WorldWideScience

Sample records for high cop cycles

  1. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation

    KAUST Repository

    Yang, Xiulin

    2015-07-01

    There exists a strong demand to replace expensive noble metal catalysts with cheap metal sulfides or phosphides for hydrogen evolution reaction (HER). Recently metal phosphides such as NixP, FeP and CoP have been considered as promising candidates to replace Pt cathodes. Here we report that the nanocrystalline CoP nanosheet assembly on carbon cloth can be formed by a two-step process: electrochemical deposition of Co species followed by gas phase phosphidation. The CoP catalyst in this report exhibits a Tafel slope of 30.1mV/dec in 0.5M H2SO4 and 42.6mV/dec in 1M KOH. The high HER performance of our CoP catalysts is attributed to the rugae-like morphology which results in a high double-layer capacitance and high density of active sites, estimated as 7.77×1017sites/cm2. © 2015 Elsevier Ltd.

  2. Second-law-based analysis of vapor-compression refrigeration cycles: Analytical equations for COP and new insights into features of refrigerants

    International Nuclear Information System (INIS)

    Ma, Weiwu; Fang, Song; Su, Bo; Xue, Xinpei; Li, Min

    2017-01-01

    Highlights: • Second-law analysis leads to analytical COP formulas for refrigeration cycles. • Relative errors of the analytical equations are smaller than ±5.0%. • The analytical expressions characterize the influence of refrigerants. • Global entropy analysis elucidates the impact of cycle processes on COP. - Abstract: This article reports a second-law-based analysis of the vapor-compression refrigeration cycle, which leads to a set of explicit theoretical formulas for the coefficient of performance (COP). These analytical expressions provide a fast and accurate approach to computer simulations of the vapor-compression cycle without recourse to thermodynamic diagrams or equations of state. The second-law-based analysis yields specific expressions for the entropy generations of irreversible processes, enabling us to evaluate the thermodynamic features of the refrigerant and to elucidate the thermodynamic mechanisms behind the effects of the cycle processes, including superheat, subcooling, and throttling processes. In particular, these processes can interact, therefore this paper presents a global entropy generation analysis for evaluating the impact of the interacted processes on COP.

  3. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes

    Science.gov (United States)

    Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin

    2015-01-01

    Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020

  4. THE EFFECT OF HIGH OVERVOLTAGES AT ELECTROCRYSTALLIZATION ON THE CORROSION RESISTANCE OF THE FILMS CO-P

    Directory of Open Access Journals (Sweden)

    V. O. Zabludovskyi

    2009-03-01

    Full Text Available Electrochemical and gravimetric methods are used in order to research the influence of high overvoltages during electroplating on corrosive and electrochemical behavior of amorphous Co-P films, which were made using deposition from water solution of an electrolyte. It is obtained that alloys, which were plated using higher overvoltages on cathode, are more corrosion-resistant.

  5. Age, gender, and percentage of circulating osteoprogenitor (COP) cells: The COP Study.

    Science.gov (United States)

    Gunawardene, Piumali; Al Saedi, Ahmed; Singh, Lakshman; Bermeo, Sandra; Vogrin, Sara; Phu, Steven; Suriyaarachchi, Pushpa; Pignolo, Robert J; Duque, Gustavo

    2017-10-01

    Circulating osteoprogenitor (COP) cells are blood-borne cells which express a variety of osteoblastic markers and are able to form bone nodules in vivo. Whereas a high percentage of COP cells (%COP) is associated with vascular calcification, low %COP has been associated with disability and frailty. However, the reference range of %COP in age- and gender-matching populations, and the age-related changes in %COP remain unknown. A cross-sectional study was undertaken in 144 healthy volunteers in Western Sydney (20-90year-old, 10 male and 10 female subjects per decade). %COP was quantified by flow cytometry. A high inter-and intra-rater reliability was found. In average, in this healthy population average of %COP was 0.42. There was no significant difference in %COP among the age groups. Similarly, no significant difference was found in %COP with gender, weight, height or BMI. In addition, we identified a normal reference range of %COP of 0.1-3.8%. In conclusion, in addition to the identification of steady levels of COP cells with age, we also identified a normal reference range of %COP, which could be used in future studies looking at musculoskeletal diseases in older populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Toward High-Performance and Low-Cost Hydrogen Evolution Reaction Electrocatalysts: Nanostructuring Cobalt Phosphide (CoP) Particles on Carbon Fiber Paper.

    Science.gov (United States)

    Yu, Shu Hearn; Chua, Daniel H C

    2018-05-02

    In this communication, we facily fabricated nanostructured CoP particles (150 to 200 nm) on carbon fiber paper (CFP) for hydrogen evolution reaction (HER) by a simple two-step process via a green route. In the first step, crystalline Co 3 O 4 nanocubes (150-200 nm) were loaded on CFP through a hydrothermal process at low temperature (120 °C). Interestingly, crystalline Co 3 O 4 nanocubes with a size 150-200 nm exhibited different growth mechanisms in contrast to the crystalline Co 3 O 4 nanocubes with a size <100 nm reported earlier. In the second step, these crystalline Co 3 O 4 nanocubes were converted to catalytically active CoP particles through chemical vapor deposition (CVD) phosphorization (denoted as CoP/CFP-H). Remarkably, CoP/CFP-H exhibited a low Tafel slope of 49.7 mV/dec and only required overpotentials of 128.1, 144.4, and 190.8 mV to drive geometric current densities of -10, -20, and -100 mA cm -2 , respectively. Besides, the CoP/CFP-H also demonstrated an excellent durability in an acidic environment under 2000 sweeps at a high scan rate (100 mV s -1 ) and a 24 h chronopotentiometry testing. For comparison, CoP was also fabricated through the electrodeposition method, followed by CVD phosphorization (denoted as CoP/CFP-E). It was found that the latter had exhibited inferior activity compared to CoP/CFP-H. The good performances of CoP/CFP-H are essentially due to the rational designs of electrode: (i) the applications of highly HER active CoP electrocatalyst, (ii) the intimate contact of nanostructured CoP on carbon fibers, and (iii) the large electrochemical surface area at electrocatalyst/electrolyte interface due to the large retaining of particles features after phosphorization. Notably, the intermediate Co 3 O 4 /CFP can serve as a platform to develop other cobalt-based functional materials.

  7. COP21: defense stakes

    International Nuclear Information System (INIS)

    Coldefy, Alain; Hulot, Nicolas; Aichi, Leila; Tertrais, Bruno; Paillard, Christophe-Alexandre; Piodi, Jerome; Regnier, Serge; Volpi, Jean-Luc; Descleves, Emmanuel; Garcin, Thierry; Granholm, Niklas; Wedin, Lars; Pouvreau, Ana; Henninger, Laurent

    2015-01-01

    The 21. Conference of the Parties (COP21) from the UN Framework Convention took place in Paris between November 30 and December 11, 2015. The challenge is to reach a universal agreement of fight against global warming and to control the carbon footprint of human activities. This topic is in the core of the Defense Ministry preoccupations. This special dossier takes stock of the question of defense issues linked with global warming. The dossier comprises 13 papers dealing with: 1 - COP21: defense stakes (Coldefy, A.); 2 - Warfare climate, a chance for peace (Hulot, N.); 3 - COP21 and defense (Aichi, L.); 4 - A war climate? (Tertrais, B.); 5 - Challenges the World has to face in the 21. century (Paillard, C.A.); 6 - Desertification: a time bomb in the heart of Sahel (Piodi, J.); 7 - The infrastructure department of defense in the fight against climate disturbance (Regnier, S.); 8 - Fight against global warming, a chance for the forces? (Volpi, J.L.); 9 - Sea and sustainable development (Descleves, E.); 10 - Rationales of Arctic's surrounding powers (Garcin, T.); 11 - Arctic: strategic stake (Granholm, N.; Wedin, L.); 12 - Strategic impact of Turkey's new energy choices (Pouvreau, A.); 13 - Climate and war: a brief historical outlook (Henninger, L.)

  8. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness.

    Science.gov (United States)

    Garcia, S S; Du, Q; Wu, H

    2016-12-01

    The oral cavity is a dynamic environment characterized by hundreds of bacterial species, saliva, and an influx of nutrients and metal ions such as copper. Although there is a physiologic level of copper in the saliva, the oral cavity is often challenged with an influx of copper ions. At high concentrations copper is toxic and must therefore be strictly regulated by pathogens for them to persist and cause disease. The cariogenic pathogen Streptococcus mutans manages excess copper using the copYAZ operon that encodes a negative DNA-binding repressor (CopY), the P1-ATPase copper exporter (CopA), and the copper chaperone (CopZ). These hypothetical roles of the copYAZ operon in regulation and copper transport to receptors led us to investigate their contribution to S. mutans virulence. Mutants defective in the copper chaperone CopZ, but not CopY or CopA, were impaired in biofilm formation and competitiveness against commensal streptococci. Characterization of the CopZ mutant biofilm revealed a decreased secretion of glucosyltransferases and reduced expression of mutacin genes. These data suggest that the function of copZ on biofilm and competitiveness is independent of copper resistance and CopZ is a global regulator for biofilm and other virulence factors. Further characterization of CopZ may lead to the identification of new biofilm pathways. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    Science.gov (United States)

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  10. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  11. High conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1975-01-01

    This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilisation of the high conversion potential are compared with others that aim at easier reprocessing and the 'environmental' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (orig./UA) [de

  12. “httk”: EPA’s Tool for High Throughput Toxicokinetics (CompTox CoP)

    Science.gov (United States)

    Thousands of chemicals have been pro?led by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concentr...

  13. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  14. Multiscale GPS tomography during COPS: validation and applications

    Science.gov (United States)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the

  15. COP21, The Force Awakens

    International Nuclear Information System (INIS)

    2015-01-01

    After four years of hard work, the COP21 has culminated in a climate agreement that was accepted by 195 countries. This agreement is the first to involve all world economies in the fight against climate change. Beyond the pledges made by the governments, the COP21 also aimed to highlight solutions that are backed by the private sector. A testimony to companies' determination to become a part of the movement, several initiatives were launched in a wide range of sectors over the course of the two conference weeks. Responding to these transformations, the financial sector also made several announcements, promising that it would divest from the most polluting energies, increase investments in clean technologies, stimulate financial innovation (green bonds, LDN) and measure carbon footprints. Investors have understood once and for all that they must adapt their investment strategies if they want to face up to the challenges of the current transition to a low carbon economy

  16. The Evolution of COP9 Signalosome in Unicellular and Multicellular Organisms.

    Science.gov (United States)

    Barth, Emanuel; Hübler, Ron; Baniahmad, Aria; Marz, Manja

    2016-05-02

    The COP9 signalosome (CSN) is a highly conserved protein complex, recently being crystallized for human. In mammals and plants the COP9 complex consists of nine subunits, CSN 1-8 and CSNAP. The CSN regulates the activity of culling ring E3 ubiquitin and plays central roles in pleiotropy, cell cycle, and defense of pathogens. Despite the interesting and essential functions, a thorough analysis of the CSN subunits in evolutionary comparative perspective is missing. Here we compared 61 eukaryotic genomes including plants, animals, and yeasts genomes and show that the most conserved subunits of eukaryotes among the nine subunits are CSN2 and CSN5. This may indicate a strong evolutionary selection for these two subunits. Despite the strong conservation of the protein sequence, the genomic structures of the intron/exon boundaries indicate no conservation at genomic level. This suggests that the gene structure is exposed to a much less selection compared with the protein sequence. We also show the conservation of important active domains, such as PCI (proteasome lid-CSN-initiation factor) and MPN (MPR1/PAD1 amino-terminal). We identified novel exons and alternative splicing variants for all CSN subunits. This indicates another level of complexity of the CSN. Notably, most COP9-subunits were identified in all multicellular and unicellular eukaryotic organisms analyzed, but not in prokaryotes or archaeas. Thus, genes encoding CSN subunits present in all analyzed eukaryotes indicate the invention of the signalosome at the root of eukaryotes. The identification of alternative splice variants indicates possible "mini-complexes" or COP9 complexes with independent subunits containing potentially novel and not yet identified functions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. COP-6: Anatomy of a breakdown

    International Nuclear Information System (INIS)

    Carpenter, C.; Kellett, V.

    2000-01-01

    Failure of the sixth Conference of Parties (COP-6) meeting at the Hague, to reach agreement on translating the 1997 Kyoto Protocol into a detailed, enforceable treaty is discussed. Despite major efforts by the current President of COP the major negotiating blocs, namely the EU, the 'Umbrella group' (Canada, the U.S., Japan, Australia, New Zealand, Russia, Ukraine and Norway) and the G-77 and China ( a group of over 130 developing nations, including some OPEC countries) refused to depart from their long-standing positions, leading to sustained protests, occasional outbursts of violence and passport burnings by protesters. Despite the pessimism and mutual recriminations over the failure to reach agreement, leading to fears that the Kyoto Protocol might never be ratified, the second week of the conference, in fact, produced significant progress on some important issues. Optimists believe that the agreements reached might be sufficient to induce governments to address key unresolved issues, including how to account for carbon sinks (the most visible disagreement at COP-6, in which the EU accused Canada and the U.S. of trying to 'get something for nothing' by allowing countries with high forest and grassland cover to avoid real actions on climate change), use of the Kyoto Protocol's flexibility mechanisms (the Clean Development Mechanism, joint implementation and emissions credit trading, which would allow developed countries to carry out an emission reduction project in a developing country and claim the resulting credits against its own target), the compliance regime (which Parties to the Protocol will be governed by the regime; the consequences of non-compliance; who will decide when a party is not in compliance), and funding assistance for developing countries to encourage them to adapt to climate change (China and developing countries accused the industrialized nations of failing in their moral duty to provide money, technology and technical assistance to poorer

  18. COP-6: Anatomy of a breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, C.; Kellett, V. [International Institute for Sustainable Development, Ottawa, ON (Canada)

    2000-12-05

    Failure of the sixth Conference of Parties (COP-6) meeting at the Hague, to reach agreement on translating the 1997 Kyoto Protocol into a detailed, enforceable treaty is discussed. Despite major efforts by the current President of COP the major negotiating blocs, namely the EU, the 'Umbrella group' (Canada, the U.S., Japan, Australia, New Zealand, Russia, Ukraine and Norway) and the G-77 and China ( a group of over 130 developing nations, including some OPEC countries) refused to depart from their long-standing positions, leading to sustained protests, occasional outbursts of violence and passport burnings by protesters. Despite the pessimism and mutual recriminations over the failure to reach agreement, leading to fears that the Kyoto Protocol might never be ratified, the second week of the conference, in fact, produced significant progress on some important issues. Optimists believe that the agreements reached might be sufficient to induce governments to address key unresolved issues, including how to account for carbon sinks (the most visible disagreement at COP-6, in which the EU accused Canada and the U.S. of trying to 'get something for nothing' by allowing countries with high forest and grassland cover to avoid real actions on climate change), use of the Kyoto Protocol's flexibility mechanisms (the Clean Development Mechanism, joint implementation and emissions credit trading, which would allow developed countries to carry out an emission reduction project in a developing country and claim the resulting credits against its own target), the compliance regime (which Parties to the Protocol will be governed by the regime; the consequences of non-compliance; who will decide when a party is not in compliance), and funding assistance for developing countries to encourage them to adapt to climate change (China and developing countries accused the industrialized nations of failing in their moral duty to provide money, technology and

  19. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.

    Science.gov (United States)

    Yu, Yanwen; Wang, Juan; Shi, Hui; Gu, Juntao; Dong, Jingao; Deng, Xing Wang; Huang, Rongfeng

    2016-04-01

    Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. From COP21 to COP22: Keeping up the Momentum

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2016-10-01

    In December 2015, a new international climate agreement was adopted, paving the way for increased mitigation and adaptation efforts. Governments firmly expressed the need for rapid action and 2016 will put the credibility of their commitments to the test. This article argues that climate policies are actually becoming more widespread, but they are also adjusting to local constraints and needs, suggesting that the establishment of a global emission regulation model is unlikely in the near future. While the low-carbon transition is well under way, its pace and conditions still appear too uncertain to fully convince economic decision-makers of the value of carbon-free options. COP22, which will take place in Marrakech in November 2016, will be an opportunity to leave these hesitations behind by strengthening mutual oversight, by consolidating the principle of climate justice, and by furthering the discussion about the best ways to orchestrate the transition to carbon neutrality

  1. Risk Management Capability Maturity and Performance of Complex Product and System (CoPS Projects with an Asian Perspective

    Directory of Open Access Journals (Sweden)

    Ren, Y.

    2014-07-01

    Full Text Available Complex Products and Systems (CoPS are high value, technology and engineering-intensive capital goods. The motivation of this study is the persistent high failure rate of CoPS projects, Asian CoPS provider’s weak capability and lack of specific research on CoPS risk management. This paper evaluates risk management maturity level of CoPS projects against a general CoPS risk management capability maturity model (RM-CMM developed by the authors. An Asian based survey was conducted to investigate the value of RM to project performance, and Asian (non-Japanese CoPS implementers’ perceived application of RM practices, their strengths and weaknesses. The survey result shows that higher RM maturity level leads to higher CoPS project performance. It also shows project complexity and uncertainty moderates the relationship between some RM practices and project performance, which implies that a contingency approach should be adopted to manage CoPS risks effectively. In addition, it shows that Asian CoPS implementers are weak in RM process and there are also rooms for improvement in the softer aspects of organizational capabilities and robustness.

  2. Climate change negotiations. COP-2 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The Second Conference of the Parties to the UN Framework Convention on Climate Change (COP-2), which met in Geneva during July, 1996, was only a partial success when considered in relation to its avowed aims, gaining acceptance of the Second Assessment Report by IPCC (Intergovernmental Panel on Climate Change), producing an agreed Ministerial Declaration, making real advances towards a protocol, and agreeing Rules of Procedure. This paper describes the main aims of COP-2, consideration of and response to the IPCC`s Second Assessment Report, the COP-2 Ministerial Declaration, some significant statements by individual country delegations at COP-2, lack of progress on Rules of Procedure for the Conference, realization of returning the greenhouse gas emissions in industrialized countries based on the Montreal Protocol, differing views among countries to the Convention on a protocol, prospects for achieving agreement on a legally binding protocol at COP-3 planned for Kyoto, Japan in December, 1997, and recent scientific and technical findings.

  3. COP 21: the national contributions

    International Nuclear Information System (INIS)

    Jouette, Isabelle

    2015-01-01

    This article comments the content of the national contributions (the so-called Intended Nationally Determined Contributions or INDC) which every country should have transmitted to the UN before the COP 21. In fact, 148 contributions, i.e. 75 per cent of the expected ones, have been transmitted. The author recalls that the content of these contributions had to obey some principles which had been defined in Lima in 2014, and that each country must identify its objectives in terms of mitigation (reduction of greenhouse gas emissions) and adaptation (reduction of the vulnerability of natural and human systems). The author comments some specific commitments regarding climate, emission reduction, adaptation to climate change, and more particularly evokes the Ethiopian contribution which is considered as exemplary

  4. High energy multi-cycle terahertz generation

    International Nuclear Information System (INIS)

    Ahr, Frederike Beate

    2017-10-01

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  5. High energy multi-cycle terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Ahr, Frederike Beate

    2017-10-15

    Development of compact electron accelerators and free-electron lasers requires novel acceleration schemes at shorter driving wavelengths. The Axsis project seeks to develop terahertz based electron acceleration as well as the high energy terahertz sources required. This thesis explores the methods and optical material required for the generation of highenergy multi-cycle terahertz pulses. Two experimental concepts to generate high energy terahertz radiation are presented. In addition the theoretical background and the optical properties of pertinent optical materials in the terahertz range are discussed. Investigations of the materials are performed with a terahertz time domain spectrometer and a Fourier transform infrared spectrometer. The nonlinear optical crystal lithium niobate as well as other crystals suitable for the terahertz generation and in addition polymers and other radiation attenuators are characterized in the range from 0.2 to 1 THz. The theory describing the generation of narrowband terahertz radiation is evaluated. The experimental setups to generate terahertz radiation and to characterize its properties are described. The specific crystals - periodically poled lithium niobate (PPLN) - used in the experiments to generate the multi-cycle terahertz radiation are examined to determine e.g. the poling period. The first experimental concept splits the ultra fast, broadband pump pulses into a pulse train in order to pump the PPLN at a higher fluence while increasing the damage limit. The measurements confirm that a pulse train of ultra short, broadband pump pulses increases not only the terahertz energy but also the energy conversion efficiency. The second experimental concept utilizes chirped and delayed infrared laser pulses. This pulse format makes it possible to pump the crystal with high energy pulses resulting in high energy terahertz radiation. The concept is optimized to reach energies up to 127 μJ exceeding the existing results of narrowband

  6. High cycle fatigue properties of inconel 690

    International Nuclear Information System (INIS)

    Lee, Young Ho; Lee, Byong Whi; Kim, In Sup; Park, Chi Yong

    1997-01-01

    Inconel 690 is presently used as sleeve material and a replacement alloy in degraded steam generators, as well as the material for new steam generators. But Inconel 690 has low thermal conductivity which are 3-8% less than that of Inconel 600 at operating temperature. For the same power output, conduction area must be increased. As a result, more fluid induced vibration can cause a fatigue damage of Inconel 690. High cycle fatigue ruptures occurred in the U-bend regions of North Anna Unit 1 and Mihama Unit 2 steam generators. At this study, the effect of temperature on fatigue crack growth rate in Inconel 690 steam generator tube was investigated at various temperature in air environment. With increasing temperature, fatigue crack growth rate increased and grain size effect decreased. Chromium carbides which have large size and semi-continuous distribution in the grain boundaries decreased fatigue crack growth rate

  7. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    International Nuclear Information System (INIS)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan; Seok, Heon; Lee, Dong Gun; Hwang, Jae Sam; Kim, Ho

    2013-01-01

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects

  8. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  9. Performance concerns for high duty fuel cycle

    International Nuclear Information System (INIS)

    Esposito, V.J.; Gutierrez, J.E.

    1999-01-01

    One of the goals of the nuclear industry is to achieve economic performance such that nuclear power plants are competitive in a de-regulated market. The manner in which nuclear fuel is designed and operated lies at the heart of economic viability. In this sense reliability, operating flexibility and low costs are the three major requirements of the NPP today. The translation of these three requirements to the design is part of our work. The challenge today is to produce a fuel design which will operate with long operating cycles, high discharge burnup, power up-rating and while still maintaining all design and safety margins. European Fuel Group (EFG) understands that to achieve the required performance high duty/energy fuel designs are needed. The concerns for high duty design includes, among other items, core design methods, advanced Safety Analysis methodologies, performance models, advanced material and operational strategies. The operational aspects require the trade-off and evaluation of various parameters including coolant chemistry control, material corrosion, boiling duty, boron level impacts, etc. In this environment MAEF is the design that EFG is now offering based on ZIRLO alloy and a robust skeleton. This new design is able to achieve 70 GWd/tU and Lead Test Programs are being executed to demonstrate this capability. A number of performance issues which have been a concern with current designs have been resolved such as cladding corrosion and incomplete RCCA insertion (IRI). As the core duty becomes more aggressive other new issues need to be addressed such as Axial Offset Anomaly. These new issues are being addressed by combination of the new design in concert with advanced methodologies to meet the demanding needs of NPP. The ability and strategy to meet high duty core requirements, flexibility of operation and maintain acceptable balance of all technical issues is the discussion in this paper. (authors)

  10. In situ electrodeposition of CoP nanoparticles on carbon nanomaterial doped polyphenylene sulfide flexible electrode for electrochemical hydrogen evolution

    Science.gov (United States)

    Wang, Tingxia; Jiang, Yimin; Zhou, Yaxin; Du, Yongling; Wang, Chunming

    2018-06-01

    Active and durable electrocatalyst for hydrogen evolution reaction (HER) is pivotal to generate molecular hydrogen more energy-efficient, but directly grafting electrocatalyst on electrode material by a single-step method without compromising the catalytic activity and stability remains a challenge. Herein, an intriguing electrode, reduced graphene oxide modified carbon nanotube/reduced graphene oxide/polyphenylene sulfide (RGO-CNT/RGO/PPS) film, is used to replace conventional electrodes. In situ electrodeposition is proposed to fabricate CoP on the RGO-CNT/RGO/PPS (CoP-RGO-CNT/RGO/PPS) electrode and achieves a favorably electrical contact between CoP nanoparticles and RGO-CNT/RGO/PPS electrode due to without any polymer binder. Additionally, the coupling of different electrodeposition stages with scanning electron microscope (SEM) can investigate the nanostructure evolution of CoP nanoparticles, which gives valuable insights into the optimized electrodeposition cycles. The rational integration of RGO onto CNT/RGO/PPS film is an effective approach for enhancing its intrinsic electrical conductivity and favoring the formation of a high density of dispersive CoP nanoparticles. The CoP-RGO-CNT/RGO/PPS film has shown outstanding HER electrocatalytic behaviors performed a current density of 10 mA cm-2 at a relatively low overpotential of 160 mV with a Tafel slope of 60 mV dec-1 in acidic medium, which can be mainly attributed to the synergistic effect between optimized morphology and accelerated kinetics. Additionally, this film electrocatalyst exhibits a good HER activity and stability under both neutral and basic conditions.

  11. COP-21: the economic controversy

    International Nuclear Information System (INIS)

    Huet, Sylvestre

    2015-01-01

    This publication analyses and discusses the content of the so-called 'intended nationally determined contributions' (INDC) prepared by countries for the COP-21. It notably shows that the USA projected energy consumption is in total contradiction with the contribution. It outlines that some of these contributions sound too ambitious in terms of reduction of greenhouse gas emissions. In fact, these statements are important for poor countries to obtain financial support from rich countries. The perspective of temperature increase is not good, but it seems that everybody is now aware of the associated risks. The article outlines that commitments for actions remain far behind the objectives defined in Copenhagen. The fact that fossil energies are cheap favours their use, that which is a problem with respect to general commitments for climate. The limitations of present alternate solutions are discussed: green oil, hydraulic, electricity production based on wind and solar energy, use of geothermal for heat or electricity, nuclear fission, nuclear fusion

  12. COP 21: words... and acts?

    International Nuclear Information System (INIS)

    Combe, Matthieu

    2015-01-01

    Published shortly before the Paris COP 21, this set of articles first recalls what is this Conference of Parties, and what will be the objectives in Paris: an agreement for the struggle against climate change, a reduction of greenhouse emissions, how to adapt to climate change. It also indicates some quantitative measurements and objectives regarding global warming according to the IPCC. The author outlines commitments for countries which signed the United Nations Framework Convention on Climate Change (UNFCCC), presents and discusses the content of the first and second Kyoto protocols, and outlines that a ratification of the second Kyoto protocol would already be a strong message. A second article notices that the objective of a maximum of a 2 degree increase of the global temperature seems difficult to be met when considering the Intended Nationally Determined Contributions or INDCs issued by a large part of the involved countries. The author discusses the issue of CO 2 budget available per inhabitant. A third article addresses the 2009 Copenhagen commitment for developed countries to give 100 billions dollars by 2020 to developing countries to finance their adaptation policy and to promote low carbon technologies. He comments the present level of these climatic financing, wanders how the still missing billions will be found, and whether these 100 billions will be enough. The fourth and last article discusses the position of the main oil and gas companies regarding climate change, and outlines that a British NGO denounced the gap between their statements and their lobbying actions

  13. From COP21 to COP22: how to win the climate struggle?

    International Nuclear Information System (INIS)

    Mathieu, Carole

    2016-10-01

    In this publication, the author first proposes a discussion on climate policies after the relative success of the COP21 in Paris which opened the way to new commitments for mitigation of climate changes and adaptation to them. She outlines that these policies can be characterized by a declared voluntarism for some of them, but also by a lack of global consistency. She proposes an overview of the diversity of measures aimed at emission reduction, outlines the weight of the uncertainty due to elections in the USA, discusses the issue of climate compatibility of public decisions, and notices the still high tension between economic development and climate protection. In a second part, within the perspective of the COP22, she highlights and discusses the lack of commitment for low carbon solutions. She finally discusses perspectives for a better and more dynamic international cooperation through a mutual control, an attention given to the financing issue, and a common approach to the development of tools for a low-carbon transition

  14. Specific features of high-cycle and ultra-high-cycle fatigue

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík

    2002-01-01

    Roč. 25, - (2002), s. 747-753 ISSN 8756-758X R&D Projects: GA AV ČR KSK1010104; GA AV ČR IAA2041002 Institutional research plan: CEZ:AV0Z2041904 Keywords : ultra high cycle fatigue * fatigue mechanisms * cyclic plastic deformation Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.701, year: 2002

  15. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function Through its E3 Ubiquitin Ligase Activity

    Directory of Open Access Journals (Sweden)

    Joo Yong Kim

    2016-08-01

    Full Text Available Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1 regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity.

  16. High cycle fatigue of austenitic stainless steels

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Lehmann, D.; Picker

    1990-01-01

    This study concerns the evaluation of material data to be used in LMFBR design codes. High cycle fatigue properties of three austenitic stainless steels are evaluated: type AISI 316 (UKAEA tests), type AISI 316L (CEA tests) and type AISI 304 (Interatom tests). The data on these steels comprised some 550 data points from 14 casts. This data set covered a wide range of testing parameters: temperature from 20-625 0 C, frequency from 1-20 000 Hz, constant amplitude and random fatigue loading, with and without mean stress, etc. However, the testing conditions chosen by the three partners differed considerably because they had been fixed independently and not harmonized prior to the tests. This created considerable difficulties for the evaluations. Experimental procedures and statistical treatments used for the three subsets of data are described and discussed. Results are presented in tables and graphs. Although it is often difficult to single out the influence of each parameter due to the different testing conditions, several interesting conclusions can be drawn: The HCF properties of the three steels are consistent with the 0.2% proof stress, the fatigue limit being larger than the latter at temperatures above 550 0 C. The type 304 steel has lower tensile properties than the two other steels and hence also lower HCF properties. Parameters which clearly have a significant effect of HCF behaviour are mean stress or R-ratio (less in the non-endurance region than in the endurance region), temperature, cast or product. Other parameters have probably a weak or no effect but it is difficult to conclude due to insufficient data: environment, specimen orientation, frequency, specimen geometry

  17. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  18. The game of cops and robbers on graphs

    CERN Document Server

    Bonato, Anthony

    2011-01-01

    This book is the first and only one of its kind on the topic of Cops and Robbers games, and more generally, on the field of vertex pursuit games on graphs. The book is written in a lively and highly readable fashion, which should appeal to both senior undergraduates and experts in the field (and everyone in between). One of the main goals of the book is to bring together the key results in the field; as such, it presents structural, probabilistic, and algorithmic results on Cops and Robbers games. Several recent and new results are discussed, along with a comprehensive set of references. The book is suitable for self-study or as a textbook, owing in part to the over 200 exercises. The reader will gain insight into all the main directions of research in the field and will be exposed to a number of open problems.

  19. COP 21: a diplomatic and... climatic success?

    International Nuclear Information System (INIS)

    Combe, Matthieu

    2016-09-01

    If the agreement signed at the end of the COP21 has been greeted as historical, compromises made for such a diplomatic success cast doubt on the constraining aspect of this treaty. This publication thus proposes comments on the content of the COP21 agreement by discussing the perspective and opportunities of a possible commitment of air transport in the struggle against climate change, by questioning the existence of a dynamics for world commitment in the development of renewable energies, for the emergence of more responsible companies and sustainable cities, by commenting the almost unanimous success of the COP21 acknowledged by all parties (except Nicaragua), by commenting the opinion of NGOs on the agreement. Other articles evoke and comment examples of mobilisation of civil society and companies in demonstrations during the COP21, other demonstrations organised in parallel with the COP21 (a citizen summit on climate in Montreuil, exhibition in the Grand Palais where large companies like Veolia, L'Oreal, Evian, BIC, Coca-Cola or Renault presented some initiatives)

  20. Thermodynamic performance evaluation of transcritical carbon dioxide refrigeration cycle integrated with thermoelectric subcooler and expander

    International Nuclear Information System (INIS)

    Dai, Baomin; Liu, Shengchun; Zhu, Kai; Sun, Zhili; Ma, Yitai

    2017-01-01

    New configurations of transcritical CO_2 refrigeration cycle combined with a thermoelectric (TE) subcooler and an expander (TES+EXP_H_M and TES+EXP_M_L) are proposed. The expander can operate between the high-pressure to the vessel pressure, or from vessel pressure to evaporation pressure. A power system is utilized to balance and supply power to thermoelectric subcooler and compressor. Thermodynamic performance optimizations and analyses are presented. Comparisons are carried out with the BASE, EXP_H_M, EXP_M_L, and TES cycles. The results show that the coefficient of performance (COP) improvement is more notable when the expander is installed between the liquid receiver and the evaporator. Maximum COP is obtained for the new cycles with a simultaneous optimization of discharge pressure and subcooling temperature. The new proposed TES+EXP_M_L cycle shows an excellent and steady performance than other cycles. It operates not only with the highest COP, but also the lowest discharge pressure. Under the working conditions of high gas cooler outlet temperature or low evaporation temperature, the merits of COP improvement and discharge pressure reduction are more prominent. The new cycle is more suitable for the hot regions where the CO_2 can not be sufficiently subcooled or the refrigerated space operates at low evaporation temperature. - Highlights: • New configurations of transcritical CO_2 refrigeration cycle are proposed. • New cycles are optimized and compared with other cycles. • The position of expander has an evident influence on the performance of CO_2 cycle. • TES+EXP_M_L cycle shows the highest COP and lowest discharge pressure. • The range of application for the TES+EXP_M_L cycle is recommended.

  1. Part-load performance of a high temperature Kalina cycle

    International Nuclear Information System (INIS)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl; Haglind, Fredrik

    2015-01-01

    Highlights: • Detailed algorithm to solve high temperature Kalina cycle in part load. • A central receiver concentrating solar power plant with direct vapour generation considered as case study. • Part-load performance curves and fitted equations presented. - Abstract: The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine bottoming cycle, and solar power plants. The high temperature cycle layouts are inherently more complex than the low temperature layouts due to the presence of a distillation-condensation subsystem, three pressure levels, and several heat exchangers. This paper presents a detailed approach to solve the Kalina cycle in part-load operating conditions for high temperature (a turbine inlet temperature of 500 °C) and high pressure (100 bar) applications. A central receiver concentrating solar power plant with direct vapour generation is considered as a case study where the part-load conditions are simulated by changing the solar heat input to the receiver. Compared with the steam Rankine cycle, the Kalina cycle has an additional degree of freedom in terms of the ammonia mass fraction which can be varied in order to maximize the part-load efficiency of the cycle. The results include the part-load curves for various turbine inlet ammonia mass fractions and the fitted equations for these curves.

  2. Two-stage double-effect ammonia/lithium nitrate absorption cycle

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Vereda, C.; Legrand, M.

    2016-01-01

    Highlights: • A two stage double effect cycle with NH3-LiNO3 is proposed. • The cycle operates at lower pressures than conventional. • Adiabatic absorber offers better performance than the diabatic version. • Evaporator external inlet temperatures higher than −10 °C avoids crystallization. • Maximum COP is 1.25 for driving water inlet temperature of 100 C. - Abstract: The two-stage configuration of a double-effect absorption cycle using ammonia/lithium nitrate as working fluid is studied by means of a thermodynamic model. The maximum pressure of this cycle configuration is the same as the single-effect cycle, up to 15.8 bars, being an advantage over the double-effect conventional configuration with three pressure levels that exhibits much higher maximum pressure. The performance of the cycle and the limitation imposed by crystallization of the working fluid is determined for both adiabatic and diabatic absorber cycles. Both cycles offer similar COP; however the adiabatic variant shows a larger margin against crystallization. This cycle can produce cold for external inlet evaporator temperatures down to −10 °C, but for this limit the crystallization could happen at high inlet generator temperatures. The maximum COP can be 1.25 for an external inlet generator temperature of 100 °C. This cycle shows a better COP than a typical double effect cycle with in-parallel configuration for the range of the moderate temperatures under study and using the same working fluid. Comparisons with double effect cycles using H_2O/LiBr and NH_3/H_2O as working fluids are also offered, highlighting the present configurations advantages regarding COP, evaporation and condensation temperatures as well as crystallization.

  3. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  4. COP of heat pumps. From definition to sales promotion; Warmtepomp COP. Van definitie tot verkoopargument

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomeus, T.M.C. [Grasso Products, Den Bosch (Netherlands)

    2006-10-15

    Due to new EU-regulations heat pumps are once more very much in demand. A negative side effect of this popularity is the incomplete and defective information overrunning the market. The COP (coefficient of performance) of a heat pump degenerates from a definition into a sales promotion. This article brings clearness in these COP matters. [Dutch] Het blijkt dat de markt voor warmtepompen wordt overspoeld met onvolledige informatie ten gunste van hogere verkoopcijfers. Het rendement van een warmtepomp, verpakt in het Engelse COP (coefficient of performance) verwordt van definitie tot verkoopargument. In principe is daar niets mis mee, maar weI als het te pas en onpas gebruikt wordt, zonder enige relatie met het gebruiksdoel, de toepassing en bedrijfsvoering. Dit artikel heeft als doel om appels en peren in de COP-communicatie te scheiden.

  5. High efficient heat pump system using storage tanks to increase COP by means of the ISEC concept - Part 1: Model validation

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus; Elmegaard, Brian; Markussen, Wiebke B.

    2015-01-01

    The purpose of the ISEC concept is to provide a high-efficient heat pump system for hot water production.The ISEC concept uses two storage tanks for the water, one discharged and one charged. Hot water for theindustrial process is tapped from the charged tank, while the other tank is charging....... This result in a lower condensingtemperature than if the water was heated in one step. Two test setups were built, one to test the performanceof the heat pump gradually heating the water and one to investigate the stratification in the storage tanks.Furthermore, a dynamic model of the system was implemented....... Charging is done bycirculating the water in the tank through the condenser of a heat pump several times and thereby graduallyheating the water. The charging is done with a higher mass flow rate than the discharging to reach severalcirculations of the water during the time frame of one discharging...

  6. Evolution of high duty cycle echolocation in bats

    DEFF Research Database (Denmark)

    Fenton, M. B.; Faure, P. A.; Ratcliffe, J. M.

    2012-01-01

    Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track...... relative to background objects and their prey. HDC echolocators are particularly sensitive to amplitude and frequency glints generated by the wings of fluttering insects. We hypothesize that narrowband/CF calls produced at high duty cycle, and combined with neurobiological specializations for processing....... In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements...

  7. High-intensity cycle interval training improves cycling and running performance in triathletes.

    Science.gov (United States)

    Etxebarria, Naroa; Anson, Judith M; Pyne, David B; Ferguson, Richard A

    2014-01-01

    Effective cycle training for triathlon is a challenge for coaches. We compared the effects of two variants of cycle high-intensity interval training (HIT) on triathlon-specific cycling and running. Fourteen moderately-trained male triathletes ([Formula: see text]O2peak 58.7 ± 8.1 mL kg(-1) min(-1); mean ± SD) completed on separate occasions a maximal incremental test ([Formula: see text]O2peak and maximal aerobic power), 16 × 20 s cycle sprints and a 1-h triathlon-specific cycle followed immediately by a 5 km run time trial. Participants were then pair-matched and assigned randomly to either a long high-intensity interval training (LONG) (6-8 × 5 min efforts) or short high-intensity interval training (SHORT) (9-11 × 10, 20 and 40 s efforts) HIT cycle training intervention. Six training sessions were completed over 3 weeks before participants repeated the baseline testing. Both groups had an ∼7% increase in [Formula: see text]O2peak (SHORT 7.3%, ±4.6%; mean, ±90% confidence limits; LONG 7.5%, ±1.7%). There was a moderate improvement in mean power for both the SHORT (10.3%, ±4.4%) and LONG (10.7%, ±6.8%) groups during the last eight 20-s sprints. There was a small to moderate decrease in heart rate, blood lactate and perceived exertion in both groups during the 1-h triathlon-specific cycling but only the LONG group had a substantial decrease in the subsequent 5-km run time (64, ±59 s). Moderately-trained triathletes should use both short and long high-intensity intervals to improve cycling physiology and performance. Longer 5-min intervals on the bike are more likely to benefit 5 km running performance.

  8. Fuel and fuel cycles with high burnup for WWER reactors

    International Nuclear Information System (INIS)

    Chernushev, V.; Sokolov, F.

    2002-01-01

    The paper discusses the status and trends in development of nuclear fuel and fuel cycles for WWER reactors. Parameters and main stages of implementation of new fuel cycles will be presented. At present, these new fuel cycles are offered to NPPs. Development of new fuel and fuel cycles based on the following principles: profiling fuel enrichment in a cross section of fuel assemblies; increase of average fuel enrichment in fuel assemblies; use of refuelling schemes with lower neutron leakage ('in-in-out'); use of integrated fuel gadolinium-based burnable absorber (for a five-year fuel cycle); increase of fuel burnup in fuel assemblies; improving the neutron balance by using structural materials with low neutron absorption; use of zirconium alloy claddings which are highly resistant to irradiation and corrosion. The paper also presents the results of fuel operation. (author)

  9. Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rui; Liu, Chao; Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn; Wang, Jing; Hu, Xingru; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-05-05

    Highlights: • The CoP/PMS system was first presented for decomposition of pollutants. • CoP exhibited dramatic catalytic activity. • Broadened pH range and favorable anti-interference of anions were achieved. • A possible mechanism for activation of PMS by CoP was proposed. - Abstract: A new catalyst system of CoP/peroxymonosulfate (PMS) is presented, which achieved significant improvement in catalytic activity. Nanostructured CoP, obtained by a simple solid-state reaction, exhibited dramatic catalytic activity with 97.2% degradation of orange II of 100 ppm within 4 min. Moreover, the high efficiency could be reached for other phenolic pollutants, i.e., phenol and 4-chlorophenol. The reaction rate is much higher than the most reported catalysts. Effect of parameters on catalytic activity of the catalyst was studied in detail. Notably, initial pH of the solution had a slight negative effect on the catalytic performance over the pH range 4.07–10.92, suggesting that CoP has the great adaptability of pH. CoP/PMS demonstrated excellent anti-interference performance toward anions (Cl{sup −}, NO{sub 3}{sup −}, and HCO{sub 3}{sup −}). In addition, the pathway of degradation of orange II is proposed by analyzing its intermediates. Based on the XPS spectra of CoP, the identification of the reactive species (·OH and SO{sub 4}·{sup −}) by electron paramagnetic resonance (EPR) analysis and quenching tests, a possible mechanism for activation of PMS by CoP was proposed. Considering the dramatic catalytic activity, a wide range of pH catalyst suited, CoP is believed to provide robust support for the promising industrial application of AOPs.

