WorldWideScience

Sample records for high cost gas

  1. America's gas tank : the high cost of Canada's oil and gas export strategy

    International Nuclear Information System (INIS)

    Price, M.; Bennett, J.

    2002-10-01

    The high environmental cost of exporting oil and gas from Canada to the United States is discussed. The increased demand for fossil fuels by the United States has coincided with Canada's deregulation of the energy industry and a greater control of Canadian energy companies by American interests. The authors note that most of the oil and gas produced in Canada is exported to the United States, where many of the extraction and production decisions affecting Canadians and the Canadian environment are made. It was cautioned that if the current trend continues, oil and gas development will degrade habitat for endangered species and greenhouse gases will escalate. This is because the fossil fuel industry, particularly the development of Alberta's tar sands, is helping to increase greenhouse gas emissions outside of Canada by selling fossil fuels that are burned outside of Canada. It is recommended that federal and provincial governments in Canada should shift their policies away from fossil fuel production and promote renewable energy production. The United States plans to increase Canadian oil and gas imports in the coming decade, requiring more wells to be drilled and pipelines to carry it. If the fossil fuel industry proceeds with the current plans, greenhouse gas emissions in Canada will grow to 827 million tonnes by 2010, 44 per cent beyond the Kyoto target, having an overall negative impact on public health, wildlife and fresh water supplies. refs., tabs., figs

  2. The modular high-temperature gas-cooled reactor: A cost/risk competitive nuclear option

    International Nuclear Information System (INIS)

    Gotschall, H.L.

    1994-01-01

    The business risks of nuclear plant ownership are identified as a constraint on the expanded use of nuclear power. Such risks stem from the exacting demands placed on owner/operator organizations of current plants to demonstrate ongoing compliance with safety regulations and the resulting high costs for operation and maintenance. This paper describes the Modular High-Temperature Gas-Cooled Reactor (MHTGR) design, competitive economics, and approach to reducing the business risks of nuclear plant ownership

  3. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  4. Advanced gasifier and water gas shift technologies for low cost coal conversion to high hydrogen syngas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Andrew Kramer [Gas Technology Inst., Des Plaines, IL (United States)

    2016-09-30

    The Gas Technology Institute (GTI) and team members RTI International (RTI), Coanda Research and Development, and Nexant, are developing and maturing a portfolio of technologies to meet the United States Department of Energy (DOE) goals for lowering the cost of producing high hydrogen syngas from coal for use in carbon capture power and coal-to-liquids/chemicals. This project matured an advanced pilot-scale gasifier, with scalable and commercially traceable components, to readiness for use in a first-of-a-kind commercially-relevant demonstration plant on the scale of 500-1,000 tons per day (TPD). This was accomplished through cold flow simulation of the gasifier quench zone transition region at Coanda and through an extensive hotfire gasifier test program on highly reactive coal and high ash/high ash fusion temperature coals at GTI. RTI matured an advanced water gas shift process and catalyst to readiness for testing at pilot plant scale through catalyst development and testing, and development of a preliminary design basis for a pilot scale reactor demonstrating the catalyst. A techno-economic analysis was performed by Nexant to assess the potential benefits of the gasifier and catalyst technologies in the context of power production and methanol production. This analysis showed an 18%reduction in cost of power and a 19%reduction in cost of methanol relative to DOE reference baseline cases.

  5. High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    DeCastro, Emory S.; Tsou, Yu-Min; Liu, Zhenyu

    2013-09-20

    Fabrication of membrane electrode assemblies (MEAs) depends on creating inks or pastes of catalyst and binder, and applying this suspension to either the membrane (catalyst coated membrane) or gas diffusion media (gas diffusion electrode) and respectively laminating either gas diffusion media or gas diffusion electrodes (GDEs) to the membrane. One barrier to cost effective fabrication for either of these approaches is the development of stable and consistent suspensions. This program investigated the fundamental forces that destabilize the suspensions and developed innovative approaches to create new, highly stable formulations. These more concentrated formulations needed fewer application passes, could be coated over longer and wider substrates, and resulted in significantly lower coating defects. In March of 2012 BASF Fuel Cell released a new high temperature product based on these advances, whereby our customers received higher performing, more uniform MEAs resulting in higher stack build yields. Furthermore, these new materials resulted in an “instant” increase in capacity due to higher product yields and material throughput. Although not part of the original scope of this program, these new formulations have also led us to materials that demonstrate equivalent performance with 30% less precious metal in the anode. This program has achieved two key milestones in DOE’s Manufacturing R&D program: demonstration of processes for direct coating of electrodes and continuous in-line measurement for component fabrication.

  6. The gas turbine-modular helium reactor (GT-MHR), high efficiency, cost competitive, nuclear energy for the next century

    International Nuclear Information System (INIS)

    Zgliczynski, J.B.; Silady, F.A.; Neylan, A.J.

    1994-04-01

    The Gas Turbine-Modular Helium Reactor (GT-MHR) is the result of coupling the evolution of a small passively safe reactor with key technology developments in the US during the last decade: large industrial gas turbines, large active magnetic bearings, and compact, highly effective plate-fin heat exchangers. The GT-MHR is the only reactor concept which provides a step increase in economic performance combined with increased safety. This is accomplished through its unique utilization of the Brayton cycle to produce electricity directly with the high temperature helium primary coolant from the reactor directly driving the gas turbine electrical generator. This cannot be accomplished with another reactor concept. It retains the high levels of passive safety and the standardized modular design of the steam cycle MHTGR, while showing promise for a significant reduction in power generating costs by increasing plant net efficiency to a remarkable 47%

  7. Review of the cost estimate and schedule for the 2240-MWt high-temperature gas-cooled reactor steam-cycle/cogeneration lead plant

    International Nuclear Information System (INIS)

    1983-09-01

    This report documents Bechtel's review of the cost estimate and schedule for the 2240 MWt High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) Lead Plant. The overall objective of the review is to verify that the 1982 update of the cost estimate and schedule for the Lead Plant are reasonable and consistent with current power plant experience

  8. Enriched-uranium feed costs for the High-Temperature Gas-Cooled reactor: trends and comparison with other reactor concepts

    International Nuclear Information System (INIS)

    Thomas, W.E.

    1976-04-01

    This report discusses each of the components that affect the unit cost for enriched uranium; that is, ore costs, U 3 O 8 to UF 6 conversion cost, costs for enriching services, and changes in transaction tails assay. Historical trends and announced changes are included. Unit costs for highly enriched uranium (93.15 percent 235 U) and for low-enrichment uranium (3.0, 3.2, and 3.5 percent 235 U) are displayed as a function of changes in the above components and compared. It is demonstrated that the trends in these cost components will probably result in significantly less cost increase for highly enriched uranium than for low-enrichment uranium--hence favoring the High-Temperature Gas-Cooled Reactor

  9. Costs and the environmental impact of radioactive waste treatment in reprocessing high-temperature gas-cooled reactor fuel

    International Nuclear Information System (INIS)

    Davis, W. Jr.

    1976-01-01

    A cost-benefit analysis and an analysis of the reduction in population dose from the use of different decontamination equipment in the off-gas system of a model plant for processing spent fuel from HTGR type reactors are presented

  10. High enthalpy gas dynamics

    CERN Document Server

    Rathakrishnan, Ethirajan

    2014-01-01

    This is an introductory level textbook which explains the elements of high temperature and high-speed gas dynamics. written in a clear and easy to follow style, the author covers all the latest developments in the field including basic thermodynamic principles, compressible flow regimes and waves propagation in one volume covers theoretical modeling of High Enthalpy Flows, with particular focus on problems in internal and external gas-dynamic flows, of interest in the fields of rockets propulsion and hypersonic aerodynamics High enthalpy gas dynamics is a compulsory course for aerospace engine

  11. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  12. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  13. Low-cost digital counting interface for fermentation gas measurement

    Energy Technology Data Exchange (ETDEWEB)

    Erdman, M.D.; Deluiche, S.R.

    1985-05-01

    Laboratory- and pilot-scale volumetric measurement of fermentation gas can be readily determined with a standard wet-test gas meter. The initial cost of the meter, however, is quite prohibitive for experimental work and researchers have searched for other means of quantifying gas production. Techniques using calibrated floating gas holders, liquid displacement, flexible membranes, and conventional gas meters have been reported. Many of these methods lack a high degree of accuracy for small gas volumes. Residential gas meters such as those manufactured by Singer company, and others appear well suited for this application as long as a relatively dry gas is passed through the meter and a method is developed to subdivide the meter scale and record the results. The objective of this report was to construct a low cost, accurate, digital counting interface for concurrent operation with a low cost bellows-type gas meter. Although initially constructed for use in gas measurement studies, the interface can be used in other applications where digital output or computer interfacing are desired. 2 references.

  14. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Morthorst, P.E.; Grohnheit, P.E.

    1992-04-01

    The project initiated by the United Nations Environment Programme aims to clarify some economic issues involved in greenhouse gas limitation by carrying out comparative studies of various nations. The programme should contribute to the establishment of a consistent methodological framework for making cost assessments of greenhouse gas abatement and help to support countries in the process of establishing national and international agreements on actions to combat climate change. The publication gives a survey of Danish energy demand and supply, emissions and current energy policy issues and reviews existing studies of carbon dioxide reductions. This includes the overall national environmental policy and the plan of action for the transport sector. Conclusions are that there seems to be a long-term potential for significant reduction of CO 2 emission by 10-15% by 2010 with no additional costs, a 50% reduction will cost DKK 25-50 per kg reduced CO 2 . The most promising options include increased use of cogeneration of heat and electricity, and electricity conservation in households, services and in industry. Economic growth is forecast as ca. 2.7% and energy prices for oil products should increase by ca. 4.8%. A 40% reduction of CO 2 emission in the year 2005 would increase costs by 1-2%, and a reduction of two thirds of present emission should be possible at no additional cost compared to the reference cases. There is general agreement that a reduction of carbon dioxide emission of 15-30% by 2005-10 should involve no additional costs to society. (AB) (11 refs.)

  15. UNEP greenhouse gas abatement costing studies

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. (Southern Centre for Energy and Environment (Zimbabwe)); Muguti, E. (Ministry of Transport and Energy. Department of Energy (Zimbabwe)); Fenhann, J.; Morthorst, P.E. (Risoe National Laboratory. Systems Analysis Department (Denmark))

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  16. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Shakespeare Maya, R.; Muguti, E.; Fenhann, J.; Morthorst, P.E.

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB)

  17. Deregulated gas in 1985 seen costly

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, P.

    1980-05-05

    Deregulation of natural gas wellhead prices will mean higher prices for nonboiler industrial users, according to an Energy and Environmental Analysis Inc. (EEA) study. The price increases of high-sulfur residual fuel oil will exceed inflation rates, but low-sulfur residual oil and distillate oil will have smaller increases because of upgraded refineries. Te economc imact analysis is broken down by region and includes estimates of gas, high-sulfur coal, and low-sulfur coal prices thrugh 1995. Free copies of the report are available from the Federal Energy Regulatory Commission's Office of Public Information. (DCK)

  18. CEO's guide to world business costs : oil and gas equipment

    International Nuclear Information System (INIS)

    2004-01-01

    This paper presents the results of a detailed study of wellhead equipment manufacturing costs in 11 countries in North America, Europe and Asia-Pacific. According to the Economist Intelligence Unit (EIU), Canada has a 5 per cent cost advantage and will be the best country in the world to do business between 2004 to 2008 because of its foreign trade policies, high quality infrastructure and market opportunities within the North American marketplace. KPMG Consulting developed a web-based cost model that allows investors to examine the costs involved in setting up and operating a business in more than 120 cities in Canada, the United States, the United Kingdom, France, Germany, Italy, Iceland, Luxembourg, the Netherlands, Japan and Australia. According to the model, a comparison of annual costs for oil and gas wellhead equipment manufacturing was presented for the 11 countries with reference to revenues, costs, and profits before and after income tax. In addition, Canada's research and development (R and D) cost advantage compared to the United States was presented, with reference to tax credits, expenditures, salaries, contracts, capital equipment, volume-based tax credits, and research studies. This report also includes a brief summary of 3 oil and gas companies that came to Canada and prospered. tabs., figs

  19. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Maya, R.S.; Nziramasanga, N.; Muguti, E.; Fenhann, J.

    1993-10-01

    The aim was to assess options and cost of reducing emissions of greenhouse gases (with emphasis on carbon dioxide) from human activity in Zimbabwe. A brief description of the country's economy and energy sector, policy and pricing and regulations is given and substantial data related to the country's economy, technology, energy consumption, emission and fuel prices are presented. The energy demand in households and for other sectors in Zimbabwe are assessed, and documented in the case of the former. The reference scenarios on energy demand and supply assess greenhouse gas emissions under conditions whereby the present economic growth trends predominate. Energy efficiency improvements are discussed. Abatement technology options are stated as afforestation for carbon sequestration, more efficient coal-fired industrial boilers, extended use of hydroelectricity, prepayment electric meters, minimum tillage, optimization of coal-fired tobacco barns, industrial power factor correction equipment, domestic biogas digesters, solar water heating systems, time switches in electric geysers, optimization of industrial furnaces, photovoltaic water pumps, production of ammonia from coal for fertilizing purposes, and recovery of coke oven gases for use in thermal power generation. (AB)

  20. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  1. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  2. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    NARCIS (Netherlands)

    Weiss, M.; Dittmar, L.; Junginger, H.M.; Patel, M.K.; Blok, K.

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers

  3. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  4. The modular high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Lutz, D.E.; Lipps, A.J.

    1984-01-01

    Due to relatively high operating temperatures, the gas-cooled reactor has the potential to serve a wide variety of energy applications. This paper discusses the energy applications which can be served by the modular HTGR, the magnitude of the potential markets, and the HTGR product cost incentives relative to fossil fuel competition. Advantages of the HTGR modular systems are presented along with a description of the design features and performance characteristics of the current reference HTGR modular systems

  5. Costly waiting for the future gas energy

    International Nuclear Information System (INIS)

    1999-01-01

    The article discusses solutions while waiting for the pollution free gas power plant and points out that Norway will have to import Danish power from coal and Swedish nuclear energy for a long time yet. Various future scenarios are mentioned

  6. High ratio recirculating gas compressor

    Science.gov (United States)

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  7. Capital cost: gas cooled fast reactor plant

    International Nuclear Information System (INIS)

    1977-09-01

    The results of an investment cost study for a 900 MW(e) GCFR central station power plant are presented. The capital cost estimate arrived at is based on 1976 prices and a conceptual design only, not a mature reactor design

  8. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  9. High Excitation Gas and ISM

    Science.gov (United States)

    Peeters, E.; Martin-Hernandez, N. L.; Rodriguez-Fernandez, N. J.; Tielens, A. G. G. M.

    2004-01-01

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. HII regions, the Galactic Centre and Supernovae Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarized, their diagnostic capabilities illustrated and their implications highlighted.

  10. Survey of stranded gas and delivered costs to Europe of selected gas resources

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2011-01-01

    Two important trends affecting the expected growth of global gas markets are (1) the shift by many industrialized countries from coal-fired electricity generation to the use of natural gas to generate electricity and (2) the industrialization of the heavily populated Asian countries of India and China. This paper surveys discovered gas in stranded conventional gas accumulations and presents estimates of the cost of developing and producing stranded gas in selected countries. Stranded gas is natural gas in discovered or identified fields that is not currently commercially producible for either physical or economic reasons. Published reserves of gas at the global level do not distinguish between volumes of gas in producing fields and volumes in nonproducing fields. Data on stranded gas reported here-that is the volumes, geographical distribution, and size distributions of stranded gas fields at the country and regional level-are based on the examination of individual-field data and represent a significant improvement in information available to industry and government decision makers. Globally, stranded gas is pervasive, but large volumes in large accumulations are concentrated in only a few areas. The cost component of the paper focuses on stranded conventional gas accumulations in Africa and South America that have the potential to augment supplies to Europe. The methods described for the computation of extraction and transport costs are innovative in that they use information on the sizes and geographical distribution of the identified stranded gas fields. The costs are based on industry data specific to the country and geologic basin where the stranded gas is located. Gas supplies to Europe can be increased significantly at competitive costs by the development of stranded gas. Net extraction costs of producing the identified gas depend critically on the natural-gas-liquids (NGLs) content, the prevailing prices of liquids, the size of the gas accumulation, and the

  11. High Energy Vibration for Gas Piping

    Science.gov (United States)

    Lee, Gary Y. H.; Chan, K. B.; Lee, Aylwin Y. S.; Jia, ShengXiang

    2017-07-01

    In September 2016, a gas compressor in offshore Sarawak has its rotor changed out. Prior to this change-out, pipe vibration study was carried-out by the project team to evaluate any potential high energy pipe vibration problems at the compressor’s existing relief valve downstream pipes due to process condition changes after rotor change out. This paper covers high frequency acoustic excitation (HFAE) vibration also known as acoustic induced vibration (AIV) study and discusses detailed methodologies as a companion to the Energy Institute Guidelines for the avoidance of vibration induced fatigue failure, which is a common industry practice to assess and mitigate for AIV induced fatigue failure. Such detailed theoretical studies can help to minimize or totally avoid physical pipe modification, leading to reduce offshore plant shutdown days to plant shutdowns only being required to accommodate gas compressor upgrades, reducing cost without compromising process safety.

  12. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  13. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing of high-temperature gas-cooled reactor fuel containing U-233 and thorium

    International Nuclear Information System (INIS)

    Davis, W. Jr.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1976-05-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model high-temperature gas-cooled reactor (HTGR) fuel reprocessing plant and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist the U. S. Nuclear Regulatory Commission in defining the term as low as reasonably achievable as it applies to this nuclear facility. The base case is representative of conceptual, developing technology of head-end graphite-burning operations and of extensions of solvent-extraction technology of current designs for light-water-reactor (LWR) fuel reprocessing plants. The model plant has an annual capacity of 450 metric tons of heavy metal (MTHM, where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods used in the case studies is discussed

  14. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: fabrication of high-temperature gas-cooled reactor fuel containing uranium-233 and thorium

    International Nuclear Information System (INIS)

    Roddy, J.W.; Blanco, R.E.; Hill, G.S.; Moore, R.E.; Seagren, R.D.; Witherspoon, J.P.

    1976-06-01

    A cost/benefit study was made to determine the cost and effectiveness of various radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from model High-Temperature Gas-Cooled (HTGR) fuel fabrication plants and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term ''as low as reasonably achievable'' as it applies to these nuclear facilities. The base cases of the two model plants, a fresh fuel fabrication plant and a refabrication plant, are representative of current proposed commercial designs or are based on technology that is being developed to fabricate uranium, thorium, and graphite into fuel elements. The annual capacities of the fresh fuel plant and the refabrication plant are 450 and 245 metric tons of heavy metal (where heavy metal is uranium plus thorium), as charged to about fifty 1000-MW(e) HTGRs. Additional radwaste treatment systems are added to the base case plants in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The capital and annual costs for the added waste treatment operations and the corresponding reductions in dose commitments are calculated for each case. In the final analysis, the cost/benefit of each case, calculated as additional cost of radwaste system divided by the reduction in dose commitment, is tabulated or the dose commitment is plotted with cost as the variable. The status of each of the radwaste treatment methods is discussed. 48 figures, 74 tables

  15. Estimation of cost function in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-02-01

    The natural gas industry in Korea has characteristics of a dual industrial structure with wholesale and retail and a regional monopoly of city gas company. Recently there have been discussions on the restructuring of gas industry and the problems arising from such industrial organization. At this point, the labor and capital cost of KOGAS were analyzed to find out efficiency of KOGAS, the wholesaler and the cost function focusing on distribution was estimated to find out effect of scale of city gas company, the retailer. As a result, in the case of KOGAS, it is prove that enhancing competitive power is needed by improving labor productivity through stabilization of labor structure and by maximizing value-added through stability of capital combination. From the estimation of cost function of city gas companies, the existing regional monopoly of city gas company have effects on its scale only when the area of operation and end users used the same amount per end user are increased. (author). 31 refs., 10 figs., 43 tabs.

  16. Equivalent oil price, equivalent gas price and CO2 cost

    International Nuclear Information System (INIS)

    Bacher, P.

    2008-01-01

    This article assess the magnitudes of costs to replace oil (and natural gas) in their fixed (heat) or mobile (transport) uses with energy savings or non CO 2 emitting energies. The price of oil (or gas) at which such measures would be profitable at is inferred, without any tax or subsidy, as well as the resulting CO 2 costs avoided. It shows that several of the actions considered in France and Europe to protect the climate are far from being the most economically justified. (author)

  17. Environmental Parametric Cost Model in Oil and Gas EPC Contracts

    Directory of Open Access Journals (Sweden)

    Madjid Abbaspour

    2018-01-01

    Full Text Available This study aims at identifying the parameters that govern the environmental costs in oil and gas projects. An initial conceptual model was proposed. Next, the costs of environmental management work packages were estimated, separately and were applied in project control tools (WBS/CBS. Then, an environmental parametric cost model was designed to determine the environmental costs and relevant weighting factors. The suggested model can be considered as an innovative approach to designate the environmental indicators in oil and gas projects. The validity of variables was investigated based on Delphi method. The results indicated that the project environmental management’s weighting factor is 0.87% of total project’s weighting factor.

  18. A comparison of cost-based pricing rules for natural gas distribution utilities

    International Nuclear Information System (INIS)

    Klein, C.C.

    1993-01-01

    Partial-equilibrium social welfare deadweight losses under uniform Ramsey pricing, a cost allocation pricing method, and the actual average revenues by customer class for two natural gas distribution utilities are calculated and compared. Marginal cost estimates are derived from a multiple-output translog variable cost function and used, along with three sets of demand elasticities, to generate the Ramsey prices and welfare losses. The actual and cost-allocation prices are taken directly from rate case files. The largest social welfare losses are associated with the cost-allocation rule, as high as 10-25% of revenue, despite suggestions in the literature to the contrary. (Author)

  19. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Yan, Xing; Takizuka, Takakazu

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  20. High potential recovery -- Gas repressurization

    Energy Technology Data Exchange (ETDEWEB)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  1. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  2. Low-Cost Resonant Cavity Raman Gas Probe for Multi-Gas Detection

    Science.gov (United States)

    Thorstensen, J.; Haugholt, K. H.; Ferber, A.; Bakke, K. A. H.; Tschudi, J.

    2014-12-01

    Raman based gas sensing can be attractive in several industrial applications, due to its multi-gas sensing capabilities and its ability to detect O_2 and N_2. In this article, we have built a Raman gas probe, based on low-cost components, which has shown an estimated detection limit of 0.5 % for 30 second measurements of N_2 and O_2. While this detection limit is higher than that of commercially available equipment, our estimated component cost is approximately one tenth of the price of commercially available equipment. The use of a resonant Fabry-Pérot cavity increases the scattered signal, and hence the sensitivity, by a factor of 50. The cavity is kept in resonance using a piezo-actuated mirror and a photodiode in a feedback loop. The system described in this article was made with minimum-cost components to demonstrate the low-cost principle. However, it is possible to decrease the detection limit using a higher-powered (but still low-cost) laser and improving the collection optics. By applying these improvements, the detection limit and estimated measurement precision will be sufficient for e.g. the monitoring of input gases in combustion processes, such as e.g. (bio-)gas power plants. In these processes, knowledge about gas compositions with 0.1 % (absolute) precision can help regulate and optimize process conditions. The system has the potential to provide a low-cost, industrial Raman sensor that is optimized for specific gas-detection applications.

  3. Cost efficiency in the Swiss gas distribution sector

    International Nuclear Information System (INIS)

    Farsi, Mehdi; Filippini, Massimo; Kuenzle, Michael

    2007-01-01

    This paper studies the cost structure of gas distribution utilities in Switzerland. Three stochastic frontier models are applied to a panel of 26 companies operating from 1996 to 2000. Efficiency is assumed to be constant over time. The analysis highlights the importance of output characteristics such as customer density and network size. The results suggest that the utilities could slightly reduce their operating costs by improving efficiency. There is no evidence of significant unexploited scale economies. However, our analysis indicates that the estimates of scale economies could be sensitive to the assumptions regarding the variation of output with output characteristics

  4. Evaluating the economic cost of natural gas strategic storage restrictions

    International Nuclear Information System (INIS)

    Ejarque, Joao Miguel

    2011-01-01

    The European Commission wants to implement a single market for gas. One of the components of this market is a regulated provision for ''security of supply'' which consists of rules for the implementation and use of a given reserve stock of gas. We investigate the impact of this policy on the profitability of a storage operator, using data from Denmark and Italy. Keeping storage capacity constant, the costs of the strategic stock are around 20% of the value of the storage market for Denmark, and 16% for Italy. This cost is due to the inability to extract arbitrage profits from the captive stock. Furthermore, the strategic storage restriction induces behavior that would virtually never be replicated by a private storage operator in an unconstrained market, in particular in the first 6 months of the year when unconstrained firms empty their reservoirs much faster, suggesting the strategic restriction is unnecessarily distorting the market. (author)

  5. Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands

    International Nuclear Information System (INIS)

    Weiss, Martin; Dittmar, Lars; Junginger, Martin; Patel, Martin K.; Blok, Kornelis

    2009-01-01

    High costs often prevent the market diffusion of novel and efficient energy technologies. Monitoring cost and price decline for these technologies is thus important in order to establish effective energy policy. Here, we present experience curves and cost-benefit analyses for condensing gas boilers produced and sold in the Netherlands between 1981 and 2006. For the most dominant boiler type on the Dutch market, i.e., condensing gas combi boilers, we identify learning rates of 14±1% for the average price and 16±8% for the additional price relative to non-condensing devices. Economies of scale, competitive sourcing of boiler components, and improvements in boiler assembly are among the main drivers behind the observed price decline. The net present value of condensing gas combi boilers shows an overall increasing trend. Purchasing in 2006 a gas boiler of this type instead of a non-condensing device generates a net present value of 970 EUR (Euro) and realizes CO 2 (carbon dioxide) emission savings at negative costs of -120 EUR per tonne CO 2 . We attribute two-thirds of the improvements in the cost-benefit performance of condensing gas combi boilers to technological learning and one-third to a combination of external effects and governmental policies.

  6. High pressure gas reinjection unit

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    Nuovo Pignone has built for gas reinjection at Ekofisk the highest pressure injection unit to date: suction pressure 246 bar, discharge 647 bar, for 5.7 million cu m/day of natural gas, and driven by a GE MS 5001 gas turbine of 24,000 hp. The barrel-type compressor has been used already in Algeria at Hassi Messaoud. Full scale tests have shown that the unit is satisfactory; special attention being paid to the stability of the rotor. Air cooled heat exchangers were used in the test loop to cool the discharge gas; at Ekofisk, heat exchangers with sea water will be used. The valves in the test loop were of a special, low- noise type. Vibrations of the rotor system and changes in gas pressure monitored, showing that a pressure of 680 bars can be achieved without instability. Economic considerations lead to preference for rotary compressors driven by gas turbines for similar applications in the exploitation of oil fields. A graph of the characteristics of the unit is given.

  7. Gas recombination device design and cost study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Under a contract with Argonne National Laboratory, VARTA Batterie AG. conducted a design and cost study of hydrogen-oxygen recombination devices (HORD) for use with utility load-leveling lead-acid cells. Design specifications for the devices, through extensive calculation of the heat-flow conditions of the unit, were developed. Catalyst and condenser surface areas were specified. The exact dimensions can, however, be adjusted to the cell dimension and the space available above the cell. Design specifications were also developed for additional components required to ensure proper function of the recombination device, including metal hydride compound decomposer, aerosol retainer, and gas storage component. Costs for HORD were estimated to range from $4 to $10/kWh cell capacity for the production of a large number of units (greater than or equal to 10,000 units). The cost is a function of cell size and positive grid design. 21 figures, 2 tables.

  8. Feasibility and Costs of Natural Gas as a Bridge to Deep Decarbonization in the United States

    Science.gov (United States)

    Jones, A. D.; McJeon, H. C.; Muratori, M.; Shi, W.

    2015-12-01

    Achieving emissions reductions consistent with a 2 degree Celsius global warming target requires nearly complete replacement of traditional fossil fuel combustion with near-zero carbon energy technologies in the United States by 2050. There are multiple technological change pathways consistent with this deep decarbonization, including strategies that rely on renewable energy, nuclear, and carbon capture and storage (CCS) technologies. The replacement of coal-fired power plants with natural gas-fired power plants has also been suggested as a bridge strategy to achieve near-term emissions reduction targets. These gas plants, however, would need to be replaced by near-zero energy technologies or retrofitted with CCS by 2050 in order to achieve longer-term targets. Here we examine the costs and feasibility of a natural gas bridge strategy. Using the Global Change Assessment (GCAM) model, we develop multiple scenarios that each meet the recent US Intended Nationally Determined Contribution (INDC) to reduce GHG emissions by 26%-28% below its 2005 levels in 2025, as well as a deep decarbonization target of 80% emissions reductions below 1990 levels by 2050. We find that the gas bridge strategy requires that gas plants be retired on average 20 years earlier than their designed lifetime of 45 years, a potentially challenging outcome to achieve from a policy perspective. Using a more idealized model, we examine the net energy system costs of this gas bridge strategy compared to one in which near-zero energy technologies are deployed in the near tem. We explore the sensitivity of these cost results to four factors: the discount rate applied to future costs, the length (or start year) of the gas bridge, the relative capital cost of natural gas vs. near-zero energy technology, and the fuel price of natural gas. The discount rate and cost factors are found to be more important than the length of the bridge. However, we find an important interaction as well. At low discount rates

  9. Gas-cooled fast reactor fuel-cost assessment. Final report, October 1978-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.L.

    1979-01-01

    This program, contracted to provide a Gas Cooled Fast Reactor (GCFR) fuel assembly fabrication cost assessment, comprised the following basic activities: establish agreement on the ground rules for cost assessment, prepare a fuel factory flow sheet, and prepare a cost assessment for fuel assembly fabrication. Two factory sizes, 250 and 25 MTHM/year, were considered for fuel assembly fabrication cost assessment. The work on this program involved utilizing GE LMFBR cost assessment and fuel factory studies experience to provide a cost assessment of GCFR fuel assembly fabrication. The recent impact of highly sensitive safety and safeguards environment policies on fuel factory containment, safety, quality assurance and safeguards costs are significantly higher than might have been expected just a few years ago. Fuel assembly fabrication costs are significant because they represent an estimated 30 to 60% of the total fuel cycle costs. In light of the relative high cost of fabrication, changes in the core and assembly design may be necessary in order to enhance the overall fuel cycle economics. Fabrication costs are based on similar operations and experience used in other fuel cycle studies. Because of extrapolation of present technology (e.g., remote fuel fabrication versus present contact fabrication) and regulatory requirements, conservative cost estimates were made.

  10. Natural gas : a highly lucrative commodity

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Exploration and production of natural gas has become highly profitable as natural gas is becoming a leading future commodity. With new technology, high demand and environmental benefits, natural gas is the preferred choice over petroleum as the leading source of energy to heat home and businesses. Canada is the world's third largest producer of natural gas with its Sable Offshore Energy Project being the fourth largest producing natural gas basin in North America. The basin will produce high quality sweet natural gas from 28 production wells over the course of the next 20 to 25 years. The gas will be transported to markets through Nova Scotia, New Brunswick and into the Northeastern United States via the Maritimes and Northeast Pipeline. The 1051 kilometer underground gas pipeline is currently running laterals to Halifax, Nova Scotia and Saint John, New Brunswick. Market studies are being conducted to determine if additional lines are needed to serve Cape Breton, Prince Edward Island and northern New Brunswick. A recent survey identified the following 5 reasons to convert to natural gas: (1) it is safe, (2) it is reliable, (3) it is easy to use, (4) it is cleaner burning and environmentally friendly compared to other energy sources, and (5) it saves the consumer money

  11. Low Cost, High Efficiency, High Pressure Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Mark Leavitt

    2010-03-31

    A technical and design evaluation was carried out to meet DOE hydrogen fuel targets for 2010. These targets consisted of a system gravimetric capacity of 2.0 kWh/kg, a system volumetric capacity of 1.5 kWh/L and a system cost of $4/kWh. In compressed hydrogen storage systems, the vast majority of the weight and volume is associated with the hydrogen storage tank. In order to meet gravimetric targets for compressed hydrogen tanks, 10,000 psi carbon resin composites were used to provide the high strength required as well as low weight. For the 10,000 psi tanks, carbon fiber is the largest portion of their cost. Quantum Technologies is a tier one hydrogen system supplier for automotive companies around the world. Over the course of the program Quantum focused on development of technology to allow the compressed hydrogen storage tank to meet DOE goals. At the start of the program in 2004 Quantum was supplying systems with a specific energy of 1.1-1.6 kWh/kg, a volumetric capacity of 1.3 kWh/L and a cost of $73/kWh. Based on the inequities between DOE targets and Quantum’s then current capabilities, focus was placed first on cost reduction and second on weight reduction. Both of these were to be accomplished without reduction of the fuel system’s performance or reliability. Three distinct areas were investigated; optimization of composite structures, development of “smart tanks” that could monitor health of tank thus allowing for lower design safety factor, and the development of “Cool Fuel” technology to allow higher density gas to be stored, thus allowing smaller/lower pressure tanks that would hold the required fuel supply. The second phase of the project deals with three additional distinct tasks focusing on composite structure optimization, liner optimization, and metal.

  12. High cost for drilling ships

    International Nuclear Information System (INIS)

    Hooghiemstra, J.

    2007-01-01

    Prices for the rent of a drilling ship are very high. Per day the rent is 1% of the price for building such a ship, and those prices have risen as well. Still, it is attractive for oil companies to rent a drilling ship [nl

  13. High-cost users of medical care

    OpenAIRE

    Garfinkel, Steven A.; Riley, Gerald F.; Iannacchione, Vincent G.

    1988-01-01

    Based on data from the National Medical Care Utilization and Expenditure Survey, the 10 percent of the noninstitutionalized U.S. population that incurred the highest medical care charges was responsible for 75 percent of all incurred charges. Health status was the strongest predictor of high-cost use, followed by economic factors. Persons 65 years of age or over incurred far higher costs than younger persons and had higher out-of-pocket costs, absolutely and as a percentage of income, althoug...

  14. Simulating greenhouse gas (GHG) allowance cost and GHG emission reduction in Western Europe

    International Nuclear Information System (INIS)

    Delarue, Erik; Lamberts, Hans; D'haeseleer, William

    2007-01-01

    Due to the growing concern for global warming, the EU25 have implemented the European Union Greenhouse Gas Emission Trading Scheme (EU ETS). In the first trading period (2005-2007), part of the targeted GHG emission reductions presumably will have to result from a switch from coal fired electricity generation to gas fired electricity generation. It is possible to calculate the allowance cost necessary to switch a certain coal fired plant with a certain gas fired plant in the merit order. The allowance cost obtained is a so called switching point. When comparing historic European Union Allowance (EUA) prices (2005) with the corresponding historic switching points, the EUA prices were found high enough to cause a certain switch in the summer season. This finding leads to the use of switching points in establishing allowance cost profiles for several scenarios. A variable gas price profile is used in the simulation tool E-Simulate to simulate electricity generation and related GHG emissions in an eight zonal model representing Western Europe. Several GHG allowance cost profile scenarios are examined. For each scenario, electricity generation in the considered countries is clarified. The focus however lies on the GHG emission reduction potentials. These potentials are addressed for each scenario

  15. Evaluation of process costs for small-scale nitrogen removal from natural gas. Topical report, January 1989-December 1989

    International Nuclear Information System (INIS)

    Echterhoff, L.W.; Pathak, V.K.

    1991-08-01

    The report establishes the cost of producing pipeline quality gas on a small scale from high nitrogen subquality natural gas. Three processing technologies are evaluated: cryogenic, Nitrotec Engineering Inc.'s pressure swing adsorption (PSA), and lean oil absorption. Comparison of the established costs shows that the cryogenic process exhibits the lowest total plant investment for nitrogen feed contents up to about 22%, above which the PSA process exhibits the lowest investment cost. The lean oil process exhibits the highest total plant investment at the 25% nitrogen feed studied. Opposite to the total plant investment for the cryogenic process, the total plant investment for the PSA process decreases with increasing nitrogen content primarily due to increasing product gas compression requirements. The cryogenic process exhibits the lowest gas processing costs for the nitrogen content range under study. However, the difference between the gas processing costs for the PSA and cryogenic processes narrows as the nitrogen content approaches 15-25%. The lean oil gas processing cost is very high compared to both the cryogenic and PSA processes. The report verifies that nitrogen removal from natural gas is expensive, especially for small-scale applications, and several avenues are identified for improving the cryogenic and PSA technologies

  16. De-linking oil and gas; The cost of Gulf gas; Middle East gas must look to Europe

    International Nuclear Information System (INIS)

    Aissaoui, Ali; Jensen, Jim; Stern, Jonathan

    1994-01-01

    This item consists of letters in response to an article by Robert Mabro on the prospects for gas in North Africa and the Middle East. The first letter is concerned with the issue of de-linking oil and gas. It is argued that the introduction of an ecotax, far from its creators' intentions, may deter investment in the natural gas industry to the benefit of coal and oil producers, rather than promoting gas as the fuel which best protects the environment. The second writer points out the Middle East's geographical disadvantage in aiming to supply natural gas to Europe. While reserves are ample, they are also readily available closer to European consumers, and without extra transportation costs. Markets nearby are either already functioning or, in areas such as India or Pakistan, prohibitively expensive in terms of pipeline construction or other technology. The last author also argues for investment in large-scale pipeline projects in order to use the Middle Eastern gas reserves, but stresses the need for political and security problems to be addressed at the same time. (UK)

  17. The high cost of conflict.

    Science.gov (United States)

    Forté, P S

    1997-01-01

    Conflict is inevitable, especially in highly stressed environments. Clinical environments marked by nurse-physician conflict (and nurse withdrawal related to conflict avoidance) have been proven to be counterproductive to patients. Clinical environments with nurse-physician professional collegiality and respectful communication show decreased patient morbidity and mortality, thus enhancing outcomes. The growth of managed care, and the organizational turmoil associated with rapid change, makes it imperative to structure the health care environment so that conflict can be dealt with in a safe and healthy manner. Professional health care education programs and employers have a responsibility to provide interactive opportunities for multidisciplinary audiences through which conflict management skills can be learned and truly change the interpersonal environment. Professionals must be free to focus their energy on the needs of the patient, not on staff difficulties.

  18. Low-cost high purity production

    Science.gov (United States)

    Kapur, V. K.

    1978-01-01

    Economical process produces high-purity silicon crystals suitable for use in solar cells. Reaction is strongly exothermic and can be initiated at relatively low temperature, making it potentially suitable for development into low-cost commercial process. Important advantages include exothermic character and comparatively low process temperatures. These could lead to significant savings in equipment and energy costs.

  19. Reduction in Fabrication Costs of Gas Diffusion Layers

    Energy Technology Data Exchange (ETDEWEB)

    Jason Morgan; Donald Connors; Michael Hickner

    2012-07-10

    Ballard Material Products (BMP) performed a pre-design technical and cost analysis of state of the art production technologies feasible for high volume GDL manufacturing. Based upon criteria that also included environmental health and safety, customer quality requirements, and future needs, BMP selected technologies that can be integrated into its current manufacturing process. These selections included Many-At-A-Time (MAAT) coating and continuous mixing technologies, as well as various on-line process control tools. These processes have allowed BMP to produce high performance GDLs at lower cost for near-term markets, as well as to define the inputs needed to develop a conceptual Greenfield facility to meet the cost targets for automotive volumes of 500,000 vehicles per year.

  20. High resolution gas volume change sensor

    International Nuclear Information System (INIS)

    Dirckx, Joris J. J.; Aernouts, Jef E. F.; Aerts, Johan R. M.

    2007-01-01

    Changes of gas quantity in a system can be measured either by measuring pressure changes or by measuring volume changes. As sensitive pressure sensors are readily available, pressure change is the commonly used technique. In many physiologic systems, however, buildup of pressure influences the gas exchange mechanisms, thus changing the gas quantity change rate. If one wants to study the gas flow in or out of a biological gas pocket, measurements need to be done at constant pressure. In this article we present a highly sensitive sensor for quantitative measurements of gas volume change at constant pressure. The sensor is based on optical detection of the movement of a droplet of fluid enclosed in a capillary. The device is easy to use and delivers gas volume data at a rate of more than 15 measurements/s and a resolution better than 0.06 μl. At the onset of a gas quantity change the sensor shows a small pressure artifact of less than 15 Pa, and at constant change rates the pressure artifact is smaller than 10 Pa or 0.01% of ambient pressure

  1. Cost function for the natural gas transmission, industry: further considerations

    International Nuclear Information System (INIS)

    Massol, Olivier

    2009-01-01

    This article studies the cost function for the natural gas transmission industry. 60 years ago, Hollis B. Chenery published an important contribution that demonstrated how, in that particular industry, the production function of micro-economic theory can be rewritten with engineering variables (Chenery, 1949). In 2008, an article published in The Engineering Economist (Yepez, 2008) provided a refreshing revival on Chenery's seminal thoughts. In addition to a tribute to the late H.B. Chenery, this document offers some further comments and extensions on Yepez (2008). It provides a statistically estimated characterisation of the long-run scale economies and a discussion on the short-run economics of the duplication of existing equipments. As a first extension, we study the optimal design for infrastructure that is planned to transport a seasonally-varying flow of natural gas. The second extension analyzes the optimal degree of excess capacity to be built into a new infrastructure by a firm that expects a random rise in its output during the infrastructure's lifetime. (author)

  2. Photoionization and High Density Gas

    Science.gov (United States)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  3. Thesis: the ''evolutions of the long term European gas market - organisation and costs''

    International Nuclear Information System (INIS)

    Ouvry, V.

    1998-01-01

    This paper presents the main conclusions of the thesis defended by the author on January 30, 1998: recalls of some characteristics of the European gas market, the stakes of the gas market liberation, the regulatory aspects, the tariffs problem, the competition in the gas marketing segment, and different possible modeling of the gas market evolution (contracts, costs, competition). (J.S.)

  4. Cost optimisation studies of high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R.; Nightingale, M.P.S.; Godden, D. [AEA Technology, Oxon (United Kingdom)] [and others

    1995-10-01

    Cost optimisation studies are carried out for an accelerator based neutron source consisting of a series of linear accelerators. The characteristics of the lowest cost design for a given beam current and energy machine such as power and length are found to depend on the lifetime envisaged for it. For a fixed neutron yield it is preferable to have a low current, high energy machine. The benefits of superconducting technology are also investigated. A Separated Orbit Cyclotron (SOC) has the potential to reduce capital and operating costs and intial estimates for the transverse and longitudinal current limits of such machines are made.

  5. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  6. Gas phase adsorption technology for nitrogen isotope separation and its feasibility for highly enriched nitrogen gas production

    International Nuclear Information System (INIS)

    Inoue, Masaki; Asaga, Takeo

    2000-04-01

    Highly enriched nitrogen-15 gas is favorable to reduce radioactive carbon-14 production in reactor. The cost of highly enriched nitrogen-15 gas in mass production is one of the most important subject in nitride fuel option in 'Feasibility Study for FBR and Related Fuel Cycle'. In this work gas phase adsorption technology was verified to be applicable for nitrogen isotope separation and feasible to produce highly enriched nitrogen-15 gas in commercial. Nitrogen isotopes were separated while ammonia gas flows through sodium-A type zeolite column using pressure swing adsorption process. The isotopic ratio of eight samples were measured by high resolution mass spectrometry and Fourier transform microwave spectroscopy. Gas phase adsorption technology was verified to be applicable for nitrogen isotope separation, since the isotopic ratio of nitrogen-15 and nitrogen-14 in samples were more than six times as high as in natural. The cost of highly enriched nitrogen-15 gas in mass production were estimated by the factor method. It revealed that highly enriched nitrogen-15 gas could be supplied in a few hundred yen per gram in mass production. (author)

  7. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  8. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  9. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  10. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  11. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  12. Evaluation of process costs for small-scale carbon dioxide removal from natural gas. Topical report, September 1989-December 1989

    International Nuclear Information System (INIS)

    Changela, M.K.; Reading, G.J.; Echterhoff, L.W.

    1991-08-01

    The report establishes the cost of producing pipeline quality gas on a small scale from high carbon dioxide subquality natural gas. Two processing technologies are evaluated: conventional diethanolamine (DEA) absorption and membrane separation. Comparison of the established costs shows both capital and operating cost advantages for small-scale membrane applications. Membranes offer higher cost savings at low feed flow rates and high carbon dioxide feed contents. Membranes are produced in modules, thus they do not exhibit economies of scale. This works to their advantage for removing carbon dioxide on a small scale. Processing costs for amine systems are more sensitive to economies of scale, and thus decrease more rapidly than for membranes at higher feed flow rates. The report shows that membranes have a definite market niche within the natural gas processing arena. For economic reasons, membranes will likely become the technology of choice for small-scale systems that treat high carbon dioxide content natural gas streams. However, amines will continue to service large-scale systems and applications where deep carbon dioxide removal is required. A related report (GRI Report No. GRI-91/0093 entitled, 'Technical Evaluation of Hybrid Membrane/DEA Modeling') shows that hybrid systems, the integration of membranes and amines, also offer the potential to lower processing costs

  13. Fuel prices, emission standards, and generation costs for coal vs natural gas power plants.

    Science.gov (United States)

    Pratson, Lincoln F; Haerer, Drew; Patiño-Echeverri, Dalia

    2013-05-07

    Low natural gas prices and stricter, federal emission regulations are promoting a shift away from coal power plants and toward natural gas plants as the lowest-cost means of generating electricity in the United States. By estimating the cost of electricity generation (COE) for 304 coal and 358 natural gas plants, we show that the economic viability of 9% of current coal capacity is challenged by low natural gas prices, while another 56% would be challenged by the stricter emission regulations. Under the current regulations, coal plants would again become the dominant least-cost generation option should the ratio of average natural gas to coal prices (NG2CP) rise to 1.8 (it was 1.42 in February 2012). If the more stringent emission standards are enforced, however, natural gas plants would remain cost competitive with a majority of coal plants for NG2CPs up to 4.3.

  14. 76 FR 8293 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2011-02-14

    ...] Natural Gas Pipelines; Project Cost and Annual Limits February 8, 2011. AGENCY: Federal Energy Regulatory... for natural gas pipelines blanket construction certificates for each calendar year. DATES: Effective... of Subjects in 18 CFR Part 157 Administrative practice and procedure, Natural Gas, Reporting and...

  15. 77 FR 8724 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2012-02-15

    ...] Natural Gas Pipelines; Project Cost and Annual Limits February 9, 2012. AGENCY: Federal Energy Regulatory... limits for natural gas pipelines blanket construction certificates for each calendar year. DATES: This... CFR Part 157 Administrative practice and procedure, Natural gas, Reporting and recordkeeping...

  16. 75 FR 8245 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2010-02-24

    ...] Natural Gas Pipelines; Project Cost and Annual Limits February 18, 2010. AGENCY: Federal Energy Regulatory... for natural gas pipelines blanket construction certificates for each calendar year. DATES: This final..., Natural gas, Reporting and recordkeeping requirements. Jeff C. Wright, Director, Office of Energy Projects...

  17. Motion of gas in highly rarefied space

    Science.gov (United States)

    Chirkunov, Yu A.

    2017-10-01

    A model describing a motion of gas in a highly rarefied space received an unlucky number 13 in the list of the basic models of the motion of gas in the three-dimensional space obtained by L.V. Ovsyannikov. For a given initial pressure distribution, a special choice of mass Lagrangian variables leads to the system describing this motion for which the number of independent variables is less by one. Hence, there is a foliation of a highly rarefied gas with respect to pressure. In a strongly rarefied space for each given initial pressure distribution, all gas particles are localized on a two-dimensional surface that moves with time in this space We found some exact solutions of the obtained system that describe the processes taking place inside of the tornado. For this system we found all nontrivial conservation laws of the first order. In addition to the classical conservation laws the system has another conservation law, which generalizes the energy conservation law. With the additional condition we found another one generalized energy conservation law.

  18. Greenhouse gas abatement in Senegal. A case study of least-cost options

    International Nuclear Information System (INIS)

    Amous, S.; Revet, D.; Sokona, Y.

