Abstract Background The Solanaceae is a family of closely related species with diverse phenotypes that have been exploited for agronomic purposes. Previous studies involving a small number of genes suggested sequence conservation across the Solanaceae. The availability of large collections of Expressed Sequence Tags (ESTs for the Solanaceae now provides the opportunity to assess sequence conservation and divergence on a genomic scale. Results All available ESTs and Expressed Transcripts (ETs, 449,224 sequences for six Solanaceae species (potato, tomato, pepper, petunia, tobacco and Nicotiana benthamiana, were clustered and assembled into gene indices. Examination of gene ontologies revealed that the transcripts within the gene indices encode a similar suite of biological processes. Although the ESTs and ETs were derived from a variety of tissues, 55–81% of the sequences had significant similarity at the nucleotide level with sequences among the six species. Putative orthologs could be identified for 28–58% of the sequences. This high degree of sequence conservation was supported by expression profiling using heterologous hybridizations to potato cDNA arrays that showed similar expression patterns in mature leaves for all six solanaceous species. 16–19% of the transcripts within the six Solanaceae gene indices did not have matches among Solanaceae, Arabidopsis, rice or 21 other plant gene indices. Conclusion Results from this genome scale analysis confirmed a high level of sequence conservation at the nucleotide level of the coding sequence among Solanaceae. Additionally, the results indicated that part of the Solanaceae transcriptome is likely to be unique for each species.

  9. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module

    Science.gov (United States)

    Wang, Xin; Wang, Cuiluan; Wu, Xia; Zhu, Lingni; Jing, Hongqi; Ma, Xiaoyu; Liu, Suping

    2017-02-01

    Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2 -str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.

  10. AlGaInP/GaAs Tandem Solar Cells for Power Conversion at 400 degrees C and High Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Perl, Emmett [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simon, John D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Friedman, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jain, Nikhil [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sharps, Paul [SolAero Technologies Corp.; McPheeters, Claiborne [SolAero Technologies Corp.; Lee, Minjoo L. [University of Illinois at Urbana-Champaign

    2017-09-06

    We demonstrate dual junction (Al)GaInP/GaAs solar cells that are designed to operate at 400 degrees C and 1000X concentration in a hybrid photovoltaic-solar thermal concentrator system. The cells have a front metallization and anti-reflection coating that are stable under 400 degrees C operation. We show how the cell performance degrades with increasing aluminum compositions in the top cell. Our best cell is a GaInP/GaAs tandem that demonstrated 15+/-1% efficiency at 400 degrees C over a concentration range of 300-1000 suns, with several pathways to improved performance.

  11. Magnetically coupled high-gain Y-source isolated DC/DC converter

    DEFF Research Database (Denmark)

    Siwakoti, Yam P.; Loh, Poh Chiang; Blaabjerg, Frede

    2014-01-01

    A new form of magnetically coupled DC/DC converter is proposed for medium power applications (250 W to 2 kW), requiring a high-voltage gain, short inductive charging time and galvanic isolation. The proposed converter can be realised using a unique Y-source impedance network and a two-switch push...

  12. Quantification of six bioactive compounds in Zhenqi Fuzheng preparation by high-performance liquid chromatography couple

    Institute of Scientific and Technical Information of China (English)

    Yi-Kai Shi; Fang Cui; Fang-Di Hu; Ying-Yan Bi; Yu-Feng Ma; Shi-Lan Feng

    2011-01-01

    A simple and accurate high-performance liquid chromatography(HPLC)coupled with diode array detector(DAD)and evaporative light scattering detector(ELSD)was established for the determination of six bioactive compounds in Zhenqi Fuzheng preparation(ZFP).The

  13. Interqubit coupling mediated by a high-excitation-energy quantum object

    NARCIS (Netherlands)

    Ashhab, S.; Niskanen, A.O.; Harrabi, K.; Nakamura, Y.; Picot, T.; De Groot, P.C.; Harmans, C.J.P.M.; Mooij, J.E.; Nori, F.

    2008-01-01

    We consider a system composed of two qubits and a high excitation energy quantum object used to mediate coupling between the qubits. We treat the entire system quantum mechanically and analyze the properties of the eigenvalues and eigenstates of the total Hamiltonian. After reproducing well known re

  14. High-Order Binary Symmetry Constraints of a Liouville Integrable Hierarchy and Its Integrable Couplings

    Institute of Scientific and Technical Information of China (English)

    JI Jie; CHEN Lan-Xin; ZHANG Da-Jun; SUN Ye-Peng; CHEN Deng-Yuan; ZHANG Jun-Xian

    2008-01-01

    A 3 × 3 matrix spectral problem and a Liouville integrable hierarchy are constructed by designing a new subalgebra of loop algebra A2. Furthermore, high-order binary symmetry constraints of the corresponding hierarchy are obtained by using the binary nonlinearization method. Finally, according to another new subalgebra of loop algebra A2, its integrable couplings are established.

  15. Numerical study of long Josephson junctions coupled to a high-Q cavity

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Pedersen, Niels Falsig; Davidson, A.;

    1990-01-01

    Long Josephson junctions coupled to a high-Q resonator are studied numerically and compared with recently published approximative results, obtained by using a perturbative approach to the fluxon motion in the junction. The similarities and differences in the two approaches are discussed....

  16. Selection constraints on high-redshift quasar searches in the VISTA Kilo-degree Infrared Galaxy survey

    Science.gov (United States)

    Findlay, J. R.; Sutherland, W. J.; Venemans, B. P.; Reylé, C.; Robin, A. C.; Bonfield, D. G.; Bruce, V. A.; Jarvis, M. J.

    2012-02-01

    The European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) is a 4-m class survey telescope for wide-field near-infrared imaging. VISTA is currently running a suite of six public surveys, which will shortly deliver their first Europe wide public data releases to ESO. The VISTA Kilo-degree Infrared Galaxy survey (VIKING) forms a natural intermediate between current wide shallow and deeper more concentrated surveys, by targeting two patches totalling 1500 deg2 in the Northern and Southern hemispheres with measured 5σ limiting depths of Z≃ 22.4, Y≃ 21.4, J≃ 20.9, H≃ 19.9 and Ks≃ 19.3 (Vega). This architecture forms an ideal working parameter space for the discovery of a significant sample of 6.5 ≤ z ≤ 7.5 quasars. In the first data release, priority has been placed on small areas encompassing a number of fields well sampled at many wavelengths, thereby optimizing science gains and synergy whilst ensuring a timely release of the first products. For rare object searches, e.g. high-z quasars, this policy is not ideal since photometric selection strategies generally evolve considerably with the acquisition of data. Without a reasonably representative data set sampling many directions on the sky, it is not clear how a rare object search can be conducted in a highly complete and efficient manner. In this paper, we alleviate this problem by supplementing initial data with a realistic model of the spatial, luminosity and colour distributions of sources known to heavily contaminate photometric quasar selection spaces, namely dwarf stars of spectral types M, L and T. We use this model along with a subset of available data to investigate contamination of quasar selection space by cool stars and galaxies and lay down a set of benchmark selection constraints that limit contamination to reasonable levels whilst maintaining high completeness as a function of both magnitude and redshift. We review recent follow-up imaging of

  17. High duty cycle,highly efficient fiber coupled 940-nm pump module for high-energy solid-state lasers

    Institute of Scientific and Technical Information of China (English)

    Ren Platz; Bernd Eppich; Juliane Rieprich; Wolfgang Pittroff; Gtz Erbert; Paul Crump

    2016-01-01

    Tailored diode laser single emitters with long(6 mm) resonators and wide(1.2 mm) emission apertures that operate with940 nm emission wavelength were assembled in novel edge-cooled vertically stacked arrays, and used to construct a compact and highly efficient fiber coupled pump source for Yb:YAG pulsed high-energy class solid-state lasers. The novel configuration is shown to allow repetition rates of 200 Hz at 1 ms pulse duration, at an output power of 130 W per single emitter. The emission of two stacked arrays was then optically combined to realize pump modules that deliver6 kW peak power(pulse energy 6 J) from a 1.9 mm core diameter fiber, with wall plug efficiency of 50%. This represents a significant improvement in terms of duty cycle and electro-optical efficiency over conventional sources. The pump module has been successfully tested at the Max Born Institute, Berlin during trials for pumping of disk lasers.

  18. Highly asymmetric interaction forces induced by acoustic waves in coupled plate structures

    CERN Document Server

    Fan, Xiying; Zhang, Shenwei; Ke, Manzhu; Liu, Zhengyou

    2015-01-01

    Mutual forces can be induced between coupled structures when illuminated by external acoustic waves. In this Letter, we propose a concept of asymmetric interaction between two coupled plate-like structures, which is generated by oppositely incident plane waves. Besides the striking contrast in magnitude, the mutual force induced by one of the incidences can be tuned extremely strong due to the resonant excitation of the flexural plate modes. The highly asymmetric interaction with enhanced strength in single side should be potentially useful, such as in designing ultrasound instruments and sensors.

  19. Electro-mechanical power coupling system for PHEV with high price-performance ratio

    Institute of Scientific and Technical Information of China (English)

    Federmann Florian; Yue CHENG; Xin LI; Bo ZHANG; Jia-jia XIE; Yang YU

    2014-01-01

    The price-performance ratio of PHEV determines its market penetration.Besides en-gine and battery,the power coupling system including traction motor and automatic transmission is a key influence factor of system performance and costs.This article introduces an electro-me-chanical power coupling system for PHEV with high price-performance ratio,which integrates an electro-mechanical CVT and a flat traction motor.As an example,a PHEV system is configured to conform the vehicle dynamic specifications.

  20. Dynamic coefficients of axial spline couplings in high-speed rotating machinery

    Energy Technology Data Exchange (ETDEWEB)

    Ku, C.P.R.; Walton, J.F. Jr. (Mechanical Technology Inc., Latham, NY (United States)); Lund, J.W. (Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Machine Elements)

    1994-07-01

    This paper provided the first opportunity to quantify the angular stiffness and equivalent viscous damping coefficients of an axial spline coupling used in high-speed turbomachinery. The bending moments and angular deflections transmitted across an axial spline coupling were measured while a nonrotating shaft was excited by an external shaker. A rotordynamics computer program was used to simulate the test conditions and to correlate the angular stiffness and damping coefficients. The effects of external force and frequency were also investigated. The angular stiffness and damping coefficients were used to perform a linear steady-state rotordynamics stability analysis, and the unstable natural frequency was calculated and compared to the experimental measurements.

  1. A high-efficiency high-power evanescently coupled UTC-photodiode

    Institute of Scientific and Technical Information of China (English)

    Zhang Yunxiao; Liao Zaiyi; Zhao Lingjuan; Zhu Hongliang; Pan Jiaoqing; Wang Wei

    2009-01-01

    The effects of the multimode diluted waveguide on quantum efficiency and saturation behavior of the evanescently coupled uni-traveling carrier(UTC)photodiode structures are reported.Two kinds of evanescently coupled uni-traveling carrier photodiodes(EC-UTC-PD)were designed and characterized:one is a conventional EC-UTC-PD structure with a multimode diluted waveguide integrated with a UTC-PD;and the other is a compact EC-UTC-PD structure which fused the multimode diluted waveguide and the UTC-PD structure together.The effect of the absorption behavior of the photodiodes on the efficiency and saturation characteristics of the EC-UTC-PDs is analyzed using 3-D beam propagation method,and the results indicate that both the responsivity and saturation power of the compact EC-UTC-PD structures can be further improved by incorporating an optimized compact multimode diluted waveguide.

  2. Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

    Directory of Open Access Journals (Sweden)

    A. Stockklauser

    2017-03-01

    Full Text Available The strong coupling limit of cavity quantum electrodynamics (QED implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238  MHz at a resonator linewidth κ/2π=12  MHz and a DQD charge qubit decoherence rate of γ_{2}/2π=40  MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.

  3. Robust acenaphthoimidazolylidene palladium complexes: highly efficient catalysts for Suzuki-Miyaura couplings with sterically hindered substrates.

    Science.gov (United States)

    Tu, Tao; Sun, Zheming; Fang, Weiwei; Xu, Mizhi; Zhou, Yunfei

    2012-08-17

    Robust acenaphthoimidazolylidene palladium complexes have been demonstrated as highly efficient and general catalysts for the sterically hindered Suzuki-Miyaura cross-coupling reactions in excellent yields even with low catalyst loadings under mild reaction conditions. The high catalytic activity of these complexes highlights that, besides the "flexible steric bulky" concept, σ-donor properties of the NHC ligands are also crucial to accelerate the transformations.

  4. Reducing sexual risk behavior among high-risk couples in Northern India.

    Science.gov (United States)

    Jones, Deborah; Bagga, Rashmi; Nehra, Ritu; Deepika; Sethi, Sunil; Walia, Kamini; Kumar, Mahendra; Villar-Loubet, Olga; Lopez, Maria; Weiss, Stephen M

    2013-09-01

    With a population of 1.1 billion, India is considered to be a country in which effective prevention interventions could contain the development of a human immunodeficiency virus (HIV) epidemic. Heterosexual transmission accounts for 85 % of the extant HIV infections. This study sought to assess the feasibility of conducting a group, culturally tailored behavioral intervention and its impact on sexual barrier use, self-efficacy, knowledge, conflict resolution, and coping among high-risk heterosexual couples in Northern India. This pilot study was conducted at the Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India from February 2008 to January 2009. Thirty sexually active high-risk couples were drawn from a convenience sample of PGIMER patients attending infectious disease and family planning clinics. Couples participated in 1 month of three weekly gender-concordant behavioral intervention groups and were individually administered assessments preintervention and post-intervention. The intervention was tailored to the Northern Indian context and addressed sexual barrier use, human immunodeficiency virus (HIV)/sexually transmitted infection transmission, and cognitive behavioral skill building focusing on sexual negotiation and communication. The participants had a mean age of 32 years (men) and 29 years (women), and the majority had at least 10 years of education. At baseline, the majority reported inconsistent condom use (communication without increasing intimate partner violence in high-risk couples may be an important adjunct to preventing the development of a generalized epidemic in India.

  5. High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.

    Science.gov (United States)

    Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S

    2016-08-22

    We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.

  6. Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Perkins, L.J.; Barnard, J.J.

    2008-05-16

    Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

  7. High power fiber coupled diode lasers for display and lighting applications

    Science.gov (United States)

    Drovs, Simon; Unger, Andreas; Dürsch, Sascha; Köhler, Bernd; Biesenbach, Jens

    2017-02-01

    The performance of diode lasers in the visible spectral range has been continuously improved within the last few years, which was mainly driven by the goal to replace arc lamps in cinema or home projectors. In addition, the availability of such high power visible diode lasers also enables new applications in the medical field, but also the usage as pump sources for other solid state lasers. This paper summarizes the latest developments of fiber coupled sources with output power from 1.4 W to 120 W coupled into 100 μm to 400 μm fibers in the spectral range around 405 nm and 640 nm. New developments also include the use of fiber coupled multi single emitter arrays at 450 nm, as well as very compact modules with multi-W output power.

  8. Using a Coupled Lake Model with WRF to Improve High-Resolution Regional Climate Simulations

    Science.gov (United States)

    Mallard, M.; Bullock, R.; Nolte, C. G.; Alapaty, K.; Otte, T.; Gula, J.

    2012-12-01

    downscaling approach, where little information is available about future changes in specific lakes. Previously, WRF was used to downscale data from the NCEP/DOE AMIP II reanalysis to 36-km over the continental United States (Otte et al. 2012; Bowden et al. 2012). This retrospective modeling work has been undertaken to develop a robust strategy for downscaling GCM output to simulate regional climate. These downscaled fields can then be used to drive air quality simulations of a future environment affected by climate change. In the present work, WRF-FLake is used to further downscale one year of that 36-km simulation to a 12-km domain covering the eastern United States. WRF-FLake's performance is evaluated using the Real-time Global (RTG) 1/12th degree SST product to compare with simulated LSTs, focusing on the Great Lakes region, and recommendations are made for the initialization and spin-up of FLake for regional climate modeling applications. Results are also evaluated inland by comparison with 2-m temperature observations and a high-resolution gridded precipitation product. Some comparison is also made with the 36-km parent grid, to show the effect of decreased grid spacing.

  9. Unexpectedly high degree of anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique

    Science.gov (United States)

    Salk, Kateri R.; Erler, Dirk V.; Eyre, Bradley D.; Carlson-Perret, Natasha; Ostrom, Nathaniel E.

    2017-08-01

    Understanding the magnitude of nitrogen (N) loss and recycling pathways is crucial for coastal N management efforts. However, quantification of denitrification and anammox by a widely-used method, the isotope pairing technique, is challenged when dissimilatory NO3- reduction to NH4+ (DNRA) occurs. In this study, we describe a revised isotope pairing technique that accounts for the influence of DNRA on NO3- reduction (R-IPT-DNRA). The new calculation procedure improves on previous techniques by (1) accounting for N2O production, (2) distinguishing canonical anammox from coupled DNRA-anammox, and (3) including the production of 30N2 by anammox in the quantification of DNRA. This approach avoids the potential for substantial underestimates of anammox rates and overestimates of denitrification rates in systems where DNRA is a significant NO3- reduction pathway. We apply this technique to simultaneously quantify rates of anammox, denitrification, and DNRA in intact sediments adjacent to a seagrass bed in subtropical Australia. The effect of organic carbon lability on NO3- reduction was also addressed by adding detrital sources with differing C:N (phytoplankton- or seagrass-derived). DNRA was the predominant pathway, contributing 49-74% of total NO3- reduction (mean 0.42 μmol N m-2 h-1). In this high C:N system, DNRA outcompetes denitrification for NO3-, functioning to recycle rather than remove N. Anammox exceeded denitrification (mean 0.18 and 0.04 μmol N m-2 h-1, respectively) and accounted for 64-86% of N loss, a rare high percentage in shallow coastal environments. Owing to low denitrification activity, N2O production was ∼100-fold lower than in other coastal sediments (mean 7.7 nmol N m-2 h-1). All NO3- reduction pathways were stimulated by seagrass detritus but not by phytoplankton detritus, suggesting this microbial community is adapted to process organic matter that is typically encountered. The R-IPT-DNRA is widely applicable in other environments where the

  10. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure.

    Science.gov (United States)

    Fu, Yinan; Wand, A Joshua

    2013-08-01

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  11. Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols.

    Science.gov (United States)

    Elsler, Bernd; Schollmeyer, Dieter; Dyballa, Katrin Marie; Franke, Robert; Waldvogel, Siegfried R

    2014-05-12

    The direct oxidative cross-coupling of phenols is a very challenging transformation, as homo-coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3-hexafluoro-2-propanol, a direct electrolysis in an undivided cell provides mixed 2,2'-biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert-butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yinan; Wand, A. Joshua, E-mail: wand@mail.med.upenn.edu [University of Pennsylvania, Department of Biochemistry and Biophysics, Johnson Research Foundation (United States)

    2013-08-15

    High-pressure NMR spectroscopy has emerged as a complementary approach for investigating various structural and thermodynamic properties of macromolecules. Noticeably absent from the array of experimental restraints that have been employed to characterize protein structures at high hydrostatic pressure is the residual dipolar coupling, which requires the partial alignment of the macromolecule of interest. Here we examine five alignment media that are commonly used at ambient pressure for this purpose. We find that the spontaneous alignment of Pf1 phage, d(GpG) and a C12E5/n-hexnanol mixture in a magnetic field is preserved under high hydrostatic pressure. However, DMPC/DHPC bicelles and collagen gel are found to be unsuitable. Evidence is presented to demonstrate that pressure-induced structural changes can be identified using the residual dipolar coupling.

  13. High-mechanical-frequency characteristics of optomechanical crystal cavity with coupling waveguide

    Science.gov (United States)

    Huang, Zhilei; Cui, Kaiyu; Bai, Guoren; Feng, Xue; Liu, Fang; Zhang, Wei; Huang, Yidong

    2016-01-01

    Optomechanical crystals have attracted great attention recently for their ability to realize strong photon-phonon interaction in cavity optomechanical systems. By far, the operation of cavity optomechanical systems with high mechanical frequency has to employ tapered fibres or one-sided waveguides with circulators to couple the light into and out of the cavities, which hinders their on-chip applications. Here, we demonstrate larger-centre-hole nanobeam structures with on-chip transmission-coupling waveguide. The measured mechanical frequency is up to 4.47 GHz, with a high mechanical Q-factor of 1.4 × 103 in the ambient environment. The corresponding optomechanical coupling rate is calculated and measured to be 836 kHz and 1.2 MHz, respectively, while the effective mass is estimated to be 136 fg. With the transmission waveguide coupled structure and a small footprint of 3.4 μm2, this simple cavity can be directly used as functional components or integrated with other on-chip devices in future practical applications. PMID:27686419

  14. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    Science.gov (United States)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  15. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  16. An unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the C. elegans putative aminophospholipid translocases

    Directory of Open Access Journals (Sweden)

    Miteva Yana

    2008-10-01

    . Although individually dispensable, tat-1 through 4 seem to be at most only partly redundant. Expression patterns and the sterol deprivation hypersensitivity deletion phenotype of tat-2 through 4 suggest that these genes carry out subtle metabolic functions, such as fine-tuning sterol metabolism in digestive or steroidogenic tissues. These findings uncover an unexpectedly high degree of specialization and a widespread involvement in sterol metabolism among the genes encoding the putative aminophospholipid translocases.

  17. Semi-robotic 6 degree of freedom positioning for intracranial high precision radiotherapy; first phantom and clinical results

    Directory of Open Access Journals (Sweden)

    Flentje Michael

    2010-05-01

    Full Text Available Abstract Background To introduce a novel method of patient positioning for high precision intracranial radiotherapy. Methods An infrared(IR-array, reproducibly attached to the patient via a vacuum-mouthpiece(vMP and connected to the table via a 6 degree-of-freedom(DoF mechanical arm serves as positioning and fixation system. After IR-based manual prepositioning to rough treatment position and fixation of the mechanical arm, a cone-beam CT(CBCT is performed. A robotic 6 DoF treatment couch (HexaPOD™ then automatically corrects all remaining translations and rotations. This absolute position of infrared markers at the first fraction acts as reference for the following fractions where patients are manually prepositioned to within ± 2 mm and ± 2° of this IR reference position prior to final HexaPOD-based correction; consequently CBCT imaging is only required once at the first treatment fraction. The preclinical feasibility and attainable repositioning accuracy of this method was evaluated on a phantom and human volunteers as was the clinical efficacy on 7 pilot study patients. Results Phantom and volunteer manual IR-based prepositioning to within ± 2 mm and ± 2° in 6DoF was possible within a mean(± SD of 90 ± 31 and 56 ± 22 seconds respectively. Mean phantom translational and rotational precision after 6 DoF corrections by the HexaPOD was 0.2 ± 0.2 mm and 0.7 ± 0.8° respectively. For the actual patient collective, the mean 3D vector for inter-treatment repositioning accuracy (n = 102 was 1.6 ± 0.8 mm while intra-fraction movement (n = 110 was 0.6 ± 0.4 mm. Conclusions This novel semi-automatic 6DoF IR-based system has been shown to compare favourably with existing non-invasive intracranial repeat fixation systems with respect to handling, reproducibility and, more importantly, intra-fraction rigidity. Some advantages are full cranial positioning flexibility for single and fractionated IGRT treatments and possibly increased patient

  18. The crystal zero degree detector at BESIII as a realistic high rate environment for evaluating PANDA data acquisition modules

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Marcel

    2015-03-15

    The BESIII experiment located in Beijing, China, is investigating physics in the energy region of the charm-quark via electron positron annihilation reactions. A small detector to be placed in the very forward/backward region around θ=0 at BESIII is foreseen to measure photons from the initial state. This is especially interesting, because it opens the door for various physics measurements over a wide range of energies, even below the experiment's designated energy threshold, which is fixed by the accelerator. This thesis is investigating the capabilities of a crystal zero degree detector (cZDD) consisting of PbWO{sub 4} crystals placed in that region of BESIII. Detailed Geant4-based simulations have been performed, and the energy resolution of the detector has been determined to be σ/μ=0.06+0.025/√(E[GeV]). The determination of the center-of-mass energy √(s){sub isr} after the emission of the photon is of great importance for the study of such events. Preliminary simulations estimated the resolution of the reconstructed √(s){sub isr} using the cZDD information to be significantly better than 10 % for appropriate photon impacts on the detector. Such events can only be investigated, when data from the cZDD and other detectors of BESIII can be correlated. A fast and powerful Data Acquisition (DAQ) capable of performing event correlation in real time is needed. DAQ modules capable of performing real time event correlation are being developed for the PANDA experiment at the future FAIR facility in Darmstadt, Germany. Investigating these modules in a realistic high-rate environment such as provided at BESIII, offers a great opportunity to gain experience in real time event correlation before the start of PANDA. Developments for the cZDD's DAQ using prototype PANDA DAQ modules have been done and successfully tested in experiments with radioactive sources and a beamtest with 210 MeV electrons at the Mainz Microtron.

  19. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating.

    Science.gov (United States)

    Savukov, Igor; Boshier, Malcolm G

    2016-10-13

    Atomic magnetometers (AM) are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC) designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz(1/2) sensitivity at low frequency (50 Hz), which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field) with a sensitivity under 10 fT/Hz(1/2) and can be used for magneto-encephalography (MEG), magneto-cardiography (MCG), underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  20. A High-Sensitivity Tunable Two-Beam Fiber-Coupled High-Density Magnetometer with Laser Heating

    Directory of Open Access Journals (Sweden)

    Igor Savukov

    2016-10-01

    Full Text Available Atomic magnetometers (AM are finding many applications in biomagnetism, national security, industry, and science. Fiber-coupled (FC designs promise to make them compact and flexible for operation. Most FC designs are based on a single-beam configuration or electrical heating. Here, we demonstrate a two-beam FC AM with laser heating that has 5 fT/Hz1/2 sensitivity at low frequency (50 Hz, which is higher than that of other fiber-coupled magnetometers and can be improved to the sub-femtotesla level. This magnetometer is widely tunable from DC to very high frequencies (as high as 100 MHz; the only issue might be the application of a suitable uniform and stable bias field with a sensitivity under 10 fT/Hz1/2 and can be used for magneto-encephalography (MEG, magneto-cardiography (MCG, underground communication, ultra-low MRI/NMR, NQR detection, and other applications.

  1. Coupling of symmetric and asymmetric modes in a high-power, high-efficiency traveling-wave amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Banna, S. [Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, (Israel); Schaechter, L. [Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, (Israel); Nation, J. A. [School of Electrical Engineering and Laboratory of Plasma Studies, Cornell University Ithaca, New York 14853 (United States); Wang, P. [School of Electrical Engineering and Laboratory of Plasma Studies, Cornell University Ithaca, New York 14853 (United States)

    2000-04-01

    A three-dimensional model has been developed for the investigation of the coupling of symmetric (TM{sub 01}) and asymmetric (HEM{sub 11}) modes in a high-power, high-efficiency traveling-wave amplifier. In the framework of a simplified model it is shown that the coupling between these two modes is determined by a single parameter that depends on the beam characteristics. For a specific set of parameters corresponding to operation at 35 GHz, simulations indicate that an initial HEM{sub 11} power of 0.5 MW at the input end is sufficient to deflect electrons to the wall. The build-up of this parasitic mode is investigated over many round trips of the wave in the structure and a threshold criterion for self-sustain oscillation is established. Finally a way for suppressing the HEM{sub 11} mode is analyzed. (c) 2000 The American Physical Society.

  2. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    Science.gov (United States)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  3. Numerical study of droplet evaporation in coupled high-temperature and electrostatic fields

    Directory of Open Access Journals (Sweden)

    Ziwen Zuo

    2015-03-01

    Full Text Available The evaporation of a sessile water droplet under the coupled electrostatic and high-temperature fields is studied numerically. The leaky dielectric model and boiling point evaporation model are used for calculating the electric force and heat mass transfer. The free surface is captured using the volume of fluid method accounting for the variable surface tension and the transition of physical properties across the interface. The flow behaviors and temperature evolutions in different applied fields are predicted. It shows that in the coupled fields, the external electrostatic field restrains the flow inside the droplet and keeps a steady circulation. The flow velocity is reduced due to the interaction between electric body force and the force caused by temperature gradient. The heat transfer from air into the droplet is reduced by the lower flow velocity. The evaporation rate of the droplet in the high-temperature field is decreased.

  4. Electron–lattice coupling after high-energy deposition in aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Gorbunov, S.A. [Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53,119991 Moscow (Russian Federation); Medvedev, N.A. [Center for Free-Electron Laser Science at DESY, Notkestr. 85, 22607 Hamburg (Germany); Terekhin, P.N. [National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Volkov, A.E., E-mail: a.e.volkov@list.ru [National Research Centre ‘Kurchatov Institute’, Kurchatov Sq. 1, 123182 Moscow (Russian Federation); Lebedev Physical Institute of the Russian Academy of Sciences, Leninskij pr. 53,119991 Moscow (Russian Federation); Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Moscow Region (Russian Federation)

    2015-07-01

    This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron–phonon approximation of electron–lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron–phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.

  5. Highly charged ions in a dilute plasma: an exact asymptotic solution involving strong coupling.

    Science.gov (United States)

    Brown, Lowell S; Dooling, David C; Preston, Dean L

    2006-05-01

    The ion sphere model introduced long ago by Salpeter is placed in a rigorous theoretical setting. The leading corrections to this model for very highly charged but dilute ions in thermal equilibrium with a weakly coupled, one-component background plasma are explicitly computed, and the subleading corrections shown to be negligibly small. This is done using the effective field theory methods advocated by Brown and Yaffe. Thus, corrections to nuclear reaction rates that such highly charged ions may undergo can be computed precisely. Moreover, their contribution to the equation of state can also be computed with precision. Such analytic results for very strong coupling are rarely available, and they can serve as benchmarks for testing computer models in this limit.

  6. Highly Efficient Synthesis of 2-Aryl-3-methoxyacrylates via Suzuki-Miyaura Coupling Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Ho; Lee, Chun Ho; Song, Young Seob; Park, No Kyun; Kim, Bum Tae; Heo, Jung Nyoung [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2006-02-15

    We have developed a highly efficient and convergent synthesis of 2-aryl-3-methoxyacrylates via the Suzuki-Miyaura coupling reaction of α-iodo-β-methoxy-acrylate with arylboronic acids. The biological activities of 2-aryl-3-methoxyacrylate derivatives will be reported in due course. The Suzuki-Miyaura coupling reaction provides a convenient access to the carbon-carbon bond formation with high efficiency. Recently, a number of 2-aryl-3-methoxy-acrylates served as a key scaffold for the development of biologically active pharmaceuticals and agrochemicals. Especially, the discovery of the naturally-occurring fungicides, such as strobilurin A and oudemansin A, possessing a β-methoxyacrylate moiety was immediately seized great attention by industrial research groups to open a new era of the strobilurin family including azoxy-strobin and picoxystrobin.

  7. Indelible Rules of Josephson Coupling Energy and Zero-Point Energy in High-Tc Cuprates

    Institute of Scientific and Technical Information of China (English)

    LIU Fu-Sui; CHEN Wan-Fang

    2004-01-01

    This paper shows that the Josephson coupling energy and the zero-point energy have indelible rules on the superfluid density and the superconductivity in the high-Tc cuprates.This paper also shows that the values of Tc at underdoped and overdoped regions are determined by the damage conditions of the phase coherence in the classical and the quantum XY-models,respectively.

  8. Dispersion and optical gradient force from high-order mode coupling between two hyperbolic metamaterial waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanghui, E-mail: gsnuwgh@163.com; Zhang, Weifeng; Lu, Jiahui; Zhao, Huijun

    2016-08-12

    We analytically study dispersion properties and optical gradient forces of different-order transverse magnetic (TM) modes in two coupled hyperbolic metamaterial waveguides (HMMWs). According to Maxwell's equations, we obtain the dispersion relation of symmetric and antisymmetric modes, and calculate optical gradient forces of different-order modes by using Maxwell stress tensor. Numerical results show that the dispersion properties are dependent on the filling ratio, and the optical gradient forces of high-order TM modes are larger than the fundamental mode when the gap between two HMMWs is very narrow, but they weaken much faster than the case of low-order TM modes with the gap width increasing. In addition, the effects of the dielectric surrounding of waveguides on the coupling effect and optical gradient force are clarified. These properties offer an avenue for various optomechanical applications in optical sensors and actuators. - Highlights: • The dependence of dispersion properties in hyperbolic metamaterials on the filling ratio is analyzed. • It is possible that the optical gradient forces of high-order modes are larger than the fundamental mode. • Optical gradient forces of high-order modes weaken much faster than the case of low-order modes. • The influence of the dielectric surrounding on the coupling effect and optical gradient force are clarified.

  9. Structural determination of ethylene-propylene-diene rubber (EPDM) containing high degree of controlled long-chain branching

    DEFF Research Database (Denmark)

    Mitra, Susanta; Jørgensen, Mikkel; Pedersen, Walther Batsberg

    2009-01-01

    This work highlights an attempt to characterize the degree and nature of long-chain branching (LCB) in an unknown sample of ethylene-propylene-diene rubber (EPDM). Two EPDM rubbers selected for this study were comparable in comonomer compositions but significantly different with respect to molar...... mass and the presence of LCB. Both rubbers contained 5-ethylidene-2-norbornene (ENB) as diene. Solution cast films of pure EPDM samples were used for different characterization techniques. 1H-NMR, and 13C-NMR were used for assessing the comonomer ratios and LCB. Size exclusion chromatography (SEC...... findings and the available theories, an attempt was made to identify the chemical nature and degree of LCB. This study reveals the possibility of detailed characterization of molecular architecture of EPDM containing LCB by comparing with an essentially linear EPDM in light of an existing theory. © 2009...

  10. Degree of bilingualism predicts age of diagnosis of Alzheimer's disease in low-education but not in highly educated Hispanics.

    Science.gov (United States)

    Gollan, Tamar H; Salmon, David P; Montoya, Rosa I; Galasko, Douglas R

    2011-12-01

    The current study investigated the relationship between bilingual language proficiency and onset of probable Alzheimer's disease (AD) in 44 Spanish-English bilinguals at the UCSD Alzheimer's Disease Research Center. Degree of bilingualism along a continuum was measured using Boston Naming Test (BNT) scores in each language. Higher degrees of bilingualism were associated with increasingly later age-of-diagnosis (and age of onset of symptoms), but this effect was driven by participants with low education level (a significant interaction between years of education and bilingualism) most of whom (73%) were also Spanish-dominant. Additionally, only objective measures (i.e., BNT scores), not self-reported degree of bilingualism, predicted age-of-diagnosis even though objective and self-reported measures were significantly correlated. These findings establish a specific connection between knowledge of two languages and delay of AD onset, and demonstrate that bilingual effects can be obscured by interactions between education and bilingualism, and by failure to obtain objective measures of bilingualism. More generally, these data support analogies between the effects of bilingualism and "cognitive reserve" and suggest an upper limit on the extent to which reserve can function to delay dementia.

  11. Beam shaping design for coupling high power diode laser stack to fiber.

    Science.gov (United States)

    Ghasemi, Seyed Hamed; Hantehzadeh, Mohammad-Reza; Sabbaghzadeh, Jamshid; Dorranian, Davoud; Lafooti, Majid; Vatani, Vahid; Rezaei-Nasirabad, Reza; Hemmati, Atefeh; Amidian, Ali Asghar; Alavian, Seyed Ali

    2011-06-20

    A beam shaping technique that rearranges the beam for improving the beam symmetry and power density of a ten-bar high power diode laser stack is simulated considering a stripe mirror plate and a V-Stack mirror in the beam shaping system. In this technique, the beam of a high power diode laser stack is effectively coupled into a standard 550 μm core diameter and a NA=0.22 fiber. By this technique, compactness, higher efficiency, and lower cost production of the diode are possible.

  12. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    Science.gov (United States)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  13. A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

    Directory of Open Access Journals (Sweden)

    T. Pfadler

    2015-06-01

    Full Text Available Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO2 electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb2S3 as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO2, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO2 active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.

  14. Thermal Impedance Model of High Power IGBT Modules Considering Heat Coupling Effects

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad; Ma, Ke; Blaabjerg, Frede

    2014-01-01

    Thermal loading of Insulated Gate Bipolar Transistor (IGBT) modules is important for the reliability performance of power electronic systems, thus the thermal information of critical points inside module like junction temperature must be accurately modeled and predicted. Usually in the existing...... thermal models, only the self-heating effects of the chips are taken into account, while the thermal coupling effects among chips are less considered. This could result in inaccurate temperature estimation, especially in the high power IGBT modules where the chips are allocated closely to each other...... with large amount of heat generated. In this paper, both the self-heating and heat-coupling effects in the of IGBT module are investigated based on Finite Element Method (FEM) simulation, a new thermal impedance model is thereby proposed to better describe the temperature distribution inside IGBT modules...

  15. Fibre-optic coupling to high-resolution CCD and CMOS image sensors

    Science.gov (United States)

    van Silfhout, R. G.; Kachatkou, A. S.

    2008-12-01

    We describe a simple method of gluing fibre-optic faceplates to complementary metal oxide semiconductor (CMOS) active pixel and charge coupled device (CCD) image sensors and report on their performance. Cross-sectional cuts reveal that the bonding layer has a thickness close to the diameter of the individual fibres and is uniform over the whole sensor area. Our method requires no special tools or alignment equipment and gives reproducible and high-quality results. The method maintains a uniform bond layer thickness even if sensor dies are mounted at slight angles with their package. These fibre-coupled sensors are of particular interest to X-ray imaging applications but also provide a solution for compact optical imaging systems.