  10. Effect of high pressure hydrogen on low-cycle fatigue

    International Nuclear Information System (INIS)

    Rie, K.T.; Kohler, W.

    1979-01-01

    It has been shown that the fatigue life can be influenced in low-cycle range by high pressure hydrogen while the effect of high pressure hydrogen on high-cycle fatigue will not be as significant. The paper reports the details and the results of the investigations of the effect of high pressure hydrogen on the low-cycle endurance of commercially pure titanium. The results of this study indicate that: 1. The degradation of the fatigue life in low-cycle region for commercially pure titanium under high pressure hydrogen can be described by Nsub(cr)sup(α x Δepsilon)sub(pl)sup(=c) 2. The fatigue life decreases with decreasing strain rate. 3. The fatigue life decreases with increasing hydrogen pressure. It was found that the semilogarithmic plot of the fatigue life versus the hydrogen pressure gives a linear relationship. The Sievert's law does not hold in low-cycle fatigue region. 4. HAC in titanium in low-cycle fatigue region is the result of the disolution of hydrogen at the crack tip and of the strain-induced hybride formation. (orig.) 891 RW/orig. 892 RKD [de

  11. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon–ammonia working pair

    International Nuclear Information System (INIS)

    Xu, S.Z.; Wang, L.W.; Wang, R.Z.

    2016-01-01

    Highlights: • Activated carbon–ammonia multi-stage adsorption refrigerator was analyzed. • COP, exergetic efficiency and entropy production of cycles were calculated. • Single-stage cycle usually has the advantages of simple structure and high COP. • Multi-stage cycles adapt to critical conditions better than single-stage cycle. • Boundary conditions for choosing optimal cycle were summarized as tables. - Abstract: Activated carbon–ammonia multi-stage adsorption refrigeration cycle was analyzed in this article, which realized deep-freezing for evaporating temperature under −18 °C with heating source temperature much lower than 100 °C. Cycle mathematical models for single, two and three-stage cycles were established on the basis of thorough thermodynamic analysis. According to simulation results of thermodynamic evaluation indicators such as COP (coefficient of performance), exergetic efficiency and cycle entropy production, multi-stage cycle adapts to high condensing temperature, low evaporating temperature and low heating source temperature well. Proposed cycle with selected working pair can theoretically work under very severe conditions, such as −25 °C evaporating temperature, 40 °C condensing temperature, and 70 °C heating source temperature, but under these working conditions it has the drawback of low cycle adsorption quantity. It was found that both COP and exergetic efficiency are of great reference value in the choice of cycle, whereas entropy production is not so useful for cycle stage selection. Finally, the application boundary conditions of single-stage, two-stage, and three-stage cycles were summarized as tables according to the simulation results, which provides reference for choosing optimal cycle under different conditions.

  12. COP18 Public Agenda - ENG

    International Development Research Centre (IDRC) Digital Library (Canada)

    Hayley Price

    2012-12-02

    Dec 2, 2012 ... goal is to increase the resilience of vulnerable populations and their livelihoods in one of the following climate change “hot spots” in Africa and Asia: densely populated river basins, large deltas, and semi-arid regions. Why attend this meeting? Highly interactive sessions with a mix of research and policy ...

  13. The high temperature reactor and its fuel cycle options

    International Nuclear Information System (INIS)

    1979-07-01

    The status of the HTR system in the Federal Republic of Germany as well as the consecutive steps and the probable cost of further development are presented. The considerations are based on a recycling Th/highly enriched uranium (HEU) fuel cycle which has been chosen as the main line of the German HTR R and D efforts. Alternative fuel cycles such as medium-enriched uranium (MEU) and low-enriched uranium (LEU) are discussed as well

  14. CoP Sensing Framework on Web-Based Environment

    Science.gov (United States)

    Mustapha, S. M. F. D. Syed

    The Web technologies and Web applications have shown similar high growth rate in terms of daily usages and user acceptance. The Web applications have not only penetrated in the traditional domains such as education and business but have also encroached into areas such as politics, social, lifestyle, and culture. The emergence of Web technologies has enabled Web access even to the person on the move through PDAs or mobile phones that are connected using Wi-Fi, HSDPA, or other communication protocols. These two phenomena are the inducement factors toward the need of building Web-based systems as the supporting tools in fulfilling many mundane activities. In doing this, one of the many focuses in research has been to look at the implementation challenges in building Web-based support systems in different types of environment. This chapter describes the implementation issues in building the community learning framework that can be supported on the Web-based platform. The Community of Practice (CoP) has been chosen as the community learning theory to be the case study and analysis as it challenges the creativity of the architectural design of the Web system in order to capture the presence of learning activities. The details of this chapter describe the characteristics of the CoP to understand the inherent intricacies in modeling in the Web-based environment, the evidences of CoP that need to be traced automatically in a slick manner such that the evidence-capturing process is unobtrusive, and the technologies needed to embrace a full adoption of Web-based support system for the community learning framework.

  15. Synthesis of NiPS3 and CoPS and its hydrogen storage capacity

    International Nuclear Information System (INIS)

    Ismail, N.; Madian, M.; El-Meligi, A.A.

    2014-01-01

    Highlights: • Preparation of NiPS 3 and CoPS using solid state reaction. • Characterization of compounds using XRD, TEM, SEM and IR. • Measuring the compounds thermal stability. • Estimation of the hydrogen storage capacity. -- Abstract: Prepared CoPS and NiPS 3 are studied as new materials for hydrogen energy storage. Single phase of CoPS and NiPS 3 were grown separately in evacuated silicatube via solid state reaction at 650 °C with controlled heating rate 1 °C/min. X-ray diffraction patterns confirm the formation of the desired compounds. Both CoPS and NiPS 3 exhibited high thermal stability up to 700 °C and 630 °C, respectively. The morphology of the prepared samples was investigated using scanning electron microscopy and folded sheets appeared in the transmission electron microscopy. The samples were exposed to 20 bar applied hydrogen pressure at 80 K. Both compounds appear to have feasible hydrogen storage capacity. CoPS was capable to adsorb 1.7 wt% while NiPS 3 storage capacity reached 1.2 wt%

  16. High performance integrated solar combined cycles with minimum modifications to the combined cycle power plant design

    International Nuclear Information System (INIS)

    Manente, Giovanni

    2016-01-01

    Highlights: • Off-design model of a 390 MW_e three pressure combined cycle developed and validated. • The off-design model is used to evaluate different hybridization schemes with solar. • Power boosting and fuel saving with different design modifications are considered. • Maximum solar share of total electricity is only 1% with the existing equipment. • The maximum incremental solar radiation-to-electrical efficiency approaches 29%. - Abstract: The integration of solar energy into natural gas combined cycles has been successfully demonstrated in several integrated solar combined cycles since the beginning of this decade in many countries. There are many motivations that drive investments on integrated solar combined cycles which are primarily the repowering of existing power plants, the compliance with more severe environmental laws on emissions and the mitigation of risks associated with large solar projects. Integrated solar combined cycles are usually developed as brownfield facilities by retrofitting existing natural gas combined cycles and keeping the existing equipment to minimize costs. In this work a detailed off-design model of a 390 MW_e three pressure level natural gas combined cycle is built to evaluate different integration schemes of solar energy which either keep the equipment of the combined cycle unchanged or include new equipment (steam turbine, heat recovery steam generator). Both power boosting and fuel saving operation strategies are analyzed in the search for the highest annual efficiency and solar share. Results show that the maximum incremental power output from solar at design solar irradiance is limited to 19 MW_e without modifications to the existing equipment. Higher values are attainable only including a larger steam turbine. High solar radiation-to-electrical efficiencies in the range 24–29% can be achieved in the integrated solar combined cycle depending on solar share and extension of tube banks in the heat recovery

  17. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Lehericy, Y.

    2007-05-01

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  18. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  19. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  20. A New, Highly Improved Two-Cycle Engine

    Science.gov (United States)

    Wiesen, Bernard

    2008-01-01

    The figure presents a cross-sectional view of a supercharged, variable-compression, two-cycle, internal-combustion engine that offers significant advantages over prior such engines. The improvements are embodied in a combination of design changes that contribute synergistically to improvements in performance and economy. Although the combination of design changes and the principles underlying them are complex, one of the main effects of the changes on the overall engine design is reduced (relative to prior two-cycle designs) mechanical complexity, which translates directly to reduced manufacturing cost and increased reliability. Other benefits include increases in the efficiency of both scavenging and supercharging. The improvements retain the simplicity and other advantages of two-cycle engines while affording increases in volumetric efficiency and performance across a wide range of operating conditions that, heretofore have been accessible to four-cycle engines but not to conventionally scavenged two-cycle ones, thereby increasing the range of usefulness of the two-cycle engine into all areas now dominated by the four-cycle engine. The design changes and benefits are too numerous to describe here in detail, but it is possible to summarize the major improvements: Reciprocating Shuttle Inlet Valve The entire reciprocating shuttle inlet valve and its operating gear is constructed as a single member. The shuttle valve is actuated in a lost-motion arrangement in which, at the ends of its stroke, projections on the shuttle valve come to rest against abutments at the ends of grooves in a piston skirt. This shuttle-valve design obviates the customary complex valve mechanism, actuated from an engine crankshaft or camshaft, yet it is effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines.

  1. COP21. To change the energy model

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2015-01-01

    In this brief article, the author regrets that the final COP21 agreement mentioned only once the energy issue whereas energy is responsible of 66 per cent of CO 2 emissions. Commitments regarding financing are evoked as well as statements made by the US President and his Secretary of State. He briefly outlines evolutions noticed in Germany after the implementation of the new energy policy (Energiewende) and its possible influences in other countries, notably in France. The still important role of coal in some countries like China, India, and Africa is outlined. Saudi Arabia succeeded in avoiding any mention of fossil energies in the final agreement

  2. COP 21: which role for the nuclear?

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2015-01-01

    This publication discusses the opportunities and challenges of the 21. Conference of Parties (COP) or conference on climate change which will take place in France. It notably outlines how this conference could be successful, and the importance of the European Union for energy. It more precisely and deeply addresses the issues related to nuclear energy by outlining that this energy is part of the solution for the struggle against climate change, by outlining that Euratom could be an inspiring example for a European Union for energy, and by briefly proposing a way to finance nuclear energy. Some propositions made by an expert for the development of nuclear energy are reported

  3. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  4. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  5. Low-grade heat and its definitions of Coefficient-of-Performance (COP)

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2015-01-01

    Use of fire for low grade heat, still widely practiced today, is wasteful because it is based on the principle of heat production – which should have become an outmoded idea post-Carnot for low grade heat application as an exergy analysis will readily conclude. Instead of application of exergy analysis, a new thermodynamic analysis resulting from the unification of Kelvin's energy principle and the entropy principle, formulated recently (called the entropic theory of heat), is applied here to reexamine the problem of building heating. Other than improving envelope heat resistance, conventional building efficiency gain is predominantly obtained by improving HVAC efficiency (i.e., boiler efficiency); our finding shows that there is in fact large room in improving the building heating operation surpassing 100% boiler efficiency, as demonstrated by the large value of the Kelvin limit (the theoretical upper bound of Thermal COP). This theoretical possibility of generous amount of heat from fire suggests additional possibilities of heat from primary energy other than fire, and the disclosure of these possibilities by applying the triad framework in the entropic theory of heat in terms of alternative definitions of Coefficient of Performance (COP). Consideration of such alternative COPs suggests real possibility of efficiently and cost effectively obtaining low grade heat from primary energy. - Highlights: • Importance of thinking heat extraction for high energy efficiency in buildings. • The concept of Thermal COP and the determination of its (maximum) Kelvin limit. • Key to find the sweet spot of using heat pump is thinking general heat extraction. • triadCOP &eThermalCOP are measure of energy transformation in the triad framework

  6. Heat exchangers for high-temperature thermodynamic cycles

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    The special requirements of heat exchangers for high temperature thermodynamic cycles are outlined and discussed with particular emphasis on cost and thermal stress problems. Typical approaches that have been taken to a comprehensive solution intended to meet all of the many boundary conditions are then considered by examining seven typical designs including liquid-to-liquid heat exchangers for nuclear plants, a heater for a closed cycle gas turbine coupled to a fluidized bed coal combustion chamber, steam generators for nuclear plants, a fossil fuel-fired potassium boiler, and a potassium condenser-steam generator. (auth)

  7. The development and chemistry of high efficiency combined cycle plants

    International Nuclear Information System (INIS)

    Svoboda, Robert

    1999-01-01

    This paper presents a boiler concept based on the combination of a low-pressure drum-type boiler with high-pressure once-through boiler and the appropriate water/steam cycle. An all volatile treatment is used in the low-pressure boiler and oxygenated treatment for the once-through high pressure system. Impurity control is achieved by adapted system design and materials, high quality make-up, an appropriate cleanliness concept and clean-up procedures for a cold start. Cycle refreshing is realized by blowdown from the high-pressure water-separator. This concept utilizes simper and less equipment than traditional solutions, resulting in increased power plant reliability and less requirement on maintenance and on capital cost [it

  8. COP 23: Gender Equality and Climate Change

    Directory of Open Access Journals (Sweden)

    Struck-Garbe, Marion

    2018-03-01

    Full Text Available The World Climate Conference 2017 (COP 23 yielded the adoption of the first United Nations Framework Convention on Climate Change Gender Action Plan (GAP. This is a positive shift towards an integration of gender justice and human rights in the context of the UN Climate Action Plan. GAP necessitates importance granted to gender-equal climate policy and therefore, must be integrated into national climate action plans (programs. The first progress assessment will be conducted at COP 25 towards the end of 2019. However, while GAP recognizes women’s roles and importance with regard to climate change, it does not reach out beyond this. For instance, development policy measures that likewise play an important role have been excluded. In the Asia-Pacific the specific role of women as livelihood providers has received minimal attention and resultantly there has been little implementation of concrete measures. There are still many steps to be taken before deeper and more fundamental changes are reached.

  9. Monodispersepoly[BMA-co-(COPS-I)] Particles by Soap-Free Emulsion Copolymerization and Its Optical Properties as Photonic Crystals.

    Science.gov (United States)

    Lee, Ki Chang; Choo, Hun Seung

    2015-10-01

    In order to study the surfactant-free emulsion copolymerization of benzyl methacrylate (BMA) with sodium 1-allyloxy-2-hydroxypropane sulfonate (COPS-I) and the resulting optical properties, a series of experiments was carried out at various reaction conditions such as the changes of BMA concentration, COPS-I concentration, BMA concentration under a fixed COPS-I amount, initiator and divinyl benzene (DVB) concentration. All the latices showed highly monodispersed spherical particles in the size range of 144~435 nm and the respective shiny structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. The increase of number of particles led to the increased rate of polymerization and zeta-potential of the latices, on the other hand, to the decreased molecular weight. Refractive indices and the reflectivity increased with COPS-I concentration, on the other hand, and decreased with DVB concentration. Especially, refractive indices of the resulting poly[BMA-co-(COPS-I)] colloidal photonic crystals showed much higher values of 1.65~2.21 than that of polystyrene, due to the formation of core-shell shaped morphology. Monodisperse and high refractive index of poly[BMA-co-(COPS-I)] particles prepared in this work could be used for the study in photonic crystals and electrophoretic display.

  10. Groundwater vulnerability assessment in karstic aquifers using COP method.

    Science.gov (United States)

    Bagherzadeh, Somayeh; Kalantari, Nasrollah; Nobandegani, Amir Fadaei; Derakhshan, Zahra; Conti, Gea Oliveri; Ferrante, Margherita; Malekahmadi, Roya

    2018-05-02

    Access to safe and reliable drinking water is amongst the important indicators of development in each society, and water scarcity is one of the challenges and limitations affecting development at national and regional levels and social life and economic activity areas. Generally, there are two types of drinking water sources: the first type is surface waters, including lakes, rivers, and streams and the second type is groundwaters existing in aquifers. Amongst aquifers, karst aquifers play an important role in supplying water sources of the world. Therefore, protecting these aquifers from pollution sources is of paramount importance. COP method is amongst the methods to investigate the intrinsic vulnerability of this type of aquifers, so that areas susceptible to contamination can be determined before being contaminated and these sources can be protected. In the present study, COP method was employed in order to spot the regions that are prone to contamination in the region. This method uses the properties of overlying geological layers above the water table (O factor), the concentration of flow (C factor), and precipitation (P factor) over the aquifer, as the parameters to assess the intrinsic vulnerability of groundwater resources. In this regard, geographical information system (GIS) and remote sensing (RS) were utilized to prepare the mentioned factors and the intrinsic vulnerability map was obtained. The results of COP method indicated that the northwest and the west of the region are highly and very vulnerable. This study indicated that regions with low vulnerability were observed in eastern areas, which accounted for 15.6% of the area. Moderate vulnerability was 40% and related to the northeast and southeast of the area. High vulnerability was 38.2% and related to western and southwestern regions. Very high vulnerability was 6.2% and related to the northwest of the area. By means of the analysis of sensitivity of the model, it was determined that the focus

  11. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  12. Effects of high mean stress on the high-cycle fatigue behavior of PWA 1480

    International Nuclear Information System (INIS)

    Majumdar, S.; Antolovich, S.; Milligan, W.

    1985-03-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the Space Shuttle Main Engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. This paper describes results obtained in an ongoing program to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material

  13. CoPs Facing Rationalization: The Politics of Community Reproduction

    Science.gov (United States)

    Kilskar, Stine Skaufel; Ingvaldsen, Jonas A.; Valle, Nina

    2018-01-01

    Purpose: This paper aims to explore the relationship between the contemporary forms of manufacturing rationalization and the reproduction of communities of practice (CoPs) centred on tasks and craft. Building on critical literature highlighting the tensions between CoPs and rationalization, this paper aims to develop a nuanced account of how CoPs…

  14. 32 CFR 635.24 - Updating the COPS MPRS.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Updating the COPS MPRS. 635.24 Section 635.24 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL INVESTIGATIONS LAW ENFORCEMENT REPORTING Offense Reporting § 635.24 Updating the COPS MPRS. Installation Provost Marshals/Directors of...

  15. COP 21/CMP11. Understanding the challenges

    International Nuclear Information System (INIS)

    2015-03-01

    By the end of 2015, France will host the 21. conference of parties (COP 21) of the United Nations Framework Convention on Climate Change. The goal is to reach an agreement between all countries in order to keep the global warming below 2 deg. C. In this perspective, French President Francois Hollande, urged France to be a role model at home, which is the prerequisite to convince and lead Europe and the rest of the world in this worldwide fight. This note explains what role France will have to play on the international scene, what is the position of France and Europe in the climate topic, and how electricity can contribute to the fight against global warming

  16. CSNAP Is a Stoichiometric Subunit of the COP9 Signalosome

    Directory of Open Access Journals (Sweden)

    Shelly Rozen

    2015-10-01

    Full Text Available The highly conserved COP9 signalosome (CSN complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs, the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein. We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1.

  17. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  18. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li; Niu, De; Hu, Zi-Liang; Kim, Dae Heon; Jin, Yin Hua; Cai, Bin; Liu, Peng; Miura, Kenji; Yun, Dae-Jin; Kim, Woe-Yeon; Lin, Rongcheng; Jin, Jing Bo

    2016-01-01

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  19. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    Science.gov (United States)

    Ho, Ying-Yi; Fang, Yin-Ping; Chou, Cheng-Han; Cheng, Hsi-Chi; Chang, Hsueh-Wen

    2013-01-01

    Laryngeally echolocating bats avoid self-deafening (forward masking) by separating pulse and echo either in time using low duty cycle (LDC) echolocation, or in frequency using high duty cycle (HDC) echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz) followed immediately by a frequency modulated (FM) sweep (194 to 113 kHz). This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences). Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13), and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97). We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.

  20. High duty cycle to low duty cycle: echolocation behaviour of the hipposiderid bat Coelops frithii.

    Directory of Open Access Journals (Sweden)

    Ying-Yi Ho

    Full Text Available Laryngeally echolocating bats avoid self-deafening (forward masking by separating pulse and echo either in time using low duty cycle (LDC echolocation, or in frequency using high duty cycle (HDC echolocation. HDC echolocators are specialized to detect fluttering targets in cluttered environments. HDC echolocation is found only in the families Rhinolophidae and Hipposideridae in the Old World and in the New World mormoopid, Pteronotus parnellii. Here we report that the hipposiderid Coelops frithii, ostensibly an HDC bat, consistently uses an LDC echolocation strategy whether roosting, flying, or approaching a fluttering target rotating at 50 to 80 Hz. We recorded the echolocation calls of free-flying C. frithii in the field in various situations, including presenting bats with a mechanical fluttering target. The echolocation calls of C. frithii consisted of an initial narrowband component (0.5±0.3 ms, 90.6±2.0 kHz followed immediately by a frequency modulated (FM sweep (194 to 113 kHz. This species emitted echolocation calls at duty cycles averaging 7.7±2.8% (n = 87 sequences. Coelops frithii approached fluttering targets more frequently than did LDC bats (C.frithii, approach frequency  = 40.4%, n = 80; Myotis spp., approach frequency  = 0%, n = 13, and at the same frequency as sympatrically feeding HDC species (Hipposideros armiger, approach rate  = 53.3%, n = 15; Rhinolophus monoceros, approach rate  = 56.7%, n = 97. We propose that the LDC echolocation strategy used by C. frithii is derived from HDC ancestors, that this species adjusts the harmonic contents of its echolocation calls, and that it may use both the narrowband component and the FM sweep of echolocations calls to detect fluttering targets.

  1. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  2. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  3. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  4. High cycle fatigue of Type 422 stainless steel

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.; Sabatini, R.L.

    1978-01-01

    High cycle fatigue testing has been carried out on Type 422 stainless steel to determine the performance of cyclically stressed disks and blades in the main and auxiliary HTGR helium circulators. Tests were performed at 316, 482, and 538 0 C (600, 900, and 1000 0 F) in air for the fully reversible and mean load conditions. Goodman's analysis is shown to be valid in predicting failure at 316 0 C (600 0 F), marginally valid at 482 0 C (900 0 F), and probably invalid at 538 0 C (1000 0 F). Metallographic analyses were conducted to characterize the nature of failure for the temperatures and loading conditions investigated

  5. Improvement In The COP Of Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2015-08-01

    Full Text Available This paper described the study for heat transfer through thermoelectric cooler TEC by use of multistage thermoelectric module. To satisfy the heat dissipation of modern electronic element thermal designers have to increase fin area and fan speed to improve its cooling capacity. However the increase of fin area is restricted by the space. Besides the increase of fan speed would induce noise which damages human health. So air cooling by fan is hardly to meet the requirement of modern electronic component. Recently thermoelectric cooler TEC is applied to electronic cooling with the advantages of small size quietness and reliability. A typical thermoelectric cooler consists of p-type and n-type semiconductor pellets connected electrically in series and sandwiched between two ceramic substrates. Whenever direct current passes through the circuit it causes temperature differential between TEC sides. As a result one face of TEC which is called cold side will be cooled while its opposite face which is called hot side is simultaneously heated. The main problem over the use of TEC is the limited COP and its thermal performance. But these can be eliminated by use of multistage thermoelectric cooler.

  6. Special COP 21 - Stakes and actors

    International Nuclear Information System (INIS)

    Chauveau, Loic; Dupain, Julien; Descamps, Olivier; Blosseville, Thomas; Connors, Anne; Canto, Albane; Robischon, Christian; Boedec, Morgan; Tubiana, Fabian; Bomstein, Dominique

    2015-01-01

    A first set of article comments and discusses the various stakes and challenges of the 21. Conference of Parties (COP 21): the negotiation process which resulted in a synthesis which is to be signed by 95 States in Paris, the elaboration of an Agenda of solutions with the commitment of enterprises and local authorities, the issue of international financing as some promises remained not kept for the support to adaptation of developing countries. A second set of articles addresses the involved actors and their technological or economic challenges: the needed evolution of energy (electricity, heat, gas, fuel) producers away from fossil energies to reduce greenhouse gas emissions, the strategy of the French company Engie in the field of photovoltaic, wind and more generally renewable energies, innovating trends of decentralisation of energy production (offshore wind energy, hydrogen, plasma torch, flexible photovoltaic arrays, the wind tree, the floating wind turbine, new technologies for solar arrays), the perspectives for industrial sectors concerned by energy transition (with the example of Schneider Electric), emerging technologies (oil lamp, new boilers, desalination equipment, storage of wind energy, co-generation), developments and perspectives in the transport sector (example of Renault, new technologies for hybrid propulsion, bio-refineries, reduction of fuel consumption, hybrid aircraft, and heat management in railways) and in the building sector (new standards and applications, new building materials). A last article outlines the threat that climate can be for profitability and the taking of the carbon risk into account by the insurance and financial sectors

  7. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  8. EER, COP, and the Second Law Efficiency for Air Conditioners

    Science.gov (United States)

    Leff, Harvey S.; Teeters, William D.

    1978-01-01

    Describes the relationship existing between coefficient of performance (COP) and energy efficiency ratio (EER) in air conditioning units and introduces new efficiency parameters measured relative to the energy extracted from the primary energy source. (SL)

  9. COPS model estimates of LLEA availability near selected reactor sites

    International Nuclear Information System (INIS)

    Berkbigler, K.P.

    1979-11-01

    The COPS computer model has been used to estimate local law enforcement agency (LLEA) officer availability in the neighborhood of selected nuclear reactor sites. The results of these analyses are presented both in graphic and tabular form in this report

  10. A brief review study of various thermodynamic cycles for high temperature power generation systems

    International Nuclear Information System (INIS)

    Yu, Si-Cong; Chen, Lin; Zhao, Yan; Li, Hong-Xu; Zhang, Xin-Rong

    2015-01-01

    Highlights: • Various high temperature power generation cycles for are reviewed and analyzed. • The operating temperature is higher than 700 K for high temperature power systems. • Thermodynamic cycle model study and working fluid choices are discussed. • Characteristics and future developments of high temperature cycles are presented and compared. - Abstract: This paper presents a review of the previous studies and papers about various thermodynamic cycles working for high temperature power generation procedures, in these cycles the highest temperature is not lower than 700 K. Thermodynamic cycles that working for power generation are divided into two broad categories, thermodynamic cycle model study and working fluid analysis. Thermodynamic cycle contains the simple cycle model and the complex cycle model, emphasis has been given on the complex thermodynamic cycles due to their high thermal efficiencies. Working fluids used for high temperature thermodynamic cycles is a dense gas rather than a liquid. A suitable thermodynamic cycle is crucial for effectively power generation especially under the condition of high temperature. The main purpose is to find out the characteristics of various thermodynamic cycles when they are working in the high temperature region for power generation. As this study shows, combined cycles with both renewable and nonrenewable energies as the heat source can show good performance

  11. A comparison between thorium-uranium and low enrichment uranium cycles in the high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cerles, J M

    1973-03-15

    In a previous report, it was shown that the Uranium cycle could be used as well with multi-hole block (GGA type) as with tubular elements. Now, in a F.S.V. geometry, a comparison is made between Thorium cycle and Uranium cycle. This comparison will be concerned with the physical properties of the materials, the needs of natural Uranium, the fissile material inventory and, at last, an attempt of economical considerations. In this report the cycle will be characterizd by the fertile material. So, we write ''Thorium cycle'' for Highly Enriched Uranium - Thorium cycle and ''Uranium cycle'' for low Enrichment Uranium cycle.

  12. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables......, and endurance time at W90 with FCPR-25, FCPR, and FCPR+25. Power reserve was calculated as the difference between applied power output at a given pedalling rate and peak crank power at this same pedalling rate. W90 was 325 (47) W. FCPR at W90 was 78 (11) rpm, resulting in FCPR-25 being 59 (8) rpm and FCPR+25...... time was negatively related to VO(2max), W90 and % MHC I, while positively related to power reserve. In conclusion, at group level, endurance time was longer at FCPR and at a pedalling rate 25% lower compared to a pedalling rate 25% higher than FCPR. Further, inter-individual physiological variables...

  13. Closed cycle high-repetition-rate pulsed HF laser

    Science.gov (United States)

    Harris, Michael R.; Morris, A. V.; Gorton, Eric K.

    1997-04-01

    The design and performance of a closed cycle high repetition rate HF laser is described. A short pulse, glow discharge is formed in a 10 SF6:1 H2 gas mixture at a total pressure of approximately 110 torr within a 15 by 0.5 by 0.5 cm3 volume. Transverse, recirculated gas flow adequate to enable repetitive operation up to 3 kHz is imposed by a centrifugal fan. The fan also forces the gas through a scrubber cell to eliminate ground state HF from the gas stream. An automated gas make-up system replenishes spent gas removed by the scrubber. Typical mean laser output powers up to 3 W can be maintained for extended periods of operation.

  14. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  15. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.

    Science.gov (United States)

    Wan, Alwin M D; Moore, Thomas A; Young, Edmond W K

    2017-01-17

    Thermoplastic microfluidic devices offer many advantages over those made from silicone elastomers, but bonding procedures must be developed for each thermoplastic of interest. Solvent bonding is a simple and versatile method that can be used to fabricate devices from a variety of plastics. An appropriate solvent is added between two device layers to be bonded, and heat and pressure are applied to the device to facilitate the bonding. By using an appropriate combination of solvent, plastic, heat, and pressure, the device can be sealed with a high quality bond, characterized as having high bond coverage, bond strength, optical clarity, durability over time, and low deformation or damage to microfeature geometry. We describe the procedure for bonding devices made from two popular thermoplastics, poly(methyl-methacrylate) (PMMA), and cyclo-olefin polymer (COP), as well as a variety of methods to characterize the quality of the resulting bonds, and strategies to troubleshoot low quality bonds. These methods can be used to develop new solvent bonding protocols for other plastic-solvent systems.

  16. Study on thermodynamic cycle of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu Xinhe; Yang Xiaoyong; Wang Jie

    2017-01-01

    The development trend of the (very) High temperature gas-cooled reactor is to gradually increase the reactor outlet temperature. The different power conversion units are required at the different reactor outlet temperature. In this paper, for the helium turbine direct cycle and the combined cycle of the power conversion unit of the High temperature gas-cooled reactor, the mathematic models are established, and three cycle plans are designed. The helium turbine direct cycle is a Brayton cycle with recuperator, precooler and intercooler. In the combined cycle plan 1, the topping cycle is a simple Brayton cycle without recuperator, precooler and intercooler, and the bottoming cycle is based on the steam parameters (540deg, 6 MPa) recommended by Siemens. In the combined cycle plan 2, the topping cycle also is a simple Brayton cycle, and the bottoming cycle which is a Rankine cycle with reheating cycle is based on the steam parameters of conventional subcritical thermal power generation (540degC, 18 MPa). The optimization results showed that the cycle efficiency of the combined cycle plan 2 is the highest, the second is the helium turbine direct cycle, and the combined cycle plan 2 is the lowest. When the reactor outlet temperature is 900degC and the pressure ratio is 2.02, the cycle efficiency of the combined cycle plan 2 can reach 49.7%. The helium turbine direct cycle has a reactor inlet temperature above 500degC due to the regenerating cycle, so it requires a cooling circuit for the internal wall of the reactor pressure vessel. When the reactor outlet temperature increases, the increase of the pressure ratio required by the helium turbine direct cycle increases may bring some difficulties to the design and manufacture of the magnetic bearings. For the combined cycle, the reactor inlet temperature can be controlled below than 370degC, so the reactor pressure vessel can use SA533 steel without cooling the internal wall of the reactor pressure vessel. The pressure

  17. Business cycle and innovation activity in medium-high and high technology industry in Poland

    Directory of Open Access Journals (Sweden)

    Dzikowski Piotr

    2015-12-01

    Full Text Available This article examines differences in an impact of business cycle phases on innovation activity in medium-high and high technology industry in Poland. It is assumed that each business cycle phase influences innovation activity in the same fashion, but its impact varies and it depends on the firm’s innovation activity. The higher innovation activity the less impact of business cycle. The scope of the survey relates to innovation in MHT and HT industry in Poland. The data concerns the innovation at the firm level and the diffusion “new for the company”. Innovation activity is defined by the following activities: (1 expenditure on research and development and investments in fixed assets not used so far such as: abuildings, premises and land; b machinery and equipment, c computer software; (2 implementation of new products and technological processes and (3 innovation cooperation. The methodological part of the analysis includes a logit modeling. The survey includes 1355 companies. Business cycle has a great influence on innovation activity in MTH and HT industry in Poland. The influence of recovery phase is positive whereas both stagnation and recession phases decrease the probability of innovation activity. The character of influence depends on the propensity to take innovation activity. The higher level of innovation activity the enterprises present the less influence of business cycle they get.

  18. People's Rebuplic of China's Performance in the UNFCCC : A Comparison of China's Position at COP15 Copenhagen to COP22 Marrakech

    OpenAIRE

    Sommerholt, Lovisa

    2017-01-01

    Since the US election in the fall of 2016, China have been looked towards to fill a leadership position in climate change negotiations. This essay focuses on determining China's efficiency in the COP15 and COP22 negotiations in establishing its ambitions and policy objectives. The results show that China was very effective in achieveing their policy aims both at COP15 and COP22 even if the negotiations had different aims. The overall performance of China has affected the COP outcomes and help...

  19. Microfluidic sensor for ultra high redox cycling amplification for highly selective electrochemical measurements

    NARCIS (Netherlands)

    Odijk, Mathieu; Straver, Martin; Olthuis, Wouter; van den Berg, Albert

    2011-01-01

    In this contribution a SU8/glass-based microfluidic sensor is described with two closely spaced parallel electrodes for highly selective measurements using the redox cycling (RC) effect. Using this sensor, a RC amplification of ~2000x is measured using the ferrocyanide redox couple, which is much

  20. COP21: to save negotiations or to save the climate?

    International Nuclear Information System (INIS)

    Fremeaux, Alexis; Faure, Elisa; Guillou, Antoine

    2015-01-01

    This note proposes an overview of the main issues which could render an agreement possible at the end of the Paris COP21, and makes some proposals on principles which should be mentioned in the agreement to create a future strong foundation, as well as on tools and measures which could be implemented thereafter. The authors first discuss the content and results of the previous COPs, and comment the negotiation process between Copenhagen and Paris to outline the main challenges and stakes to reach of common agreement. They address the main issues of the COP21 negotiations: mobilisation of 100 billions dollars per year to help emerging countries in reaching a low carbon development mode and to adapt to climate change, how to urgently orient private investments towards a low carbon economy, to base on standards and transparency as two main action levers in case of absence of agreement on carbon price, and definition of needed more ambitious objectives

  1. A study on different thermodynamic cycle schemes coupled with a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Qu, Xinhe; Yang, Xiaoyong; Wang, Jie

    2017-01-01

    Highlights: • The features of three different power generation schemes, including closed Brayton cycle, non-reheating combined cycle and reheating combined cycle, coupled with high temperature gas-cooled reactor (HTGR) were investigated and compared. • The effects and mechanism of reactor core outlet temperature, compression ratio and other key parameters over cycle characteristics were analyzed by the thermodynamic models.. • It is found that reheated combined cycle has the highest efficiency. Reactor outlet temperature and main steam parameters are key factors to improve the cycle’s performance. - Abstract: With gradual increase in reactor outlet temperature, the efficient power conversion technology has become one of developing trends of (very) high temperature gas-cooled reactors (HTGRs). In this paper, different cycle power generation schemes for HTGRs were systematically studied. Physical and mathematical models were established for these three cycle schemes: closed Brayton cycle, simple combined cycle, and reheated combined cycle. The effects and mechanism of key parameters such as reactor core outlet temperature, reactor core inlet temperature and compression ratio on the features of these cycles were analyzed. Then, optimization results were given with engineering restrictive conditions, including pinch point temperature differences. Results revealed that within the temperature range of HTGRs (700–900 °C), the reheated combined cycle had the highest efficiency, while the simple combined cycle had the lowest efficiency (900 °C). The efficiencies of the closed Brayton cycle, simple combined cycle and reheated combined cycle are 49.5%, 46.6% and 50.1%, respectively. These results provide insights on the different schemes of these cycles, and reveal the effects of key parameters on performance of these cycles. It could be helpful to understand and develop a combined cycle coupled with a high temperature reactor in the future.

  2. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  3. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  4. High Cycle Fatigue Damage Mechanisms of MAR-M 247 Superalloy at High Temperatures

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Miroslav; Horník, Vít; Hutař, Pavel; Hrbáček, K.; Kunz, Ludvík

    2016-01-01

    Roč. 69, č. 2 (2016), s. 393-397 ISSN 0972-2815 R&D Projects: GA TA ČR(CZ) TA04011525; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : High cycle fatigue * S-N curves * Fractography * High temperature * EBSD analysis Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  5. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  6. Fuel rod behaviour at high burnup WWER fuel cycles

    International Nuclear Information System (INIS)

    Medvedev, A.; Bogatyr, S.; Kouznetsov, V.; Khvostov, G.; Lagovsky; Korystin, L.; Poudov, V.

    2003-01-01

    The modernisation of WWER fuel cycles is carried out on the base of complete modelling and experimental justification of fuel rods up to 70 MWd/kgU. The modelling justification of the reliability of fuel rod and fuel rod with gadolinium is carried out with the use of certified START-3 code. START-3 code has a continuous experimental support. The thermophysical and strength reliability of WWER-440 fuel is justified for fuel rod and pellet burnups 65 MWd/kgU and 74 MWd/U, accordingly. Results of analysis are demonstrated by the example of uranium-gadolinium fuel assemblies of second generation under 5-year cycle with a portion of 6-year assemblies and by the example of successfully completed pilot operation of 5-year cycle fuel assemblies during 6 years at unit 3 of Kolskaja NPP. The thermophysical and strength reliability of WWER-1000 fuel is justified for a fuel rod burnup 66 MWd/kgU by the example of fuel operation under 4-year cycles and 6-year test operation of fuel assemblies at unit 1 of Kalininskaya NPP. By the example of 5-year cycle at Dukovany NPP Unit 2 it was demonstrated that WWER fuel rod of a burnup 58 MWd/kgU ensure reliable operation under load following conditions. The analysis has confirmed sufficient reserves of Russian fuel to implement program of JSC 'TVEL' in order to improve technical and economical parameters of WWER fuel cycles

  7. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  8. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  9. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  10. Very High Cycle Fatigue of Ni-Based Single-Crystal Superalloys at High Temperature

    Science.gov (United States)

    Cervellon, A.; Cormier, J.; Mauget, F.; Hervier, Z.; Nadot, Y.

    2018-05-01

    Very high cycle fatigue (VHCF) properties at high temperature of Ni-based single-crystal (SX) superalloys and of a directionally solidified (DS) superalloy have been investigated at 20 kHz and a temperature of 1000 °C. Under fully reversed conditions (R = - 1), no noticeable difference in VHCF lifetimes between all investigated alloys has been observed. Internal casting pores size is the main VHCF lifetime-controlling factor whatever the chemical composition of the alloys. Other types of microstructural defects (eutectics, carbides), if present, may act as stress concentration sites when the number of cycles exceed 109 cycles or when porosity is absent by applying a prior hot isostatic pressing treatment. For longer tests (> 30 hours), oxidation also controls the main crack initiation sites leading to a mode I crack initiation from oxidized layer. Under such conditions, alloy's resistance to oxidation has a prominent role in controlling the VHCF. When creep damage is present at high ratios (R ≥ 0.8), creep resistance of SX/DS alloys governs VHCF lifetime. Under such high mean stress conditions, SX alloys developed to retard the initiation and creep propagation of mode I micro-cracks from pores have better VHCF lifetimes.

  11. 50 CFR 23.86 - How can I obtain information on a CoP?

    Science.gov (United States)

    2010-10-01

    ... FAUNA AND FLORA (CITES) CITES Administration § 23.86 How can I obtain information on a CoP? As we receive information on an upcoming CoP from the CITES Secretariat, we will notify the public either...

  12. COP9 signalosome: a provider of DNA building blocks

    DEFF Research Database (Denmark)

    Nielsen, Olaf

    2003-01-01

    In fission yeast, the COP9 signalosome is required to activate ribonucleotide reductase for DNA synthesis. This is mediated via the ubiquitin ligase Pcu4, activation of which leads to degradation of the scaffold protein Spd1, which anchors the small ribonucleotide reductase subunit in the nucleus...

  13. 7 CFR 457.126 - Popcorn cop isurance povisions.

    Science.gov (United States)

    2010-01-01

    ... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.126 Popcorn cop isurance... permit mechanical cultivation, unless otherwise provided by the Special Provisions, actuarial documents... policy unless the Special Provisions provide different price elections by type, in which case you may...