    1994-01-01

    The first stage of the study was to make a preliminary inventory of greenhouse gas (GHG) emissions for the base year 1988. Following this seven no regret technical options for emission reduction were investigated and the costs calculated, allowing the identification of three least-cost options. The three least-cost options must be implemented first because of their negative costs. The economic benefits of both abatement scenarios are characterized by a negative global cost whatever the discount rate is. (author)

  19. A theoretical cost optimization model of reused flowback distribution network of regional shale gas development

    International Nuclear Information System (INIS)

    Li, Huajiao; An, Haizhong; Fang, Wei; Jiang, Meng

    2017-01-01

    The logistical issues surrounding the timing and transport of flowback generated by each shale gas well to the next is a big challenge. Due to more and more flowback being stored temporarily near the shale gas well and reused in the shale gas development, both transportation cost and storage cost are the heavy burden for the developers. This research proposed a theoretical cost optimization model to get the optimal flowback distribution solution for regional multi shale gas wells in a holistic perspective. Then, we used some empirical data of Marcellus Shale to do the empirical study. In addition, we compared the optimal flowback distribution solution by considering both the transportation cost and storage cost with the flowback distribution solution which only minimized the transportation cost or only minimized the storage cost. - Highlights: • A theoretical cost optimization model to get optimal flowback distribution solution. • An empirical study using the shale gas data in Bradford County of Marcellus Shale. • Visualization of optimal flowback distribution solutions under different scenarios. • Transportation cost is a more important factor for reducing the cost. • Help the developers to cut the storage and transportation cost of reusing flowback.

  20. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  1. The indirect costs and benefits of greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Markandya, A.

    1998-01-01

    The indirect costs of GHG projects are very important in the evaluation of such projects. In many cases they are more important than the direct costs. This paper has shown what such costs consist of and how they may be estimated. As countries prepare their mitigation strategies, it is very important that they develop tools for the assessment of these indirect costs and use these tools in the appropriate manner. Hopefully, this paper will point them in the right direction. (au) 11 refs

  2. Safety supervision on high-pressure gas regulations

    International Nuclear Information System (INIS)

    Lee, Won Il

    1991-01-01

    The first part lists the regulation on safety supervision of high-pressure gas, enforcement ordinance on high-pressure gas safety supervision and enforcement regulations about high-pressure gas safety supervision. The second part indicates safety regulations on liquefied petroleum gas and business, enforcement ordinance of safety on liquefied petroleum gas and business, enforcement regulation of safety supervision over liquefied petroleum gas and business. The third part lists regulation on gas business, enforcement ordinance and enforcement regulations on gas business. Each part has theory and explanation for questions.

  3. Low Cost, Low Power, High Sensitivity Magnetometer

    Science.gov (United States)

    2008-12-01

    which are used to measure the small magnetic signals from brain. Other types of vector magnetometers are fluxgate , coil based, and magnetoresistance...concentrator with the magnetometer currently used in Army multimodal sensor systems, the Brown fluxgate . One sees the MEMS fluxgate magnetometer is...Guedes, A.; et al., 2008: Hybrid - LOW COST, LOW POWER, HIGH SENSITIVITY MAGNETOMETER A.S. Edelstein*, James E. Burnette, Greg A. Fischer, M.G

  4. Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations

  5. Operation of high rate microstrip gas chambers

    CERN Document Server

    Barr, A J; Bouclier, Roger; Capéans-Garrido, M; Dominik, Wojciech; Manzin, G; Million, Gilbert; Hoch, M; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1996-01-01

    We describe recent measurements carried out in well controlled and reproducible conditions to help understanding the factors affecting the short and long term behaviour of Microstrip Gas Chambers. Special care has been taken concerning the gas purity and choice of materials used in the system and for the detectors construction. Detectors built on glasses with surface resistivity in the range $10^{13}-10^{15} \\Omega/\\Box$ have shown satisfactory performance as they do not show charging-up process at high rate and stand the large doses required for the future high luminosity experiments (~10 mC·cm-1·yr-1). Concerning the lifetime measurements, it has been observed that chambers manufactured on high-resistivity glass are far more susceptible of suffering ageing than detectors made on low resistivity, electron-conducting supports, independently of the metal used for the artwork (chromium or gold) at least in clean gas conditions. The successfully operation in the laboratory of detectors manufactured on diamond-...

  6. Survey of state regulatory activities on least cost planning for gas utilities

    International Nuclear Information System (INIS)

    Goldman, C.A.; Hopkins, M.E.

    1991-04-01

    Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. Incorporating the concept of meeting customer energy service needs entails a recognition that customers' costs must be considered along with the utility's costs in the economic analysis of energy options. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. All state commissions were surveyed to assess the current status of gas planning and demand-side management and to identify significant regulatory issues faced by commissions during the next several years. The survey was to determine the extent to which they have undertaken least-cost planning for gas utilities. The survey included the following topics: (1) status of state PUC least-cost planning regulations and practices for gas utilities; (2) type and scope ofnatural gas DSM programs in effect, includeing fuel substitution; (3) economic tests and analysis methods used to evaluate DSM programs; (4) relationship between prudence reviews of gas utility purchasing practices and integrated resource planning; and (5) key regulatory issues facing gas utilities during the next five years. 34 refs., 6 figs., 10 tabs

  7. The cost of longer-run gas supply to Europe

    International Nuclear Information System (INIS)

    Odell, P. R.

    1996-01-01

    The supply, demand and price outlook for natural gas in Europe were examined in detail. Demand for natural gas estimated to grow an average of 2.3% per annum, which will increase import dependence from 130 to 320 BCM over the next 30 years. For the immediate future profitable indigenous supply was predicted, aided by large proven and probable reserves, and technological advances. Indigenous output was forecast to increase by some 60% by 2025. Future international oil prices indicate gas-equivalent border values adequate to secure profitable supply from a variety of external sources leading to continuing competition for markets by producers and continuing diversification of imports. 30 refs., 9 tabs

  8. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    International Nuclear Information System (INIS)

    1994-01-01

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations

  9. Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-08

    This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

  10. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  11. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  12. A Small-Scale Low-Cost Gas Chromatograph

    Science.gov (United States)

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  13. Assessment and status report High-Temperature Gas-Cooled Reactor gas-turbine technology

    International Nuclear Information System (INIS)

    1981-01-01

    Purpose of this report is to present a brief summary assessment of the High Temperature Gas-Cooled Reactor - Gas Turbine (HTGR-GT) technology. The focal point for the study was a potential 2000 MW(t)/800 MW(e) HTGR-GT commercial plant. Principal findings of the study were that: the HTGR-GT is feasible, but with significantly greater development risk than the HTGR-SC (Steam Cycle). At the level of performance corresponding to the reference design, no incremental economic incentive can be identified for the HTGR-GT to offset the increased development costs and risk relative to the HTGR-SC. The relative economics of the HTGR-GT and HTGR-SC are not significantly impacted by dry cooling considerations. While reduced cycel complexity may ultimately result in a reliability advantage for the HTGR-GT, the value of that potential advantage was not quantified

  14. Production costs: U.S. gas turbine ampersand combined-cycle power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This fourth edition of UDI's gas turbine O ampersand M cost report gives 1991 operation and maintenance expenses for over 450 US gas turbine power plants. Modeled on UDI's popular series of O ampersand M cost reports for US steam-electric plants, this report shows operator and plant name, plant year-in-service, installed capacity, 1991 net generation, total fuel expenses, total non-fuel O ampersand M expenses, total production costs, and current plant capitalization. Coverage includes over 90 percent of the utility-owned gas/combustion turbine and combined-cycle plants installed in the country

  15. Finding and development costs for oil and gas in Western Canada : 1992-1996

    International Nuclear Information System (INIS)

    Quinn, D.; Luthin, A.

    1997-01-01

    The role that finding and development (F and D) costs play in determining the level of profits in the oil and gas industry in Canada was discussed. Although exploration is necessary for the growth of the Canadian oil and gas industry, it is widely recognized that finding and development costs must be minimized if the companies are to have continued success. The average finding and development costs for developing reserves of crude oil and natural gas in the Western Canada Sedimentary Basin for 43 companies over a five year period from 1992 to 1996 were reviewed. The average F and D cost for the sample of companies was $7.51 per barrel of oil equivalent. Intermediate companies had higher costs than either the junior or senior companies. But despite the differences in the five-year averages, F and D costs for the senior, intermediate, and junior companies tended to converge from 1992 to 1996. It was noted that the companies that focused on finding and developing natural gas reserves had lower F and D costs than those companies that concentrated on oil. Overall, the absence of any significant upward trends in F and D costs is an encouraging result for the oil and gas industry in Western Canada. Much of the stability in the cost of finding and developing new resources was found to be attributable to judicious deployment of new technology. 19 refs., 29 tabs., 47 figs

  16. Greenhouse gas abatement cost curves of the residential heating market. A microeconomic approach

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline; Hecking, Harald

    2012-01-01

    In this paper, we develop a microeconomic approach to deduce greenhouse gas abatement cost curves of the residential heating sector. By accounting for household behavior, we find that welfare-based abatement costs are generally higher than pure technical equipment costs. Our results are based on a microsimulation of private households' investment decision for heating systems until 2030. The households' investment behavior in the simulation is derived from a discrete choice estimation which allows investigating the welfare costs of different abatement policies in terms of the compensating variation and the excess burden. We simulate greenhouse gas abatements and welfare costs of carbon taxes and subsidies on heating system investments until 2030 to deduce abatement curves. Given utility maximizing households, our results suggest a carbon tax to be the welfare efficient policy. Assuming behavioral misperceptions instead, a subsidy on investments might have lower marginal greenhouse gas abatement costs than a carbon tax.

  17. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    Energy Technology Data Exchange (ETDEWEB)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  18. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    International Nuclear Information System (INIS)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm

  19. Multiple-pollutant cost-effectiveness of greenhouse gas mitigation measures in the UK agriculture

    International Nuclear Information System (INIS)

    Eory, Vera; Topp, Cairistiona F.E.; Moran, Dominic

    2013-01-01

    Highlights: ► Multiple-pollutant marginal abatement cost curves can inform integrated environmental policy. ► We incorporated the co-effects on NH 3 , NO 3 − , P and sediment, as monetary values, into the UK GHG MACC. ► Adding co-effects modifies the GHG MACC, though with little impact unless using high damage values. ► Further research is needed on the co-effects of GHG mitigation measures and on damage values. ► Analysis should focus on the co-effects of measures that are slightly above or below the threshold. -- Abstract: This paper develops multiple-pollutant marginal abatement cost curve analysis to identify an optimal set of greenhouse gas (GHG) mitigation measures considering the trade-offs and synergies with other environmental pollutants. The analysis is applied to UK agriculture, a sector expected to make a contribution to the national GHG mitigation effort. Previous analyses using marginal abatement cost curves (MACCs) have determined the sector's GHG abatement potential based on the cost-effectiveness of a variety of technically feasible mitigation measures. Most of these measures have external effects on other pollution loads arising from agricultural activities. Here the monetary values of four of the most important impacts to water and air (specifically ammonia, nitrate, phosphorous and sediment) are included in the cost-effectiveness analysis. The resulting multiple-pollutant marginal abatement cost curve (MP MACC) informs the design of sustainable climate change policies by showing how the MP MACC for the UK agriculture can differ from the GHG MACC. The analysis also highlights research gaps, and suggests a need to understand the wider environmental effects of GHG mitigation options and to reduce the uncertainty in pollutant damage cost estimates

  20. A High Efficiency PSOFC/ATS-Gas Turbine Power System

    Energy Technology Data Exchange (ETDEWEB)

    W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2001-02-01

    A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

  1. Probabilistic Analysis of Electrical Energy Costs: Comparing Production Costs for Gas, Coal and Nuclear Power Plants. Annex III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The increase in electricity demand is linked to the development of the economy and living standards in each country. This is especially true in those developing countries in which electricity consumption is far below the average of industrialized countries. To satisfy the increased demand for electricity, it is necessary to build new electrical power plants that could, in an optimum way, meet the imposed acceptability criteria. The main criteria are the potential to supply the required energy and to supply it with minimum or, at least, acceptable costs and environmental impacts, to satisfy the licensing requirements and be acceptable to the public. The main competitors for electricity production in the next few decades are fossil fuel power plants (coal and gas) and nuclear power plants. Power plants making use of renewables (solar, wind, biomass) are also important, but due to limited energy supply potential and high costs, can only be a supplement to the main generating units. Large hydropower plants would be competitive under the condition that suitable sites for the construction of such plants exist. Unfortunately, both in Croatia and in the rest of central Europe, such sites are scarce.

  2. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-01-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation

  3. Joint Costs in Electricity and Natural Gas Distribution Infrastructures: The Role of Urban Factors

    Directory of Open Access Journals (Sweden)

    Muzeyyen Anil Senyel

    2018-04-01

    Full Text Available This paper analyzes the joint cost structure of electricity and natural gas distribution investments. Assessing the joint costs is critical for urban development and public policy regarding competition at the local level. The paper accounts for the urban and geographic factors at the local level, while the previous literature primarily used company-level data with a few or no site-specific variables in joint cost analyses. An empirical analysis of the multi-utility capital costs suggests that the local urban and geographic conditions affect such costs, with economies of scope present in electricity and natural gas both in terms of total costs and underground investment costs. Hence, the joint service provision makes economic and environmental sense for urban policy makers.

  4. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  5. Universal model for water costs of gas exchange by animals and plants

    OpenAIRE

    Woods, H. Arthur; Smith, Jennifer N.

    2010-01-01

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface t...

  6. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Bok Yi; Anirban Mukherjee; Elizabeth J. Podlaha; Douglas P. Harrison

    2004-03-01

    Mixed metal oxides containing ceria and zirconia have been studied as high temperature desulfurization sorbents with the objective of achieving the DOE Vision 21 target of 1 ppmv or less H{sub 2}S in the product gas. The research was justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeOn (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and was postulated to have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} mixtures was developed and the products were characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} were prepared. XRD analysis showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Unfortunately, the quantity of CeO{sub 2}-ZrO{sub 2} that could be prepared electrochemically was too small to permit desulfurization testing. Also during year 01 a laboratory-scale fixed-bed reactor was constructed for desulfurization testing. All components of the reactor and analytical systems that were exposed to low concentrations of H{sub 2}S were constructed of quartz, Teflon, or silcosteel. Reactor product gas composition as a function of time was determined using a Varian 3800 gas chromatograph equipped with a pulsed flame photometric detector (PFPD) for measuring low H{sub 2}S concentrations from approximately 0.1 to 10 ppmv, and a thermal conductivity detector (TCD) for higher concentrations of H{sub 2}S. Larger quantities of CeO{sub 2}-ZrO{sub 2} mixtures from other sources, including mixtures prepared in this laboratory using a coprecipitation procedure, were obtained

  7. Low cost high performance uncertainty quantification

    KAUST Repository

    Bekas, C.

    2009-01-01

    Uncertainty quantification in risk analysis has become a key application. In this context, computing the diagonal of inverse covariance matrices is of paramount importance. Standard techniques, that employ matrix factorizations, incur a cubic cost which quickly becomes intractable with the current explosion of data sizes. In this work we reduce this complexity to quadratic with the synergy of two algorithms that gracefully complement each other and lead to a radically different approach. First, we turned to stochastic estimation of the diagonal. This allowed us to cast the problem as a linear system with a relatively small number of multiple right hand sides. Second, for this linear system we developed a novel, mixed precision, iterative refinement scheme, which uses iterative solvers instead of matrix factorizations. We demonstrate that the new framework not only achieves the much needed quadratic cost but in addition offers excellent opportunities for scaling at massively parallel environments. We based our implementation on BLAS 3 kernels that ensure very high processor performance. We achieved a peak performance of 730 TFlops on 72 BG/P racks, with a sustained performance 73% of theoretical peak. We stress that the techniques presented in this work are quite general and applicable to several other important applications. Copyright © 2009 ACM.

  8. Oil and gas pipeline construction cost analysis and developing regression models for cost estimation

    Science.gov (United States)

    Thaduri, Ravi Kiran

    In this study, cost data for 180 pipelines and 136 compressor stations have been analyzed. On the basis of the distribution analysis, regression models have been developed. Material, Labor, ROW and miscellaneous costs make up the total cost of a pipeline construction. The pipelines are analyzed based on different pipeline lengths, diameter, location, pipeline volume and year of completion. In a pipeline construction, labor costs dominate the total costs with a share of about 40%. Multiple non-linear regression models are developed to estimate the component costs of pipelines for various cross-sectional areas, lengths and locations. The Compressor stations are analyzed based on the capacity, year of completion and location. Unlike the pipeline costs, material costs dominate the total costs in the construction of compressor station, with an average share of about 50.6%. Land costs have very little influence on the total costs. Similar regression models are developed to estimate the component costs of compressor station for various capacities and locations.

  9. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation

    KAUST Repository

    Swaidan, Raja

    2014-11-01

    This dissertation addresses the rational design of intrinsically microporous solutionprocessable polyimides and ladder polymers for highly permeable and highly selective gas transport in cornerstone applications of membrane-based gas separation – that is, air enrichment, hydrogen recovery and natural gas sweetening. By virtue of rigid and contorted chains that pack inefficiently in the solid state, polymers of intrinsic microporosity (PIMs) have the potential to unite the solution-processability, mechanical flexibility and organic tunability of commercially relevant polymers with the microporosity characteristics of porous crystalline materials. The performance enhancements of PIMs over conventional low-free-volume polymers have been primarily permeability-driven, compromising the selectivity essential to commercial viability. An approach to unite high permeability with high selectivity for performance transcending the state-of-the-art in air and hydrogen separations was demonstrated via a fused-ring integration of a three-dimensional, shape persistent triptycene moiety optimally substituted with short, branched isopropyl chains at the 9,10-bridgeheads into a highly inflexible backbone. The resulting polymers exhibited selectivities (i.e., O2/N2, H2/N2, H2/CH4) similar to or higher than commercial materials matched with permeabilities up to three hundred times higher. However, the intra-chain rigidity central to such conventional PIM-design principles was not a singular solution to suppression of CO2-induced plasticization in CO2/CH4 mixedgas separations. Plasticization diminishes the sieving capacity of the membrane, resulting in costly hydrocarbon losses that have significantly limited the commercialization of new polymers. Unexpectedly, the most permeable and selective PIMs designed for air and hydrogen separations strongly plasticized in 50:50 CO2/CH4 mixtures, enduring up to three-fold increases in mixed-gas CH4 permeability by 30 bar and strong drops in

  10. Building Commissioning: A Golden Opportunity for Reducing Energy Costs and Greenhouse-gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2009-07-16

    data are available revealed over 10,000 energy-related problems, resulting in 16% median whole-building energy savings in existing buildings and 13% in new construction, with payback time of 1.1 years and 4.2 years, respectively. In terms of other cost-benefit indicators, median benefit-cost ratios of 4.5 and 1.1, and cash-on-cash returns of 91% and 23% were attained for existing and new buildings, respectively. High-tech buildings were particularly cost-effective, and saved higher amounts of energy due to their energy-intensiveness. Projects with a comprehensive approach to commissioning attained nearly twice the overall median level of savings and five-times the savings of the least-thorough projects. It is noteworthy that virtually all existing building projects were cost-effective by each metric (0.4 years for the upper quartile and 2.4 years for the lower quartile), as were the majority of new-construction projects (1.5 years and 10.8 years, respectively). We also found high cost-effectiveness for each specific measure for which we have data. Contrary to a common perception, cost-effectiveness is often achieved even in smaller buildings. Thanks to energy savings valued more than the cost of the commissioning process, associated reductions in greenhouse gas emissions come at 'negative' cost. In fact, the median cost of conserved carbon is negative - -$110 per tonne for existing buildings and -$25/tonne for new construction - as compared with market prices for carbon trading and offsets in the +$10 to +$30/tonne range. Further enhancing the value of commissioning, its non-energy benefits surpass those of most other energy-management practices. Significant first-cost savings (e.g., through right-sizing of heating and cooling equipment) routinely offset at least a portion of commissioning costs - fully in some cases. When accounting for these benefits, the net median commissioning project cost was reduced by 49% on average, while in many cases they exceeded

  11. HIGH EFFICIENCY DESULFURIZATION OF SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Anirban Mukherjee; Kwang-Bok Yi; Elizabeth J. Podlaha; Douglas P. Harrison

    2001-11-01

    Mixed metal oxides containing CeO{sub 2} and ZrO{sub 2} are being studied as high temperature desulfurization sorbents capable of achieving the DOE Vision 21 target of 1 ppmv of less H{sub 2}S. The research is justified by recent results in this laboratory that showed that reduced CeO{sub 2}, designated CeO{sub n} (1.5 < n < 2.0), is capable of achieving the 1 ppmv target in highly reducing gas atmospheres. The addition of ZrO{sub 2} has improved the performance of oxidation catalysts and three-way automotive catalysts containing CeO{sub 2}, and should have similar beneficial effects on CeO{sub 2} desulfurization sorbents. An electrochemical method for synthesizing CeO{sub 2}-ZrO{sub 2} has been developed and the products have been characterized by XRD and TEM during year 01. Nanocrystalline particles having a diameter of about 5 nm and containing from approximately 10 mol% to 80 mol% ZrO{sub 2} have been prepared. XRD showed the product to be a solid solution at low ZrO{sub 2} contents with a separate ZrO{sub 2} phase emerging at higher ZrO{sub 2} levels. Phase separation did not occur when the solid solutions were heat treated at 700 C. A flow reactor system constructed of quartz and teflon has been constructed, and a gas chromatograph equipped with a pulsed flame photometric detector (PFPD) suitable for measuring sub-ppmv levels of H{sub 2}S has been purchased with LSU matching funds. Preliminary desulfurization tests using commercial CeO{sub 2} and CeO{sub 2}-ZrO{sub 2} in highly reducing gas compositions has confirmed that CeO{sub 2}-ZrO{sub 2} is more effective than CeO{sub 2} in removing H{sub 2}S. At 700 C the product H{sub 2}S concentration using CeO{sub 2}-ZrO{sub 2} sorbent was near the 0.1 ppmv PFPD detection limit during the prebreakthrough period.

  12. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  13. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3.0)

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfil...

  14. Production of "Green Natural Gas" Using Solid Oxide Electrolysis Cells (SOEC): Status of Technology and Costs

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Jensen, Søren Højgaard; Ebbesen, Sune Dalgaard

    2012-01-01

    energy sources only. Also dimethyl ether (DME = (CH3)2O), which might be called Liquefied Green Gas, LGG, in analogy to Liquefied Petroleum Gas, LPG, because DME has properties similar to LPG. It further gives a short review of the state of the art of electrolysis in general and SOEC in particular......This paper gives arguments in favour of using green natural gas (GNG) as storage media for the intermittent renewable energy sources. GNG is here defined as being CH4, i.e. methane, often called synthetic natural gas or substitute natural gas (SNG), produced using renewable or at least CO2 neutral....... Production of synthesis gas (H2 + CO) from CO2 and H2O using SOEC technology is evaluated. GNG and LGG can be produced from synthesis gas (or short: syngas) by means of well established commercially available catalysis technology. Finally, estimations of costs and efficiencies are presented and the relative...

  15. Low-Cost High-Performance MRI

    Science.gov (United States)

    Sarracanie, Mathieu; Lapierre, Cristen D.; Salameh, Najat; Waddington, David E. J.; Witzel, Thomas; Rosen, Matthew S.

    2015-10-01

    Magnetic Resonance Imaging (MRI) is unparalleled in its ability to visualize anatomical structure and function non-invasively with high spatial and temporal resolution. Yet to overcome the low sensitivity inherent in inductive detection of weakly polarized nuclear spins, the vast majority of clinical MRI scanners employ superconducting magnets producing very high magnetic fields. Commonly found at 1.5-3 tesla (T), these powerful magnets are massive and have very strict infrastructure demands that preclude operation in many environments. MRI scanners are costly to purchase, site, and maintain, with the purchase price approaching $1 M per tesla (T) of magnetic field. We present here a remarkably simple, non-cryogenic approach to high-performance human MRI at ultra-low magnetic field, whereby modern under-sampling strategies are combined with fully-refocused dynamic spin control using steady-state free precession techniques. At 6.5 mT (more than 450 times lower than clinical MRI scanners) we demonstrate (2.5 × 3.5 × 8.5) mm3 imaging resolution in the living human brain using a simple, open-geometry electromagnet, with 3D image acquisition over the entire brain in 6 minutes. We contend that these practical ultra-low magnetic field implementations of MRI (standards for affordable (<$50,000) and robust portable devices.

  16. Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995

    International Nuclear Information System (INIS)

    1996-08-01

    This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables

  17. The Costs of Public and Private Gas Enterprises in Late 19th Century Britain.

    OpenAIRE

    Millward, Robert; Ward, Robert

    1987-01-01

    Data for a sample of thirty-five U.K. gas undertakings for 1898 was used to estimate a translog cost function. Labor accou nted for less than 15 percent of total costs. Changes in outlays on c oal have significant effects on total costs. Economies of scale exist but tend to disappear at production volumes which are near to averag e for the provincial gas undertakings. After controlling for factor p rices, population density, and output levels, municipal enterprises a re shown to have lower co...

  18. Capital cost: high and low sulfur coal plants-1200 MWe. [High sulfur coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    This Commercial Electric Power Cost Study for 1200 MWe (Nominal) high and low sulfur coal plants consists of three volumes. The high sulfur coal plant is described in Volumes I and II, while Volume III describes the low sulfur coal plant. The design basis and cost estimate for the 1232 MWe high sulfur coal plant is presented in Volume I, and the drawings, equipment list and site description are contained in Volume II. The reference design includes a lime flue gas desulfurization system. A regenerative sulfur dioxide removal system using magnesium oxide is also presented as an alternate in Section 7 Volume II. The design basis, drawings and summary cost estimate for a 1243 MWe low sulfur coal plant are presented in Volume III. This information was developed by redesigning the high sulfur coal plant for burning low sulfur sub-bituminous coal. These coal plants utilize a mechanical draft (wet) cooling tower system for condenser heat removal. Costs of alternate cooling systems are provided in Report No. 7 in this series of studies of costs of commercial electrical power plants.

  19. Development of high purity CO gas recovery system for BOF gas by modified PSA process

    Energy Technology Data Exchange (ETDEWEB)

    Sakuraya, Toshikazu; Fujii, Tetsuya; Yaji, Motoyasu; Matsuki, Takao; Matsui, Shigeo; Hayashi, Shigeki

    1985-01-01

    COPISA process (where two processes for separating CO-adsorptive gases and desorbing desorption-difficult gas are added to conventional PSA gas separation process) is outlined. In two units of PSA, CO/sub 2/ gas is adsorbed and separated in first PSA unit. The gas excluding CO/sub 2/ is fed to second PSA unit, where CO is adsorbed and separated from N/sub 2/ and H/sub 2/, and then desorbed and recovered under reduced pressure. For optimizing the process, a pilot plant was operated for about 1000 hrs. in a half year. The results confirm possibility of simplifying pre-treatment of coal gas. CO-PSA pressure swing pattern suitable for elimination of Co-adsorptive N/sub 2/ is established. Recovery of CO gas is enhanced. Optimization of gas flow pattern between adsorption towers required for reduction in operating cost is performed. (7 figs, 1 tab, 8 refs)

  20. Modular high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shepherd, L.R.

    1988-01-01

    The high financial risk involved in building large nuclear power reactors has been a major factor in halting investment in new plant and in bringing further technical development to a standstill. Increased public concern about the safety of nuclear plant, particularly after Chernobyl, has contributed to this stagnation. Financial and technical risk could be reduced considerably by going to small modular units, which would make it possible to build up power station capacity in small steps. Such modular plant, based on the helium-cooled high temperature reactor (HTR), offers remarkable advantages in terms of inherent safety characteristics, partly because of the relatively small size of the individual modules but more on account of the enormous thermal capacity and high temperature margins of the graphitic reactor assemblies. Assessments indicate that, in the USA, the cost of power from the modular systems would be less than that from conventional single reactor plant, up to about 600 MW(e), and only marginally greater above that level, a margin that should be offset by the shorter time required in bringing the modular units on line to earn revenue. The modular HTR would be particularly appropriate in the UK, because of the considerable British industrial background in gas-cooled reactors, and could be a suitable replacement for Magnox. The modular reactor would be particularly suited to combined heat and power schemes and would offer great potential for the eventual development of gas turbine power conversion and the production of high-temperature process heat. (author)

  1. Ben Macdhui High Altitude Trace Gas and Aerosol Transport Experiment

    CSIR Research Space (South Africa)

    Piketh, SJ

    1999-01-01

    Full Text Available The Ben Macdhui High Altitude Aerosol and Trace Gas Transport Experiment (BHATTEX) was started to characterize the nature and magnitude of atmospheric, aerosol and trace gas transport paths recirculation over and exiting from southern Africa...

  2. Natural Gas and CO2 Price Variation: Impact on the Relative Cost-Efficiency of LNG and Pipelines

    OpenAIRE

    Øverland, Indra; Ulvestad, Marte

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carri...

  3. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  4. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  5. Offshore compression system design for low cost high and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Carlos J. Rocha de O.; Carrijo Neto, Antonio Dias; Cordeiro, Alexandre Franca [Chemtech Engineering Services and Software Ltd., Rio de Janeiro, RJ (Brazil). Special Projects Div.], Emails: antonio.carrijo@chemtech.com.br, carlos.rocha@chemtech.com.br, alexandre.cordeiro@chemtech.com.br

    2010-07-01

    In the offshore oil fields, the oil streams coming from the wells usually have significant amounts of gas. This gas is separated at low pressure and has to be compressed to the export pipeline pressure, usually at high pressure to reduce the needed diameter of the pipelines. In the past, this gases where flared, but nowadays there are a increasing pressure for the energy efficiency improvement of the oil rigs and the use of this gaseous fraction. The most expensive equipment of this kind of plant are the compression and power generation systems, being the second a strong function of the first, because the most power consuming equipment are the compressors. For this reason, the optimization of the compression system in terms of efficiency and cost are determinant to the plant profit. The availability of the plants also have a strong influence in the plant profit, specially in gas fields where the products have a relatively low aggregated value, compared to oil. Due this, the third design variable of the compression system becomes the reliability. As high the reliability, larger will be the plant production. The main ways to improve the reliability of compression system are the use of multiple compression trains in parallel, in a 2x50% or 3x50% configuration, with one in stand-by. Such configurations are possible and have some advantages and disadvantages, but the main side effect is the increase of the cost. This is the offshore common practice, but that does not always significantly improve the plant availability, depending of the previous process system. A series arrangement and a critical evaluation of the overall system in some cases can provide a cheaper system with equal or better performance. This paper shows a case study of the procedure to evaluate a compression system design to improve the reliability but without extreme cost increase, balancing the number of equipment, the series or parallel arrangement, and the driver selection. Two cases studies will be

  6. Replacement policy of residential lighting optimized for cost, energy, and greenhouse gas emissions

    Science.gov (United States)

    Liu, Lixi; Keoleian, Gregory A.; Saitou, Kazuhiro

    2017-11-01

    Accounting for 10% of the electricity consumption in the US, artificial lighting represents one of the easiest ways to cut household energy bills and greenhouse gas (GHG) emissions by upgrading to energy-efficient technologies such as compact fluorescent lamps (CFL) and light emitting diodes (LED). However, given the high initial cost and rapidly improving trajectory of solid-state lighting today, estimating the right time to switch over to LEDs from a cost, primary energy, and GHG emissions perspective is not a straightforward problem. This is an optimal replacement problem that depends on many determinants, including how often the lamp is used, the state of the initial lamp, and the trajectories of lighting technology and of electricity generation. In this paper, multiple replacement scenarios of a 60 watt-equivalent A19 lamp are analyzed and for each scenario, a few replacement policies are recommended. For example, at an average use of 3 hr day-1 (US average), it may be optimal both economically and energetically to delay the adoption of LEDs until 2020 with the use of CFLs, whereas purchasing LEDs today may be optimal in terms of GHG emissions. In contrast, incandescent and halogen lamps should be replaced immediately. Based on expected LED improvement, upgrading LED lamps before the end of their rated lifetime may provide cost and environmental savings over time by taking advantage of the higher energy efficiency of newer models.

  7. Safety philosophy of gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Shoji Katanishi; Kazuhiko Kunitomi; Shusaku Shiozawa

    2002-01-01

    Japan Atomic Energy Research Institute (JAERI) has undertaken the study of an original design concept of gas turbine high temperature reactor, the GTHTR300. The general concept of this study is development of a greatly simplified design that leads to substantially reduced technical and cost requirements. Newly proposed design features enable the GTHTR300 to be an efficient and economically competitive reactor in 2010's. Also, the GTHTR300 fully takes advantage of its inherent safety characteristics. The safety philosophy of the GTHTR300 is developed based on the HTTR (High Temperature Engineering Test Reactor) of JAERI which is the first HTGR in Japan. Major features of the newly proposed safety philosophy for the GTHTR300 are described in this article. (authors)

  8. The indirect costs and benefits of greenhouse gas limitations

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A.

    1998-12-31

    The purpose of this report is to evaluate GHG limitation issues in a broader context. This includes the impacts of projects on vulnerable groups, the impacts on the environment more generally and the impacts on sustainability in a wider sense. It also offers some advice on how a decision-making framework can bring together these different dimensions. The structure of the guidelines is as follows. Section 2 introduces essential cost concepts and discusses the adjustments needed to the financial costs of different components, to arrive at the true economic costs. Section 3 looks at the macro-economic impacts of different GHG limitation project/policies. Section 4 discusses the way in which the sustainability concerns of such projects/policies can be monitored. Section 5 brings these different components together and looks at different methods of project selection. Section 6 provides a basic framework of impacts that are likely to arise in different GHG-related projects/policies, and what kind of method of estimation is available for these different impacts. Sections 7 to 9 go into greater depth on specific impacts. Sections 7 and 8 look at the employment and distributional effects respectively, and how they might be estimated. Section 9 evaluates the benefits in terms of changes in environmental damage resulting from GHG projects/policies. Section 10 provides three case studies in which the methods outlined in the report are applied. These case studies consider a biogas plant in Tanzania, a forestry project in the Russian Federation, and an energy efficiency project in Thailand. Section 11 concludes the report. (au) 59 refs.

  9. The indirect costs and benefits of greenhouse gas limitations

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A

    1999-12-31

    The purpose of this report is to evaluate GHG limitation issues in a broader context. This includes the impacts of projects on vulnerable groups, the impacts on the environment more generally and the impacts on sustainability in a wider sense. It also offers some advice on how a decision-making framework can bring together these different dimensions. The structure of the guidelines is as follows. Section 2 introduces essential cost concepts and discusses the adjustments needed to the financial costs of different components, to arrive at the true economic costs. Section 3 looks at the macro-economic impacts of different GHG limitation project/policies. Section 4 discusses the way in which the sustainability concerns of such projects/policies can be monitored. Section 5 brings these different components together and looks at different methods of project selection. Section 6 provides a basic framework of impacts that are likely to arise in different GHG-related projects/policies, and what kind of method of estimation is available for these different impacts. Sections 7 to 9 go into greater depth on specific impacts. Sections 7 and 8 look at the employment and distributional effects respectively, and how they might be estimated. Section 9 evaluates the benefits in terms of changes in environmental damage resulting from GHG projects/policies. Section 10 provides three case studies in which the methods outlined in the report are applied. These case studies consider a biogas plant in Tanzania, a forestry project in the Russian Federation, and an energy efficiency project in Thailand. Section 11 concludes the report. (au) 59 refs.

  10. Secured electrical supply at least cost: Coal, gas, nuclear, hydro

    Energy Technology Data Exchange (ETDEWEB)

    Gavor, J. [ENA Ltd., Prague (Czechoslovakia); Stary, O.; Vasicek, J. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-12-01

    Electric power sector in East Central European countries finds in a difficult period. In the situation of demand stagnation, enormous investments must be realized in a very short time. Today`s decisions in the development strategy will influence the long term future of the industry. The optimal structure of the sources is one of the most important problem to be solved. Paper describes the current structure of the sources in electric power sector in the Czech Republic. The importance of coal, oil and gas, nuclear and hydro in electric power generation is compared. Taking into account the different position in the load coverage, economy of individual sources is evaluated and basic results of discounted cash flow calculations are presented. Information on specific investment programs and projects are included and further trends are estimated.

  11. Cost-effective greenhouse gas reduction of various bioenergies

    International Nuclear Information System (INIS)

    Dressler, Daniela; Engelmann, Karsten; Boeswirth, Tobias

    2016-01-01

    The overriding long-term goal, which is to be worked on and supported by the ExpRessBio expert group, is to reduce greenhouse gas emissions (GHG emissions) in consideration of other important environmental impacts in Bavaria. For this purpose, energy and material flows of agricultural and forestry production of biomass for the provision of raw materials for energy conversion and material use are analysed. Based on these analyses, recommendations for the optimization of the mentioned production chains are worked out. At the same time, an economic and business assessment of the investigated process chains is to be carried out at different levels so that the most sustainable use of agricultural and forestry resources in Bavaria can be ensured. [de

  12. Economic benefits, external costs and the regulation of unconventional gas in the United States

    International Nuclear Information System (INIS)

    Cronshaw, Ian; Grafton, R. Quentin

    2016-01-01

    We review the economic benefits and external costs of unconventional gas production (UCG) in the United States from a policy perspective. Based on an overview of state regulation in Pennsylvania, a state that has witnessed very rapid growth of gas production over the past 5 years, and global experiences we present 10 key principles that are proposed to reduce the risks and to increase the net rewards of UCG. Application of these principles has the potential to reduce the risks of UCG, especially at a local level, while maximizing the benefits of gas developments. - Highlights: • SWOT summary of unconventional gas developments. • Risks and returns of unconventional gas highlighted. • 10 principles given to reduce risks and increase rewards of gas extraction.

  13. Landfill Gas Energy Cost Model Version 3.0 (LFGcost-Web V3 ...

    Science.gov (United States)

    To help stakeholders estimate the costs of a landfill gas (LFG) energy project, in 2002, LMOP developed a cost tool (LFGcost). Since then, LMOP has routinely updated the tool to reflect changes in the LFG energy industry. Initially the model was designed for EPA to assist landfills in evaluating the economic and financial feasibility of LFG energy project development. In 2014, LMOP developed a public version of the model, LFGcost-Web (Version 3.0), to allow landfill and industry stakeholders to evaluate project feasibility on their own. LFGcost-Web can analyze costs for 12 energy recovery project types. These project costs can be estimated with or without the costs of a gas collection and control system (GCCS). The EPA used select equations from LFGcost-Web to estimate costs of the regulatory options in the 2015 proposed revisions to the MSW Landfills Standards of Performance (also known as New Source Performance Standards) and the Emission Guidelines (herein thereafter referred to collectively as the Landfill Rules). More specifically, equations derived from LFGcost-Web were applied to each landfill expected to be impacted by the Landfill Rules to estimate annualized installed capital costs and annual O&M costs of a gas collection and control system. In addition, after applying the LFGcost-Web equations to the list of landfills expected to require a GCCS in year 2025 as a result of the proposed Landfill Rules, the regulatory analysis evaluated whether electr

  14. Basic design and economical evaluation of Gas Turbine High Temperature Reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Kazuhiko, Kunitomi; Shusaku, Shiozawa; Xing, Yan

    2007-01-01

    High Temperature Gas-cooled Reactor (HTGR) combined with a direct cycle gas turbine offers one of the most promising nuclear electricity generation options after 2010. Japan Atomic Energy Agency has been engaging in the basic design and development of Gas Turbine High Temperature Reactor 300 (GTHTR300) since 2003. Costs of capital, fuel, and operation and maintenance have been estimated. The capital cost of the GTHTR300 is lower than that of the existing light water reactor (LWR) because the generation efficiency is considerably higher whereas the construction cost is lower owing to the design simplicity of the gas turbine power conversion unit and the reactor safety system. The fuel cost is shown to equal that of LWR. The operation and maintenance cost has a slight advantage due to the use of chemically inert helium coolant. In sum, the cost of electricity for the GTHTR300 is estimated to be below US 3.3 cents/kWh (4 yen/kWh), which is about two-third of that of current LWRs in Japan. The results confirm that the net power generation cost of the GTHTR300 is much lower than that of the LWR, indicating that the GTHTR300 plant consisting of small-scale reactor units can be economically competitive to the latest large-scale LWR. (authors)

  15. On the fair division of greenhouse gas abatement cost

    Energy Technology Data Exchange (ETDEWEB)

    Boehringer, Christoph [University of Oldenburg, Department of Economics, Ammerlaender Heerstrasse 114-118, D-26111 Oldenburg (Germany); Centre for European Economic Research (ZEW), Mannheim (Germany); Helm, Carsten [Darmstadt University of Technology, Department of Law and Economics, Marktplatz 15, D-64283 Darmstadt (Germany)

    2008-05-15

    This paper introduces a solution for the fair division of emission reduction costs in the climate change regime. Our primary focus is on the fair division of efficiency gains that arise from exchanging the initial allocation of emission entitlements, rather than the initial allocation itself. We propose to complement the competitive Walrasian solution with welfare bounds, the ethical justification of which rests on commonality of ownership. Simulations with an intertemporal computable general equilibrium model illustrate the relevance of such welfare bounds. For a wide range of initial allocations of emission entitlements - including an equal per capita allocation - we find that developing countries should be fully compensated for their emission abatement efforts, but should not receive any further transfers. (author)

  16. Administration and transaction cost estimates for a greenhouse gas offset system : final report

    International Nuclear Information System (INIS)

    2004-01-01

    Canada's Climate Change Plan provides large final emitters (LFEs) with the option to meet their emission targets through the purchase of domestic greenhouse gas (GHG) offset credits. This paper presents the results of a study which identified and estimated transaction costs associated with an offset system. The cost to both proponents and governments were identified. The study also suggested ways to reduce administration and transaction costs through design options. The study considered projects involving agriculture, forests, landfill gas capture, renewable energy and energy efficiency within a potential domestic offset system. It was determined that average transaction costs per tonne range from $19 per tonne to $0.05 depending on the design choice and project type. Total administration costs did not vary more than 5 per cent between different design choices. The total system costs, which are the combination of all transaction and administration costs, are the best indicator for the potential of a project. Eight case studies were examined and costs per tonne were presented. According to the results, the best opportunities to reduce both transaction and administration costs are to choose a broad approach to baselines, boundaries and quantification; and, to allow pooling in the forestry and agriculture sectors. Transaction costs can be lowered further by reducing the frequency of monitoring and verification and allowing pre-2008 crediting. refs., tabs., figs

  17. Energy and cost total cost management discussion: The global gas industry

    International Nuclear Information System (INIS)

    Batten, R.M.

    1995-01-01

    Gas has emerged as one of the most desirable fuels for a wide range of applications that previously have been supplied by oil, coal, or nuclear energy. Compared to these, it is environmentally clean and burns at efficiencies far in excess of competitive fuels. The penetration of gas as the fuel of choice in most parts of the world is still modest. This is particularly true in newly-developed countries that are engaged in rapid industrialization and where rates of growth in the gross domestic products are two or three times greater than in the Organization for Economic Cooperation and Development (OECD) countries. I will not attempt here to survey the world gas scene comprehensively. I will, however, attempt to focus on some aspects of the industry that could be the trigger points for global development. These triggers are occurring all along the gas chain, by which I mean the entire process of bringing gas to the customer from discovery through delivery. The chain includes exploration and production, power generation, transmission, and distribution. I describe an industry that is on the verge of truly global status, which is fast overcoming the remaining obstacles to transnational trade, and which has unusually exciting long-term prospects. It does have a good way to go before it achieves the maturity of the international oil industry, but in the last few years there has been a tremendous growth of confidence among both investors and users. The global gas industry is certainly developing at a fast pace, and the world can only benefit from the wider availability of this clean, economic, and efficient hydrocarbon

  18. High Altitude Aerial Natural Gas Leak Detection System

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Wainner; Mickey B. Frish; B. David Green; Matthew C. Laderer; Mark G. Allen; Joseph R. Morency

    2006-12-31

    The objective of this program was to develop and demonstrate a cost-effective and power-efficient advanced standoff sensing technology able to detect and quantify, from a high-altitude (> 10,000 ft) aircraft, natural gas leaking from a high-pressure pipeline. The advanced technology is based on an enhanced version of the Remote Methane Leak Detector (RMLD) platform developed previously by Physical Sciences Inc. (PSI). The RMLD combines a telecommunications-style diode laser, fiber-optic components, and low-cost DSP electronics with the well-understood principles of Wavelength Modulation Spectroscopy (WMS), to indicate the presence of natural gas located between the operator and a topographic target. The transceiver transmits a laser beam onto a topographic target and receives some of the laser light reflected by the target. The controller processes the received light signal to deduce the amount of methane in the laser's path. For use in the airborne platform, we modified three aspects of the RMLD, by: (1) inserting an Erbium-doped optical fiber laser amplifier to increase the transmitted laser power from 10 mW to 5W; (2) increasing the optical receiver diameter from 10 cm to 25 cm; and (3) altering the laser wavelength from 1653 nm to 1618 nm. The modified RMLD system provides a path-integrated methane concentration sensitivity {approx}5000 ppm-m, sufficient to detect the presence of a leak from a high capacity transmission line while discriminating against attenuation by ambient methane. In ground-based simulations of the aerial leak detection scenario, we demonstrated the ability to measure methane leaks within the laser beam path when it illuminates a topographic target 2000 m away. We also demonstrated simulated leak detection from ranges of 200 m using the 25 cm optical receiver without the fiber amplifier.

  19. Reducing capital and operating costs in gas processing, liquefaction, and storage

    Energy Technology Data Exchange (ETDEWEB)

    Krusen, III, L C [Phillips Petroleum Co., Bartlesville, OK (United States). Research Div.

    1997-06-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author).

  20. Reducing capital and operating costs in gas processing, liquefaction, and storage

    International Nuclear Information System (INIS)

    Krusen, L.C. III

    1997-01-01

    The LNG industry is unanimous that capital costs must be reduced throughout the chain, and especially at the liquefaction facility including associated gas processing and LNG storage. The Ken ai LNG plant provides an example of how both reduced capital and operating costs were attained. This paper will cover cost production strategies that can be applied to liquefaction processes in general, and will than focus on their realization in the Phillips Optimized Cascade LNG process. The paper concludes that reduced LNG plant costs are attainable. (Author)

  1. Determination of leveled costs of electric generation for gas plants, coal and nuclear

    International Nuclear Information System (INIS)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A.

    2005-01-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  2. Are PES connection costs too high?

    International Nuclear Information System (INIS)

    Scott, N.

    1998-01-01

    Windfarm developers often have good reason to question the costs they are quoted by their local distribution company for connection to the system, and these costs can now be challenged under the 'Competition in Connection' initiative. Econnect Ltd specialise in electrical connections for renewable generation throughout the UK and Europe, and have worked on many projects where alternative connections have been designed at more competitive prices. This paper provides some examples which illustrate the importance of acquiring a thorough understanding of all power system issues and PES concerns if the most cost-effective connection is to be realised. (Author)

  3. The impact of high oil prices on natural gas

    International Nuclear Information System (INIS)

    Koevoet, H.

    2003-01-01

    The principle of gas-to-oil (oil prices determine the price of natural gas) in the Netherlands and several other developments elsewhere (war in Iraq and a cold winter in the USA) has caused high natural gas prices. The question is whether the liberalization of the energy market can change this principle [nl

  4. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  5. Low cost high performance uncertainty quantification

    KAUST Repository

    Bekas, C.; Curioni, A.; Fedulova, I.

    2009-01-01

    Uncertainty quantification in risk analysis has become a key application. In this context, computing the diagonal of inverse covariance matrices is of paramount importance. Standard techniques, that employ matrix factorizations, incur a cubic cost

  6. Systems principles of planning the net cost of oil and gas extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ryazanova, N I

    1979-01-01

    The automated system of calculation of ASPC ''oil extraction'' is developed in order to improve the existing system of planning of the oil extracting sector. The most complete expression of the systems construction of the plan is found in the section ''net cost and profit.'' Unity of the production process advances definite requirements for construction of the plan for net cost of oil and gas extraction as the model of this unified process. According to these requirements, the plan for net cost must be developed on the basis of interrelationship of the indicators of the plan for net cost within the section and with indicators of other sections of the plan, methodological unity and continuity of the methods of planning net cost by elements of outlays, articles of calculation and technical-economic factors, methodological continuity of regimes and stages of planning, as well as based on methodological continuity of the control levels. The listed requirements are principles for systems planning of the net cost of oil and gas extraction. These principles guarantee improvement in planning of net cost of oil and gas extraction according to the requirements made for the national economic planning.

  7. Regulatory intervention on the dynamic European gas market. Neoclassical economics or transaction cost economics?

    International Nuclear Information System (INIS)

    Spanjer, Aldo R.

    2009-01-01

    Shifts at the international gas market indicate that the transaction cost perspective provides better underpinnings for European gas regulation than the current neoclassical perspective. Three implications are that policymakers should: (1) allow alternative coordination measures to complement market exchange; (2) recognize that less than perfect competition outcomes may be optimal and (3) be more reticent in prescribing interventionist measures. Finally, the analysis provides the foundations for the empirical research required to complement this paper's theoretical approach. (author)

  8. High cost of nuclear power plants

    International Nuclear Information System (INIS)

    Bassett, C.