  16. Dispersion and optical gradient force from high-order mode coupling between two hyperbolic metamaterial waveguides

    Science.gov (United States)

    Wang, Guanghui; Zhang, Weifeng; Lu, Jiahui; Zhao, Huijun

    2016-08-01

    We analytically study dispersion properties and optical gradient forces of different-order transverse magnetic (TM) modes in two coupled hyperbolic metamaterial waveguides (HMMWs). According to Maxwell's equations, we obtain the dispersion relation of symmetric and antisymmetric modes, and calculate optical gradient forces of different-order modes by using Maxwell stress tensor. Numerical results show that the dispersion properties are dependent on the filling ratio, and the optical gradient forces of high-order TM modes are larger than the fundamental mode when the gap between two HMMWs is very narrow, but they weaken much faster than the case of low-order TM modes with the gap width increasing. In addition, the effects of the dielectric surrounding of waveguides on the coupling effect and optical gradient force are clarified. These properties offer an avenue for various optomechanical applications in optical sensors and actuators.

  17. High-frequency Born synthetic seismograms based on coupled normal modes

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).

  18. The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays

    Directory of Open Access Journals (Sweden)

    Tommy Hult

    2010-01-01

    Full Text Available We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms employing various compact MIMO (Multiple-Input Multiple-Output antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

  19. High brightness laser source based on polarization coupling of two diode lasers with asymmetric feedback

    DEFF Research Database (Denmark)

    Thestrup, B.; Chi, M.; Sass, B.

    2003-01-01

    In this letter, we show that polarization coupling and asymmetric diode-laser feedback can be used to combine two diode-laser beams with low spatial coherence into a single beam with high spatial coherence. The coupled laser source is based on two similar laser systems each consisting of a 1 mumx......200 mum broad area laser diode applied with a specially designed feedback circuit. When operating at two times threshold, 50% of the freely running system output power is obtained in a single beam with an M-2 beam quality factor of 1.6+/-0.1, whereas the M-2 values of the two freely running diode...... lasers are 29+/-1 and 34+/-1, respectively. (C) 2003 American Institute of Physics....

  20. The Study of Coupling Coordination Degree Differences of Inter-province Tourism Environment and Tourism Income In China%中国省际“旅游环境-旅游收入”的耦合协调度差异研究

    Institute of Scientific and Technical Information of China (English)

    李锋; 郭振江

    2014-01-01

    tourism environment and tourism income in each province have significant spatial autocorrelation.③ In the provinces that keep in coupling coordination grade level, most of the tourism environment delays in tourism revenue,which reflects the high efficiency of tourism environment"input-output".In the provinces that are on the verge of disorder,its outstanding feature is that tourism income delays in the tourism en-vironment,and investment in the tourism environment is difficult to improve with the magnitude of tourism income.④ The con-tribution is different to coupling coordination degree that natural environment,economic environment,social environment,service environment and other factors on the tourism environment and tourism income.It is most obvious that natural environment to en-hance the coupling coordination degree,social environment influence the degree of coupling coordination followed by.It is minimal that service environment influences the degree of coupling coordination,and economic environment is not statistically significant.

  1. CLUSTER: A high-frequency H-mode coupled cavity linac for low and medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Amaldi, Ugo [TERA Foundation, Via Puccini 11, 28100 Novara (Italy); University of Milano Bicocca, Milan (Italy)], E-mail: Ugo.Amaldi@cern.ch; Citterio, Alessandro; Crescenti, Massimo; Giuliacci, Arianna; Tronci, Cesare; Zennaro, Riccardo [TERA Foundation, Via Puccini 11, 28100 Novara (Italy)

    2007-09-11

    An innovative linear accelerating structure is proposed which is particularly suited for low-current hadrontherapy applications but can also conveniently substitute the conventional proton linacs at present considered for Accelerator Driven Systems and neutrino and muon factories. Its two main features are compactness and good power efficiency at low-medium beam velocities (0.05{<=}{beta}{<=}0.5). The first is achieved through a high working frequency and a consequent high accelerating gradient, the second is obtained by coupling several H-mode cavities together. The structure was dubbed CLUSTER for 'Coupled-cavity Linac USing Transverse Electric Radial field'. To compare the performance of this structure with other hadrontherapy linac designs involving high frequencies, a conceptual study has been performed for an operating frequency of 3 GHz. Moreover, a proof of principle has been obtained through RF measurements on a prototype operating at 1 GHz. An accelerator complex using a CLUSTER linac is also considered for protontherapy purposes. This total accelerator complex, called 'cyclinac', uses a commercial cyclotron as an injector to a high-frequency and high-gradient linac.

  2. Computational model for a high temperature electrolyzer coupled to a HTTR for efficient nuclear hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Daniel; Rojas, Leorlen; Rosales, Jesus; Castro, Landy; Gamez, Abel; Brayner, Carlos, E-mail: danielgonro@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Garcia, Lazaro; Garcia, Carlos; Torre, Raciel de la, E-mail: lgarcia@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Sanchez, Danny [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil)

    2015-07-01

    High temperature electrolysis process coupled to a very high temperature reactor (VHTR) is one of the most promising methods for hydrogen production using a nuclear reactor as the primary heat source. However there are not references in the scientific publications of a test facility that allow to evaluate the efficiency of the process and other physical parameters that has to be taken into consideration for its accurate application in the hydrogen economy as a massive production method. For this lack of experimental facilities, mathematical models are one of the most used tools to study this process and theirs flowsheets, in which the electrolyzer is the most important component because of its complexity and importance in the process. A computational fluid dynamic (CFD) model for the evaluation and optimization of the electrolyzer of a high temperature electrolysis hydrogen production process flowsheet was developed using ANSYS FLUENT®. Electrolyzer's operational and design parameters will be optimized in order to obtain the maximum hydrogen production and the higher efficiency in the module. This optimized model of the electrolyzer will be incorporated to a chemical process simulation (CPS) code to study the overall high temperature flowsheet coupled to a high temperature accelerator driven system (ADS) that offers advantages in the transmutation of the spent fuel. (author)

  3. An investigation of tropical Atlantic bias in a high-resolution coupled regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patricola, Christina M.; Saravanan, R.; Hsieh, Jen-Shan [Texas A and M University, Department of Atmospheric Sciences, College Station, TX (United States); Li, Mingkui; Xu, Zhao [Texas A and M University, Department of Oceanography, College Station, TX (United States); Ocean University of China, Key Laboratory of Physical Oceanography of Ministry of Education, Qingdao (China); Chang, Ping [Texas A and M University, Department of Oceanography, College Station, TX (United States); Ocean University of China, Key Laboratory of Physical Oceanography of Ministry of Education, Qingdao (China); Second Institute of Oceanography, State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang (China)

    2012-11-15

    Coupled atmosphere-ocean general circulation models (AOGCMs) commonly fail to simulate the eastern equatorial Atlantic boreal summer cold tongue and produce a westerly equatorial trade wind bias. This tropical Atlantic bias problem is investigated with a high-resolution (27-km atmosphere represented by the Weather Research and Forecasting Model, 9-km ocean represented by the Regional Ocean Modeling System) coupled regional climate model. Uncoupled atmospheric simulations test climate sensitivity to cumulus, land-surface, planetary boundary layer, microphysics, and radiation parameterizations and reveal that the radiation scheme has a pronounced impact in the tropical Atlantic. The CAM radiation simulates a dry precipitation (up to -90%) and cold land-surface temperature (up to -8 K) bias over the Amazon related to an over-representation of low-level clouds and almost basin-wide westerly trade wind bias. The Rapid Radiative Transfer Model and Goddard radiation simulates doubled Amazon and Congo Basin precipitation rates and a weak eastern Atlantic trade wind bias. Season-long high-resolution coupled regional model experiments indicate that the initiation of the warm eastern equatorial Atlantic sea surface temperature (SST) bias is more sensitive to the local rather than basin-wide trade wind bias and to a wet Congo Basin instead of dry Amazon - which differs from AOGCM simulations. Comparisons between coupled and uncoupled simulations suggest a regional Bjerknes feedback confined to the eastern equatorial Atlantic amplifies the initial SST, wind, and deepened thermocline bias, while barrier layer feedbacks are relatively unimportant. The SST bias in some CRCM simulations resembles the typical AOGCM bias indicating that increasing resolution is unlikely a simple solution to this problem. (orig.)

  4. The Optimized Synthesis of Starch-g-Lactic Acid Copolymer with High Grafting Degree Catalyzed by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    HU Zhiying

    2014-01-01

    The starch-g-lactic acid copolymer was synthesized with catalysis of sulfuric acid by one-step process, and the structure of starch-g-lactic acid copolymer was characterized by means of IR, 13C-NMR, HMBC, XRD, and SEM. The experimental results show that the maximum grafting degree of starch can reach 75%when the starch-g-lactic acid copolymer is activated at 80℃for 2 h and reacted with lactic acid at 90℃for 4 h in vacuum.

  5. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  6. Direct Determination of Trace Impurities in High Purity Zinc Oxide by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; NIE Xidu; LI Libo; SONG Chuhua

    2006-01-01

    The determination of trace impurities in high purity zinc oxide by high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) was investigated. To overcome some potentially problematic spectral interference, measurements were acquired in both middle and high resolution modes. The matrix effects due to the presence of excess HCl and zinc were evaluated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits ranged from 0.02 μg/g to 6 μg/g depending on the elements.The experimental results for the determination of Na, Mg, Ca, Cr, Mn, Fe, Co, Ni, Cu, Mo, Cd, Sb and Pb in several high purity zinc oxide powders were presented.

  7. Dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    With the high-voltage electrostatic theory and numerical analysis, the dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields was studied. The oscillation behavior of the conductive particle between the corona electrode and ground electrode was analyzed and its oscillation amplitude was Sm=(ta+ts)·νm/2. It was found that there was the "lift-off voltage (Ulo)" for the conductive particle between the electrostatic electrode and ground electrode. The concepts of "critical charged rotational speed (n?)", "detaching critical rotational speed of nonconductive particle (n′)" and "ratio of voltage and distance between surface of electrodes (U/D)" were presented and their criteria were established. The trajectories of the conductive particles under the coupling fields of the corona electrode, electrostatic electrode and ground electrode were simulated by the computer. The simulative results were in good agreement with the experimental ones. This research enriches the high-voltage electrostatic theory and provides a theoretic basis for optimization of operating parameters and structure design of high-voltage electrostatic separator.

  8. Dynamics of conductive and nonconductive particles under high-voltase electrostatic coupling fields

    Institute of Scientific and Technical Information of China (English)

    XU ZhenMing; LI Jia; LU HongZhou; WU Jiang

    2009-01-01

    With the high-voltage electrostatic theory and numerical analysis,the dynamics of conductive and nonconductive particles under high-voltage electrostatic coupling fields was studied.The oscillation behavior of the conductive particle between the corona electrode and ground electrode was analyzed and its oscillation amplitude was Sm=(ta+ts).Vm/2.It was found that there was the "lift-off voltage(UIO)"for the conductive particle between the electrostatic electrode and ground electrode.The concepts of "critical charged rotational speed(n*)","detaching critical rotational speed of nonconductive particle (n*)" and "ratio of voltage and distance between surface of electrodes(U/D)" were presented and their criteria were established.The trajectories of the conductive particles under the coupling fields of the corona electrode,electrostatic electrode and ground electrode were simulated by the computer.The simulative results were in good agreement with the experimental ones.This research enriches the high-voltage electrostatic theory and provides a theoretic basis for optimization of operating parameters and structure design of high-voltage electrostatic separator.

  9. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    Science.gov (United States)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  10. Impact of Waterlogging Coupling with High Temperature during Cotton in Flowering and Boll-bearing on its Photosynthetic Physiology and Yield

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2012-12-01

    Full Text Available This experiment was made according to the rainy climatic characteristics during May to Aug in Jianghan Plain of Hubei province as well as in the southern plain of China, excessive rain and high temperature in the period often bring a severe damage for cotton growth and its final output, the purpose of this study expects to explore or indicate an effect of the coupled action of high temperature and waterlogging on cotton, the analysis focus on an influence of the coupling on cotton fluorescence kinetic parameters, SPAD and yield components. Results showed that: the F0 increased after waterlogged processing and was greater than the previous changes. Generally, at the sixth day of each treatment the F0 of the surface waterlogging and subsurface waterlogging had increased 7-20% and 9- 16%, respectively, rising rate was basically positive related to the stresses degree, but Fm, Fv/Fm and Fv/F0 decreased; Chlorophyll relative content of SAPD firstly decreased and then increased, at the sixth days got to the lowest, the decrease of SPAD amplitude was positively related to the degree of waterlogging stresses. Additionally, the influence of high temperature and waterlogging interaction on yield was affected mainly by the boll number of cotton, boll weight and lint percentage had a little influence to it. As a whole, the impact of surface waterlogging on indexes above was more than subsurface waterlogging compared with CK, the yield after treated 5 days nearly reduced 60%.

  11. Anterior Thalamic High Frequency Band Activity Is Coupled with Theta Oscillations at Rest

    Directory of Open Access Journals (Sweden)

    Catherine M. Sweeney-Reed

    2017-07-01

    Full Text Available Cross-frequency coupling (CFC between slow and fast brain rhythms, in the form of phase–amplitude coupling (PAC, is proposed to enable the coordination of neural oscillatory activity required for cognitive processing. PAC has been identified in the neocortex and mesial temporal regions, varying according to the cognitive task being performed and also at rest. PAC has also been observed in the anterior thalamic nucleus (ATN during memory processing. The thalamus is active during the resting state and has been proposed to be involved in switching between task-free cognitive states such as rest, in which attention is internally-focused, and externally-focused cognitive states, in which an individual engages with environmental stimuli. It is unknown whether PAC is an ongoing phenomenon during the resting state in the ATN, which is modulated during different cognitive states, or whether it only arises during the performance of specific tasks. We analyzed electrophysiological recordings of ATN activity during rest from seven patients who received thalamic electrodes implanted for treatment of pharmacoresistant focal epilepsy. PAC was identified between theta (4–6 Hz phase and high frequency band (80–150 Hz amplitude during rest in all seven patients, which diminished during engagement in tasks involving an external focus of attention. The findings are consistent with the proposal that theta–gamma coupling in the ATN is an ongoing phenomenon, which is modulated by task performance.

  12. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  13. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)

    2012-08-15

    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  14. Progress toward coupled flux qubits with high connectivity and long coherence times

    Science.gov (United States)

    Weber, Steven; Hover, David; Rosenberg, Danna; Samach, Gabriel; Yoder, Jonilyn; Kerman, Andrew; Oliver, William

    The ability to engineer interactions between qubits is essential to all areas of quantum information science. The capability to tune qubit-qubit couplings in situ is desirable for gate-based quantum computing and analog quantum simulation and necessary for quantum annealing. Consequently, tunable coupling has been the subject of several experimental efforts using both transmon qubits and flux qubits. Recently, our group has demonstrated robust and long-lived capacitively shunted (C-shunt) flux qubits. Here, we discuss our efforts to develop architectures for tunably coupling these qubits. In particular, we focus on optimizing the RF SQUID coupler to achieve high connectivity. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  15. Ultraviolet optomechanical crystal cavities with ultrasmall modal mass and high optomechanical coupling rate

    Science.gov (United States)

    Zhou, Wen; Yu, Zejie; Ma, Jingwen; Zhu, Bingqing; Tsang, Hon Ki; Sun, Xiankai

    2016-11-01

    Optomechanical crystal (OMC) cavities which exploit the simultaneous photonic and phononic bandgaps in periodic nanostructures have been utilized to colocalize, couple, and transduce optical and mechanical resonances for nonlinear interactions and precision measurements. The development of near-infrared OMC cavities has difficulty in maintaining a high optomechanical coupling rate when scaling to smaller mechanical modal mass because of the reduction of the spatial overlap between the optical and mechanical modes. Here, we explore OMC nanobeam cavities in gallium nitride operating at the ultraviolet wavelengths to overcome this problem. With a novel optimization strategy, we have successfully designed an OMC cavity, with a size of 3.83 × 0.17 × 0.13 μm3 and the mechanical modal mass of 22.83 fg, which possesses an optical mode resonating at the wavelength of 393.03 nm and the fundamental mechanical mode vibrating at 14.97 GHz. The radiation-limited optical Q factor, mechanical Q factor, and optomechanical coupling rate are 2.26 × 107, 1.30 × 104, and 1.26 MHz, respectively. Our design and optimization approach can also serve as the general guidelines for future development of OMC cavities with improved device performance.

  16. Fructans from Agave tequilana with a Lower Degree of Polymerization Prevent Weight Gain, Hyperglycemia and Liver Steatosis in High-Fat Diet-Induced Obese Mice

    OpenAIRE

    Márquez-Aguirre, A. L.; Camacho-Ruíz, R. M.; Gutiérrez-Mercado, Y. K.; Padilla-Camberos, E.; González-Ávila, M.; Gálvez-Gastélum, F. J.; N.E. Díaz-Martínez; Ortuño-Sahagún, D.

    2016-01-01

    Fructans from agave have received specific attention because of their highly branched fructan content. We have previously reported that the degree of polymerization (dp) influences their biological activity. Therefore, the aim of this study was to investigate the effect of unfractionated and fractionated fructans (higher and lower dps) from Agave tequilana in high-fat diet-induced (HFD) obese mice. Fructans with a lower dp (HFD+ScF) decreased weight gain by 30 %, body fat mass by 51 %, hyperg...

  17. High-Volume Transanal Surgery with CPH34 HV for the Treatment of III-IV Degree Haemorrhoids: Final Short-Term Results of an Italian Multicenter Clinical Study

    Directory of Open Access Journals (Sweden)

    Giuliano Reboa

    2016-01-01

    Full Text Available The clinical chart of 621 patients with III-IV haemorrhoids undergoing Stapled Hemorrhoidopexy (SH with CPH34 HV in 2012–2014 was consecutively reviewed to assess its safety and efficacy after at least 12 months of follow-up. Mean volume of prolapsectomy was significantly higher (13.0 mL; SD, 1.4 in larger prolapse (9.3 mL; SD, 1.2 (p<0.001. Residual or recurrent haemorrhoids occurred in 11 of 621 patients (1.8% and in 12 of 581 patients (1.9%, respectively. Relapse was correlated with higher preoperative Constipation Scoring System (CSS (p=0.000, Pescatori’s degree (p=0.000, Goligher’s grade (p=0.003, prolapse exceeding half of the length of the Circular Anal Dilator (CAD (p=0.000, and higher volume of prolapsectomy (p=0.000. At regression analysis, only the preoperative CSS, Pescatori’s degree, Goligher’s grade, and volume of resection were significantly predictive of relapse. A high level of satisfaction (VAS = 8.6; SD, 1.0 coupled with a reduction of 12-month CSS (Δ preoperative CSS/12 mo CSS = 3.4, SD, 2.0; p<0.001 was observed. The wider prolapsectomy achievable with CPH34 HV determined an overall 3.7% relapse rate in patients with high prevalence of large internal rectal prolapse, coupled with high satisfaction index, significant reduction of CSS, and very low complication rates.

  18. A highly versatile catalyst system for the cross-coupling of aryl chlorides and amines.

    Science.gov (United States)

    Lundgren, Rylan J; Sappong-Kumankumah, Antonia; Stradiotto, Mark

    2010-02-08

    The syntheses of 2-(di-tert-butylphosphino)-N,N-dimethylaniline (L1, 71%) and 2-(di-1-adamantylphosphino)-N,N-dimethylaniline (L2, 74 %), and their application in Buchwald-Hartwig amination, are reported. In combination with [Pd(allyl)Cl](2) or [Pd(cinnamyl)Cl](2), these structurally simple and air-stable P,N ligands enable the cross-coupling of aryl and heteroaryl chlorides, including those bearing as substituents enolizable ketones, ethers, esters, carboxylic acids, phenols, alcohols, olefins, amides, and halogens, to a diverse range of amine and related substrates that includes primary alkyl- and arylamines, cyclic and acyclic secondary amines, N-H imines, hydrazones, lithium amide, and ammonia. In many cases, the reactions can be performed at low catalyst loadings (0.5-0.02 mol % Pd) with excellent functional group tolerance and chemoselectivity. Examples of cross-coupling reactions involving 1,4-bromochlorobenzene and iodobenzene are also reported. Under similar conditions, inferior catalytic performance was achieved when using Pd(OAc)(2), PdCl(2), [PdCl(2)(cod)] (cod = 1,5-cyclooctadiene), [PdCl(2)(MeCN)(2)], or [Pd(2)(dba)(3)] (dba = dibenzylideneacetone) in combination with L1 or L2, or by use of [Pd(allyl)Cl](2) or [Pd(cinnamyl)Cl](2) with variants of L1 and L2 bearing less basic or less sterically demanding substituents on phosphorus or lacking an ortho-dimethylamino fragment. Given current limitations associated with established ligand classes with regard to maintaining high activity across the diverse possible range of C-N coupling applications, L1 and L2 represent unusually versatile ligand systems for the cross-coupling of aryl chlorides and amines.

  19. High modulation bandwidth of a light-emitting diode with surface plasmon coupling (Conference Presentation)

    Science.gov (United States)

    Lin, Chun-Han; Tu, Charng-Gan; Yao, Yu-Feng; Chen, Sheng-Hung; Su, Chia-Ying; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, Chih-Chung

    2017-02-01

    Besides lighting, LEDs can be used for indoor data transmission. Therefore, a large modulation bandwidth becomes an important target in the development of visible LED. In this regard, enhancing the radiative recombination rate of carriers in the quantum wells of an LED is a useful method since the modulation bandwidth of an LED is related to the carrier decay rate besides the device RC time constant To increase the carrier decay rate in an LED without sacrificing its output power, the technique of surface plasmon (SP) coupling in an LED is useful. In this paper, the increases of modulation bandwidth by reducing mesa size, decreasing active layer thickness, and inducing SP coupling in blue- and green-emitting LEDs are illustrated. The results are demonstrated by comparing three different LED surface structures, including bare p-type surface, GaZnO current spreading layer, and Ag nanoparticles (NPs) for inducing SP coupling. In a single-quantum-well, blue-emitting LED with a circular mesa of 10 microns in radius, SP coupling results in a modulation bandwidth of 528.8 MHz, which is believed to be the record-high level. A smaller RC time constant can lead to a higher modulation bandwidth. However, when the RC time constant is smaller than 0.2 ns, its effect on modulation bandwidth saturates. The dependencies of modulation bandwidth on injected current density and carrier decay time confirm that the modulation bandwidth is essentially inversely proportional to a time constant, which is inversely proportional to the square-root of carrier decay rate and injected current density.

  20. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation.

    Science.gov (United States)

    Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua

    2010-08-01

    A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation.

  1. High-brightness, fiber-coupled pump modules in fiber laser applications

    Science.gov (United States)

    Hemenway, Marty; Urbanek, Wolfram; Hoener, Kylan; Kennedy, Keith W.; Bao, Ling; Dawson, David; Cragerud, Emily S.; Balsley, David; Burkholder, Gary; Reynolds, Mitch; Price, Kirk; Haden, Jim; Kanskar, Manoj; Kliner, Dahv A.

    2014-03-01

    High-power, high-brightness, fiber-coupled pump modules enable high-performance industrial fiber lasers with simple system architectures, multi-kW output powers, excellent beam quality, unsurpassed reliability, and low initial and operating costs. We report commercially available (element™), single-emitter-based, 9xx nm pump sources with powers up to 130 W in a 105 μm fiber and 250 W in a 200 μm fiber. This combination of high power and high brightness translates into improved fiber laser performance, e.g., simultaneously achieving high nonlinear thresholds and excellent beam quality at kW power levels. Wavelength-stabilized, 976 nm versions of these pumps are available for applications requiring minimization of the gain-fiber length (e.g., generation of high-peak-power pulses). Recent prototypes have achieved output powers up to 300 W in a 200 μm fiber. Extensive environmental and life testing at both the chip and module level under accelerated and real-world operating conditions have demonstrated extremely high reliability, with innovative designs having eliminated package-induced-failure mechanisms. Finally, we report integrated Pump Modules that provide conveniently formatted for fiber-laser pumping or direct-diode applications; these 19" rack-mountable, 2U units combine the outputs of up to 14 elements™ using fused-fiber combiners, and they include high-efficiency diode drivers and safety sensors.

  2. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor

    Institute of Scientific and Technical Information of China (English)

    Zhou Yu; Li Xinxing; Tan Renbing; Xue Wei; Huang Yongdan; Lou Shitao; Zhang Baoshun; Qin Hua

    2013-01-01

    In a grating-coupled high-electron-mobility transistor,weak terahertz emission with wavelength around 400μm was observed by using a Fourier-transform spectrometer.The absolute terahertz emission power was extracted from a strong background blackbody emission by using a modulation technique.The power of terahertz emission is proportional to the drain-source current,while the power of blackbody emission has a distinct relation with the electrical power.The dependence on the drain-source bias and the gate voltage suggests that the terahertz emission is induced by accelerated electrons interacting with the grating.

  3. Diastereo- and enantioselective three-component coupling approach to highly substituted pyrrolidines.

    Science.gov (United States)

    Chaulagain, Mani Raj; Felten, Albert E; Gilbert, Kevin; Aron, Zachary D

    2013-09-20

    The enantioselective synthesis of substituted pyrrolidines through a mild Lewis-acid catalyzed three-component coupling reaction between picolinaldehyde, amino acids, and activated olefins is reported. The reaction uses low catalyst loadings of commercially available chiral diamines and copper triflate proposed to self-assemble in conjunction with the chelating aldehydes, 4-substituted-2-picolinaldehydes or 4-methylthiazole-2-carboxaldehyde, to generate a catalyst complex. A model is provided to explain how this complex directs enantioselectivity. This work represents a significant advance in the ease, scope, and cost of producing highly substituted, enantioenriched pyrrolidines.

  4. Very high coupling of TM polarised light in photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Thorhauge, Morten; Frandsen, Lars Hagedorn;

    2003-01-01

    noteworthy is the transmission level, experimentally found to be above -3 dB in the wavelength range 1520-1690 nm, for TM polarised light in the coupled channel. It is noted that even though band calculations show that the propagation of the TM polarisation takes place below the TM valence band, very high......The experimental and simulated spectra for TE and TM polarised light for the transmission through photonic crystal directional couplers are presented. The 3D FDTD simulations successfully explain all the major features of the experimental spectra as well as the actual transmission level. Especially...

  5. Fully-depleted, back-illuminated charge-coupled devices fabricated on high-resistivity silicon

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Stephen E.; Groom, Donald E.; Palaio, Nick P.; Stover, Richard J.; Wei, Mingzhi

    2002-03-28

    Charge-coupled devices (CCD's) have been fabricated on high-resistivity silicon. The resistivity, on the order of 10,000 {Omega}-cm, allows for depletion depths of several hundred microns. Fully-depleted, back-illuminated operation is achieved by the application of a bias voltage to a ohmic contact on the wafer back side consisting of a thin in-situ doped polycrystalline silicon layer capped by indium tin oxide and silicon dioxide. This thin contact allows for good short wavelength response, while the relatively large depleted thickness results in good near-infrared response.

  6. Synchronization of a coupled Hodgkin-Huxley neurons via high order sliding-mode feedback

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Lopez, R. [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, 02200 Azcapotzalco, Mexico, D.F. (Mexico)], E-mail: raguilar@correo.azc.uam.mx; Martinez-Guerra, R. [Departamento de Control Automatico, CINVESTAV-IPN, Apartado Postal 14-740, Mexico, D.F. C.P. 07360 (Mexico)], E-mail: rguerra@ctrl.cinvestav.mx

    2008-07-15

    This work deals with the synchronizations of two both coupled Hodgkin-Huxley (H-H) neurons, where the master neuron posses inner noise and the slave neuron is considered in a resting state, (without inner noise) and an exciting state (with inner noise). The synchronization procedure is done via a feedback control, considering a class of high order sliding-mode controller which provides chattering reduction and finite time synchronization convergence, with a satisfactory performance. Theoretical analysis is done in order to show the closed-loop stability of the proposed controller and the calculated finite time for convergence. The main results are illustrated via numerical experiments.

  7. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    Science.gov (United States)

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  8. Acoustic emission analysis coupled with thermogravimetric experiments dedicated to high temperature corrosion studies on metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Serris, Eric; Al Haj, Omar; Peres, Veronique; Cournil, Michel [Ecole Nationale Superieure des Mines de Saint-Etienne (France); Kittel, Jean; Grosjean, Francois; Ropital, Francois [IFP Energies nouvelles, BP3 rond-point de l' echangeur de Solaize (France)

    2014-11-01

    High temperature corrosion of metallic alloys (like iron, nickel, zirconium alloys) can damage equipment of many industrial fields (refinery, petrochemical, nuclear..). Acoustic emission (AE) is an interesting method owing to its sensitivity and its non-destructive aspect to quantify the level of damage in use of these alloys under various environmental conditions. High temperature corrosive phenomena create stresses in the materials; the relaxation by cracks of these stresses can be recorded and analyzed using the AE system. The goal of our study is to establish an acoustic signals database which assigns the acoustic signals to the specific corrosion phenomena. For this purpose, thermogravimetric analysis (TGA) is coupled with acoustic emission (AE) devices. The oxidation of a zirconium alloy, zircaloy-4, is first studied using thermogravimetric experiment coupled to acoustic emission analysis at 900 C. An inward zirconium oxide scale, preliminary dense, then porous, grow during the isothermal isobaric step. The kinetic rate increases significantly after a kinetic transition (breakaway). This acceleration occurs with an increase of acoustic emission activity. Most of the acoustic emission bursts are recorded after the kinetic transition. Acoustic emission signals are also observed during the cooling of the sample. AE numerical treatments (using wavelet transform) completed by SEM microscopy characterizations allows us to distinguish the different populations of cracks. Metal dusting represents also a severe form of corrosive degradation of metal alloy. Iron metal dusting corrosion is studied by AE coupled with TGA at 650 C under C{sub 4}H{sub 10} + H{sub 2} + He atmosphere. Acoustic emission signals are detected after a significant increase of the sample mass.

  9. Spatial Pattern and Industrial Sector Structure Analysis on the Coupling and Coordinating Degree of Regional Economic Development and Environmental Pollution in China%中国经济与环境污染耦合度格局及工业结构解析

    Institute of Scientific and Technical Information of China (English)

    马丽; 金凤君; 刘毅

    2012-01-01

    There is coupling relationship between regional economy and environmental system. On the one hand, the economy system explored and processed resources from natural system, and discharged pollutants back to the natural system. On the other hand, natural ecological environment system provides resources and space for social economy activities, and feeds back with the natural disaster or environmental pollution. It is important to explore the relationship between economic development and environmental pollution. Given more existing researches focusing on the time scale, it is necessary to carry out the quantitative assessment research on the interaction between economic sub-system with environmental sub-system on the spatial scale. In this paper, the comprehensive assessment indicators for regional social economy system and environment system were constructed firstly. Then, the coupling degree and coordinating degree between regional economic development and environmental pollution was calculated. Based on the research on spatial patterns of coupling and coordinating degree of 350 prefectural units, it can be found that the economic and environment development in most prefectural units are still at a lower level of coupling and coordination. There are significant disparities in coupling and coordinating degree between eastern coastal areas and western inner areas. According to the coupling and coordinating value, Chinese territory could be divided into four types, i.e., economy-environment harmonious area, economy-environment gearing area, economy-environment rivaling area and low coupling degree of economy-environment area. Based on the industrial sector structure analysis of four types of area, it can be found that there is a spatial corresponding relationship between the regional industrial sector structure and the coupling-coordinating level. In the economy-environment harmonious area, high-level manufacturing industries of electrical machinery, electronic

  10. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons

    Science.gov (United States)

    Liu, Peter Q.; Luxmoore, Isaac J.; Mikhailov, Sergey A.; Savostianova, Nadja A.; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R.

    2015-11-01

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ~60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  11. Coupled-Multiplier Accelerator Produces High-Power Electron Beams for Industrial Applications

    Science.gov (United States)

    Hatridge, M.; McIntyre, P.; Roberson, S.; Sattarov, A.; Thomas, E.; Meitzler, Charles

    2003-08-01

    The coupled multiplier is a new approach to efficient generation of MeV d.c. power for accelerator applications. High voltage is produced by a series of modules, each of which consists of a high-power alternator, step-up transformer, and 3-phase multiplier circuit. The alternators are connected mechanically along a rotating shaft, and connected by insulating flexible couplers. This approach differs from all previous d.c. technologies in that power is delivered to the various stages of the system mechanically, rather than through capacitive or inductive electrical coupling. For this reason the capital cost depends linearly on required voltage and power, rather than quadratically as with conventional technologies. The CM technology enables multiple electron beams to be driven within a common supply and insulating housing. MeV electron beam is extremely effective in decomposing organic contaminants in water. A 1 MeV, 100 kW industrial accelerator using the CM technology has been built and is being installed for treatment of wastewater at a petrochemical plant.

  12. Performance of tonpilz transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient.

    Science.gov (United States)

    Thompson, Stephen C; Meyer, Richard J; Markley, Douglas C

    2014-01-01

    Tonpilz acoustic transducers for use underwater often include a stack of piezoelectric material pieces polarized along the length of the stack and having alternating polarity. The pieces are interspersed with electrodes, bonded together, and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, for example, with lead zirconate titanate (PZT) material, stack segmentation has no significant effect on the mechanical behavior of the device in its normal operating band near the fundamental resonance. However, when a high coupling coefficient material such as lead magnesium niobate-lead titanate (PMN-PT) is used to achieve a wider bandwidth with the tonpilz, the performance difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater tonpilz acoustic transducers. Included is a discussion of a particular tonpilz transducer design using single crystal piezoelectric material with high coupling coefficient compared with a similar design using more traditional PZT ceramics.

  13. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.

    Science.gov (United States)

    Liu, Peter Q; Luxmoore, Isaac J; Mikhailov, Sergey A; Savostianova, Nadja A; Valmorra, Federico; Faist, Jérôme; Nash, Geoffrey R

    2015-11-20

    Metamaterials and plasmonics are powerful tools for unconventional manipulation and harnessing of light. Metamaterials can be engineered to possess intriguing properties lacking in natural materials, such as negative refractive index. Plasmonics offers capabilities of confining light in subwavelength dimensions and enhancing light-matter interactions. Recently, the technological potential of graphene-based plasmonics has been recognized as the latter features large tunability, higher field-confinement and lower loss compared with metal-based plasmonics. Here, we introduce hybrid structures comprising graphene plasmonic resonators coupled to conventional split-ring resonators, thus demonstrating a type of highly tunable metamaterial, where the interaction between the two resonances reaches the strong-coupling regime. Such hybrid metamaterials are employed as high-speed THz modulators, exhibiting ∼60% transmission modulation and operating speed in excess of 40 MHz. This device concept also provides a platform for exploring cavity-enhanced light-matter interactions and optical processes in graphene plasmonic structures for applications including sensing, photo-detection and nonlinear frequency generation.

  14. Understanding the Effects of Roasting on Antioxidant Components of Coffee Brews by Coupling On-line ABTS Assay to High Performance Size Exclusion Chromatography.

    Science.gov (United States)

    Opitz, Sebastian E W; Goodman, Bernard A; Keller, Marco; Smrke, Samo; Wellinger, Marco; Schenker, Stefan; Yeretzian, Chahan

    2017-03-01

    Coffee is a widely consumed beverage containing antioxidant active compounds. During roasting the phytochemical composition of the coffee bean changes dramatically and highly polymeric substances are produced. Besides chlorogenic acids that are already present in green coffee beans, melanoidins show antioxidant capacity as well. To employ post-column derivatisation by coupling high performance size exclusion chromatography (HPSEC) to an antioxidant assay to investigate the effect of roasting on the properties of antioxidant active compounds in coffee brews. We have investigated the antioxidant capacity of Coffea arabica (Arabica) and C. canephora (Robusta) beans that were roasted over the full spectrum of roast conditions (four roasting speeds to three roast degrees) by comparing the results from HPSEC coupled on-line to the ABTS assay with those from two batch assays, Folin Ciocalteu (FC) and oxygen radical absorbance capacity (ORAC) assay. The antioxidant capacity showed a general decrease towards slower and darker roasted coffee for all three assays, indicative of heat degradation of active compounds. Hence, low molecular weight (LMW) compounds such as chlorogenic acids (CGAs) decreased progressively already from relatively mild roasting conditions. In contrast, high molecular weight (HMW) compounds (e.g. melanoidins) increased from light to dark roast degrees with lowering magnitude towards slower roasting profiles. By coupling HPSEC on-line to the ABTS assay we were able to separately quantify the contribution of HMW and LMW compounds to the total antioxidant capacity, increasing our understanding of the roast process. © 2016 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd. © 2016 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd.