  14. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  15. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  16. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  17. IRR (Inter-Rater Reliability) of a COP (Classroom Observation Protocol)--A Critical Appraisal

    Science.gov (United States)

    Rui, Ning; Feldman, Jill M.

    2012-01-01

    Notwithstanding broad utility of COPs (classroom observation protocols), there has been limited documentation of the psychometric properties of even the most popular COPs. This study attempted to fill this void by closely examining the item and domain-level IRR (inter-rater reliability) of a COP that was used in a federally funded striving readers…

  18. 77 FR 68149 - Agency Information Collection Activities; Proposed New Collection; Comments Requested: COPS...

    Science.gov (United States)

    2012-11-15

    ... Collection; Comments Requested: COPS Comparative Assessment of Cost Reduction by Agencies Survey ACTION: 60... Collection: Proposed new collection; comments requested. (2) Title of the Form/Collection: COPS Comparative... brief abstract: Law enforcement agencies and other public and private entities that apply for COPS...

  19. 30 CFR 285.628 - How will MMS process my COP?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How will MMS process my COP? 285.628 Section... Requirements Contents of the Construction and Operations Plan § 285.628 How will MMS process my COP? (a) The MMS will review your submitted COP, and the information provided pursuant to § 285.627, to determine...

  20. 30 CFR 285.620 - What is a Construction and Operations Plan (COP)?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is a Construction and Operations Plan (COP... Information Requirements Construction and Operations Plan for Commercial Leases § 285.620 What is a Construction and Operations Plan (COP)? The COP describes your construction, operations, and conceptual...

  1. Parametric studies on different gas turbine cycles for a high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Jie; Gu Yihua

    2005-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with turbine cycle is considered as one of the leading candidates for future nuclear power plants. In this paper, the various types of HTGR gas turbine cycles are concluded as three typical cycles of direct cycle, closed indirect cycle and open indirect cycle. Furthermore they are theoretically converted to three Brayton cycles of helium, nitrogen and air. Those three types of Brayton cycles are thermodynamically analyzed and optimized. The results show that the variety of gas affects the cycle pressure ratio more significantly than other cycle parameters, however, the optimized cycle efficiencies of the three Brayton cycles are almost the same. In addition, the turbomachines which are required for the three optimized Brayton cycles are aerodynamically analyzed and compared and their fundamental characteristics are obtained. Helium turbocompressor has lower stage pressure ratio and more stage number than those for nitrogen and air machines, while helium and nitrogen turbocompressors have shorter blade length than that for air machine

  2. Autoclave cycle optimization for high performance composite parts manufacturing

    OpenAIRE

    Nele, L.; Caggiano, A.; Teti, R.

    2016-01-01

    In aeronautical production, autoclave curing of composite parts must be performed according to a specified diagram of temperature and pressure vs time. Part-tool assembly thermal inertia and shape have a large influence on the heating and cooling rate, and therefore on the dwell time within the target temperature range. When simultaneously curing diverse composite parts, the total autoclave cycle time is driven by the part-tool assembly with the lower heating and cooling rates. With the aim t...

  3. High exergetic modified Brayton cycle with thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Yazawa, Kazuaki; Fisher, Timothy S.; Groll, Eckhard A.; Shakouri, Ali

    2017-01-01

    Highlights: • Modified Brayton cycle with thermoelectric generators. • 1 kW power output scale hybrid gas turbine for residential applications. • Low profile TEGs are embedded in combustor/recuperator/heat-exchangers. • Analytical primary energy efficiency achieves more than 40%. - Abstract: A novel concept using thermoelectric direct power generators (TEGs) integrated into a 1 kW scale miniature Brayton cycle is investigated based on an analytical study. The work considers a residential scale application aiming to achieve 40% primary energy efficiency in contrast to the state-of-the-art miniature gas turbine alone, which can only achieve <16%. A topping cycle TEG for a hot gas temperature at 1600–1700 °C is embedded in the combustor scale of a kitchen stove. This TEG converts a fraction of the heat into electricity, while all the remaining thermal energy proceeds to the Brayton cycle. Turbine-inlet gas temperature regulates to 800–1100 °C by optimizing the air mixture. A second TEG is built in the recuperator; hence, the associated temperature is similar to that of a vehicle exhaust. A third TEG is used for waste heat recovery from flue gas, and then the downstream heat flow is used by a combined-heat-power system. By taking advantage of low-profile modules, the TEG embedded heat exchanges can be compact and low-cost at 0.2–0.3 $/W. The figure-of-merit of the thermoelectric materials considers ZT 1.0–1.8. Assuming that all advanced components are utilized, the primary energy efficiency predicts 42% with power output 720 W from the alternator and 325 W from the TEGs out of 0.456 g/s of a pipeline natural gas input.

  4. Lightweight and Statistical Techniques for Petascale Debugging: Correctness on Petascale Systems (CoPS) Preliminry Report

    Energy Technology Data Exchange (ETDEWEB)

    de Supinski, B R; Miller, B P; Liblit, B

    2011-09-13

    Petascale platforms with O(10{sup 5}) and O(10{sup 6}) processing cores are driving advancements in a wide range of scientific disciplines. These large systems create unprecedented application development challenges. Scalable correctness tools are critical to shorten the time-to-solution on these systems. Currently, many DOE application developers use primitive manual debugging based on printf or traditional debuggers such as TotalView or DDT. This paradigm breaks down beyond a few thousand cores, yet bugs often arise above that scale. Programmers must reproduce problems in smaller runs to analyze them with traditional tools, or else perform repeated runs at scale using only primitive techniques. Even when traditional tools run at scale, the approach wastes substantial effort and computation cycles. Continued scientific progress demands new paradigms for debugging large-scale applications. The Correctness on Petascale Systems (CoPS) project is developing a revolutionary debugging scheme that will reduce the debugging problem to a scale that human developers can comprehend. The scheme can provide precise diagnoses of the root causes of failure, including suggestions of the location and the type of errors down to the level of code regions or even a single execution point. Our fundamentally new strategy combines and expands three relatively new complementary debugging approaches. The Stack Trace Analysis Tool (STAT), a 2011 R&D 100 Award Winner, identifies behavior equivalence classes in MPI jobs and highlights behavior when elements of the class demonstrate divergent behavior, often the first indicator of an error. The Cooperative Bug Isolation (CBI) project has developed statistical techniques for isolating programming errors in widely deployed code that we will adapt to large-scale parallel applications. Finally, we are developing a new approach to parallelizing expensive correctness analyses, such as analysis of memory usage in the Memgrind tool. In the first two

  5. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  6. Report the Africa renewable energy initiative launched at COP21

    International Nuclear Information System (INIS)

    Royal, Segolene

    2016-09-01

    Segolene Royal, President of COP21, presents in this report the specific renewable energy projects to be embarked on in Africa without delay. On the basis of the COP21 President's visits to 17 African countries, her discussions with African leaders and analysis by groups of experts, a list of 240 projects accounting for more than 45 GW of renewable capacity is being made public: 13 geothermal energy projects: 7 GW; 58 hydroelectricity projects: 20 GW; 62 solar energy projects: 6 GW; 16 wind energy projects: 5 GW; 35 projects combining more than one technology: 1 GW; 4 national strategies (solar and wind energy): 8 GW. Launched by African heads of state on 1 December 2015 in the presence of French President Francois Hollande, the Africa Renewable Energy Initiative aims to increase the continent's installed capacity of renewable energy by 10 GW by 2020 and 300 GW by 2030. During COP21. To achieve this goal, Segolene Royal has pledged to facilitate the implementation of the initiative throughout the French COP21 presidency. The report proposes a review of the energy situation in Africa and sets out 10 recommendations to speed up the deployment of renewable energy on the continent: 1. To identify a list of priority projects to implement by 2020, and projects to begin before and during COP22; 2. To bring the partners together around each project to share out responsibilities; 3. To initiate dialogue with the private sector about the initiative and projects; 4. To strengthen participatory citizenship regarding energy; 5. To involve African women in renewable energy; 6. To draw on the International Solar Alliance, launched at COP21, and the Global Geothermal Alliance; 7. To put in place innovative financial instruments, such as loan-grant blending; 8. To allow for climate change in the projects; 9. To strengthen the independent body responsible for implementing the initiative, hosted and supported by the African Development Bank; 10. To finalize a map of existing

  7. Magnetic properties of CoP alloys electrodeposited at room temperature

    International Nuclear Information System (INIS)

    Lucas, I.; Perez, L.; Aroca, C.; Sanchez, P.; Lopez, E.; Sanchez, M.C.

    2005-01-01

    CoP alloys have been electrodeposited at room temperature from electrolytes with different pH values and their magnetic properties have been studied. Cracks and fractures appear when using stiff substrates, showing that high internal stresses, due to hydrogen evolution, are involved in the electrodeposition process. Samples electrodeposited onto flexible substrates do not show cracks on the surface. We also report an increment in the coercivity of the alloys when the pH of the electrolyte decreases, and therefore, the hydrogen evolution and the internal stresses increase

  8. COP15 for journalists: a guide to the UN climate change summit

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Mike

    2009-11-15

    Governments gather in Denmark in December 2009 for what is perhaps the most important meeting since the end of the second world war. December is the deadline they have set themselves for agreeing on action to tackle climate change, and the COP15 conference in Copenhagen is where hopes are high that a new global deal can be struck. This briefing is a guide for journalists reporting on this event, its buildup and its aftermath. It explains key processes, major actions to be agreed and possible outcomes.

  9. Performance analysis of an absorption double-effect cycle for power and cold generation using ammonia/lithium nitrate

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Vereda, C.; Rodriguez-Hidalgo, M.C.

    2017-01-01

    Highlights: • Two-stage double-effect cycle for combined power and cooling with flexibility. • Ammonia/lithium nitrate as solution for the absorption cycle. • Efficiency, when only producing power, of 19.5% for a generation temperature of 173 °C. • When combined cooling and power COP = 0.53 and electric efficiency of 5% for a generation temperature of 140 °C. • Better efficiencies than conventional double-effect cycles. - Abstract: The performance of a two-stage double-effect absorption machine for combined power and cold generation is proposed and studied theoretically, generating innovative schemes. The ammonia/lithium nitrate solution allows this cycle, consuming either solar thermal or residual heat. The machine is represented by means of a thermodynamic steady-state cycle. First, only power generation and only cold production are separately studied as function of the main internal temperatures, introducing the concepts of mixed and unmixed vapour and of virtual temperatures for allowing comparison. The results indicate that for producing power the efficiency of the cycle increases when rising the maximum pressure while for producing cold is the contrary. The maximum efficiency obtained for only power production with no superheating is 19.5% at a high generation temperature of 173 °C and at a moderate 20.3 bars of maximum pressure. The solution crystallization avoids a higher efficiency. The combined power and cooling cycle allows adapting the energy production to cold demand or to power demand by splitting the vapour generated. At a generation temperature of 132 °C, when splitting the vapour generated into half for power and half for cooling, the cycle obtains an electric efficiency of 6.5% and a COP of 0.52. This cycle is compared to a conventional double-effect cycle configured in parallel flow, obtaining the same electric efficiency but with a 32% higher COP.

  10. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    International Nuclear Information System (INIS)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed approach to solve and optimise a Kalina cycle for high temperature (a turbine inlet temperature of 500 °C) and high pressure (over 100 bar) applications using a computationally efficient solution algorithm. A central receiver solar thermal power plant with direct steam generation was considered as a case study. Four different layouts for the Kalina cycle based on the number and/or placement of the recuperators in the cycle were optimised and compared based on performance parameters such as the cycle efficiency and the cooling water requirement. The cycles were modelled in steady state and optimised with the maximisation of the cycle efficiency as the objective function. It is observed that the different cycle layouts result in different regions for the optimal value of the turbine inlet ammonia mass fraction. Out of the four compared layouts, the most complex layout KC1234 gives the highest efficiency. The cooling water requirement is closely related to the cycle efficiency, i.e., the better the efficiency, the lower is the cooling water requirement. - Highlights: • Detailed methodology for solving and optimising Kalina cycle for high temperature applications. • A central receiver solar thermal power plant with direct steam generation considered as a case study. • Four Kalina cycle layouts based on the placement of recuperators optimised and compared

  11. How to distribute the carbon budget at the COP21?

    International Nuclear Information System (INIS)

    Laurent, Eloi

    2015-09-01

    This article reviews different fairness criteria for the measuring of CO 2 emissions by the main countries responsible of climate change in order to fairly distribute the carbon budget during the Paris negotiation of the COP21. It shows that it is possible to use reliable data to build up a relatively simple and fair climatic hybrid criterion which takes consumption emissions, historic responsibility, population, and economic development level into account

  12. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  13. Parametric Investigation of Brayton Cycle for High Temperature Gas-Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh

    2004-01-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. In this project, we are investigating helium Brayton cycles for the secondary side of an indirect energy conversion system. Ultimately we will investigate the improvement of the Brayton cycle using other fluids, such as supercritical carbon dioxide. Prior to the cycle improvement study, we established a number of baseline cases for the helium indirect Brayton cycle. These cases look at both single-shaft and multiple-shaft turbomachinery. The baseline cases are based on a 250 MW thermal pebble bed HTGR. The results from this study are applicable to other reactor concepts such as a very high temperature gas-cooled reactor (VHTR), fast gas-cooled reactor (FGR), supercritical water reactor (SWR), and others. In this study, we are using the HYSYS computer code for optimization of the helium Brayton cycle. Besides the HYSYS process optimization, we performed parametric study to see the effect of important parameters on the cycle efficiency. For these parametric calculations, we use a cycle efficiency model that was developed based on the Visual Basic computer language. As a part of this study we are currently investigated single-shaft vs. multiple shaft arrangement for cycle efficiency and comparison, which will be published in the next paper. The ultimate goal of this study is to use supercritical carbon dioxide for the HTGR power conversion loop in order to improve the cycle efficiency to values great than that of the helium Brayton cycle. This paper includes preliminary calculations of the steady state overall Brayton cycle efficiency based on the pebble bed reactor reference design (helium used as the working fluid) and compares those results with an initial calculation of a CO2 Brayton cycle

  14. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  15. Working Together but in Opposition: An Examination of the "Good-Cop/Bad-Cop" Negotiating Team Tactic.

    Science.gov (United States)

    Brodt; Tuchinsky

    2000-03-01

    Unlike solo negotiators, members of negotiating teams may for strategic reasons choose to play different roles; the familiar "good cop/bad cop" distributive bargaining tactic is one example of role differentiation designed to enhance a team's success at the bargaining table. In two empirical studies about a hypothetical three-person work group, we examined the cognitive processes underlying this tactic using a social-cognitive decision model (Brodt & Duncan, 1998) that conceptualizes the negotiators' decision tasks and persuasion processes. Results generally supported the model except for an intriguing asymmetry depending on a person's initial inclination (accepting, rejecting). This research extends findings on the tactic and on contrast effects (Cialdini, 1984) and supports the model's usefulness as an approximate representation of negotiator cognition. Copyright 2000 Academic Press.

  16. High cycle fatigue of austenitic stainless steels under random loading

    International Nuclear Information System (INIS)

    Gauthier, J.P.; Petrequin, P.

    1987-08-01

    To investigate reactor components, load control random fatigue tests were performed at 300 0 C and 550 0 C, on specimens from austenitic stainless steels plates in the transverse orientation. Random solicitations are produced on closed loop servo-hydraulic machines by a mini computer which generates random load sequence by the use of reduced Markovian matrix. The method has the advantage of taking into account the mean load for each cycle. The solicitations generated are those of a stationary gaussian process. Fatigue tests have been mainly performed in the endurance region of fatigue curve, with scattering determination using stair case method. Experimental results have been analysed aiming at determining design curves for components calculations, depending on irregularity factor and temperature. Analysis in term of mean square root fatigue limit calculation, shows that random loading gives more damage than constant amplitude loading. Damage calculations following Miner rule have been made using the probability density function for the case where the irregularity factor is nearest to 100 %. The Miner rule is too conservative for our results. A method using design curves including random loading effects with irregularity factor as an indexing parameter is proposed

  17. Preliminary analysis of combined cycle of modular high-temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Baogang, Z.; Xiaoyong, Y.; Jie, W.; Gang, Z.; Qian, S.

    2015-01-01

    Modular high-temperature gas cooled reactor (HTGR) is known as one of the most advanced nuclear reactors because of its inherent safety and high efficiency. The power conversion system of HTGR can be steam turbine based on Rankine cycle or gas turbine based on Brayton cycle respectively. The steam turbine system is mature and the gas turbine system has high efficiency but under development. The Brayton-Rankine combined cycle is an effective way to further promote the efficiency. This paper investigated the performance of combined cycle from the viewpoint of thermodynamics. The effect of non-dimensional parameters on combined cycle’s efficiency, such as temperature ratio, compression ratio, efficiency of compressor, efficiency of turbine, was analyzed. Furthermore, the optimal parameters to achieve highest efficiency was also given by this analysis under engineering constraints. The conclusions could be helpful to the design and development of combined cycle of HTGR. (author)

  18. Strength calculation of NPP equipment and pipelines during operation. Low- and high-cycle corrosion fatigue

    International Nuclear Information System (INIS)

    Filatov, V.M.; Evropin, S.V.

    2004-01-01

    This paper presents empirical equations and design curves for structural steels employed in nuclear power facilities with light water reactors. These equations allow to take into account the effects of cycle asymmetry, water coolant and ductility decrease during operation. The fatigue curves cover the low-cycle and high-cycle regions (up to 10 12 cycles). The equations include the mechanical characteristics of steels under static tension. The coolant effect on steel fatigue is allowed for using a model developed at the Argonne National Laboratory

  19. Extension of the supercritical carbon dioxide Brayton cycle for application to the Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Moisseytsev, A.; Sienicki, J. J.

    2010-01-01

    An investigation has been carried out of the feasibility of applying the supercritical carbon dioxide (S-CO 2 ) Brayton cycle to the Very High Temperature Reactor (VHTR). Direct application of the standard S-CO 2 recompression cycle to the VHTR was found to be challenging because of the mismatch in the inherent temperature drops across the He and CO 2 sides of the reactor heat exchanger resulting in a relatively low cycle efficiency of 45 % compared to 48 % for a direct helium cycle. Two approaches consisting of either a cascaded cycle arrangement with three separate cascaded S-CO 2 cycles or, alternately, operation of a single S-CO 2 cycle with the minimum pressure below the critical pressure and the minimum temperature above the critical temperature have been identified and shown to successfully enable the S-CO 2 Brayton cycle to be adapted to the VHTR such that the benefits of the higher S-CO 2 cycle efficiency can be realized. For both approaches, S-CO 2 cycle efficiencies in excess of 49 % are calculated. (authors)

  20. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  1. Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Daliang [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Zhang, Dingfei, E-mail: zhangdingfei@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Luo, Yuanxin [College of Mechanical Engineering, Chongqing University, Chongqing 400030 (China); Sun, Jing; Xu, Junyao [College of Materials Science and Engineering, Chongqing University, Chongqing 400045 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China)

    2016-03-21

    Microstructure evolution during high cycle fatigue in extruded Mg–6Zn–1Mn alloy was investigated by servo-hydraulic fatigue testing machine with pull–push sinusoidal loading. The results show that in high stress cycles (cyclic stress≥129 MPa) high cycle fatigue tests promote deformation; however, in low stress cycles (cyclic stress≤125 MPa) high cycle fatigue tests make a contribution to room temperature recrystallization in Mg–6Zn–1Mn alloy. The grain refinement increased with increasing cycles. Electron Back-Scattered Diffraction (EBSD) analyses showed that dynamic recrystallization (DRX) has occurred in post-fatigued alloys, accompanied by the presence of a high number density of low-angle grain boundaries (LAGBs). LAGBs generated in the vicinity of initiation grain boundaries and subdivided coarse grains. In the specimens that subjected to higher cycles, the fraction of LAGBs decreased and high-angle grain boundaries (HAGBs) gradually increased. With the cyclic number increasing the texture intensity was significantly weakened. The DRX in post-fatigued specimens was related to Continuous DRX (CDRX) mechanism.

  2. Cop-like operon: Structure and organization in species of the Lactobacillale order

    Directory of Open Access Journals (Sweden)

    ANGÉLICA REYES

    2006-01-01

    Full Text Available Copper is an essential and toxic trace metal for bacteria and, therefore, must be tightly regulated in the cell. Enterococcus hirae is a broadly studied model for copper homeostasis. The intracellular copper levels in E. hirae are regulated by the cop operon, which is formed by four genes: copA and copB that encode ATPases for influx and efflux of copper, respectively; copZ that encodes a copper chaperone; and copY, a copper responsive repressor. Since the complete genome sequence for E. hirae is not available, it is possible that other genes may encode proteins involved in copper homeostasis. Here, we identified a cop-like operon in nine species of Lactobacillale order with a known genome sequence. All of them always encoded a CopY-like repressor and a copper ATPase. The alignment of the cop-like operon promoter region revealed two CopY binding sites, one of which was conserved in all strains, and the second was only present in species of Streptococcus genus and L. johnsonii. Additional proteins associated to copper metabolism, CutC and Cupredoxin, also were detected. This study allowed for the description of the structure and organization of the cop operon and discussion of a phylogenetic hypothesis based on the differences observed in this operon's organization and its regulation in Lactobacillale order.

  3. Caffeine withdrawal and high-intensity endurance cycling performance.

    Science.gov (United States)

    Irwin, Christopher; Desbrow, Ben; Ellis, Aleisha; O'Keeffe, Brooke; Grant, Gary; Leveritt, Michael

    2011-03-01

    In this study, we investigated the impact of a controlled 4-day caffeine withdrawal period on the effect of an acute caffeine dose on endurance exercise performance. Twelve well-trained and familiarized male cyclists, who were caffeine consumers (from coffee and a range of other sources), were recruited for the study. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials. Participants abstained from dietary caffeine sources for 4 days before the trials and ingested capsules (one in the morning and one in the afternoon) containing either placebo or caffeine (1.5 mg · kg(-1) body weight · day(-1)). On day 5, capsules containing placebo or caffeine (3 mg · kg(-1) body weight) were ingested 90 min before completing a time trial, equivalent to one hour of cycling at 75% peak sustainable power output. Hence the study was designed to incorporate placebo-placebo, placebo-caffeine, caffeine-placebo, and caffeine-caffeine conditions. Performance time was significantly improved after acute caffeine ingestion by 1:49 ± 1:41 min (3.0%, P = 0.021) following a withdrawal period (placebo-placebo vs. placebo-caffeine), and by 2:07 ± 1:28 min (3.6%, P = 0.002) following the non-withdrawal period (caffeine-placebo vs. caffeine-caffeine). No significant difference was detected between the two acute caffeine trials (placebo-caffeine vs. caffeine-caffeine). Average heart rate throughout exercise was significantly higher following acute caffeine administration compared with placebo. No differences were observed in ratings of perceived exertion between trials. A 3 mg · kg(-1) dose of caffeine significantly improves exercise performance irrespective of whether a 4-day withdrawal period is imposed on habitual caffeine users.

  4. Development of Internet algorithms and some calculations of power plant COP

    Science.gov (United States)

    Ustjuzhanin, E. E.; Ochkov, V. F.; Znamensky, V. E.

    2017-11-01

    sharing: a) SW that is used to design power plants, for an example, Code - GTP_1(Z,R,Y) and b) client functions those are aimed to determine R properties of the working fluid at fixed points of the thermodynamic cycle. The program let us calculate energy criteria, Z, including the internal coefficient of performance (COP) for a power plant. We have discussed OI resources, among them OI resource that includes Code - GTP_1(Z,R,Y) and connected with a complex power plant included: i) several gas turbines, i) several compressors etc.

  5. Dynamic high-cadence cycling improves motor symptoms in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Angela eRidgel

    2015-09-01

    Full Text Available Rationale: Individuals with Parkinson’s disease (PD often have deficits in kinesthesia. There is a need for rehabilitation interventions that improve these kinesthetic deficits. Forced (tandem cycling at a high cadence improves motor function. However, tandem cycling is difficult to implement in a rehabilitation setting. Objective: To construct an instrumented, motored cycle and to examine if high cadence dynamic cycling promotes improvements in motor function. Method: This motored cycle had two different modes: dynamic and static cycling. In dynamic mode, the motor maintained 75-85 rpm. In static mode, the rider determined the pedaling cadence. UPDRS Motor III and Timed Up and Go (TUG were used to assess changes in motor function after three cycling sessions. Results: Individuals in the static group showed a lower cadence but a higher power, torque and heart rate than the dynamic group. UPDRS score showed a significant 13.9% improvement in the dynamic group and only a 0.9% improvement in the static group. There was also a 16.5% improvement in TUG time in the dynamic group but only an 8% improvement in the static group. Conclusion: These findings show that dynamic cycling can improve PD motor function and that activation of proprioceptors with a high cadence but variable pattern may be important for motor improvements in PD.

  6. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results.

    Science.gov (United States)

    Vierna, J; Doña, J; Vizcaíno, A; Serrano, D; Jovani, R

    2017-10-01

    High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.

  7. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  8. Fusion blanket for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500 0 C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by Ar) utilizing Li 2 O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230 0 C leading to an overall efficiency estimate of 55 to 60% for this reference case

  9. Fusion blankets for high-efficiency power cycles

    International Nuclear Information System (INIS)

    Usher, J.L.; Lazareth, O.W.; Fillo, J.A.; Horn, F.L.; Powell, J.R.

    1981-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperatures (500 deg C) of conventional structural materials such as stainless steels. In this project 'two-zone' blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO 2 interior (cooled by argon) utilizing Li 2 O for tritium breeding. In this design, approximately 60% of the fusion energy is deposited in the high-temperature interior. The maximum argon temperature is 2230 deg C leading to an overall efficiency estimate of 55 to 60% for this reference case. (author)

  10. High Cycle Fatigue of Metastable Austenitic Stainless Steels

    OpenAIRE

    Fargas Ribas, Gemma; Zapata Dederle, Ana Cristina; Anglada Gomila, Marcos Juan; Mateo García, Antonio Manuel

    2009-01-01

    Metastable austenitic stainless steels are currently used in applications where severe forming operations are required, such as automotive bodies, due to its excellent ductility. They are also gaining interest for its combination of high strength and formability after forming. The biggest disadvantage is the difficulty to predict the mechanical response, which depends heavily on the amount of martensite formed. The martensitic transformation in metastable stainless steels can b...

  11. Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

    Science.gov (United States)

    Balayev, A. F.; Korolev, A. V.; Kochetkov, A. V.; Sklyarova, A. I.; Zakharov, O. V.

    2016-02-01

    The paper describes the mechanism of micro-cracks development in solid structural materials based on the theory of brittle fracture. A probability function of material cracks energy distribution is obtained using a probabilistic approach. The paper states energy conditions for cracks growth at material high-cycle loading. A formula allowing to calculate the amount of energy absorbed during the cracks growth is given. The paper proposes a high- cycle fatigue evaluation criterion allowing to determine the maximum permissible number of solid body loading cycles, at which micro-cracks start growing rapidly up to destruction.

  12. Theoretical research on the performance of the transcritical ejector refrigeration cycle with various refrigerants

    International Nuclear Information System (INIS)

    Wang, F.; Li, D.Y.; Zhou, Y.

    2015-01-01

    The transcritical ejector refrigeration cycle (TERC), which has shown an attractive alternative to the ejector refrigeration systems, can better match large variable-temperature heat sources and yields higher COP. In this paper, in order to find a proper working fluid for the TERC, the performance of the TERC with CO_2 and various working fluids with low critical temperatures including R1270, R32, R143a, R125 and R115 are studied and compared. A thermodynamic model for ejector is set up to simulate the ejector by introducing the real properties of refrigerants. The results indicate that R1270 has the highest COP at the same heat source condition and medium working pressures, and is one of environment-friendly working fluids, hence R1270 is the most proper one. The COP of the transcritical cycle is higher than that of the subcritical cycle, and The effective performance coefficient COP_m of the transcritical cycle is also better. When the heater outlet temperature is increased, its system COP_m improves, but its system COP almost does not change. - Highlights: • A thermodynamic model is used to simulate the ejector with real properties. • The performance of the TERC with various refrigerants is compared. • The environment-friendly working fluid of R1270 shows the most proper one. • The COP of the transcritical cycle is higher than that of the subcritical cycle.

  13. Ademe et Vous. International Newsletter No. 35, December 2015. COP21: one objective, four pillars

    International Nuclear Information System (INIS)

    Martin, Valerie; Seguin-Jacques, Catherine; Tappero, Denis

    2015-12-01

    Content: - COP21: one objective, four pillars: With COP21 providing a platform for intergovernmental negotiations, ADEME is actively working alongside with non-state actors to foster an environment conducive to success. - ADEME, a stakeholder of COP21: ADEME has been particularly proactive when it comes to mobilising non-state actors in the context of COP21, and has made the most of its presence at Le Bourget to announce a number of new initiatives covering a number of the 12 themes that make up the Lima-Paris Action Agenda. - Innovation exhibited at COP21: Giving the public an opportunity to be within reach of the world of tomorrow: This is the aim of the Innov'Climat exhibition, initiated by ADEME back in July and developed for COP21

  14. Japanese high school students' usage of mobile phones while cycling.

    Science.gov (United States)

    Ichikawa, Masao; Nakahara, Shinji

    2008-03-01

    To investigate the perception and actual use of mobile phones among Japanese high school students while riding their bicycles, and their experience of bicycle crash/near-crash. A questionnaire survey was carried out at high schools that were, at the time of the survey, commissioned by the National Agency for the Advancement of Sports and Health to conduct school safety research. In the survey, we found that mobile phone use while riding a bicycle was quite common among the students during their commute, but those who have a higher perception of danger in this practice, and those who perceived that this practice is prohibited, were less likely to engage in this practice. Male students and students commuting to school by bicycle only were more likely to have used phones while riding. There was a significant relationship between phone usage while riding a bicycle and the experience of bicycle crash/near-crash, although its causality was not established. Bicycle crash/near-crash experienced while using a phone was less prevalent among the students who had a higher perception of danger in phone usage while riding, students who perceived that this practice is prohibited, and students with a shorter travel time by bicycle during the commute. Since mobile phone use while riding a bicycle potentially increases crash risk among cyclists, student bicycle commuters should be made aware of this risk. Moreover, they should be informed that cyclists' phone usage while riding is prohibited according to the road traffic law.

  15. First and Second Law Analyses of Trans-critical N2O Refrigeration Cycle Using an Ejector

    Directory of Open Access Journals (Sweden)

    Damoon Aghazadeh Dokandari

    2018-04-01

    Full Text Available An ejector-expansion refrigeration cycle using nitrous oxide was assessed. Thermodynamic analyses, including energy and exergy analyses, were carried out to investigate the effects on performance of several key factors in the system. The results show that the ejector-expansion refrigeration cycle (EERC has a higher maximum coefficient of performance and exergy efficiency than the internal heat exchanger cycle (IHEC, by 12% and 15%, respectively. The maximum coefficient of performance and exergy efficiency are 14% and 16.5% higher than the corresponding values for the vapor-compression refrigeration cycle (VCRC, respectively. The total exergy destruction for the N2O ejector-expansion cycle is 63% and 53% less than for IHEC and VCRC, respectively. Furthermore, the highest COPs for the vapor-compression refrigeration, the internal heat exchanger and the ejector-expansion refrigeration cycles correspond to a high side pressure of 7.3 MPa, and the highest COPs for the three types of CO2 refrigeration cycles correspond to a high side pressure of 8.5 MPa. Consequently, these lead to a lower electrical power consumption by the compressor.

  16. Status in 1998 of the high flux reactor fuel cycle

    International Nuclear Information System (INIS)

    Guidez, J.; Gevers, A.; Wijtsma, F.J.; Thijssen, P.M.J.

    1998-01-01

    The High Flux Reactor located at Petten (The Netherlands), is owned by the European Commission and is operated under contract by ECN (Netherlands Energy Research Foundation). This plant is in operation since 1962 using HEU enriched at 90%. Conversion studies were conducted several years ago with the hypothesis of a global conversion of the entire core. The results of these studies have shown a costly operation with a dramatic decrease of the thermal flux which is necessary for the medical use of the plant (Molybdene 99 production). Some tests with low enriched elements were also conducted with several companies, several geometrical configurations and several enrichments. They are described in this paper. Explanations are also given on future possibilities for new fuel testing. (author)

  17. Solvent extraction process development for high plutonium fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Anil Kumar, R; Selvaraj, P G; Natarajan, R; Raman, V R [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-06-01

    The purification of high plutonium bearing irradiated fuels using 30% TBP in dodecane diluent requires precise determination of concentration profiles during steady state, transient and process upset conditions. Mathematical models have been developed and a computer code is in use for determining Pu-U concentration profiles in a solvent extraction equipment in a typical reprocessing plant. The process parameters have been optimised for recovery of U and Pu and decontamination from the fission products. This computer code is used to analyse the extraction flow sheets of fuels of two typical Pu-U compositions encountered in Indian fast breeder programme. The analysis include the effect of uncertainty in equilibrium condition prediction by the model and the variation of flows of streams during plant operation. The studies highlight the margin available to avoid second organic phase formation and adjustments required in the process flowsheet. (author). 7 refs., 7 figs., 2 tabs.

  18. Ultrascalable Techniques Applied to the Global Intelligence Community Information Awareness Common Operating Picture (IA COP)

    National Research Council Canada - National Science Library

    Valdes, Alfonso; Kadte, Jim

    2005-01-01

    The focus of this research is to develop detection, correlation, and representation approaches to address the needs of the Intelligence Community Information Awareness Common Operating Picture (IA COP...

  19. Almost all k-cop-win graphs contain a dominating set of cardinality k

    OpenAIRE

    Pralat, Pawel

    2013-01-01

    We consider $k$-cop-win graphs in the binomial random graph $G(n,1/2).$ It is known that almost all cop-win graphs contain a universal vertex. We generalize this result and prove that for every $k \\in N$, almost all $k$-cop-win graphs contain a dominating set of cardinality $k$. From this it follows that the asymptotic number of labelled $k$-cop-win graphs of order $n$ is equal to $(1+o(1)) (1-2^{-k})^{-k} {n \\choose k} 2^{n^2/2 - (1/2-\\log_2(1-2^{-k})) n}$.

  20. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...... detection of abnormal behaviour, triggering if needed a safe degraded mode. SafeCOP will also develop methods and tools, which will be used to produce safety assurance evidence needed to certify cooperative functions. SafeCOP will extend current wireless technologies to ensure safe and secure cooperation...

  1. Thermodynamic analysis of high-temperature regenerative organic Rankine cycles using siloxanes as working fluids

    International Nuclear Information System (INIS)

    Fernandez, F.J.; Prieto, M.M.; Suarez, I.

    2011-01-01

    A recent novel adjustment of the Span-Wagner equation of state for siloxanes, used as working fluids in high-temperature organic Rankine cycles, is applied in a mathematical model to solve cycles under several working conditions. The proposed scheme includes a thermo-oil intermediate heat circuit between the heat source and the organic Rankine cycle. Linear and cyclic siloxanes are assayed in saturated, superheated and supercritical cycles. The cycle includes an internal heat exchanger (regenerative cycle), although a non-regenerative scheme is also solved. In the first part of the study, a current of combustion gases cooled to close to their dew point temperature is taken as the reference heat source. In the second part, the outlet temperature of the heat source is varied over a wide range, determining appropriate fluids and schemes for each thermal level. Simple linear (MM, MDM) siloxanes in saturated regenerative schemes show good efficiencies and ensure thermal stability of the working fluid. -- Highlights: → Organic Rankine cycles with polymethylsiloxanes as working fluids were modelled. → The cycle scheme is regenerative and includes an intermediate heat transfer fluid. → The fluid properties were calculated by means of the Span-Wagner equation of state. → Vapour conditions to the expander and source thermal level were analysed. → Siloxanes MM, MDM and D 4 under saturated conditions were the best options.

  2. Fuel cycle performance indices in a high-converting LWR core design with once-through thorium fuel cycle

    International Nuclear Information System (INIS)

    Kim, Myung-Hyun; Kim, Kwan-Hee; Kim, Young-il

    2004-01-01

    A design concept of pressure-tube type light water cooled reactor (HCPLWR) core was proposed as a thermal high-conversion reactor using a thorium based once-through cycle strategy. In a previous work, fuel cycle economics and nuclear safety were confirmed. In this work, HCPLWR was evaluated in the aspects of proliferation resistance and transmutation capability. Evaluation was done as a direct comparison of indices with PWR, CANDU and Radkowsky Thorium Fuel (RTF). Conversion ratio was measured by fissile inventory ratio and fissile gain. Proliferation resistance of plutonium composition from spent seed and blanket fuels was measured by bare critical mass, spontaneous neutron source rate, and thermal heat generation rate. For the evaluation of long-lived minor actinide transmutation was measured by a new parameter, effective fission half-life. Two-dimensional calculation for the assembly-wise unit module showed each parameter values. Even though conversion capability of HCPLWR was higher than one of RTF, it was concluded that current HCPLWR design was not favorable than RTF. Design optimization is required for the future work. (author)

  3. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  4. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  5. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  6. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  7. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    OpenAIRE

    Setiadipura, T; Irwanto, D; Zuhair, Zuhair

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor ...

  8. World Climate Conference - a play re-enacting the COPs

    Science.gov (United States)

    Vamborg, Freja S. E.; Klockmann, Marlene; Koch, Boris P.; Otto, Juliane; Rauser, Florian; Schemann, Vera; Sonntag, Sebastian; Haug, Helgard; Kaegi, Stefan; Wetzel, Daniel; Schipper, Imanuel; Bochow, Jörg

    2016-04-01

    Last December, Paris was the host city for the 21st Conference of the Parties (COP21) of the United Nations Framework Convention on Climate Change (UNFCCC). Representatives of 195 countries met to dispute a legally binding climate agreement - a highly complex process involving thousands of politicians, scientists and activists, that to date has taken over two decades. The director ensemble "Rimini Protokoll" re-enacted this mammoth-scale drama of diplomacy in the play "Weltklimakonferenz" (World Climate Conference) at the "Deutsches Schauspielhaus" theatre in Hamburg, Germany. Since the opening night (21st Nov. 2014), the play has been performed 16 times, reaching an audience of over 9000. All performers in the play were experts and scientists at different stages of their careers, including PhD students, journalists and professors. Each spectator took on the identity of a delegate of one of the 195 participating countries. We will present the project and the performance, thereby highlighting the role of and the interaction between the spectators and early career scientists. In a nutshell the play went as follows (https://vimeo.com/137817619); after an opening ceremony, the audience was divided up into seven groups, each of which was given advice by experts in several different briefings. These informed on country-specific challenges caused by the social and economic situation, possible future climatic changes and negotiating tactics. In addition, the delegations had bilateral meetings, enabling them to exchange views and experiences with one another. Towards the end of the play each delegation was asked to submit a national commitment to greenhouse gas reduction and a financial contribution to the Green Climate Fund. Based on these national commitments, the final plenum revealed whether or not the delegations had managed to submit reductions compatible with restricting global warming to 2°C compared to pre-industrial times. Due to their direct personal involvement

  9. Evaluation of Indirect Combined Cycle in Very High Temperature Gas--Cooled Reactor

    International Nuclear Information System (INIS)

    Chang Oh; Robert Barner; Cliff Davis; Steven Sherman; Paul Pickard

    2006-01-01

    The U.S. Department of Energy and Idaho National Laboratory are developing a very high temperature reactor to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is twofold: (a) efficient, low-cost energy generation and (b) hydrogen production. Although a next-generation plant could be developed as a single-purpose facility, early designs are expected to be dual purpose, as assumed here. A dual-purpose design with a combined cycle of a Brayton top cycle and a bottom Rankine cycle was investigated. An intermediate heat transport loop for transporting heat to a hydrogen production plant was used. Helium, CO2, and a helium-nitrogen mixture were studied to determine the best working fluid in terms of the cycle efficiency. The relative component sizes were estimated for the different working fluids to provide an indication of the relative capital costs. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the cycle were performed to determine the effects of varying conditions in the cycle. This gives some insight into the sensitivity of the cycle to various operating conditions as well as trade-offs between efficiency and component size. Parametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling

  10. Technical Issues in the development of high burnup and long cycle fuel pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  11. Technical Issues in the development of high burnup and long cycle fuel pellets

    International Nuclear Information System (INIS)

    Kim, Dong Joo; Yang, Jae Ho; Oh, Jang Soo; Kim, Keon Sik; Rhee, Young Woo; Kim, Jong Hun; Nam, Ik Hui

    2012-01-01

    Over the last half century, a nuclear fuel cycle, a fuel discharged burnup and a uranium enrichment of the LWR (Light Water Reactor) fuel have continuously increased. It was the efforts to reduce the LWR fuel cycle cost, and to make reactor operation more efficiently. Improved fuel and reactor performance contribute further to the reduction and management efficiency of spent fuels. The primary incentive for operating nuclear reactor fuel to higher burnup and longer cycle is the economic benefits. The fuel cycle costs could be reduced by extending fuel discharged burnup and fuel cycle length. The higher discharged burnup can increase the energy production per unit fuel mass or fuel assembly. The longer fuel cycle can increase reactor operation flexibility and reduce the fuel changing operation and the spent fuel management burden. The margin to storage capacity limits would be also increased because high burnup and long cycle fuel reduces the mass of spent fuels. However, increment of fuel burnup and cycle length might result in the acceleration of material aging consisting fuel assembly. Then, the safety and integrity of nuclear fuel will be degraded. Therefore, to simultaneously enhance the safety and economics of the LWR fuel through the fuel burnup and cycle extension, it is indispensable to develop the innovative nuclear fuel material concepts and technologies which can overcome degradation of fuel safety. New fuel research project to extend fuel discharged burnup and cycle length has been launched in KAERI. Main subject is to develop innovative LWR fuel pellets which can provide required fuel performance and safety at extended fuel burnup and cycle length. In order to achieve the mission, we need to know that what the impediments are and how to break through current limit of fuel pellet properties. In this study, the technical issues related to fuel pellets at high burnup were surveyed and summarized. We have collected the technical issues in the literatures

  12. High-temperature gas-cooled reactor steam cycle/cogeneration application study update

    International Nuclear Information System (INIS)

    1981-09-01

    Since publication of a report on the application of a High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) plant in December of 1980, progress has continued on application related activities. In particular, a reference plant and an application identification effort has been performed, a variable cogeneration cycle balance-of-plant design was developed and an updated economic analysis was prepared. A reference HTGR-SC/C plant size of 2240 MW(t) was selected, primarily on the basis of 2240 MW(t) being in the mid-range of anticipated application needs and the availability of the design data from the 2240 MW(t) Steam Cycle/Electric generation plant design. A variable cogeneration cycle plant design was developed having the capability of operating at a range of process steam loads between the reference design load (full cogeneration) and the no process steam load condition

  13. Performance assessment modeling of high level nuclear wasteforms from the pyroprocess fuel cycle

    International Nuclear Information System (INIS)

    Nutt, W.M.; Hill, R.N.; Bullen, D.B.