    1978-01-01

    Retroactive safety standards were found to account for over half the costs of a nuclear power plant and point up the need for an effective cost-benefit analysis of changes made by the Nuclear Regulatory Commission after construction has started. The author compared the Davis-Besse Unit No. 1 construction-cost estimates with the final-cost increases during a rate-case investigation in Ohio. He presents data furnished for ten of the largest construction contracts to illustrate the cost increases involving fixed hardware and intensive labor. The situation was found to repeat with other utilities across the country even though safeguards against irresponsible low bidding were introduced. Low bidding was found to continue, encouraged by the need for retrofitting to meet regulation changes. The average cost per kilowatt of major light-water reactors is shown to have increased from $171 in 1970 to $555 in 1977, while construction duration increased from 43.4 to 95.6 months during the same period

  9. Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

    2004-10-06

    In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs.

  10. Levelized Costs for Nuclear, Gas and Coal for Electricity, under the Mexican Scenario

    International Nuclear Information System (INIS)

    Palacios, J.C.; Alonso, G.; Ramirez, R.; Gomez, A.; Ortiz, J.; Longoria, L.C.

    2004-01-01

    In the case of new nuclear power stations, it is necessary to pay special attention to the financial strategy that will be applied, time of construction, investment cost, and the discount and return rate. The levelized cost quantifies the unitary cost of the electricity (the kWh) generated during the lifetime of the nuclear power plant; and allows the immediate comparison with the cost of other alternative technologies. The present paper shows levelized cost for different nuclear technologies and it provides comparison among them as well as with gas and coal electricity plants. For the calculations we applied our own methodology to evaluate the levelized cost considering investment, fuel and operation and maintenance costs, making assumptions for the Mexican market, and taking into account the gas prices projections. The study also shows comparisons using different discount rates (5% and 10%), and some comparisons between our results and an OECD 1998 study. The results are i n good agreement and shows that nuclear option is cost competitive in Mexico on the basis of levelized costs

  11. A LOW-COST GPR GAS PIPE & LEAK DETECTOR

    Energy Technology Data Exchange (ETDEWEB)

    David Cist; Alan Schutz

    2005-03-30

    A light-weight, easy to use ground penetrating radar (GPR) system for tracking metal/non-metal pipes has been developed. A pre-production prototype instrument has been developed whose production cost and ease of use should fit important market niches. It is a portable tool which is swept back and forth like a metal detector and which indicates when it goes over a target (metal, plastic, concrete, etc.) and how deep it is. The innovation of real time target detection frees the user from having to interpret geophysical data and instead presents targets as dots on the screen. Target depth is also interpreted automatically, relieving the user of having to do migration analysis. In this way the user can simply walk around looking for targets and, by ''connecting the dots'' on the GPS screen, locate and follow pipes in real time. This is the first tool known to locate metal and non-metal pipes in real time and map their location. This prototype design is similar to a metal detector one might use at the beach since it involves sliding a lightweight antenna back and forth over the ground surface. The antenna is affixed to the end of an extension that is either clipped to or held by the user. This allows him to walk around in any direction, either looking for or following pipes with the antenna location being constantly recorded by the positioning system. Once a target appears on the screen, the user can locate by swinging the unit to align the cursor over the dot. Leak detection was also a central part of this project, and although much effort was invested into its development, conclusive results are not available at the time of the writing of this document. Details of the efforts that were made as a part of this cooperative agreement are presented.

  12. Improving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique

    Directory of Open Access Journals (Sweden)

    M. Barzegar

    2012-12-01

    Full Text Available Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD process on quartz substrates. Afterwards, a thin  layer of palladium (Pd as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors. Prepared sensor devices were exposed to liquid petroleum gas (LPG and vapor of ethanol (C2H5OH. Results indicate that SnO2 nanowires sensors coated with Pd as a catalyst show decreasing in response time (~40s to 1000ppm of LPG at a relatively low operating temperature (200o C. SnO2 /Pd nanowire devices show gas sensing response time and recovery time as short as 50s and 10s respectively with a high sensitivity value of ~120 for C2H5OH, that is remarkable in comparison with other reports.

  13. Controversies Regarding Costs, Uncertainties and Benefits Specific to Shale Gas Development

    Directory of Open Access Journals (Sweden)

    Jianu Daniel Muresan

    2015-03-01

    Full Text Available The shale gas exploration and development is now a delicate and controversial subject. It is often assumed that unconventional exploration and extraction automatically brings prosperity for local, national and regional economies. In this paper, we argue that shale gas development requires a contextualized understanding of regional issues. We are also trying to identify the opportunities and the risks of shale gas development in Eastern Europe (referring to Romania’s case and offer a cost-benefit analysis model that may be of interest to any policymakers and investors.

  14. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard, S.; Lu, Yingzhong

    2012-08-10

    the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.

  15. High and rising health care costs.

    Science.gov (United States)

    Ginsburg, Paul B

    2008-10-01

    The U.S. is spending a growing share of the GDP on health care, outpacing other industrialized countries. This synthesis examines why costs are higher in the U.S. and what is driving their growth. Key findings include: health care inefficiency, medical technology and health status (particularly obesity) are the primary drivers of rising U.S. health care costs. Health payer systems that reward inefficiencies and preempt competition have impeded productivity gains in the health care sector. The best evidence indicates medical technology accounts for one-half to two-thirds of spending growth. While medical malpractice insurance and defensive medicine contribute to health costs, they are not large enough factors to significantly contribute to a rise in spending. Research is consistent that demographics will not be a significant factor in driving spending despite the aging baby boomers.

  16. Electric urban delivery trucks: energy use, greenhouse gas emissions, and cost-effectiveness.

    Science.gov (United States)

    Lee, Dong-Yeon; Thomas, Valerie M; Brown, Marilyn A

    2013-07-16

    We compare electric and diesel urban delivery trucks in terms of life-cycle energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership (TCO). The relative benefits of electric trucks depend heavily on vehicle efficiency associated with drive cycle, diesel fuel price, travel demand, electric drive battery replacement and price, electricity generation and transmission efficiency, electric truck recharging infrastructure, and purchase price. For a drive cycle with frequent stops and low average speed such as the New York City Cycle (NYCC), electric trucks emit 42-61% less GHGs and consume 32-54% less energy than diesel trucks, depending upon vehicle efficiency cases. Over an array of possible conditions, the median TCO of electric trucks is 22% less than that of diesel trucks on the NYCC. For a drive cycle with less frequent stops and high average speed such as the City-Suburban Heavy Vehicle Cycle (CSHVC), electric trucks emit 19-43% less GHGs and consume 5-34% less energy, but cost 1% more than diesel counterparts. Considering current and projected U.S. regional electricity generation mixes, for the baseline case, the energy use and GHG emissions ratios of electric to diesel trucks range from 48 to 82% and 25 to 89%, respectively.

  17. The development of natural gas supply costs to Europe, the United States and Japan in a globalizing gas market-Model-based analysis until 2030

    International Nuclear Information System (INIS)

    Lochner, Stefan; Bothe, David

    2009-01-01

    Quickly declining natural gas reserves in some parts of the world, increasing demand in today's major gas consuming regions, the emergence of new demand centres and the globalization of natural gas markets caused by the rising importance of liquefied natural gas (LNG) are changing global gas supply structures and will continue to do so over the next decades. Applying a global gas market model, we produce a forecast for global gas supply to 2030 and determine the supplier-specific long-run average costs of gas supplied to three major consuming regions. Results for the three regions are compared and analysed with a focus on costs, supply diversification and the different roles of LNG. We find that while European and Japanese external gas supply will be less diversified in international comparison, gas can be supplied at relatively low costs due to the regions' favourable locations in geographic proximity to large gas producers. The US market's supply structure on the other hand will significantly change from its current situation. The growing dependency on LNG imports from around the world will lead to significantly higher supply costs but will also increase diversification as gas will originate from an increasing number of LNG exporting countries

  18. High cost of stage IV pressure ulcers.

    Science.gov (United States)

    Brem, Harold; Maggi, Jason; Nierman, David; Rolnitzky, Linda; Bell, David; Rennert, Robert; Golinko, Michael; Yan, Alan; Lyder, Courtney; Vladeck, Bruce

    2010-10-01

    The aim of this study was to calculate and analyze the cost of treatment for stage IV pressure ulcers. A retrospective chart analysis of patients with stage IV pressure ulcers was conducted. Hospital records and treatment outcomes of these patients were followed up for a maximum of 29 months and analyzed. Costs directly related to the treatment of pressure ulcers and their associated complications were calculated. Nineteen patients with stage IV pressure ulcers (11 hospital-acquired and 8 community-acquired) were identified and their charts were reviewed. The average hospital treatment cost associated with stage IV pressure ulcers and related complications was $129,248 for hospital-acquired ulcers during 1 admission, and $124,327 for community-acquired ulcers over an average of 4 admissions. The costs incurred from stage IV pressure ulcers are much greater than previously estimated. Halting the progression of early stage pressure ulcers has the potential to eradicate enormous pain and suffering, save thousands of lives, and reduce health care expenditures by millions of dollars. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. The High Cost of Saving Energy Dollars.

    Science.gov (United States)

    Rose, Patricia

    1985-01-01

    In alternative financing a private company provides the capital and expertise for improving school energy efficiency. Savings are split between the school system and the company. Options for municipal leasing, cost sharing, and shared savings are explained along with financial, procedural, and legal considerations. (MLF)

  20. Results of cost estimates for the exploitation of the Natuna gas field in Indonesia using the HTR: A new momentum for commercialization

    International Nuclear Information System (INIS)

    Barnert, H.

    1997-01-01

    The results of a simplified method for cost estimations are presented. The main result is: There exists a potential of economical competitiveness for the exploitation of the gas of the Natuna Gas Field in Indonesia. The potential consists in the production of Energy Alcohol from the gas of the Natuna Gas Field, making use of nuclear energy in the form of high temperature heat and electricity from the High Temperature reactor, HTR. The reason is that Energy Alcohol is a readily marketable product as a substitute for gasoline and diesel, with their relatively high market values. This is not so for methane, because of its lower market value, being used mainly in the heat market only. In the conversion process some - or a little more - of the carbondioxide CO 2 , the main constituent of the gas of the Natuna Gas Field, is used; the competitiveness of the product decreases with the increasing consumption of CO 2

  1. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  2. Method for high temperature mercury capture from gas streams

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  3. Simulation of high consequence areas for gas pipelines

    OpenAIRE

    Orlando Díaz-Parra; Enrique Vera-López

    2018-01-01

    The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and...

  4. European concerted action COST 50 - materials for gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bressers, J.; Cat, R. de; Fenske, E.

    1984-01-01

    A combined approach which would yield differential information regarding both crack initiation and crack growth from a single test specimen has been adopted to study the low cycle fatigue behaviour of PM Astrology over a range of testing conditions (temperature, strain-rate, plastic strain-amplitude) which span the range from cycle dependent to time dependent low cycle fatigue. It appears that both crack initiation and crack growth depend in a non-systematic manner on the testing parameters, which results from the simultaneous action of several time dependent processes. These time-dependent processes cause Tomkins' crack growth model to fail to correctly predict the number of cycles spent in crack growth at the high-temperature, low strain-rate end of the test parameter spectrum. At the other end of the test parameter spectrum the match with the experimental data is fortuitious since the laws governing the crack growth behaviour for crack sizes below and beyond approximately 200 ..mu..m (short crack growth behaviour and higher order dependence of the crack growth rate on the crack depth, respectively) deviate from the crack growth law which is at the basis of Tomkins' model. The experimental crack increment data are used to compute fracture mechanics lives. It is suggested that these fracture mechanics lives are appropriate lower bound estimates of the life of PM Astrology containing defects such as inclusions.

  5. Economical evaluation on gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Takei, Masanobu; Kosugiyama, Shinichi; Mouri, Tomoaki; Katanishi, Shoji; Kunitomi, Kazuhiko

    2006-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a graphite moderate and helium cooled High Temperature Gas-cooled Reactor (HTGR) with gas turbine, the GTHTR300 based on experience gained in development and operations of the High Temperature Engineering Test Reactor (HTTR) in JAERI. The GTHTR300 is a simplified and economical power plant with a high level of safety characteristics and a high plant efficiency of approximately 46%. Cost evaluation for plant construction and power generation is studied in order to clarify the economical feasibility of the GTHTR300. The construction cost is estimated to be about 200 thousands Yen/kWe. The power generation cost is estimated to be about 3.8 Yen/kWh by the conditions of 90% load factor and 3% discount rate. The economical feasibility of the GTHTR300 is certified. The present study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  6. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming

    NARCIS (Netherlands)

    Middelaar, van C.E.; Dijkstra, J.; Berentsen, P.B.M.; Boer, de I.J.M.

    2014-01-01

    The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the

  7. Seasonal performance and energy costs of oil or gas-fired boilers and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Berlad, A.L.; Lin, H.C.; Batey, J.; Salzano, F.J.; Yu, W.S.; Hoppe, R.J.; Allen, T.

    1977-03-01

    The seasonal operating cost of a small oil or gas-fired boiler or furnace depends upon the intrinsic merits of the device itself, the appropriateness of its capacity and cycle characteristics to the imposed load conditions, the weather characteristics and heat loss characteristics of the building being heated, and the control philosophy employed. The current study provides the bases for comparing quantitatively the seasonal operating costs of various specific space heating and/or domestic hot water systems, as influenced by the device specifics and device interaction with the space conditioned system that it serves. The resulting formalism is applied to various space-heating systems. Quantitative cost comparisons are presented.

  8. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    Energy Technology Data Exchange (ETDEWEB)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  9. The use of a low-cost gas-liquid flow meter to monitor severe slugging

    DEFF Research Database (Denmark)

    Andreussi, Paolo; Bonizzi, Marco; Ciandri, Paolo

    2017-01-01

    A very simple, low-cost gas-liquid flow meter that only employs conventional field instrumentation has been used to monitor severe slugging occurring at the exit of a vertical pipe. This meter was originally developed for conventional oil field applications [1] and is based on the readings...... method to monitor severe slugging by means of low cost instrumentation, in particular, by replacing a cumbersome instrument such as a gamma-densitometer with a differential pressure transmitter. In field operation, the multiphase orifice used in these experiments can be replaced by a calibrated control...... of a multiphase orifice and the pressure drops of the gas-liquid mixture flowing in a vertical section of the pipe. Liquid and gas flow rates have been determined by means of semi-empirical equations developed for the specific set of flow parameters (geometry, flow rates, physical properties) adopted in a series...

  10. Gas expulsion in highly substructured embedded star clusters

    Science.gov (United States)

    Farias, J. P.; Fellhauer, M.; Smith, R.; Domínguez, R.; Dabringhausen, J.

    2018-06-01

    We investigate the response of initially substructured, young, embedded star clusters to instantaneous gas expulsion of their natal gas. We introduce primordial substructure to the stars and the gas by simplistically modelling the star formation process so as to obtain a variety of substructure distributed within our modelled star-forming regions. We show that, by measuring the virial ratio of the stars alone (disregarding the gas completely), we can estimate how much mass a star cluster will retain after gas expulsion to within 10 per cent accuracy, no matter how complex the background structure of the gas is, and we present a simple analytical recipe describing this behaviour. We show that the evolution of the star cluster while still embedded in the natal gas, and the behaviour of the gas before being expelled, is crucial process that affect the time-scale on which the cluster can evolve into a virialized spherical system. Embedded star clusters that have high levels of substructure are subvirial for longer times, enabling them to survive gas expulsion better than a virialized and spherical system. By using a more realistic treatment for the background gas than our previous studies, we find it very difficult to destroy the young clusters with instantaneous gas expulsion. We conclude that gas removal may not be the main culprit for the dissolution of young star clusters.

  11. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    available gas-quenching, whereas the other new grade enables a faster manufacturing of the tool at reduced cost by eliminating the time and money consuming high temperature hardening altogether. The latter newly developed grade can be hardened from a soft delivery state for easy machining to 52 HRc by way of a simple low temperature precipitation hardening. In this work, these new grades and the role of the tool material’s thermal, mechanical and tribological properties as well as their processing features will be discussed in light of enabling the manufacture of intelligent hot stamping tools.

  12. Financial and environmental costs of manual versus automated control of end-tidal gas concentrations.

    Science.gov (United States)

    Tay, S; Weinberg, L; Peyton, P; Story, D; Briedis, J

    2013-01-01

    Emerging technologies that reduce the economic and environmental costs of anaesthesia have had limited assessment. We hypothesised that automated control of end-tidal gases, a new feature in anaesthesia machines, will consistently reduce volatile agent consumption cost and greenhouse gas emissions. As part of the planned replacement of anaesthesia machines in a tertiary hospital, we performed a prospective before and after study comparing the cost and greenhouse gas emissions of isoflurane, sevoflurane and desflurane when using manual versus automated control of end-tidal gases. We analysed 3675 general anaesthesia cases with inhalational agents: 1865 using manual control and 1810 using automated control. Volatile agent cost was $18.87/hour using manual control and $13.82/hour using automated control: mean decrease $5.05/hour (95% confidence interval: $0.88-9.22/hour, P=0.0243). The 100-year global warming potential decreased from 23.2 kg/hour of carbon dioxide equivalents to 13.0 kg/hour: mean decrease 10.2 kg/hour (95% confidence interval: 2.7-17.7 kg/hour, P=0.0179). Automated control reduced costs by 27%. Greenhouse gas emissions decreased by 44%, a greater than expected decrease facilitated by a proportional reduction in desflurane use. Automated control of end-tidal gases increases participation in low flow anaesthesia with economic and environmental benefits.

  13. A review of helium gas turbine technology for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    No, Hee Cheon; Kim, Ji Hwan; Kim, Hyeun Min

    2007-01-01

    Current High-Temperature Gas-cooled Reactors (HTGRs) are based on a closed brayton cycle with helium gas as the working fluid. Thermodynamic performance of the axial-flow helium gas turbines is of critical concern as it considerably affects the overall cycle efficiency. Helium gas turbines pose some design challenges compared to steam or air turbomachinery because of the physical properties of helium and the uniqueness of the operating conditions at high pressure with low pressure ratio. This report present a review of the helium Brayton cycle experiences in Germany and in Japan. The design and availability of helium gas turbines for HTGR are also presented in this study. We have developed a new throughflow calculation code to calculate the design-point performance of helium gas turbines. Use of the method has been illustrated by applying it to the GTHTR300 reference

  14. Solar power. [comparison of costs to wind, nuclear, coal, oil and gas

    Science.gov (United States)

    Walton, A. L.; Hall, Darwin C.

    1990-01-01

    This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.

  15. The role of natural gas in assessing environmental cost of fossil fuels

    International Nuclear Information System (INIS)

    Riva, A.; Trebeschi, C.

    1999-01-01

    The actual price of a resource is the results of its internal and external costs. Internal costs means the price paid by the users in order to utilise the resource. On the other hand, externals costs, which are associated with the resource, are not paid directly by the users, but they shall be paid for by the society of the future generations. The article presents methodologies and issues relevant to energy policy decisions, when it comes to evaluating and using environmental external costs of fossil fuel life, with particular consideration to the end-use phase. The results of published studies on environmental costs of energy sources and an analysis applied to the Italia case show that natural gas as a significantly higher environmental value than other fossil fuels. The range of values depends upon the technologies considered and on the assumptions adopted when assessment environmental damages [it

  16. Membrane reforming in converting natural gas to hydrogen: Production costs, Part II

    Energy Technology Data Exchange (ETDEWEB)

    Iaquaniello, G; Cosenza, S [Technip-KTI S.p.A., via Castello della Magliana 75, Rome (Italy); Giacobbe, F; Morico, B; Farace, A [Processi Innovativi s.r.l., L' Aquila (Italy)

    2008-11-15

    This paper evaluates the production costs of a hybrid system based on a new membrane reforming MRR concept to convert natural gas to hydrogen and electricity. Membrane reforming with hydrogen-selective, palladium-silver membranes pushes the chemical equilibrium and allows higher methane conversions at lower temperature such as 650 C. The new MRR concept formed of a series of modules is put forward herein. Each module is made up of a reforming step and an external membrane separation unit. The estimates, based on utilities costs of a typical Italian refinery (end of 2006), show that the production costs for the hybrid system are 30% less than conventional tubular steam reforming technology, and 13% less than a gas-fired cogeneration plant coupled with a conventional H{sub 2} plant. (author)

  17. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  18. Electricity to natural gas competition under customer-side technological change: a marginal cost pricing analysis

    International Nuclear Information System (INIS)

    Gulli', Francesco

    2004-01-01

    This paper aims at evaluating the impact of technological change (on the customer side of the meter) on the network energy industry (electricity and natural gas). The performances of the small gas fired power technologies and the electrical reversible heat pumps have improved remarkably over the last ten years, making possible (or more viable) two opposite technological trajectories: the fully gas-based system, based on the use of small CHP (combined heat and power generation) plants, which would involve a wide decentralisation of energy supply; the fully electric-based system, based on the use of reversible electric heat pumps, which would imply increasing centralisation of energy supply. The analysis described in this paper attempts to evaluate how these two kinds of technological solutions can impact on inter-service competition when input prices are ste equals to marginal costs of supply in each stage of the electricity and natural gas industries. For this purpose, unbundled prices over time and over space are simulated. In particular the paper shows that unbundling prices over space in not very important in affecting electricity to natural gas competition and that, when prices are set equal to long-run marginal costs, the fully electric-based solution (the reversible heat pump) is by far preferable to the fully gas-based solution (the CHP gas fired small power plant). In consequence, the first best outcome of the technological change would involve increasing large power generation and imported (from the utility grid) electricity consumption. Given this framework, we have to ask ourselves why operators, regulators and legislators are so optimistic about the development of the fully gas-based solutions. In this respect, the paper suggests that market distortions (such as market power, energy taxation and inefficient pricing regulation) might have give an ambiguous representation of the optimal technological trajectory, inducing to overestimate the social value

  19. High-Resolution Gas Metering and Nonintrusive Appliance Load Monitoring System

    Science.gov (United States)

    Tewolde, Mahder

    This thesis deals with design and implementation of a high-resolution metering system for residential natural gas meters. Detailed experimental measurements are performed on the meter to characterize and understand its measurement properties. Results from these experiments are used to develop a simple, fast and accurate technique to non-intrusively monitor the gas consumption of individual appliances in homes by resolving small amounts of gas usage. The technique is applied on an existing meter retrofitted with a module that includes a high-resolution encoder to collect gas flow data and a microprocessor to analyze and identify appliance load profiles. This approach provides a number of appealing features including low cost, easy installation and integration with automated meter reading (AMR) systems. The application of this method to residential gas meters currently deployed is also given. This is done by performing a load simulation on realistic gas loads with the aim of identifying the necessary parameters that minimize the cost and complexity of the mechanical encoder module. The primary benefits of the system are efficiency analysis, appliance health monitoring and real-time customer feedback of gas usage. Additional benefits of include the ability to detect very small leaks and theft. This system has the potential for wide scale market adoption.

  20. Universal model for water costs of gas exchange by animals and plants.

    Science.gov (United States)

    Woods, H Arthur; Smith, Jennifer N

    2010-05-04

    For terrestrial animals and plants, a fundamental cost of living is water vapor lost to the atmosphere during exchange of metabolic gases. Here, by bringing together previously developed models for specific taxa, we integrate properties common to all terrestrial gas exchangers into a universal model of water loss. The model predicts that water loss scales to gas exchange with an exponent of 1 and that the amount of water lost per unit of gas exchanged depends on several factors: the surface temperature of the respiratory system near the outside of the organism, the gas consumed (oxygen or carbon dioxide), the steepness of the gradients for gas and vapor, and the transport mode (convective or diffusive). Model predictions were largely confirmed by data on 202 species in five taxa--insects, birds, bird eggs, mammals, and plants--spanning nine orders of magnitude in rate of gas exchange. Discrepancies between model predictions and data seemed to arise from biologically interesting violations of model assumptions, which emphasizes how poorly we understand gas exchange in some taxa. The universal model provides a unified conceptual framework for analyzing exchange-associated water losses across taxa with radically different metabolic and exchange systems.

  1. Economic analysis of multiple-module high temperature gas-cooled reactor (MHTR) nuclear power plants

    International Nuclear Information System (INIS)

    Liu Yu; Dong Yujie

    2011-01-01

    In recent years, as the increasing demand of energy all over the world, and the pressure on greenhouse emissions, there's a new opportunity for the development of nuclear energy. Modular High Temperature Gas-cooled Reactor (MHTR) received recognition for its inherent safety feature and high outlet temperature. Whether the Modular High Temperature Gas-cooled Reactor would be accepted extensively, its economy is a key point. In this paper, the methods of qualitative analysis and the method of quantitative analysis, the economic models designed by Economic Modeling Working Group (EMWG) of the Generation IV International Forum (GIF), as well as the HTR-PM's main technical features, are used to analyze the economy of the MHTR. A prediction is made on the basis of summarizing High Temperature Gas-cooled Reactor module characteristics, construction cost, total capital cost, fuel cost and operation and maintenance (O and M) cost and so on. In the following part, comparative analysis is taken measures to the economy and cost ratio of different designs, to explore the impacts of modularization and standardization on the construction of multiple-module reactor nuclear power plant. Meanwhile, the analysis is also adopted in the research of key factors such as the learning effect and yield to find out their impacts on the large scale development of MHTR. Furthermore, some reference would be provided to its wide application based on these analysis. (author)

  2. Integrated cost-effectiveness analysis of greenhouse gas emission abatement. The case of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Lehtilae, A.; Tuhkanen, S. [VTT Energy, Espoo (Finland). Energy Systems

    1999-11-01

    In Finland greenhouse gas emissions are expected to increase during the next decades due to economic growth, particularly in the energy intensive industrial sectors. The role of these industries is very central in the national economy. The emission control according to the Kyoto Protocol will therefore be quite difficult and costly. The study analyses the cost-effectiveness of different technical options for reducing the emissions of carbon dioxide, methane, and nitrous oxide in Finland. The analysis is performed with the help of a comprehensive energy system model for Finland, which has been extended to cover all major sources of methane and nitrous oxide emissions in the energy sector, industry, waste management and agriculture. The focus being on technical options, no consideration is given to possible policy measures, emission trading or joint implementation in the study. Under the boundary conditions given for the development of the Finnish energy economy, cost-effective technical measures in the energy system include increases in the use of wood biomass, natural gas and wind energy, increases in the contribution of CHP to the power supply, and intensified energy conservation in all end-use sectors. Additional cost-effective measures are landfill gas recovery, utilisation of the combustible fraction of waste and catalytic conversion of N{sub 2}O in nitric acid production. With baseline assumptions, the direct annual costs of emission abatement are calculated to be about 2000 MFIM (330 M{epsilon}) in 2010. The marginal costs are estimated to be about 230 FIM (40 {epsilon}) per tonne of CO{sub 2}-equivalent in 2010. The cost curie derived from the analysis could be used in further analyses concerning emissions trading. (orig.) 109 refs. SIHTI Research Programme

  3. Tradeoffs between costs and greenhouse gas emissions in the design of urban transit systems

    International Nuclear Information System (INIS)

    Griswold, Julia B; Madanat, Samer; Horvath, Arpad

    2013-01-01

    Recent investments in the transit sector to address greenhouse gas emissions have concentrated on purchasing efficient replacement vehicles and inducing mode shift from the private automobile. There has been little focus on the potential of network and operational improvements, such as changes in headways, route spacing, and stop spacing, to reduce transit emissions. Most models of transit system design consider user and agency cost while ignoring emissions and the potential environmental benefit of operational improvements. We use a model to evaluate the user and agency costs as well as greenhouse gas benefit of design and operational improvements to transit systems. We examine how the operational characteristics of urban transit systems affect both costs and greenhouse gas emissions. The research identifies the Pareto frontier for designing an idealized transit network. Modes considered include bus, bus rapid transit (BRT), light rail transit (LRT), and metro (heavy) rail, with cost and emissions parameters appropriate for the United States. Passenger demand follows a many-to-many travel pattern with uniformly distributed origins and destinations. The approaches described could be used to optimize the network design of existing bus service or help to select a mode and design attributes for a new transit system. The results show that BRT provides the lowest cost but not the lowest emissions for our large city scenarios. Bus and LRT systems have low costs and the lowest emissions for our small city scenarios. Relatively large reductions in emissions from the cost-optimal system can be achieved with only minor increases in user travel time. (letter)

  4. The costs of avoiding environmental impacts from shale-gas surface infrastructure.

    Science.gov (United States)

    Milt, Austin W; Gagnolet, Tamara D; Armsworth, Paul R

    2016-12-01

    Growing energy demand has increased the need to manage conflicts between energy production and the environment. As an example, shale-gas extraction requires substantial surface infrastructure, which fragments habitats, erodes soils, degrades freshwater systems, and displaces rare species. Strategic planning of shale-gas infrastructure can reduce trade-offs between economic and environmental objectives, but the specific nature of these trade-offs is not known. We estimated the cost of avoiding impacts from land-use change on forests, wetlands, rare species, and streams from shale-energy development within leaseholds. We created software for optimally siting shale-gas surface infrastructure to minimize its environmental impacts at reasonable construction cost. We visually assessed sites before infrastructure optimization to test whether such inspection could be used to predict whether impacts could be avoided at the site. On average, up to 38% of aggregate environmental impacts of infrastructure could be avoided for 20% greater development costs by spatially optimizing infrastructure. However, we found trade-offs between environmental impacts and costs among sites. In visual inspections, we often distinguished between sites that could be developed to avoid impacts at relatively low cost (29%) and those that could not (20%). Reductions in a metric of aggregate environmental impact could be largely attributed to potential displacement of rare species, sedimentation, and forest fragmentation. Planners and regulators can estimate and use heterogeneous trade-offs among development sites to create industry-wide improvements in environmental performance and do so at reasonable costs by, for example, leveraging low-cost avoidance of impacts at some sites to offset others. This could require substantial effort, but the results and software we provide can facilitate the process. © 2016 Society for Conservation Biology.

  5. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    Science.gov (United States)

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  6. Gas migration characteristics of highly compacted bentonite ore

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hironaga, Michihiko

    2010-01-01

    In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside the engineered barrier by anaerobic corrosion of metals used for containers, etc. If the gas generation rate exceeds the diffusion rate of dissolved gas inside of the engineered barrier, gas will accumulate in the void space inside of the engineered barrier until its pressure becomes large enough for it to enter the bentonite as a discrete gaseous phase. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Gas migration characteristics of highly compacted powdered bentonite are already reported by CRIEPI. In this report, gas migration characteristics of bentonite ore, which is a candidate for construction material of repository for radioactive waste, is investigated. The following conclusions are obtained through the results of the gas migration tests which are conducted in this study: 1) When the total gas pressure exceeds the initial total axial stress, the total axial stress is always equal to the total gas pressure because specimens shrink in the axial direction with causing the clearance between the end of the specimen and porous metal. By increasing the gas pressure more, gas breakthrough, which defined as a sudden and sharp increase in gas flow rate out of the specimen, occurs. Therefore gas migration mechanism of compacted bentonite ore is basically identical to that of compacted powdered bentonite. 2) Hydraulic conductivity measured after the gas breakthrough is somewhat smaller than that measured before the gas migration test. This fact means that it might be possible to neglect decline of the function of bentonite as engineered barrier caused by the gas breakthrough. These characteristics of compacted bentonite ore are identical to those of

  7. Simulation of high consequence areas for gas pipelines

    Directory of Open Access Journals (Sweden)

    Orlando Díaz-Parra

    2018-01-01

    Full Text Available The gas pipeline is used for the transport of natural gas at a great distance. Risks derived from the handling of a combustible material transported under high pressure, by pipelines that pass close to where people live, makes it necessary to adopt prevention, mitigation and control measures to reduce the effect in case of ignition of a gas leak. This work shows the development of a new mathematical model to determine areas of high consequence and their application, using widely available and easy to use software, such as Google Earth and Excel, to determine and visualize the area up to which the level of radiation can affect the integrity of people and buildings. The model takes into account the pressure drop into the gas pipeline from the compression station, the gas leakage rate and possible forms of gas ignition. This development is an alternative to the use of specialized software and highly trained personnel. The simulation is applied to a traced of the Miraflores-Tunja gas pipeline, using a macro developed in Excel to determine the impact area and compare it with the coordinates of the vulnerable areas. The zones where these areas intersect are constituted in high consequence areas and are identified along with the sections of the pipeline that affect them, to provide the operator with a risk analysis tool for the determination and visualization of the gas pipeline and its environment.

  8. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  9. Cost Minimization Model of Gas Transmission Line for Indonesian SIJ Pipeline Network

    Directory of Open Access Journals (Sweden)

    Septoratno Siregar

    2003-05-01

    Full Text Available Optimization of Indonesian SIJ gas pipeline network is being discussed here. Optimum pipe diameters together with the corresponding pressure distribution are obtained from minimization of total cost function consisting of investment and operating costs and subjects to some physical (Panhandle A and Panhandle B equations constraints. Iteration technique based on Generalized Steepest-Descent and fourth order Runge-Kutta method are used here. The resulting diameters from this continuous optimization are then rounded to the closest available discrete sizes. We have also calculated toll fee along each segment and safety factor of the network by determining the pipe wall thickness, using ANSI B31.8 standard. Sensitivity analysis of toll fee for variation of flow rates is shown here. The result will gives the diameter and compressor size and compressor location that feasible to use for the SIJ pipeline project. The Result also indicates that the east route cost relatively less expensive than the west cost.

  10. Low cost highly available digital control computer

    International Nuclear Information System (INIS)

    Silvers, M.W.

    1986-01-01

    When designing digital controllers for critical plant control it is important to provide several features. Among these are reliability, availability, maintainability, environmental protection, and low cost. An examination of several applications has lead to a design that can be produced for approximately $20,000 (1000 control points). This design is compatible with modern concepts in distributed and hierarchical control. The canonical controller element is a dual-redundant self-checking computer that communicates with a cross-strapped, electrically isolated input/output system. The input/output subsystem comprises multiple intelligent input/output cards. These cards accept commands from the primary processor which are validated, executed, and acknowledged. Each card may be hot replaced to facilitate sparing. The implementation of the dual-redundant computer architecture is discussed. Called the FS-86, this computer can be used for a variety of applications. It has most recently found application in the upgrade of San Francisco's Bay Area Rapid Transit (BART) train control currently in progress and has been proposed for feedwater control in a boiling water reactor

  11. Ground source heat pumps versus high efficiency natural gas furnaces in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.

    2003-02-02

    For the past twenty years or so, the heating and cooling of numerous buildings in northern Europe has been accomplished using ground source heat pumps (GSHPs), while in North America they have been in use for approximately ten years. In the Prairies, natural gas furnaces dominate, while GSHP are more popular in eastern Canada. The author noted that natural gas furnaces have an efficiency of 80 per cent or less, while high efficiency natural gas (HENG) furnaces, more expensive, have an efficiency in the 90 per cent range. A brief outline of the principles behind GSHPs was provided. The Coefficient of Performance (COP) of GSHP reaches up to 500 per cent depending whether the unit is cooling or heating. The amount of heat produced by a heating system expressed as a percentage of the energy input required to operate the system is the definition used for the efficiency. In those cases where it is possible to amortize the initial costs, pay now or obtain a subsidy, the installation of GSHP is advantageous. Several factors affect the total cost of heating a building, such as the airtightness of the building and its insulation, the coldness of the climate, and the inside controlled temperature setting. The author then examined the cost of operating a GSHP versus a natural gas furnace. In most examples studied, the cost of operating a GSHP was less than the cost of operating a natural gas furnace. The Total Equivalent Warming Impact (TEWI) of GSHPs and HENG furnaces was examined. The author concluded that the cost of heating by GSHP in Alberta will be lower than the cost of heating by HENG which requires a separate air conditioning unit for the summer months, with additional improvements in efficiency and insulation. 7 refs., 4 tabs.

  12. High-repetition-rate short-pulse gas discharge.

    Science.gov (United States)

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  13. Very-high-temperature gas reactor environmental impacts assessment

    International Nuclear Information System (INIS)

    Baumann, C.D.; Barton, C.J.; Compere, E.L.; Row, T.H.

    1977-08-01

    The operation of a Very High Temperature Reactor (VHTR), a slightly modified General Atomic type High Temperature Gas-Cooled Reactor (HTGR) with 1600 F primary coolant, as a source of process heat for the 1400 0 F steam-methanation reformer step in a hydrogen producing plant (via hydrogasification of coal liquids) was examined. It was found that: (a) from the viewpoint of product contamination by fission and activation products, an Intermediate Heat Exchanger (IHX) is probably not necessary; and (b) long term steam corrosion of the core support posts may require increasing their diameter (a relatively minor design adjustment). However, the hydrogen contaminant in the primary coolant which permeates the reformer may reduce steam corrosion but may produce other problems which have not as yet been resolved. An IHX in parallel with both the reformer and steam generator would solve these problems, but probably at greater cost than that of increasing the size of the core support posts. It is recommended that this corrosion problem be examined in more detail, especially by investigating the performance of current fossil fuel heated reformers in industry. Detailed safety analysis of the VHTR would be required to establish definitely whether the IHX can be eliminated. Water and hydrogen ingress into the reactor system are potential problems which can be alleviated by an IHX. These problems will require analysis, research and development within the program required for development of the VHTR

  14. Hybrid high solar share gas turbine systems with innovative gas turbine cycles

    OpenAIRE

    Puppe, Michael; Giuliano, Stefano; Buck, Reiner; Krüger, Michael; Lammel, Oliver; Boje, Sven; Saidi, Karim; Gampe, Uwe; Felsmann, Christian; Freimark, Manfred; Langnickel, Ulrich

    2015-01-01

    In this paper results from an ongoing research project (HYGATE) are presented, which is performed to reduce the levelized cost of electricity (LCOE) and to increase the CO2 reduction potential of the solar-hybrid gas turbine plant concept (SHGT). Key improvements are the integration of thermal energy storage and the reduction of the operating temperature of the gas turbine to 950°C. As a result the solar receiver can provide the necessary temperature for solar-only operation of the plant at d...

  15. Reductions in greenhouse gas emissions and cost by shipping at lower speeds

    International Nuclear Information System (INIS)

    Lindstad, Haakon; Asbjornslett, Bjorn E.; Stromman, Anders H.

    2011-01-01

    CO 2 emissions from maritime transport represent a significant part of total global greenhouse gas (GHG) emissions. According to the International Maritime Organization (), maritime transport emitted 1046 million tons (all tons are metric) of CO 2 in 2007, representing 3.3% of the world's total CO 2 emissions. The International Maritime Organization (IMO) is currently debating both technical and market-based measures for reducing greenhouse gas emissions from shipping. This paper presents investigations on the effects of speed reductions on the direct emissions and costs of maritime transport, for which the selection of ship classes was made to facilitate an aggregated representation of the world fleet. The results show that there is a substantial potential for reducing CO 2 emissions in shipping. Emissions can be reduced by 19% with a negative abatement cost (cost minimization) and by 28% at a zero abatement cost. Since these emission reductions are based purely on lower speeds, they can in part be performed now. - Highlights: → We investigates the effects of speed reductions for maritime transport. → The selection of ship classes represent the words fleet. → The transport volumes are kept constant. → The model includes both cost and emissions as a function of speed. → The results show that there is a substantial potential for reducing CO 2 emissions from shipping.

  16. Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses

    International Nuclear Information System (INIS)

    Lajunen, Antti; Lipman, Timothy

    2016-01-01

    This paper evaluates the lifecycle costs and carbon dioxide emissions of different types of city buses. The simulation models of the different powertrains were developed in the Autonomie vehicle simulation software. The carbon dioxide emissions were calculated both for the bus operation and for the fuel and energy pathways from well to tank. Two different operating environment case scenarios were used for the primary energy sources, which were Finland and California (USA). The fuel and energy pathways were selected appropriately in relation to the operating environment. The lifecycle costs take into account the purchase, operating, maintenance, and possible carbon emission costs. Based on the simulation results, the energy efficiency of city buses can be significantly improved by the alternative powertrain technologies. Hybrid buses have moderately lower carbon dioxide emissions during the service life than diesel buses whereas fully-electric buses have potential to significantly reduce carbon dioxide emissions, by up to 75%. The lifecycle cost analysis indicates that diesel hybrid buses are already competitive with diesel and natural gas buses. The high costs of fuel cell and battery systems are the major challenges for the fuel cell hybrid buses in order to reduce lifecycle costs to more competitive levels. - Highlights: • Alternative powertrains can significantly improve energy efficiency of transit buses. • Operating environment has an important impact on the lifecycle costs of buses. • Diesel hybrid buses are already cost effective solution for public transportation. • The cost of fuel cell technology is the major challenge for fuel cell hybrid buses. • Fully-electric buses have potential to significantly reduce carbon dioxide emissions.

  17. CO2 emission costs and Gas/Coal competition for power production

    International Nuclear Information System (INIS)

    Santi, Federico

    2005-01-01

    This paper demonstrates how a CO 2 emission reduction programme can change the competition between the two power production technologies which will probably dominate the future of the Italian power industry: the coal fired USC steam power plant and the natural gas fired CCGT power plant. An economic value of the CO 2 emission is calculated, in order to make the short-run-marginal-cost (or the long-run-marginal-cost). equal for both technologies, under a CO 2 emission trading scheme and following a single-plant specific CO 2 emission homogenizing approach [it

  18. Optimal design and allocation of electrified vehicles and dedicated charging infrastructure for minimum life cycle greenhouse gas emissions and cost

    International Nuclear Information System (INIS)

    Traut, Elizabeth; Hendrickson, Chris; Klampfl, Erica; Liu, Yimin; Michalek, Jeremy J.

    2012-01-01

    Electrified vehicles can reduce greenhouse gas (GHG) emissions by shifting energy demand from gasoline to electricity. GHG reduction potential depends on vehicle design, adoption, driving and charging patterns, charging infrastructure, and electricity generation mix. We construct an optimization model to study these factors by determining optimal design of conventional vehicles, hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs) with optimal allocation of vehicle designs and dedicated workplace charging infrastructure in the fleet for minimum life cycle cost or GHG emissions over a range of scenarios. We focus on vehicles with similar body size and acceleration to a Toyota Prius under government 5-cycle driving conditions. We find that under the current US grid mix, PHEVs offer only small GHG emissions reductions compared to HEVs, and workplace charging is insignificant. With grid decarbonization, PHEVs and BEVs offer substantial GHG emissions reductions, and workplace charging provides additional benefits. HEVs are optimal or near-optimal for minimum cost in most scenarios. High gas prices and low vehicle and battery costs are the major drivers for PHEVs and BEVs to enter and dominate the cost-optimal fleet. Carbon prices have little effect. Cost and range restrictions limit penetration of BEVs. - Highlights: ► We pose an MINLP model to minimize cost and GHG emissions of electrified vehicles. ► We design PHEVs and BEVs and assign vehicles and charging infrastructure in US fleet. ► Under US grid mix, PEVs provide minor GHG reductions and work chargers do little. ► HEVs are robust; PEVs and work charging potential improve with a decarbonized grid. ► We quantify factors needed for PEVs to enter and dominate the optimal fleet.

  19. The High Rise Low Cost Housing : Sustainable Neighbourhood Elements (Green Elements) in Malaysia

    Science.gov (United States)

    Wahi, Noraziah; Mohamad, Ismail; Mohamad Zin, Rosli; Munikanan, Vikneswaran; Junaini, Syahrizan

    2018-03-01

    The sustainable development is a vital measure to alleviate the greenhouse gas effect, global warming and any other environment issues. The sustainable neighbourhood concept is not new in Malaysia, However, the concept still needs attention and awareness from the stakeholders. This paper discusses on the sustainable neighbourhood elements specifically green elements application on the high rise low cost housing in Malaysia. Malaysia should have focused sustainable neighbourhood planning and design especially on the high rise low cost housing therefore the future generation can be benefited from this type development.

  20. Europe's gas consumption and imports to increase with adequate low cost supplies

    International Nuclear Information System (INIS)

    Odell, P.R.

    1997-01-01

    Gas in Europe has always been sold above its long-run supply price. Lower prices, however, still permit profitable indigeneous supply expansion. As further reductions in production and transport costs from technological advances are expected, this will continue based on the exploitation of large proven and probable reserves. By 2025, indigeneous output will be 60% up on 1995. Nevertheless, an average 2.2%/annum growth in gas demand will increase import dependence from 130 to 320 BCM over this period. Future international oil prices indicate gas-equivalent border values adequate to secure profitable supply from a range of external sources, leading to continuing competition for markets and the diversification of imports. (9 tables; 31 references). (author)

  1. Optimal scenario balance of reduction in costs and greenhouse gas emissions for municipal solid waste management

    Institute of Scientific and Technical Information of China (English)

    邓娜; 张强; 陈广武; 齐长青; 崔文谦; 张于峰; 马洪亭

    2015-01-01

    To reduce carbon intensity, an improved management method balancing the reduction in costs and greenhouse gas (GHG) emissions is required for Tianjin’s waste management system. Firstly, six objective functions, namely, cost minimization, GHG minimization, eco-efficiency minimization, cost maximization, GHG maximization and eco-efficiency maximization, are built and subjected to the same constraints with each objective function corresponding to one scenario. Secondly, GHG emissions and costs are derived from the waste flow of each scenario. Thirdly, the range of GHG emissions and costs of other potential scenarios are obtained and plotted through adjusting waste flow with infinitely possible step sizes according to the correlation among the above six scenarios. And the optimal scenario is determined based on this range. The results suggest the following conclusions. 1) The scenarios located on the border between scenario cost minimization and GHG minimization create an optimum curve, and scenario GHG minimization has the smallest eco-efficiency on the curve;2) Simple pursuit of eco-efficiency minimization using fractional programming may be unreasonable; 3) Balancing GHG emissions from incineration and landfills benefits Tianjin’s waste management system as it reduces GHG emissions and costs.

  2. Fuel arrangement for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Tobin, J.M.

    1978-01-01

    Disclosed is a fuel arrangement for a high temperature gas cooled reactor including fuel assemblies with separate directly cooled fissile and fertile fuel elements removably inserted in an elongated moderator block also having a passageway for control elements

  3. The high pressure gas Cerenkov counter at the Omega Facility.

    CERN Multimedia

    1975-01-01

    The high-pressure gas Cerenkov was used to measure reactions as pion (or kaon)- hydrogen --> forward proton - X. It was built by the Ecole Polytechnique (Palaiseu). Here Peter Sonderegger and Patrick Fleury,

  4. Fission gas release from fuel at high burnup

    International Nuclear Information System (INIS)

    Meyer, R.O.; Beyer, C.E.; Voglewede, J.C.

    1978-03-01

    The release of fission gas from fuel pellets at high burnup is reviewed in the context of the safety analysis performed for reactor license applications. Licensing actions are described that were taken to correct deficient gas release models used in these safety analyses. A correction function, which was developed by the Nuclear Regulatory Commission staff and its consultants, is presented. Related information, which includes some previously unpublished data, is also summarized. The report thus provides guidance for the analysis of high burnup gas release in licensing situations

  5. High pressure gas spheres for neutron and photon experiments

    Science.gov (United States)

    Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.

    2009-09-01

    High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.

  6. Development history of the gas turbine modular high temperature reactor

    International Nuclear Information System (INIS)

    Brey, H.L.

    2001-01-01

    The development of the high temperature gas cooled reactor (HTGR) as an environmentally agreeable and efficient power source to support the generation of electricity and achieve a broad range of high temperature industrial applications has been an evolutionary process spanning over four decades. This process has included ongoing major development in both the HTGR as a nuclear energy source and associated power conversion systems from the steam cycle to the gas turbine. This paper follows the development process progressively through individual plant designs from early research of the 1950s to the present focus on the gas turbine modular HTGR. (author)

  7. Ionization chamber for measurements of high-level tritium gas

    International Nuclear Information System (INIS)

    Carstens, D.H.W.; David, W.R.

    1980-01-01

    The construction and calibration of a simple ionization-chamber apparatus for measurement of high level tritium gas is described. The apparatus uses an easily constructed but rugged chamber containing the unknown gas and an inexpensive digital multimeter for measuring the ion current. The equipment after calibration is suitable for measuring 0.01 to 100% tritium gas in hydrogen-helium mixes with an accuracy of a few percent. At both the high and low limits of measurements deviations from the predicted theoretical current are observed. These are briefly discussed

  8. Parents and the High Cost of Child Care: 2012 Report

    Science.gov (United States)

    Child Care Aware of America, 2012

    2012-01-01

    "Parents and the High Cost of Child Care: 2012 Report" presents 2011 data reflecting what parents pay for full-time child care in America. It includes average fees for both child care centers and family child care homes. Information was collected through a survey conducted in January 2012 that asked for the average costs charged for…

  9. Ensuring future national gas supplies. High stakes for research

    International Nuclear Information System (INIS)

    Rojey, A.