  15. Understanding the Effects of Roasting on Antioxidant Components of Coffee Brews by Coupling On‐line ABTS Assay to High Performance Size Exclusion Chromatography

    Science.gov (United States)

    Opitz, Sebastian E.W.; Goodman, Bernard A.; Keller, Marco; Smrke, Samo; Wellinger, Marco; Schenker, Stefan

    2016-01-01

    Abstract Introduction Coffee is a widely consumed beverage containing antioxidant active compounds. During roasting the phytochemical composition of the coffee bean changes dramatically and highly polymeric substances are produced. Besides chlorogenic acids that are already present in green coffee beans, melanoidins show antioxidant capacity as well. Objective To employ post‐column derivatisation by coupling high performance size exclusion chromatography (HPSEC) to an antioxidant assay to investigate the effect of roasting on the properties of antioxidant active compounds in coffee brews. Methodology We have investigated the antioxidant capacity of Coffea arabica (Arabica) and C. canephora (Robusta) beans that were roasted over the full spectrum of roast conditions (four roasting speeds to three roast degrees) by comparing the results from HPSEC coupled on‐line to the ABTS assay with those from two batch assays, Folin Ciocalteu (FC) and oxygen radical absorbance capacity (ORAC) assay. Results The antioxidant capacity showed a general decrease towards slower and darker roasted coffee for all three assays, indicative of heat degradation of active compounds. Hence, low molecular weight (LMW) compounds such as chlorogenic acids (CGAs) decreased progressively already from relatively mild roasting conditions. In contrast, high molecular weight (HMW) compounds (e.g. melanoidins) increased from light to dark roast degrees with lowering magnitude towards slower roasting profiles. Conclusion By coupling HPSEC on‐line to the ABTS assay we were able to separately quantify the contribution of HMW and LMW compounds to the total antioxidant capacity, increasing our understanding of the roast process. © 2016 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd. PMID:28008674

  16. Development of High Precision Tsunami Runup Calculation Method Coupled with Structure Analysis

    Science.gov (United States)

    Arikawa, Taro; Seki, Katsumi; Chida, Yu; Takagawa, Tomohiro; Shimosako, Kenichiro

    2017-04-01

    The 2011 Great East Japan Earthquake (GEJE) has shown that tsunami disasters are not limited to inundation damage in a specified region, but may destroy a wide area, causing a major disaster. Evaluating standing land structures and damage to them requires highly precise evaluation of three-dimensional fluid motion - an expensive process. Our research goals were thus to develop a coupling STOC-CADMAS (Arikawa and Tomita, 2016) coupling with the structure analysis (Arikawa et. al., 2009) to efficiently calculate all stages from tsunami source to runup including the deformation of structures and to verify their applicability. We also investigated the stability of breakwaters at Kamaishi Bay. Fig. 1 shows the whole of this calculation system. The STOC-ML simulator approximates pressure by hydrostatic pressure and calculates the wave profiles based on an equation of continuity, thereby lowering calculation cost, primarily calculating from a e epi center to the shallow region. As a simulator, STOC-IC solves pressure based on a Poisson equation to account for a shallower, more complex topography, but reduces computation cost slightly to calculate the area near a port by setting the water surface based on an equation of continuity. CS3D also solves a Navier-Stokes equation and sets the water surface by VOF to deal with the runup area, with its complex surfaces of overflows and bores. STR solves the structure analysis including the geo analysis based on the Biot's formula. By coupling these, it efficiently calculates the tsunami profile from the propagation to the inundation. The numerical results compared with the physical experiments done by Arikawa et. al.,2012. It was good agreement with the experimental ones. Finally, the system applied to the local situation at Kamaishi bay. The almost breakwaters were washed away, whose situation was similar to the damage at Kamaishi bay. REFERENCES T. Arikawa and T. Tomita (2016): "Development of High Precision Tsunami Runup

  17. High degree of overlap between responses to a virus and to the house dust mite allergen in airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Korneliusz Golebski

    Full Text Available BACKGROUND: Airway epithelium is widely considered to play an active role in immune responses through its ability to detect changes in the environment and to generate a microenvironment for immune competent cells. Therefore, besides its role as a physical barrier, epithelium affects the outcome of the immune response by the production of various pro-inflammatory mediators. METHODS: We stimulated airway epithelial cells with viral double stranded RNA analogue poly(I:C or with house dust mite in a time course of 24 hours. In order to determine cytokines production by stimulated cells, we performed multiplex enzyme linked immunosorbant assay (ELISA. RESULTS: We demonstrate that the temporal pattern of the genes that respond to virus exposure in airway epithelium resembles to a significant degree their pattern of response to HDM. The gene expression pattern of EGR1, DUSP1, FOSL1, JUN, MYC, and IL6 is rather similar after viral (poly(I:C and HDM exposure. However, both triggers also induce a specific response (e.g. ATF3, FOS, and NFKB1. We confirmed these data by showing that epithelial cells produce a variety of similar mediators in response to both poly(I:C and HDM challenge (IL1-RA, IL-17, IFN-α and MIP1-α, sometimes with a quantitative difference in response (IL2-R, IL-6, IL-8, MCP-1, MIG, and HGF. Interestingly, only four mediators (IL-12, IP-10, RANTES and VEGF where up-regulated specifically by poly(I:C and not by HDM. Additionally, we report that pre-exposure to HDM deregulates production of cytokines and mediators in response to poly(I:C. CONCLUSIONS: Epithelial cells responses to the HDM-allergen and a virus strongly resemble both in gene expression and in protein level explaining why these two responses may affect each other.

  18. A high sensitivity humidity sensor based on micro-ring resonator with three coupling points

    Science.gov (United States)

    Guo, Shi-liang; Wang, Wen-juan; Hu, Chun-hai

    2014-12-01

    A novel high sensitivity humidity sensor based on micro-ring resonator with three coupling points (MRRTCP) is reported. Since the dielectric constant of Polyimide is highly sensible to the relative humidity of the environment, we choose the Polyimide (PI) as the moisture material. The effective refractive index of the sensing part of the sensor changes as the relative humidity of the environment changes, this leading to an obvious shift of the output spectrum. The sensing range of the relative humidity sensor is 0~100%RH, and the sensitivity is 0.0017μm/%RH, and the structure is relatively simple and could be used in micro-scale humidity sensing.

  19. Coupling of high order multiplication perturbation method and reduction method for variable coefficient singular perturbation problems

    Institute of Scientific and Technical Information of China (English)

    Wen-zhi ZHANG; Pei-yan HUANG

    2014-01-01

    Based on the precise integration method (PIM), a coupling technique of the high order multiplication perturbation method (HOMPM) and the reduction method is proposed to solve variable coefficient singularly perturbed two-point boundary value prob-lems (TPBVPs) with one boundary layer. First, the inhomogeneous ordinary differential equations (ODEs) are transformed into the homogeneous ODEs by variable coefficient dimensional expansion. Then, the whole interval is divided evenly, and the transfer ma-trix in each sub-interval is worked out through the HOMPM. Finally, a group of algebraic equations are given based on the relationship between the neighboring sub-intervals, which are solved by the reduction method. Numerical results show that the present method is highly efficient.

  20. Two-dimensional Josephson junction arrays coupled through a high-Q cavity

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.

    2001-01-01

    the cavity. The highly resonant cavity induces synchronized behavior, which is qualitatively different than what is familiar from other studies on nonlinear oscillator arrays, for example the Kuramoto model. We also address the effects of disorder, as well as the role of detuning between the spontaneous...... emission frequency of the junctions and the cavity resonant frequency. We show with a simple argument that we can predict the scaling behavior of disorder with the size of the array. The consequences for the design of microwave oscillators in the Gigahertz region are discussed......The problem of disordered two-dimensional arrays of underdamped Josephson junctions is addressed. Our simulations show that when coupled to a high-Q cavity, the array exhibits synchronized behavior, and the power emitted can be considerably increased once enough junctions are activated to pump...

  1. Foundation Degrees: A Risky Business?

    Science.gov (United States)

    Rowley, Jennifer

    2005-01-01

    Purpose: Foundation degrees, the new proposal for sub-degree vocational education in the UK, are characterised by innovation both in their design (curriculum, teaching, learning and assessment) and in the marketplace for which they are designed. This article argues that the development and delivery of foundation degrees carry a high level of risk,…

  2. A Study on the High Degree of Autonomy from the Perspective of Governance%治理视野下的高度自治权研究

    Institute of Scientific and Technical Information of China (English)

    谢忠华

    2014-01-01

    高度自治权是特别行政区制度的核心要素,特别行政区制度是高度自治权的载体。高度自治权内涵的廓清,对于分析特别行政区制度在我国国家管理体制中的地位与作用具有极为重要的理论意义。在大国治理背景下,高度自治权可以经由治理视野加以理解。以高度自治权为核心的特别行政区治理,既是授权自治,又体现为一种新型的地方治理,法律治理与社会治理。%The high degree of autonomy is the core element of the system of the special administra-tive region ,w hich is in turn the carrier of the former .Clarifying the connotation of the high degree of autonomy is of theoretical significance to the analysis about the position and function of the system of the special administrative region in our national management system .From the perspec-tive of governance ,the high degree of autonomy can be understood against the background of the big country’s governance .With the high degree of autonomy as its core ,the governance of the special administrative region is authorized autonomy ,w hich embodies a new kind of local ,legal and social governance .

  3. Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power

    Directory of Open Access Journals (Sweden)

    R. B. Yoder

    2005-11-01

    Full Text Available A slab-symmetric dielectric-loaded accelerator structure, consisting of a vacuum gap between dielectric-lined conducting walls, is described. The device is resonantly excited by an external drive laser which is side coupled into the acceleration region; a novel coupling scheme, which consists of an array of narrow, equally spaced slots in the upper structure boundary, is presented and analyzed in detail. This structure partakes of the advantages of earlier slab-symmetric optical acceleration proposals, but will use a terahertz-frequency external radiation source (λ=340   μm, allowing realistic electron beams to be used in a proof-of-principle experiment. Two- and three-dimensional electromagnetic simulations are used to verify the mode patterns and study the effects of the couplers, including time-dependent calculations of the filling of the structure and particle-in-cell computations of the beam wakefields. Details of the resonance are found to be highly sensitive to the coupling slot geometry: the presence of the couplers can lead to frequency detuning, changes in the field breakdown limits and overall Q factor, and distortions of the field pattern. Beam wakefields are enhanced by the presence of the slots, but found to have no significant effect on the beam transport. The resonant accelerating fields, which are nearly constant along the short transverse direction, are found to have between 10 and 15 times the amplitude of the driving radiation, with only a small (<10% admixture of other nonaccelerating modes. Field gradients are computed to be near 100  MV/m when the structure is driven with 100 MW of terahertz laser power. Possible manufacturing methods for a prototype device are discussed.

  4. Energy coupling and plume dynamics during high power laser heating of metals

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S. [Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering]|[Lawrence Berkeley National Lab., CA (United States). Environmental Energy Technologies Div.

    1997-05-01

    High power laser heating of metals was studied utilizing experimental and numerical methods with an emphasis on the laser energy coupling with a target and on the dynamics of the laser generated vapor flow. Rigorous theoretical modeling of the heating, melting, and evaporation of metals due to laser radiation with a power density below the plasma shielding threshold was carried out. Experimentally, the probe beam deflection technique was utilized to measure the propagation of a laser induced shock wave. The effects of a cylindrical cavity in a metal surface on the laser energy coupling with a solid were investigated utilizing photothermal deflection measurements. A numerical calculation of target temperature and photothermal deflection was performed to compare with the measured results. Reflection of the heating laser beam inside the cavity was found to increase the photothermal deflection amplitude significantly and to enhance the overall energy coupling between a heating laser beam and a solid. Next, unsteady vaporization of metals due to nanosecond pulsed laser heating with an ambient gas at finite pressure was analyzed with a one dimensional thermal evaporation model for target heating and one dimensional compressible flow equations for inviscid fluid for the vapor flow. Lastly, the propagation of a shock wave during excimer laser heating of aluminum was measured with the probe beam deflection technique. The transit time of the shock wave was measured at the elevation of the probe beam above the target surface; these results were compared with the predicted behavior using ideal blast wave theory. The propagation of a gaseous material plume was also observed from the deflection of the probe beam at later times.

  5. The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X

    CERN Document Server

    Motte, Frédérique; Schilke, P; Schneider, N; Menten, K M; Broguière, D

    2007-01-01

    We have made an extensive 1.2mm continuum mosaicing study of the Cygnus X molecular cloud complex using the MAMBO cameras at the IRAM 30 m telescope. We then compared our mm maps with mid-IR images, and have made SiO(2-1) follow-up observations of the best candidate progenitors of high-mass stars. Our complete study of Cygnus X provides, for the first time, an unbiased census of massive young stellar objects. We discover 129 massive dense cores, among which 42 are probable precursors of high-mass stars. Our study qualifies 17 cores as good candidates for hosting massive IR-quiet protostars, while up to 25 cores potentially host high-luminosity IR protostars. We fail to discover the high-mass analogs of pre-stellar dense cores in CygnusX, but find several massive starless clumps that might be gravitationally bound. Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it gives the first statistical estimates of their lifetime. In contrast to wh...

  6. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian;

    2013-01-01

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition...... temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 98°C and stable operation up to a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, where the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67d...

  7. Quality evaluation of moluodan concentrated pill using high-performance liquid chromatography fingerprinting coupled with chemometrics.

    Science.gov (United States)

    Tao, Lingyan; Zhang, Qing; Wu, Yongjiang; Liu, Xuesong

    2016-12-01

    In this study, a fast and effective high-performance liquid chromatography method was developed to obtain a fingerprint chromatogram and quantitative analysis simultaneously of four indexes including gallic acid, chlorogenic acid, albiflorin and paeoniflorin of the traditional Chinese medicine Moluodan Concentrated Pill. The method was performed by using a Waters X-bridge C18 reversed phase column on an Agilent 1200S high-performance liquid chromatography system coupled with diode array detection. The mobile phase of the high-performance liquid chromatography method was composed of 20 mmol/L phosphate solution and acetonitrile with a 1 mL/min eluent velocity, under a detection temperature of 30°C and a UV detection wavelength of 254 nm. After the methodology validation, 16 batches of Moluodan Concentrated Pill were analyzed by this high-performance liquid chromatography method and both qualitative and quantitative evaluation results were achieved by similarity analysis, principal component analysis and hierarchical cluster analysis. The results of these three chemometrics were in good agreement and all indicated that batch 10 and batch 16 showed significant differences with the other 14 batches. This suggested that the developed high-performance liquid chromatography method could be applied in the quality evaluation of Moluodan Concentrated Pill.

  8. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai

    2015-10-26

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  9. High energy density soft X-ray momentum coupling to comet analogs for NEO mitigation

    Science.gov (United States)

    Remo, J. L.; Lawrence, R. J.; Jacobsen, S. B.; Furnish, M. D.

    2016-12-01

    We applied MBBAY high fluence pulsed radiation intensity driven momentum transfer analysis to calculate X-ray momentum coupling coefficients CM=(Pa s)/(J/m2) for two simplified comet analog materials: i) water ice, and ii) 70% water ice and 30% distributed olivine grains. The momentum coupling coefficients (CM) max of 50×10-5 s/m, are about an order of magnitude greater than experimentally determined and computed MBBAY values for meteoritic materials that are analogs for asteroids. From the values for comet analog materials we infer applied energies (via momentum transfer) required to deflect an Earth crossing comet from impacting Earth by a sufficient amount ( 1 cm/s) to avert collision a year in advance. Comet model calculations indicate for CM=5×10-4 s/m the deflection of a 2 km comet with a density 600 kg/m3 by 1 cm/s requires an applied energy on the target surface of 5×1013 J, the equivalent of 12 kT of TNT. Depending on the geometrical configuration of the interaction the explosive yield required could be an order of magnitude higher.

  10. High speed gain coupled DFB laser diode integrated with MQW electroabsorption modulator

    CERN Document Server

    Kim, M G; Park, S S; Oh, D K; Lee, H T; Kim, H M; Pyun, K E

    1998-01-01

    We have demonstrated stable modulation characteristics of the gain coupled distributed feedback(GC-DFB) laser diode integrated with butt-coupled InGaAsP/InGaAsP strain compensated MQW(multiple-Quantum-well) modulator for high speed optical transmission. For this purpose, we have adopted the InGaAsP/InGaAsP strain compensated MQW structure for the EA modulator and n-doped InGaAs absorptive grating for DFB laser. The typical threshold current and slope efficiency were about 15 mA and 0.1 mW/mA, respectively. The extinction ratio of fabricated integrated device was about 15 dB at -2 V, and the small signal bandwidth was shown to be around 17GHz. We also found that the alpha parameter becomes negative at below a -0.6 V bias voltage. We transmitted 10 Gbps NRZ electrical signal over 90 km of standard single mode optical fiber (SMF). A clearly opened eye diagram was observed in the modulated output.

  11. Analysis of metalaxyl racemate using high performance liquid chromatography coupled with four kinds of detectors.

    Science.gov (United States)

    Chen, Tao; Fan, Jun; Gao, Ruiqi; Wang, Tai; Yu, Ying; Zhang, Weiguang

    2016-10-07

    Chiral stationary phase-high performance liquid chromatography coupled with various detectors has been one of most commonly used methods for analysis and separation of chiral compounds over the past decades. Various detectors exhibit different characteristics in qualitative and quantitative studies under different chromatographic conditions. Herein, a comparative evaluation of HPLC coupled with ultraviolet, optical rotation, refractive index, and evaporative light scattering detectors has been conducted for qualitative and quantitative analyses of metalaxyl racemate. Effects of separation conditions on the peak area ratio between two enantiomers, including sample concentration, column temperature, mobile phase composition, as well as flow rate, have been investigated in detail. In addition, the limits of detection, the limits of quantitation, quantitative range and precision for these two enantiomers by using four detectors have been also studied. As indicated, the chromatographic separation conditions have been slight effects on ultraviolet and refractive index detections and the peak area ratio between two enantiomers remains almost unchanged, but the evaporative light scattering detection has been significantly affected by the above-mentioned chromatographic conditions and the corresponding peak area ratios varied greatly. Moreover, the limits of detection, the limits of quantitation, and the quantitative ranges of two enantiomers with UV detection were remarkably lower by 1-2 magnitudes than the others. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fibre-coupled air-cooled high-power diode laser systems

    Science.gov (United States)

    Bartoschewski, Daniel; Meinschien, Jens; Fornahl, Udo

    2008-02-01

    Current laser systems based on high-power laser diode bars need active cooling either water cooling or the use of thermo-electric coolers to ensure an adequate operating temperature for a reasonable lifetime. Here is a solution with a bonded fin heat sink and forced ventilation introduced, a diode laser bar with an improved efficiency and a low thermal resistance as well as an optical system for a highly efficient fibre coupling. With this system it is possible to couple 25 Watt continuous wave power from a single laser diode bar on a passive heat sink into a fibre with 200 μm core diameter. The basis for this performance is a heat sink with an exceptionally low thermal resistance. Several new features are introduced to reach a low overall gradient between the laser diode temperature and the ambient temperature. In addition, it does geometrically fit to the layout of the optical design. Shape and aspect ratio of both heat sink and housing of the laser system are matched to each other. Another feature is the use of hard-soldered or pressed bars to achieve a thermo-mechanically stable performance. The long-term thermal characteristic was tested. The operation temperature comes to saturation after about 30 minutes. Therefore it can be used for continuous wave operation at 25 Watt output power. At a quasi continuous operation at 70 percent duty cycle a peak power of 30 Watt out of the fibre is possible. From this technology results a compact fibre coupled laser system what is simple to drive compared with current high power laser systems, because there is no need to control the operating temperature. This gives way for more compact driver solutions. Fields of application are laser marking systems and material processing, where a simple driver system is requested. Also medical applications need this requirement and a compact cooling too so that mobile integrated solutions become possible. Further developments allow multiple laser diode systems for specific industrial

  13. Monitoring Urban Areas with Sentinel-2A Data: Application to the Update of the Copernicus High Resolution Layer Imperviousness Degree

    Directory of Open Access Journals (Sweden)

    Antoine Lefebvre

    2016-07-01

    Full Text Available Monitoring with high resolution land cover and especially of urban areas is a key task that is more and more required in a number of applications (urban planning, health monitoring, ecology, etc.. At the moment, some operational products, such as the “Copernicus High Resolution Imperviousness Layer”, are available to assess this information, but the frequency of updates is still limited despite the fact that more and more very high resolution data are acquired. In particular, the recent launch of the Sentinel-2A satellite in June 2015 makes available data with a minimum spatial resolution of 10 m, 13 spectral bands, wide acquisition coverage and short time revisits, which opens a large scale of new applications. In this work, we propose to exploit the benefit of Sentinel-2 images to monitor urban areas and to update Copernicus Land services, in particular the High Resolution Layer imperviousness. The approach relies on independent image classification (using already available Landsat images and new Sentinel-2 images that are fused using the Dempster–Shafer theory. Experiments are performed on two urban areas: a large European city, Prague, in the Czech Republic, and a mid-sized one, Rennes, in France. Results, validated with a Kappa index over 0.9, illustrate the great interest of Sentinel-2 in operational projects, such as Copernicus products, and since such an approach can be conducted on very large areas, such as the European or global scale. Though classification and data fusion are not new, our process is original in the way it optimally combines uncertainties issued from classifications to generate more confident and precise imperviousness maps. The choice of imperviousness comes from the fact that it is a typical application where research meets the needs of an operational production. Moreover, the methodology presented in this paper can be used in any other land cover classification task using regular acquisitions issued, for

  14. Systemic Oxidative Stress Is Increased to a Greater Degree in Young, Obese Women Following Consumption of a High Fat Meal

    Directory of Open Access Journals (Sweden)

    Richard J. Bloomer

    2009-01-01

    Full Text Available High fat meals induce oxidative stress, which is associated with the pathogenesis of disease. Obese individuals have elevated resting biomarkers of oxidative stress compared to non-obese. We compared blood oxidative stress biomarkers in obese (n = 14; 30 ± 2 years; BMI 35 ± 1 kg•m−2 and non-obese (n = 16; 24 ± 2 years; BMI 23 ± 1 kg•m−2 women, in response to a high fat meal. Blood samples were collected pre-meal (fasted, and at 1, 2, 4 and 6 hours post meal, and assayed for trolox equivalent antioxidant capacity (TEAC, xanthine oxidase activity (XO, hydrogen peroxide (H2O2, malondialdehyde (MDA, triglycerides (TAG, and glucose. An obesity status effect was noted for all variables (p 0.05, contrasts revealed greater values in obese compared to non-obese women for XO, H2O2, MDA, TAG and glucose, and lower values for TEAC at times from 1–6 hours post feeding (p ≤ 0.03. We conclude that young, obese women experience a similar pattern of increase in blood oxidative stress biomarkers in response to a high fat meal, as compared to non-obese women. However, the overall oxidative stress is greater in obese women, and values appear to remain elevated for longer periods of time post feeding. These data provide insight into another potential mechanism related to obesity-mediated morbidity.

  15. Functional hydrophilic polystyrene beads with uniformly size and high cross-linking degree facilitated rapid separation of exenatide.

    Science.gov (United States)

    Li, Qiang; Zhao, Lan; Zhang, Rongyue; Huang, Yongdong; Zhang, Yan; Zhang, Kun; Wu, Xuexing; Zhang, Zhigang; Gong, Fangling; Su, Zhiguo; Ma, Guanghui

    2016-04-01

    A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides.

  16. Risk markers of late high-degree atrioventricular block in patients with left ventricular dysfunction after an acute myocardial infarction: a CARISMA substudy

    DEFF Research Database (Denmark)

    Gang, Uffe Jakob Ortved; Jøns, Christian; Jørgensen, Rikke Mørch;

    2011-01-01

    was documented in 28 (10%) patients during a median follow-up of 2.0 (0.4-2.0) years. Heart rate variability (HRV) measures and non-sustained ventricular tachycardia occurring at the week 6 Holter monitoring were highly predictive of HAVB. Power law slope .... An ILR was implanted for continuous arrhythmia surveillance. Risk stratification testing was performed at inclusion and 6 weeks after AMI. The tests included echocardiography, electrocardiogram (ECG), 24 h Holter monitoring, and an invasive electrophysiological study. High-degree atrioventricular block...

  17. Quantification of Trace Amounts of Impurities in High Purity Cobalt by High Resolution Inductively Coupled Plasma Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    Hua Lin XIE; Xi Du NIE; You Gen TANG

    2006-01-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn, Sb, Ba, Pt, Au and Pb in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects due to thc presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination was tested and discussed. Correction for matrix effects, Sc, Rh and Bi were used as internal standards. The detection limits is 0.003-0.57 μg/g, the recovery ratio is 92.2%- 111.2%, and the RSD is less than 3.6%. The method is accurate, quick and convenient. It has been applied to the determination of trace impurities in high purity cobalt with satisfactory results.

  18. Quantification of trace amounts of impurities in high purity cobalt by high resolution inductively coupled plasma mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIE Hualin; HUANG Kelong; NIE Xidu; TANG Yougen

    2007-01-01

    An analytical method using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) for rapid simultaneous determination of 24 elements (Be, Mg, Al, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Mo, Ag, Cd, Sn,Sb, Ba, Pt, Au, and Pb) in high purity cobalt was described. Sample digestions were performed in closed microwave vessels using HNO3 and HCl. The matrix effects because of the presence of excess HCl and Co were evaluated. The usefulness of high mass resolution for overcoming some spectral interference was demonstrated. The optimum conditions for the determination were tested and discussed. The standard addition method was employed for quantitative analysis. The detection limits were 0.016-1.50 μg.g-1, the recovery ratios were 92.2%-111.2%, and the RSD was less than 3.6%. The method was accurate, quick, and convenient. It was applied to the determination of trace impurities in high purity cobalt with satisfactory results.

  19. Preparation of acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution in aqueous solution and their properties.

    Science.gov (United States)

    Luo, Zhi-Gang; Shi, Yong-Cheng

    2012-09-19

    Acetylated waxy, normal, and high-amylose maize starches with intermediate degrees of substitution (DS) were prepared in aqueous solution with 20% (w/w) sodium hydroxide as a catalyst. The level of DS was in the order high-amylose maize starch > waxy maize starch > normal maize starch. Settling volume indicated that during the early reaction, normal maize starch swelled to a lesser extent compared with waxy and high-amylose maize starches. The settling volume of all three starches increased initially but decreased after long reaction time. Aggregation of granules was observed as DS increased. The A-type X-ray diffraction pattern of acetylated normal and waxy maize starches weakened as DS increased, whereas the diffraction peaks disappeared in acetylated high-amylose starch when DS was 0.95. Low DS promoted the swelling of the starches in water, but at high DS, the starches became more hydrophobic and the peak viscosity of acetylated starches decreased.

  20. Performance of transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient

    CERN Document Server

    Thompson, Stephen C; Markley, Douglas C

    2013-01-01

    Underwater acoustic transducers often include a stack of thickness polarized piezoelectric material pieces of alternating polarity interspersed with electrodes, bonded together and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency, so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, stack segmentation has no significant effect on the mechanical behavior of the device. However, when a high coupling coefficient material such as PMN-PT is used to achieve a wider bandwidth, the difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater acoustic transducers, particularly tonpilz transducer elements. Included is discussion of transduce...

  1. Simulations of electromagnetic effects in high frequency capacitively coupled discharges using the Darwin approximation

    CERN Document Server

    Eremin, Denis; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2012-01-01

    The Darwin approximation is investigated for its possible use in simulation of electromagnetic effects in large size, high frequency capacitively coupled discharges. The approximation is utilized within the framework of two different fluid models which are applied to typical cases showing pronounced standing wave and skin effects. With the first model it is demonstrated that Darwin approximation is valid for treatment of such effects in the range of parameters under consideration. The second approach, a reduced nonlinear Darwin approximation-based model, shows that the electromagnetic phenomena persist in a more realistic setting. The Darwin approximation offers a simple and efficient way of carrying out electromagnetic simulations as it removes the Courant condition plaguing explicit electromagnetic algorithms and can be implemented as a straightforward modification of electrostatic algorithms. The algorithm described here avoids iterative schemes needed for the divergence cleaning and represents a fast and ...

  2. Phytochemical analysis of Hibiscus caesius using high performance liquid chromatography coupled with mass spectrometry.

    Science.gov (United States)

    Ain, Quratul; Naveed, Muhammad Na; Mumtaz, Abdul Samad; Farman, Muhammad; Ahmed, Iftikhar; Khalid, Nauman

    2015-09-01

    Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.

  3. An integrable Hamiltonian hierarchy, a high-dimensional loop algebra and associated integrable coupling system

    Institute of Scientific and Technical Information of China (English)

    张玉峰

    2003-01-01

    A subalgebra of loop algebra A2 is established. Therefore, a new isospectral problem is designed. By making use of Tu's scheme, a new integrable system is obtained, which possesses bi-Hamiltonian structure. As its reductions,a formalism similar to the well-known Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and a generalized standard form of the Schrodinger equation are presented. In addition, in order for a kind of expanding integrable system to be obtained, a proper algebraic transformation is supplied to change loop algebra A2 into loop algebra A1. Furthermore,a high-dimensional loop algebra is constructed, which is different from any previous one. An integrable coupling of the system obtained is given. Finally, the Hamiltonian form of a binary symmetric constrained flow of the system obtained is presented.

  4. DIFFUSION COUPLE BETWEEN HIGH STRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Diffusion couples of tool materials (prepared from commercially available high speed steel and YW1 carbide tools) and the wear-resisting aluminum bronze (KK) were prepared by casting to study the diffusion pattern and phase formation sequence in order to clarify the diffusion wear of the tools during the turning of the wear-resisting aluminum bronze. Optical micrographs show that good contact was obtained at the tool material-KK interface. After annealed at 900 ℃ for 6 h, strong inter-diffusion across the interface was observed. Microprobe analysis was used to study the elemental distribution across the interface and X-ray diffractometry was used to study the phases formed at the interface.

  5. Global weak solutions for coupled transport processes in concrete walls at high temperatures

    CERN Document Server

    Beneš, Michal

    2012-01-01

    We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. The limit then provides a weak solution for the original problem. A practical example illustrates a performance of the model for a problem of a concrete segment exposed to transient heating according to three different fire scenarios. Here, the focus is on the short-term pore pressure build up, which can lead to explosive spalling of concrete and catastrophic failures of concrete structures.

  6. Equation-of-motion coupled cluster method for the description of the high spin excited states

    Science.gov (United States)

    Musiał, Monika; Lupa, Łukasz; Kucharski, Stanisław A.

    2016-04-01

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R1 and R2 singlet equations in the case of quintets, only R2 operator survives with 5 diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C2 molecule and quintet states of C and Si atoms.

  7. Refractometric sensor utilizing a vertically coupled polymeric microdisk resonator incorporating a high refractive index overlay.

    Science.gov (United States)

    Kim, Gun-Duk; Son, Geun-Sik; Lee, Hak-Soon; Kim, Ki-Do; Lee, Sang-Shin

    2009-04-01

    A refractometric sensor resorting to a vertically coupled polymeric microdisk resonator was demonstrated, estimating the refractive index (RI) of an analyte by monitoring the resonant wavelength shift in its transfer characteristics. The disk resonator was especially overlaid with a high RI TiO2 film, thereby reinforcing the interaction of the evanescent field of its guided mode with the analyte. The sensitivity of the sensor was theoretically and experimentally confirmed to be enhanced by adjusting the overlay thickness. The fabricated sensor provided the maximum sensitivity of approximately 294 nm/RIU (refractive index unit) with the 40-nm-thick overlay, which is equivalent to an improvement of 150% compared with the case without the overlay.

  8. High content screening for G protein-coupled receptors using cell-based protein translocation assays

    DEFF Research Database (Denmark)

    Grånäs, Charlotta; Lundholt, Betina Kerstin; Heydorn, Arne

    2005-01-01

    G protein-coupled receptors (GPCRs) have been one of the most productive classes of drug targets for several decades, and new technologies for GPCR-based discovery promise to keep this field active for years to come. While molecular screens for GPCR receptor agonist- and antagonist-based drugs...... as valuable discovery tools for several years. The application of high content cell-based screening to GPCR discovery has opened up additional possibilities, such as direct tracking of GPCRs, G proteins and other signaling pathway components using intracellular translocation assays. These assays provide...... the capability to probe GPCR function at the cellular level with better resolution than has previously been possible, and offer practical strategies for more definitive selectivity evaluation and counter-screening in the early stages of drug discovery. The potential of cell-based translocation assays for GPCR...

  9. Topics in HPM (High-Power Microwave) generation, coupling, and interaction

    Science.gov (United States)

    Casey, Kendall F.

    1990-01-01

    A collection is presented of technical notes on various aspects of high power microwave (HPM) generation, coupling, and interaction. Time and resources did not permit either as detailed an editing job would have been desirable, or recalculation and plotting of the numerical results in a more elegant form. It is to be hoped, however, that this integrated document will prove useful to the community. The selection of topics addressed in the Microwave Notes was influenced by questions which arose at various stages of the author's involvement in HPM-related activities. The subject of pulse radiation from aperture antennas subject to turn-on time errors, for example, arose in the context of a proposed HPM generation scheme. Consideration of the scattering cross-section of a simple dipole and of its dual problem, the effective area of a thin slot, was motivated by the need to understand the penetration of such slot apertures by HPM pulses.

  10. High-resolution imaging of Galactic massive stars with AstraLux. I. 138 fields with delta > -25 degrees

    CERN Document Server

    Apellániz, J Maíz

    2010-01-01

    CONTEXT. Massive stars have high-multiplicity fractions, and many of them have still undetected components, thus hampering the study of their properties. AIMS. I study a sample of massive stars with high angular resolution to better characterize their multiplicity. METHODS. I observed 138 fields that include at least one massive star with AstraLux, a lucky imaging camera at the 2.2 m Calar Alto telescope. I also used observations of 3 of those fields with ACS/HRC on HST to obtain complementary information and to calibrate the AstraLux data. The results were compared with existing information from the Washington Double Star Catalog, Tycho-2, 2MASS, and other literature results. RESULTS. I discover 16 new optical companions of massive stars, the majority of which are likely to be physically bound to their primaries. I also improve the accuracy for the separation and magnitude difference of many previously known systems. In a few cases the orbital motion is detected when comparing the new data with existing ones...

  11. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    Science.gov (United States)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  12. A family of compact high order coupled time-space unconditionally stable vertical advection schemes

    Science.gov (United States)

    Lemarié, Florian; Debreu, Laurent

    2016-04-01

    Recent papers by Shchepetkin (2015) and Lemarié et al. (2015) have emphasized that the time-step of an oceanic model with an Eulerian vertical coordinate and an explicit time-stepping scheme is very often restricted by vertical advection in a few hot spots (i.e. most of the grid points are integrated with small Courant numbers, compared to the Courant-Friedrichs-Lewy (CFL) condition, except just few spots where numerical instability of the explicit scheme occurs first). The consequence is that the numerics for vertical advection must have good stability properties while being robust to changes in Courant number in terms of accuracy. An other constraint for oceanic models is the strict control of numerical mixing imposed by the highly adiabatic nature of the oceanic interior (i.e. mixing must be very small in the vertical direction below the boundary layer). We examine in this talk the possibility of mitigating vertical Courant-Friedrichs-Lewy (CFL) restriction, while avoiding numerical inaccuracies associated with standard implicit advection schemes (i.e. large sensitivity of the solution on Courant number, large phase delay, and possibly excess of numerical damping with unphysical orientation). Most regional oceanic models have been successfully using fourth order compact schemes for vertical advection. In this talk we present a new general framework to derive generic expressions for (one-step) coupled time and space high order compact schemes (see Daru & Tenaud (2004) for a thorough description of coupled time and space schemes). Among other properties, we show that those schemes are unconditionally stable and have very good accuracy properties even for large Courant numbers while having a very reasonable computational cost.

  13. Limited access surgery for 360 degrees in-situ fusion in a dysraphic patient with high-grade spondylolisthesis.

    Science.gov (United States)

    König, M A; Boszczyk, B M

    2012-03-01

    Progressive high-grade spondylolisthesis can lead to spinal imbalance. High-grade spondylolisthesis is often reduced and fused in unbalanced pelvises, whereas in-situ fusion is used more often in balanced patients. The surgical goal is to recreate or maintain sagittal balance but if anatomical reduction is necessary, the risk of nerval damage with nerve root disruption in worst cases is increased. Spinal dysraphism like spina bifida or tethered cord syndrome make it very difficult to achieve reduction and posterior fusion due to altered anatomy putting the focus on anterior column support. Intensive neural structure manipulation should be avoided to reduce neurological complications and re-tethering in these cases. A 26-year-old patient with a history of diastematomyelia, occult spina bifida and tethered cord syndrome presented with new onset of severe low back pain, and bilateral L5/S1 sciatica after a fall. The X-ray demonstrated a grade III spondylolisthesis with spina bifida and the MRI scan revealed bilateral severely narrowed exit foramina L5 due to the listhesis. Because she was well balanced sagittally, the decision for in-situ fusion was made to minimise the risk of neurological disturbance through reduction. Anterior fusion was favoured to minimise manipulation of the dysraphic neural structures. Fusion was achieved via isolated access to the L4/L5 disc space. A L5 transvertebral hollow modular anchorage (HMA) screw was passed into the sacrum from the L4/L5 disc space and interbody fusion of L4/L5 was performed with a cage. The construct was augmented with pedicle screw fixation L4-S1 via a less invasive bilateral muscle split for better anterior biomechanical support. The postoperative course was uneventful and fusion was CT confirmed at the 6-month follow-up. At the last follow-up, she worked full time, was completely pain free and not limited in her free-time activities. The simultaneous presence of high-grade spondylolisthesis and spinal dysraphism

  14. Dynamics in Thermotoga neapolitana adenylate kinase: 15N relaxation and hydrogen-deuterium exchange studies of a hyperthermophilic enzyme highly active at 30 degrees C.