    1995-01-01

    Several performance assessment (PA) analyses have been completed to estimate the release to the accessible environment of radionuclides from spent light water reactor (LWR) fuel emplaced in the proposed Yucca Mountain repository. Probabilistic methods were utilized based on the complexity of the repository system. Recent investigations have been conducted to identify the merits of a pyroprocess fuel cycle. This cycle utilizes high temperature molten salts and metals to partially separate actinides and fission products. In a closed liquid metal reactor (LMR) fuel cycle, this allows recycling of nearly all of the actinides. In a once-through cycle, this isolates the actinides for storage into a wasteform which can be specifically tailored for their retention. With appropriate front-end treatment, this Process can also be used to treat LWR spent fuel

  14. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    Full Text Available To date, many years’ experience in the construction and operation of high-rise buildings has been accumulated. Its analysis reveals not only the engineering and organizational-technological specifics of such projects, but also systemic gaps in the field of management. In the implementation of large-scale and unique projects for high-rise buildings, the problems and tasks of improving approaches to managing the full life cycle of projects and methods, which will improve their competitiveness, become topical. The systems being used have largely exhausted their resource efficiency, which is associated with automation of traditional “inherited” processes and management structures, as well as development of IT-systems focused on digitalization of the activities of construction company, rather than the project. To solve these problems, it is proposed to carry out: reengineering of the schemes of information interaction between the project’s participants; formation of integrated digital environment for the life cycle of the project; development of systems for integrating data management and project management. Subject: problems, approaches and methods of digitalization of project’s life cycle management in relation to the specifics and features of high-rise buildings. Research objectives: substantiation of the most perspective approaches and methods of information modeling of high-rise construction as the basis for managing the full life cycle of the given project. Materials and methods: the experience of digitalization of design, construction, operation and development of high-rise buildings, presented in specialized literature, is analyzed. The methods for integrating information models of various stages of project’s life cycle and for information interaction of project’s participants are considered. Results: the concept of forming a single digital environment for the project is proposed, taking into account the features of the life

  15. Development of high-rise buildings: digitalization of life cycle management

    Directory of Open Access Journals (Sweden)

    Gusakova Elena

    2018-01-01

    Full Text Available The analysis of the accumulated long-term experience in the construction and operation of high-rise buildings reveals not only the engineering specificity of such projects, but also systemic problems in the field of project management. Most of the project decisions are made by the developer and the investor in the early stages of the life cycle - from the acquisition of the site to the start of operation, so most of the participants in the construction and operation of the high-rise building are far from the strategic life-cycle management of the project. The solution of these tasks due to the informatization of management has largely exhausted its efficiency resource. This is due to the fact that the applied IT-systems automated traditional "inherited" processes and management structures, and, in addition, they were focused on informatization of the activities of the construction company, rather than the construction project. Therefore, in the development of high-rise buildings, the tasks of researching approaches and methods for managing the full life cycle of projects that will improve their competitiveness become topical. For this purpose, the article substantiates the most promising approaches and methods of informational modeling of high-rise construction as a basis for managing the full life cycle of this project. Reengineering of information interaction schemes for project participants is considered; formation of a unified digital environment for the life cycle of the project; the development of systems for integrating data management and project management.

  16. Development of high-rise buildings: digitalization of life cycle management

    Science.gov (United States)

    Gusakova, Elena

    2018-03-01

    The analysis of the accumulated long-term experience in the construction and operation of high-rise buildings reveals not only the engineering specificity of such projects, but also systemic problems in the field of project management. Most of the project decisions are made by the developer and the investor in the early stages of the life cycle - from the acquisition of the site to the start of operation, so most of the participants in the construction and operation of the high-rise building are far from the strategic life-cycle management of the project. The solution of these tasks due to the informatization of management has largely exhausted its efficiency resource. This is due to the fact that the applied IT-systems automated traditional "inherited" processes and management structures, and, in addition, they were focused on informatization of the activities of the construction company, rather than the construction project. Therefore, in the development of high-rise buildings, the tasks of researching approaches and methods for managing the full life cycle of projects that will improve their competitiveness become topical. For this purpose, the article substantiates the most promising approaches and methods of informational modeling of high-rise construction as a basis for managing the full life cycle of this project. Reengineering of information interaction schemes for project participants is considered; formation of a unified digital environment for the life cycle of the project; the development of systems for integrating data management and project management.

  17. 76 FR 35683 - Medicare Program; Conditions of Participation (CoPs) for Community Mental Health Centers

    Science.gov (United States)

    2011-06-17

    ... Community Mental Health Centers; Proposed Rule #0;#0;Federal Register / Vol. 76 , No. 117 / Friday June 17... (CoPs) for Community Mental Health Centers AGENCY: Centers for Medicare & Medicaid Services (CMS), HHS... participation (CoPs) that community mental health centers (CMHCs) would have to meet in order to participate in...

  18. 78 FR 2692 - Agency Information Collection Activities; Proposed New Collection; Comments Requested: COPS...

    Science.gov (United States)

    2013-01-14

    ... Collection; Comments Requested: COPS Comparative Assessment of Cost Reduction by Agencies Survey ACTION: 30...; comments requested. (2) Title of the Form/Collection: COPS Comparative Assessment of Cost Reduction by...) Affected public who will be asked or required to respond, as well as a brief abstract: Law enforcement...

  19. Impacts of CoP on Organizational Socialization in the Early Career

    Science.gov (United States)

    Chang, Joohee; Chang, Wonsup; Jacobs, Ronald L.

    2008-01-01

    This paper focuses on the relationship between participation in communities of practice (CoP) and outcomes of organizational socialization (learning and adjustment) early in the career. Results from responses of employees in a Korean IT company show that participation in CoP is more strongly related to adjustment (job satisfaction, organizational…

  20. 20 CFR 10.216 - How is the pay rate for COP calculated?

    Science.gov (United States)

    2010-04-01

    ... for COP purposes is equal to the employee's regular “weekly” pay (the average of the weekly pay over... occurred during the 45-day period are to be reflected in the weekly pay determination. (b) The weekly pay... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false How is the pay rate for COP calculated? 10...

  1. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Yoshitsugu, Nekomoto; Satoshi, Kiriyama; Moritatsu, Nishimura; Kenji, Matsumoto; Eiji, O'shima

    2001-01-01

    Nuclear power plants have a large number of pipes. Of these small-diameter pipe branches in particular are often damaged due to high-cycle fatigue. In order to ensure the reliability of a plant it is important to detect the fatigues in pipe branches at an early stage and to develop the technology to predict and diagnose the advancement of fatigue. Further, in order to carry out the diagnosis of the piping system effectively during operation, non-contact evaluation is useful. Hence, we have developed a 'high-cycle fatigue diagnostic system with non-contact vibration sensing', where the vibration of the pipe branch is measured using a non-contact sensor. Since the contents of the developed sensor technology has already been reported, this paper mainly describes the newly developed high-cycle fatigue diagnostic system. (authors)

  2. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Science.gov (United States)

    Zhao, Jing; Ji, Honghong

    2017-01-01

    The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite. PMID:29286325

  3. High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2017-12-01

    Full Text Available The high-cycle, push–pull fatigue fracture behavior of high-C, Si–Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push–pull fatigue limits at 107 cycles were estimated as 710–889 MPa, for the samples isothermally transformed at the temperature range of 220–260 °C through data extrapolation, measured under the maximum cycle number of 105. Both the interior inclusion and the sample surface constituted the fatigue crack origins. During the fatigue crack propagation, a high amount of secondary cracks were formed in almost parallel arrangements. The apparent plastic deformation occurred in the fracture surface layer, which induced approximately all retained austenite to transform into martensite.

  4. Investing for a low carbon economy. Special issue COP21

    International Nuclear Information System (INIS)

    Guez, Herve; Basselier, Clotilde; Bennani, Zineb; Coeslier, Manuel; Dufour, Mathilde; Dunand-Chatellet, Lea; Guez, Herve; Lauverjat Celine; Ostiari, Emmanuelle; Smia, Ladislas; Bonnin, Marguerite; Briand, Marc; Favier, Julien; Finidori, Esther; Wigley, Chris; Dobie, Jacqueline; Mary Ellis, Susannah; Kiernan, Shannon; Lefer, Elizabeth; Perrin, Elsa; Treadwell, Christopher; Zerner, Rachel

    2015-11-01

    Mirova, an asset management firm dedicated to responsible investment, has published today Investing in a low-carbon economy, a guide for investors to become COP21 compliant. Mirova's study provides an in-depth analysis highlighting the challenges of climate change and presents methods for investors to effectively measure their carbon footprint. Mirova offers a unique range of investment solutions promoting energy transition across all asset classes. COP21: mobilising private investors is a necessity To maintain the economy in a '2 degree' trajectory, it is vital to redirect savings towards companies and projects promoting energy transition. Philippe Zaouati, Head of Mirova explains: 'The energy transition can only succeed if we manage to mobilise private investors' savings. The success of COP21 therefore also depends on the ability of asset management firms to propose solutions in response to the climate challenge, whilst delivering the returns expected by investors'. Accurately measuring your carbon footprint. In response to growing demands on investors to make greener investments, Mirova, in partnership with the leading carbon strategy specialist consultant Carbone 4, has developed an innovative methodology to measure the carbon footprint of an investment portfolio. This decision-making tool assesses a company's contribution to the reduction of global greenhouse gas emissions (GGE). Measuring the overall impact of a business on the environment is an essential step towards acting against global warming. Assessing the carbon footprint is therefore an indispensable stage in the construction of portfolios contributing to energy transition. Low-carbon investments across all asset classes In order to redirect capital towards investments promoting energy transition, Mirova is proposing solutions involving all asset classes: - Renewable energy infrastructures: 100% low carbon allocation For more than 10 years now, Mirova has provided European institutions with access to

  5. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  6. Highly purified HMG versus recombinant FSH for ovarian stimulation in IVF cycles

    DEFF Research Database (Denmark)

    Platteau, P.; Nyboe, Andersen A.; Loft, A.

    2008-01-01

    The objective of this study was to compare the live birth rates resulting from ovarian stimulation with highly purified human menopausal gonadotrophin (HP-HMG), which combines FSH and human chorionic gonadotrophin-driven LH activities, or recombinant FSH (rFSH) alone in women undergoing IVF cycles....... An integrated analysis was performed of the raw data from two randomized controlled trials that were highly comparable in terms of eligibility criteria and post-randomization treatment regimens with either HP-HMG or rFSH for ovarian stimulation in IVF, following a long down-regulation protocol. All randomized...... subjects who received at least one dose of gonadotrophin in an IVF cycle (HP-HMG, n = 491; rFSH, n = 495) were included in the analysis. Subjects who underwent intracytoplasmic sperm injection cycles were excluded. The superiority of one gonadotrophin preparation over the other was tested using...

  7. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt

    2016-01-01

    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  8. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...... based on the relaxation time in order to have the same average current density of (0.55 Acm-2 ) for all the cells. Cell 5, with a relaxation time of 2 min performs best and shows lower degradation rate of 36 μVh-1 compared to other load cycling cells with smaller relaxation times. The cell operated...

  9. POWER CYCLE AND STRESS ANALYSES FOR HIGH TEMPERATURE GAS-COOLED REACTOR

    International Nuclear Information System (INIS)

    Oh, Chang H; Davis, Cliff; Hawkes, Brian D; Sherman, Steven R

    2007-01-01

    The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold (1) efficient low cost energy generation and (2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with three turbines and four compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with three stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and a 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to

  10. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  11. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Science.gov (United States)

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from the...

  12. A multi-scale approach for high cycle anisotropic fatigue resistance: Application to forged components

    International Nuclear Information System (INIS)

    Milesi, M.; Chastel, Y.; Hachem, E.; Bernacki, M.; Loge, R.E.; Bouchard, P.O.

    2010-01-01

    Forged components exhibit good mechanical strength, particularly in terms of high cycle fatigue properties. This is due to the specific microstructure resulting from large plastic deformation as in a forging process. The goal of this study is to account for critical phenomena such as the anisotropy of the fatigue resistance in order to perform high cycle fatigue simulations on industrial forged components. Standard high cycle fatigue criteria usually give good results for isotropic behaviors but are not suitable for components with anisotropic features. The aim is to represent explicitly this anisotropy at a lower scale compared to the process scale and determined local coefficients needed to simulate a real case. We developed a multi-scale approach by considering the statistical morphology and mechanical characteristics of the microstructure to represent explicitly each element. From stochastic experimental data, realistic microstructures were reconstructed in order to perform high cycle fatigue simulations on it with different orientations. The meshing was improved by a local refinement of each interface and simulations were performed on each representative elementary volume. The local mechanical anisotropy is taken into account through the distribution of particles. Fatigue parameters identified at the microscale can then be used at the macroscale on the forged component. The linkage of these data and the process scale is the fiber vector and the deformation state, used to calculate global mechanical anisotropy. Numerical results reveal an expected behavior compared to experimental tendencies. We proved numerically the dependence of the anisotropy direction and the deformation state on the endurance limit evolution.

  13. Fatigue behaviour and failure analysis of IN 713LC in high-cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Mintách, R.; Kunz, Ludvík; Bokůvka, O.

    2009-01-01

    Roč. 16, 3a (2009), s. 37-40 ISSN 1335-0803 R&D Projects: GA MPO FT-TA4/023 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ni base superalloy * casting defect * high-cycle fatigue Subject RIV: JG - Metallurgy

  14. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    Science.gov (United States)

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  16. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  17. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  18. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    Science.gov (United States)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (p<0.001) increase in leptin levels in 6 month VHFD treated animals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  19. COP21 - A moment of truth for climate and sustainable development

    International Nuclear Information System (INIS)

    2015-01-01

    Time is running out to act on climate change, poverty eradication and sustainable development. These challenges cannot be met independently of each other. The task of COP21 is to send strong policy signals that determined climate action is needed and will not harm the economy. In fact, these actions will trigger multiple employment, health and human development benefits by aligning strengthened short-term economic growth with long-term sustainable development goals. It is challenging but possible to trigger the transformation toward low carbon futures and to increase the affordability of advanced technologies despite the current pressures on public budgets. The world is awash in liquidity. What is needed is to redirect the savings of households, pension funds, insurance schemes, and sovereign wealth funds towards long-term and low-carbon investments. Sound regulatory frameworks and innovative financial mechanisms must be established to reduce the risks attached to potentially profitable low-carbon projects that are blocked by a combination of high up front costs and an uncertain environment, so as to attract private savings and institutional investors. COP 21 can provide critical policy hooks for step changes in economic and financial inter-mediation based on public guarantees for low carbon investments; an agreed social value of carbon mitigation activities could be incorporated into diverse low-carbon financial initiatives supporting Intended Nationally Determined Contributions (INDCs); strong and enforceable requirements for Measuring, Reporting and Verification (MRV) can ensure the environmental integrity and sustainability of the resulting investments. Such a framework can secure the transparency of voluntary commitments by countries, clubs of countries and non-state actors. If it can achieve these goals, the Paris Agreement can unleash a wave of investments into low-carbon development that responds to short-term economic and social challenges while supporting

  20. The promiscuous phosphomonoestearase activity of Archaeoglobus fulgidus CopA, a thermophilic Cu+ transport ATPase.

    Science.gov (United States)

    Bredeston, Luis M; González Flecha, F Luis

    2016-07-01

    Membrane transport P-type ATPases display two characteristic enzymatic activities: a principal ATPase activity provides the driving force for ion transport across biological membranes, whereas a promiscuous secondary activity catalyzes the hydrolysis of phosphate monoesters. This last activity is usually denoted as the phosphatase activity of P-ATPases. In the present study, we characterize the phosphatase activity of the Cu(+)-transport ATPase from Archaeglobus fulgidus (Af-CopA) and compare it with the principal ATPase activity. Our results show that the phosphatase turnover number was 20 times higher than that corresponding to the ATPase activity, but it is compensated by a high value of Km, producing a less efficient catalysis for pNPP. This secondary activity is enhanced by Mg(2+) (essential activator) and phospholipids (non-essential activator), and inhibited by salts and Cu(+). Transition state analysis of the catalyzed and noncatalyzed hydrolysis of pNPP indicates that Af-CopA enhances the reaction rates by a factor of 10(5) (ΔΔG(‡)=38 kJ/mol) mainly by reducing the enthalpy of activation (ΔΔH(‡)=30 kJ/mol), whereas the entropy of activation is less negative on the enzyme than in solution. For the ATPase activity, the decrease in the enthalpic component of the barrier is higher (ΔΔH(‡)=39 kJ/mol) and the entropic component is small on both the enzyme and in solution. These results suggest that different mechanisms are involved in the transference of the phosphoryl group of p-nitrophenyl phosphate and ATP. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mapping the surface of MNKr2 and CopZ - identification of residues critical for metallotransfer

    International Nuclear Information System (INIS)

    Jones, C.E.; Cobine, P.A.; Dameron, C.T.

    2001-01-01

    Full text: Cells utilise a network of proteins that include CPx-type ATPases and metallochaperones to balance intracellular copper concentration. The Menkes ATPase has six N-terminal domains which bind Cu(I) and are critical for ATPase function. The NMR solution structure of the second domain (MNKr2) shows that the structure adopts an 'open-faced β-sandwich' fold, in which two α-helices lie over a single four stranded β-sheet. The global fold is identical to the bacterial copper chaperone CopZ MNKr2 is unable to substitute for CopZ in copper transfer to the cop operon represser, CopY. To investigate how structure affects function we have analysed the surface features of MNKr2 and CopZ Despite having the same global fold, MNKr2 and CopZ have contrasting electrostatic surfaces, which may partially explain the inability of MNKr2 to transfer copper to CopY

  2. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability

    Directory of Open Access Journals (Sweden)

    Dong Liu

    2015-06-01

    Full Text Available The poor cycling stability of polyaniline (PANI limits its practical application as a pseudocapacitive material due to the volume change during the charge-discharge procedure. Herein, crosslinked carbon nanotubes/polyaniline (C-CNTs/PANI composites had been designed by the in situ chemical oxidative polymerization of aniline in the presence of crosslinked carbon nanotubes (C-CNTs, which were obtained by coupling of the functionalized carbon nanotubes with 1,4-benzoquinone. The composite showed a specific capacitance of 294 F/g at the scan rate of 10 mV/s, and could retain 95% of its initial specific capacitance after 1000 CV cycles. Such high electrochemical cycling stability resulting from the crosslinked skeleton of the C-CNTs makes them potential electrode materials for a supercapacitor.

  3. Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability

    International Nuclear Information System (INIS)

    Xu, Junmin; He, Lei; Liu, Hui; Han, Tao; Wang, Yongjian; Zhang, Changjin; Zhang, Yuheng

    2015-01-01

    Graphical abstract: Display Omitted -- Abstract: One-dimensional porous anhydrous cobalt oxalate nanorods are prepared via a facile water-controlled coprecipitate method followed by thermal annealing treatment under N 2 at 300 °C. The nanorods are characterized by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. When evaluated as an anode material for lithium ion batteries, the nanorods exhibit high reversible specific capacity and excellent cycling stability (924 mA h g −1 at 50 mA g −1 after 100 cycles and 709 mA h g −1 at 200 mA g −1 after 220 cycles). This remarkable electrochemical performance is attributed to the one-dimensional porous nanostructure that can provide large electrode/electrolyte contact area and short lithium-ion diffusion pathway, meanwhile reduce the volume expansion during the repeated discharge/charge process

  4. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  5. Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.

    Science.gov (United States)

    Jiao, Xinyan; Hao, Qingli; Xia, Xifeng; Lei, Wu; Ouyang, Yu; Ye, Haitao; Mandler, Daniel

    2018-03-09

    The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g -1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g -1 than the GP electrode (185.7 F g -1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  7. High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection

    Directory of Open Access Journals (Sweden)

    Nitin Chandrachoodan

    2002-09-01

    Full Text Available The problem of detecting negative weight cycles in a graph is examined in the context of the dynamic graph structures that arise in the process of high level synthesis (HLS. The concept of adaptive negative cycle detection is introduced, in which a graph changes over time and negative cycle detection needs to be done periodically, but not necessarily after every individual change. We present an algorithm for this problem, based on a novel extension of the well-known Bellman-Ford algorithm that allows us to adapt existing cycle information to the modified graph, and show by experiments that our algorithm significantly outperforms previous incremental approaches for dynamic graphs. In terms of applications, the adaptive technique leads to a very fast implementation of Lawlers algorithm for the computation of the maximum cycle mean (MCM of a graph, especially for a certain form of sparse graph. Such sparseness often occurs in practical circuits and systems, as demonstrated, for example, by the ISCAS 89/93 benchmarks. The application of the adaptive technique to design-space exploration (synthesis is also demonstrated by developing automated search techniques for scheduling iterative data-flow graphs.

  8. Analysis of zeotropic mixtures used in high-temperature Organic Rankine cycle

    International Nuclear Information System (INIS)

    Dong, Bensi; Xu, Guoqiang; Cai, Yi; Li, Haiwang

    2014-01-01

    Highlights: • Using mixtures leads to an efficiency increase compared to pure fluids. • MM/MDM (0.4/0.6) produces optimal cycle efficiency. • Lower temperature gradients of heat source and sink give rise to higher cycle efficiency. • Condensation step shows more effect than evaporation step on cycle efficiency. - Abstract: The paper investigates the performance of high-temperature Organic Rankine cycle (ORC) with zeotropic mixtures as working fluid. A numerical model, which has been validated by comparing with the published data, is developed to predict the first law thermal efficiency of the cycle. The effects of mixture concentration, temperature gradient of the heat transfer fluid, pinch temperature difference, pressure ratio, and condensation pressure on the first law efficiency are presented firstly using a purposely designed program, and then the suitable conditions for the described ORC are suggested based on the results of the simulation. It is demonstrated that the use of zeotropic mixtures leads to an efficiency increase compared to pure fluids

  9. High content image based analysis identifies cell cycle inhibitors as regulators of Ebola virus infection.

    Science.gov (United States)

    Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G

    2012-09-25

    Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  10. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  11. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    Science.gov (United States)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  12. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination

    KAUST Repository

    Thu, Kyaw

    2016-06-13

    Environment-friendly adsorption (AD) cycles have gained much attention in cooling industry and its applicability has been extended to desalination recently. AD cycles are operational by low-temperature heat sources such as exhaust gas from processes or renewable energy with temperatures ranging from 55 °C to 85 °C. The cycle is capable of producing two useful effects, namely cooling power and high-grade potable water, simultaneously. This article discusses a low temperature, waste heat-powered adsorption (AD) cycle that produces cooling power at two temperature-levels for both dehumidification and sensible cooling while providing high-grade potable water. The cycle exploits faster kinetics for desorption process with one adsorber bed under regeneration mode while full utilization of the uptake capacity by adsorbent material is achieved employing two-stage adsorption via low-pressure and high-pressure evaporators. Type A++ silica gel with surface area of 863.6 m2/g and pore volume of 0.446 cm3/g is employed as adsorbent material. A comprehensive numerical model for such AD cycle is developed and the performance results are presented using assorted hot water and cooling water inlet temperatures for various cycle time arrangements. The cycle is analyzed in terms of key performance indicators i.e.; the specific cooling power (SCP), the coefficient of performance (COP) for both evaporators and the overall system, the specific daily water production (SDWP) and the performance ratio (PR). Further insights into the cycle performance are scrutinized using a Dühring diagram to depict the thermodynamic states of the processes as well as the vapor uptake behavior of adsorbent. In the proposed cycle, the adsorbent materials undergo near saturation conditions due to the pressurization effect from the high pressure evaporator while faster kinetics for desorption process is exploited, subsequently providing higher system COP, notably up to 0.82 at longer cycle time while the

  13. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  14. Prognostic Significance of Combination of Preoperative Platelet Count and Neutrophil-Lymphocyte Ratio (COP-NLR in Patients with Non-Small Cell Lung Cancer: Based on a Large Cohort Study.

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    Full Text Available The aim of this study was to investigate the prognostic significance of the combination of the preoperative platelet count and neutrophil-lymphocyte ratio (COP-NLR for predicting postoperative survival of patients undergoing complete resection for non-small cell lung cancer (NSCLC.The preoperative COP-NLR was calculated on the basis of data obtained.Patients with both an increased platelet count (>30.0 × 104 mm(-3 and an elevated NLR (>2.3 were assigned a score of 2, and patients with one or neither were assigned as a score of 1 or 0, respectively.A total of 1238 NSCLC patients were enrolled in this analysis. Multivariate analysis using the 15 clinicolaboratory variables selected by univariate analyses demonstrated that the preoperative COP-NLR was an independent prognostic factor for DFS (HR: 1.834, 95%CI: 1.536 to 2.200, P<0.001 and OS (HR: 1.810, 95%CI: 1.587 to 2.056, P<0.001. In sub-analyses by tumor stage (I, II, IIIA, a significant association was found between DFS and OS and level of COP-NLR in each subgroup (P<0.001, P=0.002, P<0.001 for DFS, respectively; P<0.001, P=0.001, P<0.001 for OS. When the subgroup of patients with high-risk COP-NLR (score of 2 was analyzed, no benefit of adjuvant chemotherapy could be found (P=0.237 for DFS and P=0.165 for OS.The preoperative COP-NLR is able to predict the prognosis of patients with NSCLC and divide these patients into three independent groups before surgery. Our results also demonstrate that high-risk patients based on the COP-NLR do not benefit from adjuvant chemotherapy. Independent validation of our findings is warranted.

  15. Efficiency analysis of alternative refrigerants for ejector cooling cycles

    International Nuclear Information System (INIS)

    Gil, Bartosz; Kasperski, Jacek

    2015-01-01

    Highlights: • Advantages of using alternative refrigerants as ejector refrigerants were presumed. • Computer software basing on theoretical model of Huang et al. (1999) was prepared. • Optimal temperature range of primary vapor for each working fluid was calculated. - Abstract: Computer software, basing on the theoretical model of Huang et al. with thermodynamic properties of selected refrigerants, was prepared. Investigation was focused on alternative refrigerants that belong to two groups of substances: common solvents (acetone, benzene, cyclopentane, cyclohexane and toluene) and non-flammable synthetic refrigerants applied in Organic Rankine Cycle (ORC) (R236ea, R236fa, R245ca, R245fa, R365mfc and RC318). Refrigerants were selected to detect a possibility to use them in ejector cooling system powered by a high-temperature heat source. A series of calculations were carried out for the generator temperature between 70 and 200 °C, with assumed temperatures of evaporation 10 °C and condensation 40 °C. Investigation revealed that there is no single refrigerant that ensures efficient operation of the system in the investigated temperature range of primary vapor. Each substance has its own maximum entrainment ratio and COP at its individual temperature of the optimum. The use of non-flammable synthetic refrigerants allows obtaining higher COP in the low primary vapor temperature range. R236fa was the most beneficial among the non-flammable synthetic refrigerants tested. The use of organic solvents can be justified only for high values of motive steam temperature. Among the solvents, the highest values of entrainment ratio and COP throughout the range of motive temperature were noted for cyclopentane. Toluene was found to be an unattractive refrigerant from the ejector cooling point of view

  16. Nucleaire et Energies Nr 67 - December 2015. COP21: diplomatic success, a first step

    International Nuclear Information System (INIS)

    Lenail, Bernard; Ducroux, Guy; Salanave, Jean-Luc; Seyve, Claude; Simonnet, Jacques; Justin, Francois; Salanave, Jean-Luc; Darricau, Aime; Raisonnier, Daniele; Deleigne, Francoise; Lepine, Gerard; Witkowski, Didier; Knoche, Philippe

    2015-12-01

    After a first article which comments the results of the Paris Climate Conference (COP21), two articles address recent evolutions in the energy sector: an overview of recent evolutions (perspective for oil reserves, relationship between Gazprom and the EU, news about wind and solar energy in Europe, India, and in France with the most powerful European photovoltaic installation near Bordeaux, electricity prices, reduction of taxes on solar and wind energy foreseen for 2017), and a comparison between renewable energies and the EPR in terms of investment profitability. Three articles concern nuclear activities: recent events about reactors (IAEA forecast, situation and debates in France, Belgium, UK, Sweden, Romania, Slovenia, Russia, Ukraine, Iran, Emirates, Egypt, China, South Korea, Japan, and USA, cooperation between Argentina and China), about the back-end of the fuel cycle and decommissioning activities (activities and situation of different French facilities, activities and contracts in Japan, UK, USA, Taiwan, China, Finland, India and Spain), and the content of the IAEA report on the Fukushima accident. Articles comment issues concerning the relationship between nuclear and society: a comment about the use of the term 'green' and on what is green in nuclear, the recent evolutions negotiations on the issue of the Iranian nuclear industry with respect to non-proliferation, and a comment of the perception of climate change by French people as expressed by different surveys. A last article outlines that Areva will remain a world leader on the long term

  17. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full

  18. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  20. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  1. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF regime up to 109 cycles

    Directory of Open Access Journals (Sweden)

    Eric eWycisk

    2015-12-01

    Full Text Available Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles.For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  2. Study on high-cycle fatigue behavior of candidate Fe-Cr-Ni alloys for SCWR

    International Nuclear Information System (INIS)

    Zhao Yuxiang; Liu Guiliang; Tang Rui; Xiong Ru; Qiao Yingjie

    2014-01-01

    In the design for supercritical water reactor (SCWR), the operating temperature, pressure, burn up and irradiation damage are very high, so it seems vital to make correct choice of structural materials in core and obtain their key application behavior which would beneficial the research and development of SCWR. In this paper, the high cycle fatigue (HCF) tests of commerce austenite alloys including 6XN and 825 were conducted under bending and rotating loads at room temperature (RT) as well as at 550 ℃ in air. The experimental data were analyzed and the S-N curves were processed, the fracture morphology was also observed by SEM. The results indicate that the fatigue limited stresses at RT for the 2 Fe-Cr-Ni alloy were in such order of 825 < 6XN, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation of the specimen and therefore the fatigue life would decrease, among them 6XN was more sensitive to high temperature with the larger decreasing tendency which make the fatigue limited stress of the two alloys more closer at 550 ℃. While 825 is more sensitive to the stress cycles. All the two alloys have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the fracture area has much dimples. This work can be applied to the conceptional design for SCWR. (authors)

  3. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  4. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation

  5. SMART-COP: a tool for predicting the need for intensive respiratory or vasopressor support in community-acquired pneumonia.

    Science.gov (United States)

    Charles, Patrick G P; Wolfe, Rory; Whitby, Michael; Fine, Michael J; Fuller, Andrew J; Stirling, Robert; Wright, Alistair A; Ramirez, Julio A; Christiansen, Keryn J; Waterer, Grant W; Pierce, Robert J; Armstrong, John G; Korman, Tony M; Holmes, Peter; Obrosky, D Scott; Peyrani, Paula; Johnson, Barbara; Hooy, Michelle; Grayson, M Lindsay

    2008-08-01

    Existing severity assessment tools, such as the pneumonia severity index (PSI) and CURB-65 (tool based on confusion, urea level, respiratory rate, blood pressure, and age >or=65 years), predict 30-day mortality in community-acquired pneumonia (CAP) and have limited ability to predict which patients will require intensive respiratory or vasopressor support (IRVS). The Australian CAP Study (ACAPS) was a prospective study of 882 episodes in which each patient had a detailed assessment of severity features, etiology, and treatment outcomes. Multivariate logistic regression was performed to identify features at initial assessment that were associated with receipt of IRVS. These results were converted into a simple points-based severity tool that was validated in 5 external databases, totaling 7464 patients. In ACAPS, 10.3% of patients received IRVS, and the 30-day mortality rate was 5.7%. The features statistically significantly associated with receipt of IRVS were low systolic blood pressure (2 points), multilobar chest radiography involvement (1 point), low albumin level (1 point), high respiratory rate (1 point), tachycardia (1 point), confusion (1 point), poor oxygenation (2 points), and low arterial pH (2 points): SMART-COP. A SMART-COP score of >or=3 points identified 92% of patients who received IRVS, including 84% of patients who did not need immediate admission to the intensive care unit. Accuracy was also high in the 5 validation databases. Sensitivities of PSI and CURB-65 for identifying the need for IRVS were 74% and 39%, respectively. SMART-COP is a simple, practical clinical tool for accurately predicting the need for IRVS that is likely to assist clinicians in determining CAP severity.

  6. A "high severity" spruce beetle outbreak in Wyoming causes moderate-severity carbon cycle perturbations

    Science.gov (United States)

    Berryman, E.; Frank, J. M.; Speckman, H. N.; Bradford, J. B.; Ryan, M. G.; Massman, W. J.; Hawbaker, T. J.

    2017-12-01

    Bark beetle outbreaks in Western North American forests are often considered a high-severity disturbance from a carbon (C) cycling perspective, but field measurements that quantify impacts on C dynamics are very limited. Often, factors out of the researcher's control complicate the separation of beetle impacts from other drivers of C cycling variability and restrict statistical inference. Fortuitously, we had four years of pre-spruce beetle outbreak C cycle measurements in a subalpine forest in southeastern Wyoming (Glacier Lakes Ecosystem Experiments Site, or GLEES) and sustained intermittent monitoring for nearly a decade after the outbreak. Here, we synthesize published and unpublished pre- and post-outbreak measurements of key C cycle stocks and fluxes at GLEES. Multiple lines of evidence, including chamber measurements, eddy covariance measurements, and tracking of soil and forest floor C pools over time, point to the GLEES outbreak as a moderate-severity disturbance for C loss to the atmosphere, despite 70% to 80% of overstory tree death. Reductions in NEE were short-lived and the forest quickly returned to a carbon-neutral state, likely driven by an uptick in understory growth. Effect of mortality on the C cycle was asymmetrical, with a 50% reduction in net carbon uptake (NEE) two years into the outbreak, yet no measureable change in either ecosystem or growing season soil respiration. A small pulse in soil respiration occurred but was only detectable during the winter and amounted to < 10% of NEE. Possible reasons for the lack of measureable respiration response are discussed with emphasis on lessons learned for monitoring and modeling future outbreaks. We suggest a comprehensive assessment and definition of "moderate-severity" disturbances for Western forests and suggest that all tree mortality events may not be high-severity when it comes to C fluxes.

  7. 028. Migratory pneumonia—cryptogenic organizing pneumonia (COP)

    Science.gov (United States)

    Lagoudi, Kalliopi; Ioannidou, Despoina; Papadaki, Elena; Organtzis, Ioannis; Kostanta, Soultana; Papaioannou, Antonis; Moumtzi, Despoina; Porpodis, Konstantinos; Fouka, Evaggelia

    2015-01-01

    In this study were presented the clinical and laboratory findings of eight patients with migratory pneumonia, who were hospitalised in our clinic. It is about eight women with average age of 58±13 years with fever, weakness, dry cough, shortness of breath and who already had received antibiotics. Crackles were the most frequent evidence by the auscultation. All patients showed consolidation in chest radiography which resolved completely from the initial area and migrated in different areas. The chest HRCT showed opacity with air bronchogram and ground glass in places. Regarding to the respiratory function, patients showed mild restriction disorder (average values ± SD: FEV1% 83±24, FVC% 86±21, TLC% 82±16, DLco% 74±15). The average price of pO2 was 68+7 mmHg. The findings of BAL were: macrophages 51%±20%, lymphocytes 33.5%±14%, neutrophils 7.5%±3%, eosinophils 7%±8%. From diagnosis, we excluded eosinophilic pneumonia, infectious causes, collagen diseases and vasculitis. The findings of physical examination, chest radiography and the results of the BAL of all of the patients argued for Bronchiolitis obliterans organizing pneumonia (BOOP), the cause of which was not found (cryptogenic organizing pneumonia-COP). All patients responded directly to corticosteroids.

  8. Development of 700 pps high-duty-cycle line-type pulse modulator

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H.; Satoh, K.; Miura, A. [NIHON KOSHUHA Co., LTD., Yokohama, Kanagawa (Japan)] [and others

    1997-04-01

    The high-duty-cycle line-type pulse modulator has been developed to drive the 5.5 MW S-band klystron at the 700 pps maximum repetition-rate and the 14 {mu}sec flat-top pulse-width. To keep an enough recovery time to the thyratron-tube, the command charging scheme was adopted. To do this, a charging SCR-bank has been developed, which is capable of handling the peak charging current of 50 A. The system achieved the world wide highest average output-power of 205 kW. Two modulators have been installed in a new high-duty-cycle electron linear accelerator, which has been started its business operation in March 1996 as an electron-beam-sterilization facility. (J.P.N)

  9. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Nekomoto, Yoshitsugu; Tanaka, Masanori; Nishimura, Moritatsu; Matsumoto, Kenji; O'shima, Eiji

    2004-01-01

    Nuclear power plants have a large number of pipes. These small-diameter pipe branches in particles are often damaged due to high-cycle fatigue. In order to ensure the reliability of a plant it is important to detect fatigue damages in pipe branches at an early stage and to develop the technology to predict and diagnose the advancement of fatigue. Further, in order to carry out the diagnosis of the piping system effectively during operation, non-contact evaluation is useful. Hence, we have developed a ''high-cycle fatigue diagnostic system with non-contact vibration sensing'', which measures the vibration of the pipe branch using a non-contact sensor. (author)

  10. Waste arisings from a high-temperature reactor with a uranium-thorium fuel cycle

    International Nuclear Information System (INIS)

    1979-09-01

    This paper presents an equilibrium-recycle condition flow sheet for a high-temperature gas-cooled reactor (HTR) fuel cycle which uses thorium and high-enriched uranium (93% U-235) as makeup fuel. INFCE Working Group 7 defined percentage losses to various waste streams are used to adjust the heavy-element mass flows per gigawatt-year of electricity generated. Thorium and bred U-233 are recycled following Thorex reprocessing. Fissile U-235 is recycled one time following Purex reprocessing and then is discarded to waste. Plutonium and other transuranics are discarded to waste. Included are estimates of volume, radioactivity, and heavy-element content of wastes arising from HTR fuel element fabrication; HTR operation, maintenance, and decommissioning; and reprocessing spent fuel where the waste is unique to the HTR fuel cycle

  11. Effects of HTGR helium on the high cycle fatigue of structural materials

    International Nuclear Information System (INIS)

    Soo, P.; Sabatini, R.L.; Gerlach, L.

    1982-01-01

    High cycle fatigue tests have been conducted on Incoloy 800H and Hastelloy X in air and in HTGR helium environments containing low and high levels of moisture. For the helium environments, a higher mositure level usually gives a lower fatigue strength. For air, however, the strength is usually much lower than those for helium. For long test times at higher test temperatures, the fatigue strengths for Incoloy 800H often show a large decrease, and the fatigue limits are much lower than those anticipated from low cycle tests. Optical and scanning electron microscope observations were made to correlate fatigue life with surface and bulk microstructural changes in the material during test. Oxide scale cracking and spallation, surface recrystallization and intergranular attack appear to contribute to losses in fatigue strength

  12. Effect of cyclic pre-strain on low cycle fatigue life at middle high temperature

    International Nuclear Information System (INIS)

    Nakane, Motoki; Kanno, Satoshi; Takagi, Yoshio

    2011-01-01

    This study examined the effect of cyclic plastic pre-strain on low cycle fatigue life at middle high temperature to evaluate the structural integrity of the nuclear components introduced plastic strain to the local portion by the large seismic load. The materials selected in this study were austenitic steel (SUS316NG) and ferritic steel (SFVQ1A, STS410: JIS (Japanese Industrial Standards). The low cycle fatigue tests at RT and middle high temperature (300 degrees C) were carried out using cyclic plastic pre-strained materials. The results obtained here show that the damage by the cyclic plastic pre-strain, which is equivalent to usage factor UF=0.2, does not affect the fatigue lives of the materials. In addition, it is confirmed that the estimation based on the usage factor UF can also be useful for the life prediction at 300 degrees C as well as RT. (author)

  13. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...... amplitude. This may be utilized to develop new position estimation algorithm without involving the inductance in the medium to high speed range. As an application example, a developed inductance independent position estimation algorithm using the proposed high frequency injection method is applied to drive...... injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...

  14. What prospects for soil carbon sequestration in the CDM? COP-6 and beyond

    International Nuclear Information System (INIS)

    Ringius, L.