    1996-01-01

    A considerable increase in natural gas demand has been forecast for the coming years. Present-day supply sources will be unable to cover the growing demand in Europe and new suppliers will need to be called on more and more. Diversifying to new supply sources will entail heavy investments and is bound to mean rising costs. Technical progress is necessary to reduce costs, while protecting the environment and providing improved safety conditions. Innovative solutions in the areas of production, processing, transportation and chemical conversion should in the future widen the options and outlets available to operators. (author)

  10. High-Flux Carbon Molecular Sieve Membranes for Gas Separation.

    Science.gov (United States)

    Richter, Hannes; Voss, Hartwig; Kaltenborn, Nadine; Kämnitz, Susanne; Wollbrink, Alexander; Feldhoff, Armin; Caro, Jürgen; Roitsch, Stefan; Voigt, Ingolf

    2017-06-26

    Carbon membranes have great potential for highly selective and cost-efficient gas separation. Carbon is chemically stable and it is relative cheap. The controlled carbonization of a polymer coating on a porous ceramic support provides a 3D carbon material with molecular sieving permeation performance. The carbonization of the polymer blend gives turbostratic carbon domains of randomly stacked together sp 2 hybridized carbon sheets as well as sp 3 hybridized amorphous carbon. In the evaluation of the carbon molecular sieve membrane, hydrogen could be separated from propane with a selectivity of 10 000 with a hydrogen permeance of 5 m 3 (STP)/(m 2 hbar). Furthermore, by a post-synthesis oxidative treatment, the permeation fluxes are increased by widening the pores, and the molecular sieve carbon membrane is transformed from a molecular sieve carbon into a selective surface flow carbon membrane with adsorption controlled performance and becomes selective for carbon dioxide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Diesel vs. compressed natural gas for school buses: a cost-effectiveness evaluation of alternative fuels

    International Nuclear Information System (INIS)

    Cohen, J.T.

    2005-01-01

    Reducing emissions from school buses is a priority for both state and federal regulators. Two popular alternative technologies to conventional diesel (CD) are emission controlled diesel (ECD), defined here to be diesel buses equipped with continuously regenerating particle filters, and engines fueled by compressed natural gas (CNG). This paper uses a previously published model to quantify the impact of particulate matter (PM), oxides of nitrogen (NO x ), and sulfur dioxide (SO 2 ) emissions on population exposure to ozone and to primary and secondary PM, and to quantify the resulting health damages, expressed in terms of lost quality adjusted life years (QALYs). Resource costs include damages from greenhouse gas-induced climate change, vehicle procurement, infrastructure development, and operations. I find that ECD and CNG produce very similar reductions in health damages compared to CD, although CNG has a modest edge because it may have lower NO x emissions. However, ECD is far more cost effective ($400,000-900,000 cost per QALY saved) than CNG (around $4 million per QALY saved). The results are uncertain because the model used makes a series of simplifying assumptions and because emissions data and cost data for school buses are very limited

  12. Gas-fuelled driving and sailing. Cost and environmental effects of natural gas and green gas in transport; Rijden en varen op gas. Kosten en milieueffecten van aardgas en groen gas in transport

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.E.; Croezen, H.J.; Verbraak, G.M.; Brouwer, F.P.E.

    2010-06-15

    A number of new gaseous fuels for cars and ships is becoming more popular: compressed natural gas (CNG), liquid natural gas (LNG) and biogas. This report presents the results of a study of the costs and environmental effects of these gas applications and compares them to diesel and petrol and the 'common' biofuels biodiesel and bio-ethanol. The green gas applications emit much less CO2 than biodiesel and bio-ethanol from wheat. The air-polluting emissions are much lower in all cases. The basic cost of driving or sailing on these gaseous fuels (excl. levies and taxes) are significantly higher than in case of diesel, but in some cases van be comparable or even lower than in case of liquid biofuels. [Dutch] Een aantal nieuwe gasvormige brandstoffen voor auto's en schepen is in opkomst: aardgas onder druk (CNG), vloeibaar aardgas (LNG) en biogassen. In dit rapport worden de resultaten van een onderzoek naar de kosten en de milieueffecten van deze gastoepassingen gepresenteerd en vergeleken met diesel en benzine en de 'gewone' biobrandstoffen bio-diesel en bio-ethanol. De groen gas-toepassingen stoten aanzienlijk minder CO2 uit dan biodiesel en bio-ethanol uit tarwe. De luchtvervuilende emissies zijn in alle gevallen een stuk lager. De kale kosten van rijden en varen op deze gasvormige brandstoffen (excl. heffingen en belastingen) zijn wel aanzienlijk hoger dan bij diesel, maar kunnen in sommige toepassingen vergelijkbaar of lager uitkomen dan van de vloeibare biobrandstoffen.

  13. Calibration of low-cost gas sensors for an urban air quality monitoring network

    Science.gov (United States)

    Scott, A.; Kelley, C.; He, C.; Ghugare, P.; Lehman, A.; Benish, S.; Stratton, P.; Dickerson, R. R.; Zuidema, C.; Azdoud, Y.; Ren, X.

    2017-12-01

    In a warming world, environmental pollution may be exacerbated by anthropogenic activities, such as climate change and the urban heat island effect, as well as natural phenomena such as heat waves. However, monitoring air pollution at federal reference standards (approximately 1 part per billion or ppb for ambient ozone) is cost-prohibitive in heterogeneous urban areas as many expensive devices are required to fully capture a region's geo-spatial variability. Innovation in low-cost sensors provide a potential solution, yet technical challenges remain to overcome possible imprecision in the data. We present the calibrations of ozone and nitrous dioxide from a low-cost air quality monitoring device designed for the Baltimore Open Air Project. The sensors used in this study are commercially available thin film electrochemical sensors from SPEC Sensor, which are amperometric, meaning they generate current proportional to volumetric fraction of gas. The results of sensor calibrations in the laboratory and field are presented.

  14. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs

    Energy Technology Data Exchange (ETDEWEB)

    Douskova, I.; Doucha, J.; Livansky, K.; Umysova, D.; Zachleder, V.; Vitova, M. [Academy of Sciences of the Czech Republic, Trebon (Czech Republic). Laboratory of Cell Cycles of Algae; Machat, J. [Masaryk University, Brno (Czech Republic). Research Centre for Environmental Chemistry and Ecotoxicology; Novak, P. [Termizo Inc., Liberec (Czech Republic)

    2009-02-15

    A flue gas originating from a municipal waste incinerator was used as a source of CO{sub 2} for the cultivation of the microalga Chlorella vulgaris, in order to decrease the biomass production costs and to bioremediate CO{sub 2} simultaneously. The utilization of the flue gas containing 10-13% ({nu}/{nu}) CO2 and 8-10% ({nu}/{nu}) O{sub 2} for the photobioreactor agitation and CO{sub 2} supply was proven to be convenient. The growth rate of algal cultures on the flue gas was even higher when compared with the control culture supplied by a mixture of pure CO{sub 2} and air (11% ({nu}/{nu}) CO{sub 2}). Correspondingly, the CO{sub 2} fixation rate was also higher when using the flue gas (4.4 g CO{sub 2} l{sup -1} 24 h{sup -1}) than using the control gas (3.0 g CO{sub 2} l{sup -1} 24 h{sup -1}). The toxicological analysis of the biomass produced using untreated flue gas showed only a slight excess of mercury while all the other compounds (other heavy metals, polycyclic aromatic hydrocarbons, polychlorinated dibenzodioxins and dibenzofurans, and polychlorinated biphenyls) were below the limits required by the European Union foodstuff legislation. Fortunately, extending the flue gas treatment prior to the cultivation unit by a simple granulated activated carbon column led to an efficient absorption of gaseous mercury and to the algal biomass composition compliant with all the foodstuff legislation requirements. (orig.)

  15. Landfill gas-fired power plant pays cost of operating landfill

    International Nuclear Information System (INIS)

    Wallace, I.P.

    1991-01-01

    This paper reports on recovery of energy from refuse that has become increasingly attractive in the past decade. The continuing urbanization of our society has created major challenges in the disposal of our waste products. Because of public concern over the potential presence of toxins, and for other environmental reasons, management and regulation of active and inactive landfills have become much more stringent and costly. Palos Verdes landfill, owned jointly by the Los Angeles County Sanitation Districts and Los Angeles County, is located about three miles from the Pacific Ocean in the city of Rolling Hills Estates, Calif. The landfill was closed in 1980. The garbage was covered with six to eight feet of soil, and the area was landscaped. Part of this area has already been developed as the South Coast Botanical Gardens and Ernie Howlett Park. The remainder is scheduled to become a golf course. As refuse decays within a landfill, the natural anaerobic biological reaction generates a low-Btu methane gas along with carbon dioxide, known as landfill gas (LFG). The gas also contains other less desirable trace components generated by the decomposing garbage. Uncontrolled, these gases migrate to the surface and escape into the atmosphere where they generate environmental problems, including objectionable odors. The Sanitation Districts have installed a matrix of gas wells and a gas collection system to enable incineration of the gas in flares. This approach reduced aesthetic, environmental and safety concerns. However, emissions from the flares were still a problem. The Sanitation Districts then looked at alternatives to flaring the gas, one of which was electrical generation. Since the Sanitation Districts have no on-site use for thermal energy, power generation for use in the utility grid was deemed the most feasible alternative

  16. Thermoecological cost of electricity production in the natural gas pressure reduction process

    International Nuclear Information System (INIS)

    Kostowski, Wojciech J.; Usón, Sergio; Stanek, Wojciech; Bargiel, Paweł

    2014-01-01

    The paper presents a novel concept for thermodynamic evaluation of a selected energy system. The presented method has been developed by integration of the Thermo-Economic Analysis with the theory of Thermo-Ecological Cost. It can be applied as a thermodynamic evaluation method of rational resources management within any production system. It takes into account both the interrelation of irreversibility within the analyzed system and its influence on the global effects related to the depletion of non-renewable natural resources. The proposed method has been applied to evaluate the production of electricity in the process of natural gas transmission at pressure reduction stations. The expansion system is based on an existing plant integrated with a CHP module, characterized by a performance ratio of 89.5% and exergy efficiency of 49.2%. Within the paper, this expansion plant is supplied with natural gas transported from a natural deposit through a case-study transmission system with 4 compressor stations. The TEC (thermoecological cost) method was applied in conjunction with thermoeconomic analysis. As a result, TEC of the electricity generated in the expanders was determined at 2.42 kJ/kJ, TEC of electricity from the CHP module is 1.77, and the TEC of medium-pressure natural gas distributed to consumers is 1.022. - Highlights: • The chain of NG transmission with an exergy recovery expansion plant was analyzed. • New methodology coupling the TEC (thermoecological cost) and thermoeconomics. • Decomposition of the TEC formation process. • Case-study transmission system yields TEC of natural gas = 1.0222. • Expansion plant yields TEC of electricity 2.42 (expanders) and 1.77 (CHP module)

  17. Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmied, H.; Clavensjoe, B.

    1984-01-01

    The general principles and mechanism of how soil gas infiltrates and carries radon from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluation of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon, resulting from infiltrating soil gas and/or exhalation from building materials. A review and evaluation is given of experience and results acquired up to the summer of 1984. 100 dwellings have been constructed with consideration of possible infiltration of soil gas. In general minor modifications are sufficient to prevent infiltration. (Author)

  18. Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND

    DEFF Research Database (Denmark)

    De Clippeleir, Haydée; Courtens, Emilie; Mosquera, Mariela

    2012-01-01

    Ammonia gas is conventionally treated in nitrifying biofilters; however, addition of organic carbon to perform post-denitrification is required to obtain total nitrogen removal. Oxygen-limited autotrophic nitrification/denitrification (OLAND), applied in full-scale for wastewater treatment, can...... offer a cost-effective alternative for gas treatment. In this study, the OLAND application thus was broadened toward ammonia loaded gaseous streams. A down flow, oxygen-saturated biofilter (height of 1.5 m; diameter of 0.11 m) was fed with an ammonia gas stream (248 ± 10 ppmv) at a loading rate of 0...... at water flow rates of 1.3 ± 0.4 m3 m–2 biofilter section d–1. Profile measurements revealed that 91% of the total nitrogen activity was taking place in the top 36% of the filter. This study demonstrated for the first time highly effective and sustainable autotrophic ammonia removal in a gas biofilter...

  19. Design and development of gas turbine high temperature reactor 300 (GTHTR300)

    International Nuclear Information System (INIS)

    Kunitomi, Kazuhiko; Katanishi, Shoji; Takada, Shoji; Takizuka, Takakazu; Yan, Xing; Kosugiyama, Shinichi

    2003-01-01

    JAERI (Japan Atomic Energy Research Institute) started design and development of the high temperature gas cooled reactor with a gas turbine electric generation system, GTHTR300, in April 2001. Design originalities of the GTHTR300 are a horizontally mounted highly efficient gas turbine system and an ultimately simplified safety system such as no containment building and no active emergency core cooling. These design originalities are proposed based on design and operational experiences in conventional gas turbine systems and Japan's first high temperature gas cooled reactor (HTTR: High Temperature Engineering Test Reactor) so that many R and Ds are not required for the development. Except these original design features, devised core design, fuel design and plant design are adopted to meet design requirements and attain a target cost. This paper describes the unique design features focusing on the safety design, reactor core design and gas turbine system design together with a preliminary result of the safety evaluation carried out for a typical severe event. This study is entrusted from Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  20. High-BTU gas production from tar-bearing hot coke oven gas over iron catalyst

    Energy Technology Data Exchange (ETDEWEB)

    L.Y. Li; K. Morishita; T. Takarada [Gunma University, Gunma (Japan). Department of Biological and Chemical Engineering

    2005-07-01

    To utilize the tar-bearing hot coke oven gas (the by-product of coke making process) more effectively, a process was developed by converting the hot coke oven gas into a methane rich high-BTU gas over iron-bearing catalysts. The catalytic behaviour of Indonesian limonite ore was mainly discussed. For a reference, a conventional nickel catalyst (Ni/Al{sub 2}O{sub 3}) was employed. Laboratory scale tests were carried out in a two-stage fixed-bed reactor at ambient pressure. A bituminous coal sample was heated at first stage, the volatiles was carried by feed gas and decomposed at second stage. The limonite promoted hydropyrolysis of coal volatiles similar to Ni/Al{sub 2}O{sub 3} catalyst. High yields of total product gas and methane were obtained at 50 vol.% hydrogen atmosphere with a feed gas of 60 ml min{sup -1} hydrogen and 60 ml min{sup -1} nitrogen. After experiments, hydrocarbons heavier than ethane were not observed. Also that, carbon balance was more than 99.8% in coal char, product gases and carbon deposits. It was considered that coal volatiles converted into light gases and carbon almost completely in catalyst bed. Yields of product gas and methane depended upon catalytic temperature. At 923 K, the maximum yield of product gas was achieved at 74.3% for limonite catalyst on carbon balance with methane 83.2 vol.% of the carbonaceous gas products. Comparing with limonite, Fe/Al{sub 2}O{sub 3} and BOF dust samples showed low activities on coal volatiles catalytic decomposition. 21 refs., 5 figs., 3 tabs.

  1. High power electron accelerators for flue gas treatment

    International Nuclear Information System (INIS)

    Zimek, Z.

    2011-01-01

    Flue gas treatment process based on electron beam application for SO 2 and NO x removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  2. High power electron accelerators for flue gas treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2011-07-01

    Flue gas treatment process based on electron beam application for SO{sub 2} and NO{sub x} removal was successfully demonstrated in number of laboratories, pilot plants and industrial demonstration facilities. The industrial scale application of an electron beam process for flue gas treatment requires accelerators modules with a beam power 100-500 kW and electron energy range 0.8-1.5 MeV. The most important accelerator parameters for successful flue gas radiation technology implementation are related to accelerator reliability/availability, electrical efficiency and accelerator price. Experience gained in high power accelerators exploitation in flue gas treatment industrial demonstration facility was described and high power accelerator constructions have been reviewed. (author)

  3. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie Nøhr

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high-re...

  4. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria

    International Nuclear Information System (INIS)

    Schmidt, Johannes; Leduc, Sylvain; Dotzauer, Erik; Schmid, Erwin

    2011-01-01

    Climate change mitigation and security of energy supply are important targets of Austrian energy policy. Bioenergy production based on resources from agriculture and forestry is an important option for attaining these targets. To increase the share of bioenergy in the energy supply, supporting policy instruments are necessary. The cost-effectiveness of these instruments in attaining policy targets depends on the availability of bioenergy technologies. Advanced technologies such as second-generation biofuels, biomass gasification for power production, and bioenergy with carbon capture and storage (BECCS) will likely change the performance of policy instruments. This article assesses the cost-effectiveness of energy policy instruments, considering new bioenergy technologies for the year 2030, with respect to greenhouse gas emission (GHG) reduction and fossil fuel substitution. Instruments that directly subsidize bioenergy are compared with instruments that aim at reducing GHG emissions. A spatially explicit modeling approach is used to account for biomass supply and energy distribution costs in Austria. Results indicate that a carbon tax performs cost-effectively with respect to both policy targets if BECCS is not available. However, the availability of BECCS creates a trade-off between GHG emission reduction and fossil fuel substitution. Biofuel blending obligations are costly in terms of attaining the policy targets. - Highlights: → Costs of energy policies and effects on reduction of CO 2 emissions and fossil fuel consumption. → Particular focus on new bioenergy production technologies such as second generation biofuels. → Spatially explicit techno-economic optimization model. → CO 2 tax: high costs for reducing fossil fuel consumption if carbon capture and storage is available. → Biofuel policy: no significant reductions in CO 2 emissions or fossil fuel consumption.

  5. DEVELOPMENT OF A LOW COST INFERENTIAL NATURAL GAS ENERGY FLOW RATE PROTOTYPE RETROFIT MODULE

    Energy Technology Data Exchange (ETDEWEB)

    E. Kelner; D. George; T. Morrow; T. Owen; M. Nored; R. Burkey; A. Minachi

    2005-05-01

    In 1998, Southwest Research Institute began a multi-year project to develop a working prototype instrument module for natural gas energy measurement. The module will be used to retrofit a natural gas custody transfer flow meter for energy measurement, at a cost an order of magnitude lower than a gas chromatograph. Development and evaluation of the prototype energy meter in 2002-2003 included: (1) refinement of the algorithm used to infer properties of the natural gas stream, such as heating value; (2) evaluation of potential sensing technologies for nitrogen content, improvements in carbon dioxide measurements, and improvements in ultrasonic measurement technology and signal processing for improved speed of sound measurements; (3) design, fabrication and testing of a new prototype energy meter module incorporating these algorithm and sensor refinements; and (4) laboratory and field performance tests of the original and modified energy meter modules. Field tests of the original energy meter module have provided results in close agreement with an onsite gas chromatograph. The original algorithm has also been tested at a field site as a stand-alone application using measurements from in situ instruments, and has demonstrated its usefulness as a diagnostic tool. The algorithm has been revised to use measurement technologies existing in the module to measure the gas stream at multiple states and infer nitrogen content. The instrumentation module has also been modified to incorporate recent improvements in CO{sub 2} and sound speed sensing technology. Laboratory testing of the upgraded module has identified additional testing needed to attain the target accuracy in sound speed measurements and heating value.

  6. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    Science.gov (United States)

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  7. Conceptual Design for a High-Temperature Gas Loop Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    James B. Kesseli

    2006-08-01

    This report documents an early-stage conceptual design for a high-temperature gas test loop. The objectives accomplished by the study include, (1) investigation of existing gas test loops to determine ther capabilities and how the proposed system might best complement them, (2) development of a preliminary test plan to help identify the performance characteristics required of the test unit, (3) development of test loop requirements, (4) development of a conceptual design including process flow sheet, mechanical layout, and equipment specifications and costs, and (5) development of a preliminary test loop safety plan.

  8. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    International Nuclear Information System (INIS)

    Pence, D.T.; Kirstein, B.E.

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m 3 /h (15-ft 3 /min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed

  9. Design and cost estimate for the SRL integrated hot off gas facility using selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Pence, D T; Kirstein, B E

    1981-07-01

    Based on the results of an engineering-scale demonstration program, a design and cost estimate were performed for a 25-m/sup 3//h (15-ft/sup 3//min) capacity pilot plant demonstration system using selective adsorption technology for installation at the Integrated Hot Off Gas Facility at the Savannah River Plant. The design includes provisions for the destruction of NO/sub x/ and the concentration and removal of radioisotopes of ruthenium, iodine-129, tritiated water vapor, carbon-14 contaminated carbon dioxide, and krypton-85. The nobel gases are separated by the use of selective adsorption on mordenite-type zeolites. The theory of noble gas adsorption on zeolites is essentially the same as that for the adsorption of noble gases on activated charcoals. Considerable detail is provided regarding the application of the theory to adsorbent bed designs and operation. The design is based on a comprehensive material balance and appropriate heat transfer calculations. Details are provided on techniques and procedures used for heating, cooling, and desorbing the adsorbent columns. Analyses are also given regarding component and arrangement selection and includes discussions on alternative arrangements. The estimated equipment costs for the described treatment system is about $1,400,000. The cost estimate includes a detailed equipment list of all the major component items in the design. Related technical issues and estimated system performance are also discussed.

  10. UNEP greenhouse gas abatement costing studies. Zimbabwe country study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. [Southern Centre for Energy and Environment (Zimbabwe); Muguti, E. [Ministry of Transport and Energy. Department of Energy (Zimbabwe); Fenhann, J.; Morthorst, P.E. [Risoe National Laboratory. Systems Analysis Department (Denmark)

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  11. WHAT DRIVES HIGH COST OF FINANCE IN MOLDOVA?

    Directory of Open Access Journals (Sweden)

    Alexandru Stratan

    2012-03-01

    Full Text Available Why there are high costs to finance in Republic of Moldova? Is it a problem for business environment?These are the questions discussed in this paper. Following the well know Growth Diagnostics approach byHausmann, Rodrik and Velasco, authors assess the barriers and impediments to access to finance in Republic ofMoldova. Guided by international and national statistics we found evidence of poor intermediation, poorinstitutions, high level of inflation, and high collateral as major causes of high cost of financial resources inRepublic of Moldova. At the end of the study authors give policy recommendations identifying other related fieldsto be addressed.

  12. The cost-effectiveness of household photovoltaic systems in reducing greenhouse gas emissions in Australia: Linking subsidies with emission reductions

    International Nuclear Information System (INIS)

    Burtt, D.; Dargusch, P.

    2015-01-01

    Highlights: • Payback period for Australian household PV fell to four years in 2011 and 2012. • PV became attractive due to high feed-in tariffs and declining PV costs. • Cost was AU$200/t CO 2 e in 2010, expected to be AU$65 to AU$100/t CO 2 e by 2020. • PV resulted in greenhouse gas emissions reducing by 3.7 million t CO 2 e in 2013. • PV expected to reduce greenhouse gas emissions by 8 million t CO 2 e in 2020. - Abstract: This paper examines the cost-effectiveness of subsidies (feed-in tariffs and renewable energy credits) paid for by electricity consumers to support the uptake of roof top photovoltaic (PV) systems by households in Australia. We estimate annual payback periods, and then regress these against the actual uptake of household PV and associated emission reductions, creating a relationship not apparent in other research. Sensitivity analysis reveals that the declining cost of PV panels had most impact on PV uptake followed by feed-in tariffs, renewable energy credits and the increasing cost of household electricity tariffs. Our modelling shows that feed-in tariffs were higher than necessary to achieve the resultant levels of PV uptake and that the low cost of PV panels and comparatively high electricity tariffs are likely to result in a continuing strong uptake of household PV in Australia. Our modelling shows that subsidies peaked in 2011 and 2012, with payback periods of three to four years, having since increased to five to six years. Emission reduction costs are expected to reduce from over AU$200 per t CO 2 e in 2013 to between AU$65 and AU$100 per t CO 2 e in 2020. Household PV reduced Australia’s emissions by 3.7 million t CO 2 e in 2013 (1.7% of Australia’s total emissions) and is expected to reach eight million tonnes (3.7% of Australia’s total emissions) by 2020

  13. Comprehensive investigation into historical pipeline construction costs and engineering economic analysis of Alaska in-state gas pipeline

    Science.gov (United States)

    Rui, Zhenhua

    This study analyzes historical cost data of 412 pipelines and 220 compressor stations. On the basis of this analysis, the study also evaluates the feasibility of an Alaska in-state gas pipeline using Monte Carlo simulation techniques. Analysis of pipeline construction costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary by diameter, length, volume, year, and location. Overall average learning rates for pipeline material and labor costs are 6.1% and 12.4%, respectively. Overall average cost shares for pipeline material, labor, miscellaneous, and right of way (ROW) are 31%, 40%, 23%, and 7%, respectively. Regression models are developed to estimate pipeline component costs for different lengths, cross-sectional areas, and locations. An analysis of inaccuracy in pipeline cost estimation demonstrates that the cost estimation of pipeline cost components is biased except for in the case of total costs. Overall overrun rates for pipeline material, labor, miscellaneous, ROW, and total costs are 4.9%, 22.4%, -0.9%, 9.1%, and 6.5%, respectively, and project size, capacity, diameter, location, and year of completion have different degrees of impacts on cost overruns of pipeline cost components. Analysis of compressor station costs shows that component costs, shares of cost components, and learning rates for material and labor costs vary in terms of capacity, year, and location. Average learning rates for compressor station material and labor costs are 12.1% and 7.48%, respectively. Overall average cost shares of material, labor, miscellaneous, and ROW are 50.6%, 27.2%, 21.5%, and 0.8%, respectively. Regression models are developed to estimate compressor station component costs in different capacities and locations. An investigation into inaccuracies in compressor station cost estimation demonstrates that the cost estimation for compressor stations is biased except for in the case of material costs. Overall average

  14. LOW COST METHODOLOGIES TO ANALYZE AND CORRECT ABNORMAL PRODUCTION DECLINE IN STRIPPER GAS WELLS

    International Nuclear Information System (INIS)

    Jerry James; Gene Huck; Tim Knobloch

    2001-01-01

    A study group of 376 Clinton Sand wells in Ohio provided data to determine the historic frequency of the problem of abnormal production declines in stripper gas wells and the causes of the abnormal production decline. Analysis of the historic frequency of the problem indicates over 70% of the wells experienced abnormal production decline. The most frequently occurring causes of abnormal production declines were determined to be fluid accumulation (46%), gas gathering restrictions (24%), and mechanical failures (23%). Data collection forms and decision trees were developed to cost-effectively diagnose the abnormal production declines and suggest corrective action. The decision trees and data collection sheets were incorporated into a procedure guide to provide stripper gas well operators with a methodology to analyze and correct abnormal production declines. The systematic methodologies and techniques developed should increase the efficiency of problem well assessment and implementation of solutions for stripper gas wells. This eight quarterly technical progress report provides a summary of the deliverables completed to date, including the results of the remediations, the procedure guide, and the technology transfer. Due to the successful results of the study to date and the efficiency of the methodology development, two to three additional wells will be selected for remediation for inclusion into the study. The results of the additional remediations will be included in the final report

  15. Detailed analysis of costs of historical providers to be taken into account in natural gas regulated prices from the 1 July 2017. Report, 24 May 2017

    International Nuclear Information System (INIS)

    2017-01-01

    This publication first proposes an analysis of Engie costs regarding gas sale regulated prices. This comprises a presentation of the Engie cost structure, an analysis of coverage of costs by sales incomes, a presentation of supply costs and conditions for Engie, an analysis of supply-excluded provisional costs (distribution costs, transport costs, storage costs, commercial costs). The second part proposes a brief cost analysis for 5 other historical providers regarding regulated prices

  16. Gas fired combined cycle plant in Singapore: energy use, GWP and cost-a life cycle approach

    International Nuclear Information System (INIS)

    Kannan, R.; Leong, K.C.; Osman, Ramli; Ho, H.K.; Tso, C.P.

    2005-01-01

    A life cycle assessment was performed to quantify the non-renewable (fossil) energy use and global warming potential (GWP) in electricity generation from a typical gas fired combined cycle power plant in Singapore. The cost of electricity generation was estimated using a life cycle cost analysis (LCCA) tool. The life cycle assessment (LCA) of a 367.5 MW gas fired combined cycle power plant operating in Singapore revealed that hidden processes consume about 8% additional energy in addition to the fuel embedded energy, and the hidden GWP is about 18%. The natural gas consumed during the operational phase accounted for 82% of the life cycle cost of electricity generation. An empirical relation between plant efficiency and life cycle energy use and GWP in addition to a scenario for electricity cost with varying gas prices and plant efficiency have been established

  17. Saskatchewan external cost review : report prepared by a Joint Oil and Gas Industry - Saskatchewan Energy and Mines Committee

    International Nuclear Information System (INIS)

    Anon.

    1996-11-01

    The external costs associated with the operating phase of oil and gas wells in Saskatchewan, were reviewed. The report identified external costs and compared their competitiveness with those of other producing jurisdictions. The profitability of the oil and gas industry in Saskatchewan was also assessed in an effort to provide industry and government with an informational package for use for discussion purposes. The study showed that (1) the oil and gas industry has been a major force for economic growth within Saskatchewan, (2) the province will continue to face stiff competition from other jurisdictions for new oil and gas investment dollars, (3) the system used for determining and administering external costs vary widely from one jurisdiction to another, and (4) a number of external costs are not sensitive to well production rates or commodity price movements. tabs., figs

  18. Oil and gas-fuelled high-efficiency boilers still going strong; Oel und Gas - Brennwert setzt sich weiter durch

    Energy Technology Data Exchange (ETDEWEB)

    Donnerbauer, R.

    2007-07-15

    High-efficiency boilers are going strong. They are generally used in gas boilers and are now conquering the gas boiler field as well. Producers are advertising their high energy efficiency, as was reflected at the ISH 2007. Further, the option of bio-natural gas and bio-oil provides an image of high sustainability. (orig.)

  19. Universal gas metal arc welding - a cost-effective and low dilution surfacing process

    International Nuclear Information System (INIS)

    Shahi, AS.; Pandey, Sunil

    2006-01-01

    This paper describes the use of a new variant of the gas metal arc welding (GMAW) process, termed u niversal gas metal arc welding (UGMAW), for the weld cladding of low carbon steels with stainless steel. The experimental work included single layer cladding of 12 mm thick low carbon steel with austenitic stainless steel 316L solid filler wire of 1.14 mm diameter. Low dilution conditions were employed using both mechanised GMAW and UGMAW processes. Metallurgical aspects of the as welded overlays were studied to evaluate the suitability of these processes for service conditions. It was found that UGMAW claddings contained higher ferrite content; higher concentrations of chromium, nickel and molybdenum; and lower carbon content compared to GMAW claddings. As a result, the UGMAW overlays exhibited superior mechanical and corrosion resistance properties. The findings of this study establish that the new process is technically superior and results in higher productivity, justifying its use for low cost surfacing applications

  20. Low Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    greater gas polarizations and production amounts/ throughputs- benefiting in particular from the advent of com- pact, high-power, relatively low- cost ...Award Number: W81XWH-15-1-0271 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the

  1. High temperature gas cooled reactors in China

    International Nuclear Information System (INIS)

    He Jiachen; Qian Jihui

    1989-01-01

    China has plentiful energy resources, but it is unevenly distributed geographically. 60% of coal resources are concentrated in North China, 71% of hydro-power resources in the hardly accessible Southwest China, whereas the densely populated and highly industrialized 15 provinces/municipalities along the coast, yielding 73% of the gross national product, posses only 10% of national energy resources, which makes our railway system hard pressed. In fact, about 40% of the railway transport and 50% of the main waterway transport are committed to fuel. Yet the needs of energy in the coastal regions cannot be met. To develop nuclear power is a naturally expected approach to solving energy problems in China, particularly in the near term for the coastal regions, where the demand of electricity increases sharply and fuel transport from other regions is already tense. Chinese nuclear circle is interested in MHTGR due to the following reasons. 1. Small capacity of MHTGR is suitable for small power grid in certain areas. 2. Chinese manufacturers are able to provide whole package of conventional island of MHTGR nuclear power plant. 3. Multipurpose MHTGR is attractive for Chinese heavy industries. 4. MHTGR nuclear power plant can be built in suburbs due to inherent safety features. Regarding the users' requirements in China, it can be summarised as: 1. Mature technologies and easy to get license from nuclear safety authority. 2. Emergency zone as small as possible, even unnecessary. 3. 200-300 MWe size desirable. 4. Big portion of domestic share in engineering and component supply. 5. Slightly higher electricity price than coal fired. 6. Investment and favourable financing conditions from overseas. 7. Reimbursement of hard currency by countertrade. At present, four working groups, including users, manufacturers and nuclear industry circle, have been established for performing independent feasibility study on building MHTGR demonstration nuclear power plant in China. (author)

  2. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  3. Liquefied Natural Gas as an alternative fuel: a regional-level social cost-benefit appraisal

    OpenAIRE

    Moreira, Paulo Pires; Caetano, Fernando J. P.

    2017-01-01

    The impact from traditional marine fuels has the potential of causing health and non-health damages and contributes to climate change. Here, the introduction of Liquefied Natural Gas (LNG) as an energy end-use fuel for marine purposes is analysed. The aim of this study is to verify LNG’s policy implementation feasibility as a step-change for a low carbon perspective for shipping by means of developing a social cost-benefit analysis on a regional basis. Emissions from the Portuguese merchant f...

  4. The Formation and Physical Origin of Highly Ionized Cooling Gas

    Energy Technology Data Exchange (ETDEWEB)

    Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Wagner, Alexander Y. [University of Tsukuba, Center for Computational Sciences, Tennodai 1-1-1, Tsukuba, Ibaraki (Japan); Heckman, Timothy M.; Norman, Colin A., E-mail: bordoloi@mit.edu, E-mail: bordoloi@mit.edu [Department of Physics and Astronomy, John Hopkins University, 21218, Baltimore, MD (United States)

    2017-10-20

    We present a simple model that explains the origin of warm, diffuse gas seen primarily as highly ionized absorption-line systems in the spectra of background sources. We predict the observed column densities of several highly ionized transitions such as O vi, O vii, Ne viii, N v, and Mg x, and we present a unified comparison of the model predictions with absorption lines seen in the Milky Way disk, Milky Way halo, starburst galaxies, the circumgalactic medium, and the intergalactic medium at low and high redshifts. We show that diffuse gas seen in such diverse environments can be simultaneously explained by a simple model of radiatively cooling gas. We show that most such absorption-line systems are consistent with being collisionally ionized, and we estimate the maximum-likelihood temperature of the gas in each observation. This model satisfactorily explains why O vi is regularly observed around star-forming low- z L* galaxies, and why N v is rarely seen around the same galaxies. We further present some consequences of this model in quantifying the dynamics of the cooling gas around galaxies and predict the shock velocities associated with such flows. A unique strength of this model is that while it has only one free (but physically well-constrained) parameter, it nevertheless successfully reproduces the available data on O vi absorbers in the interstellar, circumgalactic, intragroup, and intergalactic media, as well as the available data on other absorption lines from highly ionized species.

  5. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    Energy Technology Data Exchange (ETDEWEB)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc. (C-E).

  6. Reference modular High Temperature Gas-Cooled Reactor Plant: Concept description report

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides a summary description of the Modular High Temperature Gas-Cooled Reactor (MHTGR) concept and interim results of assessments of costs, safety, constructibility, operability, maintainability, and availability. Conceptual design of this concept was initiated in October 1985 and is scheduled for completion in 1987. Participating industrial contractors are Bechtel National, Inc. (BNI), Stone and Webster Engineering Corporation (SWEC), GA Technologies, Inc. (GA), General Electric Co. (GE), and Combustion Engineering, Inc

  7. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  8. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  9. High pressure gas driven liquid metal MHD homopolar generator

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1988-01-01

    A liquid metal MHD homopolar generator is proposed to be used as a high repetition rate pulsed power supply. In the generator, the thermal energy stored in a high pressure gas (He) reservoir is rapidly converted into kinetic energy of a rotating liquid metal (NaK) cylinder which is contracted by a gas driven annular free piston. The rotational kinetic energy is converted into electrical energy by making use of the homopolar generator principle. The conversion efficiency is calculated to be 47% in generating electrical energy of 20 kJ/pulse (1.7 MW peak power) at a repetition rate of 7 Hz. From the viewpoint of energy storage, the high pressure gas reservoir with a charging pressure of 15 MPa is considered to ''electrically'' store the energy at a density of 10 MJ/m 3 . (author)

  10. The Externe project. Assessment of the external costs of the natural gas fuel cycle

    International Nuclear Information System (INIS)

    Holland, M.R.

    1997-01-01

    A detailed bottom-up methodology for assessment of the external costs of energy has been developed by a multi-disciplinary, pan-European team as part of the European Commissions's JOULE Programme. The consequences of the generation of electricity from fossil, nuclear and renewable technologies, in terms of damages to human health, buildings and the wider environment, have been assessed within a consistent framework. The potential application of the results in cost-benefit analysis, power system optimisation, emissions charging, etc. is also now under investigation. The analysis starts with definition of the fuel cycle, and specification of the technologies and locations to be considered. Results to date show that for typical modern examples of power plants burning different fossil fuels, externalities (including possible global warming effects) are lowest for gas-burning plant. (R.P.)

  11. High-Efficient Low-Cost Photovoltaics Recent Developments

    CERN Document Server

    Petrova-Koch, Vesselinka; Goetzberger, Adolf

    2009-01-01

    A bird's-eye view of the development and problems of recent photovoltaic cells and systems and prospects for Si feedstock is presented. High-efficient low-cost PV modules, making use of novel efficient solar cells (based on c-Si or III-V materials), and low cost solar concentrators are in the focus of this book. Recent developments of organic photovoltaics, which is expected to overcome its difficulties and to enter the market soon, are also included.

  12. Molecular gas in dusty high-redshift galaxies

    Science.gov (United States)

    Sharon, Chelsea Electra

    2013-12-01

    We present high-resolution observations of carbon monoxide (CO) emission lines for three high-redshift galaxies in order to determine their molecular gas and star formation properties. These galaxies (SMM J14011+0252, SMM J00266+1708, and SDSS J0901+1814) have large infrared luminosities, which imply high dust enshrouded star formation rates and substantial molecular gas masses. We observed these sources using the Robert C. Byrd Green Bank Telescope, the Karl G. Jansky Very Large Array, the Plateau de Bure Interferometer, and the Submillimeter Array in order to obtain measurements of multiple CO spectral lines, allowing us to determine the physical conditions of the molecular gas. Our high resolution and multi-line CO mapping of SMM J00266+1708 reveals that it is a pair of merging galaxies, whose two components have different gas excitation conditions and different gas kinematics. For SMM J14011+0252 (J14011), we find a near-unity CO(3--2)/CO(1--0) intensity ratio, consistent with a single phase (i.e., a single temperature and density) of molecular gas and different from the average population value for dusty galaxies selected at submillimeter wavelengths. Our radiative transfer modeling (using the large velocity gradient approximation) indicates that converting the CO line luminosity to molecular gas mass requires a Galactic (disk-like) scale factor rather than the typical conversion factor assumed for starbursts. Despite this choice of conversion factor, J14011 falls in the same region of star formation rate surface density and gas mass surface density (the Schmidt-Kennicutt relation) as other starburst galaxies. SDSS J0901+1814 (J0901) was initially selected as a star-forming galaxy at ultraviolet wavelengths, but also has a large infrared luminosity. We use the magnification provided by the strong gravitational lensing affecting this system to examine the spatial variation of the CO excitation within J0901. We find that the CO(3--2)/CO(1--0) line ratio is

  13. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  14. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  15. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    Science.gov (United States)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height

  16. Novel Low Cost, High Reliability Wind Turbine Drivetrain

    Energy Technology Data Exchange (ETDEWEB)

    Chobot, Anthony; Das, Debarshi; Mayer, Tyler; Markey, Zach; Martinson, Tim; Reeve, Hayden; Attridge, Paul; El-Wardany, Tahany

    2012-09-13

    Clipper Windpower, in collaboration with United Technologies Research Center, the National Renewable Energy Laboratory, and Hamilton Sundstrand Corporation, developed a low-cost, deflection-compliant, reliable, and serviceable chain drive speed increaser. This chain and sprocket drivetrain design offers significant breakthroughs in the areas of cost and serviceability and addresses the key challenges of current geared and direct-drive systems. The use of gearboxes has proven to be challenging; the large torques and bending loads associated with use in large multi-MW wind applications have generally limited demonstrated lifetime to 8-10 years [1]. The large cost of gearbox replacement and the required use of large, expensive cranes can result in gearbox replacement costs on the order of $1M, representing a significant impact to overall cost of energy (COE). Direct-drive machines eliminate the gearbox, thereby targeting increased reliability and reduced life-cycle cost. However, the slow rotational speeds require very large and costly generators, which also typically have an undesirable dependence on expensive rare-earth magnet materials and large structural penalties for precise air gap control. The cost of rare-earth materials has increased 20X in the last 8 years representing a key risk to ever realizing the promised cost of energy reductions from direct-drive generators. A common challenge to both geared and direct drive architectures is a limited ability to manage input shaft deflections. The proposed Clipper drivetrain is deflection-compliant, insulating later drivetrain stages and generators from off-axis loads. The system is modular, allowing for all key parts to be removed and replaced without the use of a high capacity crane. Finally, the technology modularity allows for scalability and many possible drivetrain topologies. These benefits enable reductions in drivetrain capital cost by 10.0%, levelized replacement and O&M costs by 26.7%, and overall cost of

  17. Determination of leveled costs of electric generation for gas plants, coal and nuclear; Determinacion de costos nivelados de generacion electrica para plantas de gas, carbon y nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G.; Palacios H, J.C.; Ramirez S, J.R.; Gomez, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: galonso@nuclear.inin.mx

    2005-07-01

    The present work analyzes the leveled costs of electric generation for different types of nuclear reactors known as Generation III, these costs are compared with the leveled costs of electric generation of plants with the help of natural gas and coal. In the study several discount rates were used to determine their impact in the initial investment. The obtained results are comparable with similar studies and they show that it has more than enough the base of the leveled cost the nuclear option it is quite competitive in Mexico. Also in this study it is also thinks about the economic viability of a new nuclear power station in Mexico. (Author)

  18. New perspectives in vacuum high voltage insulation. II. Gas desorption

    CERN Document Server

    Diamond, W T

    1998-01-01

    An examination has been made of gas desorption from unbaked electrodes of copper, niobium, aluminum, and titanium subjected to high voltage in vacuum. It has been shown that the gas is composed of water vapor, carbon monoxide, and carbon dioxide, the usual components of vacuum outgassing, plus an increased yield of hydrogen and light hydrocarbons. The gas desorption was driven by anode conditioning as the voltage was increased between the electrodes. The gas is often desorbed as microdischarges-pulses of a few to hundreds of microseconds-and less frequently in a more continuous manner without the obvious pulsed structure characteristic of microdischarge activity. The quantity of gas released was equivalent to many monolayers and consisted mostly of neutral molecules with an ionic component of a few percent. A very significant observation was that the gas desorption was more dependent on the total voltage between the electrodes than on the electric field. It was not triggered by field-emitted electrons but oft...

  19. COST EFFECTIVE REGULATORY APPROACHES TO ENHANCE DOMESTIC OIL & GAS PRODUCTION AND ENSURE THE PROTECTION OF THE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ben Grunewald; Paul Jehn; Tom Gillespie; Ben Binder

    2004-12-21

    The Environmental Information Management Suite/Risk Based Data Management System (EIMS/RBDMS) and Cost Effective Regulatory Approach (CERA) programs continue to be successful. All oil and gas state regulatory programs participate in these efforts. Significant accomplishments include: streamline regulatory approaches, enhancing environmental protection, and making oil and gas data available via the Internet. Oil and gas companies worldwide now have access to data on state web sites. This reduces the cost of exploration and enables companies to develop properties in areas that would have been cost prohibited for exploration. Early in project, GWPC and State Oil and Gas agencies developed the EIMS and CERA strategic plan to prioritize long term development and implementation. The planning process identifies electronic commerce and coal bed methane as high priorities. The group has involved strategic partners in industry and government to develop a common data exchange process. Technical assistance to Alaska continues to improve their program management capabilities. New initiatives in Alaska include the development of an electronic permit tracking system. This system allows managers to expedite the permitting process. Nationwide, the RBDMS system is largely completed with 22 states and one Indian Nation now using this nationally accepted data management system. Additional remaining tasks include routine maintenance and the installation of the program upon request for the remaining oil and gas states. The GWPC in working with the BLM and MMS to develop an XML schema to facilitate electronic permitting and reporting (Appendix A, B, and C). This is a significant effort and, in years to come, will increase access to federal lands by reducing regulatory barriers. The new initiatives are coal bed methane and e-commerce. The e-commerce program will provide industry and BLM/MMS access to the millions of data points housed in the RBDMS system. E-commerce will streamline

  20. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.; Lakatos, J.; Snape, C.E.; Sun, C. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    To help reduce the cost of Hg capture from flue gas a number of low-cost carbons are being investigated, including activated tyre char and PFA carbon, in conjunction with some of the pre-treatments that have been found to be effective for commercial actived carbons. Experimental conditions for screening the sorbents have been selected to determine breakthrough capacities rapidly. The unactivated carbons have low breakthrough capacities under the test conditions employed (around 0.1 mg g{sup -1}) but these improve upon steam activation (around 0.25 mg g{sup -1}) but are still lower than those of non-impregnated commercial activated carbons (around 0.4-0.7 mg g{sup -1}), due to their lower surface areas. Comparable improvements to the commercial carbons have been achieved for impregnation treatments, including sulfur and bromine. However, certain gasification chars do have much higher breakthrough capacities than commercial carbons used for flue gas injection. Manganese oxide impregnation with low concentration is particularly effective for the activated and unactivated carbons giving breakthrough capacities comparable to the commercial carbons. Pointers for further increasing breakthrough and equilibrium capacities for carbon-based sorbents are discussed. 7 refs., 1 fig., 3 tabs.

  1. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

    International Nuclear Information System (INIS)

    Dougherty, William; Kartha, Sivan; Lazarus, Michael; Fencl, Amanda; Rajan, Chella; Bailie, Alison; Runkle, Benjamin

    2009-01-01

    Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H 2 ) with oxygen (O 2 ). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a 'business-as-usual' (BAU) context with continued reliance on fossil fuels, and a 'GHG-constrained' context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options. (author)

  2. Greenhouse gas reduction benefits and costs of a large-scale transition to hydrogen in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, William; Kartha, Sivan; Lazarus, Michael; Fencl, Amanda [Stockholm Environment Institute - US Center, 11 Curtis Avenue, Somerville, MA 02143 (United States); Rajan, Chella [Indian Institute of Technology Madras, I.I.T. Post Office, Chennai 600 036 (India); Bailie, Alison [The Pembina Institute, 200, 608 - 7th Street, S.W. Calgary, AB (Canada); Runkle, Benjamin [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2009-01-15

    Hydrogen is an energy carrier able to be produced from domestic, zero-carbon sources and consumed by zero-pollution devices. A transition to a hydrogen-based economy could therefore potentially respond to climate, air quality, and energy security concerns. In a hydrogen economy, both mobile and stationary energy needs could be met through the reaction of hydrogen (H{sub 2}) with oxygen (O{sub 2}). This study applies a full fuel cycle approach to quantify the energy, greenhouse gas emissions (GHGs), and cost implications associated with a large transition to hydrogen in the United States. It explores a national and four metropolitan area transitions in two contrasting policy contexts: a 'business-as-usual' (BAU) context with continued reliance on fossil fuels, and a 'GHG-constrained' context with policies aimed at reducing greenhouse gas emissions. A transition in either policy context faces serious challenges, foremost among them from the highly inertial investments over the past century or so in technology and infrastructure based on petroleum, natural gas, and coal. A hydrogen transition in the USA could contribute to an effective response to climate change by helping to achieve deep reductions in GHG emissions by mid-century across all sectors of the economy; however, these reductions depend on the use of hydrogen to exploit clean, zero-carbon energy supply options. (author)

  3. Elevated temperature and high pressure large helium gas loop

    International Nuclear Information System (INIS)

    Sakasai, Minoru; Midoriyama, Shigeru; Miyata, Toyohiko; Nakase, Tsuyoshi; Izaki, Makoto

    1979-01-01

    The development of high temperature gas-cooled reactors especially aiming at the multi-purpose utilization of nuclear heat energy is carried out actively in Japan and West Germany. In Japan, the experimental HTGR of 50 MWt and 1000 deg C outlet temperature is being developed by Japan Atomic Energy Research Institute and others since 1969, and the development of direct iron-making technology utilizing high temperature reducing gas was started in 1973 as the large project of Ministry of Internalional Trade and Industry. Kawasaki Heavy Industries, Ltd., Has taken part in these development projects, and has developed many softwares for nuclear heat design, system design and safety design of nuclear reactor system and heat utilization system. In hardwares also, efforts have been exerted to develop the technologies of design and manufacture of high temperature machinery and equipments. The high temperature, high pressure, large helium gas loop is under construction in the technical research institute of the company, and it is expected to be completed in December, 1979. The tests planned are that of proving the dynamic performances of the loop and its machinery and equipments and the verification of analysis codes. The loop is composed of the main circulation system, the objects of testing, the helium gas purifying system, the helium supplying and evacuating system, instruments and others. (Kako, I.)