    Science.gov (United States)

    Krishnamurthy, Harini; Munro, Kim; Yan, Honggao; Vieille, Claire

    2009-03-31

    Backbone conformational dynamics of Thermotoga neapolitana adenylate kinase in the free form (TNAK) and inhibitor-bound form (TNAK*Ap5A) were investigated at 30 degrees C using (15)N NMR relaxation measurements and NMR monitored hydrogen-deuterium exchange. With kinetic parameters identical to those of Escherichia coli AK (ECAK) at 30 degrees C, TNAK is a unique hyperthermophilic enzyme. These catalytic properties make TNAK an interesting and novel model to study the interplay between protein rigidity, stability, and activity. Comparison of fast time scale dynamics (picosecond to nanosecond) in the open and closed states of TNAK and ECAK at 30 degrees C reveals a uniformly higher rigidity across all domains of TNAK. Within this framework of a rigid TNAK structure, several residues located in the AMP-binding domain and in the core-lid hinge regions display high picosecond to nanosecond time scale flexibility. Together with the recent comparison of ECAK dynamics with those of hyperthermophilic Aquifex aeolicus AK (AAAK), our results provide strong evidence for the role of picosecond to nanosecond time scale fluctuations in both stability and activity. In the slow time scales, TNAK's increased rigidity is not uniform but localized in the AMP-binding and lid domains. The core domain amides of ECAK and TNAK in the open and closed states show comparable protection against exchange. Significantly, the hinges framing the lid domain show similar exchange data in ECAK and TNAK open and closed forms. Our NMR relaxation and hydrogen-deuterium exchange studies therefore suggest that TNAK maintains high activity at 30 degrees C by localizing flexibility to the hinge regions that are key to facilitating conformational changes.

  15. Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH

    Science.gov (United States)

    Wach, Radoslaw A.; Mitomo, Hiroshi; Nagasawa, Naotsugu; Yoshii, Fumio

    2003-12-01

    Carboxymethylcellulose (CMC) hydrogel formed by ionizing radiation at highly concentrated aqueous solutions was found to undergo swelling depending on the pH of the swelling media. Swelling increases at neutral and basic pH due to ionization of carboxymethyl groups on side chains. The presence of charges develops repulsive forces between polymer chains of the network causing its expansion. Hydrogel in relaxed state as well as dried gel reveals good mechanical properties. It was considered that intermolecular crosslinking reactions occur by a radical route. Radicals placed on anhydroglucose repeating unit as well as on side chains were distinguished from ESR spectra of CMC. A stable doublet signal with 2.0 mT splitting constant belongs to a radical placed on the α-carbon atom of the substituent group, R-O- rad CH-COO -. It was assumed that this species participates in intermolecular crosslinking.

  16. High-order rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling in an isotropic medium

    Science.gov (United States)

    Sun, Wen-Rong; Tian, Bo; Xie, Xi-Yang; Chai, Jun; Jiang, Yan

    2016-10-01

    High-order rogue waves of the coupled nonlinear Schrödinger equations with negative coherent coupling, which describe the propagation of orthogonally polarized optical waves in an isotropic medium, are reported in this paper. Key point lies in the introduction of a limit process in the Darboux transformation, with which we obtain a family of the first- and second-order rational solutions for the purpose of modelling the rogue waves. We observe that the double-hump rogue wave in the course of evolution turns into the one-hump rogue wave, and that the dark rogue wave with four valleys in the course of evolution turns into the bright rogue wave. It is found that the second-order rogue wave can split up, giving birth to the multiple rogue waves.

  17. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From;

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... of spin-spin coupling constants involving tellurium, was developed. The SOPPA methods show much better performance as compared to 15 those of DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while...

  18. A Highly Efficient and Reusable Palladium(II/Cationic 2,2’-Bipyridyl-Catalyzed Stille Coupling in Water

    Directory of Open Access Journals (Sweden)

    Wei-Yi Wu

    2016-09-01

    Full Text Available A water-soluble PdCl2(NH32/cationic 2,2′-bipyridyl system was found to be a highly efficient catalyst for Stille coupling of aryl iodides and bromides with organostannanes. The coupling reaction was conducted at 110 °C in water, under aerobic conditions, in the presence of NaHCO3 as a base to afford corresponding Stille coupling products in good to high yields. When aryltributylstannanes were employed, the reactions proceeded smoothly under a very low catalyst loading (as little as 0.0001 mol %. After simple extraction, the residual aqueous phase could be reused in subsequent runs, making this Stille coupling economical. In the case of tetramethylstannane, however, a greater catalyst loading (1 mol % and the use of tetraethylammonium iodide as a phase-transfer agent were required in order to obtain satisfactory yields.

  19. Functional coupling of renal K+ and Na+ handling causes high blood pressure in Na+ replete mice.

    Science.gov (United States)

    Vitzthum, Helga; Seniuk, Anika; Schulte, Laura Helene; Müller, Maxie Luise; Hetz, Hannah; Ehmke, Heimo

    2014-03-01

    A network of kinases, including WNKs, SPAK and Sgk1, is critical for the independent regulation of K+ and Na+ transport in the distal nephron. Angiotensin II is thought to act as a key hormone in orchestrating these kinases to switch from K+ secretion during hyperkalaemia to Na+ reabsorption during intravascular volume depletion, thus keeping disturbances in electrolyte and blood pressure homeostasis at a minimum. It remains unclear, however, how K+ and Na+ transport are regulated during a high Na+ intake, which is associated with suppressed angiotensin II levels and a high distal tubular Na+ load. We therefore investigated the integrated blood pressure, renal, hormonal and gene and protein expression responses to large changes of K+ intake in Na+ replete mice. Both low and high K+ intake increased blood pressure and caused Na+ retention. Low K+ intake was accompanied by an upregulation of the sodium-chloride cotransporter (NCC) and its activating kinase SPAK, and inhibition of NCC normalized blood pressure. Renal responses were unaffected by angiotensin AT1 receptor antagonism, indicating that low K+ intake activates the distal nephron by an angiotensin-independent mode of action. High K+ intake was associated with elevated plasma aldosterone concentrations and an upregulation of the epithelial sodium channel (ENaC) and its activating kinase Sgk1. Surprisingly, high K+ intake increased blood pressure even during ENaC or mineralocorticoid receptor antagonism, suggesting the contribution of aldosterone-independent mechanisms. These findings show that in a Na+ replete state, changes in K+ intake induce specific molecular and functional adaptations in the distal nephron that cause a functional coupling of renal K+ and Na+ handling, resulting in Na+ retention and high blood pressure when K+ intake is either restricted or excessively increased.

  20. Evidence for high degrees of specialisation, evolutionary diversity, and morphological distinctiveness in the genus Bremia.

    Science.gov (United States)

    Choi, Young-Joon; Thines, Marco; Runge, Fabian; Hong, Seung-Beom; Telle, Sabine; Shin, Hyeon-Dong

    2011-02-01

    Bremia lactucae is one of the most important pathogens in lettuce production. Recent molecular studies revealed considerable genetic variation in this species complex. However, only few accessions from the same host have been examined for most species and no study investigating the morphological distinctiveness of phylogenetic lineages of Bremia has so far been reported. Thus it is believed that morphological species delimitation in Bremia is not feasible. In the present study, multiple accessions of neglected species, which had been described decades ago, but have not been widely accepted, were investigated, considering both multi-gene phylogenies and morphological characters. All previously described species from host genera other than Lactuca investigated, Bremia microspora, Bremia ovata, Bremia saussureae, and Bremia sonchicola, could be confirmed as distinct, host-specific entities. Also, morphological characteristics of their conidiophores and conidia allowed delimitation of these species. Therefore, not only the wide species concept to merge all Bremia species on the Asteraceae under B. lactucae is inappropriate but also their delimitation on the basis of morphological characters seems feasible. In addition, it has been shown that Bremia elliptica is phylogenetically distinct from the other species infecting the genus Lactuca, B. lactucae. It is therefore concluded that B. lactucae is most likely limited to Lactuca sativa and closely-related species, and that most species of Bremia are highly host specific. This finding might stimulate the search for durable resistance genes in genera closely related to the genus Lactuca and in divergent species of the genus itself.

  1. High Resolution Studies of the Origins of Polyatomic Ions in Inductively Coupled Plasma-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Jill Wisnewski [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The inductively coupled plasma (ICP) is an atmospheric pressure ionization source. Traditionally, the plasma is sampled via a sampler cone. A supersonic jet develops behind the sampler, and this region is pumped down to a pressure of approximately one Torr. A skimmer cone is located inside this zone of silence to transmit ions into the mass spectrometer. The position of the sampler and skimmer cones relative to the initial radiation and normal analytical zones of the plasma is key to optimizing the useful analytical signal [1]. The ICP both atomizes and ionizes the sample. Polyatomic ions form through ion-molecule interactions either in the ICP or during ion extraction [l]. Common polyatomic ions that inhibit analysis include metal oxides (MO+), adducts with argon, the gas most commonly used to make up the plasma, and hydride species. While high resolution devices can separate many analytes from common interferences, this is done at great cost in ion transmission efficiency--a loss of 99% when using high versus low resolution on the same instrument [2]. Simple quadrupole devices, which make up the bulk of ICP-MS instruments in existence, do not present this option. Therefore, if the source of polyatomic interferences can be determined and then manipulated, this could potentially improve the figures of merit on all ICP-MS devices, not just the high resolution devices often utilized to study polyatomic interferences.

  2. Information coupling degree based approach for self-organized fission behavior in flocking system%基于信息耦合度的群集系统自组织分群方法

    Institute of Scientific and Technical Information of China (English)

    刘明雍; 雷小康; 杨盼盼; 刘坤

    2015-01-01

    For the problem that the traditional flocking approaches with“averaged”velocity coordination strategy can not realize the fission behavior from a coherent flock into multiple sub-groups under external conflicting stimulus, the information entropy is deployed to formulate the information coupling degree(ICD) index with the information of neighbor’s velocity, distance, number and its own perception range. Then, an ICD-based“min-max”velocity coordination strategy is established. Together with the“long range attraction/short range repulsion”position regulation method, self-organized fission behavior is achieved under external stimulus. Simulation results show that the flocking system under this motion law is able to achieve the fission behavior with equal size from a probabilistic perspective. In addition, this approach has better fusion performance than traditional flocking methods.%针对“速度平均”协同机制不能表征群集系统应激分群运动的问题,基于信息熵定义融合邻居速度、距离、数量及自身感知半径的信息耦合度指标,提出一种“min-max”形式的速度协同策略,结合“近距排斥-远距吸引”的位置协同,实现群集系统的自组织应激分群运动。数值仿真分析表明,基于该速度协同机制的群集能够完成一种概率意义上的等规模分群,且其组群效率优于传统基于速度平均机制的群集。

  3. Effect of coupling on scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high- superconductors

    OpenAIRE

    Shukrinov, Yu M.; Mahfouzi, F.

    2005-01-01

    We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...

  4. A General,Highly Efficient Ullmann C-O Coupling Reaction under Microwave Irradiation and the Effects of Water

    Institute of Scientific and Technical Information of China (English)

    ZHU,Xin-Hai; CHEN,Gong; MA,Yan; SONG,Hua-Can; XU,Zun-Le; WAN,Yi-Qian

    2007-01-01

    A general,rapid and highly efficient method for the synthesis of diaryl ethers under the assistance of microwave irradiation was described.A series of diaryl ethers were prepared by direct coupling of phenols and aryl halides in good to excellent yields in anhydrous DMF or NMP at 150℃ within 20 min.The presence of water was found to have a significant impact on the Ullmann C-O coupling reaction between aryl halides and phenols under microwave irradiation.

  5. GPR18 undergoes a high degree of constitutive trafficking but is unresponsive to N-Arachidonoyl Glycine

    Directory of Open Access Journals (Sweden)

    David B. Finlay

    2016-03-01

    Full Text Available The orphan receptor GPR18 has become a research target following the discovery of a putative endogenous agonist, N-arachidonoyl glycine (NAGly. Chemical similarity between NAGly and the endocannabinoid anandamide suggested the hypothesis that GPR18 is a third cannabinoid receptor. GPR18-mediated cellular signalling through inhibition of cyclic adenosine monophosphate (cAMP and phosphorylation of extracellular signal-regulated kinase (ERK, in addition to physiological consequences such as regulation of cellular migration and proliferation/apoptosis have been described in response to both NAGly and anandamide. However, discordant findings have also been reported. Here we sought to describe the functional consequences of GPR18 activation in heterologously-expressing HEK cells. GPR18 expression was predominantly intracellular in stably transfected cell lines, but moderate cell surface expression could be achieved in transiently transfected cells which also had higher overall expression. Assays were employed to characterise the ability of NAGly or anandamide to inhibit cAMP or induce ERK phosphorylation through GPR18, or induce receptor trafficking. Positive control experiments, which utilised cells expressing hCB1 receptors (hCB1R, were performed to validate assay design and performance. While these functional pathways in GPR18-expressing cells were not modified on treatment with a panel of putative GPR18 ligands, a constitutive phenotype was discovered for this receptor. Our data reveal that GPR18 undergoes rapid constitutive receptor membrane trafficking—several-fold faster than hCB1R, a highly constitutively active receptor. To enhance the likelihood of detecting agonist-mediated receptor signalling responses, we increased GPR18 protein expression (by tagging with a preprolactin signal sequence and generated a putative constitutively inactive receptor by mutating the hGPR18 gene at amino acid site 108 (alanine to asparagine. This A108N mutant

  6. Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice.

    Science.gov (United States)

    Wueest, S; Rapold, R A; Rytka, J M; Schoenle, E J; Konrad, D

    2009-03-01

    Adipocytes in obesity are characterised by increased cell size and insulin resistance compared with adipocytes isolated from lean patients. However, it is not clear at present whether hypertrophy actually does drive adipocyte insulin resistance. Thus, the aim of the present study was to metabolically characterise small and large adipocytes isolated from epididymal fat pads of mice fed a high-fat diet (HFD). C57BL/6J mice were fed normal chow or HFD for 8 weeks. Adipocytes from epididymal fat pads were isolated by collagenase digestion and, in HFD-fed mice, separated into two fractions according to their size by filtration through a nylon mesh. Viability was assessed by lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium assays. Basal and insulin-stimulated D-[U-(14)C]glucose incorporation and lipolysis were measured. Protein levels and mRNA expression were determined by western blot and real-time RT-PCR, respectively. Insulin-stimulated D-[U-(14)C]glucose incorporation into adipocytes isolated from HFD-fed mice was reduced by 50% compared with adipocytes from chow-fed mice. However, it was similar between small (average diameter 60.9 +/- 3.1 microm) and large (average diameter 83.0 +/- 6.6 microm) adipocytes. Similarly, insulin-stimulated phosphorylation of protein kinase B and AS160 were reduced to the same extent in small and large adipocytes isolated from HFD-mice. In addition, insulin failed to inhibit lipolysis in both adipocyte fractions, whereas it decreased lipolysis by 30% in adipocytes of chow-fed mice. In contrast, large and small adipocytes differed in basal lipolysis rate, which was twofold higher in the larger cells. The latter finding was associated with higher mRNA expression levels of Atgl (also known as Pnpla2) and Hsl (also known as Lipe) in larger adipocytes. Viability was not different between small and large adipocytes. Rate of basal lipolysis but not insulin responsiveness is different between small and large

  7. High performance patch antenna using circular split ring resonators and thin wires employing electromagnetic coupling improvement

    Science.gov (United States)

    Abdelrehim, Adel A. A.; Ghafouri-Shiraz, H.

    2016-09-01

    In this paper, three dimensional periodic structure composed of circular split ring resonators and thin wires is used to improve the performance of a microstrip patch antenna. The three dimensional periodic structure is placed at the top of the patch within a specific separation distance to construct the proposed antenna. The radiated electromagnetic waves intensity of the proposed antenna is improved compared with the conventional patch antenna due to the electric and magnetic coupling enhancements. These enhancements occur between the patch and the periodic structure resonators and between the different resonator pairs of the periodic structure. As a result, the electric and the magnetic fields at the top of the patch are improved, the radiated electromagnetic beam size reduces which results in a highly focused beam and hence the antenna directivity and gain are improved, while the beam are is reduced. The proposed antenna has been designed and simulated using CST microwave studio at 10 GHz. An infinite two dimensional periodicity unit cell of circular split ring resonator and thin wire is designed to resonate at a 10 GHz and simulated in CST software, the scattering parameters are extracted, the results showed that the infinite periodicity two dimensional structure has a pass band frequency response of good transmission and reflection characteristics around 10 GHz. The infinite periodicity of the two dimensional periodic structure is then truncated and multi layers of such truncated structure is used to construct a three dimensional periodic structure. A parametric analysis has been performed on the proposed antenna incorporated with the three dimensional periodic structure. The impacts of the separation distance between the patch and three dimensional periodic structures and the size of the three dimensional periodic structure on the radiation and impedance matching parameters of the proposed antenna are studied. For experimental verification, the proposed

  8. 徐州市生态环境-社会经济系统耦合态势分析%Analysis on Trend of Coupling Degree of Eco-environmental and Socio-economic Systems in Xuzhou City

    Institute of Scientific and Technical Information of China (English)

    杨木; 奚砚涛; 李高金

    2012-01-01

    The issue of eco-environment in the development of urban has been the main obstacle for urban sustainable development.How to achieve the sustainable development between urban eco-environment and socio-economy has aroused the general concern of whole society.Based on coupling theory,application of ideology of systematic evolution and the establishment of dynamic coupling model of eco-environment and socio-economy of Xuzhou City,the eco-environment and socio-economic state in Xuzhou City,28 years from 1978 to 2005,was analyzed.The results show that the coupling degree of the eco-environmental and socio-economic systems in Xuzhou City is from-90° to 90°,which has undergone a coordinated development,environmental degradation to reconstruction and the balanced development of socio-economy and eco-environment.At last,by the studying of change of eco-environment and socio-economy in Xuzhou City,some experiences and lessons would be summarized,the law of eco-environment and socio-economy would be mastered exactly,the development regularity of regional ecological environmental system and socio-economy system would be to understand scientifically.%城市发展过程中生态环境问题已成为制约城市可持续发展的主要瓶颈,如何实现城市生态环境与社会经济协调可持续发展,已引起全社会的普遍关注。以徐州市为例,基于耦合理论,运用系统演化思想,建立徐州市生态环境—社会经济动态耦度模型,对徐州市1978—2005年28a间生态环境—社会经济耦合态势进行了分析,结果显示:徐州市生态环境—社会经济系统的耦合度分布在-90°~90°之间,生态环境—社会经济系统经历了协调化发展、生态环境恶化与修复重建,再到社会经济与生态环境均衡发展的过程。最后,通过对徐州市生态环境变迁与社会经济发展的研究,总结出几点经验教训,为确切掌握近年来徐州市生态环境和社会经济的状况、科学地认

  9. An X-ray absorption spectroscopy study of the inversion degree in zinc ferrite nanocrystals dispersed on a highly porous silica aerogel matrix.

    Science.gov (United States)

    Carta, D; Marras, C; Loche, D; Mountjoy, G; Ahmed, S I; Corrias, A

    2013-02-07

    The structural properties of zinc ferrite nanoparticles with spinel structure dispersed in a highly porous SiO(2) aerogel matrix were compared with a bulk zinc ferrite sample. In particular, the details of the cation distribution between the octahedral (B) and tetrahedral (A) sites of the spinel structure were determined using X-ray absorption spectroscopy. The analysis of both the X-ray absorption near edge structure and the extended X-ray absorption fine structure indicates that the degree of inversion of the zinc ferrite spinel structures varies with particle size. In particular, in the bulk microcrystalline sample, Zn(2+) ions are at the tetrahedral sites and trivalent Fe(3+) ions occupy octahedral sites (normal spinel). When particle size decreases, Zn(2+) ions are transferred to octahedral sites and the degree of inversion is found to increase as the nanoparticle size decreases. This is the first time that a variation of the degree of inversion with particle size is observed in ferrite nanoparticles grown within an aerogel matrix.

  10. Industrial grade fiber-coupled laser systems delivering ultrashort high-power pulses for micromachining

    Science.gov (United States)

    Pricking, Sebastian; Welp, Petra; Overbuschmann, Johannes; Nutsch, Sebastian; Gebs, Raphael; Fleischhaker, Robert; Kleinbauer, Jochen; Wolf, Martin; Budnicki, Aleksander; Sutter, Dirk H.; Killi, Alexander; Mielke, Michael

    2016-03-01

    We report on an industrial fiber-delivered laser system producing ultra-short pulses in the range of a few picoseconds down to a few hundred femtoseconds with high average power suitable for high-precision micromachining. The delivery fiber is a hollow-core photonic crystal fiber with a Kagomé shaped lattice and a hypocycloid core wall enabling the guiding of laser radiation over several meters with exceptionally low losses and preservation of high beam quality (M2laser head providing a compact footprint without the need for external boxes. The laser head is carefully designed regarding its thermo-mechanical properties to allow a highly reliable coupling stability. The exchangeable delivery fiber is packaged using Trumpf's well established LLK-D connectors which offer a very high mechanical precision, the possibility to add water cooling, as well as full featured safety functions. The fiber is hermetically sealed and protected by a robust but flexible shield providing bend protection and break detection. We show the linear and nonlinear optical properties of the transported laser radiation and discuss its feasibility for pulse compression. Measurements are supported by simulation of pulse propagation by solving the nonlinear Schrödinger equation implementing the split-step Fourier method. In addition, mode properties are measured and confirmed by finite element method simulations. The presented industrial laser system offers the known advantages of ultra-short pulses combined with the flexibility of fiber delivery yielding a versatile tool perfectly suitable for all kinds of industrial micromachining applications.

  11. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, F., E-mail: tmfiwat@ipc.shizuoka.ac.jp [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Ohashi, Y.; Ishisaki, I. [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Picco, L.M. [H Will Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ushiki, T. [Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Niigata, 951-8122 (Japan)

    2013-10-15

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed.

  12. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  13. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    Science.gov (United States)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  14. A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics

    Science.gov (United States)

    Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio

    2017-07-01

    The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.

  15. Physiological Response of Cotton in Flowering Stage to Waterlogging Coupling with High Temperature

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2012-12-01

    Full Text Available In midsummer, southern plain of China often has plenty of precipitation meanwhile encounters hot damage and a phenomena may occur that a synoptic process with the maximum temperature more than 35 for more than 3 days befalls within a week or 10 days after farmland suffering from waterlogging caused by heavy rainfall, this phenomena can be defined as concomitance of hot and waterlogging (abbreviated as CHW. The stage of cotton flowering stage in southern plain of China is just in midsummer, so cotton often meets comprehensive stress from CHW stress, CHW stress during this stage inhibits cotton development and reduces final yield significantly. In order to study the stress reaction and subsequent response under the artificial simulated high temperature and waterlogging after rained coupling effects, used E Hybrid Cotton 88 which widely cultivated in the Middle-Lower of Yangtze River in China, analyzed the effects of waterlogging on SOD and POD activities and MDA contents and chlorophyll contents of cotton under high temperature stress during flowering stage. The results showed that high temperature and waterlogging effects apparently decreased SOD activities, chlorophyll of a, b and a/b, declined significantly comparison of CK. During the beginning stage in upon double stresses, they had slow changes and no significant differences among those treatments. However, the 5 days of the end of the high temperature days in later period, its value gradually increased and the decomposition rate of chlorophyll a was faster than chlorophyll b, ranges from 0.70 to 1.68 and from 0.10 to 0.50, respectively; Oppositely, waterlogging and high temperature double stresses significantly increased the POD activity and MDA contents, which declined significantly compared with CK. Generally, as the intensity of high temperature and waterlogging double stresses increased (decreased, the upper indexes added (reduced obviously, of that surface watelogging 6 days

  16. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    DEFF Research Database (Denmark)

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...... a commonly utilized picture relating the creation of mobile electron holes and unpaired spins to the insertion of oxygen into the basal plane. The model is solved using the nearest-neighbor square approximation of the cluster-variation method. In addition, preliminary Monte Carlo results using next...

  17. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    Science.gov (United States)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  18. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    Science.gov (United States)

    Omar, Al Haj; Véronique, Peres; Eric, Serris; François, Grosjean; Jean, Kittel; François, Ropital; Michel, Cournil

    2015-06-01

    Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO2 layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and not in the dense zirconia layer after 5 h of oxidation.

  19. Coupled Inductor Based High Step-Up DC-DC Converter for Multi Input PV System

    Directory of Open Access Journals (Sweden)

    G. Shiny Vikram

    2014-09-01

    Full Text Available With the shortage of the energy and ever increasing of the oil price, research on the renewable and green energy sources, especially the solar arrays and the fuel cells, becomes more and more important. How to achieve high step-up and high efficiency DC/DC converters is the major consideration in the renewable power applications due to the low voltage of PV arrays and fuel cells. In this paper a coupled inductor dc-dc converter for photovoltaic system is proposed. The circuit configuration of the proposed converter is very simple. Thus, the proposed converter has higher step-up and step-down voltage gains than the conventional bidirectional dc–dc boost/buck converter. Under same electric specifications for the proposed converter and the conventional bidirectional boost/buck converter, the average value of the switch current in the proposed converter is less than the conventional bidirectional boost/buck converter. The operating principles have been applied to multi input photovoltaic system and outputs have been observed.

  20. Design and evaluation of a high-performance charge coupled device camera for astronomical imaging

    Science.gov (United States)

    Shang, Yuanyuan; Zhang, Jie; Guan, Yong; Zhang, Weigong; Pan, Wei; Liu, Hui

    2009-10-01

    The Space Solar Telescope (SST) is the first Chinese space astronomy mission. This paper introduces the design of a high-performance 2K × 2K charge coupled device (CCD) camera that is an important payload in the Space Solar Telescope. The camera is composed of an analogue system and a digital embedded system. The analogue system is first discussed in detail, including the power and bias voltage supply circuit, power protection unit, CCD clock driver circuit, 16 bit A/D converter and low-noise amplifier circuit. The digital embedded system integrated with an NIOS II soft-core processor serves as the control and data acquisition system of the camera. In addition, research on evaluation methods for CCDs was carried out to evaluate the performance of the TH7899 CCD camera in relation to the requirements of the SST project. We present the evaluation results, including readout noise, linearity, quantum efficiency, dark current, full-well capacity, charge transfer efficiency and gain. The results show that this high-performance CCD camera can satisfy the specifications of the SST project.

  1. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  2. Numerical simulation of coupled heat and mass transfer in wood dried at high temperature

    Science.gov (United States)

    Zhu, Zhenggang; Kaliske, Michael

    2011-03-01

    The mutual effect between heat and mass transfer is investigated for wood dried at high temperature. A numerical model of coupled heat and mass transfer under the effect of the pressure gradient is presented. Based on the macroscopic viewpoint of continuum mechanics, the mathematical model with three independent variables (temperature, moisture content and gas pressure) is constructed. Mass transfer in the pores involves a diffusional flow driven by the gradient of moisture content, convectional flow of gaseous mixture governed by the gradient of gas pressure, the Soret effect and phase change of water. Energy gain or loss due to phase change of water is taken as the heat source. Numerical methods, the finite element method and the finite difference method are used to discretize the spatial and time dimension, respectively. A direct iteration method to solve the nonlinear problem without direct evaluation of the tangential matrix is introduced. The local convergence condition based on the contraction-mapping principle is discussed. The mathematical model is applied to a 3-D wood board dried at high temperature with the Neumann boundary conditions for both temperature and moisture content, and the Dirichlet boundary conditions for gas pressure.

  3. Conformal BaTiO3 Films with High Piezoelectric Coupling through an Optimized Hydrothermal Synthesis.

    Science.gov (United States)

    Zhou, Zhi; Bowland, Christopher C; Patterson, Brendan A; Malakooti, Mohammad H; Sodano, Henry A

    2016-08-24

    Two-dimensional (2D) ferroelectric films have vast applications due to their dielectric, ferroelectric, and piezoelectric properties that meet the requirements of sensors, nonvolatile ferroelectric random access memory (NVFeRAM) devices, and micro-electromechanical systems (MEMS). However, the small surface area of these 2D ferroelectric films has limited their ability to achieve higher memory storage density in NVFeRAM devices and more sensitive sensors and transducer. Thus, conformally deposited ferroelectric films have been actively studied for these applications in order to create three-dimensional (3D) structures, which lead to a larger surface area. Most of the current methods developed for the conformal deposition of ferroelectric films, such as metal-organic chemical vapor deposition (MOCVD) and plasma-enhanced vapor deposition (PECVD), are limited by high temperatures and unstable and toxic organic precursors. In this paper, an innovative fabrication method for barium titanate (BaTiO3) textured films with 3D architectures is introduced to alleviate these issues. This fabrication method is based on converting conformally grown rutile TiO2 nanowire arrays into BaTiO3 textured films using a simple two-step hydrothermal process which allows for thickness-controlled growth of conformal films on patterned silicon wafers coated with fluorine-doped tin oxide (FTO). Moreover, the processing parameters have been optimized to achieve a high piezoelectric coupling coefficient of 100 pm/V. This high piezoelectric response along with high relative dielectric constant (εr = 1600) of the conformally grown textured BaTiO3 films demonstrates their potential application in sensors, NVFeRAM, and MEMS.

  4. High Magnetoelectric Coupling in Nano-Microscale Particulate Composites at Low Frequency

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yun; CHEN Miao-Gen; FENG Zhen-Jie; WANG Xin-Yan; CUI Yu-Jian; ZHANG Jin-Cang

    2011-01-01

    Nontoxic lead-free multiferroic magnetoelectric composites are successfully prepared by incorporating the dispersed Ni0.98Co0.02Fe2O4 (NCF) ferromagnetic nanoparticles into a (K0.5Na0.5)NbO3-LiSbO3 (KNN-LS) ferroelectric micromatrix. The dependence of the dielectric properties and dc magnetization on NCF phase content has been studied. Variation of dielectric constant and dielectric loss with frequency show dispersion in the low frequency range, and the dielectric constants decrease with the increase in ferrite NCF content. The magnetoelectric (ME) coupling effects including direct ME (DME) and converse ME (CME) effects are investigated in detail at room temperature. The results show that the NCF content significantly affects the ME effects. The CME and DME behaviors are strongly dependent on the driving field frequency and the bias magnetic Reid. High DME and CME coefficients are obtained at low frequency and at low magnetic bias field. The maximum value of DME and CME coefficients are 197.3ps/m (12.2mV·cm-1·Oe-1) and 314.7ps/m, respectively.%Nontoxic lead-free multiferroic magnetoelectric composites are successfully prepared by incorporating the dispersed Ni0.9sCo0.02Fe2O4 (NCF) ferromagnetic nanoparticles into a (K0.5Na0.5)NbO3-LiSbO3 (KNN-LS) ferroelectric micromatrix.The dependence of the dielectric properties and dc magnetization on NCF phase content has been studied.Variation of dielectric constant and dielectric loss with frequency show dispersion in the low frequency range,and the dielectric constants decrease with the increase in ferrite NCF content.The magnetoelectric (ME) coupling effects including direct ME (DME) and converse ME (CME) effects are investigated in detail at room temperature.The results show that the NCF content significantly affects the ME effects.The CME and DME behaviors are strongly dependent on the driving field frequency and the bias magnetic field.High DME and CME coefficients are obtained at low frequency and at low magnetic

  5. A six-degree-of-freedom magnetic levitation fine stage for a high-precision and high-acceleration dual-servo stage

    Science.gov (United States)

    Kim, MyeongHyeon; Jeong, Jae-heon; Kim, HyoYoung; Gweon, DaeGab

    2015-10-01

    This paper presents a novel six-degree-of-freedom magnetic levitation fine stage for a dual-servo stage. The proposed fine stage is levitated and actuated, using a voice coil motor actuator with a Halbach magnet array. For a dual-servo stage, fine stage performance is deeply intertwined with coarse stage performance. Because the fine stage is installed over the coarse stage, the overall size of the fine stage can be limited by the moving plate of the coarse stage. Therefore, magnetic flux modeling and optimization are performed to manufacture optimal fine stages. To control the fine stage, actuator kinetics and sensor kinematics are proposed. Homing control is implemented by using linear variable differential transformers, whereas fine control is implemented by capacitance sensors and laser interferometers. Finally, experimental results of in-position stability, moving range, and repeatability are presented.

  6. A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems

    Science.gov (United States)

    Taverniers, Søren; Tartakovsky, Daniel M.

    2017-02-01

    Multiphysics simulations often involve nonlinear components that are driven by internally generated or externally imposed random fluctuations. When used with a domain-decomposition (DD) algorithm, such components have to be coupled in a way that both accurately propagates the noise between the subdomains and lends itself to a stable and cost-effective temporal integration. We develop a conservative DD approach in which tight coupling is obtained by using a Jacobian-free Newton-Krylov (JfNK) method with a generalized minimum residual iterative linear solver. This strategy is tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. Enforcement of path-wise continuity of the state variable and its flux, as opposed to continuity in the mean, at interfaces between subdomains enables the DD algorithm to correctly propagate boundary fluctuations throughout the computational domain. Reliance on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK (implicit) coupling, may increase the solution error by an order of magnitude. Increase in communication frequency between the DD components reduces the explicit coupling's error, but makes it less efficient than the implicit coupling at comparable error levels for all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary noise when the correlation time of the latter exceeds some multiple of an appropriately defined characteristic diffusion time.

  7. In situ high temperature oxidation analysis of Zircaloy-4 using acoustic emission coupled with thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Al Haj [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); Véronique, Peres, E-mail: peres@emse.fr [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); Eric, Serris [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France); François, Grosjean; Jean, Kittel; François, Ropital [IFP Energies nouvelles, Rond-point de l’échangeur de Solaize BP3, 69360 Solaize (France); Michel, Cournil [Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR 5307, LGF, 42023 Saint-Etienne (France)

    2015-06-15

    Highlights: • Thermogravimetry associated to acoustic emission (AE) improves knowledge on the corrosion of metals at high temperature. • Kinetic transition is detected under air oxidation tests at 900 °C of Zircaloy-4 by a change in the rate of mass gain and by the AE activity. • AE analysis is complementary to characterizations of post mortem oxidized samples. • AE allows us to distinguish the cracks which occur during the Zircaloy-4 oxidation from the cracks which arise during the cooling of the samples. - Abstract: Zircaloy-4 oxidation behavior at high temperature (900 °C), which can be reached in case of severe accidental situations in nuclear pressurised water reactor, was studied using acoustic emission analysis coupled with thermogravimetry. Two different atmospheres were used to study the oxidation of Zircaloy-4: (a) helium and pure oxygen, (b) helium and oxygen combined with slight addition of air. The experiments with 20% of oxygen confirm the dependence on oxygen anions diffusion in the oxide scale. Under a mixture of oxygen and air in helium, an acceleration of the corrosion was observed due to the detrimental effect of nitrogen. The kinetic rate increased significantly after a kinetic transition (breakaway). This acceleration was accompanied by an acoustic emission activity. Most of the acoustic emission bursts were recorded after the kinetic transition (post-transition) or during the cooling of the sample. The characteristic features of the acoustic emission signals appear to be correlated with the different populations of cracks and their occurrence in the ZrO{sub 2} layer or in the α-Zr(O) layer. Acoustic events were recorded during the isothermal dwell time at high temperature under air. They were associated with large cracks in the zirconia porous layer. Acoustic events were also recorded during cooling after oxidation tests both under air or oxygen. For the latter, cracks were observed in the oxygen enriched zirconium metal phase and

  8. Laserspray and Matrix-Assisted Ionization Inlet Coupled to High-Field FT-ICR Mass Spectrometry for Peptide and Protein Analysis

    Science.gov (United States)

    Nyadong, Leonard; Inutan, Ellen D.; Wang, Xu; Hendrickson, Christopher L.; Trimpin, Sarah; Marshall, Alan G.

    2013-03-01

    We present the first coupling of laser spray ionization inlet (LSII) and matrix assisted ionization inlet (MAII) to high-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for generation of electrospray-like ions to take advantage of increased sensitivity, mass range, and mass resolving power afforded by multiple charging. We apply the technique to top-down protein analysis and characterization of metalloproteins. We also present a novel method for generation of multiply-charged copper-peptide complexes with varying degrees of copper adduction by LSII. We show an application of the generated copper-peptide complexes for protein charge state and molecular weight determination, particularly useful for an instrument such as a linear ion trap mass analyzer. [Figure not available: see fulltext.

  9. Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment

    Science.gov (United States)

    Ernstsen, Verner B.; Noormets, Riko; Hebbeln, Dierk; Bartholomä, Alex; Flemming, Burg W.

    2006-09-01

    Over 4 years, repetitive bathymetric measurements of a shipwreck in the Grådyb tidal inlet channel in the Danish Wadden Sea were carried out using a state-of-the-art high-resolution multibeam echosounder (MBES) coupled with a real-time long range kinematic (LRK™) global positioning system. Seven measurements during a single survey in 2003 ( n=7) revealed a horizontal and vertical precision of the MBES system of ±20 and ±2 cm, respectively, at a 95% confidence level. By contrast, four annual surveys from 2002 to 2005 ( n=4) yielded a horizontal and vertical precision (at 95% confidence level) of only ±30 and ±8 cm, respectively. This difference in precision can be explained by three main factors: (1) the dismounting of the system between the annual surveys, (2) rougher sea conditions during the survey in 2004 and (3) the limited number of annual surveys. In general, the precision achieved here did not correspond to the full potential of the MBES system, as this could certainly have been improved by an increase in coverage density (soundings/m2), achievable by reducing the survey speed of the vessel. Nevertheless, precision was higher than that reported to date for earlier offshore test surveys using comparable equipment.