    2001-01-01

    Although generally supported by international experts and the United Nations Intergovernmental Panel on Climate Change (IPCC), carbon (C) sequestration has long been a contentious and difficult issue in global climate negotiations. As the recent sixth Conference of the Parties (COP-6) held in The Hague in November 2000 demonstrated, the 'sinks' issue divides both the industrialized countries and the developing countries. To understand the background of the C sink controversy, and in order to assess the political acceptability of direct foreign investments in soil C sequestration in developing countries as an eligible climate policy measure, this paper briefly summarizes the main issues in the international policy debate on sinks. The paper finally analyzes the informal outcomes of COP-6 and attempts to predict the outcomes of the resumed COP-6 (COP-6 bis) to be held in July 2001. (author)

  15. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  16. Three-Dimensional Water and Carbon Cycle Modeling at High Spatial-Temporal Resolutions

    Science.gov (United States)

    Liao, C.; Zhuang, Q.

    2017-12-01

    Terrestrial ecosystems in cryosphere are very sensitive to the global climate change due to the presence of snow covers, mountain glaciers and permafrost, especially when the increase in near surface air temperature is almost twice as large as the global average. However, few studies have investigated the water and carbon cycle dynamics using process-based hydrological and biogeochemistry modeling approach. In this study, we used three-dimensional modeling approach at high spatial-temporal resolutions to investigate the water and carbon cycle dynamics for the Tanana Flats Basin in interior Alaska with emphases on dissolved organic carbon (DOC) dynamics. The results have shown that: (1) lateral flow plays an important role in water and carbon cycle, especially in dissolved organic carbon (DOC) dynamics. (2) approximately 2.0 × 104 kg C yr-1 DOC is exported to the hydrological networks and it compromises 1% and 0.01% of total annual gross primary production (GPP) and total organic carbon stored in soil, respectively. This study has established an operational and flexible framework to investigate and predict the water and carbon cycle dynamics under the changing climate.

  17. Graphene and maghemite composites based supercapacitors delivering high volumetric capacitance and extraordinary cycling stability

    International Nuclear Information System (INIS)

    Zhang, Haitao; Zhang, Xiong; Lin, He; Wang, Kai; Sun, Xianzhong; Xu, Nansheng; Li, Chen; Ma, Yanwei

    2015-01-01

    Metal oxides (like MnO 2 , Fe 2 O 3 , and Co 3 O 4 , etc) based supercapacitors have disadvantages, such as low volumetric capacitance for thick-film electrodes, or short cycling life because a Faradaic process involves chemical changes of state of the reactant species. In the present work, we report that supercapacitors based on reduced graphene oxide and maghemite (γ-Fe 2 O 3 ) composites (GγM) exhibit superior performance. GγM electrodes with average electrode thickness up to ∼60 μm have a high volumetric capacitance of 230 F cm −3 , together with an outstanding electrode package density of 1.44 g cm −3 . Particularly, the GγM electrodes have excellent cycling performance of ∼90% capacitance retention over 100,000 galvanostatic charge–discharge cycles or voltage floating at 0.9 V for 300 h. No detectable change in phase and an effective inhibition of γ-Fe 2 O 3 refinement after cycle-life test are confirmed by X-ray diffraction and transmission electron microscopy

  18. A design of high resolution one-clock-cycle TDC based on FPGA

    International Nuclear Information System (INIS)

    Qi Ji; Deng Zhi; Liu Yinong

    2011-01-01

    It describes an FPGA-based high resolution TDC. Using delay chain and Wave Union methods, this TDC has a resolution of 9 ps, which is comparable to ASIC TDC. The design uses XORs and MUXs to implement a quick 1 -cycle encoder, which reduces the dead time. Self-calibration method makes the design easy to be migrated into other FPGAs. This TDC can be used in TOF experiment, medical imaging system, etc (authors)

  19. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  20. High-cycle fatigue of Ni-base superalloy Inconel 713LC

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Konečná, R.

    2010-01-01

    Roč. 32, č. 6 (2010), s. 908-913 ISSN 0142-1123 R&D Projects: GA MPO FT-TA4/023; GA MŠk MEB080812 Institutional research plan: CEZ:AV0Z20410507 Keywords : IN 713LC * High-cycle fatigue * Effect of mean stress * Fractography * Casting defetcts * Extreme value statistics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.799, year: 2010

  1. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Science.gov (United States)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  2. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Directory of Open Access Journals (Sweden)

    Burmistrov Andrey

    2018-01-01

    Full Text Available The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  3. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  4. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.

    2011-11-22

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Three-Dimensional Sensor Common Operating Picture (3-D Sensor COP)

    Science.gov (United States)

    2017-01-01

    DEMs that have been computed from the point clouds . Additionally, Fusion3D can also display 3-D data created using photogrammetry software...Picture (3-D Sensor COP). To test the 3-D Sensor COP, we took advantage of a sensor network that had been deployed for the Enterprise Challenge 2016 at...took advantage of a sensor network that had been deployed for the Enterprise Challenge 2016 (EC16) at Fort Huachuca in Sierra Vista, Arizona. The

  6. Increase of COP for heat transformer in water purification systems. Part I - Increasing heat source temperature

    International Nuclear Information System (INIS)

    Siqueiros, J.; Romero, R.J.

    2007-01-01

    The integration of a water purification system in a heat transformer allows a fraction of heat obtained by the heat transformer to be recycled, increasing the heat source temperature. Consequently, the evaporator and generator temperatures are also increased. For any operating conditions, keeping the condenser and absorber temperatures and also the heat load to the evaporator and generator, a higher value of COP is obtained when only the evaporator and generator temperatures are increased. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as the working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and the increase in the coefficient of performance (COP) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that proposed (AHTWP) system is capable of increasing the original value of COP ET more than 120%, by recycling part of the energy from a water purification system. The proposed system allows to increase COP values from any experimental data for water purification or any other distillation system integrated to a heat transformer, regardless of the actual COP value and any working fluid-absorbent pair

  7. FACEBOOK for CoP of Researchers: Identifying the Needs and Evaluating the Compatibility

    Directory of Open Access Journals (Sweden)

    Sami Miniaoui

    2011-11-01

    Full Text Available Communities of practice (CoPs are increasingly capturing the interest of many fields such as business companies, education and organizations. Many CoPs were developed for people who have common interest in healthcare, agriculture and environment, and teaching. However, there is lack of COPs dedicated for researchers. This research aims to explore the appropriateness of Facebook (FB as a platform for serving a CoP of researchers. To achieve this goal, first we identify the needs of CoPs for researchers within UAE context. Consequently, we adopted qualitative research approach to elicit the needs. We applied the grounded theory method to analyze the data. The results of the analysis showed seven main needs: collaboration, debating, awareness/ notification, reference management, cross search, customization, tracking, and user orientation. Secondly, we evaluated the compatibility of FB features to the identified needs. Although we found that FB covers most of CoPs needs, there are few needs which are not met successfully so this raised some technical and practical issues, which have been highlighted in the paper.

  8. Life?cycle impacts of ethanol production from spruce wood chips under high-gravity conditions

    OpenAIRE

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Background Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life?cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. Results The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main p...

  9. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  10. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  11. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy

    International Nuclear Information System (INIS)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially improve the efficiency with which high and intermediate temperature finite thermal sources are utilized. The OFC's aim is to improve temperature matching and reduce exergy losses during heat addition. A theoretical investigation is conducted using high accuracy equations of state such as BACKONE, Span–Wagner, and REFPROP in a detailed thermodynamic and exergetic analysis. The study examines 10 different aromatic hydrocarbons and siloxanes as potential working fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC), a zeotropic Rankine cycle using a binary ammonia-water mixture, and a transcritical CO 2 cycle. Results showed aromatic hydrocarbons to be the better suited working fluid for the ORC and OFC due to higher power output and less complex turbine designs. Results also showed that the single flash OFC achieves comparable utilization efficiencies to the optimized basic ORC. Although the OFC improved heat addition exergetic efficiency, this advantage was negated by irreversibilities introduced during flash evaporation. A number of potentially significant improvements to the OFC are possible though which includes using a secondary flash stage or replacing the throttling valve with a two-phase expander. -- Highlights: ► The Organic Flash Cycle (OFC) is proposed to improve temperature matching. ► Ten aromatic hydrocarbon and siloxane working fluids are considered. ► Accurate equations of state explicit in Helmholtz energy are used in the analysis. ► The OFC is compared to basic ORCs, zeotropic, and transcritical cycles. ► The OFC achieves comparable power output to the optimized basic ORC.

  12. Interaction of high cycle fatigue and creep in 9%Cr-1%Mo steel at elevated temperature

    International Nuclear Information System (INIS)

    Vasina, R.; Lukas, P.; Kunz, L.; Sklenicka, V.

    1995-01-01

    High-cycle-fatigue/creep experiments were performed on a 9%Cr-1%Mo tempered martensite ferritic steel at 873 K in air. The stress ratio R = σ min /σ max ranged from -1 (''pure'' fatigue) to 1 (''pure'' creep). The maximum stress σ max was kept constant at 240 MPa.The lifetime depends on the stress ratio R in a non-monotonic way. In the stress ratio interval 0.6 mean of the stress cycle. In the stress ratio interval -1 a . The fatigue/creep interaction occurs in between these intervals. The fatigue/creep loading induces transformation of the tempered martensite ferritic structure into an equiaxed subgrain structure. The resulting subgrain size depends strongly on the stress ratio. (author)

  13. Notch size effects on high cycle fatigue limit stress of Udimet 720

    International Nuclear Information System (INIS)

    Ren Weiju; Nicholas, Theodore

    2003-01-01

    Notch size effects on the high cycle fatigue (HCF) limit stress of Ni-base superalloy Udimet 720 were investigated on cylindrical specimens with three notch sizes of the same stress concentration factor K t =2.74. The HCF limit stress corresponding to a life of 10 6 cycles was experimentally determined at a stress ratio of 0.1 and a frequency of 25 Hz at room temperature. The stresses were calculated using finite element analysis (FEA) and the specimens analyzed using scanning electron microscopy (SEM). Test results show that at the same K t value, notch size can slightly affect the HCF limit stress of U720 when notch root plasticity occurs. FEA and SEM results reveal that the notch size effects are influenced by a complicated combination of the stress and plastic strain fields at the notch tip, the nominal stress, and the effects of prior plastic deformation on fatigue crack initiation

  14. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  15. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings.

    Science.gov (United States)

    Zheng, Yuyu; Cui, Xuefei; Su, Liang; Fang, Shuang; Chu, Jinfang; Gong, Qingqiu; Yang, Jianping; Zhu, Ziqiang

    2017-06-01

    A germinating seedling undergoes skotomorphogenesis to emerge from the soil and reach for light. During this phase, the cotyledons are closed, and the hypocotyl elongates. Upon exposure to light, the seedling rapidly switches to photomorphogenesis by opening its cotyledons and suppressing hypocotyl elongation. The E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is critical for maintaining skotomorphogenesis. Here, we report that jasmonate (JA) suppresses hypocotyl elongation and stimulates cotyledon opening in etiolated seedlings, partially phenocopying cop1 mutants in the dark. We also find that JA stabilizes several COP1-targeted transcription factors in a COP1-dependent manner. RNA-seq analysis further defines a JA-light co-modulated and cop1-dependent transcriptome, which is enriched for auxin-responsive genes and genes participating in cell wall modification. JA suppresses COP1 activity through at least two distinct mechanisms: decreasing COP1 protein accumulation in the nucleus; and reducing the physical interaction between COP1 and its activator, SUPPRESSOR OF PHYTOCHROME A-105 1 (SPA1). Our work reveals that JA suppresses COP1 activity to stabilize COP1 targets, thereby inhibiting hypocotyl elongation and stimulating cotyledon unfolding in etiolated Arabidopsis seedlings. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  16. The Copper Homeostasis Transcription Factor CopR Is Involved in H2O2 Stress in Lactobacillus plantarum CAUH2

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Transcriptional factors (TFs play important roles in the responses to oxidative, acid, and other environmental stresses in Gram-positive bacteria, but the regulatory mechanism of TFs involved in oxidative stress remains unknown in lactic acid bacteria. In the present work, homologous overexpression strains with 43 TFs were constructed in the Lactobacillus plantarum CAUH2 parent strain. The strain overexpressing CopR displayed the highest sensitivity and a 110-fold decrease in survival rate under H2O2 challenge. The importance of CopR in the response to H2O2 stress was further confirmed by a 10.8-fold increase in the survival of a copR insertion mutant. In silico analysis of the genes flanking copR revealed putative CopR-binding “cop box” sequences in the promoter region of the adjacent gene copB encoding a Cu2+-exporting ATPase. Electrophoretic mobility shift assay (EMSA analysis demonstrated the specific binding of CopR with copB in vitro, suggesting copB is a target gene of CopR in L. plantarum. The role of CopB involved in oxidative stress was verified by the significantly decreased survival in the copB mutant. Furthermore, a growth defect in copper-containing medium demonstrated that CopB functions as an export ATPase for copper ions. Furthermore, EMSAs revealed that CopR functions as a regulator that negatively regulates copB gene and Cu2+ serves as inducer of CopR to activate the expression of CopB in response to H2O2 stress in L. plantarum CAUH2. Our findings indicated that CopR plays an important role in enhancing oxidative resistance by regulating copB to modulate copper homeostasis.

  17. Optimization of advanced high-temperature Brayton cycles with multiple reheat stages

    International Nuclear Information System (INIS)

    Haihua Zhao; Per F Peterson

    2005-01-01

    Full text of publication follows: This paper presents an overview and a few point designs for multiple-reheat Brayton cycle power conversion systems using high temperature molten salts (or liquid metals). All designs are derived from the General Atomics GT-MHR power conversion unit (PCU). The GT-MHR PCU is currently the only closed helium cycle system that has undergone detailed engineering design analysis, and that has turbomachinery which is sufficiently large to extrapolate to a >1000 MW(e) multiple reheat gas cycle power conversion system. Analysis shows that, with relatively small engineering modifications, multiple GT-MHR PCU's can be connected together to create a power conversion system in the >1000 MW(e) class. The resulting power conversion system is quite compact, and results in what is likely the minimum gas duct volume possible for a multiple-reheat system. To realize this, compact offset fin plate type liquid-to-gas heat exchangers (power densities from 10 to 120 MW/m 3 ) are needed. Both metal and non-metal heat exchangers are being investigated for high-temperature, gas-cooled reactors for temperatures to 1000 deg. C. Recent high temperature heat exchanger studies for nuclear hydrogen production has suggested that carbon-coated composite materials such as liquid silicon infiltrated chopped fiber carbon-carbon preformed material potentially could be used to fabricate plate fin heat exchangers with reasonable price. Different fluids such as helium, nitrogen and helium mixture, and supercritical CO 2 are compared for these multiple reheat Brayton cycles. Nitrogen and helium mixture cycle need about 40% more total PCU volume than helium cycle while keeping the same net cycle efficiency. Supercritical CO 2 needs very high pressure to optimize. Due to relatively detailed design for components such as heat exchangers, turbomachinery, and duct system, relatively accurate total pressure loss can be obtained, which results in more credible net efficiency

  18. Preliminary neutronic design of high burnup OTTO cycle pebble bed reactor

    International Nuclear Information System (INIS)

    Setiadipura, T.; Zuhair; Irwanto, D.

    2015-01-01

    The pebble bed type High Temperature Gas-cooled Reactor (HTGR) is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR) which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO) cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM) loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble. (author)

  19. Preliminary Neutronic Design of High Burnup OTTO Cycle Pebble Bed Reactor

    Directory of Open Access Journals (Sweden)

    T. Setiadipura

    2015-04-01

    Full Text Available The pebble bed type High Temperature Gas-cooled Reactor (HTGR is among the interesting nuclear reactor designs in terms of safety and flexibility for co-generation applications. In addition, the strong inherent safety characteristics of the pebble bed reactor (PBR which is based on natural mechanisms improve the simplicity of the PBR design, in particular for the Once-Through-Then-Out (OTTO cycle PBR design. One of the important challenges of the OTTO cycle PBR design, and nuclear reactor design in general, is improving the nuclear fuel utilization which is shown by attaining a higher burnup value. This study performed a preliminary neutronic design study of a 200 MWt OTTO cycle PBR with high burnup while fulfilling the safety criteria of the PBR design.The safety criteria of the design was represented by the per-fuel-pebble maximum power generation of 4.5 kW/pebble. The maximum burnup value was also limited by the tested maximum burnup value which maintained the integrity of the pebble fuel. Parametric surveys were performed to obtain the optimized parameters used in this study, which are the fuel enrichment, per-pebble heavy metal (HM loading, and the average axial speed of the fuel. An optimum design with burnup value of 131.1 MWd/Kg-HM was achieved in this study which is much higher compare to the burnup of the reference design HTR-MODUL and a previously proposed OTTO-cycle PBR design. This optimum design uses 17% U-235 enrichment with 4 g HM-loading per fuel pebble

  20. Replication of Annual Cycles in Mn in Hudson River Cores: Mn Peaks During High Water Flow

    Science.gov (United States)

    Abbott, D. H.; Hutson, D.; Marrero, A. M.; Block, K. A.; Chang, C.; Cai, Y.

    2017-12-01

    Using the results from an ITRAX, XRF scanner, we previously reported apparent annual cycles in Mn in a single, high sedimentation rate Hudson River core, LWB1-8, taken off Yonkers, NY (Carlson et al., 2016). We replicated these results in three more high sedimentation rate cores and found stratigraphic markers that verify our inferences about the annual nature of the Mn cycles. The three new cores are LWB4-5 taken off Peekskill, NY, and LWB3-44 and LWB3-25, both taken in Haverstraw Bay. The cores are from water depths of 7-9 meters and all have high magnetic susceptibilities (typically > 30 cgs units) in their upper 1 to 2 meters. The high susceptibilities are primarily produced by magnetite from modern industrial combustion. One core, LWB1-8, has reconnaissance Cs dates that verify the annual nature of the cycles. More Cs dates are expected before the meeting. We developed several new methods of verifying the annual nature of our layer counts. The first is looking at the grain size distribution and age of layers with unusually high Mn peaks. Peaks in Si, Ni and Ti and peaks in percentage of coarse material typically accompany the peaks in Mn. Some are visible as yellow sandy layers. The five highest peaks in Mn in LWB1-8 have layer counted ages that correspond (within 1 year in the top meter and within 2 years in the bottom meter) to 1996, 1948, 1913, 1857 and 1790. The latter three events are the three largest historical spring freshets on the Hudson. 1996 is a year of unusually high flow rate during the spring freshet. Based on our work and previous work on Mn cycling in rivers, we infer that the peaks in Mn are produced by extreme erosional events that erode sediment and release pore water Mn into the water column. The other methods of testing our chronology involve marine storms that increase Ca and Sr and a search for fragments of the Peekskill meteorite that fell in October 1992. More information on the latter will be available by the meeting.

  1. High-response intrauterine insemination cycles converted to low-cost in vitro fertilization

    Directory of Open Access Journals (Sweden)

    Aletebi F

    2011-05-01

    Full Text Available Fatma AletebiAssisted Reproduction Unit, Department of Obstetrics and Gynaecology, King Abdulaziz University, Soliman Fakeeh Hospital, Jeddah, Saudi ArabiaBackground: There is a trend to cancel intrauterine insemination (IUI in women with a high response. The aim of this study was to evaluate the efficacy of low-cost in vitro fertilization (IVF in high-response IUI cycles in comparison with conventional IVF.Methods and materials: A total of 46 women were included in the study. Group A (study group included 23 women with hyper-response to IUI cycles who were converted to IVF. They received oral letrozole 2.5 mg twice daily from days 3–7 of the menstrual cycle, along with 75 International Units (IU of recombinant follicle-stimulating hormone on days 3 and 8. Group B (control group underwent conventional IVF, and received downregulation with a gonadotrophin-releasing hormone agonist followed by stimulation with recombinant follicle-stimulating hormone 150–300 IU/day. Ovulation was triggered by 10,000 IU of human chorionic gonadotrophin, followed by IVF and embryo transfer. The primary outcome measure analyzed was pregnancy rates in both groups.Results: The study group received a significantly lower (P = 0.001 total dose of follicle-stimulating hormone and had significantly (P = 0.002 decreased levels of terminal estradiol. Although the pregnancy rate (30.43% in the study group versus 39.13% in the conventional group per stimulated cycle was higher in the conventional IVF group, the miscarriage rate (study group 4.34% versus conventional group 13.04% was also higher, and hence the take-home baby rate (study group 26.08% versus conventional group 30.43% was more or less similar in both the groups.Conclusion: IVF can be offered to women having a high response to IUI cycles with good pregnancy rates and at low cost compared with use of a conventional protocol, and therefore can be considered more patient-friendly in selected cases.Keywords: low

  2. In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xudong, E-mail: lxdong0700@hotmail.com; Du, Jinhui; Deng, Qun

    2013-12-20

    High temperature tension and low cycle fatigue experiments of IN718 alloy have been performed in the electro-hydraulic servo system with scanning electron microscope at 455 °C. Fatigue crack initiation and propagation process are investigated in situ. Results show that the carbide and twin grain are the crack source of the low cycle fatigue of IN718 alloy, and the low cycle fatigue life of the alloy increases with the decrease in grain size.

  3. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    International Nuclear Information System (INIS)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L.; Saito, M.

    2003-01-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, 237 Np, 238 Pu, 231 Pa, 232 U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations

  4. Fuel cycles with high fuel burn-up: analysis of reactivity coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Shmelev, A.N.; Ternovykh, M.J.; Tikhomirov, G.V.; Jinhong, L. [Moscow Engineering Physics Institute (State University) (Russian Federation); Saito, M. [Tokyo Institute of Technology (Japan)

    2003-07-01

    Fuel cycles of light-water reactors (LWR) with high fuel burn-up (above 100 MWd/kg), as a rule, involve large amounts of fissionable materials. It leads to forming the neutron spectrum harder than that in traditional LWR. Change of neutron spectrum and significant amount of non-traditional isotopes (for example, {sup 237}Np, {sup 238}Pu, {sup 231}Pa, {sup 232}U) in such fuel compositions can alter substantially reactivity coefficients as compared with traditional uranium-based fuel. The present work addresses the fuel cycles with high fuel burn-up which are based on Th-Pa-U and U-Np-Pu fuel compositions. Numerical analyses are carried out to determine effective neutron multiplication factor and void reactivity coefficient (VRC) for different values of fuel burn-up and different lattice parameters. The algorithm is proposed for analysis of isotopes contribution to these coefficients. Various ways are considered to upgrade safety of nuclear fuel cycles with high fuel burn-up. So, the results obtained in this study have demonstrated that: -1) Non-traditional fuel compositions developed for achievement of high fuel burn-up in LWR can possess positive values of reactivity coefficients that is unacceptable from the reactor operation safety point of view; -2) The lattice pitch of traditional LWR is not optimal for non-traditional fuel compositions, the increased value of the lattice pitch leads to larger value of initial reactivity margin and provides negative VRC within sufficiently broad range of coolant density; -3) Fuel burn-up has an insignificant effect on VRC dependence on coolant density, so, the measures undertaken to suppress positive VRC of fresh fuel will be effective for partially burnt-up fuel compositions also and; -4) Increase of LWR core height and introduction of additional moderators into the fuel lattice can be used as the ways to reach negative VRC values for full range of possible coolant density variations.

  5. Surface-finish effects on the high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1981-06-01

    Alloy 718 us a precipitation-hardening nickel-base superalloy that is being specified for various components for liquid-meal fast breeder reactors (LMFBRs). This alloy maintains high strength at elevated temperatures making it a desirable structural material. But the property that justifies most LMFBR applications is the alloy's resistance to thermal striping damage due to its high fatigue endurance strength. Thermal striping is a high-cycle fatigue phenomenon caused by thermal stresses from the fluctuating mixing action of sodium streams of differing temperatures impinging on the metal surfaces. Most of the design data is generated from laboratory fatigue specimens with carefully controlled surface finishes prepared with a low-stress grind and buffed to a surface finish 8--12 in. Since Alloy 718 has been shown to be quite notch sensitive under cyclic loading, the detrimental effect on the high-cycle fatigue properties caused by shop surface finishes of actual components has been questioned. This report examines some of the surface finishes that could be produced in a commercial shop on an actual component

  6. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  7. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  8. WESF cesium capsule behavior at high temperature or during thermal cycling

    International Nuclear Information System (INIS)

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive 137 Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800 0 C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs

  9. The role of high cycle fatigue (HCF) onset in Francis runner reliability

    International Nuclear Information System (INIS)

    Gagnon, M; Tahan, S A; Bocher, P; Thibault, D

    2012-01-01

    High Cycle Fatigue (HCF) plays an important role in Francis runner reliability. This paper presents a model in which reliability is defined as the probability of not exceeding a threshold above which HCF contributes to crack propagation. In the context of combined Low Cycle Fatigue (LCF) and HCF loading, the Kitagawa diagram is used as the limit state threshold for reliability. The reliability problem is solved using First-Order Reliability Methods (FORM). A study case is proposed using in situ measured strains and operational data. All the parameters of the reliability problem are based either on observed data or on typical design specifications. From the results obtained, we observed that the uncertainty around the defect size and the HCF stress range play an important role in reliability. At the same time, we observed that expected values for the LCF stress range and the number of LCF cycles have a significant influence on life assessment, but the uncertainty around these values could be neglected in the reliability assessment.

  10. Why is solar cycle 24 an inefficient producer of high-energy particle events?

    Science.gov (United States)

    Vainio, Rami; Raukunen, Osku; Tylka, Allan J.; Dietrich, William F.; Afanasiev, Alexandr

    2017-08-01

    Aims: The aim of the study is to investigate the reason for the low productivity of high-energy SEPs in the present solar cycle. Methods: We employ scaling laws derived from diffusive shock acceleration theory and simulation studies including proton-generated upstream Alfvén waves to find out how the changes observed in the long-term average properties of the erupting and ambient coronal and/or solar wind plasma would affect the ability of shocks to accelerate particles to the highest energies. Results: Provided that self-generated turbulence dominates particle transport around coronal shocks, it is found that the most crucial factors controlling the diffusive shock acceleration process are the number density of seed particles and the plasma density of the ambient medium. Assuming that suprathermal populations provide a fraction of the particles injected to shock acceleration in the corona, we show that the lack of most energetic particle events as well as the lack of low charge-to-mass ratio ion species in the present cycle can be understood as a result of the reduction of average coronal plasma and suprathermal densities in the present cycle over the previous one.

  11. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel; Velasco, Abanades

    2013-01-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U 233 , Th+Pu 239 and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  12. Thorium-Based Fuel Cycles in the Modular High Temperature Reactor

    Institute of Scientific and Technical Information of China (English)

    CHANG Hong; YANG Yongwei; JING Xingqing; XU Yunlin

    2006-01-01

    Large stockpiles of civil-grade as well as weapons-grade plutonium have been accumulated in the world from nuclear power or other programs of different countries. One alternative for the management of the plutonium is to incinerate it in the high temperature reactor (HTR). The thorium-based fuel cycle was studied in the modular HTR to reduce weapons-grade plutonium stockpiles, while producing no additional plutonium or other transuranic elements. Three thorium-uranium fuel cycles were also investigated. The thorium absorption cross sections of the resolved and unresolved resonances were generated using the ZUT-DGL code based on existing resonance data. The equilibrium core of the modular HTR was calculated and analyzed by means of the code VSOP'94. The results show that the modular HTR can incinerate most of the initially loaded plutonium amounting to about 95.3% net 239Pu for weapons-grade plutonium and can effectively utilize the uranium and thorium in the thorium-uranium fuel cycles.

  13. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  14. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  15. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  16. Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings

    Directory of Open Access Journals (Sweden)

    Kimberly Bawden

    2015-04-01

    Full Text Available We undertake Life Cycle Assessment (LCA of the cumulative energy demand (CED and global warming potential (GWP for a portfolio of 10 multi-family residences in the U.S. We argue that prior LCA studies of buildings use an inconsistent boundary for processes to be included in the supply chain: The operational phase includes all energy use in a building, but supply chains for the production of appliances, equipment and consumables associated with activities done in the building are neglected. We correct this by starting the analysis with an explicit definition of a functional unit, providing climate controlled space, and including processes associated with this functional unit. Using a hybrid LCA approach, the CED for low, mid and high-rise multi-family residences is found to increase from 30, 34, to 39 GJ/m2, respectively. This increase is due to the need for energy-intensive structural materials such as concrete and steel in taller buildings. With our approach, the share of materials and construction of total life cycle energy doubles to 26%, compared with a 13% share that would be obtained with inconsistent system boundaries used in prior studies. We thus argue that explicit definition of functional unit leads to an increase in the contribution of supply chains to building energy life cycles.

  17. Molecular Materials for Nonaqueous Flow Batteries with a High Coulombic Efficiency and Stable Cycling.

    Science.gov (United States)

    Milton, Margarita; Cheng, Qian; Yang, Yuan; Nuckolls, Colin; Hernández Sánchez, Raúl; Sisto, Thomas J

    2017-12-13

    This manuscript presents a working redox battery in organic media that possesses remarkable cycling stability. The redox molecules have a solubility over 1 mol electrons/liter, and a cell with 0.4 M electron concentration is demonstrated with steady performance >450 cycles (>74 days). Such a concentration is among the highest values reported in redox flow batteries with organic electrolytes. The average Coulombic efficiency of this cell during cycling is 99.868%. The stability of the cell approaches the level necessary for a long lifetime nonaqueous redox flow battery. For the membrane, we employ a low cost size exclusion cellulose membrane. With this membrane, we couple the preparation of nanoscale macromolecular electrolytes to successfully avoid active material crossover. We show that this cellulose-based membrane can support high voltages in excess of 3 V and extreme temperatures (-20 to 110 °C). These extremes in temperature and voltage are not possible with aqueous systems. Most importantly, the nanoscale macromolecular platforms we present here for our electrolytes can be readily tuned through derivatization to realize the promise of organic redox flow batteries.

  18. Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric "Live High-Train Low"

    DEFF Research Database (Denmark)

    Bejder, Jacob; Andersen, Andreas Breenfeldt; Buchardt, Rie

    2017-01-01

    The aim was to investigate whether 6 weeks of normobaric "Live High-Train Low" (LHTL) using altitude tents affect highly trained athletes incremental peak power, 26-km time-trial cycling performance, 3-min all-out performance, and 30-s repeated sprint ability. In a double-blinded, placebo......-controlled cross-over design, seven highly trained triathletes were exposed to 6 weeks of normobaric hypoxia (LHTL) and normoxia (placebo) for 8 h/day. LHTL exposure consisted of 2 weeks at 2500 m, 2 weeks at 3000 m, and 2 weeks at 3500 m. Power output during an incremental test, ~26-km time trial, 3-min all...... conducted in a double-blinded, placebo-controlled cross-over design do not affect power output during an incremental test, a ~26-km time-trial test, or 3-min all-out exercise in highly trained triathletes. Furthermore, 30 s of repeated sprint ability was unaltered....

  19. Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Thomas

    2016-07-01

    Materials in many modern small-scale applications are under complex cyclic stress states and undergo up to 10{sup 9} cycles. Fatigue mechanisms limit their lifetime and lead to failure. Therefore, the Very High Cycle Fatigue (VHCF) regime needs to be studied. This thesis investigates the fatigue mechanisms and crack initiation of nickel, aluminum and copper on a small-scale in the VHCF regime by means of innovative fatigue experimentation. Firstly, the development and implementation of a novel custom-built resonant fatigue setup showed that the resonant frequency of bending micro-samples changes with increasing cycle number due to the accumulating fatigue damage. Then, additional insights on early damage formation have been explored. Mechanisms, prior to crack initiation, such as slip band formation at a state where it appears in only a few grains, have been observed. Cyclic hardening, vacancy formation and oxidation formation may be considered as possible explanations for early fatigue mechanisms. In addition, the new experimental setup can be used to define parameters needed for crack initiation models. Finally, these crack initiation processes have been experimentally examined for pure aluminum and pure copper.

  20. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  1. Initial high anti-emetic efficacy of granisetron with dexamethasone is not maintained over repeated cycles.

    Science.gov (United States)

    de Wit, R.; van den Berg, H.; Burghouts, J.; Nortier, J.; Slee, P.; Rodenburg, C.; Keizer, J.; Fonteyn, M.; Verweij, J.; Wils, J.

    1998-01-01

    We have reported previously that the anti-emetic efficacy of single agent 5HT3 antagonists is not maintained when analysed with the measurement of cumulative probabilities. Presently, the most effective anti-emetic regimen is a combination of a 5HT3 antagonist plus dexamethasone. We, therefore, assessed the sustainment of efficacy of such a combination in 125 patients, scheduled to receive cisplatin > or = 70 mg m(-2) either alone or in combination with other cytotoxic drugs. Anti-emetic therapy was initiated with 10 mg of dexamethasone and 3 mg of granisetron intravenously, before cisplatin. On days 1-6, patients received 8 mg of dexamethasone and 1 mg of granisetron twice daily by oral administration. Protection was assessed during all cycles and calculated based on cumulative probability analyses using the method of Kaplan-Meier and a model for transitional probabilities. Irrespective of the type of analysis used, the anti-emetic efficacy of granisetron/dexamethasone decreased over cycles. The initial complete acute emesis protection rate of 66% decreased to 30% according to the method of Kaplan-Meier and to 39% using the model for transitional probabilities. For delayed emesis, the initial complete protection rate of 52% decreased to 21% (Kaplan-Meier) and to 43% (transitional probabilities). In addition, we observed that protection failure in the delayed emesis period adversely influenced the acute emesis protection in the next cycle. We conclude that the anti-emetic efficacy of a 5HT3 antagonist plus dexamethasone is not maintained over multiple cycles of highly emetogenic chemotherapy, and that the acute emesis protection is adversely influenced by protection failure in the delayed emesis phase. PMID:9652766

  2. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  3. Life cycle assessment of Mexican polymer and high-durability cotton paper banknotes.

    Science.gov (United States)

    Luján-Ornelas, Cristina; Mancebo Del C Sternenfels, Uriel; Güereca, Leonor Patricia

    2018-02-23

    This study compares the environmental performance of Mexican banknotes printed on high-durability cotton paper (HD paper) and thermoplastic polymer (polymer) through a life cycle assessment to appraise the environmental impacts from the extraction of raw materials to the final disposal of the banknotes. The functional unit was defined considering the next parameters: 1) lifespan of the banknotes, stablished in 31.5 and 54months for HD paper and polymer, respectively; 2) denomination, selecting $200 pesos banknotes; 3) a 5year time frame and 4) a defined amount of money, in this case stablished as the monthly cash supply of an average Mexican household, equaling $12,708 pesos. Accordingly, 121 pieces for the HD paper and 71 pieces for the polymer banknotes were analyzed. The results favor the banknotes printed on polymer substrate primarily because of the longer lifespan of this type of material; however, there is a considerable environmental impact in the stages of distribution, followed by the extraction of the raw materials (crude oil) during manufacturing. Regarding the HD cotton paper, the major impact corresponds to extraction of the raw materials, followed by the distribution of the banknotes. The inclusion of the automatic teller machines (ATMs) in the life cycle assessment of banknotes shows that the electricity required by these devices became the largest contributor to the environmental impacts. Additionally, the sensitivity analysis that the average lifetime of the banknotes is a determining factor for the environmental impacts associated with the whole life cycle of this product. The life cycle stages that refer to the extraction of the raw materials, combined with the average lifetime of the banknotes and the electricity required during the usage stage, are determining factors in the total environmental impact associated with Mexican banknotes. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    International Nuclear Information System (INIS)

    Murari, Krishna

    2017-04-01

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  5. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  6. Life-cycle assessment of high-speed rail: the case of California

    International Nuclear Information System (INIS)

    Chester, Mikhail; Horvath, Arpad

    2010-01-01

    The state of California is expected to have significant population growth in the next half-century resulting in additional passenger transportation demand. Planning for a high-speed rail system connecting San Diego, Los Angeles, San Francisco, and Sacramento as well as many population centers between is now underway. The considerable investment in California high-speed rail has been debated for some time and now includes the energy and environmental tradeoffs. The per-trip energy consumption, greenhouse gas emissions, and other emissions are often compared against the alternatives (automobiles, heavy rail, and aircraft), but typically only considering vehicle operation. An environmental life-cycle assessment of the four modes was created to compare both direct effects of vehicle operation and indirect effects from vehicle, infrastructure, and fuel components. Energy consumption, greenhouse gas emissions, and SO 2 , CO, NO X , VOC, and PM 10 emissions were evaluated. The energy and emission intensities of each mode were normalized per passenger kilometer traveled by using high and low occupancies to illustrate the range in modal environmental performance at potential ridership levels. While high-speed rail has the potential to be the lowest energy consumer and greenhouse gas emitter, appropriate planning and continued investment would be needed to ensure sustained high occupancy. The time to environmental payback is discussed highlighting the ridership conditions where high-speed rail will or will not produce fewer environmental burdens than existing modes. Furthermore, environmental tradeoffs may occur. High-speed rail may lower energy consumption and greenhouse gas emissions per trip but can create more SO 2 emissions (given the current electricity mix) leading to environmental acidification and human health issues. The significance of life-cycle inventorying is discussed as well as the potential of increasing occupancy on mass transit modes.

  7. High-temperature reactors. Activities in France on the steam cycle HTR

    International Nuclear Information System (INIS)

    Lacoste Lareymondie, de; Guennec, N.; Rastoin, J.

    1975-01-01

    Although French activities cover all the possibilities of high-temperature reactors the effort of the last few years has been concentrated on the steam cycle electricity-generating version. This work, closely coordinated with that of General Atomic in application of agreements settled in 1972 and 1973, was devoted to engineering as a result of the assimilation of American technique by French industry and to research and development owing to the joint CEA and GA programme. After an examination of these two centers of activity the reasons which will lead to a closer collaboratin among the European partners of General Atomic are expressed in conclusion [fr

  8. Very high cycle fatigue crack initiation in electroplated Ni films under extreme stress gradients

    International Nuclear Information System (INIS)

    Baumert, E.K.; Pierron, O.N.

    2012-01-01

    A characterization technique based on kilohertz micro-resonators is presented to investigate the very high cycle fatigue behavior of 20 μm thick electroplated Ni films with a columnar microstructure (grain diameter less than 2 μm). The films exhibit superior fatigue resistance due to the extreme stress gradients at the surface. The effects of stress amplitude and environment on the formation of fatigue extrusions and micro-cracks are discussed based on scanning electron microscopy and the tracking of the specimens’ resonant frequency.

  9. Development of a high cycle vibration fatigue diagnostic system with non-contact vibration sensing

    International Nuclear Information System (INIS)

    Doi, So-myo; Nekomoto, Yoshitsugu; Takeishi, Masayuki; Miyoshi, Toshiaki; O'shima, Eiji

    1999-01-01

    In nuclear power plants, it is very important to foresee occurring events with in-operation -inspection (IOI) since the foreseeing makes plant maintenance more speedy and reliable. Moreover, information on plant condition under operating would make period of in-service inspection (ISI) shorter because maintenance plan can be made effectively using the information. In this study, a high cycle fatigue diagnostic system is being developed applying to especially pipe branches with small diameter under in-operating condition, which are in the radioactive areas of PWR plants and hard to access. This paper presents a concept of the in-operating diagnostic system and current status of developing sensing systems. (author)

  10. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  11. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  12. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  13. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    Science.gov (United States)

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  14. High-frequency oscillations in human and monkey neocortex during the wake–sleep cycle

    Science.gov (United States)

    Le Van Quyen, Michel; Muller, Lyle E.; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G.; Dehghani, Nima; Destexhe, Alain

    2016-01-01

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake–sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS. PMID:27482084

  15. Control rod studies for alternative fuel cycles in the GA 1160 MW(e) high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neef, H. J.

    1975-06-15

    The control system, which is investigated in this paper for both the low enriched uranium high enriched uranium/thorium fuel cycles, has been developed to control the General Atomics (GA) thorium fuel cycle 1160 MW(e) reactor. It has been shown in this investigation that its effectiveness in the low enriched and subsequent thorium cycle switch-over reactor is equivalent to the effectiveness in the thorium cycle. The shutdown margin in the low enriched core is even higher compared to the thorium core, mainly due to the presence of Pa-233 in the thorium cycle. As long as the fuel cycle for the thorium cycle is not closed with the recycling of U-233, the low enriched cycle will offer an attractive alternative. It was found that the GA 1160 MW(e) control system has enough built-in control rod capacity to accommodate the low enriched uranium cycle and to perform a later switch-over to a thorium-based fuel cycle.

  16. Optimization of advenced liquid natural gas-fuelled combined cycle machinery systems for a high-speed ferry

    DEFF Research Database (Denmark)

    Tveitaskog, Kari Anne; Haglind, Fredrik

    2012-01-01

    . Furthermore, practical and operational aspects of using these three machinery systems for a high-speed ferry are discussed. Two scenarios are evaluated. The first scenario evaluates the combined cycles with a given power requirement, optimizing the combined cycle while operating the gas turbine at part load...