  4. Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050

    International Nuclear Information System (INIS)

    Rečka, L.; Ščasný, M.

    2016-01-01

    A dynamic partial equilibrium model, TIMES (​The Integrated MARKAL-EFOM System), is built to optimize the energy system in a post-transition European country, the Czech Republic. The impacts of overall nine scenarios on installed capacity, capital and fuel costs, air quality pollutant emission, emission of CO_2 and environmental and health damage are quantified for a period up to 2050. These scenarios are built around three different price sets of the EUA (EU allowance) to emit greenhouse gasses alongside a policy that retains the ban on brown coal mining in two Czech mines, a policy that will allow the re-opening of mining areas under this ban (i.e. within the territorial ecological limits), and a low natural gas price assumption. We found that the use of up until now dominant brown coal will be significantly reduced in each scenario, although reopening the coal mines will result in its smaller decline. With low EUA price, hard coal will become the dominant fuel in electricity generation, while nuclear will overtake this position with a 51% or even 65% share assuming the central price of EUA, or high EUA price, respectively. The low price of natural gas will result in an increasing gas share from an almost zero share recently up to about 42%. This stimulus does not however appear at all with low EUA price. Neither of these scenarios will achieve the renewable energy sources 2030 targets and only a high EUA price will lead to almost full de-carbonization of the Czech power system, with fossil fuels representing only 16% of the energy mix. The low EUA price will result in an increase in CO_2 emissions, whereas the high EUA price will reduce CO_2 emission by at least 81% compared to the 2015 reference level. Those scenarios that will result in CO_2 emission reduction will also generate ancillary benefits due to reduction in air quality emissions, on average over the entire period, at least at 38€ per t of avoided CO_2, whereas scenarios that will lead to CO_2

  5. Modified technology in new constructions, and cost effective remedial action in existing structures, to prevent infiltration of soil gas carrying radon

    International Nuclear Information System (INIS)

    Ericson, S.O.; Schmid, H.; Clavensjo, B.

    1984-01-01

    The general principles and mechanisms of how soil gas carrying radon infiltrates from the foundation bed and subsoil into buildings are discussed. The Swedish Building Research Council has funded experiments and evaluations of cost effective remedial actions. The work has concerned existing dwellings with high concentration of radon where this is a result of infiltrating soil gas and/or exhalation from building materials. A review is given of experience and results acquired up to the summer of 1983. 100 dwellings have been erected with consideration of possible infiltration of soil gas. Modification of design, added costs (investment and operation) and resulting concentration of radon in indoor air is discussed. In general minor modifications are sufficient. (author)

  6. Cost/benefit of high technology in diagnostic radiology

    Energy Technology Data Exchange (ETDEWEB)

    Goethlin, J.H.

    1987-08-01

    High technology is frequently blamed as a main cause for the last decade's disproportionate rise in health expenditure. Total costs for all large diagnostic and therapeutic appliances are typically less than 1% of annual expenditure on health care. CT, DSA, MRI, interventional radiology, ESWL, US, mammography, computers in radiology and PACS may save 10-80% of total cost for diagnosis and treatment of disease. Expenditure on high technology is in general vastly overestimated. Because of its medical utility, a slower deployment cannot be desirable. (orig.)

  7. Cost/benefit of high technology in diagnostic radiology

    International Nuclear Information System (INIS)

    Goethlin, J.H.

    1987-01-01

    High technology is frequently blamed as a main cause for the last decade's disproportionate rise in health expenditure. Total costs for all large diagnostic and therapeutic appliances are typically less than 1% of annual expenditure on health care. CT, DSA, MRI, interventional radiology, ESWL, US, mammography, computers in radiology and PACS may save 10-80% of total cost for diagnosis and treatment of disease. Expenditure on high technology is in general vastly overestimated. Because of its medical utility, a slower deployment cannot be desirable. (orig.)

  8. Cost-Benefit Analysis applied to the natural gas program for vehicles in the Metropolitan Area of the Aburra Valley

    International Nuclear Information System (INIS)

    Saldarriaga Isaza, Carlos Adrian; Vasquez Sanchez, Edison; Chavarria Munera, Sergio

    2011-01-01

    This article presents the evaluation of the natural gas program for vehicles applied in Metropolitan Area of the Aburra Valley. By using the Cost- Benefit Analysis method, four cost variables were identified: private, fiscal, gas tax, and conversion tax; and three types of benefits: private, fiscal and social. For the environmental social benefit estimation the benefit transfer technique was employed, carrying out meta-analysis function estimation. The cost-benefit net outcome is positive and favors the program application in the study site; in real terms the total profits are about COP$ 803265 million for the complete eight year period it took place (2001- 2008).

  9. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  10. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zuqing Chen

    2016-03-01

    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  11. High temperature gas dynamics an introduction for physicists and engineers

    CERN Document Server

    Bose, Tarit K

    2014-01-01

    High Temperature Gas Dynamics is a primer for scientists, engineers, and students who would like to have a basic understanding of the physics and the behavior of high-temperature gases. It is a valuable tool for astrophysicists as well. The first chapters treat the basic principles of quantum and statistical mechanics and how to derive thermophysical properties from them. Special topics are included that are rarely found in other textbooks, such as the thermophysical and transport properties of multi-temperature gases and a novel method to compute radiative transfer. Furthermore, collision processes between different particles are discussed. Separate chapters deal with the production of high-temperature gases and with electrical emission in plasmas, as well as related diagnostic techniques.This new edition adds over 100 pages and includes the following updates: several sections on radiative properties of high temperature gases and various radiation models, a section on shocks in magneto-gas-dynamics, a sectio...

  12. Optimal household refrigerator replacement policy for life cycle energy, greenhouse gas emissions, and cost

    International Nuclear Information System (INIS)

    Kim, Hyung Chul; Keoleian, Gregory A.; Horie, Yuhta A.

    2006-01-01

    Although the last decade witnessed dramatic progress in refrigerator efficiencies, inefficient, outdated refrigerators are still in operation, sometimes consuming more than twice as much electricity per year compared with modern, efficient models. Replacing old refrigerators before their designed lifetime could be a useful policy to conserve electric energy and greenhouse gas emissions. However, from a life cycle perspective, product replacement decisions also induce additional economic and environmental burdens associated with disposal of old models and production of new models. This paper discusses optimal lifetimes of mid-sized refrigerator models in the US, using a life cycle optimization model based on dynamic programming. Model runs were conducted to find optimal lifetimes that minimize energy, global warming potential (GWP), and cost objectives over a time horizon between 1985 and 2020. The baseline results show that depending on model years, optimal lifetimes range 2-7 years for the energy objective, and 2-11 years for the GWP objective. On the other hand, an 18-year of lifetime minimizes the economic cost incurred during the time horizon. Model runs with a time horizon between 2004 and 2020 show that current owners should replace refrigerators that consume more than 1000 kWh/year of electricity (typical mid-sized 1994 models and older) as an efficient strategy from both cost and energy perspectives

  13. High-resolution (noble) gas time series for aquatic research

    Science.gov (United States)

    Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.

    2017-12-01

    We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b

  14. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  15. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  16. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, M A; Kane, J; Loosmore, G; DeMuth, J; Latkowski, J

    2010-12-03

    ICF power plants, such as the LIFE scheme at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. To reduce the uncertainties of cooling and beam/target propagation through such gas-filled chambers, we present a pulsed plasma source producing 2-5 eV plasma comprised of high-Z gases. We use a 5-kJ, 100-ns theta discharge for high peak plasma-heating-power, an electrode-less discharge for minimizing impurities, and unobstructed axial access for diagnostics and beam (and/or target) propagation studies. We will report on the plasma source requirements, design process, and the system design.

  17. The high cost of low-acuity ICU outliers.

    Science.gov (United States)

    Dahl, Deborah; Wojtal, Greg G; Breslow, Michael J; Holl, Randy; Huguez, Debra; Stone, David; Korpi, Gloria

    2012-01-01

    Direct variable costs were determined on each hospital day for all patients with an intensive care unit (ICU) stay in four Phoenix-area hospital ICUs. Average daily direct variable cost in the four ICUs ranged from $1,436 to $1,759 and represented 69.4 percent and 45.7 percent of total hospital stay cost for medical and surgical patients, respectively. Daily ICU cost and length of stay (LOS) were higher in patients with higher ICU admission acuity of illness as measured by the APACHE risk prediction methodology; 16.2 percent of patients had an ICU stay in excess of six days, and these LOS outliers accounted for 56.7 percent of total ICU cost. While higher-acuity patients were more likely to be ICU LOS outliers, 11.1 percent of low-risk patients were outliers. The low-risk group included 69.4 percent of the ICU population and accounted for 47 percent of all LOS outliers. Low-risk LOS outliers accounted for 25.3 percent of ICU cost and incurred fivefold higher hospital stay costs and mortality rates. These data suggest that severity of illness is an important determinant of daily resource consumption and LOS, regardless of whether the patient arrives in the ICU with high acuity or develops complications that increase acuity. The finding that a substantial number of long-stay patients come into the ICU with low acuity and deteriorate after ICU admission is not widely recognized and represents an important opportunity to improve patient outcomes and lower costs. ICUs should consider adding low-risk LOS data to their quality and financial performance reports.

  18. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  19. High resolution 3D gas-jet characterization

    International Nuclear Information System (INIS)

    Landgraf, Bjoern; Kaluza, Malte C.; Spielmann, Christian; Schnell, Michael; Saevert, Alexander

    2011-01-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 x 10 17 cm -3 .

  20. Uv laser triggering of high-voltage gas switches

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Frost, C.A.; Green, T.A.

    1982-01-01

    Two different techniques are discussed for uv laser triggering of high-voltage gas switches using a KrF laser (248 nm) to create an ionized channel through the dielectric gas in a spark gap. One technique uses an uv laser to induce breakdown in SF 6 . For this technique, we present data that demonstrate a 1-sigma jitter of +- 150 ps for a 0.5-MV switch at 80% of its self-breakdown voltage using a low-divergence KrF laser. The other scheme uses additives to the normal dielectric gas, such as tripropylamine, which are selected to undergo resonant two-step ionization in the uv laser field

  1. Properties of super alloys for high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Izaki, Takashi; Nakai, Yasuo; Shimizu, Shigeki; Murakami, Takashi

    1975-01-01

    The existing data on the properties at high temperature in helium gas of iron base super alloys. Incoloy-800, -802 and -807, nickel base super alloys, Hastelloy-X, Inconel-600, -617 and -625, and a casting alloy HK-40 were collectively evaluated from the viewpoint of the selection of material for HTGRs. These properties include corrosion resistance, strength and toughness, weldability, tube making, formability, radioactivation, etc. Creep strength was specially studied, taking into consideration the data on the creep characteristics in the actual helium gas atmosphere. The necessity of further long run creep data is suggested. Hastelloy-X has completely stable corrosion resistance at high temperature in helium gas. Incoloy 800 and 807 and Inconel 617 are not preferable in view of corrosion resistance. The creep strength of Inconel 617 extraporated to 1,000 deg C for 100,000 hours in air was the greatest rupture strength of 0.6 kg/mm 2 in all above alloys. However, its strength in helium gas began to fall during a relatively short time, so that its creep strength must be re-evaluated in the use for long time. The radioactivation and separation of oxide film in primary construction materials came into question, Inconel 617 and Incoloy 807 showed high induced radioactivity intensity. Generally speaking, in case of nickel base alloys such as Hastelloy-X, oxide film is difficult to break away. (Iwakiri, K.)

  2. Low Cost Lithography Tool for High Brightness LED Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Hawryluk; Emily True

    2012-06-30

    The objective of this activity was to address the need for improved manufacturing tools for LEDs. Improvements include lower cost (both capital equipment cost reductions and cost-ofownership reductions), better automation and better yields. To meet the DOE objective of $1- 2/kilolumen, it will be necessary to develop these highly automated manufacturing tools. Lithography is used extensively in the fabrication of high-brightness LEDs, but the tools used to date are not scalable to high-volume manufacturing. This activity addressed the LED lithography process. During R&D and low volume manufacturing, most LED companies use contact-printers. However, several industries have shown that these printers are incompatible with high volume manufacturing and the LED industry needs to evolve to projection steppers. The need for projection lithography tools for LED manufacturing is identified in the Solid State Lighting Manufacturing Roadmap Draft, June 2009. The Roadmap states that Projection tools are needed by 2011. This work will modify a stepper, originally designed for semiconductor manufacturing, for use in LED manufacturing. This work addresses improvements to yield, material handling, automation and throughput for LED manufacturing while reducing the capital equipment cost.

  3. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    Abstract. A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available discrim- inators. A timing error of 16 ps is achieved under ideal operating conditions. Under more realistic operating conditions the discriminator displays a ...

  4. The Influence of Mixing in High Temperature Gas Phase Reactions

    DEFF Research Database (Denmark)

    Østberg, Martin

    1996-01-01

    by injection of NH3 with carrier gas into the flue gas. NH3 can react with NO and form N2, but a competing reaction path is the oxidation of NH3 to NO.The SNR process is briefly described and it is shown by chemical kinetic modelling that OH radicals under the present conditions will initiate the reaction......The objective of this thesis is to describe the mixing in high temperature gas phase reactions.The Selective Non-Catalytic Reduction of NOx (referred as the SNR process) using NH3 as reductant was chosen as reaction system. This in-furnace denitrification process is made at around 1200 - 1300 K...... diffusion. The SNR process is simulated using the mixing model and an empirical kinetic model based on laboratory experiments.A bench scale reactor set-up has been built using a natural gas burner to provide the main reaction gas. The set-up has been used to perform an experimental investigation...

  5. A study of silver behavior in Gas-turbine High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Sawa, Kazuhiro; Tanaka, Toshiyuki

    1995-11-01

    A Gas-turbine High Temperature Gas-cooled Reactor (GT-HTGR) is one of the promising reactor systems of future HTGRs. In the design of GT-HTGR, behavior of fission products, especially of silver, is considered to be important from the view point of maintenance of gas-turbine. A study of silver behavior in the GT-HTGR was carried out based on current knowledge. The purposes of this study were to determine an importance of the silver problem quantitatively, countermeasures to the problem and items of future research and development which will be needed. In this study, inventory, fractional release from fuel, plateout in the primary circuit and radiation dose were evaluated, respectively. Based on this study, it is predicted that gamma-ray from plateout silver in gas-turbine system contributes about a half of total radiation dose after reactor shutdown. In future, more detail data for silver release from fuel, plateout behavior, etc. using the High Temperature Engineering Test Reactor (HTTR), for example, will be needed to carry out reasonable design. (author)

  6. Cost-effectiveness of high-efficiency appliances in the U.S. residential sector: A case study

    International Nuclear Information System (INIS)

    McNeil, Michael A.; Bojda, Nicholas

    2012-01-01

    This paper presents an analysis of the cost-effectiveness of high-efficiency appliances in the U.S. residential sector using cost and efficiency data developed as part of the regulatory process of the U.S. Department of Energy's Appliances and Commercial Equipment Standards Program. These data are presented as a case study in the development of an ‘efficiency technology database’ which can be expanded and published as a resource to other researchers and policy makers seeking scenarios that optimize efficiency policies and forecast their likely impacts on energy demand and greenhouse gas emissions. The use of this data to evaluate cost-effectiveness according to a variety of metrics is demonstrated using the example of one refrigerator–freezer product class. Cost-effectiveness is then evaluated in terms of cost of conserved energy for refrigerators, room air conditioners, water heaters, cooking equipment, central air conditioners and gas furnaces. The resulting potential of cost-effective improvement ranges from 1% to 53% of energy savings, with a typical potential of 15–20%. - Highlights: ► We determined the potential for cost-effective efficiency for residential appliances. ► We cover 6 appliance groups using cost of conserved energy as a metric for cost-effectiveness. ► Data are source from the DOE's Appliance and Commercial Equipment Standards Program. ► Between 15% and 20% additional cost-effective efficiency improvement is possible.

  7. Command vector memory systems: high performance at low cost

    OpenAIRE

    Corbal San Adrián, Jesús; Espasa Sans, Roger; Valero Cortés, Mateo

    1998-01-01

    The focus of this paper is on designing both a low cost and high performance, high bandwidth vector memory system that takes advantage of modern commodity SDRAM memory chips. To successfully extract the full bandwidth from SDRAM parts, we propose a new memory system organization based on sending commands to the memory system as opposed to sending individual addresses. A command specifies, in a few bytes, a request for multiple independent memory words. A command is similar to a burst found in...

  8. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. Houston; Melroy, Hilary R.; Ott, Lesley E.; Mclinden, Matthew L.; Holben, Brent; Wilson, Emily L.

    2012-01-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal io the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations io pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  9. Greenhouse Gas Concentration Data Recovery Algorithm for a Low Cost, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Ott, L.; McLinden, M. L.; Holben, B. N.; Wilson, E. L.

    2012-12-01

    The goal of a coordinated effort between groups at GWU and NASA GSFC is the development of a low-cost, global, surface instrument network that continuously monitors three key carbon cycle gases in the atmospheric column: carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), as well as oxygen (O2) for atmospheric pressure profiles. The network will implement a low-cost, miniaturized, laser heterodyne radiometer (mini-LHR) that has recently been developed at NASA Goddard Space Flight Center. This mini-LHR is designed to operate in tandem with the passive aerosol sensor currently used in AERONET (a well established network of more than 450 ground aerosol monitoring instruments worldwide), and could be rapidly deployed into this established global network. Laser heterodyne radiometry is a well-established technique for detecting weak signals that was adapted from radio receiver technology. Here, a weak light signal, that has undergone absorption by atmospheric components, is mixed with light from a distributed feedback (DFB) telecommunications laser on a single-mode optical fiber. The RF component of the signal is detected on a fast photoreceiver. Scanning the laser through an absorption feature in the infrared, results in a scanned heterodyne signal in the RF. Deconvolution of this signal through the retrieval algorithm allows for the extraction of altitude contributions to the column signal. The retrieval algorithm is based on a spectral simulation program, SpecSyn, developed at GWU for high-resolution infrared spectroscopies. Variations in pressure, temperature, composition, and refractive index through the atmosphere; that are all functions of latitude, longitude, time of day, altitude, etc.; are modeled using algorithms developed in the MODTRAN program developed in part by the US Air Force Research Laboratory. In these calculations the atmosphere is modeled as a series of spherically symmetric shells with boundaries specified at defined altitudes. Temperature

  10. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  11. High-speed cinematography of gas-metal atomization

    International Nuclear Information System (INIS)

    Ting, Jason; Connor, Jeffery; Ridder, Stephen

    2005-01-01

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images

  12. High costs of female choice in a lekking lizard.

    Directory of Open Access Journals (Sweden)

    Maren N Vitousek

    2007-06-01

    Full Text Available Although the cost of mate choice is an essential component of the evolution and maintenance of sexual selection, the energetic cost of female choice has not previously been assessed directly. Here we report that females can incur high energetic costs as a result of discriminating among potential mates. We used heart rate biologging to quantify energetic expenditure in lek-mating female Galápagos marine iguanas (Amblyrhynchus cristatus. Receptive females spent 78.9+/-23.2 kJ of energy on mate choice over a 30-day period, which is equivalent to approximately (3/4 of one day's energy budget. Females that spent more time on the territories of high-quality, high-activity males displayed greater energetic expenditure on mate choice, lost more mass, and showed a trend towards producing smaller follicles. Choosy females also appear to face a reduced probability of survival if El Niño conditions occur in the year following breeding. These findings indicate that female choice can carry significant costs, and suggest that the benefits that lek-mating females gain through mating with a preferred male may be higher than previously predicted.

  13. The evaluation study of high performance gas target system

    International Nuclear Information System (INIS)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-01

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production

  14. The evaluation study of high performance gas target system

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Goo; Yang, Seung Dae; Kim, Sang Wook

    2008-06-15

    The object of this study is a improvement of a gas target and targetry for increasing the radioisotope production yields. The main results are as follows 1. Improvement of beam entrance of the gas target : In this work, deep hole grid was designed for improvement of beam entrance. Using FEM(Finite Elements Method) analysis, it was verified that this design is more effective than the old one. 2. Improvement of target gas loading and withdrawing system : For the targetry, Helium gas and vacuum lines was installed for evaluating the production yields. Using these lines, it was proved that the recovery yields was improved and the residual impurity was reduced. 3. Improvement of target cooling efficiency : In case of the cylindrical target, it is more effective to use short length of target cavity for the high production yields. For improving the cooling efficiency, cooling fin was suggested to the target design. It is more effective to put the cooling fins inside the target cavity for the suppressed target pressure and density reduction effect during the proton beam irradiation. In conclusion, the target with fins inside the target cavity was better for high current irradiation and mass RI production.

  15. High temperature gas cleaning for pressurized gasification. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alden, H.; Hagstroem, P.; Hallgren, A.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-04-01

    The purpose of the project was to build an apparatus to study pressurized, high temperature gas cleaning of raw gasification gas generated from biomass. A flexible and easy to operate pressurized apparatus was designed and installed for the investigations in high temperature gas cleaning by means of thermal, catalytic or chemical procedures. A semi continuos fuel feeding concept, at a maximum rate of 700 g/h, allowed a very constant formation of a gas product at 700 deg C. The gas product was subsequently introduced into a fixed bed secondary reactor where the actual gas cleanup or reformation was fulfilled. The installation work was divided into four work periods and apart from a few delays the work was carried out according to the time plan. During the first work period (January - June 1994) the technical design, drawings etc. of the reactor and additional parts were completed. All material for the construction was ordered and the installation work was started. The second work period (July - December 1994) was dedicated to the construction and the installation of the different components. Initial tests with the electrical heating elements, control system and gas supply were assigned to the third work period (January - June 1995). After the commissioning and the resulting modifications, initial pyrolysis and tar decomposition experiments were performed. During the fourth and final work period, (June - December 1995) encouraging results from first tests allowed the experimental part of the project work to commence, however in a slightly reduced program. The experimental part of the project work comparatively studied tar decomposition as a function of the process conditions as well as of the choice of catalyst. Two different catalysts, dolomite and a commercial Ni-based catalyst, were evaluated in the unit. Their tar cracking ability in the pressure interval 1 - 20 bar and at cracker bed temperatures between 800 - 900 deg C was compared. Long term tests to study

  16. Audit report on GDF Suez supply costs in natural gas sale regulated tariffs. 4 April 2013

    International Nuclear Information System (INIS)

    2013-01-01

    After a recall of the context and objectives of this audit performed by the French Commission for Energy Regulation or CRE (legal framework, previously published opinion), this report first presents and comments the main evolutions of the European supply portfolio of GDF Suez in 2012: long term contracts to be negotiated again on significant volumes, a diversified portfolio with 30 per cent of short term purchases. In the second part, it analyses the adequacy between noticed and provisional supply costs on the one hand, and those estimated by means of the tariff formula for the calculation of natural gas sale regulated tariffs on the other hand. The third part gives recommendations regarding future decisions on the evolution of GDF-Suez natural gas regulated sale tariffs: discussion of the relevance of the formula used since January 2013, of perspectives for reviewing this tariff formula, of market share to be integrated, should the occasion occur, in the modified formula, and of the supply range to be taken into account

  17. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  18. A cost function for the natural gas transmission industry: further considerations

    International Nuclear Information System (INIS)

    Massol, O.

    2009-09-01

    This article studies the cost function for the natural gas transmission industry. 60 years ago, Hollis B. Chenery published an important contribution that demonstrated how, in that particular industry, the production function of micro-economic theory can be rewritten with engineering variables (Chenery, 1949). In 2008, an article published in The Engineering Economist (Yepez, 2008) provided a refreshing revival on Chenery's seminal thoughts. In addition to a tribute to the late H.B. Chenery, this document offers some further comments and extensions on Yepez (2008). It provides a statistically estimated characterisation of the long-run scale economies and a discussion on the short-run economics of the duplication of existing equipments. As a first extension, we study the optimal design for infrastructure that is planned to transport a seasonally-varying flow of natural gas. The second extension analyzes the optimal degree of excess capacity to be built into a new infrastructure by a firm that expects a random rise in its output during the infrastructure's lifetime. (author)

  19. Phenomenally High Transduction Air/gas Transducers for Practical Non-Contact Ultrasonic Applications

    Science.gov (United States)

    Bhardwaj, Mahesh C.

    2009-03-01

    Based on novel acoustic impedance matching layers and high coupling piezoelectric materials this paper describes exceptionally high air/gas transduction ultrasonic transducers. By providing applications oriented performance of these transducers we also usher in the era of much desired Non-Contact Ultrasound (NCU) testing and analysis of a wide range of materials including early stage formation of materials such as uncured composite prepregs, green ceramics and powder metals, plastics, elastomers, porous, hygroscopic, chemically bonded and other materials. Besides quality control, ultimately NCU offers timely opportunities for cost-effective materials production, energy savings, and environment protection.

  20. Production analysis of methanol and hydrogen of a modificated blast furnace gas using nuclear energy of the high temperature reactor

    International Nuclear Information System (INIS)

    Peschel, W.

    1985-12-01

    Modern blast furnaces are operated with a coke ration of 500 kg/t pig iron. The increase of the coke ratio to 1000 kg/t pig iron raises the content of carbon monoxide and hydrogen in the blast furnace gas. On the basis of a blast furnace gas modificated in such a way, the production of methanol and hydrogen is investigated under the coupling of current and process heat from the high temperature reactor. Moreover the different variants are discussed, for which respectively a material and energetic balance as well as an estimation of the production costs is performed. Regarding the subsequent treatment of the blast furnace gas it turns out favourably in principle to operate the blast furnace with a nitrogen-free wind consisting only of oxygen and steam. The production costs show a strong dependence on the raw material costs, whose influence is shown in a nomograph. (orig.) [de

  1. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  2. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  3. Power Conversion Study for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Richard Moore; Robert Barner

    2005-01-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gas cooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language

  4. High-temperature gas effects on aerodynamic characteristics of waverider

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-02-01

    Full Text Available This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium program developed by the authors while the perfect gas flow simulations are carried out with the commercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57% of the whole craft’s length at the altitude of 60 km.

  5. Long-term congestion management by investment in gas-turbine generators : a cost-benefit analysis

    International Nuclear Information System (INIS)

    Tuan, L.A.; Bhattacharya, K.

    2007-01-01

    Load management is one of the most important tasks in the operation of an electric power system. Transmission congestion occurs whenever the grid has one or more violations of the physical, operation, or policy constraints under which it normally operates. In a deregulated electricity market, the independent system operator (ISO) must ensure that contracted power transactions are carried out reliably. Several schemes of congestion management run the risk of increasing electricity prices due to the market power of local generators in congested areas. An alternative is to manage congestion through the installation of reserve gas turbine generators which can be brought online to the system within a short time. The use of gas turbines at different buses in the system can enhance the system in ways of transmission relief during emergency events. This paper proposed a framework for the evaluation of long-term investment by the ISO on gas-turbine generators as a tool for providing transmission congestion relief in the dispatch stage based on cost-benefit analysis. The objective of the framework is to optimally decide the locations and sizes of the generators at different buses in the network in order to minimize the total cost of investment of gas turbines and to minimize total system congestion. A bus-wise cost-benefit analysis was carried out by solving the DC optimal power flow (dc-OPF) model. The CIGRE 32-Bus system was used for the case study. It was shown that network overloading can be significantly reduced with the support of gas turbines at selected buses. The long-term decision of the investment on gas-turbine would depend on the opportunity cost of the gas-turbine with respect to the congestion problem. The gas turbines could also reduce the amount of unserved energy during peak load conditions. 11 refs., 4 tabs., 3 figs

  6. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    Science.gov (United States)

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  7. Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol

    Science.gov (United States)

    Pourhashem, Ghasideh; Adler, Paul R.; McAloon, Andrew J.; Spatari, Sabrina

    2013-06-01

    Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (-25 to -2 g CO2e MJ-1), substituting coal with lignin is second lowest (4-32 g CO2e MJ-1), and onsite power generation is highest (36-41 g CO2e MJ-1). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin-land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin-land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value (50-100/dry Mg) for nutrient and soil carbon replacement in agricultural soils, and potentially

  8. Cost and greenhouse gas emission tradeoffs of alternative uses of lignin for second generation ethanol

    International Nuclear Information System (INIS)

    Pourhashem, Ghasideh; Spatari, Sabrina; Adler, Paul R; McAloon, Andrew J

    2013-01-01

    Second generation ethanol bioconversion technologies are under demonstration-scale development for the production of lignocellulosic fuels to meet the US federal Renewable Fuel Standards (RFS2). Bioconversion technology utilizes the fermentable sugars generated from the cellulosic fraction of the feedstock, and most commonly assumes that the lignin fraction may be used as a source of thermal and electrical energy. We examine the life cycle greenhouse gas (GHG) emission and techno-economic cost tradeoffs for alternative uses of the lignin fraction of agricultural residues (corn stover, and wheat and barley straw) produced within a 2000 dry metric ton per day ethanol biorefinery in three locations in the United States. We compare three scenarios in which the lignin is (1) used as a land amendment to replace soil organic carbon (SOC); (2) separated, dried and sold as a coal substitute to produce electricity; and (3) used to produce electricity onsite at the biorefinery. Results from this analysis indicate that for life cycle GHG intensity, amending the lignin to land is lowest among the three ethanol production options (−25 to −2 g CO 2 e MJ −1 ), substituting coal with lignin is second lowest (4–32 g CO 2 e MJ −1 ), and onsite power generation is highest (36–41 g CO 2 e MJ −1 ). Moreover, the onsite power generation case may not meet RFS2 cellulosic fuel requirements given the uncertainty in electricity substitution. Options that use lignin for energy do so at the expense of SOC loss. The lignin–land amendment option has the lowest capital cost among the three options due to lower equipment costs for the biorefinery’s thermal energy needs and use of biogas generated onsite. The need to purchase electricity and uncertain market value of the lignin–land amendment could raise its cost compared to onsite power generation and electricity co-production. However, assuming a market value ($50–$100/dry Mg) for nutrient and soil carbon replacement in

  9. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  10. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  11. COST EFFECTIVE AND HIGH RESOLUTION SUBSURFACE CHARACTERIZATION USING HYDRAULIC TOMOGRAPHY

    Science.gov (United States)

    2017-08-01

    objective of this project is to provide the DoD and its remediation contractors with the HT technology for delineating the spatial distribution of...STATEMENT Approved for public release; distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hydraulic Tomography ( HT ) is a high-resolution...performance of subsurface remedial actions at environmental sites. The good technical performance and cost-effectiveness of HT have been demonstrated in

  12. Patents Associated with High-Cost Drugs in Australia

    OpenAIRE

    Christie, Andrew F.; Dent, Chris; McIntyre, Peter; Wilson, Lachlan; Studdert, David M.

    2013-01-01

    Australia, like most countries, faces high and rapidly-rising drug costs. There are longstanding concerns about pharmaceutical companies inappropriately extending their monopoly position by "evergreening" blockbuster drugs, through misuse of the patent system. There is, however, very little empirical information about this behaviour. We fill the gap by analysing all of the patents associated with 15 of the costliest drugs in Australia over the last 20 years. Specifically, we search the patent...

  13. Low-Cost Real-Time Gas Monitoring Using a Laser Plasma Induced by a Third Harmonic Q-Switched Nd-YAG Laser

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Abdulmadjid

    2005-11-01

    Full Text Available A gas plasma induced by a third harmonic Nd-YAG laser with relatively low pulsed energy (about 10 mJ has favorable characteristics for gas analysis due to its low background characteristics, nevertheless a high power fundamental Nd-YAG laser (100-200 mJ is widely used for laser gas breakdown spectroscopy. The air plasma can be used as a low-cost real-time gas monitoring system such that it can be used to detect the local absolute humidity, while a helium plasma can be used for gas analysis with a high level of sensitivity. A new technique using a helium plasma to improve laser ablation emission spectroscopy is proposed. Namely, the third harmonic Nd-YAG laser is focused at a point located some distance from the target in the 1-atm helium surrounding gas. By using this method, the ablated vapor from the target is excited through helium atoms in a metastable state in the helium plasma.

  14. An analysis on social cost benefit of city gas safety supervision system - concentrated on estimating the intended amount paid about gas safety of households using city gas

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Sung [Korea Energy Economics Institute, Euiwang (Korea)

    1999-04-01

    With the increase of convenient and clean gas fuel consumption, the danger of gas safety accident is also increasing. Therefore, now is the time for requiring many thoughtful concerns and cares for the prevention of gas accident. In this study, the perception of city gas end users on use of city gas was studied and the economic value of improving gas safety was estimated by examining the intended amount paid for improving safety of city gas use. Although most of city gas end-users perceive that gas use is generally safe, they are concerned about a possibility of dander of accidents happened without any notice. On the other hand, about 97% of households using city gas know checking gas safety at a minimum, but only 60% among them are implementing self-checkup. The economic benefit of improving gas safety of city gas end-users in Korea is estimated from the lowest of 121.47 billion to the highest of 317.97 billion annually. (author). 38 refs., 5 figs., 45 tabs.

  15. Norplant's high cost may prohibit use in Title 10 clinics.

    Science.gov (United States)

    1991-04-01

    The article discusses the prohibitive cost of Norplant for the Title 10 low-income population served in public family planning clinics in the U.S. It is argued that it's unfair for U.S. users to pay $350 to Wyeth- Ayerst when another pharmaceutical company provides developing countries with Norplant at a cost of $14 - 23. Although the public sector and private foundations funded the development, it was explained that the company needs to recoup the investment in training and education. Medicaid and third party payers such as insurance companies will reimburse for the higher price, but if the public sector price is lowered, then the company would not make a profit and everyone would have argued for the reimbursement at the lower cost. It was suggested that a boycott of American Home Products, Wyeth-Ayerst's parent company, be made. Public family planning providers who are particularly low in funding reflect that their budget of $30,000 would only provide 85 users, and identified in this circumstance by drug abusers and multiple pregnancy women, and the need for teenagers remains unfulfilled. Another remarked that the client population served is 4700 with $54,000 in funding, which is already accounted for. The general trend of comments was that for low income women the cost is to high.

  16. Utilization of multi-purpose high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Kawada, Osamu; Onuki, Yoshiaki; Wasaoka, Takeshi.

    1974-01-01

    Concerning the utilization of multi-purpose high temperature gas-cooled reactors, the electric power generation with gas turbines is described: features of HTR-He gas turbine power plants; the state of development of He gas turbines; and combined cycle with gas turbines and steam turbines. The features of gas turbines concern heat dissipation into the environment and the mode of load operation. Outstanding work in the development of He gas turbines is that in Hochtemperatur Helium-Turbine Project in West Germany. The power generation with combined gas turbines and steam turbines appears to be superior to that with gas turbines alone. (Mori, K.)

  17. Techno-economic analysis of seawater desalination using high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Wu Linchun; Qin Zhenya

    2001-01-01

    Our world, including China (especially in big cities and foreland), is facing the increased global shortage of potable water and pollution of water. It is ideal to promote seawater desalination to satisfy the potable water demand in these areas. Among the various processes, MED, RO and VC have proven well developed and promising. Due to the inherent safety and its vapor produced with high parameters and features of small size and modular design, HTGR (High Temperature Gas-cooled Reactor) of 2x200MW is chosen as the energy source for the desalination in dual production of clean water and power. This paper discusses the techno-economic feasibility of different seawater desalting systems using 2x200MW HTGR in the areas mentioned above, that is, ST-MED (Steam Turbine Cycle), RO, MED/TVC, RO/MED and GT-MED (Gas Turbine Cycle). The exergy concept is used in calculating availability to get cost of energy in desalination, and power credit method is used in economic assessment of different systems to get reasonable evaluating, while economic-life levelized cost method is adopted for calculating electricity cost of referred HTGR plant. In addition, sensitivity analysis on ST-MED economy is also presented. (author)

  18. Analysis for the high-level waste disposal cost object

    International Nuclear Information System (INIS)

    Kim, S. K.; Lee, J. R.; Choi, J. W.; Han, P. S.

    2003-01-01

    The purpose of this study is to analyse the ratio of cost object in terms of the disposal cost estimation. According to the result, the ratio of operating cost is the most significant object in total cost. There are a lot of differences between the disposal costs and product costs in view of their constituents. While the product costs may be classified by the direct materials cost, direct manufacturing labor cost, and factory overhead the disposal cost factors should be constituted by the technical factors and the non-technical factors

  19. MXene molecular sieving membranes for highly efficient gas separation.

    Science.gov (United States)

    Ding, Li; Wei, Yanying; Li, Libo; Zhang, Tao; Wang, Haihui; Xue, Jian; Ding, Liang-Xin; Wang, Suqing; Caro, Jürgen; Gogotsi, Yury

    2018-01-11

    Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H 2 permeability >2200 Barrer and H 2 /CO 2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation.

  20. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  1. Vacuum surface flashover and high pressure gas streamers

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.; Stolz, D.; Wright, S.N.

    1997-07-01

    Pre-breakdown current traces obtained during high pressure gas breakdown and vacuum surface flashover show similar signatures. The initial pre-breakdown current spike, a flat constant current phase, and the breakdown phase with voltage collapse and current surge differ mostly in magnitude. Given these similarities, a model, consisting of the initial current spike corresponding to a fast precursor streamer (ionization wave led by a photoionizing front), the flat current stage as the heating or glow phase, and the terminal avalanche and gap closure, is applied to vacuum surface flashover. A simple analytical approximation based on the resistivity changes induced in the vacuum and dielectric surface is presented. The approximation yields an excellent fit to pre-breakdown time delay vs applied field for previously published experimental data. A detailed kinetics model that includes surface and gas contributions is being developed based in the initial approximation

  2. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  3. High temperature, high pressure gas loop - the Component Flow Test Loop (CFTL)

    International Nuclear Information System (INIS)

    Gat, U.; Sanders, J.P.; Young, H.C.

    1984-01-01

    The high-pressure, high-temperature, gas-circulating Component Flow Test Loop located at Oak Ridge National Laboratory was designed and constructed utilizing Section III of the ASME Boiler and Pressure Vessel Code. The quality assurance program for operating and testing is also based on applicable ASME standards. Power to a total of 5 MW is available to the test section, and an air-cooled heat exchanger rated at 4.4 MW serves as heat sink. The three gas-bearing, completely enclosed gas circulators provide a maximum flow of 0.47 m 3 /s at pressures to 10.7 MPa. The control system allows for fast transients in pressure, power, temperature, and flow; it also supports prolonged unattended steady-state operation. The data acquisition system can access and process 10,000 data points per second. High-temperature gas-cooled reactor components are being tested

  4. Optimal control of greenhouse gas emissions and system cost for integrated municipal solid waste management with considering a hierarchical structure.

    Science.gov (United States)

    Li, Jing; He, Li; Fan, Xing; Chen, Yizhong; Lu, Hongwei

    2017-08-01

    This study presents a synergic optimization of control for greenhouse gas (GHG) emissions and system cost in integrated municipal solid waste (MSW) management on a basis of bi-level programming. The bi-level programming is formulated by integrating minimizations of GHG emissions at the leader level and system cost at the follower level into a general MSW framework. Different from traditional single- or multi-objective approaches, the proposed bi-level programming is capable of not only addressing the tradeoffs but also dealing with the leader-follower relationship between different decision makers, who have dissimilar perspectives interests. GHG emission control is placed at the leader level could emphasize the significant environmental concern in MSW management. A bi-level decision-making process based on satisfactory degree is then suitable for solving highly nonlinear problems with computationally effectiveness. The capabilities and effectiveness of the proposed bi-level programming are illustrated by an application of a MSW management problem in Canada. Results show that the obtained optimal management strategy can bring considerable revenues, approximately from 76 to 97 million dollars. Considering control of GHG emissions, it would give priority to the development of the recycling facility throughout the whole period, especially in latter periods. In terms of capacity, the existing landfill is enough in the future 30 years without development of new landfills, while expansion to the composting and recycling facilities should be paid more attention.

  5. Creating a Methodology for Coordinating High-resolution Air Quality Improvement Map and Greenhouse Gas Mitigation Strategies in Pittsburgh City

    Science.gov (United States)

    Shi, J.; Donahue, N. M.; Klima, K.; Blackhurst, M.

    2016-12-01

    In order to tradeoff global impacts of greenhouse gases with highly local impacts of conventional air pollution, researchers require a method to compare global and regional impacts. Unfortunately, we are not aware of a method that allows these to be compared, "apples-to-apples". In this research we propose a three-step model to compare possible city-wide actions to reduce greenhouse gases and conventional air pollutants. We focus on Pittsburgh, PA, a city with consistently poor air quality that is interested in reducing both greenhouse gases and conventional air pollutants. First, we use the 2013 Pittsburgh Greenhouse Gas Inventory to update the Blackhurst et al. model and conduct a greenhouse gas abatement potentials and implementation costs of proposed greenhouse gas reduction efforts. Second, we use field tests for PM2.5, NOx, SOx, organic carbon (OC) and elemental carbon (EC) data to inform a Land-use Regression Model for local air pollution at a 100m x 100m spatial level, which combined with a social cost of air pollution model (EASIUR) allows us to calculate economic social damages. Third, we combine these two models into a three-dimensional greenhouse gas cost abatement curve to understand the implementation costs and social benefits in terms of air quality improvement and greenhouse gas abatement for each potential intervention. We anticipated such results could provide policy-maker insights in green city development.

  6. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2005-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with turbine cycle is considered as one of the leading candidates for future nuclear power plants. In this paper, the various types of HTGR gas turbine cycles are concluded as three typical cycles of direct cycle, closed indirect cycle and open indirect cycle. Furthermore they are theoretically converted to three Brayton cycles of helium, nitrogen and air. Those three types of Brayton cycles are thermodynamically analyzed and optimized. The results show that the variety of gas affects the cycle pressure ratio more significantly than other cycle parameters, however, the optimized cycle efficiencies of the three Brayton cycles are almost the same. In addition, the turbomachines which are required for the three optimized Brayton cycles are aerodynamically analyzed and compared and their fundamental characteristics are obtained. Helium turbocompressor has lower stage pressure ratio and more stage number than those for nitrogen and air machines, while helium and nitrogen turbocompressors have shorter blade length than that for air machine

  7. Cheap imports next ordeal for Europe's high-cost producers

    International Nuclear Information System (INIS)

    Chynoweth, E.

    1993-01-01

    About one-third of Europe's 34 cracker and downstream units lost money in the final quarter of 1992, says Chem Systems (London). Average return on capital employed is negative - at the same level as in the gloomy days of the early 1980s - yet average operating rates are 80% now, compared with 65% a decade ago. Margins at what Chem Systems calls leader cracks (naphtha-based units that use good modern practices) are DM42/m.t. ethylene, DM100/m.t. less than they were in 1991. The consultant firm's recent report, European Petrochemical Strategy in the 1990s, suggests closure of 5%-10% of high-cost production. But, Chem Systems director Roger Longley states: We are not advocating wholesale closure. There are a small number (of plants) where additional investment would not payback that would be economical to shut. Cost reduction through mergers and acquisitions and operational changes is much more important, especially from an international aspect, Longley says. One thing people do not fully appreciate is that Europe is a high-cost region for petrochemical production, he adds. Traditionally, Europe exports 5% of its ethylene output, now it needs to tolerate cheap imports

  8. Patents associated with high-cost drugs in Australia.

    Directory of Open Access Journals (Sweden)

    Andrew F Christie

    Full Text Available Australia, like most countries, faces high and rapidly-rising drug costs. There are longstanding concerns about pharmaceutical companies inappropriately extending their monopoly position by "evergreening" blockbuster drugs, through misuse of the patent system. There is, however, very little empirical information about this behaviour. We fill the gap by analysing all of the patents associated with 15 of the costliest drugs in Australia over the last 20 years. Specifically, we search the patent register to identify all the granted patents that cover the active pharmaceutical ingredient of the high-cost drugs. Then, we classify the patents by type, and identify their owners. We find a mean of 49 patents associated with each drug. Three-quarters of these patents are owned by companies other than the drug's originator. Surprisingly, the majority of all patents are owned by companies that do not have a record of developing top-selling drugs. Our findings show that a multitude of players seek monopoly control over innovations to blockbuster drugs. Consequently, attempts to control drug costs by mitigating misuse of the patent system are likely to miss the mark if they focus only on the patenting activities of originators.

  9. Patents associated with high-cost drugs in Australia.

    Science.gov (United States)

    Christie, Andrew F; Dent, Chris; McIntyre, Peter; Wilson, Lachlan; Studdert, David M

    2013-01-01

    Australia, like most countries, faces high and rapidly-rising drug costs. There are longstanding concerns about pharmaceutical companies inappropriately extending their monopoly position by "evergreening" blockbuster drugs, through misuse of the patent system. There is, however, very little empirical information about this behaviour. We fill the gap by analysing all of the patents associated with 15 of the costliest drugs in Australia over the last 20 years. Specifically, we search the patent register to identify all the granted patents that cover the active pharmaceutical ingredient of the high-cost drugs. Then, we classify the patents by type, and identify their owners. We find a mean of 49 patents associated with each drug. Three-quarters of these patents are owned by companies other than the drug's originator. Surprisingly, the majority of all patents are owned by companies that do not have a record of developing top-selling drugs. Our findings show that a multitude of players seek monopoly control over innovations to blockbuster drugs. Consequently, attempts to control drug costs by mitigating misuse of the patent system are likely to miss the mark if they focus only on the patenting activities of originators.

  10. Development of high temperature gas cooled reactor in China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wentao [Paul Scherrer Institute, Villigen (Switzerland). Dept. of Nuclear Energy and Safety; Schorer, Michael [Swiss Nuclear Forum, Olten (Switzerland)

    2018-02-15

    High temperature gas cooled reactor (HTGR) is one of the six Generation IV reactor types put forward by Generation IV International Forum (GIF) in 2002. This type of reactor has high outlet temperature. It uses Helium as coolant and graphite as moderator. Pebble fuel and ceramic reactor core are adopted. Inherit safety, good economy, high generating efficiency are the advantages of HTGR. According to the comprehensive evaluation from the international nuclear community, HTGR has already been given the priority to the research and development for commercial use. A demonstration project of the High Temperature Reactor-Pebble-�bed Modules (HTR-PM) in Shidao Bay nuclear power plant in China is under construction. In this paper, the development history of HTGR in China and the current situation of HTR-PM will be introduced. The experiences from China may be taken as a reference by the international nuclear community.

  11. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Landi, G. T.; Romero, S. A.; Santos, A. D. [Departamento de Fisica dos Materiais e Mecanica, Laboratorio de Materiais Magneticos, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05314-970 Sao Paulo, SP (Brazil)

    2010-03-15

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  12. High density flux of Co nanoparticles produced by a simple gas aggregation apparatus

    International Nuclear Information System (INIS)

    Landi, G. T.; Romero, S. A.; Santos, A. D.

    2010-01-01

    Gas aggregation is a well known method used to produce clusters of different materials with good size control, reduced dispersion, and precise stoichiometry. The cost of these systems is relatively high and they are generally dedicated apparatuses. Furthermore, the usual sample production speed of these systems is not as fast as physical vapor deposition devices posing a problem when thick samples are needed. In this paper we describe the development of a multipurpose gas aggregation system constructed as an adaptation to a magnetron sputtering system. The cost of this adaptation is negligible and its installation and operation are both remarkably simple. The gas flow for flux in the range of 60-130 SCCM (SCCM denotes cubic centimeter per minute at STP) is able to completely collimate all the sputtered material, producing spherical nanoparticles. Co nanoparticles were produced and characterized using electron microscopy techniques and Rutherford back-scattering analysis. The size of the particles is around 10 nm with around 75 nm/min of deposition rate at the center of a Gaussian profile nanoparticle beam.

  13. Weighted Average Cost of Retail Gas (WACORG) highlights pricing effects in the US gas value chain: Do we need wellhead price-floor regulation to bail out the unconventional gas industry?