  10. Natural phosphate-supported palladium: A highly efficient and recyclable catalyst for the suzuki-miyaura coupling under microwave irradiation

    KAUST Repository

    Hassine, Ayoub

    2015-01-19

    This report explores Suzuki-Miyaura coupling under microwave irradiation, using a new generation of catalyst that is based on natural phosphate (NP) impregnated by palladium. This catalyst was prepared by the treatment of natural phosphate with bis(benzonitrile)palladium(II) chloride in acetone at room temperature. The catalyst displayed high catalytic activity for the Suzuki-Miyaura coupling of aryl bromides and chlorides with aryl boronic acids in pure water and with the use of microwave irradiation. The low-cost and availability of the solid support, mild reaction conditions, high yields of desired products, recyclability of the catalyst and short reaction times are the notable features of these methods.

  11. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Oswald Wallner

    2008-05-01

    Full Text Available In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  12. Application of Single-Mode Fiber-Coupled Receivers in Optical Satellite to High-Altitude Platform Communications

    Directory of Open Access Journals (Sweden)

    Fidler Franz

    2008-01-01

    Full Text Available Abstract In a free-space optical communication system employing fiber-optic components, the phasefront distortions induced by atmospheric turbulence limit the efficiency with which the laser beam is coupled into a single-mode fiber. We analyze different link scenarios including a geostationary (GEO satellite, a high-altitude platform (HAP, and an optical ground station (OGS. Single-mode coupled optically preamplified receivers allow for efficient suppression of background noise and highly sensitive detection. While GEO-to-OGS communication suffers from atmospheric turbulence, we demonstrate that GEO-to-HAP communication allows for close to diffraction-limited performance when applying tip-tilt correction.

  13. Determination of multiple human arsenic metabolites employing high performance liquid chromatography inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Stice, Szabina; Liu, Guangliang; Matulis, Shannon; Boise, Lawrence H.; Cai, Yong

    2016-01-01

    During the metabolism of different arsenic-containing compounds in human, a variety of metabolites are produced with significantly varying toxicities. Currently available analytical methods can only detect a limited number of human metabolites in biological samples during one run due to their diverse characteristics. In addition, co-elution of species is often unnoticeable with most detection techniques leading to inaccurate metabolic profiles and assessment of toxicity. A high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) method was developed that can identify thirteen common arsenic metabolites possibly present in human with special attention dedicated to thiolated or thiol conjugated arsenicals. The thirteen species included in this study are arsenite (AsIII), arsino-glutathione (As(GS)3), arsenate (AsV), monomethylarsonous acid (MMAIII), monomethylarsino-glutathione (MMAIII(GS)2), monomethylarsonic acid (MMAV), dimethylarsinous acid (DMAIII (from DMAIIII)), S-(dimethylarsinic)cysteine (DMAIII(Cys)), dimethylarsino-glutathione (DMAIII(GS)), dimethylarsinic acid (DMAV), dimethylmonothioarsinic acid (DMMTAV), dimethyldithioarsinic acid (DMDTAV), dimethylarsinothioyl glutathione (DMMTAV(GS)). The developed method was applied for the analysis of cancer cells that were incubated with Darinaparsin (DMAIII(GS)), a novel chemotherapeutic agent for refractory malignancies, and the arsenic metabolic profile obtained was compared to results using a previously developed method. This method provides a useful analytical tool which is much needed in unequivocally identifying the arsenicals formed during the metabolism of environmental arsenic exposure or therapeutic arsenic administration. PMID:26708625

  14. High-Resolution THz Measurements of BrO Generated in AN Inductively Coupled Plasma

    Science.gov (United States)

    Nemchick, Deacon J.; Drouin, Brian

    2017-06-01

    Building upon the foundation provided by previous work, the X_{1}^{2}Π_{3/2} and X_{2}^{2}Π_{1/2} states of the transient radical, BrO, were interrogated in previously unprobed spectral regions (0.5 to 1.7 THz) by employing JPL developed high-resolution cascaded frequency multiplier sources. Like other members of the halogen monoxides (XO), this species has been the target of several recent atmospheric remote sensing studies and is a known participant in a catalytic ozone degradation cycle. For the current work, BrO is generated in an inductively coupled plasma under dynamic flow conditions and rotational lines are observed directly at their Doppler-limited resolution. New spectral transitions including those owing to both the ground (ν=0) and excited (ν=1 and 2) vibrational states of isotopologues composed of permutations of natural abundance ^{16}O, ^{18}O, ^{79}Br, and ^{81}Br are fit to a global Hamiltonian containing both fine and hyperfine terms. In addition to further refining existing spectroscopic parameters, new observations will be made available to remote detection communities through addition to the JPL catalog. New findings will be discussed along with future plans to extend these studies to other halogen monoxides (X=Cl and I) and the more massive halogen dioxides (OXO & XOO).

  15. Strong coupling and high contrast all optical modulation in atomic cladding waveguides

    CERN Document Server

    Stern, Liron; Mazurski, Noa; Levy, Uriel

    2016-01-01

    In recent years we are witnessing a flourish in research aimed to facilitate alkali vapors in guided wave configurations. Owing to the significant reduction in device dimensions, the increase in density of states, the interaction with surfaces and primarily the high intensities carried along the structure, a rich world of light vapor interactions can be studied, and new functionalities, e.g. low power nonlinear light-matter interactions can be achieved. One immense remaining challenge is to study the effects of quantum coherence and shifts in such nano-scale waveguides, characterized by ultra-small mode areas and fast dynamics. Here, we construct a serpentine silicon-nitride wave guide, having atomic vapor as its cladding. The unprecedented mode volume of 5e-13 m^3 supported over a length of 17 mm is used to demonstrate efficient linear and non-linear spectroscopy. Fascinating and important phenomena such as van der Waals shifts, dynamical stark shifts, and coherent effects such as strong coupling (in the for...

  16. Synthesis of highly monodisperse Ge crystals in a capacitively coupled flow through reactor for photovoltaic applications

    Science.gov (United States)

    Gresback, Ryan; Kortshagen, Uwe

    2006-10-01

    Germanium nanocrystals are interesting candidates for quantum dot-based solar cells. While the band gap of bulk Ge is ˜0.7 eV, the energy gap can be increased due to quantum confinement to ˜ 2eV for Ge particles of ˜3 nm in size. With a single material, Ge nanocrystals of sizes from 3 -15 nm would thus allow to span the entire range of band gaps that is of interest for photovoltaic devices. Moreover, compared to many other quantum dot materials that are currently studied for photovoltaic applications, Ge is perceived as non-toxic and environmentally benign. Ge nanocrystals are synthesized in a tubular, capacitively coupled flow through reactor. Germanium tetrachloride is used as a precursor. It is introduced into the plasma by a flow of argon and hydrogen. At typical pressures of 2 Torr and 40 W of RF power at 13.56 MHz, Ge crystals are generated and reside in the plasma for several tens of milliseconds. The size of the nanocrystals can be controlled in a range from 3-20 nm through the residence time. Particles are highly monodisperse. Organically passivated Ge nanocrystals self-assemble into monolayers when cast from colloidal solutions.

  17. High-Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion

    Science.gov (United States)

    Felippa, C. A.; Farhat, C.; Park, K. C.; Gumaste, U.; Chen, P.-S.; Lesoinne, M.; Stern, P.

    1997-01-01

    Applications are described of high-performance computing methods to the numerical simulation of complete jet engines. The methodology focuses on the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by structural displacements. The latter is treated by a ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field elements. New partitioned analysis procedures to treat this coupled three-component problem were developed. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers, including the iPSC-860, Paragon XP/S and the IBM SP2. The NASA-sponsored ENG10 program was used for the global steady state analysis of the whole engine. This program uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 was developed as well as the capability for the first full 3D aeroelastic simulation of a multirow engine stage. This capability was tested on the IBM SP2 parallel supercomputer at NASA Ames.

  18. Quantum emitters coupled to circular nanoantennas for high-brightness quantum light sources

    Science.gov (United States)

    Abudayyeh, Hamza A.; Rapaport, Ronen

    2017-09-01

    Engineering the directionality and emission rate of quantum light sources is essential in the development of modern quantum applications. In this work we use numerical calculations to optimise the brightness of a broadband quantum emitter positioned in a hybrid metal-dielectric circular periodic nanoantenna. The optimised structure features a photon collection efficiency of 74 % (82 % ) and a photon flux enhancement of over 10 (6) into a numerical aperture of 0.22 (0.50), respectively, corresponding to a direct coupling into two types of multi-mode fibres. To enhance the emission rate, we present a new circular nanoantenna design where a quantum emitter is attached to a silver nanocone at the centre of the antenna. After optimisation, we find a collection efficiency of 61 % (78 % ) into a numerical aperture of 0.22 (0.50), giving a brightness enhancement of 1000 (600) for an unpolarised emitter. The enhancements in both structures are broadband due to the low-quality factor of the device and are therefore ideal for room-temperature sources. This type of a scalable design can be utilised towards on-chip, high-brightness quantum light sources operating at room temperature.

  19. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Cunge, G., E-mail: gilles.cunge@cea.fr; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N. [Laboratoire des Technologies de la Microélectronique, CNRS, 17 rue des Martyrs, 38054 Grenoble (France)

    2016-02-29

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a “minor” effect on the ion flux and the shape of the IVDF.

  20. Determination of plastic additives in packaging by liquid chromatography coupled to high resolution mass spectrometry.

    Science.gov (United States)

    Moreta, Cristina; Tena, María-Teresa

    2015-10-02

    A simple and sensitive analytical method for the determination of several plastic additives in multilayer packaging based on solid-liquid extraction (SLE) and ultra-high performance liquid chromatography (UHPLC) coupled to variable wavelength (VWD) and time of flight mass spectrometry (TOF-MS) detectors is presented. The proposed method allows the simultaneous determination of fourteen additives belonging to different families such as antioxidants, slip agents and light stabilizers, as well as two oxidation products in only 9min. The developed method was validated in terms of linearity, matrix effect error, detection and quantification limits, repeatability and intermediate precision. The instrumental method showed satisfactory repeatability and intermediate precision at concentrations closed to LOQ with RSDs less than 7 and 20%, respectively, and LODs until 5000 times more sensitive than other GC-FID and HPLC-VWD methods previously reported. Also, focused ultrasound solid-liquid extraction (FUSLE) was optimized and evaluated to extract plastic additives from packaging. Extraction results obtained by FUSLE and SLE were compared to those obtained by pressurized liquid extraction (PLE). All extraction methods showed excellent extraction efficiency for slip agents, however quantitative recovery of all analytes was achieved only by SLE with just 5ml of hexane for 10h. Finally, the selected method was applied to the analysis of packaging samples where erucamide, Irgafos 168, oxidized Irgafos 168, Irganox 1076 and Irganox 1010 were detected and quantified. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fast-type high-accuracy universal polarimeter using charge-coupled device spectrometer

    Directory of Open Access Journals (Sweden)

    Akifumi Takanabe

    2017-02-01

    Full Text Available A fast, high-accuracy universal polarimeter was developed using a charge-coupled device (CCD spectrometer (CCD-HAUP, to carry out simultaneous optical anisotropic (linear birefringence, LB; linear dichroism, LD and chiroptical (circular birefringence, CB; circular dichroism, CD measurements on single crystals without any pretreatment, in the visible region between 400–680 nm. The principle of the HAUP method is to measure the intensities of emergent light passing through a polarizer, a crystal sample, and then an analyzer, as the azimuth angles of the polarizer and analyzer are independently altered. The CCD-HAUP has the unique feature that white transmitted light intensity can be measured using a CCD spectrometer, compared with the generalized HAUP (G-HAUP system in which monochromatic transmitted light is measured using a photomultiplier. The CCD-HAUP measurements across the entire wavelength region are completed within the G-HAUP measurement time for a single wavelength. The CCD-HAUP drastically reduces the measurement time for a dataset to only 1.5 h, from the 24 h required for the G-HAUP system. LB, LD, CB, and CD measurements of single crystals of α-quartz and enantiomeric photomechanical salicylidenephenylethylamines before, during, and after ultraviolet light irradiation show results comparable to those obtained using the G-HAUP system. The newly developed system is very effective for samples susceptible to degradation induced by external stimuli, such as light and heat.

  2. Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species.

    Science.gov (United States)

    Osathanunkul, Maslin; Suwannapoom, Chatmongkon; Ounjai, Sarawut; Rora, Jantarika A; Madesis, Panagiotis; de Boer, Hugo

    2015-01-01

    DNA barcoding coupled high resolution melting (Bar-HRM) is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae), one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1) from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.

  3. Refining DNA Barcoding Coupled High Resolution Melting for Discrimination of 12 Closely Related Croton Species.

    Directory of Open Access Journals (Sweden)

    Maslin Osathanunkul

    Full Text Available DNA barcoding coupled high resolution melting (Bar-HRM is an emerging method for species discrimination based on DNA dissociation kinetics. The aim of this work was to evaluate the suitability of different primer sets, derived from selected DNA regions, for Bar-HRM analysis of species in Croton (Euphorbiaceae, one of the largest genera of plants with over 1,200 species. Seven primer pairs were evaluated (matK, rbcL1, rbcL2, rbcL3, rpoC, trnL and ITS1 from four plastid regions, matK, rbcL, rpoC, and trnL, and the nuclear ribosomal marker ITS1. The primer pair derived from the ITS1 region was the single most effective region for the identification of the tested species, whereas the rbcL1 primer pair gave the lowest resolution. It was observed that the ITS1 barcode was the most useful DNA barcoding region overall for species discrimination out of all of the regions and primers assessed. Our Bar-HRM results here also provide further support for the hypothesis that both sequence and base composition affect DNA duplex stability.

  4. Characterisation of brewpub beer carbohydrates using high performance anion exchange chromatography coupled with pulsed amperometric detection.

    Science.gov (United States)

    Arfelli, Giuseppe; Sartini, Elisa

    2014-01-01

    High performance anion exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) was optimised in order to quantify mannose, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose and maltoheptaose content of beer. The method allows the determination of above mentioned oligosaccharides, in a single chromatographic run, without any pre-treatment. Limit of detection and limit of quantification were suitable for beer. Accuracy and repeatability were good for the entire amount considered. Once optimised HPAEC PAD for the specific matrix, the second goal of this research was to verify the possibility to discriminate beers, depending on their style. The carbohydrates content of brewpub commercial beers was very variable, ranging from 19.3 to 1469mg/L (mannose), 34.5 to 2882mg/L (maltose), 141.9 to 20731mg/L (maltotriose), 168.5 to 7650mg/L (maltotetraose), 20.1 to 2537mg/L (maltopentaose), 22.9 to 3295mg/L (maltohexaose), 8.5 to 2492mg/L (maltoeptaose), even in the same style of beer. However, the carbohydrates content was useful, jointed with other compounds amount, to discriminate different styles of beer. As a matter of fact, principal component analysis put in evidence beer differences considering some fermentation conditions and colour.

  5. Development of a Marx-coupled trigger generator with high voltages and low time delay

    Science.gov (United States)

    Hu, Yixiang; Zeng, Jiangtao; Sun, Fengju; Cong, Peitian; Su, Zhaofeng; Yang, Shi; Zhang, Xinjun; Qiu, Ai'ci

    2016-10-01

    Coupled by the Marx of the "JianGuang-I" facility, a high voltage, low time-delay trigger generator was developed. Working principles of this trigger generator and its key issues were described in detail. Structures of this generator were also carefully designed and optimized. Based on the "JianGuang-I" Marx generator, a test stand was established. And a series of experiment tests were carried out to the study performance of this trigger generator. Experiment results show that the output voltage of this trigger generator can be continuously adjusted from 58 kV to 384 kV. The time delay (from the beginning of the Marx-discharging pulse to the time that the output pulse of the trigger generator arises) of this trigger pulse is about 200 ns and its peak time (0%˜100%) is less than 50 ns. Experiment results also indicate that the time-delay jitter of trigger voltages decreases rapidly with the increase in the peak voltage of trigger pulses. When the trigger voltage is higher than 250 kV, the time-delay jitters (the standard deviation) are less than 7.7 ns.

  6. Refractive surgery: Is the new small-incision lenticule extraction (SMILE) technique equal to or better than the standard flap-and-ablation (FS-LASIK) technique for treating high-degree myopia?

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    treated with SMILE or FS-LASIK for high-degree myopia from 2011-2013 at the Department of Ophthalmology, Odense University Hospital, Denmark. Inclusion criteria: Best spectacle-corrected visual acuity (BSCVA) of 20/25 or better on Snellen chart, and no other ocular condition than high-degree myopia...

  7. Refractive surgery: Is the new small-incision lenticule extraction (SMILE) technique equal to or better than the standard flap-and-ablation (FS-LASIK) technique for treating high-degree myopia?

    DEFF Research Database (Denmark)

    Hansen, Rasmus Søgaard; Lyhne, Niels; Grauslund, Jakob

    2014-01-01

    treated with SMILE or FS-LASIK for high-degree myopia from 2011-2013 at the Department of Ophthalmology, Odense University Hospital, Denmark. Inclusion criteria: Best spectacle-corrected visual acuity (BSCVA) of 20/25 or better on Snellen chart, and no other ocular condition than high-degree myopia...

  8. Coupled neutronics and thermal hydraulics of high density cores for FRM II

    Energy Technology Data Exchange (ETDEWEB)

    Breitkreutz, Harald

    2011-03-04

    According to the 'Verwaltungsvereinbarung zwischen Bund und Land vom 30.5.2003' and its updating on 13.11.2010, the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, Frm II, has to convert its fuel element to an uranium enrichment which is significantly lower than the current 93%, in case this is economically reasonable and doesn't impact the reactor performance immoderate. In the framework of this conversion, new calculations regarding neutronics and thermal hydraulics for the anticipated core configurations have to be made. The computational power available nowadays allows for detailed 3D calculations, on the neutronic as well as on the thermal hydraulic side. In this context, a new program system, 'X{sup 2}', was developed. It couples the Monte Carlo code McnpX, the computational fluid dynamics code Cfx and the burn-up code sequence MonteBurns. The codes were modified and extended to meet the requirements of the coupled calculation concept. To verify the new program system, highly detailed calculations for the current fuel element were made and compared to simulations and measurements that were performed in the past. The results strengthen the works performed so far and show that the original, conservative approach overestimates all critical thermal hydraulic values. Using the CFD software, effects like the impact of the combs that fix the fuel plates and the pressure drop at the edges of the fuel plates were studied in great detail for the first time. Afterwards, a number of possible new fuel elements with lower enrichment, based on disperse and monolithic UMo (uranium with 8 wt.-% Mo) were analysed. A number of straight-forward conversion scenarios was discussed, showing that a further compaction of the fuel element, an extended cycle length or an increased reactor power is needed to compensate the flux loss, which is caused by the lower enrichment. This flux loss is in excess of 7%. The discussed new fuel elements include a 50

  9. High-temperature solvent stability of sol-gel germania triblock polymer coatings in capillary microextraction on-line coupled to high-performance liquid chromatography.

    Science.gov (United States)

    Segro, Scott S; Malik, Abdul

    2010-09-10

    Germania-based sol-gel organic-inorganic hybrid coatings were prepared for on-line coupling of capillary microextraction with high-performance liquid chromatography. For this, a germania-based sol-gel precursor, tetra-n-butoxygermane and a hydroxy-terminated triblock copolymer, poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) were used. These sol-gel germania triblock polymer coatings were chemically anchored to the inner walls of a fused silica capillary (0.25 mm I.D.) in course of its evolution from the sol solution. Scanning electron microscopy images of the sol-gel germania triblock polymer coating were obtained to estimate the coating thickness. For the first time, the analyte distribution constants between a sol-gel germania organic-inorganic hybrid coating and the samples (K(cs)) were determined. For a variety of analytes from different chemical classes, including polycyclic aromatic hydrocarbons (PAHs), ketones, alcohols, phenols and amines, the K(cs) values ranged from 8.1 x 10(1) to 5.6 x 10(4). Also, for the first time, the stability of the sol-gel germania-based coating in high-temperature reversed-phase solvent environment was evaluated. The sol-gel germania triblock polymer coatings were capable of surviving exposure to high-temperature solvent conditions (200 degrees C) with little change in extraction capabilities. This demonstrates that sol-gel germania triblock polymer hybrid materials might be suitable for further applications in high-temperature HPLC. The reproducibility of the method for preparation of the sol-gel germania triblock polymer coatings was also evaluated, and the capillary-to-capillary RSD values ranged from 5.3 to 6.5%. The use of higher flow rates in extraction was found to significantly reduce the time required (from 30-40 to 10-15 min) to reach equilibrium between the sol-gel germania triblock polymer coating and the analytes in the sample solution.

  10. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  11. Relativistic coupled-cluster calculations of transition properties in highly charged inert-gas ions

    Science.gov (United States)

    Nandy, D. K.

    2016-11-01

    We have carried out an extensive investigation of various spectroscopic properties of highly charged inert-gas ions using a relativistic coupled-cluster method through a one-electron detachment procedure. In particular, we have calculated the atomic states 2 s22 p53/2 2P, 2 s22 p51/2 2P, and 2 s 2 p61/2 2S in F-like inert-gas ions; 3 s23 p53/2 2P, 3 s23 p51/2 2P, and 3 s 3 p61/2 2S states in Cl-like Kr, Xe, and Rn; and 4 s24 p53/2 2P, 4 s24 p51/2 2P, and 4 s 4 p61/2 2S states in Br-like Xe and Rn. Starting from a single-reference Dirac-Hartree-Fock wave function, we construct our exact atomic states by including the dynamic correlation effects in an all-order perturbative fashion. Employing this method, we estimate the ionization potential energies of three low-lying orbitals present in their respective closed-shell configurations. Since the considered highly charged inert-gas ions exhibit huge relativistic effects, we have taken into account the corrections due to Breit interaction as well as from the dominant quantum electrodynamic correction such as vacuum polarization and self-energy effects in these systems. Using our calculated relativistic atomic wave functions and energies, we accurately determine various transition properties such as wavelengths, line strengths, oscillator strengths, transition probabilities, and lifetimes of the excited states.

  12. High performance steam development. Final report, Phase No. 3: 1500{degree}F steam plant for industrial cogeneration prototype development tests

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, T.; Schneider, P.

    1996-01-01

    As a key part of DOE`s and industry`s R&D efforts to improve the efficiency, cost, and emissions of power generation, a prototype High Performance Steam System (HPSS) has been designed, built, and demonstrated. The world`s highest temperature ASME Section I coded power plant successfully completed over 100 hours of development tests at 1500{degrees}F and 1500 psig on a 56,000 pound per hour steam generator, control valve and topping turbine at an output power of 5500 hp. This development advances the HPSS to 400{degrees}F higher steam temperature than the current best technology being installed around the world. Higher cycle temperatures produce higher conversion efficiencies and since steam is used to produce the large majority of the world`s power, the authors expect HPSS developments will have a major impact on electric power production and cogeneration in the twenty-first century. Coal fueled steam plants now produce the majority of the United States electric power. Cogeneration and reduced costs and availability of natural gas have now made gas turbines using Heat Recovery Steam Generators (HRSG`s) and combined cycles for cogeneration and power generation the lowest cost producer of electric power in the United States. These gas fueled combined cycles also have major benefits in reducing emissions while reducing the cost of electricity. Development of HPSS technology can significantly improve the efficiency of cogeneration, steam plants, and combined cycles. Figure 2 is a TS diagram that shows the HPSS has twice the energy available from each pound of steam when expanding from 1500{degrees}F and 1500 psia to 165 psia (150 psig, a common cogeneration process steam pressure). This report describes the prototype component and system design, and results of the 100-hour laboratory tests. The next phase of the program consists of building up the steam turbine into a generator set, and installing the power plant at an industrial site for extended operation.

  13. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu.M. [BLTP, JINR, Moscow Region, Dubna 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter {alpha} on the current-voltage characteristics at fixed parameter {beta} ({beta} {sup 2} 1/{beta} {sub c}, where {beta} {sub c} is McCumber parameter) and the influence of {alpha} on {beta}-dependence of the current-voltage characteristics are investigated. We obtain the {alpha}-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors.

  14. Influence of coupling parameter on current-voltage characteristics of intrinsic Josephson junctions in high- Tc superconductors

    Science.gov (United States)

    Shukrinov, Yu. M.; Mahfouzi, F.

    2006-02-01

    We study the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β2 = 1/βc, where βc is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors.

  15. 高校高学历实验技术人员的自我提升%Self-improvement of University High-Degree Laboratory Technicians

    Institute of Scientific and Technical Information of China (English)

    秦敏锐

    2014-01-01

    实验技术队伍是高校实验教学中不可缺少的主力军。为了提高实验教学质量,一些硕士及以上高学历人才加入实验技术队伍,这些实验技术人员除了具备一般实验员的基本能力外,还应该主动在理论知识、教学能力以及科研能力等方面加以提高,以适应“综合研究型大学”实验教学发展的需要。%The laboratory technician team is the main force of ex-periment teaching and scientific effort in colleges and universi-ties. In order to improve the quality of experiment teaching, tech-nicians with the degree of master and above joined in the labora-tory technician team. The high-degree laboratory technicians should meet some special requirements like theoretical knowl-edge, teaching ability and scientific research ability voluntarily besides the general laboratory technicians' basic abilities, in or-der to meet the requirements of experiment teaching for "re-search-centered comprehensive university".

  16. A Methodology for the Development of a Coupling Model for High Energy Laser Interactions With Metals

    Science.gov (United States)

    2006-11-01

    is greater than .95, the problem is linear (material properties constant with temperature), and the coupling function is constant in time , then... in time may not be assumed. It can be argued that (16) still applies despite the nonlinearity. As a material approaches phase change, the...Lasers are of interest because they create nonlinear effects in materials, i.e. phase changes. In addition, a coupling function that is constant

  17. A High-order Eulerian-Lagrangian Finite Element Method for Coupled Electro-mechanical Systems

    Science.gov (United States)

    Brandstetter, Gerd

    The main focus of this work is on the development of a high-order Eulerian-Lagrangian finite element method for the simulation of electro-mechanical systems. The coupled problem is solved by a staggered scheme, where the mechanical motion is discretized by standard Lagrangian finite elements, and the electrical field is solved on a fixed Eulerian grid with embedded boundary conditions. Traditional Lagrangian-Lagrangian or arbitrary Lagrangian-Eulerian (ALE) methods encounter deficiencies, for example, when dealing with mesh distortion due to large deformations, or topology changes due to contacting bodies. The presented Eulerian-Lagrangian approach addresses these issues in a natural way. Within this context we develop a high-order immersed boundary discontinuous-Galerkin (IB-DG) method, which is shown to be necessary for (i) the accurate representation of the electrical gradient along nonlinear boundary features such as singular corners, and (ii) to achieve full convergence during the iterative global solution. We develop an implicit scheme based on the mid-point rule, as well as an explicit scheme based on the centered-difference method, with the incorporation of energy conserving, frictionless contact algorithms for an elastic-to-rigid-surface contact. The performance of the proposed method is assessed for several benchmark tests: the electro-static force vector around a singular corner, the quasi-static pull-in of an electro-mechanically actuated switch, the excitation of a carbon nanotube at resonance, and the cyclic impact simulation of a micro-electro-mechanical resonant-switch. We report improved accuracy for the high-order method as compared to low-order methods, and linear convergence in the iterative solution of the staggered scheme. Additionally, we investigate a Newton-Krylov shooting scheme in order to directly find cyclic steady states of electro-mechanical devices excited at resonance-- as opposed to a naive time-stepping from zero initial

  18. The physiological significance of HKT1, a Na{sup +} - coupled high affinity K{sup +} transporter in `Triticum aestivum`

    Energy Technology Data Exchange (ETDEWEB)

    Box, S.; Schachtman, D.P. [University of Adelaide, SA (Australia). Department of Botany

    1997-12-31

    Full text: Several mechanisms for high affinity K{sup +} uptake by higher plants have been proposed:-an ATP-energised K:+ pump, a K{sup +}/H{sup +} antiport and a H{sup +}coupled carrier. Recently, a Na{sup +}--coupled high affinity K{sup +} transporter, HKT1, was isolated from wheat roots. Whilst Na{sup +}K{sup +} symports have been described in charophyte algae, the cloning of HKT1 from wheat is the first, evidence that this type d transport mechanism may function in higher plants. Is the activity of HKT1 an important mechanism involved in K{sup +} acquisition by wheat? The aim of this study was to assess the physiological significance of Na{sup +}- coupled high affinity K{sup +} uptake in T. aestivum. To determine whether HKT1 plays a significant role in wheat growth, we measured the dry weights and ion content of plants grown in a range of [K{sup +}], with and without Na{sup +}. To directly assess the activity of Na{sup +}- coupled K{sup +} transport, {sup 86}Rb{sup +} and {sup 22}Na{sup +} flux analyses were performed on the elongation zones and whole roots of intact seedlings, expressing a high affinity K{sup +} uptake system. The results of these growth and tracer flux studies will be discussed in relation to the expression of the gene encoding HKT1 in T. aestivum

  19. Highly efficient coupling of beta-substituted aminoethane sulfonyl azides with thio acids, toward a new chemical ligation reaction.

    Science.gov (United States)

    Merkx, Remco; Brouwer, Arwin J; Rijkers, Dirk T S; Liskamp, Rob M J

    2005-03-17

    [reaction: see text] A highly efficient coupling of protected beta-substituted aminoethane sulfonyl azides with thio acids is reported. In the case of peptide thio acids, this method encompasses a new chemoselective ligation method. Furthermore, the resulting alpha-amino acyl sulfonamides can be alkylated with suitable electrophiles to obtain densely functionalized sulfonamide scaffolds.

  20. Commercial-Scale Performance Predictions for High-Temperature Electrolysis Plants Coupled to Three Advanced Reactor Types

    Energy Technology Data Exchange (ETDEWEB)

    M. G. McKellar; J. E. O' Brien; J. S. Herring

    2007-09-01

    This report presents results of system analyses that have been developed to assess the hydrogen production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor – power-cycle combinations: a high-temperature helium cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to- hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable production rates with the high-temperature helium cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor.

  1. Environmental forensics in groundwater coupling passive sampling and high resolution mass spectrometry for screening.

    Science.gov (United States)

    Soulier, Coralie; Coureau, Charlotte; Togola, Anne

    2016-09-01

    One of the difficulties encountered when monitoring groundwater quality is low and fluctuating concentration levels and complex mixtures of micropollutants, including emerging substances or transformation products. Combining passive sampling techniques with analysis by high resolution mass spectrometry (HRMS) should improve environmental metrology. Passive samplers accumulate compounds during exposure, which improves the detection of organic compounds and integrates pollution fluctuations. The Polar Organic Chemical Integrative Sampler (POCIS) were used in this study to sequester polar to semi-polar compounds. The methodology described here improves our knowledge of environmental pollution by highlighting and identifying pertinent compounds to be monitored in groundwater. The advantage of combining these two approaches is demonstrated on two different sites impacted by agricultural and/or urban pollution sources where groundwater was sampled for several months. Grab and passive sampling were done and analyzed by liquid chromatography coupled to a hybrid quadrupole time-of-flight mass spectrometer (LC-QTOF). Various data processing approaches were used (target, suspect and non-target screening). Target screening was based on research from compounds listed in a homemade database and suspect screening used a database compiled using literature data. The non-target screening was done using statistical tools such as principal components analysis (PCA) with direct connections between original chromatograms and ion intensity. Trend plots were used to highlight relevant compounds for their identification. The advantage of using POCIS to improve screening of polar organic compounds was demonstrated. Compounds undetected in water samples were detected with these tools. The subsequent data processing identified sentinel molecules, molecular clusters as compounds never revealed in these sampling sites, and molecular fingerprints. Samples were compared and multidimensional

  2. High Dimensional ODEs Coupled with Mixed-Effects Modeling Techniques for Dynamic Gene Regulatory Network Identification.

    Science.gov (United States)

    Lu, Tao; Liang, Hua; Li, Hongzhe; Wu, Hulin

    2011-01-01

    Gene regulation is a complicated process. The interaction of many genes and their products forms an intricate biological network. Identification of this dynamic network will help us understand the biological process in a systematic way. However, the construction of such a dynamic network is very challenging for a high-dimensional system. In this article we propose to use a set of ordinary differential equations (ODE), coupled with dimensional reduction by clustering and mixed-effects modeling techniques, to model the dynamic gene regulatory network (GRN). The ODE models allow us to quantify both positive and negative gene regulations as well as feedback effects of one set of genes in a functional module on the dynamic expression changes of the genes in another functional module, which results in a directed graph network. A five-step procedure, Clustering, Smoothing, regulation Identification, parameter Estimates refining and Function enrichment analysis (CSIEF) is developed to identify the ODE-based dynamic GRN. In the proposed CSIEF procedure, a series of cutting-edge statistical methods and techniques are employed, that include non-parametric mixed-effects models with a mixture distribution for clustering, nonparametric mixed-effects smoothing-based methods for ODE models, the smoothly clipped absolute deviation (SCAD)-based variable selection, and stochastic approximation EM (SAEM) approach for mixed-effects ODE model parameter estimation. The key step, the SCAD-based variable selection of the proposed procedure is justified by investigating its asymptotic properties and validated by Monte Carlo simulations. We apply the proposed method to identify the dynamic GRN for yeast cell cycle progression data. We are able to annotate the identified modules through function enrichment analyses. Some interesting biological findings are discussed. The proposed procedure is a promising tool for constructing a general dynamic GRN and more complicated dynamic networks.

  3. Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.

    Science.gov (United States)

    Pittman-Polletta, Benjamin; Hsieh, Wan-Hsin; Kaur, Satvinder; Lo, Men-Tzung; Hu, Kun

    2014-04-15

    Phase-amplitude coupling (PAC)--the dependence of the amplitude of one rhythm on the phase of another, lower-frequency rhythm - has recently been used to illuminate cross-frequency coordination in neurophysiological activity. An essential step in measuring PAC is decomposing data to obtain rhythmic components of interest. Current methods of PAC assessment employ narrowband Fourier-based filters, which assume that biological rhythms are stationary, harmonic oscillations. However, biological signals frequently contain irregular and nonstationary features, which may contaminate rhythms of interest and complicate comodulogram interpretation, especially when frequency resolution is limited by short data segments. To better account for nonstationarities while maintaining sharp frequency resolution in PAC measurement, even for short data segments, we introduce a new method of PAC assessment which utilizes adaptive and more generally broadband decomposition techniques - such as the empirical mode decomposition (EMD). To obtain high frequency resolution PAC measurements, our method distributes the PAC associated with pairs of broadband oscillations over frequency space according to the time-local frequencies of these oscillations. We compare our novel adaptive approach to a narrowband comodulogram approach on a variety of simulated signals of short duration, studying systematically how different types of nonstationarities affect these methods, as well as on EEG data. Our results show: (1) narrowband filtering can lead to poor PAC frequency resolution, and inaccuracy and false negatives in PAC assessment; (2) our adaptive approach attains better PAC frequency resolution and is more resistant to nonstationarities and artifacts than traditional comodulograms. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Adaptive Variable Degree-k Zero-Trees for Re-Encoding of Perceptually Quantized Wavelet-Packet Transformed Audio and High Quality Speech

    CERN Document Server

    Ghahabi, Omid

    2011-01-01

    A fast, efficient and scalable algorithm is proposed, in this paper, for re-encoding of perceptually quantized wavelet-packet transform (WPT) coefficients of audio and high quality speech and is called "adaptive variable degree-k zero-trees" (AVDZ). The quantization process is carried out by taking into account some basic perceptual considerations, and achieves good subjective quality with low complexity. The performance of the proposed AVDZ algorithm is compared with two other zero-tree-based schemes comprising: 1- Embedded Zero-tree Wavelet (EZW) and 2- The set partitioning in hierarchical trees (SPIHT). Since EZW and SPIHT are designed for image compression, some modifications are incorporated in these schemes for their better matching to audio signals. It is shown that the proposed modifications can improve their performance by about 15-25%. Furthermore, it is concluded that the proposed AVDZ algorithm outperforms these modified versions in terms of both output average bit-rates and computation times.

  5. Analysis of Ordering Process in an Al-Li Alloy by a Newly Developed Method of Degree of Order Determination Using High-Resolution Transmission Electron Micrographs

    Science.gov (United States)

    Kobayashi, Sengo; Nakai, Kiyomichi; Ohmori, Yasuya

    2012-12-01

    Ordering processes of an Al-11.7 at. pct Li alloy in the early stage of aging have been investigated quantitatively by means of a newly proposed technique to determine the degree of order in a nanoscale area by using high-resolution transmission electron microscopy (TEM). After solid solution treatment at 833 K (560 °C) for 1.8 ks, the specimen was quenched into iced brine. The specimen exhibited congruent ordering. It was continuously heated at a rate of 0.17 Ks-1 (0.17 °C s-1). During heating to 673 K (400 °C), the reactions occurred in the following sequences: progress of the congruent ordering, partition of Li atoms around the antiphase domain boundaries, phase separation into Li-rich and Li-lean regions toward equilibria, and dissolution of δ' phase.