  17. SCFR Fuel Cycles and Their Impact on the Performance of High-Level Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Daisuke; Nogi, Naoyuki; Saito, Takumi [Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Nagasaki, Shinya [Nuclear Professional School, Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata Shirane, Tokai, Ibaraki, 319-1188 (Japan)

    2009-06-15

    The concept of supercritical-pressure light water cooled fast reactor (SCFR) is developed and studied at the University of Tokyo. The impact of disposal of the waste generated in a fuel cycle with SCFR is also investigated in the project. It is of great interest how a fuel cycle with SCFR compares to the other fuel cycles from the back-end view point. With its various neutron spectrum, SCFR may be used to transmute both actinides and fission products. The objective of the present study is to evaluate and compare multiple fuel cycle designs in order to investigate the effects of SCFR and its transmutation capability upon the back-end risks. Three designs of fuel cycle are considered for evaluation in the present study. First, a simple fuel cycle with PWR and recycling is considered. The spent fuel from the PWR is reprocessed to recover uranium and plutonium, and the rest of the radioactive nuclides are vitrified and disposed of in a geologic repository. In the second design, the recovered uranium and plutonium in the reprocessing of PWR spent fuel is fabricated into a MOX fuel and irradiated in SCFR. The spent fuel from the SCFR is reprocessed to recover uranium and plutonium. In the third design, actinide elements are also separated from the PWR spent fuel and is loaded as the blanket fuel in SCFR core together with the MOX fuel fabricated from the recovered uranium and plutonium. In the same way as in the second design, the spent fuel from the SCFR is reprocessed to recover uranium and plutonium. In the second and the third designs, there are two streams of highly radioactive waste; one from the reprocessing (separation process) of the PWR spent fuel, and the other from the reprocessing of the SCFR spent fuel. Numerical codes Origen2.1 and SWAT is used for fuel irradiation calculation. The performance of the high-level radioactive waste repository is evaluated for each design of fuel cycle. It is assumed that the repository is located in a water-saturated geologic

  18. Analysis of a combined Rankine-vapour-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Aphornratana, Satha; Sriveerakul, Thanarath

    2010-01-01

    This paper describes a theoretical analysis of a heat-powered refrigeration cycle, a combined Rankine-vapour-compression refrigeration cycle. This refrigeration cycle combines an Organic Rankine Cycle and a vapour-compression cycle. The cycle can be powered by low grade thermal energy as low as 60 deg. C and can produce cooling temperature as low as -10 deg. C. In the analysis, two combined Rankine-vapour-compression refrigeration cycles were investigated: the system with R22 and the system with R134a. Calculated COP values between 0.1 and 0.6 of both the systems were found.

  19. Fingerprinting and diversity of bacterial copA genes in response to soil types, soil organic status and copper contamination.

    Science.gov (United States)

    Lejon, David P H; Nowak, Virginie; Bouko, Sabrina; Pascault, Noémie; Mougel, Christophe; Martins, Jean M F; Ranjard, Lionel

    2007-09-01

    A molecular fingerprinting assay was developed to assess the diversity of copA genes, one of the genetic determinants involved in bacterial resistance to copper. Consensus primers of the copA genes were deduced from an alignment of sequences from proteobacterial strains. A PCR detection procedure was optimized for bacterial strains and allowed the description of a novel copA genetic determinant in Pseudomonas fluorescens. The copA DNA fingerprinting procedure was optimized for DNA directly extracted from soils differing in their physico-chemical characteristics and in their organic status (SOS). Particular copA genetic structures were obtained for each studied soil and a coinertia analysis with soil physico-chemical characteristics revealed the strong influence of pH, soil texture and the quality of soil organic matter. The molecular phylogeny of copA gene confirmed that specific copA genes clusters are specific for each SOS. Furthermore, this study demonstrates that this approach was sensitive to short-term responses of copA gene diversity to copper additions to soil samples, suggesting that community adaptation is preferentially controlled by the diversity of the innate copA genes rather than by the bioavailability of the metal.

  20. Reliability high cycle fatigue design of gas turbine blading system using probabilistic goodman diagram

    Energy Technology Data Exchange (ETDEWEB)

    Herman Shen, M.-H. [Ohio State Univ., Columbus, OH (United States). Dept. of Aerospace Engineering and Aviation; Nicholas, T. [MLLN, Wright-Patterson AFB, OH (United States). Air Force Research Lab.

    2001-07-01

    A framework for the probabilistic analysis of high cycle fatigue is developed. The framework will be useful to U.S. Air Force and aeroengine manufacturers in the design of high cycle fatigue in disk or compressor components fabricated from Ti-6Al-4V under a range of loading conditions that might be encountered during service. The main idea of the framework is to characterize vibratory stresses from random input variables due to uncertainties such as crack location, loading, material properties, and manufacturing variability. The characteristics of such vibratory stresses are portrayed graphically as histograms, or probability density function (PDF). The outcome of the probability measures associated with all the values of a random variable exceeding the material capability is achieved by a failure function g(X) defined by the difference between the vibratory stress and Goodman line or surface such that the probability of HCF failure is P{sub f} =P(g(X<0)). Design can then be based on a go-no go criterion based on an assumed risk. The framework can be used to facilitate the development of design tools for the prediction of inspection schedules and reliability in aeroengine components. Such tools could lead ultimately to improved life extension schemes in aging aircraft, and more reliable methods for the design and inspection of critical components. (orig.)

  1. Two scale damage model and related numerical issues for thermo-mechanical high cycle fatigue

    International Nuclear Information System (INIS)

    Desmorat, R.; Kane, A.; Seyedi, M.; Sermage, J.P.

    2007-01-01

    On the idea that fatigue damage is localized at the microscopic scale, a scale smaller than the mesoscopic one of the Representative Volume Element (RVE), a three-dimensional two scale damage model has been proposed for High Cycle Fatigue applications. It is extended here to aniso-thermal cases and then to thermo-mechanical fatigue. The modeling consists in the micro-mechanics analysis of a weak micro-inclusion subjected to plasticity and damage embedded in an elastic meso-element (the RVE of continuum mechanics). The consideration of plasticity coupled with damage equations at micro-scale, altogether with Eshelby-Kroner localization law, allows to compute the value of microscopic damage up to failure for any kind of loading, 1D or 3D, cyclic or random, isothermal or aniso-thermal, mechanical, thermal or thermo-mechanical. A robust numerical scheme is proposed in order to make the computations fast. A post-processor for damage and fatigue (DAMAGE-2005) has been developed. It applies to complex thermo-mechanical loadings. Examples of the representation by the two scale damage model of physical phenomena related to High Cycle Fatigue are given such as the mean stress effect, the non-linear accumulation of damage. Examples of thermal and thermo-mechanical fatigue as well as complex applications on real size testing structure subjected to thermo-mechanical fatigue are detailed. (authors)

  2. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  3. Probabilistic multi-scale models and measurements of self-heating under multiaxial high cycle fatigue

    International Nuclear Information System (INIS)

    Poncelet, M.; Hild, F.; Doudard, C.; Calloch, S.; Weber, B.

    2010-01-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)

  4. Probabilistic multi-scale models and measurements of self-heating under multiaxial high cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Poncelet, M.; Hild, F. [Univ Paris 11, PRES, Univ Paris 06, LMT Cachan, ENS Cachan, CNRS, F-94235 Cachan (France); Doudard, C.; Calloch, S. [Univ Brest, ENIB, ENSIETA, LBMS EA 4325, F-29806 Brest, (France); Weber, B. [ArcelorMittal Maizieres Res Voie Romaine, F-57283 Maizieres Les Metz (France)

    2010-07-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as 'self-heating tests'. This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multi-axiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of micro-plasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach. (authors)

  5. Metallic CoS₂ nanowire electrodes for high cycling performance supercapacitors.

    Science.gov (United States)

    Ren, Ren; Faber, Matthew S; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong

    2015-12-11

    We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g(-1) at a scan rate of 0.01 V s(-1)) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g(-1)) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.

  6. Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors

    Science.gov (United States)

    Ren, Ren; Faber, Matthew S.; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong

    2015-12-01

    We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g-1 at a scan rate of 0.01 V s-1) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g-1) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.

  7. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  8. Plant accident dynamics of high-temperature reactors with direct gas turbine cycle

    International Nuclear Information System (INIS)

    Waloch, M.L.

    1977-01-01

    In the paper submitted, a one-dimensional accident simulation model for high-temperature reactors with direct-cycle gas turbine (single-cycle facilities) is described. The paper assesses the sudden failure of a gas duct caused by the double-ended break of one out of several parallel pipes before and behind the reactor for a non-integrated plant, leading to major loads in the reactor region, as well as the complete loss of vanes of the compressor for an integrated plant. The results of the calculations show especially high loads for the break of a hot-gas pipe immediately behind the flow restrictors of the reactor outlet, because of prolonged effects of pressure gradients in the reactor region and the maximum core differential pressure. A plant accident dynamics calculation therefore allows to find a compromise between the requirements of stable compressor operation, on the one hand, and small loads in the reactor in the course of an accident, on the other, by establishing in a co-ordinated manner the narrowing ratio of the flow restrictors. (GL) [de

  9. Morphology controlled synthesis of monodisperse cobalt hydroxide for supercapacitor with high performance and long cycle life

    Science.gov (United States)

    Tang, Yongfu; Liu, Yanyan; Yu, Shengxue; Mu, Shichun; Xiao, Shaohua; Zhao, Yufeng; Gao, Faming

    2014-06-01

    A facile hydrothermal process with hexadecyltrimethyl ammonium bromide (CTAB) as the soft template is proposed to tune the morphology and size of cobalt hydroxide (Co(OH)2). Monodisperse β-phase Co(OH)2 nanowires with uniform size are obtained by controlling the CTAB content and the reaction time. Due to the uniform well-defined morphology and stable structure, the Co(OH)2 nanowires material exhibits high capacitive performance and long cycle life. The specific capacitance of the Co(OH)2 nanowires electrode is 358 F g-1 at 0.5 A g-1, and even 325 F g-1 at 10 A g-1. The specific capacitance retention is 86.3% after 5000 charge-discharge cycles at 2 A g-1. Moreover, the asymmetric supercapacitor is assembled with Co(OH)2 nanowires and nitrite acid treated activated carbon (NTAC), which shows an energy density of 13.6 Wh kg-1 at the power density of 153 W kg-1 under a high voltage of 1.6 V, and 13.1 Wh kg-1 even at the power density of 1.88 kW kg-1.

  10. High stability of palladium/kieselguhr composites during absorption/desorption cycling for hydrogen isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Yang, E-mail: lei.y@outlook.com; Liu, Xiaopeng; Li, Shuo; Jiang, Lijun; Zhang, Chao; Li, Shuai; He, Di; Wang, Shumao

    2016-12-15

    Highlights: • Pd/K composites with as high as 57 wt.% of Pd have been successfully prepared. • Palladium particles can be effectively packed into the pores of kieselguhr substrates. • Variation of heat-treatment temperatures hardly affect hydrogen absorption capacity and hydrogen saturation time of the Pd/K. • Anti-pulverization property of Pd/K can be improved by packing palladium into the kieselguhr internal pores and heating at 1300 °C. - Abstract: Palladium/kieselguhr (Pd/K) composites with 57 wt.% of Pd were prepared by an improved dipping and thermal decomposition method and heated at elevated temperature to reduce breakdown during hydrogenation-dehydrogenation cycles. The hydrogen absorption kinetic properties of the samples heated at different temperatures were tested under the condition of 20 °C with 100 kPa hydrogen pressure. The 1300 °C heated Pd/K composites were repeated up to 4010 absorption and desorption cycles at temperature ranges between −40 °C and 200 °C. The results show that the phase structure, hydrogen absorption capacity and hydrogen saturation time of the Pd/K were not affected by the change of heat-treated temperatures. And after heat treatment at 1300 °C, the Pd/K particles were strengthened and fraction of larger than 80 mesh were as high as 93.4%.

  11. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    International Nuclear Information System (INIS)

    Shropshire, D.E.; Herring, J.S.

    2004-01-01

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  12. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charles Park

    2006-01-01

    This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy

  13. A complete life cycle assessment of high density polyethylene plastic bottle

    Science.gov (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  14. High-efficiency intracavity second-harmonic enhancement for a few-cycle laser pulse train

    International Nuclear Information System (INIS)

    Cai, Yi; Xu, Shixiang; Zeng, Xuanke; Zou, Da; Li, Jingzhen

    2012-01-01

    This paper presents an intracavity second-harmonic (SH) enhancement technology without the need of input impedance-matching for optimal coupling between the cavity and its input frequency comb. More than 10% SH energy conversion efficiency is available, thus the power of the SH frequency comb can be enhanced beyond 100 relative to single-pass SH generation. Compared with a conventional passive enhancing cavity, for the purpose of high power enhancement, our scheme can operate at much lower finesse and thus broader bandwidth so that it can support several-optical-cycle pulses more easily. If they have the same finesse, both methods perform with similar operating stability. The results show that our novel design is suitable for some applications which need a short wavelength, high intensity, and ultra-broad bandwidth pulse train. (paper)

  15. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  16. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  17. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zhou

    Full Text Available The COP9 signalosome (CSN is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(nHXHX(10D of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1 complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.

  18. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  19. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  20. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat.

    Science.gov (United States)

    Hackley, Jason D; Kislitsyn, Dmitry A; Beaman, Daniel K; Ulrich, Stefan; Nazin, George V

    2014-10-01

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  1. High-stability cryogenic scanning tunneling microscope based on a closed-cycle cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Hackley, Jason D.; Kislitsyn, Dmitry A.; Beaman, Daniel K.; Nazin, George V., E-mail: gnazin@uoregon.edu [Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, Oregon 97403 (United States); Ulrich, Stefan [RHK Technology, Inc., 1050 East Maple Road, Troy, Michigan 48083 (United States)

    2014-10-15

    We report on the design and operation of a cryogenic ultra-high vacuum (UHV) scanning tunneling microscope (STM) coupled to a closed-cycle cryostat (CCC). The STM is thermally linked to the CCC through helium exchange gas confined inside a volume enclosed by highly flexible rubber bellows. The STM is thus mechanically decoupled from the CCC, which results in a significant reduction of the mechanical noise transferred from the CCC to the STM. Noise analysis of the tunneling current shows current fluctuations up to 4% of the total current, which translates into tip-sample distance variations of up to 1.5 picometers. This noise level is sufficiently low for atomic-resolution imaging of a wide variety of surfaces. To demonstrate this, atomic-resolution images of Au(111) and NaCl(100)/Au(111) surfaces, as well as of carbon nanotubes deposited on Au(111), were obtained. Thermal drift analysis showed that under optimized conditions, the lateral stability of the STM scanner can be as low as 0.18 Å/h. Scanning Tunneling Spectroscopy measurements based on the lock-in technique were also carried out, and showed no detectable presence of noise from the closed-cycle cryostat. Using this cooling approach, temperatures as low as 16 K at the STM scanner have been achieved, with the complete cool-down of the system typically taking up to 12 h. These results demonstrate that the constructed CCC-coupled STM is a highly stable instrument capable of highly detailed spectroscopic investigations of materials and surfaces at the atomic scale.

  2. Order effect of strain applications in low-cycle cumulative fatigue at high temperatures

    International Nuclear Information System (INIS)

    Bui-Quoc, T.; Biron, A.

    1977-01-01

    Recent test results on cumulative damage with two strain levels on a stainless steel (AISI 304) at room temperature, 537 and 650 0 C show that the sum of cycle-ratios can be significantly smaller than unity for decreasing levels; the opposite has been noted for increasing levels. As a consequence, the use of the linear damage rule (Miner's law) for life predictions is not conservative in many cases. Since the double linear damage rule (DLDR), originally developed by Manson et al. for room temperature applications, takes the order effect of cyclic loading into consideration, an extension of this rule for high temperature cases may be a potentially useful tool. The present paper is concerned with such an extension. For cumulative damage tests with several levels, according to the DLDR, the summation is applied separately for crack initiation and crack propagation stages, and failure is then assumed to occur when the sum is equal to unity for both stages. Application of the DLDR consists in determining the crack propagation stage Nsub(p) associated with a particular number of cycles at failure N, i.e. Nsub(p)=PNsup(a) where exponent a and coefficient P had been assumed to be equal to 0.6 and 14 respectively for several materials at room temperature. When the DLDR is applied (with a=0.6 and P=14) to predict the remaining life at the second strain level (for two-level cumulative damage) for 304 stainless steel at room temperature 537 0 C and 650 0 C, the results show that the damage due to the first strain level is over-emphasized for decreasing levels when the damaging cycle-ratio is small. For increasing levels, the damage is underestimated and in some testing conditions this damage is simply ignored

  3. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    Science.gov (United States)

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified

  4. Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Soo; Sun, Yang-Kook; Kim, Dong-Won [Department of Chemical Engineering, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Noh, Jaegeun [Department of Chemistry, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Song, Kwang Soup [Advanced Medical Device Center, Korea Electrotechnology, Research Institute, Ansan, Gyeonggi-do 426-170 (Korea)

    2009-10-15

    This study demonstrates that the addition of thiophene improves the cycle life of lithium-ion cells at high voltage. Electrochemical impedance spectroscopy results suggest that addition of thiophene significantly suppresses the increase of the charge transfer resistance that occurs during cycling up to high voltage. Differential scanning calorimetric studies showed that the thermal stability of fully charged LiCoO{sub 2} cathode was also enhanced in the presence of thiophene. (author)

  5. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test

    Directory of Open Access Journals (Sweden)

    Raul Domínguez

    2017-12-01

    Full Text Available Background: Beetroot juice (BJ is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3− or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6% (p = 0.034, average power 0–15 s (6.7% (p = 0.048 and final blood lactate levels (82.6% (p < 0.001, and there was a trend towards a shorter time taken to attain peak power (−8.4% (p = 0.055. Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test.

  6. Life Cycle Analysis of High Quality Recycled Aggregate Produced byHeating and Rubbing Method

    Science.gov (United States)

    Shima, Hirokazu; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Tateyashiki, Hisashi

    Most of demolished concrete is recycled as road subbase, but its generation is expected to increase rapidly and exceed the demand of road subbase in a near future. To promote the recycling of concrete, the technology to produce high quality recycled aggregate by the heating and rubbing method has been developed. In this method, demolished concrete is heated up to about 300°C in a heater to make cement paste brittle with its dehydration. The heated concrete is then rubbed in two mills to recover the recycled aggregate, while the paste is removed from the surface of aggregate and collected as cement fine powder. In this method, much energy is consumed to heat and rub concrete; however, the cement fine powder is utilized for a soil stabilizer and cement raw materials, so that the environmental load is reduced in cement manufacturing. The life cycle analysis of the recycled aggregate is carried out to evaluate this technology. As a result, the life cycle CO2 is a negative value because the deduction of CO2 emission in cement manufacturing by the powder is much large. This technology is proved to be very effective to reduce CO2.

  7. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  8. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    International Nuclear Information System (INIS)

    Mokhtarishirazabad, M.; Boutorabi, S.M.A.; Azadi, M.; Nikravan, M.

    2013-01-01

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al 11 RE 3 intermetallic particles which is associated to the reduction of β-(Mg 17 Al 12 ) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10 5 cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy

  9. Effect of rare earth elements on high cycle fatigue behavior of AZ91 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtarishirazabad, M., E-mail: mehdi-mokhtari@hotmail.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Boutorabi, S.M.A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Azadi, M.; Nikravan, M. [Irankhodro Powertrain Company (IPCO), Tehran (Iran, Islamic Republic of)

    2013-12-10

    This article investigates effects of adding rare earth elements (RE) into a magnesium–aluminum–zinc alloy (the AZ91 alloy) on its high cycle fatigue (HCF) behavior. For this purpose, AZ91 and AZ91+1% RE (AZE911) alloys were gravity casted in a metallic die. RE elements were added to the AZ91 alloy in the form of mischmetals. Microscopic evaluations with the scanning electron microscopy (SEM) and mechanical tests include tensile, hardness and HCF behaviors, were performed on prepared samples. Rotary bending fatigue tests were carried out at a stress ratio (R) of −1 and a frequency of 125 Hz, at the room temperature, in the air. The microscopic investigation demonstrates that the addition of 1% RE elements leads to the formation of Al{sub 11}RE{sub 3} intermetallic particles which is associated to the reduction of β-(Mg{sub 17}Al{sub 12}) phases. Results of mechanical experiments suggest a negligible effect of adding 1% RE elements on mechanical properties of the AZ91 alloy. Curves of stress-life (S–N) shows an increase in the fatigue strength at 10{sup 5} cycles, from 100±10 MPa to 135±10 MPa, when RE elements were added to the AZ91 alloy.

  10. High cycle fatigue test and regression methods of S-N curve

    International Nuclear Information System (INIS)

    Kim, D. W.; Park, J. Y.; Kim, W. G.; Yoon, J. H.

    2011-11-01

    The fatigue design curve in the ASME Boiler and Pressure Vessel Code Section III are based on the assumption that fatigue life is infinite after 106 cycles. This is because standard fatigue testing equipment prior to the past decades was limited in speed to less than 200 cycles per second. Traditional servo-hydraulic machines work at frequency of 50 Hz. Servo-hydraulic machines working at 1000 Hz have been developed after 1997. This machines allow high frequency and displacement of up to ±0.1 mm and dynamic load of ±20 kN are guaranteed. The frequency of resonant fatigue test machine is 50-250 Hz. Various forced vibration-based system works at 500 Hz or 1.8 kHz. Rotating bending machines allow testing frequency at 0.1-200 Hz. The main advantage of ultrasonic fatigue testing at 20 kHz is performing Although S-N curve is determined by experiment, the fatigue strength corresponding to a given fatigue life should be determined by statistical method considering the scatter of fatigue properties. In this report, the statistical methods for evaluation of fatigue test data is investigated

  11. Association with β-COP Regulates the Trafficking of the Newly Synthesized Na,K-ATPase*

    Science.gov (United States)

    Morton, Michael J.; Farr, Glen A.; Hull, Michael; Capendeguy, Oihana; Horisberger, Jean-Daniel; Caplan, Michael J.

    2010-01-01

    Plasma membrane expression of the Na,K-ATPase requires assembly of its α- and β-subunits. Using a novel labeling technique to identify Na,K-ATPase partner proteins, we detected an interaction between the Na,K-ATPase α-subunit and the coat protein, β-COP, a component of the COP-I complex. When expressed in the absence of the Na,K-ATPase β-subunit, the Na,K-ATPase α-subunit interacts with β-COP, is retained in the endoplasmic reticulum, and is targeted for degradation. In the presence of the Na,K-ATPase β-subunit, the α-subunit does not interact with β-COP and traffics to the plasma membrane. Pulse-chase experiments demonstrate that in cells expressing both the Na,K-ATPase α- and β-subunits, newly synthesized α-subunit associates with β-COP immediately after its synthesis but that this interaction does not constitute an obligate intermediate in the assembly of the α- and β-subunits to form the pump holoenzyme. The interaction with β-COP was reduced by mutating a dibasic motif at Lys54 in the Na,K-ATPase α-subunit. This mutant α-subunit is not retained in the endoplasmic reticulum and reaches the plasma membrane, even in the absence of Na,K-ATPase β-subunit expression. Although the Lys54 α-subunit reaches the cell surface without need for β-subunit assembly, it is only functional as an ion-transporting ATPase in the presence of the β-subunit. PMID:20801885

  12. Stability of CoP x Electrocatalysts in Continuous and Interrupted Acidic Electrolysis of Water.

    Science.gov (United States)

    Goryachev, Andrey; Gao, Lu; Zhang, Yue; Rohling, Roderigh Y; Vervuurt, René H J; Bol, Ageeth A; Hofmann, Jan P; Hensen, Emiel J M

    2018-04-11

    Cobalt phosphides are an emerging earth-abundant alternative to platinum-group-metal-based electrocatalysts for the hydrogen evolution reaction (HER). Yet, their stability is inferior to platinum and compromises the large-scale applicability of CoP x in water electrolyzers. In the present study, we employed flat, thin CoP x electrodes prepared through the thermal phosphidation (PH 3 ) of Co 3 O 4 films made by plasma-enhanced atomic layer deposition to evaluate their stability in acidic water electrolysis by using a multi-technique approach. The films were found to be composed of two phases: CoP in the bulk and a P-rich surface CoP x (P/Co>1). Their performance was evaluated in the HER and the exchange current density was determined to be j 0 =-8.9 ⋅ 10 -5  A/cm 2 . The apparent activation energy of HER on CoP x ( E a =81±15 kJ/mol) was determined for the first time. Dissolution of the material in 0.5 M H 2 SO 4 was observed, regardless of the constantly applied cathodic potential, pointing towards a chemical instead of an electrochemical origin of the observed cathodic instability. The current density and HER faradaic efficiency (FE) were found to be stable during chronoamperometric treatment, as the chemical composition of the HER-active phase remained unchanged. On the contrary, a dynamic potential change performed in a repeated way facilitated dissolution of the film, yielding its complete degradation within 5 h. There, the FE was also found to be changing. An oxidative route of CoP x dissolution has also been proposed.

  13. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed a...

  14. The Young Generation at UNICEF COP6 ... and other flexibility mechanisms

    International Nuclear Information System (INIS)

    Meskens, Gaston; Avezou, Florence

    2001-01-01

    Climate change and long term energy strategies are world-scale common concerns, and decisions taken now will have an important impact on the quality of life of our future generations. As electricity production is one of the major CO 2 sources (next to transport and domestic use of energy), nuclear can play a role when it comes to agree on policies and measures to cut global warming - even with regard to sensitive topics such as joint implementation, clean development mechanisms and trading. The Sixth Conference of the Parties (COP6) on the UN Framework Convention on Climate Change met in The Hague (Netherlands) on November 13-24, 2000. It was expected that the final details on the implementation of the Kyoto Protocol would be determined during this conference, so that developed countries can start the process of ratification of the accords. It turned out different. For the nuclear industry, there is optimism. The conference was a success because no agreement is better than exclusion. The industry received a lot of attention, that was more negative than positive, but still, it is open for discussion. COP6 was very different from the previous COP's and SB's. There has never been a bigger difference in perception of nuclear between 'buzz in the corridors' (based on actual positive evolutions in some countries) on the one hand, and references in the official talks on the other hand. This also means that the negotiations are becoming more and more complicated and that a lot of diplomacy is necessary. Given the sensitiveness of the topic, the nuclear representatives decided to keep 'low profile' at COP6. For what the impact of the Young Generation (YG) contacts with the pressure group are concerned, we foresaw COP6 to be the turning point, and we were right. The surprise effect (COP3) is gone, the period of curiosity and 'sympathy' (COP4) and neglect (COP5) is passed and, now that the green groups see that our attendance has an effect, they start to take us seriously

  15. Police officers who commit suicide by cop: a clinical study with analysis.

    Science.gov (United States)

    Arias, Elizabeth A; Schlesinger, Louis B; Pinizzotto, Anthony J; Davis, Edward F; Fava, Joanna L; Dewey, Lauren M

    2008-11-01

    Suicide by cop has become a familiar topic among members of law enforcement, mental health professionals, and the general public. This paper presents two cases where police officers chose to commit suicide by getting other police officers to kill them. The two police officers studied, by examination of closed case files, were found to be similar to civilians who committed suicide by cop on several demographic (gender, age, history of mental illness, and suicide attempts), and situational (stress factors, trigger) variables. The cases help us to understand possible motives and management for individuals who choose to end their life in this manner.

  16. Les transitions énergétiques après les COP 21 et 22

    OpenAIRE

    Balibar , Sebastien

    2017-01-01

    International audience; How far are we in the urgent fight against the climate change? This article starts with a short analysis of the results of COP21 and COP22, the two “conferences of parties” where goals have been defined. Now, to define goals is one thing, but to reach these goals is another thing. In its second part, this article analyzes the energy transition that has been voted by France in 2015, and compares it to what is planned in other countries, especially in Germany.; Où en som...

  17. Optimization analysis of the performance of an irreversible Ericsson refrigeration cycle in the micro/nanoscale

    International Nuclear Information System (INIS)

    Wang Hao; Wu Guoxing; Fu Yueming

    2011-01-01

    A general micro/nanoscaled model of the Ericsson refrigeration cycle is established in which finite-rate heat transfer, heat leak and regeneration time are taken into account. Based on the model, expressions for several important parameters such as the coefficient of performance (COP), cooling rate and power input are derived. By using numerical calculation and illustration, the influence of 'thermosize effects' on the performance of the Ericsson refrigeration cycle is discussed and evaluated. The optimal ranges of the COP, cooling rate and power input are determined. Furthermore, some special cases are discussed in detail. The results obtained here will provide theoretical guidance on designing a micro/nanoscaled Ericsson cycle device.

  18. Mean stress effects on high-cycle fatigue of Alloy 718

    International Nuclear Information System (INIS)

    Korth, G.E.

    1980-07-01

    This report covers an investigation of the effects of tensile mean stress on the high-cycle fatigue properties of Alloy 718. Three test temperatures (24, 427, and 649 degree C) were employed, and there were tests in both strain and load control. Results were compared with three different models: linear Modified-Goodman, Peterson cubic, and stress-strain parameter. The linear Modified-Goodman model gave good correlation with actual test data for low and moderate mean stress values, but the stress-strain parameter showed excellent correlation over the entire range of possible mean stresses and therefore is recommended for predicting mean stress effects of Alloy 718. 13 refs., 12 figs

  19. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  20. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    International Nuclear Information System (INIS)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K.

    1995-01-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress

  1. Shot-Peening Effect on High Cycling Fatigue of Al-Cu Alloy

    Science.gov (United States)

    Fouad, Yasser; Metwally, Mostafa El

    2013-12-01

    The present work was aimed at evaluating the effects of shot-peening on the high cycle fatigue performance of the age-hardening aircraft alloy Al 2024 at different almen intensities. Shot-peening to full coverage (100 pct) was performed using spherically conditioned cut wire (SCCW 14) with an average shot size of 0.36 mm and at almen intensities of 0.1, 0.2, and 0.3 mmA. After applying the various mechanical surface treatments, the changes in the surface and near-surface layer properties such as microhardness, residual stress-depth profiles, and surface roughness were determined. The microhardness, surface roughness, and the residual stresses increased proportionally with the almen intensity. Electropolitically polished conditions were used as reference in the mechanically surface treated specimens. A significant improvement was seen in the fatigue performance of the 0.1 mmA.

  2. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  3. High-cycle fatigue characteristics of weldable steel for light-water reactors

    International Nuclear Information System (INIS)

    Klesnil, M.; Polak, J.; Obrtlik, K.; Troshchenko, V.T.; Mishchenko, Yu.I.; Khamaza, L.A.

    1982-01-01

    Czechoslovak and Soviet 15Kh2NMFA steel was used for running fatigue tests at temperatures of 20, 350 and 400 degC in the high-cycle range with various loading regimes. The results show that at the given temperatures in this type of steel a cyclic softening occurs. The fatigue characteristics were measured with great dispersion of results, but within this dispersion they are almost identical for various steels at the same temperature. Increased temperature results in the decrease in the amplitude of cyclic deformation stress and in the increase in the amplitude of plastic deformation. The diversity in the values of cyclic plasticity and stress response measured in the given mode may be explained by the lower level of softening and the non-homogeneous cyclic plastic deformation of material under the given constant conditions. (J.B.)

  4. Closed Cycle Solar Refrigeration with the Calcium Chloride System ...

    African Journals Online (AJOL)

    A closed cycle solid absorption intermittent refrigerator, using CaC12 absorbent and NH3 refrigerant, was constructed and tested to obtain the instantaneous and cumulative available overall COP. The combined collector/absorber/generator unit had double glazing of 1.14 m2 exposed areas. The system was fitted with a ...

  5. Effect of β-alanine plus sodium bicarbonate on high-intensity cycling capacity.

    Science.gov (United States)

    Sale, Craig; Saunders, Bryan; Hudson, Sean; Wise, John A; Harris, Roger C; Sunderland, Caroline D

    2011-10-01

    We examined the effect of β-alanine supplementation plus sodium bicarbonate on high-intensity cycling capacity. Twenty males (age = 25 ± 5 yr, height = 1.79 ± 0.06 m, body mass = 80.0 ± 10.3 kg) were assigned to either a placebo (P) or a β-alanine (BA; 6.4 g·d(-1) for 4 wk) group based on power max, completing four cycling capacity tests at 110% of power max (CCT110%) to determine time to exhaustion (TTE) and total work done. A CCT(110%) was performed twice (habituation and baseline) before supplementation (with maltodextrin [MD]) and twice after supplementation (with MD and with sodium bicarbonate [SB]), using a crossover design with 2 d of rest between trials, creating four study conditions (PMD, PSB, BAMD, and BASB). Blood pH, Lactate, bicarbonate and base excess were determined at baseline, before exercise, immediately after exercise, and 5 min after exercise. Data were analyzed using repeated-measures ANOVA. TTE was increased in all conditions after supplementation (+1.6% PMD, +6.5% PSB, +12.1% BAMD, and +16.2% BASB). Both BAMD and BASB resulted in significantly improved TTE compared with that before supplementation (P ≤ 0.01). Although further increases in TTE (4.1%) were shown in BASB compared with BAMD, these differences were not significant (P = 0.74). Differences in total work done were similar to those of TTE. Blood bicarbonate concentrations were significantly (P ≤ 0.001) elevated before exercise in PSB and BASB but not in PMD or BAMD. Blood lactate concentrations were significantly elevated after exercise, remaining elevated after 5 min of recovery (P ≤ 0.001) and were highest in PSB and BASB. Results show that BA improved high-intensity cycling capacity. However, despite a 6-s (∼4%) increase in TTE with the addition of SB, this did not reach statistical significance, but magnitude-based inferences suggested a ∼70% probability of a meaningful positive difference.

  6. An optimized approach towards the treatment of high level liquid waste in the nuclear cycle

    International Nuclear Information System (INIS)

    Maio, V.; Todd, T.; Law, J.; Roach, J.; Sabharwall, P.

    2006-01-01

    Full text: One key long-standing issue that must be overcome to realize the successful growth of nuclear power is an economical, politically acceptable, stakeholder-compatible, and technically feasible resolution pertaining to the safe treatment and disposal of high-level liquid radioactive waste (HLLW). In addition to spent nuclear reactor fuel, HLLW poses a unique challenge in regard to environmental and security concerns, since future scenarios for a next generation of domestic and commercialized nuclear fuel cycle infrastructures must include reprocessing - the primary source of HLLW-to ensure the cost effectiveness of nuclear power as well as mitigate any threats as related to proliferation. Past attempts to immobilize HLLW - generated by both the weapons complex and the commercial power sector-have been plagued by an inability to convince the public and some technical peer reviewers that any proposed geological disposal sites (e.g., Yucca Mountain) can accommodate and contain the HLLW for a period of geological time equivalent to ten fold the radiological half-life of the longest lived of the actinides remaining after reprocessing. The paper explores combined equipment and chemical processing approaches for advancing and economizing the immobilization of high level liquid waste to ensure its long term durability, its decoupling from the unknown behavior of the repository over long geological time periods, and its economical formulation as required for the nuclear fuel cycle of the future. One approach involves the investigation of crystalline based waste forms as opposed to the glass/amorphous based waste forms, and how recent developments in crystalline forms show promise in sequestering the long lived actinides for over tens of millions of years. Another approach -compatible with the first- involves the use of an alternative melter technology-the Cold Crucible Induction Melter (CCIM)- to overcome the engineering material problems of Joule Heated Meters (JHM

  7. Redesigning axial-axial (biaxial) cruciform specimens for very high cycle fatigue ultrasonic testing machines.

    Science.gov (United States)

    Montalvão, Diogo; Wren, Andrew

    2017-11-01

    The necessity to increase performances in terms of lifetime and security in mechanical components or structures is the motivation for intense research in fatigue. Applications range from aeronautics to medical devices. With the development of new materials, there is no longer a fatigue limit in the classical sense, where it was accepted that the fatigue limit is the stress level such that there is no fracture up to 1E7 cycles. The recent development of ultrasonic testing machines where frequencies can go as high as 20 kHz or over enabled tests to be extended to ranges larger than 1E9 in just a few days. This area of studies is now known as Very High Cycle Fatigue (VHCF). On the other hand, most of the existing test equipment in the market for both classical and VHCF are uniaxial test machines. However, critical components used in Engineering applications are usually subjected to complex multi-axial loading conditions. In this paper, it is presented the methodology to redesigning existing cruciform test specimens that can be used to create an in-plane biaxial state of stress when used in 'uniaxial' VHCF ultrasonic testing machines (in this case, the term 'uniaxial' is used not because of the state of stress created at the centre of the specimen, but because of the direction at which the load is applied). The methodology is explained in such a way that it can be expanded to other existing designs, namely cruciform designs, that are not yet used in VHCF. Also, although the approach is presented in simple and logical terms, it may not be that obvious for those who have a more focused approach on fatigue rather than on modal analysis. It is expected that by contributing to bridging the gap between the sciences of modal analysis and fatigue, this research will help and encourage others exploiting new capabilities in VHCF.

  8. Increase of COP for heat transformer in water purification systems. Part II - Without increasing heat source temperature

    International Nuclear Information System (INIS)

    Romero, R.J.; Siqueiros, J.; Huicochea, A.

    2007-01-01

    The integration of a water purification system allows a heat transformer to increase the actual coefficient of performance, by the reduction of the amount of heat supplied by unit of heat. A new defined COP called COP WP is proposed for the present system, which considers the fraction of heat recycled. Simulation with proven software compares the performance of the modeling of an absorption heat transformer for water purification (AHTWP) operating with water/lithium bromide, as working fluid-absorbent pair. Plots of enthalpy-based coefficients of performance (COP ET ) and water purification coefficient of performance (COP WP ) are shown against absorber temperature for several thermodynamic operating conditions. The results showed that the proposed (AHTWP) system is capable of increasing the original value of COP ET up to 1.6 times its original value by recycling energy from a water purification system. The proposed COP WP allows increments for COP values from any experimental data for water purification or for any other distillation system integrated to a heat transformer, regardless of actual COP A value or working fluid-absorbent pair

  9. 30 CFR 285.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What requirements must I include in my SAP, COP, or GAP regarding air quality? 285.659 Section 285.659 Mineral Resources MINERALS MANAGEMENT SERVICE... must I include in my SAP, COP, or GAP regarding air quality? (a) You must comply with the Clean Air Act...

  10. Structure and Stability of High-Pressure Dolomite with Implications for the Earth's Deep Carbon Cycle

    Science.gov (United States)

    Solomatova, N. V.; Asimow, P. D.

    2014-12-01

    Carbon is subducted into the mantle primarily in the form of metasomatically calcium-enriched basaltic rock, calcified serpentinites and carbonaceous ooze. The fate of these carbonates in subduction zones is not well understood. End-member CaMg(CO3)2 dolomite typically breaks down into two carbonates at 2-7 GPa, which may further decompose to oxides and CO2-bearing fluid. However, high-pressure X-ray diffraction experiments have recently shown that the presence of iron may be sufficient to stabilize dolomite I to high pressures, allowing the transformation to dolomite II at 17 GPa and subsequently to dolomite III at 35 GPa [1][2]. Such phases may be a principal host for deeply subducted carbon. The structure and equation of state of these high-pressure phases is debated and the effect of varying concentrations of iron is unknown, creating a need for theoretical calculations. Here we compare calculated dolomite structures to experimentally observed phases. Using the Vienna ab-initio simulation package (VASP) interfaced with a genetic algorithm that predicts crystal structures (USPEX), a monoclinic phase with space group 5 ("dolomite sg5") was found for pure end-member dolomite. Dolomite sg5 has a lower energy than reported dolomite structures and an equation of state that resembles that of dolomite III. It is possible that dolomite sg5 is not achieved experimentally due to a large energy barrier and a correspondingly large required volume drop, resulting in the transformation to metastable dolomite II. Due to the complex energy landscape for candidate high-pressure dolomite structures, it is likely that several competing polymorphs exist. Determining the behavior of high-pressure Ca-Mg-Fe(-Mn) dolomite phases in subduction environments is critical for our understanding of the Earth's deep carbon cycle and supercell calculations with Fe substitution are in progress. [1] Mao, Z., Armentrout, M., Rainey, E., Manning, C. E., Dera, P., Prakapenka, V. B., and Kavner, A

  11. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  12. Effects of Coatings on the High-Cycle Fatigue Life of Threaded Steel Samples

    Science.gov (United States)

    Eder, M. A.; Haselbach, P. U.; Mishin, O. V.

    2018-05-01

    In this work, high-cycle fatigue is studied for threaded cylindrical high-strength steel samples coated using three different industrial processes: black oxidation, normal-temperature galvanization and high-temperature galvanization. The fatigue performance in air is compared with that of uncoated samples. Microstructural characterization revealed the abundant presence of small cracks in the zinc coating partially penetrating into the steel. This is consistent with the observation of multiple crack initiation sites along the thread in the galvanized samples, which led to crescent type fracture surfaces governed by circumferential growth. In contrast, the black oxidized and uncoated samples exhibited a semicircular segment type fracture surface governed by single-sided growth with a significantly longer fatigue life. Numerical fatigue life prediction based on an extended Paris-law formulation has been conducted on two different fracture cases: 2D axisymmetric multisided crack growth and 3D single-sided crack growth. The results of this upper-bound and lower-bound approach are in good agreement with experimental data and can potentially be used to predict the lifetime of bolted components.