    International Nuclear Information System (INIS)

    Weijermars, Ruud

    2011-01-01

    The total annual revenue stream in the US natural gas value chain over the past decade is analyzed. Growth of total revenues has been driven by higher wellhead prices, which peaked in 2008. The emergence of the unconventional gas business was made possible in part by the pre-recessional rise in global energy prices. The general rise in natural gas prices between 1998 and 2008 did not lower overall US gas consumption, but shifts have occurred during the past decade in the consumption levels of individual consumer groups. Industry's gas consumption has decreased, while power stations increased their gas consumption. Commercial and residential consumers maintained flat gas consumption patterns. This study introduces the Weighted Average Cost of Retail Gas (WACORG) as a tool to calculate and monitor an average retail price based on the different natural gas prices charged to the traditional consumer groups. The WACORG also provides insight in wellhead revenues and may be used as an instrument for calibrating retail prices in support of wellhead price-floor regulation. Such price-floor regulation is advocated here as a possible mitigation measure against excessive volatility in US wellhead gas prices to improve the security of gas supply. - Highlights: → This study introduces an average retail price, WACORG. → WACORG can monitor price differentials for the traditional US gas consumer groups. → WACORG also provides insight in US wellhead revenues. → WACORG can calibrate retail prices in support of wellhead price-floor regulation. → Gas price-floor can improve security of gas supply by reducing price volatility.

  14. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    Robert S. Cherry; Richard A. Wood

    2006-01-01

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  15. High rate operation of micro-strip gas chambers on diamond-coated glass

    CERN Document Server

    Bouclier, Roger; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Temmel, T; Cooke, R A; Donnel, S; Sastri, S A; Sonderer, N

    1996-01-01

    Very high rate operation of micro­strip gas chambers can be achieved using slightly conducting substrates. We describe preliminary measurements realized with detectors manufactured on boro-silicate glass coated, before the photo-lithographic processing, with a diamond layer having a surface resistivity of around 1014 ‡/o. Stable medium-term operation, and a rate capability largely exceeding the one obtained with identical plates manufactured on uncoated glass are demonstrated. If these results are confirmed by long-term measurements the diamond coating technology appears very attractive since it allows, with a moderate cost overhead, to use thin, commercially available glass with the required surface quality for the large-scale production of gas micro-strip detectors.

  16. Geography and the costs of urban energy infrastructure: The case of electricity and natural gas capital investments

    Science.gov (United States)

    Senyel, Muzeyyen Anil

    Investments in the urban energy infrastructure for distributing electricity and natural gas are analyzed using (1) property data measuring distribution plant value at the local/tax district level, and (2) system outputs such as sectoral numbers of customers and energy sales, input prices, company-specific characteristics such as average wages and load factor. Socio-economic and site-specific urban and geographic variables, however, often been neglected in past studies. The purpose of this research is to incorporate these site-specific characteristics of electricity and natural gas distribution into investment cost model estimations. These local characteristics include (1) socio-economic variables, such as income and wealth; (2) urban-related variables, such as density, land-use, street pattern, housing pattern; (3) geographic and environmental variables, such as soil, topography, and weather, and (4) company-specific characteristics such as average wages, and load factor. The classical output variables include residential and commercial-industrial customers and sales. In contrast to most previous research, only capital investments at the local level are considered. In addition to aggregate cost modeling, the analysis focuses on the investment costs for the system components: overhead conductors, underground conductors, conduits, poles, transformers, services, street lighting, and station equipment for electricity distribution; and mains, services, regular and industrial measurement and regulation stations for natural gas distribution. The Box-Cox, log-log and additive models are compared to determine the best fitting cost functions. The Box-Cox form turns out to be superior to the other forms at the aggregate level and for network components. However, a linear additive form provides a better fit for end-user related components. The results show that, in addition to output variables and company-specific variables, various site-specific variables are statistically

  17. Atmospheric Pressure Effect of Retained Gas in High Level Waste

    International Nuclear Information System (INIS)

    Weber, A.H.

    1999-01-01

    Isolated high level waste tanks in H-Area have unexplained changes in waste-level which have been attributed to environmental effects including pressure, temperature, and relative humidity. Previous studies at SRS have considered waste-level changes from causes not including the presence of gas in the salt cake. This study was undertaken to determine the effect of atmospheric pressure on gas in the salt cake and resultant changes in the supernate level of Tank 41H, and to model that effect if possible. A simple theory has been developed to account for changes in the supernate level in a high level waste tank containing damp salt cake as the response of trapped gases to changes in the ambient pressure. The gas is modeled as an ideal gas retained as bubbles within the interstitial spaces in the salt cake and distributed uniformly throughout the tank. The model does not account for consistent long term increases or decreases in the tank level. Any such trend in the tank level is attributed to changes in the liquid content in the tank (from condensation, evaporation, etc.) and is removed from the data prior to the void estimation. Short term fluctuations in the tank level are explained as the response of the entrained gas volume to changes in the ambient pressure. The model uses the response of the tank level to pressure changes to estimate an average void fraction for the time period of interest. This estimate of the void is then used to predict the expected level response. The theory was applied to three separate time periods of the level data for tank 41H as follows: (1) May 3, 1993 through August 3, 1993, (2) January 23, 1994 through April 21, 1994, and (3) June 4, 1994 through August 24, 1994. A strong correlation was found between fluctuations in the tank level and variations in the ambient pressure. This correlation is a clear marker of the presence of entrained gases in the tank. From model calculations, an average void fraction of 11 percent was estimated to

  18. High Performance, Low Cost Hydrogen Generation from Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, Katherine [Proton OnSite; Dalton, Luke [Proton OnSite; Roemer, Andy [Proton OnSite; Carter, Blake [Proton OnSite; Niedzwiecki, Mike [Proton OnSite; Manco, Judith [Proton OnSite; Anderson, Everett [Proton OnSite; Capuano, Chris [Proton OnSite; Wang, Chao-Yang [Penn State University; Zhao, Wei [Penn State University

    2014-02-05

    Renewable hydrogen from proton exchange membrane (PEM) electrolysis is gaining strong interest in Europe, especially in Germany where wind penetration is already at critical levels for grid stability. For this application as well as biogas conversion and vehicle fueling, megawatt (MW) scale electrolysis is required. Proton has established a technology roadmap to achieve the necessary cost reductions and manufacturing scale up to maintain U.S. competitiveness in these markets. This project represents a highly successful example of the potential for cost reduction in PEM electrolysis, and provides the initial stack design and manufacturing development for Proton’s MW scale product launch. The majority of the program focused on the bipolar assembly, from electrochemical modeling to subscale stack development through prototyping and manufacturing qualification for a large active area cell platform. Feasibility for an advanced membrane electrode assembly (MEA) with 50% reduction in catalyst loading was also demonstrated. Based on the progress in this program and other parallel efforts, H2A analysis shows the status of PEM electrolysis technology dropping below $3.50/kg production costs, exceeding the 2015 target.

  19. A cost of sexual attractiveness to high-fitness females.

    Directory of Open Access Journals (Sweden)

    Tristan A F Long

    2009-12-01

    Full Text Available Adaptive mate choice by females is an important component of sexual selection in many species. The evolutionary consequences of male mate preferences, however, have received relatively little study, especially in the context of sexual conflict, where males often harm their mates. Here, we describe a new and counterintuitive cost of sexual selection in species with both male mate preference and sexual conflict via antagonistic male persistence: male mate choice for high-fecundity females leads to a diminished rate of adaptive evolution by reducing the advantage to females of expressing beneficial genetic variation. We then use a Drosophila melanogaster model system to experimentally test the key prediction of this theoretical cost: that antagonistic male persistence is directed toward, and harms, intrinsically higher-fitness females more than it does intrinsically lower-fitness females. This asymmetry in male persistence causes the tails of the population's fitness distribution to regress towards the mean, thereby reducing the efficacy of natural selection. We conclude that adaptive male mate choice can lead to an important, yet unappreciated, cost of sex and sexual selection.

  20. Integrated process for synthetic natural gas production from coal and coke-oven gas with high energy efficiency and low emission

    International Nuclear Information System (INIS)

    Man, Yi; Yang, Siyu; Qian, Yu

    2016-01-01

    Highlights: • A novel coal and coke-oven gas to SNG (CGtSNG) process is proposed. • Energy efficiency of CGtSNG increases 8% compared to coal-to-SNG process. • CGtSNG reduces 60% CO_2 emission and 72% effluent discharge. • CGtSNG proposes an idea of using redundant coke-oven gas for producing SNG production. - Abstract: There was a rapid development of coal to synthetic natural gas (SNG) projects in the last few years in China. The research from our previous work and some other researchers have found coal based SNG production process has the problems of environmental pollution and emission transfer, including CO_2 emission, effluent discharge, and high energy consumption. This paper proposes a novel co-feed process of coal and coke-oven gas to SNG process by using a dry methane reforming unit to reduce CO_2 emissions, more hydrogen elements are introduced to improve resource efficiency. It is shown that the energy efficiency of the co-feed process increases by 4%, CO_2 emission and effluent discharge is reduced by 60% and 72%, whereas the production cost decreases by 16.7%, in comparison to the conventional coal to SNG process. As coke-oven gas is a waste gas in most of the coking plant, this process also allows to optimize the allocation of resources.

  1. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions.

    Science.gov (United States)

    Shaffer, Devin L; Arias Chavez, Laura H; Ben-Sasson, Moshe; Romero-Vargas Castrillón, Santiago; Yip, Ngai Yin; Elimelech, Menachem

    2013-09-03

    In the rapidly developing shale gas industry, managing produced water is a major challenge for maintaining the profitability of shale gas extraction while protecting public health and the environment. We review the current state of practice for produced water management across the United States and discuss the interrelated regulatory, infrastructure, and economic drivers for produced water reuse. Within this framework, we examine the Marcellus shale play, a region in the eastern United States where produced water is currently reused without desalination. In the Marcellus region, and in other shale plays worldwide with similar constraints, contraction of current reuse opportunities within the shale gas industry and growing restrictions on produced water disposal will provide strong incentives for produced water desalination for reuse outside the industry. The most challenging scenarios for the selection of desalination for reuse over other management strategies will be those involving high-salinity produced water, which must be desalinated with thermal separation processes. We explore desalination technologies for treatment of high-salinity shale gas produced water, and we critically review mechanical vapor compression (MVC), membrane distillation (MD), and forward osmosis (FO) as the technologies best suited for desalination of high-salinity produced water for reuse outside the shale gas industry. The advantages and challenges of applying MVC, MD, and FO technologies to produced water desalination are discussed, and directions for future research and development are identified. We find that desalination for reuse of produced water is technically feasible and can be economically relevant. However, because produced water management is primarily an economic decision, expanding desalination for reuse is dependent on process and material improvements to reduce capital and operating costs.

  2. High-pressure 3He gas scintillation neutron spectrometer

    International Nuclear Information System (INIS)

    Derzon, M.S.; Slaughter, D.R.; Prussin, S.G.

    1985-10-01

    A high-pressure, 3 He-Xe gas scintillation spectrometer has been developed for neutron spectroscopy on D-D fusion plasmas. The spectrometer exhibits an energy resolution of (121 +- 20 keV) keV (FWHM) at 2.5 MeV and an efficiency of (1.9 +- 0.4) x 10 -3 (n/cm 2 ) -1 . The contribution to the resolution (FWHM) from counting statistics is only (22 +- 3 keV) and the remainder is due predominantly to the variation of light collection efficiency with location of neutron events within the active volume of the detector

  3. Diesel characterization by high-resolution mass spectrometry - gas chromatography

    International Nuclear Information System (INIS)

    Baldrich, C.A

    1998-01-01

    High-resolution mass spectrometry-gas chromatography is combined with the HC22 method in order to obtain detailed information about the chemical composition of diesel and the distribution of different compound types in terms of its final boiling temperature from a single analysis. The total time elapsed from sample injection and signal processing to obtain final results is 90 minutes. This fact makes this methodology a new and very important tool for the decision making process concerning the most suitable final boiling temperature and the type of treatment of the product in order to obtain diesel that fulfills the international standards. The consistency and repeatability of the experimental results are demonstrated

  4. High-temperature gas-cooled reactors and process heat

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1980-01-01

    High-Temperature Gas-Cooled Reactors (HTGRs) are fueled with ceramic-coated microspheres of uranium and thorium oxides/carbides embedded in graphite blocks which are cooled with helium. Promising areas of HTGR application are in cogeneration, energy transport using Heat Transfer Salt, recovery of oils from oil shale, steam reforming of methane for chemical production, coal gasification, and in energy transfer using chemical heat jpipes in the long term. Further, HTGRs could be used as the energy source for hydrogen production through thermochemical water splitting in the long term. The potential market for Process Heat HTGRs is 100-200 large units by about the year 2020

  5. Analysis of artificial fireplace logs by high temperature gas chromatography.

    Science.gov (United States)

    Kuk, Raymond J

    2002-11-01

    High temperature gas chromatography is used to analyze the wax of artificial fireplace logs (firelogs). Firelogs from several different manufacturers are studied and compared. This study shows that the wax within a single firelog is homogeneous and that the wax is also uniform throughout a multi-firelog package. Different brands are shown to have different wax compositions. Firelogs of the same brand, but purchased in different locations, also have different wax compositions. With this information it may be possible to associate an unknown firelog sample to a known sample, but a definitive statement of the origin cannot be made.

  6. Gas jet structure influence on high harmonic generation

    OpenAIRE

    Grant-Jacob, James; Mills, Benjamin; Butcher, Thomas J.; Chapman, Richard T.; Brocklesby, William S.; Frey, Jeremy G.

    2011-01-01

    Gas jets used as sources for high harmonic generation (HHG) have a complex three-dimensional density and velocity profile. This paper describes how the profile influences the generation of extreme-UV light. As the position of the laser focus is varied along the jet flow axis, we show that the intensity of the output radiation varies by approximately three times, with the highest flux being observed when the laser is focused into the Mach disc. The work demonstrated here will aid in the optimi...

  7. Ultra Clean 1.1MW High Efficiency Natural Gas Engine Powered System

    Energy Technology Data Exchange (ETDEWEB)

    Zurlo, James; Lueck, Steve

    2011-08-31

    Dresser, Inc. (GE Energy, Waukesha gas engines) will develop, test, demonstrate, and commercialize a 1.1 Megawatt (MW) natural gas fueled combined heat and power reciprocating engine powered package. This package will feature a total efficiency > 75% and ultra low CARB permitting emissions. Our modular design will cover the 1 – 6 MW size range, and this scalable technology can be used in both smaller and larger engine powered CHP packages. To further advance one of the key advantages of reciprocating engines, the engine, generator and CHP package will be optimized for low initial and operating costs. Dresser, Inc. will leverage the knowledge gained in the DOE - ARES program. Dresser, Inc. will work with commercial, regulatory, and government entities to help break down barriers to wider deployment of CHP. The outcome of this project will be a commercially successful 1.1 MW CHP package with high electrical and total efficiency that will significantly reduce emissions compared to the current central power plant paradigm. Principal objectives by phases for Budget Period 1 include: • Phase 1 – market study to determine optimum system performance, target first cost, lifecycle cost, and creation of a detailed product specification. • Phase 2 – Refinement of the Waukesha CHP system design concepts, identification of critical characteristics, initial evaluation of technical solutions, and risk mitigation plans. Background

  8. Human health cost of hydrogen sulfide air pollution from an oil and gas Field.

    Science.gov (United States)

    Kenessary, Dinara; Kenessary, Almas; Kenessariyev, Ussen Ismailovich; Juszkiewicz, Konrad; Amrin, Meiram Kazievich; Erzhanova, Aya Eralovna

    2017-06-08

    Introduction and objective. The Karachaganak oil and gas condensate field (KOGCF), one of the largest in the world, located in the Republic of Kazakhstan (RoK) in Central Asia, is surrounded by 10 settlements with a total population of 9,000 people. Approximately73% of this population constantly mention a specific odour of rotten eggs in the air, typical for hydrogen sulfide (H2S) emissions, and the occurrence of low-level concentrations of hydrogen sulfide around certain industrial installations (esp. oil refineries) is a well known fact. Therefore, this study aimed at determining the impact on human health and the economic damage to the country due to H2S emissions. Materials and method. Dose-response dependency between H2S concentrations in the air and cardiovascular morbidity using multiple regression analysis was applied. Economic damage from morbidity was derived with a newly-developed method, with Kazakhstani peculiarities taken into account. Results.Hydrogen sulfide air pollution due to the KOGCF activity costs the state almost $60,000 per year. Moreover, this is the reason for a more than 40% rise incardiovascular morbidity in the region. Conclusion. The reduction of hydrogen sulfide emissions into the air is recommended, as well as successive constant ambient air monitoring in future. Economic damage evaluation should be made mandatory, on a legal basis, whenever an industrial facility operation results in associated air pollution.

  9. Stabilising greenhouse gas concentrations at low levels. An assessment of options and costs

    Energy Technology Data Exchange (ETDEWEB)

    Van Vuuren, D.P.; Den Elzen, M.G.J.; Lucas, P.L.; Eickhout, B.; Strengers, B.J.; Van Ruijven, B.; Berk, M.M.; De Vries, H.J.M.; Wonink, S.J.; Van den Houdt, R.; Oostenrijk, R. [Netherlands Environmental Assessment Agency MNP, Bilthoven (Netherlands); Hoogwijk, M. [Ecofys, Utrecht (Netherlands); Meinshausen, M. [Potsdam Institute for Climate Impact Research PIK, Postdam (Germany)

    2006-10-15

    Preventing 'dangerous anthropogenic interference of the climate system' may require stabilisation of greenhouse gas concentrations in the atmosphere at relatively low levels such as 550 ppm CO2-eq. and below. Relatively few studies exist that have analysed the possibilities and implications of meeting such stringent climate targets. This report presents a series of related papers that address this issue - either by focusing on individual options or by presenting overall strategies at the global and regional level. The results show that it is technically possible to reach ambitious climate targets - with abatement costs for default assumptions in the order of 1-2% of global GDP. To achieve these lower concentration levels, global emissions need to peak within 15-20 years. The stabilisation scenarios use a large portfolio of measures, including energy efficiency but also carbon capture and storage, large scale application of bio-energy, reduction of non-CO2 gasses, increased use of renewable and/or nuclear power and carbon plantations.

  10. Advanced Membrane Filtration Technology for Cost Effective Recovery of Fresh Water from Oil & Gas Produced Brine

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett

    2004-09-29

    Produced water is a major waste generated at the oil and natural gas wells in the state of Texas. This water could be a possible source of new fresh water to meet the growing demands of the state after treatment and purification. Treatment of brine generated in oil fields or produced water with an ultrafiltration membranes were the subject of this thesis. The characterization of ultrafiltration membranes for oil and suspended solids removal of produced water, coupled with the reverse osmosis (RO) desalination of brine were studied on lab size membrane testing equipment and a field size testing unit to test whether a viable membrane system could be used to treat produced water. Oil and suspended solids were evaluated using turbidity and oil in water measurements taken periodically. The research considered the effect of pressure and flow rate on membrane performance of produced water treatment of three commercially available membranes for oily water. The study also analyzed the flux through the membrane and any effect it had on membrane performance. The research showed that an ultrafiltration membrane provided turbidity removal of over 99% and oil removal of 78% for the produced water samples. The results indicated that the ultrafiltration membranes would be asset as one of the first steps in purifying the water. Further results on selected RO membranes showed that salt rejection of greater than 97% could be achieved with satisfactory flux and at reasonable operating cost.

  11. Performance of microstrip and microgap gas detectors at high pressure

    International Nuclear Information System (INIS)

    Fraga, F.A.F.; Fraga, M.M.F.R.; Marques, R.F.; Margato, L.M.S.; Goncalo, J.R.; Policarpo, A.J.P.L.

    1997-01-01

    A study of the operation of microstrip and microgap detectors at various gas pressures up to 6 bar with Kr-CO 2 , Xe-CO 2 and Xe-CH 4 is presented. The data were collected with a microstrip (1000 μm pitch) and a microgap (200 μm pitch) detector using a clean chamber and gas system. It is shown that maximum gain is strongly dependent on pressure and gains as high as 9 x 10 3 were obtained with Kr-CO 2 at 6 bar with a MSGC. With the smaller-pitch MGC we could get a gain of 180 with Xe-CH 4 at 6 bar; the typical energy resolution at 22 keV being about 15%. From the present work one can conclude that microstructures can operate at high pressure and that their application in high-efficiency, low-granularity X-ray detectors with an energy range up to a few tens of keV can be seriously considered. (orig.)

  12. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    International Nuclear Information System (INIS)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J.

    2013-01-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m –2 which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas

  13. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming.

    Science.gov (United States)

    Van Middelaar, C E; Dijkstra, J; Berentsen, P B M; De Boer, I J M

    2014-01-01

    The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the farm gate). Strategies included were (1) dietary supplementation of an extruded linseed product (56% linseed; 1kg/cow per day in summer and 2kg/cow per day in winter), (2) dietary supplementation of a nitrate source (75% nitrate; 1% of dry matter intake), and (3) reducing the maturity stage of grass and grass silage (grazing at 1,400 instead of 1,700kg of dry matter/ha and harvesting at 3,000 instead of 3,500kg of dry matter/ha). A dairy farm linear programing model was used to define an average Dutch dairy farm on sandy soil without a predefined feeding strategy (reference situation). Subsequently, 1 of the 3 feeding strategies was implemented and the model was optimized again to determine the new economically optimal farm situation. Enteric CH4 production in the reference situation and after implementing the strategies was calculated based on a mechanistic model for enteric CH4 and empirical formulas explaining the effect of fat and nitrate supplementation on enteric CH4 production. Other GHG emissions along the chain were calculated using life cycle assessment. Total GHG emissions in the reference situation added up to 840kg of CO2 equivalents (CO2e) per t of fat- and protein-corrected milk (FPCM) and yearly labor income of €42,605. Supplementation of the extruded linseed product reduced emissions by 9kg of CO2e/t of FPCM and labor income by €16,041; supplementation of the dietary nitrate source reduced emissions by 32kg of CO2e/t of FPCM and labor income by €5,463; reducing the maturity stage of grass and grass silage reduced emissions by 11kg of CO2e/t of FPCM and labor income by €463. Of the 3 strategies, reducing grass maturity was the most cost

  14. Low cost photomultiplier high-voltage readout system

    International Nuclear Information System (INIS)

    Oxoby, G.J.; Kunz, P.F.

    1976-10-01

    The Large Aperture Solenoid Spectrometer (LASS) at Stanford Linear Accelerator Center (SLAC) requires monitoring over 300 voltages. This data is recorded on magnetic tapes along with the event data. It must also be displayed so that operators can easily monitor and adjust the voltages. A low-cost high-voltage readout system has been implemented to offer stand-alone digital readout capability as well as fast data transfer to a host computer. The system is flexible enough to permit use of a DVM or ADC and commercially available analogue multiplexers

  15. The real gas behaviour of helium as a cooling medium for high-temperature reactors

    International Nuclear Information System (INIS)

    Hewing, G.

    1977-01-01

    The article describes the influence of the real gas behaviour on the variables of state for the helium gas and the effects on the design of high-temperature reactor plants. After explaining the basic equations for describing variables and changes of state of the real gas, the real and ideal gas behaviour is analysed. Finally, the influence of the real gas behaviour on the design of high-temperature reactors in one- and two-cycle plants is investigated. (orig.) [de

  16. System Evaluations and Life-Cycle Cost Analyses for High-Temperature Electrolysis Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-05-01

    This report presents results of system evaluations and lifecycle cost analyses performed for several different commercial-scale high-temperature electrolysis (HTE) hydrogen production concepts. The concepts presented in this report rely on grid electricity and non-nuclear high-temperature process heat sources for the required energy inputs. The HYSYS process analysis software was used to evaluate both central plant designs for large-scale hydrogen production (50,000 kg/day or larger) and forecourt plant designs for distributed production and delivery at about 1,500 kg/day. The HYSYS software inherently ensures mass and energy balances across all components and it includes thermodynamic data for all chemical species. The optimized designs described in this report are based on analyses of process flow diagrams that included realistic representations of fluid conditions and component efficiencies and operating parameters for each of the HTE hydrogen production configurations analyzed. As with previous HTE system analyses performed at the INL, a custom electrolyzer model was incorporated into the overall process flow sheet. This electrolyzer model allows for the determination of the average Nernst potential, cell operating voltage, gas outlet temperatures, and electrolyzer efficiency for any specified inlet steam, hydrogen, and sweep-gas flow rates, current density, cell active area, and external heat loss or gain. The lifecycle cost analyses were performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. There are standard default sets of assumptions that the methodology uses to ensure consistency when comparing the cost of different production or plant design options. However, these assumptions may also be varied within the

  17. Development of an accumulation-based system for cost-effective chamber measurements of inert trace gas fluxes

    DEFF Research Database (Denmark)

    Ambus, Per; Skiba, U.; Drewer, J.

    2010-01-01

    As soil–atmosphere fluxes of greenhouse gases are characterized by high temporal fluctuations, frequent measurements in the range of hours to days need to be deployed, resulting in high analytical costs. We have therefore developed a new low-cost system that combines high-frequency automated...

  18. Research and development program of hydrogen production system with high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) has been developing a hydrogen production system with a high temperature gas-cooled reactor (HTGR). While the HTGR hydrogen production system has the following advantages compared with a fossil-fired hydrogen production system; low operation cost (economical fuel cost), low CO 2 emission and saving of fossil fuel by use of nuclear heat, it requires some items to be solved as follows; cost reduction of facility such as a reactor, coolant circulation system and so on, development of control and safety technologies. As for the control and safety technologies, JAERI plans demonstration test with hydrogen production system by steam reforming of methane coupling to 30 Wt HTGR, named high temperature engineering test reactor (HTTR). Prior to the demonstration test, a 1/30-scale out-of-pile test facility is in construction for safety review and detailed design of the HTTR hydrogen production system. Also, design study will start for reduction of facility cost. Moreover, basic study on hydrogen production process without CO 2 emission is in progress by thermochemical water splitting. (orig.)

  19. Higs-instrument: design and demonstration of a high performance gas concentration imager

    Science.gov (United States)

    Verlaan, A. L.; Klop, W. A.; Visser, H.; van Brug, H.; Human, J.

    2017-09-01

    Climate change and environmental conditions are high on the political agenda of international governments. Laws and regulations are being setup all around the world to improve the air quality and to reduce the impact. The growth of a number of trace gasses, including CO2, Methane and NOx are especially interesting due to their environmental impact. The regulations made are being based on both models and measurements of the trend of those trace gases over the years. Now the regulations are in place also enforcement and therewith measurements become more and more important. Instruments enabling high spectral and spatial resolution as well as high accurate measurements of trace gases are required to deliver the necessary inputs. Nowadays those measurements are usually performed by space based spectrometers. The requirement for high spectral resolution and measurement accuracy significantly increases the size of the instruments. As a result the instrument and satellite becomes very expensive to develop and to launch. Specialized instruments with a small volume and the required performance will offer significant advantages in both cost and performance. Huib's Innovative Gas Sensor (HIGS, named after its inventor Huib Visser), currently being developed at TNO is an instrument that achieves exactly that. Designed to measure only a single gas concentration, opposed to deriving it from a spectrum, it achieves high performance within a small design volume. The instrument enables instantaneous imaging of the gas distribution of the selected gas. An instrument demonstrator has been developed for NO2 detection. Laboratory measurements proved the measurement technique to be successful. An on-sky measurement campaign is in preparation. This paper addresses both the instrument design as well as the demonstrated performances.

  20. Low Cost DIY Lenses kit For High School Teaching

    Science.gov (United States)

    Thepnurat, Meechai; Saphet, Parinya; Tong-on, Anusorn

    2017-09-01

    A set of lenses was fabricated from a low cost materials in a DIY (Do it yourself) process. The purpose was to demonstrate to teachers and students in high schools how to construct lenses by themselves with the local available materials. The lenses could be applied in teaching Physics, about the nature of a lens such as focal length and light rays passing through lenses in either direction, employing a set of simple laser pointers. This instrumental kit was made from a transparent 2 mm thick of acrylic Perspex. It was cut into rectangular pieces with dimensions of 2x15 cm2 and bent into curved shape by a hot air blower on a cylindrical wooden rod with curvature radii of about 3-4.5 cm. Then a pair of these Perspex were formed into a hollow thick lenses with a base supporting platform, so that any appropriate liquids could be filled in. The focal length of the lens was measured from laser beam drawing on a paper. The refractive index, n (n) of a filling liquid could be calculated from the measured focal length (f). The kit was low cost and DIY but was greatly applicable for optics teaching in high school laboratory.

  1. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  2. National energy cost optimization and project implementation: Two different worlds?. Discussion paper in the framework of the UNEP Greenhouse Gas Abatement Costing Studies

    International Nuclear Information System (INIS)

    Van Harmelen, T.

    1994-08-01

    One of the main targets of the UNEP Greenhouse Gas Abatement Costing Study is combining the techno-economic and purely economic modelling approaches into one overall modelling methodology for greenhouse gas abatement costing studies. This type of models can be categorized as bottom-up models, since technology data on a very detailed level result in costs and emissions on a national level. In contrast with, but not necessarily in conflict with these models, macro-economists rely in general on macro-economic models which derive economic projections from aggregated national and sectorial economic data. These so called top-down models describe the complete national economy. Therefore the energy sector is modelled in a very aggregated way. Since the micro-economic and techno-economic approaches can be classified both as bottom-up approaches, it could be expected that mutual understanding exists. However, this is not true for all issues in this field. Techno-economical views and micro-economic views differ for instance on the implementation of options. This topic drew attention during the UNEP study, next to other items as techno-economic and macro-economic model assessments of the costs of CO 2 abatement. One of the most important implementation issues is the so-called negative cost (benefit) potential of energy saving options, which exists in the techno-economic view at this very moment, but which is not implemented yet. In the view of micro-economic analysis this potential does not exist, since options which are profitable would have been implemented according to presently adopted cost-benefit theory. Several aspects of this controversy have been discussed extensively elsewhere. In this paper the two visions are summarized and it is discussed whether it is fruitful to combine techno-economic and micro-economic approaches in an overall methodological framework. 1 tabs., 8 refs

  3. Final Report: Laboratory Development of a High Capacity Gas-Fired Paper Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Chudnovsky; Aleksandr Kozlov; Lester Sherrow

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laperrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300 deg F range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400 deg F were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  4. Laboratory Development of A High Capacity Gas-Fired paper Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Institute, Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Institute, Des Plaines, IL (United States); Sherrow, Lester [Gas Technology Institute, Des Plaines, IL (United States)

    2005-09-30

    Paper drying is the most energy-intensive and temperature-critical aspect of papermaking. It is estimated that about 67% of the total energy required in papermaking is used to dry paper. The conventional drying method uses a series of steam-heated metal cylinders that are required to meet ASME codes for pressure vessels, which limits the steam pressure to about 160 psig. Consequently, the shell temperature and the drying capacity are also limited. Gas Technology Institute together with Boise Paper Solutions, Groupe Laparrier and Verreault (GL&V) USA Inc., Flynn Burner Corporation and with funding support from the U.S. Department of Energy, U.S. natural gas industry, and Gas Research Institute is developing a high efficiency gas-fired paper dryer based on a combination of a ribbon burner and advanced heat transfer enhancement technique. The Gas-Fired Paper Dryer (GFPD) is a high-efficiency alternative to conventional steam-heated drying drums that typically operate at surface temperatures in the 300ºF range. The new approach was evaluated in laboratory and pilot-scale testing at the Western Michigan University Paper Pilot Plant. Drum surface temperatures of more than 400ºF were reached with linerboard (basis weight 126 lb/3000 ft2) production and resulted in a 4-5 times increase in drying rate over a conventional steam-heated drying drum. Successful GFPD development and commercialization will provide large energy savings to the paper industry and increase paper production rates from dryer-limited (space- or steam-limited) paper machines by an estimated 10 to 20%, resulting in significant capital costs savings for both retrofits and new capacity.

  5. Low-profile high-voltage compact gas switch

    International Nuclear Information System (INIS)

    Goerz, D.A.; Wilson, M.J.; Speer, R.D.

    1997-01-01

    This paper discusses the development and testing of a low-profile, high-voltage, spark-gap switch designed to be closely coupled with other components into an integrated high-energy pulsed-power source. The switch is designed to operate at 100 kV using SF6 gas pressurized to less than 0.7 MPa. The volume of the switch cavity region is less than 1.5 cm3, and the field stress along the gas-dielectric interface is as high as 130 kV/cm. The dielectric switch body has a low profile that is only I -cm tall at its greatest extent and nominally 2-mm thick over most of its area. This design achieves a very low inductance of less than 5 nH, but results in field stresses exceeding 500 kV/cm in the dielectric material. Field modeling was done to determine the appropriate shape for the highly stressed insulator and electrodes, and special manufacturing techniques were employed to mitigate the usual mechanisms that induce breakdown and failure in solid dielectrics. Static breakdown tests verified that the switch operates satisfactorily at 100 kV levels. The unit has been characterized with different shaped electrodes having nominal gap spacings of 2.0, 2.5, and 3.0 mm. The relationship between self-break voltage and operating pressure agrees well with published data on gas properties, accounting for the field enhancements of the electrode shapes being used. Capacitor discharge tests in a low inductance test fixture exhibited peak currents up to 25 kA with characteristic frequencies of the ringdown circuit ranging from 10 to 20 MHz. The ringdown waveforms and scaling of measured parameters agree well with circuit modeling of the switch and test fixture. Repetitive operation has been demonstrated at moderate rep-rates up to 15 Hz, limited by the power supply being used. Preliminary tests to evaluate lifetime of the compact switch assembly have been encouraging. In one case, after more than 7,000 high-current ringdown tests with approximately 30 C of total charge transferred, the

  6. A system for incubations at high gas partial pressure

    Directory of Open Access Journals (Sweden)

    Patrick eSauer

    2012-02-01

    Full Text Available High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed one MPa at in-situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in-situ conditions, but the partial pressure of dissolved gasses has to be controlled as well.We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120° C and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. The system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g. fluid-gas-rock-interactions in relation to carbon dioxide sequestration.As an application of the system we extracted organic acids from sub-bituminous coal using H2O as well as a H2O-CO2 mixture at elevated temperature (90°C and pressure (5 MPa. Subsamples were taken during the incubation and analysed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulphate reduction rate upon the addition of

  7. Crude costs: a framework for a full-cost accounting analysis of oil and gas exploration off Cape Breton, Nova Scotia

    International Nuclear Information System (INIS)

    Landon, L.; Pannozzo, L.

    2001-12-01

    Defined as the total quantity of all goods and services produced and the total money earned and spent, the Gross Domestic Product (GDP) is a measure used to determine how well an economy is doing. For its part, the Genuine Progress Index (GPI) measures 26 variables and was first developed in 1995. In Nova Scotia, a set of 20 social, economic and environmental indicators are examined to obtain a better picture of the well-being of the region and determine if the development is sustainable over time. The authors explained their approach based on the use of GPI analysis to assist decision makers in identifying the real costs and benefits of different options applied to the oil and gas exploration situation off Cape Breton, Nova Scotia. The document is divided into five parts as follows: (1) Part 1: introduction, (2) Part 2: natural capital and the impacts of oil and gas development, (3) Part 3: social capital and the economic value of fishing and tourism, (4) Part 4: the real cost of oil and gas, and (5) Part 5: recommendations. Some of the recommendations call for the further study of cumulative and sub-lethal effects from petroleum development, the establishment of Marine Protected Areas preceded by a moratorium on oil and gas exploration in the Southern Gulf of St. Lawrence and Sydney Bight areas until the establishment of the Areas is made, and that future environmental assessments concerning oil and gas development to address the impacts on species and ecosystems as a whole. 209 refs., 11 tabs., 4 figs

  8. Designing reliability into high-effectiveness industrial gas turbine regenerators

    International Nuclear Information System (INIS)

    Valentino, S.J.

    1979-01-01

    The paper addresses the measures necessary to achieve a reliable regenerator design that can withstand higher temperatures (1000-1200 F) and many start and stop cycles - conditions encountered in high-efficiency operation in pipeline applications. The discussion is limited to three major areas: (1) structural analysis of the heat exchanger core - the part of the regenerator that must withstand the higher temperatures and cyclic duty (2) materials data and material selection and (3) a comprehensive test program to demonstrate the reliability of the regenerator. This program includes life-cycle tests, pressure containment in fin panels, core-to-core joint structural test, bellows pressure containment test, sliding pad test, core gas-side passage flow distribution test, and production test. Today's regenerators must have high cyclic life capability, stainless steel construction, and long fault-free service life of 120,000 hr

  9. Medium-size high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Peinado, C.O.; Koutz, S.L.

    1980-08-01

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 760 0 C (1400 0 F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics [a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant] and engineered safety features

  10. High Temperature Gas-to-Gas Heat Exchanger Based on a Solid Intermediate Medium

    Directory of Open Access Journals (Sweden)

    R. Amirante

    2014-04-01

    Full Text Available This paper proposes the design of an innovative high temperature gas-to-gas heat exchanger based on solid particles as intermediate medium, with application in medium and large scale externally fired combined power plants fed by alternative and dirty fuels, such as biomass and coal. An optimization procedure, performed by means of a genetic algorithm combined with computational fluid dynamics (CFD analysis, is employed for the design of the heat exchanger: the goal is the minimization of its size for an assigned heat exchanger efficiency. Two cases, corresponding to efficiencies equal to 80% and 90%, are considered. The scientific and technical difficulties for the realization of the heat exchanger are also faced up; in particular, this work focuses on the development both of a pressurization device, which is needed to move the solid particles within the heat exchanger, and of a pneumatic conveyor, which is required to deliver back the particles from the bottom to the top of the plant in order to realize a continuous operation mode. An analytical approach and a thorough experimental campaign are proposed to analyze the proposed systems and to evaluate the associated energy losses.

  11. Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes

    Science.gov (United States)

    Capuano, M.; Bogey, C.; Spelt, P. D. M.

    2018-05-01

    A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.

  12. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  13. High performance gas adsorption and separation of natural gas in two microporous metal-organic frameworks with ternary building units.

    Science.gov (United States)

    Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2014-08-14

    Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.

  14. Recent developments in high temperature coatings for gas turbine airfoils

    Science.gov (United States)

    Goward, G. W.

    1983-01-01

    The importance of coatings for hot section airfoils has increased with the drive for more cost-effective use of fuel in a wide variety of gas turbine engines. Minor additions of silicon have been found to appreciably increase the oxidation resistance of plasma-sprayed NiCoCrAlY coatings on a single crystal nickel-base superalloy. Increasing the chromium content of MCrAlY coatings substantially increases the resistance to acidic (Na2SO4-SO3) hot corrosion at temperatures of about 1300 F (704 C) but gives no significant improvement beyond contemporary coatings in the range of 1600 F (871 C). Surface enrichment of MCrAlY coatings with silicon also gives large increases in resistance to acidic hot corrosion in the 1300 F region. The resistance to the thermal stress-induced spalling of zirconia-based thermal barrier coatings has been improved by lowering coating stresses with segmented structures and by controlling the substrate temperature during coating fabrication.

  15. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  16. High-pressure gas-breakthrough apparatus and a procedure for determining the gas-breakthrough pressure of compacted clay

    International Nuclear Information System (INIS)

    Hume, H.B.

    1997-08-01

    Gas may be produced in a nuclear fuel waste disposal vault. Given that the vault will be sealed with clay-based materials, the fate of the gas is uncertain. Therefore, an instrument was previously built to measure the pressure required to pass gas through compacted clay materials (a gas-breakthrough apparatus). However, the 10 MPa pressure limit of the apparatus was insufficient to test compacted buffer material at the density proposed in the Canadian concept for nuclear fuel waste disposal. Therefore, a high-pressure (50 Wa) gas-breakthrough apparatus was designed, constructed and installed. This report describes the components of the apparatus and the materials and procedures that are used for the gas-breakthrough tests. (author)

  17. Techno-Economic Feasibility of Highly Efficient Cost-Effective Thermoelectric-SOFC Hybrid Power Generation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jifeng Zhang; Jean Yamanis

    2007-09-30

    Solid oxide fuel cell (SOFC) systems have the potential to generate exhaust gas streams of high temperature, ranging from 400 to 800 C. These high temperature gas streams can be used for additional power generation with bottoming cycle technologies to achieve higher system power efficiency. One of the potential candidate bottoming cycles is power generation by means of thermoelectric (TE) devices, which have the inherent advantages of low noise, low maintenance and long life. This study was to analyze the feasibility of combining coal gas based SOFC and TE through system performance and cost techno-economic modeling in the context of multi-MW power plants, with 200 kW SOFC-TE module as building blocks. System and component concepts were generated for combining SOFC and TE covering electro-thermo-chemical system integration, power conditioning system (PCS) and component designs. SOFC cost and performance models previously developed at United Technologies Research Center were modified and used in overall system analysis. The TE model was validated and provided by BSST. The optimum system in terms of energy conversion efficiency was found to be a pressurized SOFC-TE, with system efficiency of 65.3% and cost of $390/kW of manufacturing cost. The pressurization ratio was approximately 4 and the assumed ZT of the TE was 2.5. System and component specifications were generated based on the modeling study. The major technology and cost barriers for maturing the system include pressurized SOFC stack using coal gas, the high temperature recycle blowers, and system control design. Finally, a 4-step development roadmap is proposed for future technology development, the first step being a 1 kW proof-of-concept demonstration unit.

  18. The Precise Mechanisms of a High-Speed Ultrasound Gas Sensor and Detecting Human-Specific Lung Gas Exchange

    Directory of Open Access Journals (Sweden)

    Hideki Toda

    2012-12-01

    Full Text Available In this paper, we propose and develop a new real-time human respiration process analysis method using a high-time-sampling gas concentration sensor based on ultrasound. A unique point about our proposed gas concentration sensor is its 1 kHz gas concentration sampling speed. This figure could not have been attained by previously proposed gas concentration measurement methods such as InfraRed, semiconductor gas sensors, or GC-MS, because the gas analysis speeds were a maximum of a few hundred milliseconds. First, we describe the proposed new ultrasound sound speed measurement method and the signal processing, and present the measurement circuit diagram. Next, we analyse the human respiration gas variation patterns of five healthy subjects using a newly developed gas-mask-type respiration sensor. This reveals that the rapid gas exchange from H2O to CO2 contains air specific to the human being. In addition, we also measured medical symptoms in subjects suffering from asthma, hyperventilation and bronchial asthma. The millisecond level high-speed analysis of the human respiration process will be useful for the next generation of healthcare, rehabilitation and sports science technology.

  19. Parametric Analysis of the Exergoeconomic Operation Costs, Environmental and Human Toxicity Indexes of the MF501F3 Gas Turbine

    Directory of Open Access Journals (Sweden)

    Edgar Vicente Torres-González

    2016-08-01

    Full Text Available This work presents an energetic, exergoeconomic, environmental, and toxicity analysis of the simple gas turbine M501F3 based on a parametric analysis of energetic (thermal efficiency, fuel and air flow rates, and specific work output, exergoeconomic (exergetic efficiency and exergoeconomic operation costs, environmental (global warming, smog formation, acid rain indexes, and human toxicity indexes, by taking the compressor pressure ratio and the turbine inlet temperature as the operating parameters. The aim of this paper is to provide an integral, systematic, and powerful diagnostic tool to establish possible operation and maintenance actions to improve the gas turbine’s exergoeconomic, environmental, and human toxicity indexes. Despite the continuous changes in the price of natural gas, the compressor, combustion chamber, and turbine always contribute 18.96%, 53.02%, and 28%, respectively, to the gas turbine’s exergoeconomic operation costs. The application of this methodology can be extended to other simple gas turbines using the pressure drops and isentropic efficiencies, among others, as the degradation parameters, as well as to other energetic systems, without loss of generality.

  20. Hydrogen gettering the overpressure gas from highly radioactive liquids

    International Nuclear Information System (INIS)

    Riley, D.L.; Schicker, J.R.

    1996-04-01

    Remediation of current inventories of high-activity radioactive liquid waste (HALW) requires transportation of Type-B quantities of radioactive material, possibly up to several hundred liters. However, the only currently certified packaging is limited to quantities of 50 ml (0.01 gal) quantities of Type-B radioactive liquid. Efforts are under way to recertify the existing packaging to allow the shipment of up to 4 L (1.1 gal) of Type-B quantities of HALW, but significantly larger packaging could be needed in the future. Scoping studies and preliminary designs have identified the feasibility of retrofitting an insert into existing casks, allowing the transport of up to 380 L (100 gal) of HALW. However, the insert design and ultimate certification strategy depend heavily on the gas-generating attributes of the HALW. A non-vented containment vessel filled with HALW, in the absence of any gas-mitigation technologies, poses a deflagration threat and, therefore, gas generation, specifically hydrogen generation, must be reliably controlled during all phases of transportation. Two techniques are available to mitigate hydrogen accumulation: recombiners and getters. Getters have an advantage over recombiners in that oxides are not required to react with the hydrogen. A test plan was developed to evaluate three forms of getter material in the presence of both simulated HALW and the gases that are produced by the HALW. These tests demonstrated that getters can react with hydrogen in the presence of simulated waste and in the presence of several other gases generated by the HALW, such as nitrogen, ammonia, nitrous oxide, and carbon monoxide. Although the use of such a gettering system has been shown to be technically feasible, only a preliminary design for its use has been completed. No further development is planned until the requirement for bulk transport of Type-B quantities of HALW is more thoroughly defined

  1. How do high cost-sharing policies for physician care affect total care costs among people with chronic disease?

    Science.gov (United States)

    Xin, Haichang; Harman, Jeffrey S; Yang, Zhou

    2014-01-01

    This study examines whether high cost-sharing in physician care is associated with a differential impact on total care costs by health status. Total care includes physician care, emergency room (ER) visits and inpatient care. Since high cost-sharing policies can reduce needed care as well as unneeded care use, it raises the concern whether these policies are a good strategy for controlling costs among chronically ill patients. This study used the 2007 Medical Expenditure Panel Survey data with a cross-sectional study design. Difference in difference (DID), instrumental variable technique, two-part model, and bootstrap technique were employed to analyze cost data. Chronically ill individuals' probability of reducing any overall care costs was significantly less than healthier individuals (beta = 2.18, p = 0.04), while the integrated DID estimator from split results indicated that going from low cost-sharing to high cost-sharing significantly reduced costs by $12,853.23 more for sick people than for healthy people (95% CI: -$17,582.86, -$8,123.60). This greater cost reduction in total care among sick people likely resulted from greater cost reduction in physician care, and may have come at the expense of jeopardizing health outcomes by depriving patients of needed care. Thus, these policies would be inappropriate in the short run, and unlikely in the long run to control health plans costs among chronically ill individuals. A generous benefit design with low cost-sharing policies in physician care or primary care is recommended for both health plans and chronically ill individuals, to save costs and protect these enrollees' health status.

  2. A perspective on cost-effectiveness of greenhouse gas reduction solutions in water distribution systems

    International Nuclear Information System (INIS)

    Hendrickson, Thomas P; Horvath, Arpad

    2014-01-01

    Water distribution systems (WDSs) face great challenges as aging infrastructures require significant investments in rehabilitation, replacement, and expansion. Reducing environmental impacts as WDSs develop is essential for utility managers and policy makers. This study quantifies the existing greenhouse gas (GHG) footprint of common WDS elements using life-cycle assessment (LCA) while identifying the greatest opportunities for emission reduction. This study addresses oversights of the related literature, which fails to capture several WDS elements and to provide detailed life-cycle inventories. The life-cycle inventory results for a US case study utility reveal that 81% of GHGs are from pumping energy, where a large portion of these emissions are a result of distribution leaks, which account for 270 billion l of water losses daily in the United States. Pipe replacement scheduling is analyzed from an environmental perspective where, through incorporating leak impacts, a tool reveals that optimal replacement is no more than 20 years, which is in contrast to the US average of 200 years. Carbon abatement costs (CACs) are calculated for different leak reduction scenarios for the case utility that range from −$130 to $35 t −1  CO 2(eq) . Including life-cycle modeling in evaluating pipe materials identified polyvinyl chloride (PVC) and cement-lined ductile iron (DICL) as the Pareto efficient options, however; utilizing PVC presents human health risks. The model developed for the case utility is applied to California and Texas to determine the CACs of reducing leaks to 5% of distributed water. For California, annual GHG savings from reducing leaks alone (3.4 million tons of CO 2(eq) ) are found to exceed California Air Resources Board’s estimate for energy efficiency improvements in the state’s water infrastructure. (paper)

  3. Design for low-cost gas metal arc weld-based aluminum 3-D printing

    Science.gov (United States)

    Haselhuhn, Amberlee S.