  6. Classical sickle beta-globin haplotypes exhibit a high degree of long-range haplotype similarity in African and Afro-Caribbean populations

    Directory of Open Access Journals (Sweden)

    Jallow Muminatou

    2007-08-01

    Full Text Available Abstract Background The sickle (βs mutation in the beta-globin gene (HBB occurs on five "classical" βs haplotype backgrounds in ethnic groups of African ancestry. Strong selection in favour of the βs allele – a consequence of protection from severe malarial infection afforded by heterozygotes – has been associated with a high degree of extended haplotype similarity. The relationship between classical βs haplotypes and long-range haplotype similarity may have both anthropological and clinical implications, but to date has not been explored. Here we evaluate the haplotype similarity of classical βs haplotypes over 400 kb in population samples from Jamaica, The Gambia, and among the Yoruba of Nigeria (Hapmap YRI. Results The most common βs sub-haplotype among Jamaicans and the Yoruba was the Benin haplotype, while in The Gambia the Senegal haplotype was observed most commonly. Both subtypes exhibited a high degree of long-range haplotype similarity extending across approximately 400 kb in all three populations. This long-range similarity was significantly greater than that seen for other haplotypes sampled in these populations (P s mutation. Conclusion Two different classical βs haplotypes, sampled from different populations, exhibit comparable and extensive long-range haplotype similarity and strong LD. This LD extends across the adjacent recombination hotspot, and is discernable at distances in excess of 400 kb. Although the multi-centric geographic distribution of βs haplotypes indicates strong subdivision among early Holocene sub-Saharan populations, we find no evidence that selective pressures imposed by falciparum malaria varied in intensity or timing between these subpopulations. Our observations also suggest that cis-acting loci, which may influence outcomes in sickle cell disease, could lie considerable distances away from β-globin.

  7. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A;

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound...... to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein-coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair...

  8. The External Degree.

    Science.gov (United States)

    Houle, Cyril O.

    This book examines the external degree in relation to the extremes of attitudes, myths, and data. Emphasis is placed on the emergence of the American external degree, foreign external-degree programs, the purpose of the external degree, the current scene, institutional issues, and problems of general policy. (MJM)

  9. Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics.

    Science.gov (United States)

    Nansubuga, Irene; Banadda, Noble; Ronsse, Frederik; Verstraete, Willy; Rabaey, Korneel

    2015-09-15

    High rate activated sludge (HRAS) is well-biodegradable sludge enabling energy neutrality of wastewater treatment plants via anaerobic digestion. However, even through successful digestion a notable residue still remains. Here we investigated whether this residue can be converted to biochar, for its use as a fertilizer or as a solid fuel, and assessed its characteristics and overall process efficiency. In a first phase, HRAS was anaerobicaly digested under mesophilic conditions at a sludge retention time of 20 days. HRAS digested well (57.9 ± 6.2% VS degradation) producing on average 0.23 ± 0.04 L CH4 per gram VS fed. The digestate particulates were partially air-dried to mimic conditions used in developing countries, and subsequently converted to biochar by fixed-bed slow pyrolysis at a residence time of 15 min and at highest heating temperatures (HHT) of 300 °C, 400 °C and 600 °C. Subsequently, the produced chars were characterized by proximate analysis, CHN-elemental analysis, pH in solution and bomb calorimetry for higher heating value. The yield and volatile matter decreased with increasing HHT while ash content and fixed carbon increased with increasing HHT. The produced biochar showed properties optimal towards soil amendment when produced at a temperature of 600 °C with values of 5.91 wt%, 23.75 wt%, 70.35% on dry basis (db) and 0.44 for volatile matter, fixed carbon, ash content and H/C ratio, respectively. With regard to its use for energy purposes, the biochar represented a lower calorific value than the dried HRAS digestate likely due to high ash content. Based on these findings, it can be concluded that anaerobic digestion of HRAS and its subsequent biochar formation at HHT of 600 °C represents an attractive route for sludge management in tropic settings like in Uganda, coupling carbon capture to energy generation, carbon sequestration and nutrient recovery.

  10. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries

    OpenAIRE

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; DING, GUOLIANG; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10−4 S cm−1) at 60°C and improved dimensional thermostability (up to...

  11. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    CERN Document Server

    Mai, Sebastian; Plasser, Felix; Marquetand, Philipp; Lischka, Hans; González, Leticia

    2016-01-01

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing c...

  12. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification

    Directory of Open Access Journals (Sweden)

    Chuang Li

    2016-03-01

    Full Text Available The high-order interference (HOI—The interferogram introduced by polarization mode couplings (PMC of multiple perturbations—Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF which is tested with a white light interferometer (WLI with large dynamic range. We present an optical path tracking (OPT method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers’ pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs.

  13. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization--Maintaining Fiber and Its Identification.

    Science.gov (United States)

    Li, Chuang; Yang, Jun; Yu, Zhangjun; Yuan, Yonggui; Zhang, Jianzhong; Wu, Bing; Peng, Feng; Yuan, Libo

    2016-01-01

    The high-order interference (HOI)-The interferogram introduced by polarization mode couplings (PMC) of multiple perturbations-Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF) which is tested with a white light interferometer (WLI) with large dynamic range. We present an optical path tracking (OPT) method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers' pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs.

  14. High-Order Interference Effect Introduced by Polarization Mode Coupling in Polarization—Maintaining Fiber and Its Identification

    Science.gov (United States)

    Li, Chuang; Yang, Jun; Yu, Zhangjun; Yuan, Yonggui; Zhang, Jianzhong; Wu, Bing; Peng, Feng; Yuan, Libo

    2016-01-01

    The high-order interference (HOI)—The interferogram introduced by polarization mode couplings (PMC) of multiple perturbations—Will cause misjudgment of the realistic coupling points in polarization-maintaining fiber (PMF) which is tested with a white light interferometer (WLI) with large dynamic range. We present an optical path tracking (OPT) method for simplifying the analysis of HOI, and demonstrate the enhancement and suppression conditions for the HOIs. A strategy is proposed to readily identify HOI by altering the spliced angle between polarizers’ pigtails and the PMF under test. Moreover, a PMF experiment with two perturbation points, for simplicity, is given as an example. As a result, all the characteristic interferograms including HOIs can be distinguished through just four measurements. Utilizing this identification method, we can estimate the realistic coupling points in PMFs and distinguish them from the interference signals including numerous HOIs. PMID:27011191

  15. Dynamics of High-Order Spin-Orbit Couplings about Linear Momenta in Compact Binary Systems*

    Science.gov (United States)

    Huang, Li; Wu, Xin; Mei, Li-Jie; Huang, Guo-Qing

    2017-09-01

    This paper relates to the post-Newtonian Hamiltonian dynamics of spinning compact binaries, consisting of the Newtonian Kepler problem and the leading, next-to-leading and next-to-next-to-leading order spin-orbit couplings as linear functions of spins and momenta. When this Hamiltonian form is transformed to a Lagrangian form, besides the terms corresponding to the same order terms in the Hamiltonian, several additional terms, third post-Newtonian (3PN), 4PN, 5PN, 6PN and 7PN order spin-spin coupling terms, yield in the Lagrangian. That means that the Hamiltonian is nonequivalent to the Lagrangian at the same PN order but is exactly equivalent to the full Lagrangian without any truncations. The full Lagrangian without the spin-spin couplings truncated is integrable and regular. Whereas it is non-integrable and becomes possibly chaotic when any one of the spin-spin terms is dropped. These results are also supported numerically.

  16. Design of Highly Sensitive Surface Plasmon Resonance Sensors Using Planar Metallic Films Closely Coupled to Nanogratings

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming

    2008-01-01

    We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.

  17. Cladding mode coupling in highly localized fiber Bragg gratings: modal properties and transmission spectra

    CERN Document Server

    Thomas, Jens; Becker, Ria G; Marshall, Graham D; Withford, Michael J; Tünnermann, Andreas; Nolte, Stefan; Steel, M J

    2010-01-01

    The spectral characteristics of a fiber Bragg grating (FBG) with a transversely inhomogeneous refractive index profile, differs con- siderably from that of a transversely uniform one. Transmission spectra of inhomogeneous and asymmetric FBGs that have been inscribed with focused ultrashort pulses with the so-called point-by-point technique are investigated. The cladding mode resonances of such FBGs can span a full octave in the spectrum and are very pronounced (deeper than 20dB). Using a coupled-mode approach, we compute the strength of resonant coupling and find that coupling into cladding modes of higher azimuthal order is very sensitive to the position of the modification in the core. Exploiting these properties allows precise control of such reflections and may lead to many new sensing applications.

  18. Highly Efficient Coupling of Nanolight Emitters to a Ultra-wide Tunable Nanofibre Cavity

    CERN Document Server

    Schell, Andreas W; Kamioka, Shunya; Oe, Yasuko; Fujiwara, Masazumi; Benson, Oliver; Takeuchi, Shigeki

    2015-01-01

    Solid-state microcavities combining ultra-small mode volume, wide-range resonance frequency tuning, as well as lossless coupling to a single mode fibre are integral tools for nanophotonics and quantum networks. We developed an integrated system providing all of these three indispensable properties. It consists of a nanofibre Bragg cavity (NFBC) with the mode volume of under 1 micro cubic meter and repeatable tuning capability over more than 20 nm at visible wavelengths. In order to demonstrate quantum light-matter interaction, we establish coupling of quantum dots to our tunable NFBC and achieve an emission enhancement by a factor of 2.7.

  19. High-temperature behavior of supported graphene: Electron-phonon coupling and substrate-induced doping

    DEFF Research Database (Denmark)

    Ulstrup, Søren; Bianchi, Marco; Guan, Dandan

    2012-01-01

    The temperature-dependent electronic structure and electron-phonon coupling of weakly doped supported graphene is studied by angle-resolved photoemission spectroscopy and ab initio molecular dynamics simulations. The electron-phonon coupling is found to be extremely weak, reaching the lowest value...... ever reported for any material. However, the temperature-dependent dynamic interaction with the substrate leads to a complex and dramatic change in the carrier density and type in graphene. These changes in the electronic structure are mainly caused by fluctuations in the graphene-substrate distance....

  20. Model studies of long Josephson junction arrays coupled to a high-Q resonator

    DEFF Research Database (Denmark)

    Filatrella, G.; Rotoli, G.; Grønbech-Jensen, N.;

    1992-01-01

    to a lumped, linear tank circuit, reproduce the essential experimental observations at a very low computational cost. A more sophisticated model, consisting of partial differential equation descriptions of the junctions, again mutually coupled to a linear tank, substantially confirm the predictions...... of the simplified model. In the particle-map model, the locking range in junction bias current increases linearly with the coupling capacitance; in the partial differential equation (p.d.e.) model, this holds up to a certain maximum value of the capacitance, after which a saturation of the locking range is observed...

  1. A Coupled Resonator for Highly Tunable and Amplified Mixer/Filter

    KAUST Repository

    Ilyas, Saad

    2017-04-25

    We present an H-shaped resonator made of two clamped-clamped microbeams mechanically coupled at the middle with a strong coupler to achieve, in a single device, mechanical amplification of the response signal, filtering, and frequency conversion simultaneously. Using mechanical amplification combined with combination resonances generated from a mixed-frequency excitation, a wideband tunable filter, and a simultaneous frequency up and down convertors at multiple bands is demonstrated. The proposed coupled structure, when combined with the easy-to-implement technique of frequency mixing, is promising for applications in an RF chain.

  2. Predicting Long-Term College Success through Degree Completion Using ACT[R] Composite Score, ACT Benchmarks, and High School Grade Point Average. ACT Research Report Series, 2012 (5)

    Science.gov (United States)

    Radunzel, Justine; Noble, Julie

    2012-01-01

    This study compared the effectiveness of ACT[R] Composite score and high school grade point average (HSGPA) for predicting long-term college success. Outcomes included annual progress towards a degree (based on cumulative credit-bearing hours earned), degree completion, and cumulative grade point average (GPA) at 150% of normal time to degree…

  3. Effect of composition and temperature on the properties of High-Level Waste (HLW) glasses melting above 1200{degrees}C (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Hrma, P.R.; Schweiger, M.J. [and others

    1996-02-01

    Increasing the melting temperature of HLW glass allows an increase of waste loading (thus reducing product volume) and the production of more durable glasses at a faster melting rate. However, HLW glasses that melt at high temperatures differ in composition from glasses formulated for low temperature ({approximately}1150{degree}C). Consequently, the composition of high-temperature glasses falls in a region previously not well tested or understood. This report represents a preliminary study of property/composition relationships of high-temperature Hanford HLW glasses using a one-component-at-a-time change approach. A test matrix has been designed to explore a composition region expected for high-temperature high-waste loading HLW glasses to be produced at Hanford. This matrix was designed by varying several key components (SiO{sub 2}, B{sub 2}O{sub 3}, Na{sub 2}O, Li{sub 2}O, Fe{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, ZrO{sub 2}, Bi{sub 2}O{sub 3}, P{sub 2}O{sub 5}, UO{sub 2}, TiO{sub 2}, Cr{sub 2}O{sub 3}, and others) starting from a glass based on a Hanford HLW all-blend waste. Glasses were fabricated and tested for viscosity, glass transition temperature, electrical conductivity, crystallinity, liquidus temperature, and PCT release. The effect of individual components on glass properties was assessed using first- and second- order empirical models. The first-order component effects were compared with those from low-temperature HLW glasses.

  4. High-latitude E and F region coupling signature: A case study results from rapid-run ionosonde

    Science.gov (United States)

    Shalimov, S.; Kozlovsky, A.

    2015-04-01

    Rapid-run ionosonde installed in the high-latitude Sodankylä Geophysical Observatory enables us to observe for the first time extraordinary details of E-F region coupling process in high-latitude ionosphere during geomagnetically quiet period. We present an example on 15 August 2009 when a dense, patchy sporadic E layer was detected. Associated with this unstable sporadic E layer, exhibiting in addition an unusual enhancement with a vertical extent of about 10 km, the highly structured F layer plasma was observed with apparent plasma depletions. We examine this event taking into account the presence of mesoscale traveling ionospheric disturbances which can initiate coupling between these two regions and compare the data with current theories.

  5. High-Q cavity-induced fluxon bunching in inductively coupled Josephson junctions

    DEFF Research Database (Denmark)

    Madsen, S.; Grønbech-Jensen, Niels; Pedersen, Niels Falsig

    2008-01-01

    We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analyses, the possibility for the cavity to induce a transition from the energetically...

  6. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian;

    2008-01-01

    We present time-resolved spontaneous emission measurements of single quantum dots embedded in photonic crystal waveguides. Quantum dots that couple to a photonic crystal waveguide are found to decay up to 27 times faster than uncoupled quantum dots. From these measurements -factors of up to 0.89 ...

  7. Coupling Advanced Modeling and Visualization to Improve High-Impact Tropical Weather Prediction

    Science.gov (United States)

    Shen, Bo-Wen; Tao, Wei-Kuo; Green, Bryan

    2009-01-01

    To meet the goals of extreme weather event warning, this approach couples a modeling and visualization system that integrates existing NASA technologies and improves the modeling system's parallel scalability to take advantage of petascale supercomputers. It also streamlines the data flow for fast processing and 3D visualizations, and develops visualization modules to fuse NASA satellite data.

  8. High-fidelity multiphysics simulation of BWR assembly with coupled TORT-TD/CTF

    Energy Technology Data Exchange (ETDEWEB)

    Magedanz, J. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Perin, Y. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany); Avramova, M. [Dept. of Mechanical and Nuclear Engineering, Pennsylvania State Univ., Reber Building, Univ. Park, PA 16802 (United States); Pautz, A.; Puente-Espel, F.; Seubert, A.; Sureda, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany)

    2012-07-01

    This paper describes the application of the coupled codes TORT-TD and CTF to the pin-by-pin modeling of a BWR fuel assembly with thermal-hydraulic feedback. TORT-TD, developed at GRS, is a time-dependent three dimensional discrete ordinates code. CTF is the PSU's improved version of the subchannel code COBRA-TF, which uses a two-fluid, three-field model to represent two-phase flow with entrained droplets, and is commonly applied to evaluate LWR safety margins. The coupled codes system TORT-TD/CTF, already applied to several PWR cases involving MOX, was adapted from PWR to BWR applications. The purpose of the research described in this paper is to verify the coupling for modeling two-phase flow at the pin cell level. Using an ATRIUM-10 assembly, the system's steady-state capabilities were tested on two cases: one without control blade insertion and another with partially inserted blades. The influence of the neutron absorber on local axial and radial parameters is presented. The description of an inlet flow reduction transient is an example for the time-dependent capability of the coupled system. (authors)

  9. High-order Spatio-temporal Schemes for Coupled, Multi-physics Reactor Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mr. Vijay S. Mahadevan; Dr. Jean C. Ragusa

    2008-09-01

    This report summarizes the work done in the summer of 08 by the Ph.D. student Vijay Mahadevan. The main focus of the work was to coupled 3-D neutron difusion to 3-D heat conduction in parallel with accuracy greater than or equal to 2nd order in space and time. Results show that the goal was attained.

  10. Compressed H3S: inter-sublattice Coulomb coupling in a high-TC superconductor.

    Science.gov (United States)

    Harshman, Dale R; Fiory, Anthony T

    2017-07-19

    Upon thermal annealing at or above room temperature (RT) and at high hydrostatic pressure P ~ 155 GPa, sulfur trihydride H3S exhibits a measured maximum superconducting transition temperature TC ~ 200 K. Various theoretical frameworks incorporating strong electron-phonon coupling and Coulomb repulsion have reproduced this record-level TC. Of particular relevance is that experimentally observed H-D isotopic correlations among TC, P, and annealed order indicate an H-D isotope effect exponent α limited to values ≤ 0.183, leaving open for consideration unconventional high-TC superconductivity with electronic-based enhancements. The work presented herein examines Coulombic pairing arising from interactions between neighboring S and H species on separate interlaced sublattices constituting H3S in the Im3m structure. The optimal value of the transition temperature is calculated from TC0 = kB-1Λe2/ℓζ, with Λ = 0.007465 Å, inter-sublattice S-H separation spacing ζ = a0/√2, interaction charge linear spacing ℓ = a0 (3/σ)1/2, average participating charge fraction σ = 3.43 ± 0.10 estimated from calculated H-projected electron states, and lattice parameter a0 = 3.0823 Å at P = 155 GPa. The resulting value of TC0 = 198.5 ± 3.0 K is in excellent agreement with transition temperatures determined from resistivity (196 - 200 K onsets, 190 - 197 K midpoints), susceptibility (200 K onset), and critical magnetic fields (203.5 K by extrapolation). Analysis of mid-infrared reflectivity data confirms the expected correlation between boson energy and ζ-1. Suppression of TC below

  11. High-resolution study of nuclear magnetic relaxation dispersion of purine nucleotides: effects of spin-spin coupling.

    Science.gov (United States)

    Kiryutin, Alexey; Ivanov, Konstantin; Yurkovskaya, Alexandra; Vieth, Hans-Martin

    2008-01-01

    By combining magnetic field cycling in the range from 0.1mT to 7T with high-resolution NMR detection the T(1) relaxation dispersion (nuclear magnetic relaxation dispersion (NMRD)) of protons in the nucleotides adenosine mono-phosphate and guanosine mono-phosphate was measured in a site-specific way. While at high field the individual spins have distinctly different T(1) times, their scalar spin-spin interaction fulfills at low field the condition of strong coupling and leads to convergence of their T(1) dispersion curves. In addition, the spin-spin coupling can lead to oscillatory components in the relaxation kinetics traceable to a coupling between spin polarization and coherence in the relaxation process. As a consequence the NMRD curves do not directly reflect the spectral density function of the motional processes, but the effects of motion and spin coupling must be separated for a reliable evaluation. A theoretical approach is described allowing such an analysis.

  12. Fructans from Agave tequilana with a Lower Degree of Polymerization Prevent Weight Gain, Hyperglycemia and Liver Steatosis in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Márquez-Aguirre, A L; Camacho-Ruíz, R M; Gutiérrez-Mercado, Y K; Padilla-Camberos, E; González-Ávila, M; Gálvez-Gastélum, F J; Díaz-Martínez, N E; Ortuño-Sahagún, D

    2016-12-01

    Fructans from agave have received specific attention because of their highly branched fructan content. We have previously reported that the degree of polymerization (dp) influences their biological activity. Therefore, the aim of this study was to investigate the effect of unfractionated and fractionated fructans (higher and lower dps) from Agave tequilana in high-fat diet-induced (HFD) obese mice. Fructans with a lower dp (HFD+ScF) decreased weight gain by 30 %, body fat mass by 51 %, hyperglycemia by 25 % and liver steatosis by 40 %. Interestingly, unfractionated fructans (HFD+F) decreased glucose and triglycerides (TG), whereas fractionated fructans with a higher dp (HFD+LcF) decreased TG but not glucose; in contrast, HFD+ScF decreased glucose but not TG. Our findings suggest that both higher and lower dp agave fructans have complementary effects in metabolic disorders related to obesity. These findings may contribute to the development of improved food supplements with a specific ratio combination of fructans with different dps.

  13. DNA analysis of outdoor air reveals a high degree of fungal diversity, temporal variability, and genera not seen by spore morphology.

    Science.gov (United States)

    Pashley, Catherine H; Fairs, Abbie; Free, Robert C; Wardlaw, Andrew J

    2012-02-01

    Fungi are ubiquitous with many capable of causing disease by direct infection, toxicoses, or allergy. Fungal spores are present in outdoor air throughout the year, yet airborne diversity is poorly characterised. Airborne fungal spores are routinely counted by microscopy, enabling identification to genera at best. We generated traditional microscopic counts over a year, then used environmental sequencing techniques to assess and compare 3 d selected from the main fungal spore season. The days selected corresponded to one with a high quantity of spores unidentifiable by microscopy, and two representing dry and wet summer periods. Over 86 % of genera detected by sequencing were not routinely identifiable by microscopy. A high degree of temporal variability was detected, with the percentage of clones attributed to Basidiomycota or Ascomycota, and composition of genera within each phylum varying greatly between days. Throughout the year Basidiomycota spores were found at higher levels than Ascomycota, but levels fluctuated daily with Ascomycota comprising 11-84 % of total spores and Basidiomycota 7-81 %. No significant difference was found between the proportion of clones attributed to each morphological group detected by sequencing to that counted by microscopy (P = 0.477, 0.985, and 0.561). The majority of abundant genera detected by DNA analysis are not routinely identified by microscopy (>75 %). Of those, several are known human and plant pathogens, and may represent unrecognised aeroallergens.

  14. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    Science.gov (United States)

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  15. LARGE SCALE DISTRIBUTION OF ULTRA HIGH ENERGY COSMIC RAYS DETECTED AT THE PIERRE AUGER OBSERVATORY WITH ZENITH ANGLES UP TO 80 degrees

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 degrees and 80 degrees. We perform two Rayleigh ana

  16. LARGE SCALE DISTRIBUTION OF ULTRA HIGH ENERGY COSMIC RAYS DETECTED AT THE PIERRE AUGER OBSERVATORY WITH ZENITH ANGLES UP TO 80 degrees

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Batista, R. Alves; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Awal, N.; Badescu, A. M.; Barber, K. B.; Baeuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blaess, S. G.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Bridgeman, A.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Diaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Hasankiadeh, Q. Dorosti; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipcic, A.; Fox, B. D.; Fratu, O.; Freire, M. M.; Froehlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; Garcia, B.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, J. G.; Gonzalez, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Horandel, J. R.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kaeaepae, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martinez Bravo, O.; Martraire, D.; Masias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Meissner, R.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Micanovic, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morello, C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Mueller, S.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nozka, L.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Oliveira, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Fernandez, G. Rodriguez; Rodriguez Rojo, J.; Rodriguez-Frias, M. D.; Rogozin, D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Greus, F. Salesa; Salina, G.; Sanchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovanek, P.; Schroeder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijaervi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tome, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cardenas, B.; Varner, G.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Verzi, V.; Vicha, J.; Videla, M.; Villasenor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.

    2015-01-01

    We present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60 degrees and 80 degrees. We perform two Rayleigh ana

  17. Stability safety degree against sliding in high gravity dams%高重力坝抗滑稳定安全度分析

    Institute of Scientific and Technical Information of China (English)

    苏怀智; 刘红萍

    2011-01-01

    为了确保高重力坝的稳定安全,针对高重力坝坝基存在抗剪强度与正应力呈非线性关系的特点,重点研究了二次抛物线形的抗剪强度包络线.在此基础上,建立了基于二次抛物线形抗剪强度包络线的功能函数.结合改进的JC法,提出了高坝坝基失稳可靠度的计算方法,并开发了相应的程序.将上述基本原理和方法应用于某高坝工程除险加固后的稳定安全度校核,分析结果表明该坝经过除险加固处理后坝体具备一定的稳定安全储备能力.%In order to ensure the stability and safety of high gravity dams, the shear strength envelope curve in the shape of quadratic parabola was studied with regard to the nonlinear relationship between the shear strength and the normal stress for high dam foundations. On such a basis, a performance function based on the shear strength envelope curve in the shape of quadratic parabola was established. Combined with the improved JC method, a method for calculating the reliability of dam foundation failure was proposed, and the corresponding program was developed. The above basic principles and methods were applied to the calibration of safety degree for the stability of a high dam after rehabilitation. The results indicate that the dam has certain reserved capacity of stability safety after rehabilitation.

  18. Collective dynamics of identical phase oscillators with high-order coupling

    CERN Document Server

    Xu, Can; Gao, Jian; Zheng, Zhigang

    2016-01-01

    In this paper, we propose a framework to investigate the collective dynamics in ensembles of globally coupled phase oscillators when higher-order modes dominate the coupling. The spatiotemporal properties of the attractors in various regions of parameter space are analyzed. Furthermore, a detailed linear stability analysis proves that the stationary symmetric distribution is only neutrally stable in the marginal regime which stems from the generalized time-reversal symmetry. Moreover, the critical parameters of the transition among various regimes are determined analytically by both the Ott-Antonsen method and linear stability analysis, the transient dynamics are further revealed in terms of the characteristic curves method. Finally, for the more general initial condition the symmetric dynamics could be reduced to a rigorous three-dimensional manifold which shows that the neutrally stable chaos could also occur in this model for particular parameter. Our theoretical analysis and numerical results are consiste...

  19. Elliptical-Tukey chirp signal for high-resolution, air-coupled ultrasonic imaging.

    Science.gov (United States)

    Pallav, Prakash; Gan, Tat Hean; Hutchins, David A

    2007-08-01

    A new signal processing method, which uses a modified chirp signal for air-coupled ultrasonic imaging, is described. A combination of the elliptical and Tukey window functions has been shown to give a better performance than the Hanning windowing used in most pulse-compression algorithms for air-coupled applications. The elliptical-Tukey chirp signal provides an improvement in both the resolution of images and signal-to-noise ratios. In addition, this type of signal also reduces the level of signal voltages required to drive the source transducer while maintaining the performance of the system. This approach, thus, may have wide interest in all forms of wide bandwidth ultrasonic imaging.

  20. High-performance evanescently-coupled uni-traveling-carrier photodiodes

    Institute of Scientific and Technical Information of China (English)

    Zhang Yun-Xiao; Liao Zai-Yi; Wang Wei

    2009-01-01

    A new evanescently-coupled uni-traveling-carrier photodiode (EC-UTC PD) based on a multimode diluted waveguide (MDW) structure is fabricated, analysed and characterized. Optical and electrical characteristics of the device are investigated. The excellent characteristics are demonstrated such as a responsivity of 0.36 A/W, a bandwidth of 11.5 GHz and a small-signal 1-dB compression current greater than 18 mA at 10 GHz. The saturation current is significantly improved compared with those of similar evanescently-coupled pin photodiodes. The radio frequency (RF)bandwidth can be further improved by eliminating RF losses induced by the cables, the probe and the bias tee between the photodiode and the spectrum analyzer.

  1. Novel applications of high performance ion chromatography-inductively coupled plasma mass spectrometry (HPIC-ICP-MS)

    CERN Document Server

    Hann, S

    2001-01-01

    This work demonstrates the development of highly sensitive and selective analytical methods, which make use of the hyphenation of high performance ion chromatography (HPIC) to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). On-line coupling a chromatographic separation method with an elemental detection method provides two advantages: (1) the components of a possibly interfering matrix can be separated allowing accurate and precise ultra trace analysis of the element of interest and (2) elemental species of an element can be separated and quantified. In this work, matrix separation methods for interference free determination of 232Th, 234U, 235U and 238U in geological matrices were developed and employed. Furthermore HPIC-ICP-SFMS was applied for ultra trace analysis of Pd in environmental and geological matrices. The usefulness of HPIC-ICP-SFMS for speciation studies was demonstrated by investigating the interaction of an anti-cancer drug (cisplatin) with guanosine monophosphates.

  2. Tailored bars at 976 nm for high-brightness fiber-coupled modules

    Science.gov (United States)

    Kissel, Heiko; Wolf, Paul; Bachmann, Alexander; Lauer, Christian; König, Harald; Tomm, Jens W.; Köhler, Bernd; Strauß, Uwe; Biesenbach, Jens

    2017-02-01

    In 2007, DILAS proposed the approach to tailor the output beam characteristics of laser diodes to match the required beam quality of a desired target fiber, thus, drastically simplifying the coupling optics to basically only fast and slow axis collimation lenses. Over the last years, we developed and improved this tailored bar (T-Bar) concept together with the tooling for fully automated mass production of fiber-coupled T-Bar modules for fiber laser pumping as well as for direct applications. We present results on the improvement of T-Bars tailored for optimized coupling into fibers with a diameter of 200 μm with NA 0.22 corresponding to a beam parameter product of 22 mm·mrad. Cost efficient coupling to this fiber requires a tailored beam parameter product smaller than 15.5 mm·mrad in slow axis direction corresponding to a slow axis beam divergence of 7° (full angle, 95% power content) for five 100 μm wide emitters. The improved T-Bars fulfil this requirement up to an output power of 52 W with a brightness of 3.1 W/mm·mrad and a power conversion efficiency achieving 69%. This progress in the T-Bar performance together with modifications in the module design led to the increase of the reliable output power from 135 W in 2009 to 360 W in 2017 for a T-Bar module with one baseplate. We will also give a review of the main development steps and further R and D improvements.

  3. A miniature high-power KrF laser excited with a capacitively coupled discharge

    NARCIS (Netherlands)

    Gerber, T.; Bastiaens, Hubertus M.J.; Peters, P.J.M.

    1985-01-01

    A KrF excimer laser excited in a capacitively coupled discharge device made out of commercial BaTiO3doorknob capacitors is described. The discharge volume of 1.4 cm3is formed by a 3 mm bore into four capacitors glued together in a line. A maximal laser output energy of 1.7 mJ (1.2 J/l) in a 5.0 ns

  4. Low energy gauge couplings in grand unified theories and high precision physics

    Energy Technology Data Exchange (ETDEWEB)

    Lynn, B.W. [Stanford Univ., CA (United States). Dept. of Physics]|[Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-09-01

    I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.

  5. Collective dynamics of identical phase oscillators with high-order coupling

    Science.gov (United States)

    Xu, Can; Xiang, Hairong; Gao, Jian; Zheng, Zhigang

    2016-08-01

    In this paper, we propose a framework to investigate the collective dynamics in ensembles of globally coupled phase oscillators when higher-order modes dominate the coupling. The spatiotemporal properties of the attractors in various regions of parameter space are analyzed. Furthermore, a detailed linear stability analysis proves that the stationary symmetric distribution is only neutrally stable in the marginal regime which stems from the generalized time-reversal symmetry. Moreover, the critical parameters of the transition among various regimes are determined analytically by both the Ott-Antonsen method and linear stability analysis, the transient dynamics are further revealed in terms of the characteristic curves method. Finally, for the more general initial condition the symmetric dynamics could be reduced to a rigorous three-dimensional manifold which shows that the neutrally stable chaos could also occur in this model for particular parameters. Our theoretical analysis and numerical results are consistent with each other, which can help us understand the dynamical properties in general systems with higher-order harmonics couplings.

  6. Finite difference programs and array processors. [High-speed floating point processing by coupling host computer to programable array processor

    Energy Technology Data Exchange (ETDEWEB)

    Rudy, T.E.

    1977-08-01

    An alternative to maxi computers for high-speed floating-point processing capabilities is the coupling of a host computer to a programable array processor. This paper compares the performance of two finite difference programs on various computers and their expected performance on commercially available array processors. The significance of balancing array processor computation, host-array processor control traffic, and data transfer operations is emphasized. 3 figures, 1 table.

  7. A new theoretical formulation of coupling thermo-electric breakdown in LDPE film under dc high applied fields

    Science.gov (United States)

    Boughariou, F.; Chouikhi, S.; Kallel, A.; Belgaroui, E.

    2015-12-01

    In this paper, we present a new theoretical and numerical formulation for the electrical and thermal breakdown phenomena, induced by charge packet dynamics, in low-density polyethylene (LDPE) insulating film under dc high applied field. The theoretical physical formulation is composed by the equations of bipolar charge transport as well as by the thermo-electric coupled equation associated for the first time in modeling to the bipolar transport problem. This coupled equation is resolved by the finite-element numerical model. For the first time, all bipolar transport results are obtained under non-uniform temperature distributions in the sample bulk. The principal original results show the occurring of very sudden abrupt increase in local temperature associated to a very sharp increase in external and conduction current densities appearing during the steady state. The coupling between these electrical and thermal instabilities reflects physically the local coupling between electrical conduction and thermal joule effect. The results of non-uniform temperature distributions induced by non-uniform electrical conduction current are also presented for several times. According to our formulation, the strong injection current is the principal factor of the electrical and thermal breakdown of polymer insulating material. This result is shown in this work. Our formulation is also validated experimentally.

  8. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating A star

    CERN Document Server

    Breger, Michel

    2014-01-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating Delta Scuti star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles per day (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitu...

  9. Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

    Directory of Open Access Journals (Sweden)

    Zozulya V.V.

    2017-01-01

    Full Text Available New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

  10. Dynamic Analysis of the High Speed Train and Slab Track Nonlinear Coupling System with the Cross Iteration Algorithm

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lei

    2016-01-01

    Full Text Available A model for dynamic analysis of the vehicle-track nonlinear coupling system is established by the finite element method. The whole system is divided into two subsystems: the vehicle subsystem and the track subsystem. Coupling of the two subsystems is achieved by equilibrium conditions for wheel-to-rail nonlinear contact forces and geometrical compatibility conditions. To solve the nonlinear dynamics equations for the vehicle-track coupling system, a cross iteration algorithm and a relaxation technique are presented. Examples of vibration analysis of the vehicle and slab track coupling system induced by China’s high speed train CRH3 are given. In the computation, the influences of linear and nonlinear wheel-to-rail contact models and different train speeds are considered. It is found that the cross iteration algorithm and the relaxation technique have the following advantages: simple programming; fast convergence; shorter computation time; and greater accuracy. The analyzed dynamic responses for the vehicle and the track with the wheel-to-rail linear contact model are greater than those with the wheel-to-rail nonlinear contact model, where the increasing range of the displacement and the acceleration is about 10%, and the increasing range of the wheel-to-rail contact force is less than 5%.

  11. Integrated optics for coupled-cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Lepert, G.; Hinds, E. A. [Centre for Cold Matter, Imperial College London (United Kingdom)

    2014-12-04

    We present an array of Fabry-Pérot free space microcavities, intended to contain atoms or other quantum emitters, coupled to each other by waveguides resonators on a chip. The concept is highly scalable and offers a unique degree of control, making it a promising platform for quantum simulations. We demonstrate experimentally the basic units of the device.

  12. High prevalence of abnormal glucose tolerance and metabolic disturbances in first degree relatives of NIDDM patients. A study in Catalonia, a mediterranean community.

    Science.gov (United States)

    Costa, A; Rios, M; Casamitjana, R; Gomis, R; Conget, I

    1998-09-01

    Our study aimed to analyse clinical and metabolic characteristics of first degree relatives of patients with non-insulin-dependent diabetes mellitus (NIDDM) in Catalonia. Two hundred and five subjects (39.8 +/- 14.2 year-old, 61% women) were included in the study. An oral glucose tolerance test (OGTT) was performed, obtaining basal plasma glucose and insulin, in order to calculate, %B (HOMA beta cell function) and %S (HOMA insulin sensitivity). A 30.7% of subjects showed an abnormal glucose tolerance, either as impaired glucose tolerance (IGT) (20.5%) or as NIDDM (10.2%). Glycaemia after the OGTT (120 min) was independently determined by fasting glycaemia and age (R2 = 0.50; P history of NIDDM (log %S, 3.6 +/- 0.4 vs. 3.9 +/- 0.4; P = 0.000; log-insulin 2.4 +/- 0.4 vs. 2.1 +/- 0.6 mU/l; P history of NIDDM. Interestingly, the rates, of abnormal glucose tolerance in the 55-64 and > 64 year groups in the general population were similar to those seen in relatives two decades younger. Our study not only confirms a high prevalence of impaired glucose tolerance (IGT and NIDDM) in subjects with a family history of NIDDM, but also that these abnormalities can be detected at a very early age. Globally, this piece of information corroborates that special attention and precocious detection programs should be addressed to relatives of NIDDM patients.