  13. AREVA Modular Steam CycleHigh Temperature Gas-Cooled Reactor Development Progress

    International Nuclear Information System (INIS)

    Lommers, L.; Shahrokhi, F.; Southworth, F.; Mayer, J. III

    2014-01-01

    The AREVA Steam CycleHigh Temperature Gas-Cooled Reactor (SCHTGR) is a modular graphite-moderated gas-cooled reactor currently being developed to support a wide variety of applications including industrial process heat, high efficiency electricity generation, and cogeneration. It produces high temperature superheated steam which makes it a good match for many markets currently dependent on fossil fuels for process heat. Moreover, the intrinsic safety characteristics of the SC-HTGR make it uniquely qualified for collocation with large industrial process heat users which is necessary for serving these markets. The NGNP Industry Alliance has selected the AREVA SC-HTGR as the basis for future development work to support commercial HTGR deployment. This paper provides a concise description of the SC-HTGR concept, followed by a summary of recent development activities. Since this concept was introduced, ongoing design activities have focused primarily on confirming key system capabilities and the suitability for potential future markets. These evaluations continue to confirm the suitability of the SC-HTGR for a variety of potential applications that are currently dependent on fossil fuels. (author)

  14. High-energy few-cycle pulse compression through self-channeling in gases

    International Nuclear Information System (INIS)

    Hauri, C.; Merano, M.; Trisorio, A.; Canova, F.; Canova, L.; Lopez-Martens, R.; Ruchon, T.; Engquist, A.; Varju, K.; Gustafsson, E.

    2006-01-01

    Complete test of publication follows. Nonlinear spectral broadening of femtosecond optical pulses by intense propagation in a Kerr medium followed by temporal compression constitutes the Holy Grail for ultrafast science since it allows the generation of intense few-cycle optical transients from longer pulses provided by now commercially available femtosecond lasers. Tremendous progress in high-field and attosecond physics achieved in recent years has triggered the need for efficient pulse compression schemes producing few-cycle pulses beyond the mJ level. We studied a novel pulse compression scheme based on self-channeling in gases, which promises to overcome the energy constraints of hollow-core fiber compression techniques. Fundamentally, self-channeling at high laser powers in gases occurs when the self-focusing effect in the gas is balanced through the dispersion induced by the inhomogeneous refractive index resulting from optically-induced ionization. The high nonlinearity of the ionization process poses great technical challenges when trying to scale this pulse compression scheme to higher energies input energies. Light channels are known to be unstable under small fluctuations of the trapped field that can lead to temporal and spatial beam breakup, usually resulting in the generation of spectrally broad but uncompressible pulses. Here we present experimental results on high-energy pulse compression of self-channeled 40-fs pulses in pressure-gas cells. In the first experiment, performed at the Lund Laser Center in Sweden, we identified a particular self-channeling regime at lower pulse energies (0.8 mJ), in which the ultrashort pulses are generated with negative group delay dispersion (GDD) such that they can be readily compressed down to near 10-fs through simple material dispersion. Pulse compression is efficient (70%) and exhibits exceptional spatial and temporal beam stability. In a second experiment, performed at the LOA-Palaiseau in France, we

  15. Sodium bicarbonate and high-intensity-cycling capacity: variability in responses.

    Science.gov (United States)

    Saunders, Bryan; Sale, Craig; Harris, Roger C; Sunderland, Caroline

    2014-07-01

    To determine whether gastrointestinal (GI) distress affects the ergogenicity of sodium bicarbonate and whether the degree of alkalemia or other metabolic responses is different between individuals who improve exercise capacity and those who do not. Twenty-one men completed 2 cycling-capacity tests at 110% of maximum power output. Participants were supplemented with 0.3 g/kg body mass of either placebo (maltodextrin) or sodium bicarbonate (SB). Blood pH, bicarbonate, base excess, and lactate were determined at baseline, preexercise, immediately postexercise, and 5 min postexercise. SB supplementation did not significantly increase total work done (TWD; P = .16, 46.8 ± 9.1 vs 45.6 ± 8.4 kJ, d = 0.14), although magnitude-based inferences suggested a 63% likelihood of a positive effect. When data were analyzed without 4 participants who experienced GI discomfort, TWD (P = .01) was significantly improved with SB. Immediately postexercise blood lactate was higher in SB for the individuals who improved but not for those who did not. There were also differences in the preexercise-to-postexercise change in blood pH, bicarbonate, and base excess between individuals who improved and those who did not. SB improved high-intensity-cycling capacity but only with the exclusion of participants experiencing GI discomfort. Differences in blood responses suggest that SB may not be beneficial to all individuals. Magnitude-based inferences suggested that the exercise effects are unlikely to be negative; therefore, individuals should determine whether they respond well to SB supplementation before competition.

  16. Expectancy of ergogenicity from sodium bicarbonate ingestion increases high-intensity cycling capacity.

    Science.gov (United States)

    Higgins, Matthew F; Shabir, Akbar

    2016-04-01

    This study examined whether expectancy of ergogenicity of a commonly used nutritional supplement (sodium bicarbonate; NaHCO3) influenced subsequent high-intensity cycling capacity. Eight recreationally active males (age, 21 ± 1 years; body mass, 75 ± 8 kg; height, 178 ± 4 cm; WPEAK = 205 ± 22 W) performed a graded incremental test to assess peak power output (WPEAK), one familiarisation trial and two experimental trials. Experimental trials consisted of cycling at 100% WPEAK to volitional exhaustion (TLIM) 60 min after ingesting either a placebo (PLA: 0.1 g·kg(-1) sodium chloride (NaCl), 4 mL·kg(-1) tap water, and 1 mL·kg(-1) squash) or a sham placebo (SHAM: 0.1 g·kg(-1) NaCl, 4 mL·kg(-1) carbonated water, and 1 mL·kg(-1) squash). SHAM aimed to replicate the previously reported symptoms of gut fullness (GF) and abdominal discomfort (AD) associated with NaHCO3 ingestion. Treatments were administered double blind and accompanied by written scripts designed to remain neutral (PLA) or induce expectancy of ergogenicity (SHAM). After SHAM mean TLIM increased by 9.5% compared to PLA (461 ± 148 s versus 421 ± 150 s; P = 0.048, d = 0.3). Ratings of GF and AD were mild but ~1 unit higher post-ingestion for SHAM. After 3 min TLIM overall ratings of perceived exertion were 1.4 ± 1.3 units lower for SHAM compared to PLA (P = 0.020, d = 0.6). There were no differences between treatments for blood lactate, blood glucose, or heart rate. In summary, ergogenicity after NaHCO3 ingestion may be influenced by expectancy, which mediates perception of effort during subsequent exercise. The observed ergogenicity with SHAM did not affect our measures of cardiorespiratory physiology or metabolic flux.

  17. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  18. High temperature gas-cooled reactors - once-through fuel cycle

    International Nuclear Information System (INIS)

    1979-03-01

    The HTGR, because of a unique combination of design characteristics, is a resource-efficient and cost-effective reactor. In the HTGR, the low power density core, coated particle fuel design, and gas cooling combine to provide high neutron economy, fuel burnup and thermodynamic efficiency. The uranium resource requirements for the current MEU/Th cycle with annual refueling results in a 30-year net U 3 O 8 requirement of 4280 ST/GWe. The basic design of the HTGR refueling scheme, whereby only selected regions of the core need be accessible during each refueling, makes fuel utilization improvements through semi-annual refueling an acceptable alternative in terms of plant availability. This alternative reduces the 30-year U 3 O 8 requirement by about 9%. Additional resource utilization improvements of 10% could be realized by improved fuel management techniques. In addition to improvements achieved in reactor technology, uranium utilization can also be improved by reducing the U-235 content in the depleted uranium (tails) produced by the isotope separation facility. If the Advanced Isotope Separation Technology program, currently under development by the United States, results in a lowering of the tails assay from 0.20 w/o to 0.05 w/o the uranium feed requirement for MEU/Th cycles would be further reduced by 22%. A total improvement of 41% over the already relatively low 4280 ST/GWe net lifetime U 3 O 8 requirement would result in a 2525 ST/GWe 30-year yet U 3 O 8 requirement if all of the potential improvements were realized

  19. Behavior of Plain Concrete of a High Water-Cement Ratio after Freeze-Thaw Cycles

    OpenAIRE

    Shang, Huai-Shuai; Yi, Ting-Hua; Song, Yu-Pu

    2012-01-01

    An experimental study of plain concrete specimens of water-cement ratio 0.55, subjected to 0, 15, 25, 40, 50 and 75 cycles of freeze-thaw was completed. The dynamic modulus of elasticity (DME), weight loss, compressive strength, tensile strength, flexural strength, cleavage strength and stress-strain relationships of plain concrete specimens suffering from freeze-thaw cycles were measured. The experimental results showed that the strength decreased as the freeze-thaw cycles were repeated. A c...

  20. An initial biochemical and cell biological characterization of the mammalian homologue of a central plant developmental switch, COP1

    Directory of Open Access Journals (Sweden)

    Wang Haiyang

    2002-12-01

    Full Text Available Abstract Background Constitutive photomorphogenic 1 (COP1 has been defined as a central regulator of photomorphogenic development in plants, which targets key transcription factors for proteasome-dependent degradation. Although COP1 mammalian homologue has been previously reported, its function and distribution in animal kingdom are not known. Results Here we report the characterization of full-length human and mouse COP1 cDNAs and the genomic structures of the COP1 genes from several different species. Mammalian COP1 protein binds to ubiquitinated proteins in vivo and is itself ubiquitinated. Furthermore, mammalian COP1 is predominately nuclear localized and exists primarily as a complex of over 700 kDa. Through mutagenesis studies, we have defined a leucine-rich nuclear export signal (NES within the coiled-coil domain of mammalian COP1 and a nuclear localization signal (NLS, which is composed of two clusters of positive-charged amino acids, bridged by the RING finger. Disruption of the RING finger structure abolishes the nuclear import, while deletion of the entire RING finger restores the nuclear import. Conclusions Our data suggest that mammalian COP1, similar to its plant homologue, may play a role in ubiquitination. Mammalian COP1 contains a classic leucine-rich NES and a novel bipartite NLS bridged by a RING finger domain. We propose a working model in which the COP1 RING finger functions as a structural scaffold to bring two clusters of positive-charged residues within spatial proximity to mimic a bipartite NLS. Therefore, in addition to its well-characterized role in ubiquitination, the RING finger domain may also play a structural role in nuclear import.

  1. Oil flooded compression cycle enhancement for two-stage heat pump in cold climate region: System design and theoretical analysis

    International Nuclear Information System (INIS)

    Luo, Baojun

    2016-01-01

    Highlights: • COP of proposed system improves up to 17.2% compared with vapor injection cycle. • Discharge temperature of proposed system is largely decreased. • Proposed system is beneficial for refrigerant with high compression heat. • Proposed system has potential for applications in cold climate heat pump. - Abstract: In order to improve the performance of air source heat pump in cold climate region, a combined oil flooded compression with regenerator and vapor injection cycle system is suggested in this paper, which integrates oil flooded compression with regenerator into a conventional vapor injection cycle. A mathematical model is developed and parametric studies on this cycle are conducted to evaluate the benefits of the novel system. The performances of the novel system using R410A and R32 are compared with those of vapor injection cycle system. The improvement of coefficient of performance (COP) can reach up to nearly 9% based on the same isentropic efficiency, while 17.2% based on assumption that there is a 10% rise in isentropic efficiency brought by oil flooded compression cycle. The heating capacity is reduced by 8–18% based on the same volumetric efficiency, while could be less than 10% in a practical system. The discharge temperature is largely decreased and can be below 100 °C at −40 °C T_e and 50 °C T_c condition for R32. The theoretical results demonstrate this novel heat pump has a high potential for improving the performance of air source heat pump in cold climate region.

  2. Thermal cycling influence on microstructural characterization of alloys with high nickel content

    International Nuclear Information System (INIS)

    Abrudeanu, M.; Gradin, O.; Vulpe, S. C.; Ohai, D.

    2013-01-01

    The IV nuclear energy generation systems are aimed at making revolutionary improvements in economics, safety and reliability, and sustainability. To achieve these goals, Generation IV systems will operate at higher temperatures and in higher radiation fields. This paper shows the thermal cycling influences on microstructure and hardness of nickel based alloys: Incoloy 800 HT and Inconel 617. These alloys were meekly at a thermal cycling of 25, 50, 75 and 100 cycles. The temperature range of a cycle was between 400 O C and 700 O C. Nickel base alloys develop their properties by solid solution and/or precipitation strengthening. (authors)

  3. HUBUNGAN TEGANGAN INPUT KOMPRESOR DAN TEKANAN REFRIGERAN TERHADAP COP MESIN PENDINGIN RUANGAN

    Directory of Open Access Journals (Sweden)

    Eko Budiyanto

    2014-06-01

    Full Text Available Listrik merupakan sumber energi utama pada peralatan elektronik terutama pada AC ( air conditioner,  sehingga besar kecilnya tegangan listrik sangat mempengaruhi kinerja mesin. Selain tegangan listrik, kerja mesin pendingin juga dipengaruhi oleh tekanan refrigeran. Penelitian ini bertujuan untuk mengetahui hubungan tegangan input kompresor dan tekanan refrigeran terhadap COP serta untuk mengetahui perubahan temperatur yang terjadi pada evaporator dan kondensor karena pengaruh tegangan input kompresor dan tekanan refrigeran. Penelitian dilakukan dengan cara melakukan pengambilan data pada AC split dengan tegangan input kompresor yang divariasikan 200V, 210V, 220V, dan 230V (tekanan refrigeran 70 Psi. Selain memvariasikan tegangan input kompresor juga memvariasikan pada tekanan refrigeran yaitu pada tekanan refrigeran 30 Psi, 50 Psi, dan 70 Psi (tegangan input kompresor 220V. Dari hasil perhitungan data diperoleh nilai COP pada tegangan input kompresor 200V, 210V, 220V, dan 230V masing-masing adalah 16,87; 17,855; 19,865; dan 18,23. COP pada tekanan refrigeran 30 Psi, 50 Psi, dan 70 Psi masing-masing adalah 14,980; 17,296; 19,865. Dari besarnya nilai COP pada beberapa varian percobaan didapatkan hasil bahwa tegangan input kompresor yang paling baik adalah 220V dan tekanan refrigeran yang paling baik adalah 70Psi.

  4. International climate change policy: background and significance of upcoming COP17 meeting for South Africa

    CSIR Research Space (South Africa)

    Thambiran, Tirusha

    2011-09-01

    Full Text Available COP17 is primarily a meeting about climate change and what can be done internationally to mitigate climate change. The overarching mitigation goal is to develop a legally binding agreement to control and limit the amount of GHGs that countries would...

  5. Tackling the climate targets set by the Paris Agreement (COP 21 ...

    African Journals Online (AJOL)

    Tackling the climate targets set by the Paris Agreement (COP 21): Green leadership empowers public hospitals to overcome obstacles and challenges in a ... To improve commitment from all involved roleplayers, political leadership, supportive government policies and financial funding is mandatory, or public hospitals will ...

  6. MOTHER MK II: An advanced direct cycle high temperature gas reactor

    International Nuclear Information System (INIS)

    Hart, R.S.; Kendall, J.M.; Marsden, B.J.

    2003-01-01

    The MOTHER (MOdular Thermal HElium Reactor) power plant concepts employ high temperature gas reactors utilizing TRISO fuel, graphite moderator, and helium coolant, in combination with a direct Brayton cycle for electricity generation. The helium coolant from the reactor vessel passes through a Power Conversion Unit (PCU), which includes a turbine-generator, recuperator, precooler, intercooler and turbine-compressors, before being returned to the reactor vessel. The PCU substitutes for the reactor coolant system pumps and steam generators and most of the Balance Of Plant (BOP), including the steam turbines and condensers, employed by conventional nuclear power plants utilizing water cooled reactors. This provides a compact, efficient, and relatively simple plant configuration. The MOTHER MK I conceptual design, completed in the 1987 - 1989 time frame, was developed to economically meet the energy demands for extracting and processing heavy oil from the tar sands of western Canada. However, considerable effort was made to maximize the market potential beyond this application. Consistent with the remote and very high labour rate environment in the tar sands region, simplification of maintenance procedures and facilitation of 'change-out' in lieu of in situ repair was a design focus. MOTHER MK I had a thermal output of 288 MW and produced 120 MW electrical when operated in the electricity only production mode. An annular Prismatic reactor core was utilized, largely to minimize day-to-day operations activities. Key features of the power conversion system included two Power Conversion Units (144 MW th each), the horizontal orientation of all rotating machinery and major heat exchangers axes, high speed rotating machinery (17,030 rpm for the turbine-compressors and 10,200 rpm for the power turbine-generator), gas (helium) bearings for all rotating machinery, and solid state frequency conversion from 170 cps (at full power) to the grid frequency. Recognizing that the on

  7. The north-south asymmetry of solar filaments separately at low and high latitudes in solar cycle 23

    International Nuclear Information System (INIS)

    Kong De-Fang; Qu Zhi-Ning; Guo Qiao-Ling

    2015-01-01

    We present the results of a study on the north-south asymmetry of solar filaments at low (<50°) and high (>60°) latitudes using daily filament numbers from January 1998 to November 2008 (solar cycle 23). It is found that the northern hemisphere is dominant at low latitudes for cycle 23. However, a similar asymmetry does not occur for solar filaments at high latitudes. The present study indicates that the hemispheric asymmetry of solar filaments at high latitudes in a cycle appears to have little connection with that at low latitudes. Our results support that the observed magnetic fields at high latitudes include two components: one comes from the emergence of the magnetic fields from the solar interior and the other comes from the drift of the magnetic activity at low latitudes. (research papers)

  8. Tamoxifen induces regression of estradiol-induced mammary cancer in the ACI.COP-Ept2 rat model.

    Science.gov (United States)

    Ruhlen, Rachel L; Willbrand, Dana M; Besch-Williford, Cynthia L; Ma, Lixin; Shull, James D; Sauter, Edward R

    2009-10-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5-7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonance imaging, by 89%. Tumors expressed estrogen receptors (ER), progesterone receptor (PR), and Erbb2. ERalpha and PR were overexpressed in tumor compared to adjacent non-tumor mammary gland. Thus, this model is highly relevant to hormone responsive human breast cancers.

  9. Hierarchical N-Rich Carbon Sponge with Excellent Cycling Performance for Lithium-Sulfur Battery at High Rates.

    Science.gov (United States)

    Zhen, Mengmeng; Wang, Juan; Wang, Xin; Wang, Cheng

    2018-04-17

    Lithium-sulfur batteries (LSBs) are receiving extensive attention because of their high theoretical energy density. However, practical applications of LSBs are still hindered by their rapid capacity decay and short cycle life, especially at high rates. Herein, a highly N-doped (≈13.42 at %) hierarchical carbon sponge (HNCS) with strong chemical adsorption for lithium polysulfide is fabricated through a simple sol-gel route followed by carbonization. Upon using the HNCS as the sulfur host material in the cathode and an HNCS-coated separator, the battery delivers an excellent cycling stability with high specific capacities of 424 and 326 mA h g -1 and low capacity fading rates of 0.033 % and 0.030 % per cycle after 1000 cycles under high rates of 5 and 10 C, respectively, which are superior to those of other reported carbonaceous materials. These impressive cycling performances indicate that such a battery could promote the practical application prospects of LSBs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    Science.gov (United States)

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  11. Experimental Investigation on High-Cycle Fatigue of Inconel 625 Superalloy Brazed Joints

    Science.gov (United States)

    Chen, Jianqiang; Demers, Vincent; Turner, Daniel P.; Bocher, Philippe

    2018-04-01

    The high-cycle fatigue performance and crack growth pattern of transient liquid phase-brazed joints in a nickel-based superalloy Inconel 625 were studied. Assemblies with different geometries and types of overlaps were vacuum-brazed using the brazing paste Palnicro-36M in conditions such as to generate eutectic-free joints. This optimal microstructure provides the brazed assemblies with static mechanical strength corresponding to that of the base metal. However, eutectic micro-constituents were observed in the fillet region of the brazed assembly due to an incomplete isothermal solidification within this large volume of filler metal. The fatigue performance increased significantly with the overlap distance for single-lap joints, and the best performance was found for double-lap joints. It was demonstrated that these apparent changes in fatigue properties according to the specimen geometry can be rationalized when looking at the fatigue data as a function of the local stress state at the fillet radii. Fatigue cracks were nucleated from brittle eutectic phases located at the surface of the fillet region. Their propagation occurred through the bimodal microstructure of fillet and the diffusion region to reach the base metal. High levels of crack path tortuosity were observed, suggesting that the ductile phases found in the microstructure may act as a potential crack stopper. The fillet region must be considered as the critical region of a brazed assembly for fatigue applications.

  12. High-cycle fatigue properties of small-bore socket-welded pipe joint

    International Nuclear Information System (INIS)

    Maekawa, Akira; Noda, Michiyasu; Suzuki, Michiaki

    2009-01-01

    Piping and equipment in nuclear power plants are structures including many welded joints. Reliability of welded joints is one of high-priority issues to improve the safety of nuclear power plants. However, occurrence of fatigue failures in small-bore socket-welded pipe joints by high-cycle vibrations is still reported. In this study, fatigue experiments on a socket-welded joint of austenitic stainless steel pipe was conducted under excitation conditions similar to those in actual plants to investigate vibration characteristics and fatigue strength. It was found that the natural frequency of pipe with socket-welded joint gradually decreased as fatigue damage developed, according to the Miner rule for fatigue life evaluation. The results indicate that the fatigue life of the welded pipe joint could be estimated by monitoring the decreasing ratio of the natural frequency of the pipe. The evaluation of decreasing ratio of the natural frequency in addition to fatigue damage evaluation by the Miner rule could enhance the accuracy of fatigue life evaluation. (author)

  13. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle.

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-06-28

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis.

  14. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    Science.gov (United States)

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  15. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy

    International Nuclear Information System (INIS)

    De, P.S.; Mishra, R.S.; Baumann, J.A.

    2011-01-01

    Highlights: → Effect of microstructure on fatigue fracture of an advanced Al-Li alloy was studied in detail. → Preferential crack propagation in T3 state at specific orientations was analyzed. → Fatigue crack propagation difference between T3 and T8 tempers and friction stir welded condition was rationalized. → The effect of grain size on fatigue life for T3 and T8 tempers was justified based on current theories. → Delamination in T3 and T8 tempers was rationalized using microstructural analysis and FEA simulation. - Abstract: The high cycle fatigue life characteristics of an Al-Li alloy were studied as a function of microstructure. While for the parent microstructure fatigue life decreased as grain size increased, no such effect was noted at high stresses. This decrease in fatigue life was correlated with lower crack initiation life due to small crack effect. Under multiaxial stress conditions, the alloy exhibited intergranular cracking. The cross-linking of intergranular cracks (in the T8 condition) caused a further deterioration in fatigue life. Additionally, planar slip movements (in the T3 condition) in stage I crack propagation were observed. Slip planarity depended on both the sample texture and the nature of the precipitates. Fractographic and textural evidence is presented.

  16. Bioinspired Polymeric Photonic Crystals for High Cycling pH-Sensing Performance.

    Science.gov (United States)

    Fei, Xiang; Lu, Tao; Ma, Jun; Wang, Wanlin; Zhu, Shenmin; Zhang, Di

    2016-10-12

    Artificial photonic crystals (PCs) have been extensively studied to improve the sensing performance of poly(acrylic acid) (PAAc), as it can transform the PAAc volume change into optical signal which is easier to read. Nevertheless, these PCs are limited by the monostructure. We herein developed new photonic crystals (PCs) by coating acrylic acid and acrylamide (AAm) via in situ copolymerization onto Papilio paris wings having hierarchical, lamellar structure. Our PCs exhibited high performance of color tunability to environmental pH, as detected by reflectance spectra and visual observation. The introduction of AAm into the system created covalent bonding which robustly bridged the polymer with the wings, leading to an accurate yet broad variation of reflection wavelength to gauge environmental pH. The reflection wavelength can be tailored by the refractive index of the lamellar interspacing due to the swelling/deswelling of the polymer. The mechanism is not only supported by experimenta but proved by finite-difference time-domain simulation. Moreover, It is worth noting that the covalent bonding has provided the PCs-based pH sensor with high cycling performance, implying great potential in practical applications. The simple fabrication process is applicable to the development of a wide variety of stimuli-responsive PCs taking advantage of other polymers.

  17. Characterization of high cycle fatigue behavior of a new generation aluminum lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    De, P.S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Mishra, R.S., E-mail: rsmishra@mst.edu [Center for Friction Stir Processing, Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Baumann, J.A. [Boeing Company, St. Louis, MO 631666 (United States)

    2011-09-15

    Highlights: {yields} Effect of microstructure on fatigue fracture of an advanced Al-Li alloy was studied in detail. {yields} Preferential crack propagation in T3 state at specific orientations was analyzed. {yields} Fatigue crack propagation difference between T3 and T8 tempers and friction stir welded condition was rationalized. {yields} The effect of grain size on fatigue life for T3 and T8 tempers was justified based on current theories. {yields} Delamination in T3 and T8 tempers was rationalized using microstructural analysis and FEA simulation. - Abstract: The high cycle fatigue life characteristics of an Al-Li alloy were studied as a function of microstructure. While for the parent microstructure fatigue life decreased as grain size increased, no such effect was noted at high stresses. This decrease in fatigue life was correlated with lower crack initiation life due to small crack effect. Under multiaxial stress conditions, the alloy exhibited intergranular cracking. The cross-linking of intergranular cracks (in the T8 condition) caused a further deterioration in fatigue life. Additionally, planar slip movements (in the T3 condition) in stage I crack propagation were observed. Slip planarity depended on both the sample texture and the nature of the precipitates. Fractographic and textural evidence is presented.

  18. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  19. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  20. Cycling to high school in Toronto, Ontario, Canada: Exploration of school travel patterns and attitudes by gender

    NARCIS (Netherlands)

    Wittmann, K.; Savan, B.; Ledsham, T.; Liu, G.; Lay, J.

    2015-01-01

    This study surveyed attitudes, behaviors, social norms, and perceived control among the populations of students at three high schools in downtown Toronto, Ontario, Canada. The results showed a pattern of hesitancy to cycle on the part of female high school students compared with their male

  1. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  2. Synthesis of realistic driving cycles with high accuracy and computational speed, including slope information

    NARCIS (Netherlands)

    Silvas, E.; Hereijgers, K.; Peng, Huei; Hofman, T.; Steinbuch, M.

    2016-01-01

    This paper describes a new method to synthesize driving cycles, where not only the velocity is considered, yet also the road slope information of the real-world measured driving cycle. Driven by strict emission regulations and tight fuel targets, hybrid or electric vehicle manufacturers aim to

  3. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study.

    Science.gov (United States)

    Biganzoli, Laura; Racanella, Gaia; Marras, Roberto; Rigamonti, Lucia

    2015-01-01

    The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO2 emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in Biganzoli et al. (2014) and from the dolomitic sorbent production plant. The results of the LCA show minor changes in the potential impacts between the two operational modes of the plants. These differences are for 8 impact categories in favour of the new operational mode based on the addition of the dolomitic sorbent, and for 7 impact categories in favour of the traditional operation. A final evaluation was conducted on the potential

  4. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    Science.gov (United States)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  5. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    Science.gov (United States)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  6. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  7. High electrochemical energy storage in self-assembled nest-like CoO nanofibers with long cycle life

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Atin; Maiti, Sandipan [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India); Sreemany, Monjoy [CSIR-Central Glass & Ceramic Research Institute, Advanced Mechanical and Materials Characterization Division (India); Mahanty, Sourindra, E-mail: mahanty@cgcri.res.in [CSIR-Central Glass & Ceramic Research Institute, Fuel Cell & Battery Division (India)

    2016-04-15

    Developing efficient electrode material is essential to keep pace with the demand for high energy density together with high power density and long cycle life in next generation energy storage devices. Herein, we report the electrochemical properties of hydrothermally synthesized CoO nanofibers of diameter 30–80 nm assembled in a nest-like morphology which showed a very high reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles at 0.1 mA cm{sup −2} as lithium-ion battery anode. Systematic investigation by ex situ transmission electron microscopy, X-ray photoelectron spectroscopy, cyclic voltammetry, and impedance spectroscopy at different cycling stages indicated that the extraordinary performance could be related to an enhancement in the Co{sup 2+}↔Co{sup x+} (2 < x ≤ 3) redox process in addition to the commonly believed structural and morphological evolution during cycling favoring generation of large number of accessible active sites for lithium insertion. Further, when examined as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g{sup −1} is achieved from these 1D CoO nanofibers after 10,000 charge discharge cycles at a high current density of 5 A g{sup −1} demonstrating good application potential.Graphical AbstractNest-like CoO nanofibers showed a reversible lithium storage capacity of 2000 mA h g{sup −1} after 600 cycles as LIB anode and a capacitance of 1167 F g{sup −1} after 10,000 cycles as electrochemical supercapacitor.

  8. Synthesis of hierarchical porous honeycomb carbon for lithium-sulfur battery cathode with high rate capability and long cycling stability

    International Nuclear Information System (INIS)

    Qu, Yaohui; Zhang, Zhian; Zhang, Xiahui; Ren, Guodong; Wang, Xiwen; Lai, Yanqing; Liu, Yexiang; Li, Jie

    2014-01-01

    Highlights: • A novel HPHC was prepared by a simple template process. • The HPHC as matrix to load sulfur for Lithium-Sulfur battery cathodes. • S-HPHC cathode shows high rate capability and long cycling stability. • The sulfur-HPHC composite presents electrochemical stability up to 300 cycles at 1.5 C. - Abstract: Sulfur has a high specific capacity of 1675 mAh g −1 as lithium battery cathode, but its rapid capacity fading due to polysulfides dissolution presents a significant challenge for practical applications. Here we report a novel hierarchical porous honeycomb carbon (HPHC) for lithium-sulfur battery cathode with effective trapping of polysulfides. The HPHC was prepared by a simple template process, and a sulfur-carbon composite based on HPHC was synthesized for lithium-sulfur batteries by a melt-diffusion method. It is found that the elemental sulfur was dispersed inside the three-dimensionally hierarchical pores of HPHC based on the analyses. Electrochemical tests reveal that the sulfur-HPHC composite shows high rate capability and long cycling stability as cathode materials. The sulfur-HPHC composite with sulfur content of 66.3 wt% displays an initial discharge capacity of 923 mAh g −1 and a reversible discharge capacity of 564 mAh g −1 after 100 cycles at 2 C charge-discharge rate. In particular, the sulfur-HPHC composite presents a long term cycling stability up to 300 cycles at 1.5 C. The results illustrate that the electrochemical reaction constrained inside the interconnected macro/meso/micropores of HPHC would be the dominant factor for the excellent high rate capability and long cycling stability of the sulfur cathode, and the three-dimensionally honeycomb carbon network would be a promising carbon matrix structure for lithium-sulfur battery cathode

  9. Proof-of-principle of high-fidelity coupled CRUD deposition and cycle depletion simulation

    International Nuclear Information System (INIS)

    Walter, Daniel J.; Kendrick, Brian K.; Petrov, Victor; Manera, Annalisa; Collins, Benjamin; Downar, Thomas

    2015-01-01

    A multiphysics framework for the high-fidelity simulation of CRUD deposition is developed to better understand the coupled physics and their respective feedback mechanisms. This framework includes the primary physics of lattice depletion, computational fluid dynamics, and CRUD chemistry. The three physics are coupled together via the operator-splitting technique, where predictor–corrector and fixed-point iteration schemes are utilized to converge the nonlinear solution. High-fidelity simulations may provide a means to predict and assess potential operating issues, including CRUD induced power shift and CRUD induced localized corrosion, known as CIPS and CILC, respectively. As a proof-of-principle, a coupled 500-day cycle depletion simulation of a pressurized water reactor fuel pin cell was performed using the coupled code suite; a burnup of 31 MWd/kgHM was reached. The simulation recreated the classic striped CRUD pattern often seen on pulled fuel rods containing CRUD. It is concluded that the striping is caused by the flow swirl induced by spacer grid mixing vanes. Two anti-correlated effects contribute to the striping: (1) the flow swirl yields significant azimuthal temperature variations, which impact the locations where CRUD deposits, and (2) the flow swirl is correlated to increased shear stress along the cladding surface and subsequent erosion of the CRUD layer. The CIPS condition of the core is concluded to be primarily controlled by lithium tetraborate precipitation, referred to as boron hideout, which occurs in regions experiencing subcooled nucleate boiling as soluble boron and lithium species reach their solubility limit within the CRUD layer. Subsequently, a localized reduction in power occurs due to the high neutron absorption cross section of boron-10

  10. Life cycle assessment of small-scale high-input Jatropha biodiesel production in India

    International Nuclear Information System (INIS)

    Pandey, Krishan K.; Pragya, Namita; Sahoo, P.K.

    2011-01-01

    Highlights: → NEB and NER of high input Jatropha biodiesel system was higher than those of low input. → These values further increase on including the energy content of the co-products, and in the further years. → Maximum energy use was during oil extraction, followed by oil processing and fertilizer use. → Allocation of resources at right time and with proper care increase the overall system productivity. -- Abstract: In the current scenario of depleting energy resources, increasing food insecurity and global warming, Jatropha has emerged as a promising energy crop for India. The aim of this study is to examine the life cycle energy balance for Jatropha biodiesel production and greenhouse gas emissions from post-energy use and end combustion of biodiesel, over a period of 5 years. It's a case specific study for a small scale, high input Jatropha biodiesel system. Most of the existing studies have considered low input Jatropha biodiesel system and have used NEB (Net energy balance i.e. difference of energy output and energy input) and NER (Net energy ratio i.e. ratio of energy output to energy input) as indicators for estimating the viability of the systems. Although, many of them have shown these indicators to be positive, yet the values are very less. The results of this study, when compared with two previous studies of Jatropha, show that the values for these indicators can be increased to a much greater extent, if we use a high input Jatropha biodiesel system. Further, when compared to a study done on palm oil and Coconut oil, it was found even if the NEB and NER of biodiesel from Jatropha were lesser in comparison to those of Palm oil and Coconut oil, yet, when energy content of the co-products were also considered, Jatropha had the highest value for both the indicators in comparison to the rest two.

  11. Analysis of a novel solar energy-powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.R.; Yamaguchi, H.; Uneno, D. [Department of Mechanical Engineering, Doshisha University, Kyoto 630-0321 (Japan); Fujima, K. [Mayekawa MFG Co., Ltd., 2000 Tatsuzawa Moriya-city, Ibaraki-Pref. 302-0118 (Japan); Enomoto, M. [Showa Denko K. K., 1-480, Inuzuka, Oyama-city, Tochigi 323-8679 (Japan); Sawada, N. [Showa Tansan Co., Ltd., 7-1, Ogimachi, Kawasaki-Ku, Kawasaki-city, Kanagawa 210-0867 (Japan)

    2006-10-15

    Theoretical analysis of a solar energy-powered Rankine thermodynamic cycle utilizing an innovative new concept, which uses supercritical carbon dioxide as a working fluid, is presented. In this system, a truly 'natural' working fluid, carbon dioxide, is utilized to generate firstly electricity power and secondly high-grade heat power and low-grade heat power. The uniqueness of the system is in the way in which both solar energy and carbon dioxide, available in abundant quantities in all parts of the world, are simultaneously used to build up a thermodynamic cycle and has the potential to reduce energy shortage and greatly reduce carbon dioxide emissions and global warming, offering environmental and personal safety simultaneously. The system consists of an evacuated solar collector system, a power-generating turbine, a high-grade heat recovery system, a low-grade heat recovery system and a feed pump. The performances of this CO{sub 2}-based Rankine cycle were theoretically investigated and the effects of various design conditions, namely, solar radiation, solar collector area and CO{sub 2} flow rate, were studied. Numerical simulations show that the proposed system may have electricity power efficiency and heat power efficiency as high as 11.4% and 36.2%, respectively. It is also found that the cycle performances strongly depend on climate conditions. Also the electricity power and heat power outputs increase with the collector area and CO{sub 2} flow rate. The estimated COP{sub power} and COP{sub heat} increase with the CO{sub 2} flow rate, but decrease with the collector area. The CO{sub 2}-based cycle can be optimized to provide maximum power, maximum heat recovery or a combination of both. The results suggest the potential of this new concept for applications to electricity power and heat power generation. (author)

  12. Crack growth behaviour of aluminium wrought alloys in the Very High Cycle Fatigue regime

    Directory of Open Access Journals (Sweden)

    Bülbül Fatih

    2018-01-01

    Full Text Available Investigations have shown that in the regime of Very High Cycle Fatigue (VHCF “natural” crack initiation often takes place underneath the material surface leading to crack propagation without contact to atmospheric components. In order to elucidate the environmental damage contribution and its effect on the VHCF long crack propagation, fatigue experiments with alternating environment (vacuum and laboratory air were performed. An ultrasonic fatigue testing system (USFT equipped with a small vacuum chamber was applied that enables the in-situ examination of the long fatigue crack propagation at a resonance frequency of about 20 kHz by using a long distance microscope. By means of the Focused-Ion-Beam technique, micro-notches were prepared in the USFT specimens. The tests were carried out on the aluminium alloys EN-AW 6082 and 5083 in different conditions. It has been found that the atmosphere has a significant influence on the VHCF long crack propagation which manifests itself in the crack path as well as in the crack growth rates. Because of pronounced single sliding in vacuum, shear-stress-controlled crack propagation was detected whereas in laboratory air normal-stress-controlled crack propagation occurred. Furthermore, it has been proven that the secondary precipitation state of the aluminium alloy significantly influences the VHCF long crack propagation in vacuum.

  13. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  14. Study on high-cycle fatigue behavior of candidate stainless steels for SCWR

    International Nuclear Information System (INIS)

    Xiong Ru; Zhao Yuxiang; Zhang Qiang; Wang Hao; Tang Rui; Qiao Yingjie

    2013-01-01

    The fatigue experiments of commerce stainless steels including 347, 316Ti and 310 were conducted under bending and rotating loadings. The environments were at room temperature (RT) as well as at 550℃ in air. The fracture morphology was observed by SEM, and the S-N curves were processed according to the experimental data. The results indicate the fatigue limited stresses for the 3 stainless steels were in the order of 347 < 316Ti < 310, which consistent with the order of their tensile strength. Elevated temperature would accelerate the oxidation and therefore the fatigue life would decrease, among them 347 was more sensitive to temperature with the maximum decreasing tendency. All the 3 stainless steels have good resistance to high cycle fatigue when comparing their experimental data with the calculated value from the empirical formula. The fracture morphology presents areas of crack initiation, crack growth and fracture, the width of fatigue ripples is about 1 μm, the fracture area has much dimples, and 347 presents much cavities of different sizes in dimples. (authors)

  15. Economic evaluation of the steam-cycle high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    1983-07-01

    The High Temperature Gas-Cooled Reactor is unique among current nuclear technologies in its ability to generate energy in temperature regimes previously limited to fossil fuels. As a result, it can offer commercial benefits in the production of electricity, and at the same time, expand the role of nuclear energy to the production of process heat. This report provides an evaluation of the HTGR-Steam Cycle (SC) system for the production of baseloaded electricity, as well as cogenerated electricity and process steam. In each case the HTGR-SC system has been evaluated against appropriate competing technologies. The computer code which was developed for this evaluation can be used to present the analyses on a cost of production or cash flow basis; thereby, presenting consistent results to a utility, interested in production costs, or an industrial steam user or third party investor, interested in returns on equity. Basically, there are two economic evaluation methodologies which can be used in the analysis of a project: (1) minimum revenue requirements, and (2) discounted cash flow

  16. FACTORS THAT INFLUENCE IN SEDENTARY LIFESTYLE OF STUDENTS OF FOURTH CYCLE OF A PUBLIC HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Carlos Álvarez Bogantes

    2015-08-01

    Full Text Available There is sufficient evidence to say that women as they move into the education system to reduce physical activity levels of sedentary lifestyle that put them at higher risk for non-communicable diseases. This led to determine the reasons for the inactivity of a group of fourth cycle. In order to address this problem, a qualitative design using focus groups and depth interviews was used, applied to30 women of high school participated. The results indicate that the participants are unaware of the benefits that can give them an active life, possibly affecting their movement behavior. A key element that have expressed is little impact of physical education classes when promoting lifestyles movement of the participants in this study, especially for ignoring the needs and barriers that students have. Become clear that the sport orientation of physical education classes and lack the skills to participate in activities successfully, sedentary activities of friends, the attitudes of parents; curriculum and lack of facilities also have significant impact in the studied group.

  17. Challenges in high temperature low cycle fatigue testing of metallic materials

    International Nuclear Information System (INIS)

    Sandhya, R.; Valsan, M.; Bhanu Sankara Rao, K.

    2007-01-01

    The evaluation of the high strain Low Cycle Fatigue properties of structural materials is an involved and complicated procedure requiring skill and diligence from the experimentalist. This presentation describes the various testing methods to evaluate the LCF properties of structural materials, the complexities involved and some solutions to exacting requirements, not covered by the testing procedure standards. The basic components of servo-hydraulic fatigue testing machines is described, as are the calibration and maintenance procedures. Results of LCF tests conducted at the authors' laboratory on AISI 316L(N) stainless steel and Mod.9Cr-1Mo ferritic steel are described. The complications in total strain controlled testing of weld joints is brought out and soft zone development in Mod. 9Cr-1Mo ferritic steel is described. The special requirements for testing in environmental chambers is a challenging task. In-house chambers, designed to carry out testing in dynamic sodium environment is highlighted. These chambers have provision to accommodate extensometers for strain measurements, and also house all the safety instrumentation needed to carry out to mechanical testing in dynamic sodium environment. The variation of LCF results as a function of specimen geometry is examined. The various failure criteria adopted by laboratories in different countries are also touched upon. (author)

  18. Ignition of deuterium based fuel cycles in a high beta system

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-01-01

    A steady state self-consistent plasma modeling applied to a system having close to unity, such as FRC or like, is found to be quite effective in solving the problems independently of any anomalous process and proves the existence of ignited state of deuterium based fuel cycles. The temperature ranges that the plasma falls into ignited state are obtained as a function of relative feeding rates of tritium and 3 He to deuterium's. We find pure DD cycle will not ignite so that 3 He or/and tritium must be added as catalyzer to achieve ignition. Standing on the points to construct a cleaner system yielding smaller amount of 14 MeV neutrons and to burn the fuel in steady state for long periods of time, we have confirmed superiority of the complex composed of the master reactor of 3 He-Cat.D cycle (catalyzed DD cycle reinjecting only fusion produced 3 He) and the satellite reactor of 3 He enriched D 3 He cycle. In case storage of tritium for 3 He by β - decay is turned out not to be allowed environmentally, we may utilize conventional catalyzed DD cycle although 14 MeV neutron yields will be increased by 35 % over the complex. It is demonstrated that advanced fuel cycle reactors can be very simple in constructions and compact in size such that the field strength and the plasma volume of the order of JT-60's may be enough for 1000 MW power plant. (author)

  19. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    Science.gov (United States)

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    ABSTRACT In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans

  20. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans.