    Additive manufacturing, commonly known as 3-D printing, has the potential to change the state of manufacturing across the globe. Parts are made, or printed, layer by layer using only the materials required to form the part, resulting in much less waste than traditional manufacturing methods. Additive manufacturing has been implemented in a wide variety of industries including aerospace, medical, consumer products, and fashion, using metals, ceramics, polymers, composites, and even organic tissues. However, traditional 3-D printing technologies, particularly those used to print metals, can be prohibitively expensive for small enterprises and the average consumer. A low-cost open-source metal 3-D printer has been developed based upon gas metal arc weld (GMAW) technology. Using this technology, substrate release mechanisms have been developed, allowing the user to remove a printed metal part from a metal substrate by hand. The mechanical and microstructural properties of commercially available weld alloys were characterized and used to guide alloy development in 4000 series aluminum-silicon alloys. Wedge casting experiments were performed to screen magnesium, strontium, and titanium boride alloying additions in hypoeutectic aluminum-silicon alloys for their properties and the ease with which they could be printed. Finally, the top performing alloys, which were approximately 11.6% Si modified with strontium and titanium boride were cast, extruded, and drawn into wire. These wires were printed and the mechanical and microstructural properties were compared with those of commercially available alloys. This work resulted in an easier-to-print aluminum-silicon-strontium alloy that exhibited lower porosity, equivalent yield and tensile strengths, yet nearly twice the ductility compared to commercial alloys.

  4. 30 CFR 206.181 - How do I establish processing costs for dual accounting purposes when I do not process the gas?

    Science.gov (United States)

    2010-07-01

    ... accounting purposes when I do not process the gas? 206.181 Section 206.181 Mineral Resources MINERALS... Processing Allowances § 206.181 How do I establish processing costs for dual accounting purposes when I do not process the gas? Where accounting for comparison (dual accounting) is required for gas production...

  5. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  6. Metaphysics methods development for high temperature gas cooled reactor analysis

    International Nuclear Information System (INIS)

    Seker, V.; Downar, T. J.

    2007-01-01

    Gas cooled reactors have been characterized as one of the most promising nuclear reactor concepts in the Generation-IV technology road map. Considerable research has been performed on the design and safety analysis of these reactors. However, the calculational tools being used to perform these analyses are not state-of-the-art and are not capable of performing detailed three-dimensional analyses. This paper presents the results of an effort to develop an improved thermal-hydraulic solver for the pebble bed type high temperature gas cooled reactors. The solution method is based on the porous medium approach and the momentum equation including the modified Ergun's resistance model for pebble bed is solved in three-dimensional geometry. The heat transfer in the pebble bed is modeled considering the local thermal non-equilibrium between the solid and gas, which results in two separate energy equations for each medium. The effective thermal conductivity of the pebble-bed can be calculated both from Zehner-Schluender and Robold correlations. Both the fluid flow and the heat transfer are modeled in three dimensional cylindrical coordinates and can be solved in steady-state and time dependent. The spatial discretization is performed using the finite volume method and the theta-method is used in the temporal discretization. A preliminary verification was performed by comparing the results with the experiments conducted at the SANA test facility. This facility is located at the Institute for Safety Research and Reactor Technology (ISR), Julich, Germany. Various experimental cases are modeled and good agreement in the gas and solid temperatures is observed. An on-going effort is to model the control rod ejection scenarios as described in the OECD/NEA/NSC PBMR-400 benchmark problem. In order to perform these analyses PARCS reactor simulator code will be coupled with the new thermal-hydraulic solver. Furthermore, some of the other anticipated accident scenarios in the benchmark

  7. A Low Cost, High Capacity Regenerable Sorbent for Pre-combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gokhan

    2012-09-30

    The overall objective of the proposed research is to develop a low cost, high capacity CO{sub 2} sorbent and demonstrate its technical and economic viability for pre-combustion CO{sub 2} capture. The specific objectives supporting our research plan were to optimize the chemical structure and physical properties of the sorbent, scale-up its production using high throughput manufacturing equipment and bulk raw materials and then evaluate its performance, first in bench-scale experiments and then in slipstream tests using actual coal-derived synthesis gas. One of the objectives of the laboratory-scale evaluations was to demonstrate the life and durability of the sorbent for over 10,000 cycles and to assess the impact of contaminants (such as sulfur) on its performance. In the field tests, our objective was to demonstrate the operation of the sorbent using actual coal-derived synthesis gas streams generated by air-blown and oxygen-blown commercial and pilot-scale coal gasifiers (the CO{sub 2} partial pressure in these gas streams is significantly different, which directly impacts the operating conditions hence the performance of the sorbent). To support the field demonstration work, TDA collaborated with Phillips 66 and Southern Company to carry out two separate field tests using actual coal-derived synthesis gas at the Wabash River IGCC Power Plant in Terre Haute, IN and the National Carbon Capture Center (NCCC) in Wilsonville, AL. In collaboration with the University of California, Irvine (UCI), a detailed engineering and economic analysis for the new CO{sub 2} capture system was also proposed to be carried out using Aspen PlusTM simulation software, and estimate its effect on the plant efficiency.

  8. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. James [Gas Technology Inst., Des Plaines, IL (United States)

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  9. Audit report on GDF Suez's supply costs and non-supply related costs in natural gas regulated sale tariffs - May 2014

    International Nuclear Information System (INIS)

    2014-05-01

    After having recalled the legal context of objectives of this audit performed by the French Commission for Energy Regulation (CRE), this report proposes an analysis of GDF Suez's dissociated accounting which showed that costs are covered by natural gas regulated sale tariffs. In the second part, it comments the current market indexing used in tariff formula, comments current and present negotiations and their consequences for the market indexing share in long term contracts, discusses the issue of tariff volatility related to an increased market indexing share, discusses the possible re-examination of indices at the occasion of formula reviewing, and outlines that the diversified supplier portfolio allows optimisation operations. The third part addresses non-supply related costs: evolution of different infrastructure costs (related to distribution, transport, and storage) to be taken into account in regulated sale tariffs, evolution of commercial costs. Some recommendations are then made regarding the perspective of a tariff formula revision, and the perspectives of evolution of non-supply related costs

  10. Survey on the feasibility of high-efficiency gas turbine power generation system; Kokoritsu gas turbine hatsuden system ni kansuru jitsuyo kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For higher-efficiency power generation cycle plants with less restrained conditions for a location, the conceptual design of an inter-cooled regenerative two-fluid cycle plant (ISTIG) was attempted using a modified aircraft gas turbine. A high-performance turbo fan engine is used for middle-class power generation. The first stage combustion gas drives the first stage turbine, and its exhaust gas is used for the second stage combustion. Because of two-axial type of high and low pressure, improvement of thermal efficiency is expected by easy-to-install inter-cooler. ISTIG superior in operability is suitable for medium load or distributed power generation facilities, and aims at higher efficiency of a 60% level. ISTIG includes a large amount of water vapor in combustion air by adopting a diffusion type combustor eliminating back fire, and can reduce exergy loss by preheating fuel gas. Since load of the high-pressure turbine shifts toward low-pressure one by the inter-cooler, some considerations are necessary for low-pressure side cooling together with reheating cycle. Because of unnecessary steam turbine, the construction cost per kW can be reduced by 20%. 41 refs., 64 figs., 27 tabs.

  11. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    International Nuclear Information System (INIS)

    Nelson, James; Johnston, Josiah; Mileva, Ana; Fripp, Matthias; Hoffman, Ian; Petros-Good, Autumn; Blanco, Christian; Kammen, Daniel M.

    2012-01-01

    Decarbonizing electricity production is central to reducing greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning models with high temporal and spatial resolution. We use a mixed-integer linear programming model – SWITCH – to analyze least-cost generation, storage, and transmission capacity expansion for western North America under various policy and cost scenarios. Current renewable portfolio standards are shown to be insufficient to meet emission reduction targets by 2030 without new policy. With stronger carbon policy consistent with a 450 ppm climate stabilization scenario, power sector emissions can be reduced to 54% of 1990 levels by 2030 using different portfolios of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing at least 17% and as much as 29% of total power by 2030. The carbon price to induce these deep carbon emission reductions is high, but, assuming carbon price revenues are reinvested in the power sector, the cost of power is found to increase by at most 20% relative to business-as-usual projections. - Highlights: ► Intermittent generation necessitates high-resolution electric power system models. ► We apply the SWITCH planning model to the western North American grid. ► We explore carbon policy and resource cost scenarios through 2030. ► As the carbon price rises, coal generation is replaced with solar, wind, gas and/or nuclear generation ► A 450 ppm climate stabilization target can be met at a 20% or lower cost increase.

  12. Development of high pressure deuterium gas targets for the generation of intense mono-energetic fast neutron beams

    International Nuclear Information System (INIS)

    Guzek, J.; Richardson, K.; Franklyn, C.B.; Waites, A.; McMurray, W.R.; Watterson, J.I.W.; Tapper, U.A.S.

    1999-01-01

    Two different technical solutions to the problem of generation of mono-energetic fast neutron beams on the gaseous targets are presented here. A simple and cost-effective design of a cooled windowed gas target system is described in the first part of this paper. It utilises a thin metallic foil window and circulating deuterium gas cooled down to 100 K. The ultimate beam handling capability of such target is determined by the properties of the window. Reliable performance of this gas target system was achieved at 1 bar of deuterium gas, when exposed to a 45 μA beam of 5 MeV deuterons, for periods in excess of 6 h. Cooling of the target gas resulted in increased fast neutron output and improved neutron to gamma-ray ratio. The second part of this paper discusses the design of a high pressure, windowless gas target for use with pulsed, low duty cycle accelerators. A rotating seal concept was applied to reduce the gas load in a differentially pumped system. This allows operation at 1.23 bar of deuterium gas pressure in the gas cell region. Such a gas target system is free from the limitations of the windowed target but special attention has to be paid to the heat dissipation capability of the beam dump, due to the use of a thin target. The rotating seal concept is particularly suitable for use with accelerators such as radio-frequency quadrupole (RFQ) linacs that operate with a very high peak current at low duty cycle. The performance of both target systems was comprehensively characterized using the time-of-flight (TOF) technique. This demonstrated that very good quality mono-energetic fast neutron beams were produced with the slow neutron and gamma-ray component below 10% of the total target output

  13. Gas pipeline Opon - Barrancabermeja. Consumption at low cost with environmental cleaning

    International Nuclear Information System (INIS)

    Carta Petrolera

    1997-01-01

    The gas pipeline Opon-Barrancabermeja, is part of a project to produce hydrocarbons in the Carare Region. For this line will be transported natural gas of the Opon Field, in Simitarra (Colombia). The benefits that it brings the presence of the gas pipeline for the community have to see from the same construction of the net, joined with diverse programs that link to communities of the influence areas, in aspects related with health, education, environmental reparation and agricultural diversification

  14. Excited Atoms and Molecules in High Pressure Gas Discharges

    International Nuclear Information System (INIS)

    Vuskovic, L.; Popovic, S.

    2003-01-01

    Various types of high-pressure non-thermal discharges are increasingly drawing attention in view of many interesting applications. These, partially ionized media in non-equilibrium state, tend to generate complex effects that are difficult to interpret without a detailed knowledge of elementary processes involved. Electronically excited molecules and atoms may play an important role as intermediate states in a wide range of atomic and molecular processes, many of which are important in high-pressure discharges. They can serve also as reservoirs of energy or as sources of high energy electrons either through the energy pooling or through superelastic collisions. By presenting the analysis of current situation on the processes involving excited atoms and molecules of interest for high-pressure gas discharges, we will attempt to draw attention on the insufficiency of available data. In the same time we will show how to circumvent this situation and still be able to develop accurate models and interpretations of the observed phenomena

  15. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-12-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  16. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    2012-06-01

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  17. High power light gas helicon plasma source for VASIMR

    International Nuclear Information System (INIS)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; McCaskill, Greg E.; Winter, D. Scott; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2006-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition

  18. Disposal of aqueous condensate from high efficiency gas boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hardwick, G J; Pattison, J R

    1984-01-01

    If highly efficient gas-fired condensing heating appliances are installed in Britain, the aqueous condensate produced can be conveniently run into existing sewage drains. The part of the drainage system that is most vulnerable to corrosion from the mildly acid condensate is that portion adjacent to the domestic premises. The tests described indicate that this is not at risk and the only precaution that might be considered necessary is to avoid running the condensate over galvanized drain covers in order to prevent unsightly staining. Water authorities in Britain and detailed studies in the US and Holland confirm that the condensate - after dilution by domestic waste, sewage, and rainwater - would be harmless to municipal sewage systems and would not, either in volume or chemical composition, affect the working of existing sewage treatment plants.

  19. Safety analysis of a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Shimazu, Akira; Morimoto, Toshio

    1975-01-01

    In recent years, in order to satisfy the social requirements of environment and safety and also to cope with the current energy stringency, the installation of safe nuclear power plants is indispensable. Herein, safety analysis and evaluation to confirm quantitatively the safety design of a nuclear power plant become more and more important. The safety analysis and its methods for a high temperature gas-cooled reactor are described, with emphasis placed on the practices by Fuji Electric Manufacturing Co. Fundamental rule of securing plant safety ; safety analysis in normal operation regarding plant dynamic characteristics and radioactivity evaluation ; and safety analysis at the time of accidents regarding plant response to the accidents and radioactivity evaluation are explained. (Mori, K.)

  20. A High Reliability Gas-driven Helium Cryogenic Centrifugal Compressor

    CERN Document Server

    Bonneton, M; Gistau-Baguer, Guy M; Turcat, F; Viennot, P

    1998-01-01

    A helium cryogenic compressor was developed and tested in real conditions in 1996. The achieved objective was to compress 0.018 kg/s Helium at 4 K @ 1000 Pa (10 mbar) up to 3000 Pa (30 mbar). This project was an opportunity to develop and test an interesting new concept in view of future needs. The main features of this new specific technology are described. Particular attention is paid to the gas bearing supported rotor and to the pneumatic driver. Trade off between existing technologies and the present work are presented with special stress on the bearing system and the driver. The advantages are discussed, essentially focused on life time and high reliability without maintenance as well as non pollution characteristic. Practical operational modes are also described together with the experimental performances of the compressor. The article concludes with a brief outlook of future work.

  1. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    OpenAIRE

    Pinar, A.; Wijnen, B.; Anzalone, G. C.; Havens, T. C.; Sanders, P. G.; Pearce, J. M.

    2015-01-01

    Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW) RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder cu...

  2. Nonrenewable Energy Cost and Greenhouse Gas Emissions of a “Pig-Biogas-Fish” System in China

    Directory of Open Access Journals (Sweden)

    Qing Yang

    2012-01-01

    Full Text Available The purpose of this study is to assess the energy savings and emission reductions of the present rural biogas system in China. The life cycle assessment (LCA method is used to analyze a “pig-biogas-fish” system in Jingzhou, Hubei Province, China. The nonrenewable energy cost and the greenhouse gas (GHG emissions of the system, including the pigsty, the biogas digester, and the fishpond, are taken into account. The border definition is standardized because of the utilization of the database in this paper. The results indicate that the nonrenewable energy consumption intensity of the “pig-biogas-fish” system is 0.60 MJ/MJ and the equivalent CO2 emission intensity is 0.05 kg CO2-eq/MJ. Compared with the conventional animal husbandry system, the “pig-biogas-fish” system shows high renewability and GHG reduction benefit, which indicates that the system is a scientific and environmentally friendly chain combining energy and ecology.

  3. The costs and cost-efficiency of providing food through schools in areas of high food insecurity.

    Science.gov (United States)

    Gelli, Aulo; Al-Shaiba, Najeeb; Espejo, Francisco

    2009-03-01

    The provision of food in and through schools has been used to support the education, health, and nutrition of school-aged children. The monitoring of financial inputs into school health and nutrition programs is critical for a number of reasons, including accountability, transparency, and equity. Furthermore, there is a gap in the evidence on the costs, cost-efficiency, and cost-effectiveness of providing food through schools, particularly in areas of high food insecurity. To estimate the programmatic costs and cost-efficiency associated with providing food through schools in food-insecure, developing-country contexts, by analyzing global project data from the World Food Programme (WFP). Project data, including expenditures and number of schoolchildren covered, were collected through project reports and validated through WFP Country Office records. Yearly project costs per schoolchild were standardized over a set number of feeding days and the amount of energy provided by the average ration. Output metrics, such as tonnage, calories, and micronutrient content, were used to assess the cost-efficiency of the different delivery mechanisms. The average yearly expenditure per child, standardized over a 200-day on-site feeding period and an average ration, excluding school-level costs, was US$21.59. The costs varied substantially according to choice of food modality, with fortified biscuits providing the least costly option of about US$11 per year and take-home rations providing the most expensive option at approximately US$52 per year. Comparisons across the different food modalities suggested that fortified biscuits provide the most cost-efficient option in terms of micronutrient delivery (particularly vitamin A and iodine), whereas on-site meals appear to be more efficient in terms of calories delivered. Transportation and logistics costs were the main drivers for the high costs. The choice of program objectives will to a large degree dictate the food modality

  4. Asia least-cost greenhouse gas abatement strategy identification and assessment of mitigation options for the energy sector

    International Nuclear Information System (INIS)

    Gupta, Sujata; Bhandari, Preety

    1998-01-01

    The focus of the presentation was on greenhouse gas mitigation options for the energy sector for India. Results from the Asia Least-cost Greenhouse gas Abatement Strategies (ALGAS) project were presented. The presentation comprised of a review of the sources of greenhouse gases, the optimisation model, ie the Markal model, used for determining the least-cost options, discussion of the results from the baseline and the abatement scenarios. The second half of the presentation focussed on a multi-criteria assessment of the abatement options using the Analytical Hierarchical Process (AHP) model. The emissions of all greenhouse gases, for India, are estimated to be 986.3 Tg of carbon dioxide equivalent for 1990. The energy sector accounted for 58 percent of the total emissions and over 90 percent of the CO2 emissions. Net emissions form land use change and forestry were zero. (au)

  5. Environmental costs associated to the electric generation: hydroelectric versus natural gas thermoelectric; Custos ambientais associados a geracao eletrica: hidreletricas versus termeletricas a gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Marcelo de Miranda

    2001-01-15

    This works presents the methodologies for valuation of the environmental costs resulting from the main damages of the cycles of electric energy arrange through hydroelectric and natural gas thermoelectric. Initially theoretical concepts are established, embracing: the description of the valuation methodologies, the possible ways of damages internalization in the value of the products, the environmental impacts of hydroelectric and natural gas thermoelectric in these fuel cycles, and the methodologies that can be applied for value the main damages caused by the impacts. Then case studies are developed, with application of the methodologies in the hydroelectric plants of Simplicio and Serra da Mesa, and in the thermoelectric complex composed for RioGen and RioGen Merchant plants. Finally, conclusions and recommendations for a better future application in Brazil of the valuation methodologies are presented. (author)

  6. Prospects for energy efficiency improvement and reduction of emissions and life cycle costs for natural gas vehicles

    Science.gov (United States)

    Kozlov, A. V.; Terenchenko, A. S.; Luksho, V. A.; Karpukhin, K. E.

    2017-01-01

    This work is devoted to the experimental investigation of the possibilities to reduce greenhouse gas emissions and to increase energy efficiency of engines that use natural gas as the main fuel and the analysis of economic efficiency of use of dual fuel engines in vehicles compared to conventional diesel. The results of experimental investigation of a 190 kW dual-fuel engine are presented; it is shown that quantitative and qualitative working process control may ensure thermal efficiency at the same level as that of the diesel engine and in certain conditions 5...8% higher. The prospects for reduction of greenhouse gas emissions have been assessed. The technical and economic evaluation of use of dual fuel engines in heavy-duty vehicles has been performed, taking into account the total life cycle. It is shown that it is possible to reduce life cycle costs by two times.

  7. 17 CFR 229.1204 - (Item 1204) Oil and gas production, production prices and production costs.

    Science.gov (United States)

    2010-04-01

    ... production, production prices and production costs. 229.1204 Section 229.1204 Commodity and Securities... production, production prices and production costs. (a) For each of the last three fiscal years disclose... production cost, not including ad valorem and severance taxes, per unit of production. Instruction 1 to Item...

  8. Relative Sustainability of Natural Gas Assisted High-Octane Gasoline Blendstock Production from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yi Min [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cai, Hao [Argonne National Laboratory

    2017-11-01

    Biomass-derived hydrocarbon fuel technologies are being developed and pursued for better economy, environment, and society benefits underpinning the sustainability of transportation energy. Increasing availability and affordability of natural gas (NG) in the US can play an important role in assisting renewable fuel technology development, primarily in terms of economic feasibility. When a biorefinery is co-processing NG with biomass, the current low cost of NG coupled with the higher NG carbon conversion efficiency potentially allow for cost competitiveness of the fuel while achieving a minimum GHG emission reduction of 50 percent or higher compared to petroleum fuel. This study evaluates the relative sustainability of the production of high-octane gasoline blendstock via indirect liquefaction (IDL) of biomass (and with NG co-feed) through methanol/dimethyl ether intermediates. The sustainability metrics considered in this study include minimum fuel selling price (MFSP), carbon conversion efficiency, life cycle GHG emissions, life cycle water consumption, fossil energy return on investment (EROI), GHG emission avoidance cost, and job creation. Co-processing NG can evidently improve the MFSP. Evaluation of the relative sustainability can shed light on the biomass-NG synergistic impacts and sustainability trade-offs associated with the IDL as high-octane gasoline blendstock production.

  9. Cost, affordability and cost-effectiveness of strategies to control tuberculosis in countries with high HIV prevalence

    Directory of Open Access Journals (Sweden)

    Williams Brian G

    2005-12-01

    Full Text Available Abstract Background The HIV epidemic has caused a dramatic increase in tuberculosis (TB in East and southern Africa. Several strategies have the potential to reduce the burden of TB in high HIV prevalence settings, and cost and cost-effectiveness analyses can help to prioritize them when budget constraints exist. However, published cost and cost-effectiveness studies are limited. Methods Our objective was to compare the cost, affordability and cost-effectiveness of seven strategies for reducing the burden of TB in countries with high HIV prevalence. A compartmental difference equation model of TB and HIV and recent cost data were used to assess the costs (year 2003 US$ prices and effects (TB cases averted, deaths averted, DALYs gained of these strategies in Kenya during the period 2004–2023. Results The three lowest cost and most cost-effective strategies were improving TB cure rates, improving TB case detection rates, and improving both together. The incremental cost of combined improvements to case detection and cure was below US$15 million per year (7.5% of year 2000 government health expenditure; the mean cost per DALY gained of these three strategies ranged from US$18 to US$34. Antiretroviral therapy (ART had the highest incremental costs, which by 2007 could be as large as total government health expenditures in year 2000. ART could also gain more DALYs than the other strategies, at a cost per DALY gained of around US$260 to US$530. Both the costs and effects of treatment for latent tuberculosis infection (TLTI for HIV+ individuals were low; the cost per DALY gained ranged from about US$85 to US$370. Averting one HIV infection for less than US$250 would be as cost-effective as improving TB case detection and cure rates to WHO target levels. Conclusion To reduce the burden of TB in high HIV prevalence settings, the immediate goal should be to increase TB case detection rates and, to the extent possible, improve TB cure rates, preferably

  10. New deployment of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Tsuchie, Yasuo; Kunitomi, Kazuhiko; Shiozawa, Shusaku; Konuki, Kaoru; Inagaki, Yoshiyuki; Hayakawa, Hitoshi

    2002-01-01

    The high temperature gas-cooled reactor (HTGR) is now under a condition difficult to know it well, because of considering not only power generation, but also diverse applications of its nuclear heat, of having extremely different safe principle from that of conventional reactors, of having two types of pebble-bed and block which are extremely different types, of promoting its construction plan in South Africa, of including its application to disposition of Russian surplus weapons plutonium of less reporting HTTR in Japan in spite of its full operation, and so on. However, HTGR is expected for an extremely important nuclear reactor aiming at the next coming one of LWR. HTGR which is late started and developed under complete private leading, is strongly conscious at environmental problem since its beginning. Before 30 years when large scale HTGR was expected to operate, it advertised a merit to reduce wasted heat because of its high temperature. As ratio occupied by electricity expands among application of energies, ratio occupied by the other energies are larger. When considering applications except electric power, high temperature thermal energy from HTGR can be thought wider applications than that from LWR and so on. (G.K.)

  11. Comparison and Validation of Operational Cost in Smart Houses with the Introduction of a Heat Pump or a Gas Engine

    Science.gov (United States)

    Shimoji, Tsubasa; Tahara, Hayato; Matayoshi, Hidehito; Yona, Atsushi; Senjyu, Tomonobu

    2015-02-01

    Due to the concerns of global warming and the depletion of energy resources, renewable energies such as wind generation (WG) and photovoltaic generation (PV) are gaining attention in distribution systems. Efficient electric equipment such as heat pumps (HP) not only contribute low levels of carbon to society, but are also beneficial for consumers. In addition, gas instruments such as the gas engine (GE) and fuel cells (FC) are expected to reduce electricity cost by exhaust heat. Thus, it is important to clarify which systems (HP or GE) are more beneficial for consumers throughout the year. This paper compares the operational cost for the smart house between using the HP and the GE. Current electricity and gas prices are used to calculate the cost of the smart house. The system considered in this research comprises a PV, battery, solar collector (SC), uncontrolled load and either an HP or a GE. In order to verify the effectiveness of the proposed system, MATLAB is used for simulations.

  12. High-brightness high-order harmonic generation at 13 nm with a long gas jet

    International Nuclear Information System (INIS)

    Kim, Hyung Taek; Kim, I Jong; Lee, Dong Gun; Park, Jong Ju; Hong, Kyung Han; Nam, Chang Hee

    2002-01-01

    The generation of high-order harmonics is well-known method producing coherent extreme-ultraviolet radiation with pulse duration in the femtosecond regime. High-order harmonics have attracted much attention due to their unique features such as coherence, ultrashort pulse duration, and table-top scale system. Due to these unique properties, high-order harmonics have many applications of atomic and molecular spectroscopy, plasma diagnostics and solid-state physics. Bright generation of high-order harmonics is important for actual applications. Especially, the generation of strong well-collimated harmonics at 13 nm can be useful for the metrology of EUV lithography optics because of the high reflectivity of Mo-Si mirrors at this wavelength. The generation of bright high-order harmonics is rather difficult in the wavelength region below 15nm. Though argon and xenon gases have large conversion efficiency, harmonic generation from these gases is restricted to wavelengths over 20 nm due to low ionization potential. Hence, we choose neon for the harmonic generation around 13 nm; it has larger conversion efficiency than helium and higher ionization potential than argon. In this experiment, we have observed enhanced harmonic generation efficiency and low beam divergence of high-order harmonics from a elongated neon gas jet by the enhancement of laser propagation in an elongated gas jet. A uniform plasma column was produced when the gas jet was exposed to converging laser pulses.

  13. Advanced cost-effective surface geochemical techniques for oil/gas/uranium exploration, environmental assessments and pipeline monitoring - a template for India

    International Nuclear Information System (INIS)

    Lafleur, Paul; Chanrasekharan, G.Y.V.N.; Rajender Rao, S.

    2011-01-01

    Advanced geochemical soil gas methods have been successfully developed for the exploration of oil/gas/uranium and for environmental assessments. Application of these cost-effective technologies in India can substantially reduce exploration risk while accelerating the development of oil/gas/uranium onshore resources. A reliable and effective monitoring system using geochemical soil gas surveys ensures that CO 2 Enhanced Oil Recovery operations as well as CO 2 sequestration projects are safe and acceptable for the disposal of CO 2 , Soil gas surveys along with other technologies can also be applied for monitoring of oil/gas pipelines for leakage, especially those that are old or pass through populated regions

  14. Pros, cons of techniques used to calculate oil, gas finding costs

    International Nuclear Information System (INIS)

    Gaddis, D.; Brock, H.; Boynton, C.

    1992-01-01

    A major problem facing the U.S. petroleum industry is the higher average finding costs that now exist within the U.S. compared with the average finding costs outside the U.S. It has been argued that federal lands and offshore areas need to be open for drilling in order to reduce average finding costs in the U.S. This article analyzes the strengths and weaknesses of conventional techniques for determining finding costs. Our goal is a finding costs measure that is a reliable indicator of future profitability

  15. Transient fission gas release from UO2 fuel for high temperature and high burnup

    International Nuclear Information System (INIS)

    Szuta, M.

    2001-01-01

    In the present paper it is assumed that the fission gas release kinetics from an irradiated UO 2 fuel for high temperature is determined by the kinetics of grain growth. A well founded assumption that Vitanza curve describes the change of uranium dioxide re-crystallization temperature and the experimental results referring to the limiting grain size presented in the literature are used to modify the grain growth model. Algorithms of fission gas release due to re-crystallization of uranium dioxide grains are worked out. The defect trap model of fission gas behaviour described in the earlier papers is supplemented with the algorithms. Calculations of fission gas release in function of time, temperature, burn-up and initial grain sizes are obtained. Computation of transient fission gas release in the paper is limited to the case where steady state of irradiation to accumulate a desired burn-up is performed below the temperature of re-crystallization then the subsequent step temperature increase follows. There are considered two kinds of step temperature increase for different burn-up: the final temperature of the step increase is below and above the re-crystallization temperature. Calculations show that bursts of fission gas are predicted in both kinds. The release rate of gas liberated for the final temperature above the re-crystallization temperature is much higher than for final temperature below the re-crystallization temperature. The time required for the burst to subside is longer due to grain growth than due to diffusion of bubbles and knock-out release. The theoretical results explain qualitatively the experimental data but some of them need to be verified since this sort of experimental data are not found in the available literature. (author)

  16. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  17. Predicting Future High-Cost Schizophrenia Patients Using High-Dimensional Administrative Data

    Directory of Open Access Journals (Sweden)

    Yajuan Wang

    2017-06-01

    Full Text Available BackgroundThe burden of serious and persistent mental illness such as schizophrenia is substantial and requires health-care organizations to have adequate risk adjustment models to effectively allocate their resources to managing patients who are at the greatest risk. Currently available models underestimate health-care costs for those with mental or behavioral health conditions.ObjectivesThe study aimed to develop and evaluate predictive models for identification of future high-cost schizophrenia patients using advanced supervised machine learning methods.MethodsThis was a retrospective study using a payer administrative database. The study cohort consisted of 97,862 patients diagnosed with schizophrenia (ICD9 code 295.* from January 2009 to June 2014. Training (n = 34,510 and study evaluation (n = 30,077 cohorts were derived based on 12-month observation and prediction windows (PWs. The target was average total cost/patient/month in the PW. Three models (baseline, intermediate, final were developed to assess the value of different variable categories for cost prediction (demographics, coverage, cost, health-care utilization, antipsychotic medication usage, and clinical conditions. Scalable orthogonal regression, significant attribute selection in high dimensions method, and random forests regression were used to develop the models. The trained models were assessed in the evaluation cohort using the regression R2, patient classification accuracy (PCA, and cost accuracy (CA. The model performance was compared to the Centers for Medicare & Medicaid Services Hierarchical Condition Categories (CMS-HCC model.ResultsAt top 10% cost cutoff, the final model achieved 0.23 R2, 43% PCA, and 63% CA; in contrast, the CMS-HCC model achieved 0.09 R2, 27% PCA with 45% CA. The final model and the CMS-HCC model identified 33 and 22%, respectively, of total cost at the top 10% cost cutoff.ConclusionUsing advanced feature selection leveraging detailed

  18. A monolithically fabricated gas chromatography separation column with an integrated high sensitivity thermal conductivity detector

    International Nuclear Information System (INIS)

    Kaanta, Bradley C; Zhang, Xin; Chen, Hua

    2010-01-01

    The monolithic integration of a high sensitivity detector with a gas chromatography (GC) separation column creates many potential advantages over the discrete components of a traditional chromatography system. In miniaturized high-speed GC systems, component interconnections can cause crucial errors and loss of fidelity during detection and analysis. A monolithically integrated device would eliminate the need to create helium-tight interconnections, which are bulky and labor intensive. Additionally, batch fabrication of integrated devices that no longer require expensive and fragile detectors can decrease the cost of micro GC systems through economies of scale. We present the design, fabrication and operation of a monolithic GC separation column and detector. Our device is able to separate nitrogen, methane and carbon dioxide within 30 s. This method of device integration could be applied to the existing wealth of column geometries and chemistries designed for specialized applications.

  19. High Temperature Gas-Cooled Reactor Projected Markets and Preliminary Economics

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2011-08-01

    This paper summarizes the potential market for process heat produced by a high temperature gas-cooled reactor (HTGR), the environmental benefits reduced CO2 emissions will have on these markets, and the typical economics of projects using these applications. It gives examples of HTGR technological applications to industrial processes in the typical co-generation supply of process heat and electricity, the conversion of coal to transportation fuels and chemical process feedstock, and the production of ammonia as a feedstock for the production of ammonia derivatives, including fertilizer. It also demonstrates how uncertainties in capital costs and financial factors affect the economics of HTGR technology by analyzing the use of HTGR technology in the application of HTGR and high temperature steam electrolysis processes to produce hydrogen.

  20. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  1. 42 CFR 412.84 - Payment for extraordinarily high-cost cases (cost outliers).

    Science.gov (United States)

    2010-10-01

    ... obtains accurate data with which to calculate either an operating or capital cost-to-charge ratio (or both... outlier payments will be based on operating and capital cost-to-charge ratios calculated based on a ratio... outliers). 412.84 Section 412.84 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF...

  2. Image simulation of high-speed imaging by high-pressure gas ionization detector

    International Nuclear Information System (INIS)

    Miao Jichen; Liu Ximing; Wu Zhifang

    2005-01-01

    The signal of the neighbor pixels is cumulated in Freight Train Inspection System because data fetch time is shorter than ion excursion time. This paper analyzes the pertinency of neighbor pixels and designs computer simulation method to generate some emulate images such as indicator image. The result indicates the high-pressure gas ionization detector can be used in high-speed digital radiography field. (authors)

  3. Development of high frequency tungsten inert gas welding method

    International Nuclear Information System (INIS)

    Morisada, Yoshiaki; Fujii, Hidetoshi; Inagaki, Fuminori; Kamai, Masayoshi

    2013-01-01

    Highlights: ► A new ultrasonic wave TIG welding method was developed. ► The area of the blowholes decreased to less than about 1/8 in the normal TIG weld. ► The number of blowholes decreased with the decreasing frequency. ► The number of blowholes increased when the frequency was less than 15 kHz. ► The microstructure of the weld was refined by ultrasonic wave. -- Abstract: A new welding method, called high frequency tungsten inert gas (TIG) welding, was developed to decrease blowholes in a weld. A1050 aluminum alloy plates (100 mm l × 50 mm w × 5 mm t ) were welded at a frequency from 10 to 40 kHz. An Ar-1% hydrogen mixture was used as the shielding gas to generate blowholes in the experiments. The welding was performed in the horizontal position so that the blowholes can easily be a problem. For comparison, a normal TIG welding was also performed at 60 Hz. After welding, the distribution of the blowholes in the welds was observed in order to evaluate the effect of the sonic wave. The number of blowholes changed with the frequency. A frequency near 15 kHz is the most suitable to decrease the blowholes. Using this new method, the area of blowholes is decreased to less than about 1/8 of the normal TIG weld. This method is much more effective for decreasing the number of blowholes, compared with an ultrasonic wave vibrator which is directly fixed to the sample.

  4. Using Modelica to investigate the dynamic behaviour of the German national standard for high pressure natural gas flow metering

    International Nuclear Information System (INIS)

    Von der Heyde, M; Schmitz, G; Mickan, B

    2016-01-01

    This paper presents a computational model written in Modelica for the high pressure piston prover (HPPP) used as the national primary standard for high pressure natural gas flow metering in Germany. With a piston prover the gas flow rate is determined by measuring the time a piston needs to displace a certain volume of gas in a cylinder. Fluctuating piston velocity during measurement can be a significant source of uncertainty if not considered in an appropriate way. The model was built to investigate measures for the reduction of this uncertainty. Validation shows a good compliance of the piston velocity in the model with measured data for certain volume flow rates. Reduction of the piston weight, variation of the start valve switching time and integration of a flow straightener were found to reduce the piston velocity fluctuations in the model significantly. The fast and cost effective generation of those results shows the strength of the used modelling approach. (paper)

  5. The indirect costs and benefits of greenhouse gas limitations: Mauritius case study

    Energy Technology Data Exchange (ETDEWEB)

    Markandya, A.; Boyd, R.

    1999-09-01

    There has been a considerable amount of work carried out on the appraisal of different projects and programmes that reduce greenhouse gases (GHGs). These studies have focused on the development of appropriate methodologies for estimating of the costs of GHG limitation, and measuring the amount of GHGs abated. These are two of the central issues that need to be considered prior to finalising a policy for GHG mitigation, and ideally one would pursue those policy measures that effectively reduce GHGs at least cost. Although the cost (when correctly measured) should have a strong bearing on which policies to select, it is not the only consideration. Other factors will influence the decision, such as the impacts of the policies on different social groups in society, particularly on vulnerable groups, the benefits of the GHG limitation in other spheres (e.g. reduced air pollution), and the impacts of the policies on broader concern such as sustainability. In developing countries these other factors are even more important than they are in the industrialised countries. GHG limitation does not have as high a priority relative to other goals; such as poverty alleviation, reductions in employment, etc. as it does in the wealthier countries. Indeed, one can argue that the major focus of policy will be development, poverty alleviation etc. and that GHG limitation will be an addendum to a programme designed to meet those needs. Taking account of the GHG component may change the detailed design of a policy or programme, rather than being the main issue that determines the policy. In recognition of the importance of these broader social and environmental issues in developing countries, a methodology has been developed which provides a framework for the assessment of the wider impacts arising from GHG limitation projects, and advice on how to incorporate them into the decision-making framework. The purpose of this report is to apply the methodology to a set of selected GHG

  6. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha

    2011-04-01

    This article describes fabrication of novel silica membranes derived via controlled oxidative thermolysis of polydimethylsiloxane and their gas separation performance. The optimized protocol for fabrication of the silica membranes is described and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air and may ultimately find use in H 2/CO 2 separations to improve efficiency in the water-gas shift reactor process. © 2011 Elsevier B.V.

  7. High Efficiency and Low Cost Thermal Energy Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Moisseytsev, Anton [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Bucknor, Matthew [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2017-09-29

    BgtL, LLC (BgtL) is focused on developing and commercializing its proprietary compact technology for processes in the energy sector. One such application is a compact high efficiency Thermal Energy Storage (TES) system that utilizes the heat of fusion through phase change between solid and liquid to store and release energy at high temperatures and incorporate state-of-the-art insulation to minimize heat dissipation. BgtL’s TES system would greatly improve the economics of existing nuclear and coal-fired power plants by allowing the power plant to store energy when power prices are low and sell power into the grid when prices are high. Compared to existing battery storage technology, BgtL’s novel thermal energy storage solution can be significantly less costly to acquire and maintain, does not have any waste or environmental emissions, and does not deteriorate over time; it can keep constant efficiency and operates cleanly and safely. BgtL’s engineers are experienced in this field and are able to design and engineer such a system to a specific power plant’s requirements. BgtL also has a strong manufacturing partner to fabricate the system such that it qualifies for an ASME code stamp. BgtL’s vision is to be the leading provider of compact systems for various applications including energy storage. BgtL requests that all technical information about the TES designs be protected as proprietary information. To honor that request, only non-proprietay summaries are included in this report.

  8. Optimization Method of a Low Cost, High Performance Ceramic Proppant by Orthogonal Experimental Design

    Science.gov (United States)

    Zhou, Y.; Tian, Y. M.; Wang, K. Y.; Li, G.; Zou, X. W.; Chai, Y. S.

    2017-09-01

    This study focused on optimization method of a ceramic proppant material with both low cost and high performance that met the requirements of Chinese Petroleum and Gas Industry Standard (SY/T 5108-2006). The orthogonal experimental design of L9(34) was employed to study the significance sequence of three factors, including weight ratio of white clay to bauxite, dolomite content and sintering temperature. For the crush resistance, both the range analysis and variance analysis reflected the optimally experimental condition was weight ratio of white clay to bauxite=3/7, dolomite content=3 wt.%, temperature=1350°C. For the bulk density, the most important factor was the sintering temperature, followed by the dolomite content, and then the ratio of white clay to bauxite.

  9. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France

    International Nuclear Information System (INIS)

    Gaussens, J.; Tanguy, P.

    1964-01-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  10. Shale gas. An absurd and costly stand-off for the country

    International Nuclear Information System (INIS)

    2014-10-01

    Addressing the exploitation of shale gas in France, this note states that the exploitation of shale gas would be an economic contribution with no equivalent, that landscapes would not be damaged by this exploitation, that the use of water for this exploitation cannot be a problem in France, that risks related to hydraulic fracturing would be perfectly managed, that this exploitation would be an asset for energy independence and for the struggle against the greenhouse effect, that it would be a good idea to involve populations in shale gas extraction by a modification of the mining code. It supports the idea of a pilot research programme, and of an assessment of reserves

  11. Study on gas turbines. Leading role of high efficiency power generation; Gas turbine kenkyu. Kokoritsu hatsuden no shuyaku wo nerau

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-31

    This review summarizes research works of Central Research Institute of Electric Power Industry on gas turbines playing a leading role of high efficiency power generation. This article describes historical changes of gas turbine technology, changes and current status from the viewpoint of electric power industry, and development trend in various makers. Increase in the flow-in gas temperature, low NOx combustion technology, use of various fuels, and durability evaluation and improvement technology for high temperature parts are described as technological problems and development trends. The increase in temperature is indispensable for the improvement of efficiency. Materials having heat resistance, anticorrosion and strength are required. Accordingly, Ni-based single crystal super alloy has been developed. Developments of ceramic gas turbine and catalytic combustor are also described. The coal gasification combined power generation is expected as a new power generation technology having availability of various coals, high efficiency, and excellent environmental protection. Development of 1500 {degree}C class combustor for turbines has been promoted. Evaluation and improvement of durability of high temperature parts are also described. For the new utilization technology of gas turbines, repowering and compressed air storage gas turbine power generation technology are introduced. 92 figs., 14 tabs.

  12. Program for aerodynamic performance tests of helium gas compressor model of the gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunimoto, Kazuhiko; Yan, Xing; Itaka, Hidehiko; Mori, Eiji

    2003-01-01

    Research and development program for helium gas compressor aerodynamics was planned for the power conversion system of the Gas Turbine High Temperature Reactor (GTHTR300). The axial compressor with polytropic efficiency of 90% and surge margin more than 30% was designed with 3-dimensional aerodynamic design. Performance and surge margin of the helium gas compressor tends to be lower due to the higher boss ratio which makes the tip clearance wide relative to the blade height, as well as due to a larger number of stages. The compressor was designed on the basis of methods and data for the aerodynamic design of industrial open-cycle gas-turbine. To validate the design of the helium gas compressor of the GTHTR300, aerodynamic performance tests were planned, and a 1/3-scale, 4-stage compressor model was designed. In the tests, the performance data of the helium gas compressor model will be acquired by using helium gas as a working fluid. The maximum design pressure at the model inlet is 0.88 MPa, which allows the Reynolds number to be sufficiently high. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  13. Production of solidified high level wastes: a cost comparison of solidification processes

    International Nuclear Information System (INIS)

    1977-06-01

    Differential cost estimates of the annual operating and maintenance costs and the capital costs for five HLW Waste Solidification Alternates were developed. The annual operating and maintenance cost estimates included the cost of labor, consumables, utilities, shipping casks, shipping and disposal at a federal repository. The capital cost included the cost of the component, installation and building. The differential cost estimates do not include equipment and facilities which are either shared with the reprocessing facility or are common between all of the alternates. Total annual cost differential between the five waste form alternates is summarized in tabular form. The Borosilicate Glass Alternate has the lowest total annual cost. The other alternates have higher costs which range from $6.6 M to $7.4 M per year higher than the Glass alternate with the Supercalcine being the highest cost at $7.4 M per year differential. The major items in the cost estimates are then disposal costs in the operating cost estimates and the HLW Storage Tanks in the capital cost estimates. The Supercalcine Multibarrier Alternate ships 180 canisters per year more than the other alternates and consequently has a significantly higher operating cost. However, off-setting this the Supercalcine Multibarrier Alternate does not require HLW Storage Tanks for decay because of the high heat conductivity of this product and correspondingly the capital cost for this alternate is significantly lower than the other alternates. The radiological risk values are correlated with the cost evaluation normalized to cost ($)/MWe-yr

  14. Computer simulation of energy use, greenhouse gas emissions, and costs for alternative methods of processing fluid milk.

    Science.gov (United States)

    Tomasula, P M; Datta, N; Yee, W C F; McAloon, A J; Nutter, D W; Sampedro, F; Bonnaillie, L M

    2014-07-01

    Computer simulation is a useful tool for benchmarking electrical and fuel energy consumption and water use in a fluid milk plant. In this study, a computer simulation model of the fluid milk process based on high temperature, short time (HTST) pasteurization was extended to include models for processes for shelf-stable milk and extended shelf-life milk that may help prevent the loss or waste of milk that leads to increases in the greenhouse gas (GHG) emissions for fluid milk. The models were for UHT processing, crossflow microfiltration (MF) without HTST pasteurization, crossflow MF followed by HTST pasteurization (MF/HTST), crossflow MF/HTST with partial homogenization, and pulsed electric field (PEF) processing, and were incorporated into the existing model for the fluid milk process. Simulation trials were conducted assuming a production rate for the plants of 113.6 million liters of milk per year to produce only whole milk (3.25%) and 40% cream. Results showed that GHG emissions in the form of process-related CO₂ emissions, defined as CO₂ equivalents (e)/kg of raw milk processed (RMP), and specific energy consumptions (SEC) for electricity and natural gas use for the HTST process alone were 37.6g of CO₂e/kg of RMP, 0.14 MJ/kg of RMP, and 0.13 MJ/kg of RMP, respectively. Emissions of CO2 and SEC for electricity and natural gas use were highest for the PEF process, with values of 99.1g of CO₂e/kg of RMP, 0.44 MJ/kg of RMP, and 0.10 MJ/kg of RMP, respectively, and lowest for the UHT process at 31.4 g of CO₂e/kg of RMP, 0.10 MJ/kg of RMP, and 0.17 MJ/kg of RMP. Estimated unit production costs associated with the various processes were lowest for the HTST process and MF/HTST with partial homogenization at $0.507/L and highest for the UHT process at $0.60/L. The increase in shelf life associated with the UHT and MF processes may eliminate some of the supply chain product and consumer losses and waste of milk and compensate for the small increases in GHG

  15. Coated particle fuel for high temperature gas cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl; Nabielek, Heinz [Research Center Julich (FZJ), Julich (Germany); Kendall, James M. [Global Virtual L1c, Prescott (United States)

    2007-10-15

    applications at 850-900 .deg. C and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 {mu}m diameter UO{sub 2} kernel of 10% enrichment is surrounded by a 100 {mu}m thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 {mu}m thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level.

  16. Coated particle fuel for high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Verfondern, Karl; Nabielek, Heinz; Kendall, James M.

    2007-01-01

    and for process heat/hydrogen generation applications with 950 .deg. C outlet temperatures. There is a clear set of standards for modern high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a 500 μm diameter UO 2 kernel of 10% enrichment is surrounded by a 100 μm thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of 35 μm thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum 1600 .deg. C afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modern coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond 1600 .deg. C for a short period of time. This work should proceed at both national and international level

  17. High efficient ethanol and VFAs production from gas fermentation: effect of acetate, gas and inoculum microbial composition

    DEFF Research Database (Denmark)

    El-Gammal, Maie; Abou-Shanab, Reda; Angelidaki, Irini

    2017-01-01

    In bioindustry, syngas fermentation is a promising technology for biofuel production without the use of plant biomass as sugar-based feedstock. The aim of this study was to identify optimal conditions for high efficient ethanol and volatile fatty acids (VFA) production from synthetic gas...... fatty acids and ethanol was achieved by the pure culture (Clostridium ragsdalei). Depending on the headspace gas composition, VFA concentrations were up to 300% higher after fermentation with Clostridium ragsdalei compared to fermentation with mixed culture. The preferred gas composition with respect...

  18. Pump it out : the environmental costs of BC's upstream oil and gas industry

    International Nuclear Information System (INIS)

    2003-05-01

    West Coast Environmental Law published this web-based guide to provide information to concerned citizens interested in knowing more about the environmental consequences of upstream oil and gas activity in British Columbia. The report looked at global consequences such as greenhouse gas emissions, and local consequences such as seismic lines, roads, and processing facilities. At present, the government of British Columbia is implementing policies aimed at doubling oil and gas production in five years, de-regulate the oil and gas industry, and cut oversight and enforcement staff. The guide was designed to assist citizens and communities in making informed choices about energy options. The specific topics dealt with in this report were: the consequences to the environment; what laws are applicable, and their enforcement; changes required to reduce or eliminate environmental damage; and, actions that a concerned citizen can take. refs

  19. Novel silica membranes for high temperature gas separations

    KAUST Repository

    Bighane, Neha; Koros, William J.

    2011-01-01

    and pure gas separation performance in the temperature range 35-80°C is presented. It is observed that the membranes exhibit activated transport for small gas penetrants such as He, H 2 and CO 2. The membranes can withstand temperatures up to 350°C in air

  20. Gas tube-switched high voltage DC power converter

    Science.gov (United States)

    She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul

    2018-05-15

    A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.