  13. Vertical Random Vibration Analysis of Track-Subgrade Coupled System in High Speed Railway with Pseudoexcitation Method

    Directory of Open Access Journals (Sweden)

    Xinwen Yang

    2016-01-01

    Full Text Available In order to reduce the ground-borne vibration caused by wheel/rail interaction in the ballastless track of high speed railways, viscoelastic asphalt concrete materials are filled between the track and the subgrade to attenuate wheel/rail force. A high speed train-track-subgrade vertical coupled dynamic model is developed in the frequency domain. In this model, coupling effects between the vehicle and the track and between the track and the subgrade are considered. The full vehicle is represented by some rigid body models of one body, two bogies, and four wheelsets connected to each other with springs and dampers. The track and subgrade system is considered as a multilayer beam model in which layers are connected to each other with springs and damping elements. The vertical receptance of the rail is discussed and the receptance contribution of the wheel/rail interaction is investigated. Combined with the pseudoexcitation method, a solution of the random dynamic response is presented. The random vibration responses and transfer characteristics of the ballastless track and subgrade system are obtained under track random irregularity when a high speed vehicle runs through. The influences of asphalt concrete layer’s stiffness and vehicle speed on track and subgrade coupling vibration are analyzed.

  14. Principles of establishing material cycling with a high degree of closure in the experimental model of a BTLSS intended for a rated "fraction of a human"

    Science.gov (United States)

    Tikhomirov, Alexander A.; Ushakova, Sofya; Velichko, Vladimir; Tikhomirova, Natalia; Shikhov, Valentin; Trifonov, Sergey V.

    2016-07-01

    A promising way to develop future biotechnical life support systems (BTLSS) is to construct experimental models and establish the cycling intended for a fraction of a human. Being of relatively low cost, such models provide an opportunity to test effectively closed process that could be further transferred to the real BTLSS with humans. Researchers of the IBP SB RAS are developing an adequate BTLSS model with the loops closed to a high degree. To attain high closure of mass exchange processes, plants in the phototrophic compartment are cultivated under intensive lighting conditions, created by using modern LED irradiators of enhanced power, equipped with lens optics. The higher plant compartment has been renewed and broadened by including soybean plants, which improve the vegetable part of the human diet and make it more diverse. It is very important that the operation of the physicochemical installation for waste mineralization fully matches the composition of the atmosphere of plant growth chambers: the purified gaseous components of this installation enter the common atmosphere of the system, without causing any deviations from the norm in the gaseous composition. This proves the eco-friendliness of the developed physicochemical method of waste mineralization and shows that the gaseous components resulting from waste mineralization can be included in the system mass exchange. A system for including human respiration into the gas exchange of the BTLSS has been developed and tested; the associated gas exchange and water exchange dynamics have been analyzed. Results of the functioning of the experimental model of the BTLSS for several months are proposed for discussion in order to get insight into the formation of dynamic characteristics of cycling processes and factors determining them. The study was supported by the grant of the Russian Science Foundation (Project 14-14-00599) and carried out at the IBP SB RAS.

  15. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network

    Science.gov (United States)

    Mota, Carmen; López, Miguel A.; Martínez-Rodrigo, Arturo

    2017-04-01

    In the last twenty years, the implementation of High-Speed Rail (HSR) has been one of the major strategies for territorial structuring used by various countries. This model has enhanced the development of countries such as France, Spain, Germany and Japan. At present, the United States and China are also starting to implement this model. Nevertheless, the lack of social and economic profitability of several networks is being increasingly analysed. Many networks located in particular regions serve populations that are not large enough to recover the initial investment. For this reason, it is necessary to evaluate the population served by this transport mode, beyond the number of users. In this sense, it is essential to identify the deficiencies and potentials of implementing a network linked to other secondary networks in a specific territory which can compensate for the so-called tunnel effect. This article proposes to apply a mathematical approach based on graph theory to measure the Degree Accessibility Node (DAN) in a constrained Geographic Information System (GIS) model. Hence, it would be possible to compare regions, especially medium-sized cities, where the implementation of HSR could represent a qualitative leap due to incorporation into large transport networks. The DAN function uses static and dynamic studies to evaluate the level of connection of stations to secondary transport networks—local public transport in this case. Thus, the impact of high-speed trains could be spread to greater territorial and population ranges. Four cases have been studied, two in Germany (one of them, Fulda, is analysed in depth throughout this article) and two in Spain. These two countries were selected since HSR was implemented in the same relative period of time, in comparison with other European countries. Results show relevant differences, suggesting a review of inappropriate policies of transport integration in a city that could weaken the expansion of the positive

  16. Investigation of High-Subsonic Performance Characteristics of a 12 Degree 21-Inch Conical Diffuser, Including the Effects of Change in Inlet-Boundary-Layer Thickness

    Science.gov (United States)

    Copp, Martin R.; Klevatt, Paul L.

    1950-01-01

    Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.

  17. Choosing Science: A Mixed-Methods Study of Factors Predicting Latino and Latina High School Students' Decisions to Pursue Science Degrees

    Science.gov (United States)

    Stein, Rachel S.

    Latino/as are an increasingly large subset of the United States population; however, they continue to be underrepresented in science careers. Because of this increase, research regarding Latino/as has improved, but there are still many gaps in regards to gender-specific predictors to pursue science careers. To address this lack of literature, the purpose of this study is to extend previous research and to develop a model of variables that significantly contribute to science career choice among Latino and Latina students when they graduate from high school. In particular the study addressed the following research questions: (1) What are the differences in science outcomes for Latino and Latina students? (2) What are the differences in factors involved in science outcomes for Latino and Latina students? (3) For Latino and Latina students what are the differences in the factors that predict students' choice to pursue a science degree and/or high scores on the Future Plans in Science Scale? (4) What are the differences in how Latino and Latina students experience science, which account for high achieving students to choose to pursue a science major? This study utilized an explanatory mixed-method approach to examine how cognitive, institutional, and motivational factors may be interrelated and play a role in Latino/as choice to pursue science. The first phase of the study incorporated the collection of survey and database information from 12th grade students at two Southern California high schools. The second phase of the study utilized follow-up focus group interviews to explore the specific differential experiences and views of Latino and Latina students. The results of the study demonstrated multiple significant predictors. Science self-concept and views towards science outside of school were the most significant predictors of students' choice to pursue science. Male students also had major predictors of Spanish proficiency, teacher encouragement, religious views

  18. Coupling of highly explicit gas and aqueous chemistry mechanisms for use in 3-D

    Science.gov (United States)

    Ginnebaugh, Diana L.; Jacobson, Mark Z.

    2012-12-01

    This study discusses the coupling of a near-explicit gas-phase chemical mechanism with an extensive aqueous-phase mechanism in an accurate chemical solver designed for use in 3-D models. The gas and aqueous mechanisms and the solver used are the Master Chemical Mechanism (MCM 3.1), the Chemical Aqueous Phase Radical Mechanism (CAPRAM 3.0i), and the SMVGEAR II ordinary differential solver, respectively. The MCM has over 13,500 reactions and 4600 species, whereas CAPRAM treats aqueous chemistry among 390 species and 829 reactions (including 51 gas-to-aqueous phase reactions). SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. MCM has been used previously with SMVGEAR II in 3-D, and computer timings here indicate that coupling MCM with CAPRAM in SMVGEAR II is also practical. Gas- and aqueous-phase species are coupled through time-dependent dissolutional growth and dissociation equations. This method is validated with a smaller mechanism against results from a previous model intercomparison. When the smaller mechanism is compared with the full MCM-CAPRAM mechanism, some concentrations are still similar but others differ due to the greater detail in chemistry. We also expand the mechanism to include gas-aqueous transfer of two acids, glycolic acid and glyoxylic acid, and modify the glyoxal Henry's law constant from recent measurements. The average glyoxal partitioning in the cloud changed from 67% aqueous-phase to 87% aqueous-phase with the modifications. The addition of gas-aqueous transfer reactions increased the average gas-phase percentage of glycolic acid to 19% and of glyoxylic acid to 16%. This full gas-phase and aqueous-phase chemistry module is a potentially useful tool for studying air pollution in a cloud or a fog.

  19. Studies of the ATLAS potential for Higgs self-coupling measurements at a High Luminosity LHC

    CERN Document Server

    ATLAS, Collaboration; The ATLAS collaboration

    2013-01-01

    Studies are presented on the prospects of measuring the Higgs trilinear self-coupling λHHH in 3,000 fb−1 of 14 TeV proton-proton collisions at the HL-LHC. Two channels are discussed: H(→ bb)H(→ W+W−) and H(→ bb)H(→ γγ). Generator-level Monte Carlo events are used to perform these studies, with parameterised efficiencies and smearings applied to approximate the expected detector performance under HL-LHC conditions.

  20. The Application of High-Level Iterative Coupled-Cluster Methods to the Cytosine Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, Karol; Valiev, Marat

    2008-06-19

    The need for inclusion higher-order correlation effects for adequate description of the excitation energies of the DNA bases became clear in the last few years. In particular, we demonstrated that there is a sizable effect of triply excited configurations estimated in a non-iterative manner on the coupled-cluster excitation energies of the cytosine molecule in DNA environment. In this paper we discuss the accuracies of the non-iterative methods for biologically relevant systems in realistic environment in comparison with interative formulations that explicitly include the effect of triply excited clusters.

  1. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  2. Implementation of High-Order Multireference Coupled-Cluster Methods on Intel Many Integrated Core Architecture.

    Science.gov (United States)

    Aprà, E; Kowalski, K

    2016-03-08

    In this paper we discuss the implementation of multireference coupled-cluster formalism with singles, doubles, and noniterative triples (MRCCSD(T)), which is capable of taking advantage of the processing power of the Intel Xeon Phi coprocessor. We discuss the integration of two levels of parallelism underlying the MRCCSD(T) implementation with computational kernels designed to offload the computationally intensive parts of the MRCCSD(T) formalism to Intel Xeon Phi coprocessors. Special attention is given to the enhancement of the parallel performance by task reordering that has improved load balancing in the noniterative part of the MRCCSD(T) calculations. We also discuss aspects regarding efficient optimization and vectorization strategies.

  3. Features in Quasi-particle Excitations and Tunnelling Spectra due to Coupling to Spin Fluctuations in High-Tc Cuprates

    Institute of Scientific and Technical Information of China (English)

    赵力; 李建新; 龚昌德; 赵柏儒

    2002-01-01

    In a self-consistent mean-field treatment of the two-dimensional t - t' - J model, we theoretically examine thecoupling of in-plane quasi-particles to the antiferromagnetic spin fluctuations in high-Tc superconductors, whichrenormalizes the fermionic self-energy. We reproduce the characteristic peak,lip-hump structure observed notonly in angle-resolved photoemission spectroscopy, but also in superconductor-insulator-normal metal junctionsand scanning tunnelling microscopy experiments. We consider the evolution of this structure with doping. Itis shown that this kind of coupling can account for many anomalous properties of high-Tc superconductors insuperconducting states.

  4. Spin-lattice coupling induced weak dynamical magnetism in EuTiO3 at high temperatures

    Science.gov (United States)

    Guguchia, Z.; Keller, H.; Kremer, R. K.; Köhler, J.; Luetkens, H.; Goko, T.; Amato, A.; Bussmann-Holder, A.

    2014-08-01

    EuTiO3, which is a G-type antiferromagnet below TN=5.5 K, has some fascinating properties at high temperatures, suggesting that macroscopically hidden dynamically fluctuating weak magnetism exists at high temperatures. This conjecture is substantiated by magnetic field dependent magnetization measurements, which exhibit pronounced anomalies below 200 K becoming more distinctive with increasing magnetic field strength. Additional results from muon spin rotation experiments provide evidence for weak fluctuating bulk magnetism induced by spin-lattice coupling which is strongly supported in increasing magnetic field.

  5. Live Cell Bioluminescence Imaging in Temporal Reaction of G Protein-Coupled Receptor for High-Throughput Screening and Analysis.

    Science.gov (United States)

    Hattori, Mitsuru; Ozawa, Takeaki

    2016-01-01

    G protein-coupled receptors (GPCRs) are notable targets of basic therapeutics. Many screening methods have been established to identify novel agents for GPCR signaling in a high-throughput manner. However, information related to the temporal reaction of GPCR with specific ligands remains poor. We recently developed a bioluminescence method for the quantitative detection of the interaction between GPCR and β-arrestin using split luciferase complementation. To monitor time-course variation of the interactions, a new imaging system contributes to the accurate evaluation of drugs for GPCRs in a high-throughput manner.

  6. Layer-number dependent high-frequency vibration modes in few-layer transition metal dichalcogenides induced by interlayer couplings

    Science.gov (United States)

    Tan, Qing-Hai; Zhang, Xin; Luo, Xiang-Dong; Zhang, Jun; Tan, Ping-Heng

    2017-03-01

    Two-dimensional transition metal dichalcogenides (TMDs) have attracted extensive attention due to their many novel properties. The atoms within each layer in two-dimensional TMDs are joined together by covalent bonds, while van der Waals interactions combine the layers together. This makes its lattice dynamics layer-number dependent. The evolutions of ultralow frequency ( 50 cm‑1) vibration modes in few-layer TMDs and demonstrate how the interlayer coupling leads to the splitting of high-frequency vibration modes, known as Davydov splitting. Such Davydov splitting can be well described by a van der Waals model, which directly links the splitting with the interlayer coupling. Our review expands the understanding on the effect of interlayer coupling on the high-frequency vibration modes in TMDs and other two-dimensional materials. Project supported by the National Basic Research Program of China (No. 2016YFA0301200), the National Natural Science Foundation of China (Nos. 11225421, 11474277, 11434010, 61474067, 11604326, 11574305 and 51527901), and the National Young 1000 Talent Plan of China.

  7. Interplanar coupling-dependent magnetoresistivity in high-purity layered metals

    Science.gov (United States)

    Kikugawa, N.; Goswami, P.; Kiswandhi, A.; Choi, E. S.; Graf, D.; Baumbach, R. E.; Brooks, J. S.; Sugii, K.; Iida, Y.; Nishio, M.; Uji, S.; Terashima, T.; Rourke, P.M.C.; Hussey, N. E.; Takatsu, H.; Yonezawa, S.; Maeno, Y.; Balicas, L.

    2016-01-01

    The magnetic field-induced changes in the conductivity of metals are the subject of intense interest, both for revealing new phenomena and as a valuable tool for determining their Fermi surface. Here we report a hitherto unobserved magnetoresistive effect in ultra-clean layered metals, namely a negative longitudinal magnetoresistance that is capable of overcoming their very pronounced orbital one. This effect is correlated with the interlayer coupling disappearing for fields applied along the so-called Yamaji angles where the interlayer coupling vanishes. Therefore, it is intrinsically associated with the Fermi points in the field-induced quasi-one-dimensional electronic dispersion, implying that it results from the axial anomaly among these Fermi points. In its original formulation, the anomaly is predicted to violate separate number conservation laws for left- and right-handed chiral (for example, Weyl) fermions. Its observation in PdCoO2, PtCoO2 and Sr2RuO4 suggests that the anomaly affects the transport of clean conductors, in particular near the quantum limit. PMID:27020134

  8. Higgs Boson Self-Coupling at High Energy $\\gamma \\gamma$ Collider

    CERN Document Server

    Gutierrez-Rodriguez, A; Sampayo, O A

    2011-01-01

    We analyzed the double production and the triple self-coupling of the standard model Higgs boson at future $\\gamma \\gamma$ collider energies, with the reactions $\\gamma\\gamma \\rightarrow f \\bar f HH$ $(f=b, t)$. We evaluated the total cross section for $f\\bar fHH$ and calculated the total number of events considering the complete set of Feynman diagrams at tree-level and for different values of the triple coupling $\\kappa\\lambda_{HHH}$. We have also analyzed the sensitivity for the considered reaction and we show the results as 95% C.L. regions in the $\\kappa-M_H$ plane for different values of the center of mass energy and different levels of background. The numerical computation was done for the energies which are expected to be available at a possible Future Linear $\\gamma\\gamma$ Collider with a center-of-mass energy 500-3000 $GeV$ and luminosities of 1 and $5 ab^{-1}$. We found that the number of events for the process $\\gamma\\gamma \\rightarrow t \\bar t HH$, taking into account the decay products of both $...

  9. Stability analysis of amplitude death in delay-coupled high-dimensional map networks and their design procedure

    Science.gov (United States)

    Watanabe, Tomohiko; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2017-01-01

    The present paper studies amplitude death in high-dimensional maps coupled by time-delay connections. A linear stability analysis provides several sufficient conditions for an amplitude death state to be unstable, i.e., an odd number property and its extended properties. Furthermore, necessary conditions for stability are provided. These conditions, which reduce trial-and-error tasks for design, and the convex direction, which is a popular concept in the field of robust control, allow us to propose a design procedure for system parameters, such as coupling strength, connection delay, and input-output matrices, for a given network topology. These analytical results are confirmed numerically using delayed logistic maps, generalized Henon maps, and piecewise linear maps.

  10. High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor.

    Science.gov (United States)

    Zhang, Ying-Tao; Deng, Xinzhou; Sun, Qing-Feng; Qiao, Zhenhua

    2015-01-01

    The quantum entanglement between two qubits is crucial for applications in the quantum communication. After the entanglement of photons was experimentally realized, much effort has been taken to exploit the entangled electrons in solid-state systems. Here, we propose a Cooper-pair splitter, which can generate spatially-separated but entangled electrons, in a quantum anomalous Hall insulator proximity-coupled with a superconductor. After coupling with a superconductor, the chiral edge states of the quantum anomalous Hall insulator can still survive, making the backscattering impossible. Thus, the local Andreev reflection becomes vanishing, while the crossed Andreev reflection becomes dominant in the scattering process. This indicates that our device can serve as an extremely high-efficiency Cooper-pair splitter. Furthermore, because of the chiral characteristic, our Cooper-pair splitter is robust against disorders and can work in a wide range of system parameters. Particularly, it can still function even if the system length exceeds the superconducting coherence length.

  11. Analysis of the Simulated Climatic Characters of the South Asia High with a Flexible Coupled Ocean-Atmosphere GCM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The ability of a climate model to reproduce the climatic characters of the South Asia High (SAH) is assessed by analyzing the 110-yr output of a Flexible Coupled GCM, version 0 (FGCM-0). Comparing the results of FGCM-0 with the NCEP/NCAR reanalysis data, the major findings show that FGCM-0 has better results in simulation of the geopotential height field at 100 hPa, and reproduces fairly the main atmospheric circulation centers. However, there are still some differences in the simulated results compared with the reanalysis data. The coupled model also successfully reproduces the mean seasonal variation of the SAH,that is, it moves from the Pacific Ocean to the Asian continent, remaining over the Tibetan Plateau from winter to summer, and then withdraws from the Tibetan Plateau to the Pacific Ocean from summer to winter. However, such observed relationships between the SAH positions and the summer precipitation patterns cannot be fairly reproduced in the FGCM-0.

  12. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

    DEFF Research Database (Denmark)

    Whorton, Matthew R; Bokoch, Michael P; Rasmussen, Søren Gøgsig Faarup;

    2007-01-01

    G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet...... the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However......, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the beta2-adrenergic receptor (beta2AR), can be incorporated into a reconstituted high-density lipoprotein...

  13. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    Energy Technology Data Exchange (ETDEWEB)

    Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  14. Electronic couplings for molecular charge transfer: Benchmarking CDFT, FODFT, and FODFTB against high-level ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kubas, Adam; Blumberger, Jochen, E-mail: j.blumberger@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Hoffmann, Felix [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum (Germany); Heck, Alexander; Elstner, Marcus [Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe (Germany); Oberhofer, Harald [Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching (Germany)

    2014-03-14

    We introduce a database (HAB11) of electronic coupling matrix elements (H{sub ab}) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute H{sub ab} values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

  15. Mechanistic studies on the Heck-Mizoroki cross-coupling reaction of a hindered vinylboronate ester as a key approach to developing a highly stereoselective synthesis of a C1-C7 Z,Z,E-triene synthon for viridenomycin.

    Science.gov (United States)

    Batsanov, Andrei S; Knowles, Jonathan P; Whiting, Andrew

    2007-03-30

    Mechanistic studies of the Heck-Mizoroki reaction of a vinylboronate ester with electronically different (four-substituted) aryl iodides shows that electron donors accelerate the cross-coupling, demonstrating that the oxidative addition step is not rate determining and that there is development of some degree of positive charge in the rate determining step. These results were used as a basis to allow the development of reaction conditions for the Heck-Mizoroki coupling of a hindered vinylboronate ester with electron deficient methyl cis-2-iodoacrylate. The resulting dienylboronate ester was converted through a series of highly stereoselective iodo-deboronations and Heck-Mizoroki reactions into a trienyl iodide precursor for further application in the total synthesis of viridenomycin.

  16. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  17. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes.

    Science.gov (United States)

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-10-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed.

  18. Single-band high absorption and coupling between localized surface plasmons modes in a metamaterials absorber

    Science.gov (United States)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2017-10-01

    In this paper, we design and simulate a metamaterials absorbers based on the resonance of the local surface plasmon (LSP) mode. The damping constant of gold layer is optimized in simulations to eliminate the effect of the inappropriate material parameters on the electromagnetic properties of the proposed metamaterial absorber. The horizontal distance between two metal particles is optimized in simulations and a perfect absorption resonance peak is achieved due to the strong coupling of LSP modes. A new absorption peak is obtained when the horizontal distance is 0 nm. The vertical distance between the new metal particles and the bottom metal layer is reduced, which leads to the absorption peak reduce based on the reduction of the intensity of LSP modes. A new absorption peak is obtained when the new metallic particle and the bottom gold layer form a whole structure.

  19. Core-shell gold J-aggregate nanoparticles for highly efficient strong coupling applications

    Science.gov (United States)

    Djoumessi Lekeufack, Diane; Brioude, Arnaud; Coleman, Anthony W.; Miele, Philippe; Bellessa, Joel; De Zeng, Li; Stadelmann, Pierre

    2010-06-01

    We have developed a straightforward synthetic route to prepare core-shell systems based on gold nanoparticles (NPs) surrounded with J-aggregates molecules. This synthesis allows the direct and efficient coating, at room temperature, of pretreated citrate-stabilized gold NPs with 5, 5', 6, 6'-tetrachloro-1-1'-diethyl-3, 3'-di (4-sulfobutyl)-benzimidazolocarbocyanine (TDBC), without supplementary adding of salts and bases during the synthesis. As the size of gold particle is tunable, the precise optimization of the strong coupling between the electronic transitions of organic components (TDBC) and the plasmon modes of the gold NPs is achieved corresponding to a Rabi energy of 220 meV, a value not yet obtained in such a system.

  20. Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.

    Science.gov (United States)

    Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea

    2016-07-01

    A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully.

  1. High-efficiency optical coupling single-sideband modulation for OFDM-RoF-PON systems

    Science.gov (United States)

    Xue, Xuwei; Ji, Wei; Kang, Zhaoyuan; Huang, Kangrui; Li, Xiao

    2015-12-01

    We report on an OFDM-RoF-PON system based on novel optical coupling single-sideband (O-SSB) modulation for one wavelength carrying one baseband and two radio frequency (RF) signals. The impact of nonlinear distortion consisting of harmonic distortion (HD) and intermodulation distortion (IMD) in this system is theoretically investigated. Transmission over 0 km and 40 km of standard single mode fiber is successfully demonstrated and it is indicated that modulation index 0.6 is more adapted to O-SSB modulation. The error vector magnitude (EVM) of system based on O-SSB modulation after transmission over 40 km is <0.1. For O-SSB modulation, bit error rate (BER) after 40 km transmission is below forward error correction (FEC) limit of 10-3.

  2. Electromagnetic Coupling Between High Intensity LHC Beams and the Synchrotron Radiation Monitor Light Extraction System

    CERN Document Server

    Andreazza, W; Bravin, E; Caspers, F; Garlasch`e, M; Gras, J; Goldblatt, A; Lefevre, T; Jones, R; Metral, E; Nosych, A; Roncarolo_, F; Salvant, B; Trad, G; Veness, R; Vollinger, C; Wendt, M

    2013-01-01

    The CERN LHC is equipped with two Synchrotron Radiation Monitor (BSRT) systems used to characterise transverse and longitudinal beam distributions. Since the end of the 2011 LHC run the light extraction system, based on a retractable mirror, has suffered deformation and mechanical failure that is correlated to the increase in beam intensity. Temperature probes have associated these observations to a strong heating of the mirror support with a dependence on the longitudinal bunch length and shape, indicating the origin as electromagnetic coupling between the beam and the structure. This paper combines all this information with the aim of characterising and improving the system in view of its upgrade during the current LHC shutdown. Beam-based observations are presented along with electromagnetic and thermomechanical simulations and complemented by laboratory measurements, including the study of the RF properties of different mirror bulk and coating materials.

  3. High magnetic exchange coupling constants: a density functional theory based study of substituted Schlenk diradicals.

    Science.gov (United States)

    Latif, Iqbal A; Hansda, Shekhar; Datta, Sambhu N

    2012-08-23

    The Schlenk diradical has been known since 1915. After a detailed experimental work by Rajca, its magnetic nature has remained more or less unexplored. We have investigated by quantum chemical calculations the nature of magnetic coupling in 11 substituted Schlenk diradicals. Substitution has been considered at the fifth carbon atom of the meta-phenylene moiety. The UB3LYP method has been used to study 12 diradicals including the original one. The 6-311G(d,p) basis set has been employed for optimization of molecular geometry in both singlet and triplet states for each species. The singlet optimization has led to the optimization of the broken-symmetry structure for 10 species including the unsubstituted one. This development makes it possible to carry out further broken symmetry calculations in two ways. The triplet calculation has been done using 6-311++G(d,p) basis set and the optimized triplet geometry in both procedures. The broken symmetry calculations have used the optimized geometries of either the triplet states or the broken symmetry solutions. The first method leads to the prediction of electron paramagnetic resonance (EPR) compatible magnetic exchange coupling constant (J) in the range 517-617 cm(-1). A direct optimization of the broken symmetry geometry gives rise to a lower estimate of J, in the range of 411-525 cm(-1) and compatible with macroscopic Curie studies. The calculated J for the unsubstituted Schlenk diradical is 512 cm(-1) that can be compared with 455 cm(-1) estimated by Rajca. In both cases, introduction of groups with +M and +I effects (Ingold's notation) decreases the J value from that for the unsubstituted Schlenk diradical while -I and -M groups at the same position increases J. These trends have been explained in terms of Hammett constants, atomic spin densities, and dihedral angles.

  4. Comparative mapping in intraspecific populations uncovers a high degree of macrosynteny between A- and B-genome diploid species of peanut

    Directory of Open Access Journals (Sweden)

    Guo Yufang

    2012-11-01

    Full Text Available Abstract Background Cultivated peanut or groundnut (Arachis hypogaea L. is an important oilseed crop with an allotetraploid genome (AABB, 2n = 4x = 40. Both the low level of genetic variation within the cultivated gene pool and its polyploid nature limit the utilization of molecular markers to explore genome structure and facilitate genetic improvement. Nevertheless, a wealth of genetic diversity exists in diploid Arachis species (2n = 2x = 20, which represent a valuable gene pool for cultivated peanut improvement. Interspecific populations have been used widely for genetic mapping in diploid species of Arachis. However, an intraspecific mapping strategy was essential to detect chromosomal rearrangements among species that could be obscured by mapping in interspecific populations. To develop intraspecific reference linkage maps and gain insights into karyotypic evolution within the genus, we comparatively mapped the A- and B-genome diploid species using intraspecific F2 populations. Exploring genome organization among diploid peanut species by comparative mapping will enhance our understanding of the cultivated tetraploid peanut genome. Moreover, new sources of molecular markers that are highly transferable between species and developed from expressed genes will be required to construct saturated genetic maps for peanut. Results A total of 2,138 EST-SSR (expressed sequence tag-simple sequence repeat markers were developed by mining a tetraploid peanut EST assembly including 101,132 unigenes (37,916 contigs and 63,216 singletons derived from 70,771 long-read (Sanger and 270,957 short-read (454 sequences. A set of 97 SSR markers were also developed by mining 9,517 genomic survey sequences of Arachis. An SSR-based intraspecific linkage map was constructed using an F2 population derived from a cross between K 9484 (PI 298639 and GKBSPSc 30081 (PI 468327 in the B-genome species A. batizocoi. A high degree of macrosynteny was observed

  5. Impedance Based Characterization of a High-Coupled Screen Printed PZT Thick Film Unimorph Energy Harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, R.; Borregaard, L. M.

    2014-01-01

    . This approach leads to simple closed form expressions for peak power frequency, optimal load, and output power without a tedious mathematical derivative approach. The closed form expressions are validated against the exact numerical solution. The electromechanical model contains a set of only five lumped......The single degree of freedom mass-spring-damper system is the most common approach for deriving a full electromechanical model for the piezoelectric vibration energy harvester. In this paper, we revisit this standard electromechanical model by focusing on the impedance of the piezoelectric device...... parameters which, by means of the piezoelectric impedance expression, all can be determined accurately by electrical measurements. It is shown how four of five lumped parameters can be determined from a single impedance measurement scan, considerably reducing the characterization effort. The remaining...

  6. Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics

    Science.gov (United States)

    Laiou, Petroula; Andrzejak, Ralph G.

    2017-01-01

    The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.

  7. Experimental study of a very high frequency (162MHz) capacitively coupled multi-tile electrode plasma source

    Science.gov (United States)

    Sirse, Nishant; Ellingboe, Bert

    2015-09-01

    In the recent years, plasma discharges excited at very high frequency (30-500MHz) has attracted much attention due to its ability to perform etching and deposition of large area substrates. VHF discharges yield high plasma density and low electron temperature and enable enhanced plasma dissociation. However, the plasma chemistry and power coupling mechanism in VHF discharges is not fully understood. In this article, we present an experimental study on nitrogen plasma produced by a VHF (162 MHz) multi-tile electrode. Electron density profile and gas temperature (rotational and vibrational) are measured as a function of rf power (100-1500W) and gas pressure (50mTorr-1Torr). Tile centre and Tile edge data are presented to realize the power coupling mechanism at different position in the multi-tile electrode discharge. It is observed that the plasma density increases monotonically with a rise in VHF power level at both positions while decreasing with an increase in the operating gas pressure. At a low gas pressure (50mTorr), plasma density profile shows a maximum at the tile centre and minimum at the tile edge position, whereas, at high gas pressures (500mTorr - 1 Torr) edge effects are observed. Measured rotational temperature (~ 350-450 K) is slightly above room temperature. Vibrational temperature, measured from 6500-8000 K, is increasing initially with a rise in rf power (profile, high vibrational temperature is measured at the tile edge compared to the tile centre.

  8. Comparative analysis of steroidal saponins in four Dioscoreae herbs by high performance liquid chromatography coupled with mass spectrometry.

    Science.gov (United States)

    Guo, Long; Zeng, Su-Ling; Zhang, Yu; Li, Ping; Liu, E-Hu

    2016-01-01

    Steroidal saponins, which exhibit multiple pharmacological effects, are the major bioactive constituents in herbal medicines from Dioscoreae species. In this study, a sensitive method based on high performance liquid chromatography-mass spectrometry (HPLC-MS) was established and validated for qualitative and quantitative analysis of steroidal saponins in four Dioscoreae herbs including Dioscoreae Nipponica Rhizome (DNR) and Dioscoreae Hypoglaucae Rhizome (DHR), Dioscoreae Spongiosae Rhizome (DSR) and Dioscoreae Rhizome (DR). A total of eleven steroidal saponins were identified by high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (HPLC-QTOF/MS). Furthermore, seven major steroidal saponins was simultaneous quantified using a high performance liquid chromatography coupled with triple quadrupole mass spectrometry (HPLC-QQQ/MS). The qualitative and quantitative analysis results indicated that the chemical composition of DNR, DHR and DSR samples exhibited a high level of global similarity, while the ingredients in DR varied greatly from the other three herbs. Moreover, principal component analysis (PCA) and hierarchical clustering analysis (HCA) were performed to compare and discriminate the Dioscoreae herbs based on the quantitative data. The results demonstrated the qualitative and quantitative analysis of steroidal saponins based on HPLC-MS is a feasible method for quality control of Dioscoreae herbs.

  9. 公轨两用部分斜拉桥耦合振动分析与行车舒适度评价%Analysis for Coupling Vibration and Evaluation for Comfort Degree of Driving on Part of Stayed-cable Bridges for both Highway Traffic and Light-rail Traffic

    Institute of Scientific and Technical Information of China (English)

    耿波; 袁佩; 尚军年

    2014-01-01

    以重庆东水门长江大桥为研究对象,建立车桥耦合动力系统,对其振动响应及行车舒适度进行研究。采用多刚体结构模拟车辆,空间杆系单元模拟桥梁,分别计算桥梁耦合轻轨车、桥梁耦合汽车、桥梁耦合轻轨车及汽车的动力响应,并对桥上轻轨车及汽车的行车舒适度作出评价。结果表明,轻轨车和汽车的行车舒适度均满足要求。%With Chongqing Dongshuimen Yangtze River Bridge as the object of research, this paper establishes a vehicle-bridge coupling dynamic system and studies its response to vibration and comfort degree of driving. The paper adopts multi-rigid-body structures to simulate vehicles and spatial link elements to simulate bridges, calculates dynamic responses of bridge coupling light-rail vehicles and automotives, respectively, and evaluates the comfort degree of driving of light -rail vehicles and automotives on bridges. The results show that the comfort degree of driving of both light-rail vehicles and automotives satisfies the requirements.

  10. Ictal high-frequency oscillations at 80-200 Hz coupled with delta phase in epileptic spasms.

    Science.gov (United States)

    Nariai, Hiroki; Matsuzaki, Naoyuki; Juhász, Csaba; Nagasawa, Tetsuro; Sood, Sandeep; Chugani, Harry T; Asano, Eishi

    2011-10-01

    Previous studies of epileptic spasms reported that ictal events were associated with high-frequency oscillations (HFOs) or delta waves involving widespread regions. We determined whether ictal HFOs at 80-200 Hz were coupled with a phase of slow-wave, whether ictal slow-waves were diffusely or locally synchronous signals, and whether the mode of coupling between HFOs and slow-wave phases differed between ictal and interictal states. We studied 11 children who underwent extraoperative electrocorticography (ECoG) recording. The phases and amplitudes of slow-waves were measured at the peak of ictal and interictal HFOs in the seizure-onset sites. Ictal HFOs were locked tightly to the phase of slow-wave at ≤1 Hz. Ictal slow-waves propagated from the seizure-onset site to other regions. In contrast, interictal HFOs in the seizure-onset site were loosely locked to the phase of slow-wave at ≤1 Hz but tightly to that of ≥3-Hz. Ictal slow-waves coupled with HFOs can be explained as near-field and locally synchronized potentials generated by the neocortex rather than far-field potentials generated by subcortical structures. Ictal slow-waves in epileptic spasms may be generated by a mechanism different from what generates interictal HFOs-slow-wave complexes.

  11. A simple and cheap method for preparation of coupled ZrO2/ZnO with high photocatalytic activities

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; ZHANG Bingru; LI Fengting

    2007-01-01

    The objective of this study was to prepare a new photocatalyst with high activities for degradation of organic pollutants.Coupled ZrO2/ZnO photocatalyst was prepared with a simple precipitation method with cheap raw materials zinc acetate and zirconium oxychloride,and was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM).Reactive brilliant red X-3B was used as a model compotmd to investigate the photocatalytic activity of synthesized catalysts in water under 254 nm UV irradiation.Results show that the optimal calcination temperature and coupling molar ratio of Zr were 350℃ and 2.5%,respectively.At the calcination temperature of 350℃,ZrO2 was dispersed on the surface of hexagonal ZnO in the form of amorphous clusters.The particle size of ZrO2.ZnO decreased with the decrease of calcination temperature and the increase of Zr coupling amount.ZrO2/ZnO has better photocatalytic activity for degradation of reactive brilliant red (RBR) X-3B than pure ZnO and P25-TiO2.

  12. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia [Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna (Austria); Müller, Thomas, E-mail: th.mueller@fz-juelich.de [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany); Plasser, Felix [Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany); Lischka, Hans [Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna (Austria); Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061 (United States)

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.

  13. Cloud point extraction of plutonium in environmental matrixes coupled to ICPMS and α spectrometry in highly acidic conditions.

    Science.gov (United States)

    Labrecque, Charles; Whitty-Léveillé, Laurence; Larivière, Dominic

    2013-11-01

    A new cloud point extraction procedure has been developed for the quantification of plutonium(IV) in environmental samples. The separation procedure can be either coupled to inductively coupled plasma mass spectrometry (ICPMS) or α spectrometry for plutonium quantification. The method uses a combination of selective ligand (P,P'-di(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP])) and micelle shielding by bromine formation to enable quantitative extraction of Pu in highly acidic solutions. Cross-optimization of all parameters (nonionic and ionic surfactant, chelating agent, bromate, bromide, and pH) led to optimal of the extraction conditions. Figures of merit of the method for the detection using α spectrometry and ICPMS are reported (limit of detection, limit of quantification, minimal detectable activity, and recovery). Quantitative extractions (>95%) were obtained for a wide variety of aqueous and digested samples (synthetic urine, wastewater, drinking water, seawater, and soil samples). The method features the first successful coupling between α spectrometry and cloud point extraction and is the first demonstration of CPE suitability with metaborate fusion as a sample preparation approach, techniques used extensively in nuclear industries.

  14. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  15. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods.

    Science.gov (United States)

    Mai, Sebastian; Müller, Thomas; Plasser, Felix; Marquetand, Philipp; Lischka, Hans; González, Leticia

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the Columbus quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbit coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.

  16. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  17. Evaluation of aerosol properties simulated by the high resolution global coupled chemistry-aerosol-microphysics model C-IFS-GLOMAP

    Science.gov (United States)

    Dhomse, Sandip; Mann, Graham; Carslaw, Ken; Flemming, Johannes; Morcrette, Jean-Jacques; Engelen, Richard; Remy, Samuel; Boucher, Olivier; Benduhn, Francois; Hewson, Will; Woodhouse, Matthew

    2016-04-01

    The EU Framework Programme GEMS and MACC consortium projects co-ordinated by the European Centre for Medium-range Weather Forecasts (ECMWF) have developed an operational global forecasting and reanalysis system (Composition-IFS) for atmospheric composition including greenhouse gases, reactive gases and aerosol. The current operational C-IFS system uses a mass-based aerosol model coupled to data assimilation of Aerosol Optical Depth measured by satellite (MODIS) to predict global aerosol properties. During MACC, the GLOMAP-mode aerosol microphysics scheme was added to the system, providing information on aerosol size and number for improved representation of aerosol-radiation and aerosol-cloud interactions, accounting also for simulated global variations in size distribution and internally-mixed particle composition. The IFS-GLOMAP system has recently been upgraded to couple with the sulphur cycle simulated in the online TM5 tropospheric chemistry module for global reactive gases. This C-IFS-GLOMAP system is also being upgraded to use a new "nitrate-extended" version of GLOMAP which realistically treats the size-resolved gas-particle partitioning of semi volatile gases ammonia and nitric acid. In this poster we described C-IFS-GLOMAP and present an evaluation of the global sulphate aerosol distribution simulated in this coupled aerosol-chemistry C-IFS-GLOMAP, comparing to surface observations in Europe, North America and the North Atlantic and contrasting to the fixed timescale sulphate production scheme developed in GEMS. We show that the coupling to the TM5 sulphur chemistry improves the seasonal cycle of sulphate aerosol, for example addressing a persistent wintertime sulphate high bias in northern Europe. The improved skill in simulated sulphate aerosol seasonal cycle is a pre-requisite to realistically characterise nitrate aerosol since biases in sulphate affect the amount of free ammonia available to form ammonium nitrate.

  18. The Complex Case of Positioning the Foundation Degree: Making Sense of a Degree That Is Not a Degree

    Science.gov (United States)

    Kadembo, Ernest

    2008-01-01

    The Foundation degree was launched in 2001 and has enjoyed growth but remains a controversial qualification. Foundation Degree Forward, the body charged by the UK government with providing a "national network or expertise to support the development and validation of high-quality Foundation degrees" is championing the marketing of the…

  19. Triple gauge couplings and polarization at the ILC and leakage in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Marchesini, Ivan

    2011-12-15

    The work presented in this thesis was developed in the framework of detector R and D and physics studies for the International Linear Collider (ILC), a planned e{sup +}e{sup -} accelerator that will reach center of mass energies up to 500 GeV in its first stage. In the first part of the thesis a simultaneous measurement of longitudinal beam polarization and Triple Gauge Couplings (TGCs) at the ILC is implemented, using fully simulated Monte Carlo events. In order to perform such a measurement, semileptonic decays of the W-pairs at {radical}(s)=500 GeV are selected. Additionally, two techniques to measure the polarization alone are also compared. Assuming 80% longitudinal polarization for the electron beam and 60% for the positron beam, a statistical relative precision of better than 0.2% on the average beam polarization of both beams is achieved at an integrated luminosity of 250 fb{sup -1}. In the option of a low positron polarization of 30%, with an integrated luminosity of 500 fb{sup -1} the statistical relative precision on the average polarization is {proportional_to} 0.1% for the electron beam and {proportional_to} 0.35% for the positron beam. Three independent TGCs are fitted simultaneously with the polarization, without loosing sensitivity on the polarization. An absolute statistical uncertainty on the couplings is reached of the order of 10{sup -3}. The second part of the thesis presents the analysis of experimental data collected using the CALICE prototypes, during the 2007 test beam campaign at CERN. The complete setup of the experiment consisted of a silicon-tungsten electromagnetic calorimeter, an analog scintillator-steel hadron calorimeter and a scintillator-steel tail catcher. Events collected using pion beams in the energy range 8-100 GeV are selected and compared to the Monte Carlo simulations. While the leakage from the full setup is negligible, when removing the tail catcher information either partly or completely the energy loss becomes

  20. Bead Injection Extraction Chromatography using High-capacity Lab-on-Valve as a Front End to Inductively Coupled Plasma Mass Spectrometry for Rapid Urine Radiobioassay

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel bead injection (BI) extraction chromatographic microflow system exploiting high-capacity lab-on-valve (LOV) platform coupled with inductively coupled plasma mass spectrometric detection is developed for rapid and automated determination of plutonium in human urine. A microconduit (1 mL) i...

  1. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler

    CERN Document Server

    Miki, Shigehito; Terai, Hirotaka; Wang, Zhen

    2013-01-01

    We present high performance fiber-coupled niobium titanium nitride superconducting nanowire single photon detectors fabricated on thermally oxidized silicon substrates. The best device showed a system detection efficiency (DE) of 74%, dark count rate of 100 c/s, and full width at half maximum timing jitter of 68 ps under a bias current of 18.0 uA with a practical Gifford-McMahon cryocooler system. We also introduced six detectors into the cryocooler and confirmed that the system DE of all detectors was higher than 63% at the dark count rate of 100 c/s.

  2. Coupling of Wind Energy and Biogas with a High Temperature Steam Electrolyser for Hydrogen and Methane Production

    OpenAIRE

    Monnerie, Nathalie; Roeb, Martin; Houaijia, Anis; Sattler, Christian

    2014-01-01

    The production of environment friendly green fuels is based on energy from renewable sources. Among the renewable sources, wind power is a very growing power technology. An example which has been discussed very widely is hydrogen which is an ideal fuel for a fuel cell. Hydrogen is the energy of the future. It will be used as energy carrier as well as reactant to produce green fuels, like methane which is easier to handle. Direct coupling of a High Temperature Steam Electrolyser (HTSE) with a ...

  3. High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler.

    Science.gov (United States)

    Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen

    2013-04-22

    We present high performance fiber-coupled niobium titanium nitride superconducting nanowire single photon detectors fabricated on thermally oxidized silicon substrates. The best device showed a system detection efficiency (DE) of 74%, dark count rate of 100 c/s, and full width at half maximum timing jitter of 68 ps under a bias current of 18.0 μA with a practical Gifford-McMahon cryocooler system. We also introduced six detectors into the cryocooler and confirmed that the system DE of all detectors was higher than 67% at the dark count rate of 100 c/s.

  4. NUMERICAL SIMULATION FOR DYNAMIC INITIAL SHOCK PARAMETERS OF COUPLING CHARGE ON BOREHOLE WALL UNDER THE ACTION OF HIGH EXPLOSIVES

    Institute of Scientific and Technical Information of China (English)

    倪芝芳; 李玉民

    1996-01-01

    According to detonation theory and hydrodynamic principle, a physical model has been set up in this paper. Based on the model a methodology for calculating dynamic initial shock parameters such as shock pressure p,,, shock wave velosity Dm etc. of coupling charge on borehole wall has ben developed. The shock parameters have been calculated when high explosives works on granite, limestone and marble respectively. The magnitude of every parameter on borehole wall has been obtained from ignited dot to the end of borehole along axial direction. Some important conclusions are also gained.

  5. Integratable and High Speed Complex-Coupled MQW-DFB Lasers Fabricated on Semi-Insulating Substrates

    Institute of Scientific and Technical Information of China (English)

    CHENG Yuan-Bing; WANG Yang; SUN Yu; PAN Jiao-Qing; BIAN Jing; AN Xin; ZHAO ling-juan; WANG Wei

    2009-01-01

    A novel integratable and high speed InGaAsP multi-quantum well (MQW) complex-coupled distributed feedback (DFB) laser is successfully fabricated on a semi-insulating substrate. The fabricated ridge DFB laser exhibits a threshold current of 26 mA, a slope efficiency of 0. 14 W.A-1 and a side mode suppression ratio of 40 dB together with a 3 dB bandwidth of more than 8 GHz. The device is suitable for 10 Gbit/s optical fiber communication.

  6. Improvement of light collection efficiency of lens-coupled YAG screen TV system for a high-voltage electron microscope.

    Science.gov (United States)

    Yamamoto, K; Tanji, T; Hibino, M; Schauer, P; Autrata, R

    2000-06-15

    A new lens coupling television (TV) system using a YAG (Yttrium Aluminum Garnet: Y(3)Al(5)O(12) : Ce(3+)) single crystal screen has been developed for a high-voltage electron microscope (HVEM), and its performance is examined. The system, using a combination of YAG and lenses, is less damaged by high-energy electron irradiation and reduces the influence of X-rays on the image. YAG screens have not been used for lens-coupling systems, because the high refractive index (n = 1.84) of YAG results in a low light collection efficiency for emitted light. This disadvantage is overcome by combining a thin YAG disk screen (thickness; 100 microm) with a glass hemisphere whose refractive index is 1.81. We found that the light intensity is almost the same as that obtained with a conventional P22 powder screen and lenses system. The resolution is about 55 microm on the YAG screen, and this value is 1.3 times higher than that measured by the conventional system. Shading and distortion do not affect TV observation. Detection quantum efficiency, obtained after correction of the channel mixing effect, is about 0.1.

  7. Impact Damage Evaluation Method of Friction Disc Based on High-Speed Photography and Tooth-Root Stress Coupling

    Science.gov (United States)

    Yin, L.; Shao, Y. M.; Liu, J.; Zheng, H. L.

    2015-07-01

    The stability of friction disc could be seriously affected by the tooth surface damage due to poor working conditions of the wet multi-disc brake in heavy trucks. There are few current works focused on the damage of the friction disc caused by torsion-vibration impacts. Hence, it is necessary to investigate its damage mechanisms and evaluation methods. In this paper, a damage mechanism description and evaluation method of a friction disc based on the high-speed photography and tooth-root stress coupling is proposed. According to the HighSpeed Photography, the collision process between the friction disc and hub is recorded, which can be used to determine the contact position and deformation. Combined with the strain-stress data obtained by the strain gauge at the place of the tooth-root, the impact force and property are studied. In order to obtain the evaluation method, the damage surface morphology data of the friction disc extracted by 3D Super Depth Digital Microscope (VH-Z100R) is compared with the impact force and property. The quantitative relationships between the amount of deformation and collision number are obtained using a fitting analysis method. The experimental results show that the damage of the friction disc can be evaluated by the proposed impact damage evaluation method based on the high-speed photography and tooth-root stress coupling.

  8. Mean Climatic Characteristics in High Northern Latitudes in an Ocean-Sea Ice-Atmosphere Coupled Model

    Institute of Scientific and Technical Information of China (English)

    刘喜迎; 张学洪; 俞永强; 宇如聪

    2004-01-01

    Emphasizing the model's ability in mean climate reproduction in high northern latitudes, results from an ocean-sea ice-atmosphere coupled model are analyzed. It is shown that the coupled model can simulate the main characteristics of annual mean global sea surface temperature and sea level pressure well, but the extent of ice coverage produced in the Southern Hemisphere is not large enough. The main distribution characteristics of simulated sea level pressure and temperature at 850 hPa in high northern latitudes agree well with their counterparts in the NCEP reanalysis dataset, and the model can reproduce the Arctic Oscillation (AO) mode successfully. The simulated seasonal variation of sea ice in the Northern Hemisphere is rational and its main distribution features in winter agree well with those from observations.But the ice concentration in the sea ice edge area close to the Eurasian continent in the inner Arctic Ocean is much larger than the observation. There are significant interannual variation signals in the simulated sea ice concentration in winter in high northern latitudes and the most significant area lies in the Greenland Sea, followed by the Barents Sea. All of these features agree well with the results from observations.

  9. Cluster synchrony in systems of coupled phase oscillators with higher-order coupling.

    Science.gov (United States)

    Skardal, Per Sebastian; Ott, Edward; Restrepo, Juan G

    2011-09-01

    We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction technique of Ott and Antonsen [Chaos 18, 037113 (2008)] and find an analytic description of the degree of cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of steady-state distributions of oscillators, resulting in a high degree of multistability in the cluster asymmetry. We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems displaying cluster synchrony can be used to encode and store data.

  10. Cluster Synchrony in Systems of Coupled Phase Oscillators with Higher-Order Coupling

    CERN Document Server

    Skardal, Per Sebastian; Restrepo, Juan G

    2011-01-01

    We study the phenomenon of cluster synchrony that occurs in ensembles of coupled phase oscillators when higher-order modes dominate the coupling between oscillators. For the first time, we develop a complete analytic description of the dynamics in the limit of a large number of oscillators and use it to quantify the degree of cluster synchrony, cluster asymmetry, and switching. We use a variation of the recent dimensionality-reduction technique of Ott and Antonsen \\cite{OA1} and find an analytic description of the degree of cluster synchrony valid on a globally attracting manifold. Shaped by this manifold, there is an infinite family of steady-state distributions of oscillators, resulting in a high degree of multi-stability in the cluster asymmetry. We also show how through external forcing the degree of asymmetry can be controlled, and suggest that systems displaying cluster synchrony can be used to encode and store data.

  11. Investigation into Physicochemical Properties of Xylan Derivatives with High Degree of Substitution%高取代度木聚糖衍生物的理化性质

    Institute of Scientific and Technical Information of China (English)

    彭新文; 任俊莉; 孙润仓

    2011-01-01

    Bifunctional xylan derivatives ( XDs) with high degree of substitution were prepared from native xylan in wheat straw, with acrylamide as the etherifying agent, alkali as the catalyst, and butanol/water mixture as the reaction system. Then, the structure of the products was characterized by means of 13 C NMR. Moreover, the dynamic rheological behaviors and thermal stability of XDs and the native xylan were tested by using a parallel-plate rheometer and a simultaneous thermal analyzer,respectively. The results show that,as compared with the native xylan, the shear-thinning phenomenon of XDs solution is significant, with relatively lower viscosity, storage modulus and loss modulus, that the storage modulus is higher than the loss modulus, and that the thermal stability of the xylan declines after the modification.%以从麦草中分离得到的木聚糖为原料、丙烯酰胺为醚化剂、碱为催化剂、丁醇/水为反应介质制备了带有高取代度双官能团的木聚糖衍生物.采用13C核磁共振表征了木聚糖衍生物的结构.利用平行板流变仪和同步热分析仪对木聚糖衍生物与原木聚糖的动态流变性能和热稳定性进行测试,结果表明:与原木聚糖溶液相比,木聚糖衍生物溶液呈现较低的粘度,剪切变稀的现象较明显,具有较低的储能模量、损耗模量,且其储能模量稍高于损耗模量;改性后的木聚糖的热稳定性下降.

  12. Wouthuysen-Field coupling strength and application to high-redshift 21 cm radiation

    CERN Document Server

    Hirata, C M

    2006-01-01

    The first UV sources in the universe are expected to have coupled the HI spin temperature to the gas kinetic temperature via scattering in the Lyman-alpha resonance [the Wouthuysen-Field (WF) effect]. By establishing an HI spin temperature different from the temperature of the CMB, the WF effect should allow observations of HI during the reionization epoch in the redshifted 21 cm line. This paper investigates four mechanisms that can affect the strength of the WF effect that were not previously considered: (1) Photons redshifting into the HI Lyman resonances may excite an H atom and result in a radiative cascade terminating in two-photon 2s->1s emission, rather than always degrading to Lyman-alpha as usually assumed. (2) The fine structure of the Lyman-alpha resonance alters the photon frequency distribution and leads to a suppression of the scattering rate. (3) The spin-flip scatterings change the frequency of the photon and cause the photon spectrum to relax not to the kinetic temperature of the gas but to ...

  13. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  14. High-Temperature Hot Air/Silane Coupling Modification of Wood Fiber and Its Effect on Properties of Wood Fiber/HDPE Composites

    Directory of Open Access Journals (Sweden)

    Feng Chen

    2017-03-01

    Full Text Available The surfaces of poplar wood fibers were modified using high-temperature hot air (HTHA treatment and silane coupling agent. The single factor test was then used to investigate the performances (e.g., the change of functional groups, polarity, cellulose crystallinity, and thermal stability of modified poplar wood fibers (mPWF through Fourier transform infrared spectrometry, X-ray diffraction and thermo-gravimetric analysis for the subsequent preparation of wood-plastic composites (WPCs. The effect of HTHA treatment conditions—such as temperature, inlet air velocity, and feed rate—on the performances of WPCs was also investigated by scanning electron microscopy and dynamic mechanical analysis. The main findings indicated that HTHA treatment could promote the hydration of mPWF and improve the mechanical properties of WPCs. Treatment temperature strongly affected the mechanical properties and moisture adsorption characteristics of the prepared composites. With the increase of treated temperature and feed rate, the number of hydroxyl groups, holocellulose content, and the pH of mPWF decreased. The degree of crystallinity and thermal stability and the storage modulus of the prepared composites of mPWF increased. However, dimensional stability and water absorption of WPCs significantly reduced. The best mechanical properties enhancement was observed with treatment temperature at 220 °C. This study demonstrated the feasibility for the application of an HTHA treatment in the WPC production industry.

  15. Direct Bandgap Light Emission from Strained Ge Nanowires Coupled with High-Q Optical Cavities

    CERN Document Server

    Petykiewicz, Jan; Sukhdeo, David S; Gupta, Shashank; Buckley, Sonia; Piggott, Alexander Y; Vučković, Jelena; Saraswat, Krishna C

    2015-01-01

    A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium-based light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudo-heterostructure, and high-Q optical cavity. Our light emitting structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2,000. The emission wavelength is tuned over more than 400 nm with a single lithography step. We find increased optical gain in optical cavities formed with germanium under high (>2.3%) tensile strain. Through quantitative analysis of gain/loss mechanisms, we find that free carrier absorption from the hole bands dominates the gain, resulting in no net gain even from highly strained, n-type doped germanium.

  16. Study on the annular leakage-flow-induced vibrations. 2nd Report. Stability analysis and experiments for translationally and rotationally coupled two-degree-of-freedom systems; Kanjo sukimaryu reiki shindo ni kansuru kenkyu. 2. heishin kaiten 2 jiyudo renseikei no anteisei kaiseki oyobi jikken

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.W. [Hitachi, Ltd., Tokyo (Japan); Kaneko, S. [The University of Tokyo, Tokyo (Japan); Hayama, S. [Toyama Prefectural University, Toyama (Japan)

    1999-07-25

    In this study, the stability of annular leakage-flow-induced vibrations was investigated theoretically and experimentally for a translationally and rotationally coupled two-degree-of-freedom system. The critical flow rate was both theoretically and experimentally obtained as a function of the passage increment ratio and the eccentricity of the passage. A good agreement between the theoretical and experimental results was obtained. It was discovered both theoretically and from the experiments that instability will occur in the case of a divergent passage: the eccentricity of the passage lowers the stability of the systems. (author)

  17. A high-temperature ferromagnetic topological insulating phase by proximity coupling

    Energy Technology Data Exchange (ETDEWEB)

    Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.; Assaf, Badih A.; Jamer, Michelle E.; Wei, Peng; Satpati, Biswarup; Freeland, John W.; Eremin, Ilya; Heiman, Don; Jarillo-Herrero, Pablo; Moodera, Jagadeesh S.

    2016-05-09

    Topological insulators are insulating materials that display conducting surface states protected by time-reversal symmetry(1,)2, wherein electron spins are locked to their momentum. This unique property opens up new opportunities for creating next-generation electronic, spintronic and quantum computation devices(3-5). Introducing ferromagnetic order into a topological insulator system without compromising its distinctive quantum coherent features could lead to the realization of several predicted physical phenomena(6,7). In particular, achieving robust long-range magnetic order at the surface of the topological insulator at specific locations without introducing spin-scattering centres could open up new possibilities for devices. Here we use spin-polarized neutron reflectivity experiments to demonstrate topologically enhanced interface magnetism by coupling a ferromagnetic insulator (EuS) to a topological insulator (Bi2Se3) in a bilayer system. This interfacial ferromagnetism persists up to room temperature, even though the ferromagnetic insulator is known to order ferromagnetically only at low temperatures (<17 K). The magnetism induced at the interface resulting from the large spin-orbit interaction and the spin-momentum locking of the topological insulator surface greatly enhances the magnetic ordering (Curie) temperature of this bilayer system. The ferromagnetism extends similar to 2 nm into the Bi2Se3 from the interface. Owing to the short-range nature of the ferromagnetic exchange interaction, the time-reversal symmetry is broken only near the surface of a topological insulator, while leaving its bulk states unaffected. The topological magneto-electric response originating in such an engineered topological insulator(2,8) could allow efficient manipulation of the magnetization dynamics by an electric field, providing an energy-efficient topological control mechanism for future spin-based technologies.

  18. Inverse Degree and Connectivity

    Institute of Scientific and Technical Information of China (English)

    MA Xiao-ling; TIAN Ying-zhi

    2013-01-01

    Let G be a connected graph with vertex set V(G),order n =丨V(G)丨,minimum degree δ(G) and connectivity κ(G).The graph G is called maximally connected if κ(G) =δ(G).Define the inverse degree of G with no isolated vertices as R(G) =Σv∈V(G)1/d(v),where d(v) denotes the degree of the vertex v.We show that G is maximally connected if R(G) < 1 + 2/δ + n-2δ+1/(n-1)(n-3).

  19. Fully Coupled Thermoelectromechanical Analysis of GaN High Electron Mobility Transistor Degradation

    Science.gov (United States)

    2012-04-05

    multi-dimensional continuum model of the thermoelectromechanics of GaN HEMTs is presented and discussed. The governing equations are those of linear...understanding the mechanisms of both electrical and mechanical degradation in GaN HEMTs . Various possible contributors to degradation are discussed...layers in conventional GaN HEMTs , there is another limit, observed following sustained operation at high current/voltage levels, wherein highly

  20. AxonQuant: A Microfluidic Chamber Culture-Coupled Algorithm That Allows High-Throughput Quantification of Axonal Damage

    Directory of Open Access Journals (Sweden)

    Yang Li

    2014-02-01

    Full Text Available Published methods for imaging and quantitatively analyzing morphological changes in neuronal axons have serious limitations because of their small sample sizes, and their time-consuming and nonobjective nature. Here we present an improved microfluidic chamber design suitable for fast and high-throughput imaging of neuronal axons. We developed the AxonQuant algorithm, which is suitable for automatic processing of axonal imaging data. This microfluidic chamber-coupled algorithm allows calculation of an ‘axonal continuity index' that quantitatively measures axonal health status in a manner independent of neuronal or axonal density. This method allows quantitative analysis of axonal morphology in an automatic and nonbiased manner. Our method will facilitate large-scale high-throughput screening for genes or therapeutic compounds for neurodegenerative diseases involving axonal damage. When combined with imaging technologies utilizing different gene markers, this method will provide new insights into the mechanistic basis for axon degeneration. Our microfluidic chamber culture-coupled AxonQuant algorithm will be widely useful for studying axonal biology and neurodegenerative disorders. © 2014 S. Karger AG, Basel

  1. A one-way coupled atmospheric-hydrological modeling system with combination of high-resolution and ensemble precipitation forecasting

    Science.gov (United States)

    Wu, Zhiyong; Wu, Juan; Lu, Guihua

    2016-09-01

    Coupled hydrological and atmospheric modeling is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling system, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.

  2. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries.

    Science.gov (United States)

    Zhang, Jianjun; Yue, Liping; Hu, Pu; Liu, Zhihong; Qin, Bingsheng; Zhang, Bo; Wang, Qingfu; Ding, Guoliang; Zhang, Chuanjian; Zhou, Xinhong; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-09-03

    Inspired by Taichi, we proposed rigid-flexible coupling concept and herein developed a highly promising solid polymer electrolyte comprised of poly (ethylene oxide), poly (cyano acrylate), lithium bis(oxalate)borate and robust cellulose nonwoven. Our investigation revealed that this new class solid polymer electrolyte possessed comprehensive properties in high mechanical integrity strength, sufficient ionic conductivity (3 × 10(-4) S cm(-1)) at 60°C and improved dimensional thermostability (up to 160°C). In addition, the lithium iron phosphate (LiFePO4)/lithium (Li) cell using such solid polymer electrolyte displayed superior rate capacity (up to 6 C) and stable cycle performance at 80°C. Furthermore, the LiFePO4/Li battery could also operate very well even at an elevated temperature of 160°C, thus improving enhanced safety performance of lithium batteries. The use of this solid polymer electrolyte mitigates the safety risk and widens the operation temperature range of lithium batteries. Thus, this fascinating study demonstrates a proof of concept of the use of rigid-flexible coupling solid polymer electrolyte toward practical lithium battery applications with improved reliability and safety.

  3. The Summary for Optimization of the Annular Coupled Structure Accelerating Module Physical Design for High Intensity Hadron Linac

    CERN Document Server

    Paramonov, Valentin

    2013-01-01

    The normal conducting Annular Coupled Structure (ACS) is applied for 190-400 MeV part of high intensity proton linac for the J-PARC. The ACS operating frequency is 972 MHz. The J-PARC ACS is strongly based on the results of previous investigations, especially results of Japan Hadron Project (JHP) research program in KEK. However, the design was revised and optimized to meet the requirements of reliability, operation efficiency and cost reduction. The cells shape of accelerating cells was optimized in total energy range to have high shunt impedance value together with the careful matching with the decreased coupling cells. The design of the bridge coupler cells was optimized to simplify mass production and shape of RF input cell together with matching window were optimized for higher operational reliability. Collected and adjusted all together, these modifications result in the significant effect. The ACS module design doesn't lose to another possible accelerating structures in RF parameters and dimensions. Pr...

  4. High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient

    Science.gov (United States)

    Wang, Wenbo; Mayrhofer, Patrick M.; He, Xingli; Gillinger, Manuel; Ye, Zhi; Wang, Xiaozhi; Bittner, Achim; Schmid, Ulrich; Luo, J. K.

    2014-09-01

    AlN and AlScN thin films with 27% scandium (Sc) were synthesized by DC magnetron sputtering deposition and used to fabricate surface acoustic wave (SAW) devices. Compared with AlN-based devices, the AlScN SAW devices exhibit much better transmission properties. Scandium doping results in electromechanical coupling coefficient, K2, in the range of 2.0% ˜ 2.2% for a wide normalized thickness range, more than a 300% increase compared to that of AlN-based SAW devices, thus demonstrating the potential applications of AlScN in high frequency resonators, sensors, and high efficiency energy harvesting devices. The coupling coefficients of the present AlScN based SAW devices are much higher than that of the theoretical calculation based on some assumptions for AlScN piezoelectric material properties, implying there is a need for in-depth investigations on the material properties of AlScN.

  5. Coupling Analysis of Low-Speed Multiphase Flow and High-Frequency Electromagnetic Field in a Complex Pipeline Structure

    Directory of Open Access Journals (Sweden)

    Xiaokai Huo

    2014-01-01

    Full Text Available Accurate estimation of water content in an oil-water mixture is a key technology in oil exploration and production. Based on the principles of the microwave transmission line (MTL, the logging probe is an important water content measuring apparatus. However, the effects of mixed fluid flow on the measurement of electromagnetic field parameters are rarely considered. This study presents the coupling model for low-speed multiphase flow and high-frequency electromagnetic field in a complex pipeline structure. We derived the S-parameter equations for the stratified oil/water flow model. The corresponding relationship between the S-parameters and water holdup is established. Evident coupling effects of the fluid flow and the electromagnetic field are confirmed by comparing the calculated S-parameters for both stratified and homogeneous flow patterns. In addition, a multiple-solution problem is analyzed for the inversion of dielectric constant from the S-parameters. The most sensitive phase angle range is determined to improve the detection of variation in the dielectric constant. Suggestions are proposed based on the influence of the oil/water layer on measurement sensitivity to optimize the geometric parameters of a device structure. The method proposed elucidates how accuracy and sensitivity can be improved in water holdup measurements under high water content conditions.

  6. Highly indistinguishable photons from a QD-microcavity with a large Purcell-factor

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.;

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupled quantum dot-microcavity system operating in the weak coupling regime. Furthermore we model the degree of indistinguishability with our novel microscopic theory....

  7. Degree by Thesis

    Science.gov (United States)

    Courtis, Barbara

    1974-01-01

    Discusses a student's experience with a research project on the synthesis and reactions of an organo-platinum complex with an organo-Group IV linkage, including the advantages and disadvantages of such a degree by thesis course. (CC)

  8. Validation of family cancer history data in high-risk families: the influence of cancer site, ethnicity, kinship degree, and multiple family reporters.

    Science.gov (United States)

    Tehranifar, Parisa; Wu, Hui-Chen; Shriver, Tom; Cloud, Ann J; Terry, Mary Beth

    2015-02-01

    Information on family cancer history (FCH) is often collected for first-degree relatives, but more extensive FCH information is critical for greater accuracy in risk assessment. Using self-reported diagnosis of cancer as the gold standard, we examined differences in the sensitivity and specificity of relative-reported FCH by cancer site, race/ethnicity, language preference, and kinship degree (1,524 individuals from 557 families; average number of relatives per family = 2.7). We evaluated the impact of FCH data collected in 2007-2013 from multiple relatives by comparing mean values and proportions for the number of relatives with any cancer, breast cancer, or ovarian cancer as reported by a single relative and by multiple relatives in the same family. The sensitivity of FCH was lower in Hispanics, Spanish-speaking persons, and third-degree relatives (e.g., for all cancers, sensitivities were 80.7%, 87.4%, and 91.0% for third-, second-, and first-degree relatives, respectively). FCH reported by multiple relatives included a higher number of relatives with cancer than the number reported by a single relative (e.g., mean increase of 1.2 relatives with any cancer), with more relatives diagnosed with any cancer, breast cancer, and ovarian cancer in 52%, 36% and 12% of families, respectively. Collection of FCH data from multiple relatives may provide a more comprehensive picture of FCH and may potentially improve risk assessment and preventive care. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.

    Science.gov (United States)

    Saffar, Saber; Abdullah, Amir

    2014-03-01

    Vibration amplitude of transducer's elements is the influential parameters in the performance of high power airborne ultrasonic transducers to control the optimum vibration without material yielding. The vibration amplitude of elements of provided high power airborne transducer was determined by measuring temperature of the provided high power airborne transducer transducer's elements. The results showed that simple thermocouples can be used both to measure the vibration amplitude of transducer's element and an indicator to power transmission to the air. To verify our approach, the power transmission to the air has been investigated by other common method experimentally. The experimental results displayed good agreement with presented approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Yu; CHEN Ying; WANG Ping

    2007-01-01

    We present a new detecting scheme of high-frequency gravitational waves(HFGWs) in the GHz band,the scheme consists of a high-quality-factor open microwave cavity,a static magnetic field passing through the cavity and an electromagnetic (EM)normal mode stored in the cavity.It is found that under the resonant condition firstand second-order perturbation EM effects have almost the same detecting sensitivity to the HFGWs in the GHz band (h~10-26,v~5GHz),but the former contains more information from the HFGWs.We akso provide a very brief review for possible improving way of the sensitivity.This scheme would be Highly complementary to other schemes of detecting the HFGWs.

  11. Simultaneous determination of iridoid glycosides, phenethylalcohol glycosides and furfural derivatives in Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Xu, Jun; Wu, Jie; Zhu, Ling-Ying

    2012-01-01

    In this study, a sensitive and selective method for simultaneously quantifying eight major components (four iridoid glycosides, three phenethylalcohol glycosides and one furfural derivative) of Rehmanniae Radix by high performance liquid chromatography coupled with triple-quadrupole mass...

  12. Observation of different ceramide species from crude cellular extracts by normal-phase high-performance liquid chromatography coupled to atmospheric pressure chemical ionization mass spectrometry

    NARCIS (Netherlands)

    Pettus, BJ; Bielawska, A; Kroesen, BJ; Moeller, PDR; Szulc, ZM; Hannun, YA; Busman, M

    2003-01-01

    Normal-phase high-performance liquid chromatography (NP-HPLC) coupled to atmospheric pressure chemical ionization mass spectrometry (APCI-MS) allows qualitative analysis of endogenous ceramide and dihydroceramide species from crude lipid extracts utilizing chromatographic methods readily adaptable

  13. Highly efficient avalanche multiphoton luminescence from coupled Au nanowires in the visible region

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report highly efficient avalanche multiphoton luminescence(MPL)from ordered-arrayed gold nanowires(NWs).The time-average excitation intensity I_(exc) is as low as 5.0-9.1 kW/cm~2.The intensity of avalanche MPL I_(MPL) is about 10~4 times larger than that of three-photon luminescence,the slope ■logI_(MPL)/■logI_(exc) of avalanche MPL reaches as high as 18.3 and the corresponding polarization dependence of I_(MPL) has a form of cos~(50)■_p.The emission dynamics of avalanche MPL and three-photon luminesc...

  14. Coupling of high temperature nuclear reactor with chemical plant by means of steam loop with heat pump

    Directory of Open Access Journals (Sweden)

    Kopeć Mariusz

    2017-01-01

    Full Text Available High temperature nuclear reactors (HTR can be used as an excellent, emission-free source of technological heat for various industrial applications. Their outlet helium temperature (700°-900°C allows not only for heat supply to all processes below 600°C (referred to as “steam class”, but also enables development of clean nuclear-assisted hydrogen production or coal liquefaction technologies with required temperatures up to 900°C (referred to as “chemical class”. This paper presents the results of analyses done for various configurations of the steam transport loop coupled with the high-temperature heat pump designed for “chemical class” applications. The advantages and disadvantages as well as the key issues are discussed in comparison with alternative solutions, trying to answer the question whether the system with the steam loop and the hightemperature heat pump is viable and economically justified.

  15. Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit and its verification.

    Science.gov (United States)

    Wang, Shaofeng; Xiang, Xiao; Zhou, Conghua; Zhai, Yiwei; Quan, Runai; Wang, Mengmeng; Hou, Feiyan; Zhang, Shougang; Dong, Ruifang; Liu, Tao

    2017-01-01

    In this paper, a model for simulating the optical response and noise performances of photodetectors with L-C coupling and transimpedance amplification circuit is presented. To verify the simulation, two kinds of photodetectors, which are based on the same printed-circuit-board (PCB) designing and PIN photodiode but different operational amplifiers, are developed and experimentally investigated. Through the comparisons between the numerical simulation results and the experimentally obtained data, excellent agreements are achieved, which show that the model provides a highly efficient guide for the development of a high signal to noise ratio photodetector. Furthermore, the parasite capacitances on the developed PCB, which are always hardly measured but play a non-negligible influence on the photodetectors' performances, are estimated.

  16. Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer

    Directory of Open Access Journals (Sweden)

    Jingcheng Liu

    2013-08-01

    Full Text Available A signal mass piezoelectric six-degrees-of-freedom (six-DOF accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.

  17. Unravelling the non-standard top and Higgs couplings in associated top-Higgs production at the High-luminosity LHC

    CERN Document Server

    Rindani, Saurabh D; Shivaji, Ambresh

    2015-01-01

    We study the sensitivities of non-standard top and Higgs couplings in the $pp\\to thj$ process at the 14 TeV high-luminosity run of Large Hadron Collider (HL-LHC). We calculate top polarization and construct various lab-frame observables to study their sensitivities on anomalous couplings at HL-LHC. Both anomalous Wtb and hVV couplings contribute in the production process. However, only the former contributes in top decay and only the latter takes part in Higgs decay. We study this interesting interplay of couplings in the production and decay observables. In production, these couplings significantly affect the top polarization. As a measure of top polarization, we look at decay-lepton angular distributions in the laboratory frame and study the effect of anomalous couplings on these distributions. We construct certain asymmetries to study the sensitivity of these distributions to top quark couplings. In particular, real and imaginary parts of an hVV coupling and real part of a Wtb coupling f2R significantly al...

  18. Versatile microscope-coupled high-intensity pulsed light source for high-speed cine photomicrography of microactuators

    Science.gov (United States)

    Krehl, Peter; Engemann, Stephan; Rembe, Christian; Hofer, Eberhard P.

    1997-05-01

    A compact high-intensity pulsed light source has been developed in order to match a microdynamic test facility for high-speed motion analysis of micromechanical components. The test stand encompasses a universal microscope Zeiss Axioplan, the new light source and an electronic ultra high- speed multiple framing camera Hadland Imacon 468. The light source consists of a narrow cylindrical Xe-filled discharge tube, thus providing a locally stable emission. Since the small-size flashlamp easily fits into a standard microscope lamphousing, it allows to maintain the advantages of Koehler illumination as well as switching to other types of lamphousings. The flash tube is operated via an artificial asymmetric transmission line and delivers a square light pulse with a flash duration of 110 microsecond(s) FWHM and a peak intensity of 50 Med. The light source illuminates the object uniformly within the interesting time window; image shuttering is provided in the camera by gated micro-channel- plate intensifiers. To test the efficiency of the total system for various standard visualization methods (transmitted light, reflected light and differential interference contrast), microscopic still images have been taken at magnification up to 500X and with exposure times down to 10 ns. In addition, two microscopic darkfield methods which provide a high contrast but a low light intensity of the image, have been selected to test their applicability down to an exposure time of 100 ns. Two examples for real-time cinematography of high-speed phenomena in microactuators are shown: the bouncing behavior of an electro-magnetic microrelay and the bubble/jet formation of a thermal ink jet printhead.

  19. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf;

    2009-01-01

    Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...

  20. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh

    2008-02-01

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTR’s higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.