  1. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  2. Petroleum product refining: plant level analysis of costs and competitiveness. Implications of greenhouse gas emission reductions. Vol 1

    International Nuclear Information System (INIS)

    Kelly, S.J.; Crandall, G.R.; Houlton, G.A.; Kromm, R.B.

    1999-01-01

    Implications on the Canadian refining industry of reducing greenhouse gas (GHG) emissions to meet Canada's Kyoto commitment are assessed, based on a plant-level analysis of costs, benefits and economic and competitive impacts. It was determined on the basis of demand estimates prepared by Natural Resources Canada that refining industry carbon dioxide emissions could be as much a 38 per cent higher than 1990 levels in 2010. Achieving a six per cent reduction below 1990 levels from this business-as-usual case is considered a very difficult target to achieve, unless refinery shutdowns occur. This would require higher imports to meet Canada's petroleum products demand, leaving total carbon dioxide emissions virtually unchanged. A range of options, classified as (1) low capital, operating efficiency projects, (2) medium capital, process/utility optimization projects, (3) high capital, refinery specific projects, and (4) high operating cost GHG projects, were evaluated. Of these four alternatives, the low capital or operating efficiency projects were the only ones judged to have the potential to be economically viable. Energy efficiency projects in these four groups were evaluated under several policy initiatives including accelerated depreciation and a $200 per tonne of carbon tax. Result showed that an accelerated depreciation policy would lower the hurdle rate for refinery investments, and could achieve a four per cent reduction in GHG emissions below 1990 levels, assuming no further shutdown of refinery capacity. The carbon tax was judged to be potentially damaging to the Canadian refinery industry since it would penalize cracking refineries (most Canadian refineries are of this type); it would provide further uncertainty and risk, such that industry might not be able to justify investments to reduce emissions. The overall assessment is that the Canadian refinery industry could not meet the pro-rata Kyoto GHG reduction target through implementation of economically

  3. High-yield well modes and production practices in the Longwangmiao Fm gas reservoirs, Anyue Gas Field, central Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zhongren Yu

    2016-12-01

    Full Text Available The lithologic Longwangmiao Fm gas reservoirs are situated in the Moxi Block of the Anyue Gas Field, central Sichuan Basin. Due to their great heterogeneity affected by the differential roles of lithologic facies and karstification, huge differences exist in the single-well gas yield tests. To improve the development efficiency of gas reservoirs and achieve the goal of “high yield but with few wells to be drilled”, it is especially important to establish a high-yield gas well mode by use of cores, logging, seismic data, etc., and through analysis of reservoir properties, high-yield controlling factors, and seismic response features of quality reservoirs and so on. The following findings were achieved. (1 The positive relationship between yield and the thickness of dissolved vug reservoirs is obvious. (2 The dissolved vug reservoirs are reflected as the type of honeycomb dark patches from the image logging and the conventional logging is featured generally by “Three Lows and Two Highs (i.e., low GR, low RT and low DEN but high AC and high CNL”. (3 From the seismic profile, the highlighted spots (strong peaks correspond to the bottom boundary of the Longwangmiao Fm reservoirs. The trough waves in larger amplitude represents that there are more well-developed karsts in the reservoirs. On this basis, high-quality 3D seismic data was used for tracking and fine interpretation of those highlighted spots and trough waves on the strong peaks to describe the plane distribution of high-yield dissolved vug reservoirs in this study area. This study is of great significance to the good planning of development wells and well trajectory planning and adjustment. As a result, high-thickness dissolved vug reservoirs have been targeted in this study area with the tested gas yield of 28 wells reaching up to 100 × 104 m3/d among the completed and tested 30 wells in total.

  4. A cost-benefit analysis of produced water management opportunities in selected unconventional oil and gas plays

    Science.gov (United States)

    Marsters, P.; Macknick, J.; Bazilian, M.; Newmark, R. L.

    2013-12-01

    Unconventional oil and gas production in North America has grown enormously over the past decade. The combination of horizontal drilling and hydraulic fracturing has made production from shale and other unconventional resources economically attractive for oil and gas operators, but has also resulted in concerns over potential water use and pollution issues. Hydraulic fracturing operations must manage large volumes of water on both the front end as well as the back end of operations, as significant amounts of water are coproduced with hydrocarbons. This water--often called flowback or produced water--can contain chemicals from the hydraulic fracturing fluid, salts dissolved from the source rock, various minerals, volatile organic chemicals, and radioactive constituents, all of which pose potential management, safety, and public health issues. While the long-term effects of hydraulic fracturing on aquifers, drinking water supplies, and surface water resources are still being assessed, the immediate impacts of produced water on local infrastructure and water supplies are readily evident. Produced water management options are often limited to underground injection, disposal at centralized treatment facilities, or recycling for future hydraulic fracturing operations. The costs of treatment, transport, and recycling are heavily dependent on local regulations, existing infrastructure, and technologies utilized. Produced water treatment costs also change over time during energy production as the quality of the produced water often changes. To date there is no publicly available model that evaluates the cost tradeoffs associated with different produced water management techniques in different regions. This study addresses that gap by characterizing the volume, qualities, and temporal dynamics of produced water in several unconventional oil and gas plays; evaluating potential produced water management options, including reuse and recycling; and assessing how hydraulic

  5. Developing a Metric for the Cost of Green House Gas Abatement

    Science.gov (United States)

    2017-02-28

    The authors introduce the levelized cost of carbon (LCC), a metric that can be used to evaluate MassDOT CO2 abatement projects in terms of their cost-effectiveness. The study presents ways in which the metric can be used to rank projects. The data ar...

  6. 78 FR 8389 - Natural Gas Pipelines; Project Cost and Annual Limits

    Science.gov (United States)

    2013-02-06

    ... Director of the Office of Energy Projects. The cost limits for calendar year 2013, as published in Table I.... ACTION: Final rule. SUMMARY: Pursuant to the authority delegated by 18 CFR 375.308(x)(1), the Director of the Office of Energy Projects (OEP) computes and publishes the project cost and annual limits for...

  7. Use of thorium for high temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, Cláudio Q., E-mail: claudio_guimaraes@usp.br [Universidade de São Paulo (USP), SP (Brazil). Instituto de Física; Stefani, Giovanni L. de, E-mail: giovanni.stefani@ipen.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Santos, Thiago A. dos, E-mail: thiago.santos@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo André, SP (Brazil)

    2017-07-01

    The HTGR ( High Temperature Gas-cooled Reactor) is a 4{sup th} generation nuclear reactor and is fuelled by a mixture of graphite and fuel-bearing microspheres. There are two competitive designs of this reactor type: The German “pebble bed” mode, which is a system that uses spherical fuel elements, containing a graphite-and-fuel mixture coated in a graphite shell; and the American version, whose fuel is loaded into precisely located graphite hexagonal prisms that interlock to create the core of the vessel. In both variants, the coolant consists of helium pressurised. The HTGR system operates most efficiently with the thorium fuel cycle, however, so relatively little development has been carried out in this country on that cycle for HTGRs. In the Nuclear Engineering Centre of IPEN (Instituto de Pesquisas Energéticas e Nucleares), a study group is being formed linked to thorium reactors, whose proposal is to investigate reactors using thorium for {sup 233}U production and rejects burning. The present work intends to show the use of thorium in HTGRs, their advantages and disadvantages and its feasibility. (author)

  8. Inherently safe high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Yamada, Masao; Hayakawa, Hitoshi

    1987-01-01

    It is recognized in general that High Temperature Gas-cooled Reactors have remarkable characteristics in inherent safety and it is well known that credits of the time margin have been admitted for accident evaluation in the licensing of the currently operating prototype HTGRs (300 MWe class). Recently, more inherently safe HTGRs are being developed in various countries and drawing attention on their possibility for urban siting. The inherent safety characteristics of these HTRs differ each other depending on their design philosophy and on the features of the components/structures which constitute the plant. At first, the specific features/characteristics of the elemental components/structures of the HTRs are explained one by one and then the overall safety features/characteristics of these HTR plants are explained in connection with their design philosophy and combination of the elemental features. Taking the KWU/Interatom Modular Reactor System as an example, the particular design philosophy and safety characteristics of the inherently safe HTR are explained with a result of preliminary evaluation on the possibility of siting close to densely populated area. (author)

  9. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  10. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235 U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235 U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  11. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  12. Association of prescription abandonment with cost share for high-cost specialty pharmacy medications.

    Science.gov (United States)

    Gleason, Patrick P; Starner, Catherine I; Gunderson, Brent W; Schafer, Jeremy A; Sarran, H Scott

    2009-10-01

    In 2008, specialty medications accounted for 15.1% of total pharmacy benefit medication spending, and per member expenditures have increased by 11.1% annually from 2004 to 2008 within a commercially insured population of 8 million members. Insurers face increasing pressure to control specialty medication expenditures and to rely on increasing member cost share through creation of a fourth copayment tier within the incentive-based formulary pharmacy benefit system. Data are needed on the influence that member out-of-pocket (OOP) expense may have on prescription abandonment (defined as the patient never actually taking possession of the medication despite evidence of a written prescription generated by a prescriber). To explore the relationship between prescription abandonment and OOP expense among individuals newly initiating high-cost medication therapy with a tumor necrosis factor (TNF) blocker or multiple sclerosis (MS) biologic agent. This observational cross-sectional study queried a midwestern and southern U.S. database of 13,172,480 commercially insured individuals to find members with a pharmacy benefit-adjudicated claim for a TNF blocker or MS specialty medication during the period from July 2006 through June 2008. Prescription abandonment was assessed among continuously enrolled members newly initiating TNF blocker or MS therapy. Prescription abandonment was defined as reversal of the adjudicated claim with no evidence of a subsequent additional adjudicated paid claim in the ensuing 90 days. Separate analyses for MS and TNF blocker therapy were performed to assess the association between member OOP expense and abandonment rate using the Cochran-Armitage test for trend and multivariate logistic regression. Members were placed into 1 of the 7 following OOP expense groups per claim: $0-$100, $101-$150, $151-$200, $201-$250, $251-$350, $351-$500, or more than $500. The association of MS or TNF blocker abandonment rate with OOP expense was tested with logistic

  13. Natural gas price uncertainty and the cost-effectiveness of hedging against low hydropower revenues caused by drought

    Science.gov (United States)

    Kern, Jordan D.; Characklis, Gregory W.; Foster, Benjamin T.

    2015-04-01

    Prolonged periods of low reservoir inflows (droughts) significantly reduce a hydropower producer's ability to generate both electricity and revenues. Given the capital intensive nature of the electric power industry, this can impact hydropower producers' ability to pay down outstanding debt, leading to credit rating downgrades, higher interests rates on new debt, and ultimately, greater infrastructure costs. One potential tool for reducing the financial exposure of hydropower producers to drought is hydrologic index insurance, in particular, contracts structured to payout when streamflows drop below a specified level. An ongoing challenge in developing this type of insurance, however, is minimizing contracts' "basis risk," that is, the degree to which contract payouts deviate in timing and/or amount from actual damages experienced by policyholders. In this paper, we show that consideration of year-to-year changes in the value of hydropower (i.e., the cost of replacing it with an alternative energy source during droughts) is critical to reducing contract basis risk. In particular, we find that volatility in the price of natural gas, a key driver of peak electricity prices, can significantly degrade the performance of index insurance unless contracts are designed to explicitly consider natural gas prices when determining payouts. Results show that a combined index whose value is derived from both seasonal streamflows and the spot price of natural gas yields contracts that exhibit both lower basis risk and greater effectiveness in terms of reducing financial exposure.

  14. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    International Nuclear Information System (INIS)

    Prasad, D N; Ayyappan, R; Kamble, L P; Singh, J P; Muralikrishna, L V; Alex, M; Balagi, V; Mukhopadhyay, P K

    2008-01-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm 2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ∼1 x 10 -5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mmx160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face and diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6x10 -9 m bar ltr/sec in vacuum mode and 2x10 -7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5x10 -5 mbar, the new valve achieved vacuum 7.4x10 -6 mbar in the same time under the same conditions

  15. Environmentally friendly drive for gas compression applications: enhanced design of high-speed induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois; Mercier, Jean Charles [Institut National Polytechncique, Lorrain (France). Converteam Motors Div.; Truchot, Patrick [Nancy Universite (France). Equipe de Recherche sur les Processus Innovatifs (ERPI)

    2008-07-01

    Taking into account the key issues faced by gas compressors users, this paper aims to help optimize the choice of the drive equipment as well as the driven equipment, in function of the cost of the whole installation life cycle. The design of the enhanced high-speed induction motor (MGV-Moteuer a Grande Vitesse) represents a technological breakthrough for the industry, it allows the direct coupling to the compressor, without using a gearbox making the system more efficient and reliable. From both micro and macro-economic viewpoints, the high-speed electric driver becomes a more efficient use of natural gas energy resources. This new technology associated with the electric option offers challenging and rewarding work to those responsible for the operation and maintenance of the compressor station. The electric option is not only conceptually viable but has a proven track record that justifies serious consideration as an alternative for reliably powering. Once an operator becomes comfortable with the prospects of motor-driven compression, the analysis of machine options requires only a few new approaches to fairly evaluate the alternatives. The application of this reasoning in projects using compression units is especially opportune, in view of the great variations of operational conditions and environmental issues. (author)

  16. System Evaluation and Life-Cycle Cost Analysis of a Commercial-Scale High-Temperature Electrolysis Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Edwin A. Harvego; James E. O' Brien; Michael G. McKellar

    2012-11-01

    Results of a system evaluation and lifecycle cost analysis are presented for a commercial-scale high-temperature electrolysis (HTE) central hydrogen production plant. The plant design relies on grid electricity to power the electrolysis process and system components, and industrial natural gas to provide process heat. The HYSYS process analysis software was used to evaluate the reference central plant design capable of producing 50,000 kg/day of hydrogen. The HYSYS software performs mass and energy balances across all components to allow optimization of the design using a detailed process flow sheet and realistic operating conditions specified by the analyst. The lifecycle cost analysis was performed using the H2A analysis methodology developed by the Department of Energy (DOE) Hydrogen Program. This methodology utilizes Microsoft Excel spreadsheet analysis tools that require detailed plant performance information (obtained from HYSYS), along with financial and cost information to calculate lifecycle costs. The results of the lifecycle analyses indicate that for a 10% internal rate of return, a large central commercial-scale hydrogen production plant can produce 50,000 kg/day of hydrogen at an average cost of $2.68/kg. When the cost of carbon sequestration is taken into account, the average cost of hydrogen production increases by $0.40/kg to $3.08/kg.

  17. High-efficiency Gas Cogeneration – an Assessment of the Support Mechanism

    Directory of Open Access Journals (Sweden)

    Maciej Sołtysik

    2015-09-01

    Full Text Available The development of a single European energy market implies the need to harmonise national laws and the directions of the sector’s growth to EU determinants. One of these elements was the introduction of a system to support the development of high-efficiency cogeneration, including gas cogeneration. Several years of the mechanisms’ performance allows for analysis of the advisability and correctness of the support model format, and assessment of its impact on the sub-sector’s development and the cost of its operation. Against the background of the support system introduction origins, the paper presents results of volumetric and price analyses, trends, and assessment of the balance of property rights and of the mechanism’s effectiveness.

  18. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  19. Using Wireless Sensor Networks to Achieve Intelligent Monitoring for High-Temperature Gas-Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Jianghai Li

    2017-01-01

    Full Text Available High-temperature gas-cooled reactors (HTGR can incorporate wireless sensor network (WSN technology to improve safety and economic competitiveness. WSN has great potential in monitoring the equipment and processes within nuclear power plants (NPPs. This technology not only reduces the cost of regular monitoring but also enables intelligent monitoring. In intelligent monitoring, large sets of heterogeneous data collected by the WSN can be used to optimize the operation and maintenance of the HTGR. In this paper, WSN-based intelligent monitoring schemes that are specific for applications of HTGR are proposed. Three major concerns regarding wireless technology in HTGR are addressed: wireless devices interference, cybersecurity of wireless networks, and wireless standards selected for wireless platform. To process nonlinear and non-Gaussian data obtained by WSN for fault diagnosis, novel algorithms combining Kernel Entropy Component Analysis (KECA and support vector machine (SVM are developed.

  20. Design of Low Cost, Highly Adsorbent Activated Carbon Fibers

    National Research Council Canada - National Science Library

    Mangun, Christian

    2003-01-01

    .... EKOS has developed a novel activated carbon fiber - (ACF) that combines the low cost and durability of GAC with tailored pore size and pore surface chemistry for improved defense against chemical agents...

  1. A Low-Cost, High-Precision Navigator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop and demonstrate a prototype low-cost precision navigation system using commercial-grade gyroscopes and accelerometers....

  2. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 2 ... commercial discriminators. A low-cost discriminator is an essential requirement of the GRAPES-3 experiment where a large number of discriminator channels are used.

  3. The high cost of clinical negligence litigation in the NHS.

    Science.gov (United States)

    Tingle, John

    2017-03-09

    John Tingle, Reader in Health Law at Nottingham Trent University, discusses a consultation document from the Department of Health on introducing fixed recoverable costs in lower-value clinical negligence claims.

  4. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    Science.gov (United States)

    Rodriguez-Winter, Thelma

    treated) 74% is process energy and 26% is non-process energy. Sixty-six percent of the process energy is consumed by the main treatment facility and high service distribution. When analyzing seasonal variations, the highest amount of process energy treated the largest amount of potable water with the maxiμm revealing four Btu used per gallon treated while utilizing 54% of the design capacity. Compared to the periods when the lowest amount of the design capacity was utilized, 32 - 33%, the facility consumed the seasonal high in energy, approximately 6.7 Btu per gallon treated. For the wastewater treatment and reclamation side, secondary treatment dominates all 3 categories by consuming 81,701,764 kBtu, 1.1 million, and 32,395 metric tons of CO2 equivalent. The total onsite energy was 2.79E-03 kWh per gallon treated, of which 43% was process energy, and the remainder was consumed by natural gas heating and `other non-process and process' energy, 34% and 23%, respectively. Most significantly during the months of April and May, when the influent flow of wastewater doubles and is diluted due to the addition of seasonal rain water, the amount of energy spent per gallon of treated wastewater decreases by 48% and 34% from the maximum (5.03E-03 kWh/gallon). By functioning closer to a forecasted design capacity, the efficiency of the potable water treatment facility could be dramatically improved. This can be achieved by implementing additional storage of ready-to-use potable water and/or by expanding the customer base and collaborating with other regional potable water utilities. For example, a county-wide approach to potable water planning falls into agreement with sustainable planning methods, providing regions of the county that have maximized treatment capacity of potable water and giving this region the opportunity to operate closer to the intended design capacity. On the wastewater treatment side, it is apparent that the more dense the BOD concentration in influent waters

  5. An evaluation of accounting-based finding costs as efficiency measures for oil and gas exploration

    International Nuclear Information System (INIS)

    Boynton, C.E. IV; Boone, J.P.

    1994-08-01

    The authors have operationalized firm-specific exploration efficiency as the difference between a firm-specific intercept estimated in a fixed-effects panel data Cobb-Douglas production frontier model and the maximum firm-specific intercept estimated in that model. The production model was estimated during two different time periods, 1982--1985 and 1989--1992, allowing efficiency to vary intertemporally. This efficiency estimate served as a benchmark against which they compared various measures of inverse finding costs. They assumed that the degree of association with an efficiency benchmark is an important attribute of any finding cost measure and that, further, the degree of association may be used as a metric for choosing between alternative finding cost measures. Accordingly, they evaluated the cross-sectional statistical association between estimated efficiency and alternative inverse finding cost measures. They discovered that the inverse finding cost measure that exhibited the strongest association with efficiency during the two time periods was a three-year moving-average finding cost which included exploration plus development expenditures as costs and reserve extensions and additions plus revisions as the units added

  6. An evaluation of accounting-based finding costs as efficiency measures for oil and gas exploration

    Energy Technology Data Exchange (ETDEWEB)

    Boynton, C.E. IV; Boone, J.P.

    1994-08-01

    The authors have operationalized firm-specific exploration efficiency as the difference between a firm-specific intercept estimated in a fixed-effects panel data Cobb-Douglas production frontier model and the maximum firm-specific intercept estimated in that model. The production model was estimated during two different time periods, 1982--1985 and 1989--1992, allowing efficiency to vary intertemporally. This efficiency estimate served as a benchmark against which they compared various measures of inverse finding costs. They assumed that the degree of association with an efficiency benchmark is an important attribute of any finding cost measure and that, further, the degree of association may be used as a metric for choosing between alternative finding cost measures. Accordingly, they evaluated the cross-sectional statistical association between estimated efficiency and alternative inverse finding cost measures. They discovered that the inverse finding cost measure that exhibited the strongest association with efficiency during the two time periods was a three-year moving-average finding cost which included exploration plus development expenditures as costs and reserve extensions and additions plus revisions as the units added.

  7. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  8. Low-cost, portable open-source gas monitoring device based on chemosensory technology

    International Nuclear Information System (INIS)

    Gotor, Raúl; Gaviña, Pablo; Costero, Ana M

    2015-01-01

    We report herein the construction of an electronic device to perform the real-time digitalization of the color state of the optical chemosensors used in the detection of dangerous gases. To construct the device, we used open-source modular electronics, such as Arduino and Sparkfun components, as well as free and open-source software (FOSS). The basic principle of the operation of this device is the continuous color measurement of a chemosensor-doped sensing film, whose color changes in the presence of a specific gas. The chemosensor-sensing film can be prepared by using any of the widely available chemosensors for the desired gas. Color measurement is taken by two TCS230 color sensor ICs, reported to the microcontroller, and the results are displayed on an LCD display and pushed through a USB serial port. By using a cyanide optical chemosensor, we demonstrated the operation of the device as a HCN gas detector at low concentrations. (paper)

  9. Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector

    OpenAIRE

    Manish Gupta

    2006-01-01

    If India were to participate in any international effort towards mitigating CO2 emissions, the power sector which is one of the largest emitters of CO2 in the country would be required to play a major role. In this context the study estimates the marginal abatement costs, which correspond to the costs incurred by the power plants to reduce one unit of CO2 from the current level. The study uses an output distance function approach and its duality with the revenue function to derive these costs...

  10. Cost effectiveness comparison of certain transportation measures to mitigate greenhouse gas emissions in San Diego County, California

    International Nuclear Information System (INIS)

    Silva-Send, Nilmini; Anders, Scott; Narwold, Andrew

    2013-01-01

    California's overarching mandate to achieve 1990 levels of greenhouse gases (GHGs) in 2020 (AB 32, 2005), and the ensuing recent regulations (SB 375, CEQA updates) require local and regional governments to assess GHG mitigation policies, including on-road transportation. The regulations do not make cost-effectiveness a primary criteria for choosing measures but cost remains important to a variety of stakeholders. This communication summarizes results from GHG and cost analysis for seven actual San Diego County road transportation policies: telecommute, vanpools, a bicycle strategy, an increase in mass transit use, parking policies (parking pricing, preferred parking for electric vehicles), an increased local fuel tax and speed harmonization (signal re-timing, roundabouts). Net costs are calculated as the sum of direct costs and benefits to the administering agency, the employer and the individual. Net costs per metric ton GHG abated vary greatly across measures, from negative to high positive (more than US $1000). We find that local GHG cost cannot be sensibly compared to other carbon or GHG policy costs outside the local context for a variety of reasons, but especially because measures have not been adopted primarily for carbon or GHG abatement potential or on the basis of cost effectiveness

  11. The economic impact of shale gas development on state and local economies: benefits, costs, and uncertainties.

    Science.gov (United States)

    Barth, Jannette M

    2013-01-01

    It is often assumed that natural gas exploration and development in the Marcellus Shale will bring great economic prosperity to state and local economies. Policymakers need accurate economic information on which to base decisions regarding permitting and regulation of shale gas extraction. This paper provides a summary review of research findings on the economic impacts of extractive industries, with an emphasis on peer-reviewed studies. The conclusions from the studies are varied and imply that further research, on a case-by-case basis, is necessary before definitive conclusions can be made regarding both short- and long-term implications for state and local economies.

  12. Offshore oil and gas development costs: Four decades of technical change

    International Nuclear Information System (INIS)

    Lohrenz, J.

    1997-01-01

    The worldwide offshore oil and gas business is over 40 years old, but is not, nor does it appear to be soon destined to be, in its dotage. The key role of technology played to enable the business to prosper in volatile and severe environments--physically and otherwise--examined here. Offshore oil and gas technology, like all technologies, is only effective when it shows up at the bottom line. Here the author shows how the 1970's offshore technology continued would have virtually ended the business. But that technology changed the bottom line

  13. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    Science.gov (United States)

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  14. The vehicle routing game: An application of cost allocation in a gas and oil company

    Energy Technology Data Exchange (ETDEWEB)

    Engevall, Stefan; Goethe-Lundgren, Maud; Vaerbrand, Peter

    2000-12-01

    In this article we study a cost allocation problem that arises in a distribution planning situation at the Logistics department at Norsk Hydro Olje AB. The routes from one depot during one day are considered, for which the total distribution cost is to be divided among the customers that are visited. This cost allocation problem is formulated as a vehicle routing game, allowing the use of vehicles with different capacities. Cost allocation methods based on different concepts from cooperative game theory, such as the core and the nucleolus, are discussed. A procedure that can be used to investigate whether the core is empty or not is presented, as well as a procedure to compute the nucleolus. Computational results for the Norsk Hydro case are also presented and discussed.

  15. Reclamation of oil and gas well sites on privately-owned land in Alberta: An evaluation of benefits and costs

    International Nuclear Information System (INIS)

    Bates, L.A.

    1994-01-01

    In Alberta, ca 24,000 oil/gas well sites will be abandoned over the next 10 years. There is concern that the expense to reclaim the surface lands at these sites to current standards represents a substantial opportunity cost to industry and the provincial economy. The economic costs and benefits associated with regulation of such reclamation activity are examined and the impacts of surface access regulations on the reclamation process are discussed. Cost benefit analysis is not easily applied to environmental regulation where some extra-market benefits and costs are intangible and/or unmeasurable. Although this qualifies the results, it appears that the costs of wellsite reclamation exceed the benefits. Costs are defined as reclamation expenses; benefits are defined as the real estate value of the land, or the net present value of agricultural land rentals. An effort has been made to provide a proxy for the extra-market value of the land to the landowner. The continuation of full surface access compensation for nonproducing wells can result in negative incentive effects that reduce allocative efficiency of reclamation regulation. Reclamation costs are correlated with well age and surface access payments, but not with agricultural land use or geographic region. This suggests that reclamation standards designed to reclaim well sites to the same productive capacity as site-adjacent land is not driving reclamation effort. Rather, landowners have negotiated substantial annual surface lease payments and may also be demanding greater reclamation effort, either to maximize compensation due to higher expectations. Methods of reducing these negative incentive effects to better achieve reclamation goals are suggested. 49 refs., 9 figs., 17 tabs

  16. METHOD OF CONVERSION OF HIGH- AND MIDDLE-SPEED DIESEL ENGINES INTO GAS DIESEL ENGINES

    Directory of Open Access Journals (Sweden)

    Mikhail G. Shatrov

    2017-12-01

    Full Text Available The paper aims at the development of fuel supply and electronic control systems for boosted high- and middle-speed transport engines. A detailed analysis of different ways of converting diesel engine to operate on natural gas was carried out. The gas diesel process with minimized ignition portion of diesel fuel injected by the Common Rail (CR system was selected. Electronic engine control and modular gas feed systems which can be used both on high- and middle-speed gas diesel engines were developed. Also diesel CR fuel supply systems were developed in cooperation with the industrial partner, namely, those that can be mounted on middle-speed diesel and gas diesel engines. Electronic control and gas feed systems were perfected using modeling and engine tests. The high-speed diesel engine was converted into a gas diesel one. After perfection of the gas feed and electronic control systems, bench tests of the high-speed gas diesel engine were carried out showing a high share of diesel fuel substitution with gas, high fuel efficiency and significant decrease of NOх and СО2 emissions.

  17. The importance of marginal cost electricity pricing to the success of greenhouse gas reduction programs

    International Nuclear Information System (INIS)

    Friedman, Lee S.

    2011-01-01

    The efficient reduction of GHG emissions requires appropriate retail pricing of off-peak electricity. However, off-peak electricity for residential consumers is priced at 331% above its marginal cost in the United States as a whole (June 2009). Even for the 1% of residences that are on some form of time-of-use (TOU) rate schedule, the off-peak rate is almost three times higher than the marginal cost. A barrier to marginal-cost based TOU rates is that less than 9% of U.S. households have the 'smart' meters in place that can measure and record the time of consumption. Policies should be put in place to achieve full deployment. Another important barrier is consumer concern about TOU rate design. Two TOU rate designs (baseline and two-part tariff) are described that utilize marginal-cost based rates, ensure appropriate cost recovery, and minimize bill changes from current rate structures. A final barrier is to get residences on to these rates. Should a marginal-cost based TOU rate design remain an alternative for which residences could 'opt-in,' or become the default choice, or become mandatory? Time-invariant rates are a historical anachronism that subsidize very costly peak-period consumption and penalize off-peak usage to our environmental detriment. They should be phased out. - Highlights: → Off-peak electricity for residences is priced at 331% above marginal cost in the US. → This inefficiently deters vehicle electrification that could reduce GHG emissions. → 9% of U.S. households have the 'smart' meters necessary for time-of-use rates. → Time-invariant rates cause substantial environmental harm and should be phased out.

  18. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Ron Perry; Janos Lakatos; Colin E. Snape; Cheng-gong Sun [University of Nottingham (United Kingdom). UK Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2005-07-01

    To help reduce the cost of Hg capture, a number of low-cost carbons are being investigated, including tyre char, PFA carbons and gasification residues. This contribution reports the breakthrough capacities in fixed-bed screening tests for these materials in relation to those for commercial active carbons, including Norit FGD and the extent to which breakthrough capacities can be improved by MnO{sub 2} impregnation. 7 refs., 3 figs., 1 tab.

  19. Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction

    International Nuclear Information System (INIS)

    Liang, Xianqing; Zhong, Jun; Shi, Yalin; Guo, Jin; Huang, Guolong; Hong, Caihao; Zhao, Yidong

    2015-01-01

    Highlights: • A novel approach to synthesis of N-doped few-layer graphene has been developed. • The high doping levels of N in products are achieved. • XPS and XANES results reveal a thermal transformation of N bonding configurations. • The developed method is cost-effective and eco-friendly. - Abstract: Nitrogen-doped (N-doped) graphene sheets with high doping concentration were facilely synthesized through solid–gas reaction of graphene oxide (GO) with ammonia vapor in a self-designed hydrothermal system. The morphology, surface chemistry and electronic structure of N-doped graphene sheets were investigated by TEM, AFM, XRD, XPS, XANES and Raman characterizations. Upon hydrothermal treatment, up to 13.22 at% of nitrogen could be introduced into the crumpled few-layer graphene sheets. Both XPS and XANES analysis reveal that the reaction between oxygen functional groups in GO and ammonia vapor produces amide and amine species in hydrothermally treated GO (HTGO). Subsequent thermal annealing of the resultant HTGO introduces a gradual transformation of nitrogen bonding configurations in graphene sheets from amine N to pyridinic and graphitic N with the increase of annealing temperature. This study provides a simple but cost-effective and eco-friendly method to prepare N-doped graphene materials in large-scale for potential applications

  20. Economically and environmentally informed policy for road resurfacing: tradeoffs between costs and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Reger, Darren; Madanat, Samer; Horvath, Arpad

    2014-01-01

    As road conditions worsen, users experience an increase in fuel consumption and vehicle wear and tear. This increases the costs incurred by the drivers, and also increases the amount of greenhouse gases (GHGs) that vehicles emit. Pavement condition can be improved through rehabilitation activities (resurfacing) to reduce the effects on users, but these activities also have significant cost and GHG emission impacts. The objective of pavement management is to minimize total societal (user and agency) costs. However, the environmental impacts associated with the cost-minimizing policy are not currently accounted for. We show that there exists a range of potentially optimal decisions, known as the Pareto frontier, in which it is not possible to decrease total emissions without increasing total costs and vice versa. This research explores these tradeoffs for a system of pavement segments. For a case study, a network was created from a subset of California’s highways using available traffic data. It was shown that the current resurfacing strategy used by the state’s transportation agency, Caltrans, does not fall on the Pareto frontier, meaning that significant savings in both total costs and total emissions can be achieved by switching to one of the optimal policies. The methods presented in this paper also allow the decision maker to evaluate the impact of other policies, such as reduced vehicle kilometers traveled or better construction standards. (letter)

  1. Economically and environmentally informed policy for road resurfacing: tradeoffs between costs and greenhouse gas emissions

    Science.gov (United States)

    Reger, Darren; Madanat, Samer; Horvath, Arpad

    2014-10-01

    As road conditions worsen, users experience an increase in fuel consumption and vehicle wear and tear. This increases the costs incurred by the drivers, and also increases the amount of greenhouse gases (GHGs) that vehicles emit. Pavement condition can be improved through rehabilitation activities (resurfacing) to reduce the effects on users, but these activities also have significant cost and GHG emission impacts. The objective of pavement management is to minimize total societal (user and agency) costs. However, the environmental impacts associated with the cost-minimizing policy are not currently accounted for. We show that there exists a range of potentially optimal decisions, known as the Pareto frontier, in which it is not possible to decrease total emissions without increasing total costs and vice versa. This research explores these tradeoffs for a system of pavement segments. For a case study, a network was created from a subset of California’s highways using available traffic data. It was shown that the current resurfacing strategy used by the state’s transportation agency, Caltrans, does not fall on the Pareto frontier, meaning that significant savings in both total costs and total emissions can be achieved by switching to one of the optimal policies. The methods presented in this paper also allow the decision maker to evaluate the impact of other policies, such as reduced vehicle kilometers traveled or better construction standards.

  2. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  3. Technical review of the high energy gas stimulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Haney, B.; Cuthill, D. [Computalog Ltd., Calgary, AB (Canada)

    1997-08-01

    High Energy Gas Stimulation (HEGS) or propellant stimulation is a process that enhances production of oil wells by decreasing wellbore damage and increasing near wellbore permeability. The technique has been used on about 7,000 wells with varying results. The HEGS tool is a cast cylinder of solid rocket propellant with a central ignition system. The propellant is fired and as it burns it produces a pressure load on the formation, increasing fracture volume which enhances the flow channels. Background information on the development and application of this stimulation technique was provided. The introduction of fractures around a wellbore is dependent on the pressure loading rate and the dynamic response of the rock. Propellant stimulation relies on controlling the pressure-time behaviour to maximize fracture growth by fluid pressurization. The process is composed of 3 sequential phases: (1) wellbore pressurization, (2) fracture initiation, and (3) fracture extension. A full description of each of these phases was provided. Geologic and well-tool factors that have a significant influence on the fracturing process such as in-situ stress, natural fractures and flaws, formation mechanical properties, formation fluid and flow properties, formation thermal properties, and wellbore, tool, and tamp configuration, were also reviewed. The many applications for HEGS were presented. It was emphasized that the success of HEGS is dependent on pre-stimulation problem evaluation and on proper charge design. Since HEGS will decrease near-wellbore restrictions and initiate formation breakdown, it should only be used in cases where this will be beneficial to the well. Careful attention to engineering will optimize results. 21 refs., 13 figs.

  4. Proliferation resistance assessment of high temperature gas reactors

    International Nuclear Information System (INIS)

    Chikamatsu N, M. A.; Puente E, F.

    2014-10-01

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  5. Air Pollutant Emissions from Oil and Gas Production pads (Investigating Low Cost Passive Samplers)

    Science.gov (United States)

    To help achieve the goal of sustainable, environmentally responsible development of oil and gas resources, it isnecessary to understand the potential for air pollutant emissions from various extraction and production (E&P)processes at the upstream, wellpad level. Upstream oil and...

  6. Low cost, robust, in-house hardware for heart cutting two-dimensional gas chromatography

    CSIR Research Space (South Africa)

    Apps, P

    2006-06-01

    Full Text Available Natural materials are so complex that no single column can separate all of the components. Heart cutting 2-D GC (GC-GC) using a Deans switch provides maximum separation, but the requisite gas flow configurations have earned a reputation for being...

  7. Downstream natural gas in Europe - high hopes dashed for upstream oil and gas companies

    International Nuclear Information System (INIS)

    Eikeland, P.O.

    2007-01-01

    Access for independents to retail gas markets was a central concern in European policy reform efforts in the 1990s. Upstream oil and gas companies reacted with strategic intentions of forward integration. By late 2004, forward integration was still weak, however. An important explanation of the gap between announced strategic re-orientation and actual strategy implementation lies in the political failure of EU member states to dismantle market barriers to entry for independents. Variations between companies in downstream strategy implementation are explained by variations in business opportunities and internal company factors. [Author

  8. Downstream natural gas in Europe-High hopes dashed for upstream oil and gas companies

    International Nuclear Information System (INIS)

    Eikeland, Per Ove

    2007-01-01

    Access for independents to retail gas markets was a central concern in European policy reform efforts in the 1990s. Upstream oil and gas companies reacted with strategic intentions of forward integration. By late 2004, forward integration was still weak, however. An important explanation of the gap between announced strategic re-orientation and actual strategy implementation lies in the political failure of EU member states to dismantle market barriers to entry for independents. Variations between companies in downstream strategy implementation are explained by variations in business opportunities and internal company factors

  9. Future perspectives for high-temperature gas turbines; Zukunftsperspektiven fuer die Hochtemperaturgasturbine

    Energy Technology Data Exchange (ETDEWEB)

    Lietmeyer, Christoph; Guendogdu, Yavuz; Kleppa, Oliver; Oehlert, Karsten; Vorreiter, Arne; Seume, Joerg [Leibniz Univ. Hannover (Germany). Inst. fuer Turbomaschinen und Fluid-Dynamik

    2009-07-01

    Research approaches for reducing operating cost, investment and maintenance expenses for stationary gas turbines are presented. Operating expenses are reduced by increasing compressor efficiency using a functional surface structure which is oriented in flow direction. Within the planned collaborative research centre ''Regeneration of durable goods'' new scientific fundamentals and research results for the systematic regeneration of gas turbines will be developed. (orig.)

  10. Assessing the high costs of new nuclear power plants

    International Nuclear Information System (INIS)

    Komanoff, C.

    1984-01-01

    The variation in nuclear plant capital costs, both over time and within the current generation of plants, is considerable and is one of the impressive facts associated with that technology. This article concerns statistical methods for determining relative management efficiency or inefficiency in nuclear plant construction. It emphasizes the need to adjust raw cost data for important variables in order to make fair comparisons among disparate projects. The analysis identifies the costliest and least-costly projects and elucidates trends that helped or harmed several or more projects at the same time. Its findings can form a supplement and guide for engineering and management audits of individual nuclear projects. 5 references, 1 figure, 1 table

  11. Alternative ceramic circuit constructions for low cost, high reliability applications

    International Nuclear Information System (INIS)

    Modes, Ch.; O'Neil, M.

    1997-01-01

    The growth in the use of hybrid circuit technology has recently been challenged by recent advances in low cost laminate technology, as well as the continued integration of functions into IC's. Size reduction of hybrid 'packages' has turned out to be a means to extend the useful life of this technology. The suppliers of thick film materials technology have responded to this challenge by developing a number of technology options to reduce circuit size, increase density, and reduce overall cost, while maintaining or increasing reliability. This paper provides an overview of the processes that have been developed, and, in many cases are used widely to produce low cost, reliable microcircuits. Comparisons of each of these circuit fabrication processes are made with a discussion of advantages and disadvantages of each technology. (author)

  12. The High Direct Medical Costs of Prader-Willi Syndrome.

    Science.gov (United States)

    Shoffstall, Andrew J; Gaebler, Julia A; Kreher, Nerissa C; Niecko, Timothy; Douglas, Diah; Strong, Theresa V; Miller, Jennifer L; Stafford, Diane E; Butler, Merlin G

    2016-08-01

    To assess medical resource utilization associated with Prader-Willi syndrome (PWS) in the US, hypothesized to be greater relative to a matched control group without PWS. We used a retrospective case-matched control design and longitudinal US administrative claims data (MarketScan) during a 5-year enrollment period (2009-2014). Patients with PWS were identified by Classification of Diseases, Ninth Revision, Clinical Modification diagnosis code 759.81. Controls were matched on age, sex, and payer type. Outcomes included total, outpatient, inpatient and prescription costs. After matching and application of inclusion/exclusion criteria, we identified 2030 patients with PWS (1161 commercial, 38 Medicare supplemental, and 831 Medicaid). Commercially insured patients with PWS (median age 10 years) had 8.8-times greater total annual direct medical costs than their counterparts without PWS (median age 10 years: median costs $14 907 vs $819; P < .0001; mean costs: $28 712 vs $3246). Outpatient care comprised the largest portion of medical resource utilization for enrollees with and without PWS (median $5605 vs $675; P < .0001; mean $11 032 vs $1804), followed by mean annual inpatient and medication costs, which were $10 879 vs $1015 (P < .001) and $6801 vs $428 (P < .001), respectively. Total annual direct medical costs were ∼42% greater for Medicaid-insured patients with PWS than their commercially insured counterparts, an increase partly explained by claims for Medicaid Waiver day and residential habilitation. Direct medical resource utilization was considerably greater among patients with PWS than members without the condition. This study provides a first step toward quantifying the financial burden of PWS posed to individuals, families, and society. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. TOPEX: An expert system for estimating and analyzing the operating costs of oil and gas production facilities

    International Nuclear Information System (INIS)

    Greffioz, J.; Olver, A.J.; Schirmer, P.

    1993-01-01

    TOPEX is a new approach to operating costs estimation of oil and gas installations. It does not rely on knowledge of the capital cost of the installation and uses a computerized expert system (or knowledge base). Estimates are generated from specific details of the equipment and systems and general databases of prices and man hours. A novel methodology has been developed for quantifying the operational complexity of an installation which is then correlated with operations manpower. The use of a computerized application allows rapid calculation of estimates so that what-if and sensitivity studies can be readily done. The knowledge base provides a powerful tool to handle the large amounts of data involved and acts as a repository for the expertise used in its development

  14. Soil gas measurements at high permeabilities and below foundation depth

    International Nuclear Information System (INIS)

    Johner, H.U; Surbeck, H.

    2000-01-01

    We started a project of soil gas measurements beneath houses. Since the foundations of houses often lie deeper than 0.5 to 1 m - the depth where soil gas measurements are often made - the first approach was to apply the method developed previously to deeper soil layers. The radon availability index (RAI), which was defined empirically, proved to be a reliable indicator for radon problems in nearby houses. The extreme values of permeability, non-Darcy flow and scale dependence of permeability stimulated the development of a multi-probe method. A hydrological model was applied to model the soil gas transport. The soil gas measurements below foundation depth provided a wealth of new information. A good classification of soil properties could be achieved. If soil gas measurements are to be made, the low permeability layer has to be traversed. A minimum depth of 1 .5 m is suggested, profiles to below the foundation depth are preferable. There are also implications for mitigation works. A sub-slab suction system should reach the permeable layer to function well. This also holds for radon wells. If a house is located on a slope, it is most convenient to install the sub-slab suction system on the hillside, as the foundation reaches the deepest levels there

  15. Gas-cooled fast-breeder reactor. Helium Circulator Test Facility updated design cost estimate

    International Nuclear Information System (INIS)

    1979-04-01

    Costs which are included in the cost estimate are: Titles I, II, and III Architect-Engineering Services; Titles I, II, and III General Atomic Services; site clearing, grading, and excavation; bulk materials and labor of installation; mechanical and electrical equipment with installation; allowance for contractors' overhead, profit, and insurance; escalation on materials and labor; a contingency; and installation of GAC supplied equipment and materials. The total estimated cost of the facility in As Spent Dollars is $27,700,000. Also included is a cost comparison of the updated design and the previous conceptual design. There would be a considerable penalty for the direct-cooled system over the indirect-cooled system due to the excessive cost of the large diameter helium loop piping to an outdoor heat exchanger. The indirect cooled system which utilizes a helium/Dowtherm G heat exchanger and correspondingly smaller and lower pressure piping to its outdoor air cooler proved to be the more economical of the two systems

  16. Concept for high-performance direct ignition gas engines; Konzept fuer direkt gezuendete Gross-Gasmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Jochen [Jenbacher Gasmotorensparte von GE, Jenbach (Austria). Bereich Thermodynamik; Leitner, Alexander; Tinschmann, Georg [Jenbacher Gasmotorensparte von GE, Jenbach (Austria). Bereich Konstruktion; Trapp, Christian [Jenbacher Gasmotorensparte von GE, Jenbach (Austria). Performance Engineering

    2013-05-01

    The characteristics of future gas engines for decentralised energy supply are high mean effective pressure, high efficiency and ultra-high air-to-fuel ratios leading to an electrical efficiency near 46% in the 1 to 2 MW segment at 1500 rpm. This article from GE's Jenbacher gas engines is a foresight on future development challenges in the large gas engine sector and presents possible technology blocks for further development of the Jenbacher Type 4 gas engine to increase power and efficiency.

  17. Application of metal foam heat exchangers for a high-performance liquefied natural gas regasification system

    International Nuclear Information System (INIS)

    Kim, Dae Yeon; Sung, Tae Hong; Kim, Kyung Chun

    2016-01-01

    The intermediate fluid vaporizer has wide applications in the regasification of LNG (liquefied natural gas). The heat exchanger performance is one of the main contributors to the thermodynamic and cost effectiveness of the entire LNG regasification system. Within the paper, the authors discuss a new concept for a compact heat exchanger with a micro-cellular structure medium to minimize volume and mass and to increase thermal efficiency. Numerical calculations have been conducted to design a metal-foam filled plate heat exchanger and a shell-and-tube heat exchanger using published experimental correlations. The geometry of both heat exchangers was optimized using the conditions of thermolators in LNG regasification systems. The heat transfer and pressure drop performance was predicted to compare the heat exchangers. The results show that the metal-foam plate heat exchanger has the best performance at different channel heights and mass flow rates of fluid. In the optimized configurations, the metal-foam plate heat exchanger has a higher heat transfer rate and lower pressure drop than the shell-and-tube heat exchanger as the mass flow rate of natural gas is increased. - Highlights: • A metal foam heat exchanger is proposed for LNG regasification system. • Comparison was made with a shell and tube heat exchanger. • Heat transfer and pressure drop characteristics were estimated. • The geometry of both heat exchangers is optimized for thermolators. • It can be used as a compact and high performance thermolators.

  18. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    Energy Technology Data Exchange (ETDEWEB)

    Venkataraman, S. [GE Energy, Schenectady, NY (United States); Jordan, G. [GE Energy, Schenectady, NY (United States); O' Connor, M. [GE Energy, Schenectady, NY (United States); Kumar, N. [Intertek AIM, Sunnyvale, CA (United States); Lefton, S. [Intertek AIM, Sunnyvale, CA (United States); Lew, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Palchak, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cochran, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  19. Many Mobile Health Apps Target High-Need, High-Cost Populations, But Gaps Remain.

    Science.gov (United States)

    Singh, Karandeep; Drouin, Kaitlin; Newmark, Lisa P; Lee, JaeHo; Faxvaag, Arild; Rozenblum, Ronen; Pabo, Erika A; Landman, Adam; Klinger, Elissa; Bates, David W

    2016-12-01

    With rising smartphone ownership, mobile health applications (mHealth apps) have the potential to support high-need, high-cost populations in managing their health. While the number of available mHealth apps has grown substantially, no clear strategy has emerged on how providers should evaluate and recommend such apps to patients. Key stakeholders, including medical professional societies, insurers, and policy makers, have largely avoided formally recommending apps, which forces patients to obtain recommendations from other sources. To help stakeholders overcome barriers to reviewing and recommending apps, we evaluated 137 patient-facing mHealth apps-those intended for use by patients to manage their health-that were highly rated by consumers and recommended by experts and that targeted high-need, high-cost populations. We found that there is a wide variety of apps in the marketplace but that few apps address the needs of the patients who could benefit the most. We also found that consumers' ratings were poor indications of apps' clinical utility or usability and that most apps did not respond appropriately when a user entered potentially dangerous health information. Going forward, data privacy and security will continue to be major concerns in the dissemination of mHealth apps. Project HOPE—The People-to-People Health Foundation, Inc.

  20. The High Cost of Harsh Discipline and Its Disparate Impact

    Science.gov (United States)

    Rumberger, Russell W.; Losen, Daniel J.

    2016-01-01

    School suspension rates have been rising since the early 1970s, especially for children of color. One body of research has demonstrated that suspension from school is harmful to students, as it increases the risk of retention and school dropout. Another has demonstrated that school dropouts impose huge social costs on their states and localities,…