    Science.gov (United States)

    Singh, Kamna; Senadheera, Dilani B; Lévesque, Céline M; Cvitkovitch, Dennis G

    2015-08-01

    In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans Cop

  1. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    Science.gov (United States)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  2. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  3. Life Cycle Assessment of a Highly Diverse Vegetable Multi-Cropping System in Fengqiu County, China

    Directory of Open Access Journals (Sweden)

    Li Li

    2018-03-01

    Full Text Available Agricultural biodiversity usually leads to greater sustainability in production practices. To understand the environmental implications of the development of village-level multi-cropping in rural China, we compared the environmental impact of a highly diverse vegetable multi-cropping system to a conventional wheat/maize rotation system based on the method of life cycle assessment (LCA. Using household level cultivation data, this study examined the gate-to-gate environmental impacts of on-site cultivation practices relating to the production of 10,000 nutrient equivalent units. Results show that vegetable multi-cropping resulted in decreased average land requirement, and diesel, water and electricity usage by 69.8%, 62.2%, 71.7%, and 63.4%, respectively, while average nitrogen (Total N, phosphorus (P2O5, and potassium (K2O usage in vegetable multi-cropping systems decreased by 16.3%, 42.1%, and 75.8%, respectively. Additional corresponding effects led to a decrease in the total global warming, eutrophication, and acidification potentials from external inputs by 21.6%, 16.7%, and 16.2% of the entire system, respectively. Moreover, the midpoint human toxicity potential from pesticide usage of the vegetable multi-cropping system was lower than that of the conventional system. However, the midpoint eco-toxicity potential from pesticide usage was higher due to certain highly toxic substances, and both human and eco-toxicity potentials from heavy metals were all higher by a few orders of magnitudes. Thus, to mitigate these detrimental consequences, some related measures are proposed for sustainable practices in the future implementation of multi-cropping systems.

  4. Is high-intensity interval cycling feasible and more beneficial than continuous cycling for knee osteoarthritic patients? Results of a randomised control feasibility trial.

    Science.gov (United States)

    Keogh, Justin W; Grigg, Josephine; Vertullo, Christopher J

    2018-01-01

    Knee osteoarthritis (OA) patients often suffer joint pain and stiffness, which contributes to negative changes in body composition, strength, physical performance (function), physical activity and health-related quality of life. To reduce these symptoms and side effects of knee OA, moderate-intensity continuous training (MICT) cycling is often recommended. While resistance training is considered the optimal form of training to improve sarcopenic outcomes, it imposes higher joint loads and requires supervision, either initially or continuously by trained exercise professionals. Therefore, this pilot study sought to gain some insight into the feasibility and potential benefits of high-intensity interval training (HIIT) cycling as an alternative exercise option to MICT cycling for individuals with knee OA. Twenty-seven middle-aged and older adults with knee OA were randomly allocated to either MICT or HIIT, with both programs involving four unsupervised home-based cycling sessions (∼25 min per session) each week for eight weeks. Feasibility was assessed by enrolment rate, withdrawal rate, exercise adherence and number of adverse effects. Efficacy was assessed by health-related quality of life (Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Lequesne index), physical function (Timed Up and Go (TUG), Sit to Stand (STS) and preferred gait speed) and body composition (body mass, BMI, body fat percentage and muscle mass). Twenty-seven of the interested 50 potential participants (54%) enrolled in the study, with 17 of the 27 participants completing the trial (withdrawal rate of 37%); with the primary withdrawal reasons being unrelated injuries or illness or family related issues. Of the 17 participants who completed the trial, exercise adherence was very high (HIIT 94%; MICT 88%). While only three individuals (one in the MICT and two in the HIIT group) reported adverse events, a total of 28 adverse events were reported, with 24 of these

  5. Is high-intensity interval cycling feasible and more beneficial than continuous cycling for knee osteoarthritic patients? Results of a randomised control feasibility trial

    Directory of Open Access Journals (Sweden)

    Justin W. Keogh

    2018-05-01

    Full Text Available Background Knee osteoarthritis (OA patients often suffer joint pain and stiffness, which contributes to negative changes in body composition, strength, physical performance (function, physical activity and health-related quality of life. To reduce these symptoms and side effects of knee OA, moderate-intensity continuous training (MICT cycling is often recommended. While resistance training is considered the optimal form of training to improve sarcopenic outcomes, it imposes higher joint loads and requires supervision, either initially or continuously by trained exercise professionals. Therefore, this pilot study sought to gain some insight into the feasibility and potential benefits of high-intensity interval training (HIIT cycling as an alternative exercise option to MICT cycling for individuals with knee OA. Methods Twenty-seven middle-aged and older adults with knee OA were randomly allocated to either MICT or HIIT, with both programs involving four unsupervised home-based cycling sessions (∼25 min per session each week for eight weeks. Feasibility was assessed by enrolment rate, withdrawal rate, exercise adherence and number of adverse effects. Efficacy was assessed by health-related quality of life (Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC and Lequesne index, physical function (Timed Up and Go (TUG, Sit to Stand (STS and preferred gait speed and body composition (body mass, BMI, body fat percentage and muscle mass. Results Twenty-seven of the interested 50 potential participants (54% enrolled in the study, with 17 of the 27 participants completing the trial (withdrawal rate of 37%; with the primary withdrawal reasons being unrelated injuries or illness or family related issues. Of the 17 participants who completed the trial, exercise adherence was very high (HIIT 94%; MICT 88%. While only three individuals (one in the MICT and two in the HIIT group reported adverse events, a total of 28 adverse events were

  6. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  7. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  8. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    International Nuclear Information System (INIS)

    Konarek, E.; Coulas, B.; Sarvinis, J.

    2016-01-01

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  9. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    International Nuclear Information System (INIS)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-01-01

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study

  10. High-capacity FeTiO3/C negative electrode for sodium-ion batteries with ultralong cycle life

    Science.gov (United States)

    Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika

    2018-06-01

    The development of electrode materials which improve both the energy density and cycle life is one of the most challenging issues facing the practical application of sodium-ion batteries today. In this work, FeTiO3/C nanoparticles are synthesized as negative electrode materials for sodium-ion batteries. The electrochemical performance and charge-discharge mechanism of the FeTiO3/C negative electrode are investigated in an ionic liquid electrolyte at 90 °C. The FeTiO3/C negative electrode delivers a high reversible capacity of 403 mAh g-1 at a current rate of 10 mA g-1, and exhibits high rate capability and excellent cycling stability for up to 2000 cycles. The results indicate that FeTiO3/C is a promising negative electrode material for sodium-ion batteries.

  11. Experimental study of R134a/R410A cascade cycle for variable refrigerant flow heat pump systems

    International Nuclear Information System (INIS)

    Kim, Jeong Hun; Lee, Jae Wan; Park, Warn Gyu; Choi, Hwan Jong; Lee, Sang Hun; Oh, Sai Kee

    2015-01-01

    Cascade cycle is widely applied to heat pumps operating at low ambient temperature to overcome problems such as low heating capacity and Coefficient of performance (COP) deterioration A number of researches have been conducted on cascade cycle heat pumps, but most of those studies were focused on system optimization to determine optimal intermediate temperature in air-to-water heat pumps. However, experimental optimization in regard to air and water heating simultaneously using a cascade cycle has been an understudied area. Therefore, we focused on experimental analysis for a cascade system with Variable refrigerant flow (VRF) heat pumps. Experiments were conducted under a variety of operating conditions, such as ambient and water inlet temperature. COP increased up to 16% when water inlet temperature decreased. COP of VRF heat pumps with cascade cycle is three-times higher compared with conventional boilers as well as 17% higher compared to single heat pumps

  12. Development of a procedure for estimating the high cycle fatigue strength of some high temperature structural alloys

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1979-01-01

    The generation of strain controlled fatigue data, for the standard strain rate of 4 x 10 -3 sec -1 , presents a problem when the cycles to failure exceed 10 5 because of the prohibitively long test times involved. In an attempt to circumvent this difficulty an evaluation has been made of a test procedure involving a fast cycling rate (40 Hz) and load controlled conditions. The validity of this procedure for extending current fatigue curves from 10 5 to 10 8 cycles and beyond, hinges upon the selection of an appropriate effective strain value, since the strain usually changes rapidly during the early stage of fatigue. Results from annealed 2 1/4 Cr-1 Mo, type 304 stainless steel, Incoloy 800H and Hastelloy X, tested over a wide range of temperatures, show that the strain measured N/sub f/2 is a reasonable estimate since it gives an excellent correlation between the strain and load controlled tests in the 10 5 cycle range where the data overlap. It seems clear that the differences in cycling rate and early stress-strain history for the two tests do not significantly affect the correlation. It may, therefore, be concluded that such load control test procedures may be used as a valid fast way for extending currently available fatigue curves from 10 5 to 10 8 cycles, and beyond

  13. A new boil-off gas re-liquefaction system for LNG carriers based on dual mixed refrigerant cycle

    Science.gov (United States)

    Tan, Hongbo; Shan, Siyu; Nie, Yang; Zhao, Qingxuan

    2018-06-01

    A new boil-off gas (BOG) re-liquefaction system for LNG carriers has been proposed to improve the system energy efficiency. Two cascade mixed refrigerant cycles (or dual mixed refrigerant cycle, DMR) are used to provide the cooling capacity for the re-liquefaction of BOG. The performance of the new system is analysed on the basis of the thermodynamic data obtained in the process simulation in Aspen HYSYS software. The results show that the power consumed in the BOG compressor and the high-temperature mixed refrigerant compressor could be saved greatly due to the reduced mass flow rates of the processed fluids. Assuming the re-liquefaction capacity of the investigated system is 4557.6 kg/h, it is found that the total power consumption can be reduced by 25%, from 3444 kW in the existing system to 2585.8 kW in the proposed system. The coefficient of performance (COP) of 0.25, exergy efficiency of 41.3% and the specific energy consumption (SEC) of 0.589 kWh/kg(LNG) could be achieved in the new system. It exhibits 33% of improvement in the COP and exergy efficiency in comparison with the corresponding values of the existing system. It indicates that employing the DMR based BOG re-liquefaction system could improve the system energy efficiency of LNG carriers substantially.

  14. Avoiding thermal striping damage: Experimentally-based design procedures for high-cycle thermal fatigue

    International Nuclear Information System (INIS)

    Betts, C.; Judd, A.M.; Lewis, M.W.J.

    1994-01-01

    In the coolant circuits of a liquid metal cooled reactor (LMR), where there is turbulent mixing of coolant streams at different temperatures, there are temperature fluctuations in the fluid. If an item of the reactor structure is immersed in this fluid it will, because of the good heat transfer from the flowing liquid metal, experience surface temperature fluctuations which will induce dynamic surface strains. It is necessary to design the reactor so that these temperature fluctuations do not, over the life of the plant, cause damage. The purpose of this paper is to describe design procedures to prevent damage of this type. Two such procedures are given, one to prevent the initiation of defects in a nominally defect-free structure or to allow initiation only at the end of the component life, and the other to prevent significant growth of undetectable pre-existing defects of the order of 0.2 to 0.4 mm in depth. Experimental validation of these procedures is described, and the way they can be applied in practice is indicated. To set the scene the paper starts with a brief summary of cases in which damage of this type, or the need to avoid such damage, have had important effects on reactor operation. Structural damage caused by high-cycle thermal fatigue has had a significant adverse influence on the operation of LMRs on several occasions. It is necessary to eliminate the risk of such damage at the design stage. In the absence of detailed knowledge of the temperature history to which it will be subject, an LMR structure can be designed so that, if it is initially free of defects more than 0.1 mm deep, no such defects will be initiated by high-cycle fatigue. This can be done by ensuring that the maximum source temperature difference in the liquid metal is less than a limiting value, which depends on temperature. The limit is very low, however, and likely to be restrictive. This method, by virtue of its safety margin, takes into account pre-existing surface crack

  15. High temperature abatement of acid gases from waste incineration. Part II: Comparative life cycle assessment study

    Energy Technology Data Exchange (ETDEWEB)

    Biganzoli, Laura, E-mail: laura.biganzoli@mail.polimi.it [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy); Racanella, Gaia [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy); Marras, Roberto [Unicalce S.p.A., R and D Department, Via Tonio da Belledo 30, 23900 Lecco (Italy); Rigamonti, Lucia [Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza L. da Vinci 32, 20133 Milano (Italy)

    2015-01-15

    Highlights: • Two scenarios of acid gases removal in WTE plants were compared in an LCA study. • A detailed inventory based on primary data has been reported for the production of the new dolomitic sorbent. • Results show that the comparison between the two scenarios does not show systematic differences. • The potential impacts are reduced only if there is an increase in the energy efficiency of the WTE plant. - Abstract: The performances of a new dolomitic sorbent, named Depurcal®MG, to be directly injected at high temperature in the combustion chamber of Waste-To-Energy (WTE) plants as a preliminary stage of deacidification, were experimentally tested during full-scale commercial operation. Results of the experimentations were promising, and have been extensively described in Biganzoli et al. (2014). This paper reports the Life Cycle Assessment (LCA) study performed to compare the traditional operation of the plants, based on the sole sodium bicarbonate feeding at low temperature, with the new one, where the dolomitic sorbent is injected at high temperature. In the latter the sodium bicarbonate is still used, but at lower rate because of the decreased load of acid gases entering the flue gas treatment line. The major goal of the LCA was to make sure that a burden shifting was not taking place somewhere in the life cycle stages, as it might be the case when a new material is used in substitution of another one. According to the comparative approach, only the processes which differ between the two operational modes were included in the system boundaries. They are the production of the two reactants and the treatment of the corresponding solid residues arising from the neutralisation of acid gases. The additional CO{sub 2} emission at the stack of the WTE plant due to the activation of the sodium bicarbonate was also included in the calculation. Data used in the modelling of the foreground system are primary, derived from the experimental tests described in

  16. A novel nuclear combined power and cooling system integrating high temperature gas-cooled reactor with ammonia–water cycle

    International Nuclear Information System (INIS)

    Luo, Chending; Zhao, Fuqiang; Zhang, Na

    2014-01-01

    Highlights: • We propose a novel nuclear ammonia–water power and cooling cogeneration system. • The high temperature reactor is inherently safe, with exhaust heat fully recovered. • The thermal performances are improved compared with nuclear combined cycle. • The base case attains an energy efficiency of 69.9% and exergy efficiency of 72.5%. • Energy conservation and emission reduction are achieved in this cogeneration way. - Abstract: A nuclear ammonia–water power and refrigeration cogeneration system (NAPR) has been proposed and analyzed in this paper. It consists of a closed high temperature gas-cooled reactor (HTGR) topping Brayton cycle and a modified ammonia water power/refrigeration combined bottoming cycle (APR). The HTGR is an inherently safe reactor, and thus could be stable, flexible and suitable for various energy supply situation, and its exhaust heat is fully recovered by the mixture of ammonia and water in the bottoming cycle. To reduce exergy losses and enhance outputs, the ammonia concentrations of the bottoming cycle working fluid are optimized in both power and refrigeration processes. With the HTGR of 200 MW thermal capacity and 900 °C/70 bar reactor-core-outlet helium, the system achieves 88.8 MW net electrical output and 9.27 MW refrigeration capacity, and also attains an energy efficiency of 69.9% and exergy efficiency of 72.5%, which are higher by 5.3%-points and 2.6%-points as compared with the nuclear combined cycle (NCC, like a conventional gas/steam power-only combined cycle while the topping cycle is a closed HTGR Brayton cycle) with the same nuclear energy input. Compared with conventional separate power and refrigeration generation systems, the fossil fuel saving (based on CH 4 ) and CO 2 emission reduction of base-case NAPR could reach ∼9.66 × 10 4 t/y and ∼26.6 × 10 4 t/y, respectively. The system integration accomplishes the safe and high-efficiency utilization of nuclear energy by power and refrigeration

  17. Influence of Fixed Temperature of Chilled Water Outlet Setting toward Performance of Chiller Absorbtion with Two Level Heating Cycle Method

    Directory of Open Access Journals (Sweden)

    I Gusti Agung Bagus Wirajati

    2012-11-01

    Full Text Available The study investigated the performance of re-heat two stage cycle. This paper presents the working principle and theexperimental results of the reheat two stage adsorption cycle. The performance of the cycle was evaluated under differentheat source temperature and mass recovery time. Coefficient of performance (COP and cooling capacity have beencalculated to analyze the influences of experimental conditions. The experimental results shown in both COP and coolingcapacity increased along with heat source temperature increased, and mass recovery time is very effective to improve theperformance without increasing heat source temperature.

  18. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    Science.gov (United States)

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.

  19. Storage and disposal of high-level radioactive waste from advanced FBR fuel cycle

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Oigawa, Hiroyuki; Nakayama, Shinichi; Ono, Kiyoshi; Shiotani, Hiroki

    2011-01-01

    Waste management of fast breeder reactor (FBR) fuel cycle with and without partitioning and transmutation (P and T) technology was investigated by focusing on thermal constraints due to heat deposition from waste in storage and disposal facilities including economics aspects of those facilities. Partitioning of minor actinides (MAs) and heat-generating fission products in high-level waste can enlarge the containment ratio of waste elements in the glass waste forms and shorten predisposal storage period. Though MAs can be transmuted in FBRs or dedicated transmuters, heat-generating fission products are difficult to be transmuted; they are partitioned and stored for a long time before disposal. The disposal concepts for heat-generating fission products and remainders such as rare-earth elements depend on storage period that ranges from several years to several hundreds of years. Short-term storage results in small size of storage facilities and large size of repositories, and vice versa for long-term storage. This trade-off relation was analyzed by estimating repository size as a function of storage period. The result shows that transmutation of MAs is essentially effective to reduce repository size regardless to storage period, and a combination of P and T can provide a smaller repository than the conventional one by two orders of magnitude. The cost analysis for waste management was also made based on rough assumptions on storage, transportation and repository excluding cost for introducing P and T that are still under evaluation. Cost of waste management for FBR without P and T is 0.25 Yen/kWh that is slightly smaller than that for LWR without P and T, 0.30 Yen/kWh. The introduction of MA transmutation to the FBR results in cost of 0.20 Yen/kWh, and full introduction of P and T provides the smallest cost of 0.08 Yen/kWh. (author)

  20. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  1. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  2. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  3. Study on a waste heat-driven adsorption cooling cum desalination cycle

    KAUST Repository

    Ng, Kim Choon

    2012-05-01

    This article presents the performance analysis of a waste heat-driven adsorption cycle. With the implementation of adsorption-desorption phenomena, the cycle simultaneously produces cooling energy and high-grade potable water. A mathematical model is developed using isotherm characteristics of the adsorbent/adsorbate pair (silica gel and water), energy and mass balances for the each component of the cycle. The cycle is analyzed using key performance parameters namely (i) specific cooling power (SCP), (ii) specific daily water production (SDWP), (iii) the coefficient of performance (COP) and (iv) the overall conversion ratio (OCR). The numerical results of the adsorption cycle are validated using experimental data. The parametric analysis using different hot and chilled water temperatures are reported. At 85°C hot water inlet temperature, the cycle generates 3.6 m 3 of potable water and 23 Rton of cooling at the produced chilled water temperature of 10°C. © 2012 Elsevier Ltd and IIR. All rights reserved.

  4. Theoretical study on a novel dual-nozzle ejector enhanced refrigeration cycle for household refrigerator-freezers

    International Nuclear Information System (INIS)

    Zhou, Mengliu; Wang, Xiao; Yu, Jianlin

    2013-01-01

    Highlights: • A novel dual-nozzle ejector enhanced refrigeration cycle is proposed. • The novel cycle is evaluated by using the developed mathematical model. • The results show the performances of the novel cycle could be significantly improved. • The novel cycle shows its promise in household refrigerator-freezers applications. - Abstract: In this study, a novel dual-nozzle ejector enhanced refrigeration cycle is presented for dual evaporator household refrigerator-freezers. The proposed ejector equipped with two nozzles can efficiently recover the expansion work from cycle throttling processes and enhance cycle performances. The performances of the novel cycle are evaluated by using the developed mathematical model, and then compared with that of the conventional ejector enhanced refrigeration cycle and basic vapor-compression refrigeration cycle. The simulation results show that for the given operating conditions, the coefficient of performance (COP) of the novel cycle using refrigerant R134a is improved by 22.9–50.8% compared with that of the basic vapor-compression refrigeration cycle, and the COP improvement is 10.5–30.8% larger than that of the conventional ejector enhanced refrigeration cycle. The further simulation results of the novel cycle using refrigerant R600a indicate that the cycle COP and volumetric refrigeration capacity could be significantly improved

  5. Influence of microstructure on the low and high cycle fatigue behaviour of a medium carbon microalloyed steel

    International Nuclear Information System (INIS)

    Srivastava, V.; Padmanabhan, K.A.

    2001-01-01

    This paper reports the room temperature monotonic and cyclic stress-strain (CSS) response, the low and high cycle fatigue behaviour of a medium carbon microalloyed (MA) steel in different microstructural conditions obtained by isothermal transformation at 973, 773 and 573 K following austenitizing at 1123 K. The isothermal transformations resulted in coarse pearlite (CP), fine pearlite (FP), and acicular ferrite/bainite (AF/B) microstructures, respectively. In low cycle fatigue, the CP and FP microstructures exhibited cyclic softening at low total strain amplitudes ( cys ) of the material and was approximately equal to 0.7σ cys . (orig.)

  6. Vce-based methods for temperature estimation of high power IGBT modules during power cycling - A comparison

    DEFF Research Database (Denmark)

    Amoiridis, Anastasios; Anurag, Anup; Ghimire, Pramod

    2015-01-01

    . This experimental work evaluates the validity and accuracy of two Vce based methods applied on high power IGBT modules during power cycling tests. The first method estimates the chip temperature when low sense current is applied and the second method when normal load current is present. Finally, a correction factor......Temperature estimation is of great importance for performance and reliability of IGBT power modules in converter operation as well as in active power cycling tests. It is common to be estimated through Thermo-Sensitive Electrical Parameters such as the forward voltage drop (Vce) of the chip...

  7. The COP22 in Africa. Is the African group of negotiators in tune?

    International Nuclear Information System (INIS)

    Maupin, Agathe

    2016-01-01

    As the COP22 is about to take place in an African country (Morocco), the author discusses how African countries deal with the fact that they belong to different negotiation groups, and which are the strategies adopted until now by the group of African negotiators to cope with the delicate combination of national requests and continental vision. Thus, the author recalls and comments the positions adopted since COP1 by the five groups of negotiators and their relationships with different international bodies. She discuses the posture and strategies of African countries, and how to gather them about topics of common interest such as adaptation, financing and transfer of capacities and technologies. She also comments the emergence of a new strategy regarding financing mechanisms

  8. COP21: a 1.5 deg. C or 2 deg. C target?

    International Nuclear Information System (INIS)

    Huet, Sylvestre

    2015-01-01

    This article discusses and somehow criticises the definition of a limitation for temperature increase to 1.5 degree rather than 2 degree. Even though this objective is grounded on a positive motivation, notably to support countries which are the most threatened by sea level rise, the article shows that this 1.5 degree objective cannot be met, and is even about to be already reached due to the level of already emitted greenhouse gases, notably CO 2 . Then it discusses the interest of COP21 debate and agreement as it defines an unreachable objective. This leads to the observation of an insufficiency of policies expressed at the COP21, with however the merit to admit the truth: the impossibility to define a route which would allow the 2 degree limit not to be overcome, as it is shown by various data of evolution of emissions

  9. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  10. Fait saillant : Le CRDI à la 21e Conférence des Parties (COP21 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    13 avr. 2016 ... Le CRDI a assisté à la Conférence des Nations Unies sur les changements climatiques (COP21) du 30 novembre au 11 décembre 2015 à titre de membre de la délégation canadienne officielle. Plus de 20 de nos bénéficiaires de pays en développement ont fait part de leurs résultats de recherche lors ...

  11. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia.

    Science.gov (United States)

    Smirmaul, Bruno P C; de Moraes, Antonio Carlos; Angius, Luca; Marcora, Samuele M

    2017-01-01

    To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg -1 ) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue.

  12. LEU and thorium fuel cycles for the high temperature reactor (once-through and recycle)

    International Nuclear Information System (INIS)

    1978-09-01

    Sets of performance parameters, optimised for minimum costs within the bounds of current technical confidence, are presented for each of the four fuel cycle variants mentioned in the title. The overall cost of the HEU once-through system is found to be significantly more expensive than the other three which are similar. Data are presented on fissile material utilisation, on the isotopic composition of discharged fuel, and on fuel cycle costs. Comments are made on technical status, development needs, safety, environmental concerns including the storage and disposal of irradiated fuel, and on characteristics relevant to proliferation control

  13. Operational and layup cycle protection of high-pressure fossil-fired utility boilers using an organic filming amine

    Energy Technology Data Exchange (ETDEWEB)

    Verib, George J. [FirstEnergy Corp., Akron, OH (United States)

    2012-06-15

    Economic conditions have caused many fossil-fired units to either drastically cycle load or shut down during low demand periods, where previously the units had been under a constant-load operation. The most current cycle chemistry guidelines employed are excellent in protecting the steam-water cycle during constant-load operation, but they have not minimized corrosion and provided protection of unit equipment during economic reserve off periods. Alternate methods of off-line protection and transient-load operation have been explored to minimize corrosion during these periods. The FirstEnergy Corp. has been using an alternate proprietary, organic filming amine to protect units during operation and short-term non-operational periods. Explored are the initial issues of high steam cation conductivity, use of the filming amine to protect the cycle during idle production periods, and the chemical amounts needed. The proprietary chemistry has shown the ability to successfully and significantly reduce corrosion throughout the steam-water cycle during transient-load situations and during non-operational periods while maintaining the chemistry guidelines of the industry and OEMs. (orig.)

  14. Development of a high-performance transtibial cycling-specific prosthesis for the London 2012 Paralympic Games.

    Science.gov (United States)

    Dyer, Bryce; Woolley, Howard

    2017-10-01

    It has been reported that cycling-specific research relating to participants with an amputation is extremely limited in both volume and frequency. However, practitioners might participate in the development of cycling-specific prosthetic limbs. This technical note presents the development of a successful design of a prosthetic limb developed specifically for competitive cycling. This project resulted in a hollow composite construction which was low in weight and shaped to reduce a rider's aerodynamic drag. The new prosthesis reduces the overall mass of more traditional designs by a significant amount yet provides a more aerodynamic shape over traditional approaches. These decisions have yielded a measurable increase in cycling performance. While further refinement is needed to reduce the aerodynamic drag as much as possible, this project highlights the benefits that can exist by optimising the design of sports-specific prosthetic limbs. Clinical relevance This project resulted in the creation of a cycling-specific prosthesis which was tailored to the needs of a high-performance environment. Whilst further optimisation is possible, this project provides insight into the development of sports-specific prostheses.

  15. DHU1 negatively regulates UV-B signaling via its direct interaction with COP1 and RUP1.

    Science.gov (United States)

    Kim, Sang-Hoon; Kim, Hani; Chung, Sunglan; Lee, Jae-Hoon

    2017-09-16

    Although DWD HYPERSENSITIVE TO UV-B 1 (DHU1) is reported to be a negative regulator in UV-B mediated cellular responses, its detailed role in UV-B signaling is still elusive. To further understand the action mechanism of DHU1 in UV-B response, physical and genetic interactions of DHU1 with various UV-B signaling components were investigated. Yeast two hybrid assay results suggested that DHU1 directly interacts with COP1 and RUP1, implying a functional connection with both COP1 and RUP1. In spite of the physical association between DHU1 and COP1, loss of DHU1 did not affect protein stability of COP1. Epistatic analysis showed that the functional loss of both DHU1 and UVR8 leads to alleviation of UV-B hypersensitivity displayed in dhu1-1. Moreover, phenotypic studies with dhu1-1 cop1-6 and dhu1-1 hy5-215 revealed that COP1 and HY5 are epistatic to DHU1, indicating that UV-B hypersensitivity of dhu1-1 requires both COP1 and HY5. In the case of dhu1-1 rup1-1, UV-B responsiveness was similar to that of both dhu1-1 and rup1-1, implying that DHU1 and RUP1 are required for each other's function. Collectively, these results show that the role of DHU1 as a negative regulator in UV-B response may be derived from its direct interaction with COP1 by sequestering COP1 from the active UVR8-COP1 complex, resulting in a decrease in the COP1 population that positively participates in UV-B signaling together with UVR8. Furthermore, this inhibitory role of DHU1 in UV-B signaling is likely to be functionally connected to RUP1. This study will serve as a platform to further understand more detailed action mechanism of DHU1 in UV-B response and DHU1-mediated core UV-B signaling in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Molecular characterization of a peanut variety and its derivatives based on SSR and COP analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoping REN; Boshou LIAO; Huifang JIANG; Zhongyuan YUAN; Yuning CHEN; Xiaojing ZHOU; Li HUANG; Jiaquan HUANG; Yong LEI; Liying YAN

    2016-01-01

    Despite the economic importance of the peanut,no studies have been carried out to determine the correlation between genetic distances based on molecular markers and on coefficient of parentage (COP) data.In this study,simple sequence repeat (SSR) and pedigree data were used to assess the genetic distance between the Fuhuasheng variety and its derivative cultivars.A total of 39 SSR polymorphism primers were used,and 151 bands were obtained,with an average of 2.04 bands in each primer.The genetic SSR-based distance (GD) values ranged from 0.02 to 0.81,while the COP-based GD ranged from 0.25 to 0.98.Certain Fuhuasheng loci displayed higher transmission rates.These loci or nearby chromosomal regions might be associated with desirable traits in Fuhuasheng variety,thus being frequently selected in breeding programs.Therefore,it can be suggested that COP analysis should be the preferred method for estimating genetic diversity invarieties with available complete pedigree information and parents.In this case,marker analysis would provide the best estimations.

  17. High gonadotropin dosage does not affect euploidy and pregnancy rates in IVF PGS cycles with single embryo transfer.

    Science.gov (United States)

    Barash, Oleksii O; Hinckley, Mary D; Rosenbluth, Evan M; Ivani, Kristen A; Weckstein, Louis N

    2017-11-01

    Does high gonadotropin dosage affect euploidy and pregnancy rates in PGS cycles with single embryo transfer? High gonadotropin dosage does NOT affect euploidy and pregnancy rates in PGS cycles with single embryo transfer. PGS has been proven to be the most effective and reliable method for embryo selection in IVF cycles. Euploidy and blastulation rates decrease significantly with advancing maternal age. In order to recruit an adequate number of follicles, the average dosage of gonadotropins administered during controlled ovarian stimulation in IVF cycles often increases significantly with advancing maternal age. A retrospective study of SNP (Single Nucleotide Polymorphism) PGS outcome data from blastocysts biopsied on day 5 or day 6 was conducted to identify differences in euploidy and clinical pregnancy rates. Seven hundred and ninety four cycles of IVF treatment with PGS between January 2013 and January 2017 followed by 651 frozen embryo transfers were included in the study (506 patients, maternal age (y.o.) - 37.2 ± 4.31). A total of 4034 embryos were analyzed (5.1 ± 3.76 per case) for euploidy status. All embryos were vitrified after biopsy, and selected embryos were subsequently thawed for a hormone replacement frozen embryo transfer cycle. All cycles were analyzed by total gonadotropin dosage (5000 IU), by number of eggs retrieved (1-5, 5-10, 10-15 and >15 eggs) and patient's age (cycles) euploidy rates ranged from 62.3% (cycle) to 67.5% (>5000 IU were used in the IVF cycle) (OR = 0.862, 95% CI 0.687-1.082, P = 0.2) and from 69.5% (1-5 eggs retrieved) to 60.0% (>15 eggs retrieved) (OR = 0.658, 95% CI 0.405-1.071, P = 0.09). Similar data were obtained in the oldest group of patients (≥41 y.o. - 189 IVF cycles): euploidy rates ranged from 30.7 to 26.4% (OR = 0.811, 95% CI 0.452-1.454, P = 0.481) when analyzed by total dosage of gonadotropins used in the IVF cycle and from 40.0 to 30.7% (OR = 0.531, 95% CI 0.204-1.384, P = 0.19), when assessed by the total

  18. Thermodynamic analysis of a novel exhaust heat-driven non-adiabatic ejection-absorption refrigeration cycle using R290/oil mixture

    International Nuclear Information System (INIS)

    Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng

    2017-01-01

    Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.

  19. Rapid cycling bipolar affective disorder and recurrent strokes secondary to high blood homocysteine.

    Science.gov (United States)

    Awara, Mahmoud A; Zahid, Shazia; Elnenaei, Manal O

    2014-10-01

    The interface between psychiatric disorders and organicity has been a matter for contentious debate. To report an interesting clinical case of moderate homocystinuria presenting with significant psychiatric and neurological deficits. A case report highlighting the impact of homocystinuria on producing intractable rapid cycling bipolar affective disorder. Homocystinuria is a frequently missed cause for treatment-resistant bipolar affective disorder.

  20. Annual Cycles of Two Cyanobacterial Mat Communities in Hydro-Terrestrial Habitats of the High Arctic

    Czech Academy of Sciences Publication Activity Database

    Tashyreva, D.; Elster, Josef

    2016-01-01

    Roč. 71, č. 4 (2016), s. 887-900 ISSN 0095-3628 R&D Projects: GA MŠk ME 934; GA MŠk LA341 Institutional support: RVO:67985939 Keywords : Phormidium * Life cycle * Polar Regions Subject RIV: EH - Ecology , Behaviour Impact factor: 3.630, year: 2016

  1. Environmental life cycle assessment of high temperature nuclear fission and fusion biomass gasification plants

    International Nuclear Information System (INIS)

    Takeda, Shutaro; Sakurai, Shigeki; Kasada, Ryuta; Konishi, Satoshi

    2017-01-01

    The authors propose nuclear biomass gasification plant as an advancement of conventional gasification plants. Environmental impacts of both fission and fusion plants were assessed through life cycle assessment. The result suggested the reduction of green-house gas emissions would be as large as 85.9% from conventional plants, showing a potential for the sustainable future for both fission and fusion plants. (author)

  2. High-resolution transcription atlas of the mitotic cell cycle in budding yeast

    DEFF Research Database (Denmark)

    Granovskaia, Marina V; Jensen, Lars J; Ritchie, Matthew E

    2010-01-01

    Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on...

  3. Experiencing the Product Life Cycle Management Highs and Lows through Dramatic Simulation

    Science.gov (United States)

    Pearce, Glenn; Jackson, John

    2009-01-01

    Product life cycle (PLC) stages and diagrams are briefly and dispassionately covered in the standard marketing textbook format with little attention to the social-psychological experiences of those actually participating. This qualitative study used process drama as a teaching tool and a research instrument to probe the PLC phenomenon in a…

  4. Low-cycle fatigue properties of SUS304 stainless steel in high-temperature sodium

    International Nuclear Information System (INIS)

    Hirano, M.; Komine, R.; Kitao, K.; Nihei, I.; Yoshitoshi, A.

    Low-cycle fatigue tests in sodium and in air have been performed to investigate the influence of a high-temperature sodium environment on the strain-controlled fatigue behaviour for SUS304 stainless steel. The oxygen concentration in sodium was 2.4 ppm at the cold trap temperature of 145 deg. C. Tests in both environments were conducted at 450 deg. C, 550 deg. C and 650 deg. C at a constant strain rate of 1x10 -3 /sec with a fully-reversed triangular waveform and a zero mean strain. The fatigue life of SUS304 stainless steel in sodium at 450 deg. C, 550 deg. C and 650 deg. C was greater than those in air at the same temperature except at higher strain range (>0.8%) at 650 deg. C, and this difference had a tendency to increase as the total strain range decreases. At the higher total strain range at 650 deg. C, there was no marked difference between both environments. As the temperature increased, the fatigue life in sodium and in air decreased, and the Nsub(f sodium)/Nsub(f air) ratio also decreased. Microscopic examination of specimens tested in sodium and in air at 450 deg. C, 550 deg. C and 650 deg. C revealed no difference in the microstructure, but few surface cracks were observed on specimens tested in sodium than in those tested in air. Fractography of specimens tested in air at 450 deg. C, 550 deg. C and 650 deg. C revealed well-defined striations. But, in sodium, striations on specimens tested at 450 deg. C and 550 deg. C showed obscure configuration and it was difficult to find out, whereas, at 650 deg. C in sodium intergranular fracture was observed. The specimens tested in sodium had a longer fatigue life than those tested in air because the latter are subjected to considerable oxidation, while the former are free of such chemical action. Accordingly, it is concluded that crack initiation and propagation are more likely to occur in air than in sodium. (author)

  5. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    Science.gov (United States)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  6. Distribution and cycling of lead in the high and low latitudinal Atlantic Ocean

    Science.gov (United States)

    Schlosser, C.; Menzel Barraqueta, J. L.; Rapp, I.; Pampin Baro, J.; Achterberg, E. P.

    2016-02-01

    Lead (Pb) is a toxic trace metal; even small quantities are lethal to most unicellular and multicellular organisms. Major sources of lead to the environment are the burning of coal, industrial mining, and the use of leaded gasoline (which has not been entirely phased out of use around the globe). These and other anthropogenic sources of Pb continue to pollute the environment and affect primary production and the development of heterotrophic organisms in the sea. Pb concentrations in oceanic waters are ten to a hundred times higher in surface waters than in deep waters (0.05 - 0.1 nmol L-1 compared to 1 - 5 pmol L-1), this deposition-like profile clearly reflecting the significant anthropogenic input of Pb to the ocean. In order to explore the cycling and fate of this anthropogenic Pb, we collected seawater from the polar North Atlantic (JC274 in 2013, GEOVIDE in 2014), the sub-tropical Atlantic (D361 in 2011 & M107 in 2014), the South Atlantic (JC068 in 2012), and the Atlantic sector of the Southern Ocean (JC271 in 2013). These samples were analyzed for their dissolved and soluble and total dissolvable Pb concentrations by off-line pre-concentration using a SeaFAST device (Elemental Science Inc.) and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS, Thermo ElementXR). Results indicate that dissolved Pb exists mainly as colloidal species, which, as the precursors of larger particles are subsequently critical for the removal of lead from the water column. For example, the removal of colloidal Pb through particle scavenging was observed in the high productivity waters of the Mauritanian upwelling region and at the outlet of the La Plata River on the South American shelf. In terms of Pb pollution, highest Pb concentrations (up to 60 pmol L-1) were observed in the Agulhas current. But even remote locations, such as the northern Arctic Ocean and near South Georgia in the Southern Ocean, activities of man had an impact; the Pb concentrations of 30

  7. Impact of partitioning and transmutation on high-level waste disposal for the fast breeder reactor fuel cycle

    International Nuclear Information System (INIS)

    Nishihara, Kenji; Oigawa, Hiroyuki; Nakayama, Shinichi; Ono, Kiyoshi; Shiotani, Hiroki

    2010-01-01

    The impact of partitioning and/or transmutation (PT) technology on high-level waste management was investigated for the equilibrium state of several potential fast breeder reactor (FBR) fuel cycles. Three different fuel cycle scenarios involving PT technology were analyzed: 1) partitioning process only (separation of some fission products), 2) transmutation process only (separation and transmutation of minor actinides), and 3) both partitioning and transmutation processes. The conventional light water reactor (LWR) fuel cycle without PT technology, on which the current repository design is based, was also included for comparison. We focused on the thermal constraints in a geological repository and determined the necessary predisposal storage quantities and time periods (by defining a storage capacity index) for several predefined emplacement configurations through transient thermal analysis. The relation between this storage capacity index and the required repository emplacement area was obtained. We found that the introduction of the FBR fuel cycle without PT can yield a 35% smaller repository per unit electricity generation than the LWR fuel cycle, although the predisposal storage period is prolonged from 50 years for the LWR fuel cycle to 65 years for the FBR fuel cycle without PT. The introduction of the partitioning-only process does not result in a significant reduction of the repository emplacement area from that for the FBR fuel cycle without PT, but the introduction of the transmutation-only process can reduce the emplacement area by a factor of 5 when the storage period is extended from 65 to 95 years. When a coupled partitioning and transmutation system is introduced, the repository emplacement area can be reduced by up to two orders of magnitude by assuming a predisposal storage of 60 years for glass waste and 295 years for calcined waste containing the Sr and Cs fraction. The storage period of 295 years for the calcined waste does not require a large

  8. Inhibition of cholesterol oxidation products (COPs) formation in emulsified porcine patties by phenolic-rich avocado (Persea americana Mill.) extracts.

    Science.gov (United States)

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Petrón, María Jesus; Estévez, Mario

    2012-03-07

    The effect of phenolic-rich extracts from avocado peel on the formation of cholesterol oxidation products (COPs) in porcine patties subjected to cooking and chill storage was studied. Eight COPs (7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol, cholestanetriol, 5,6β-epoxycholesterol, and 5,6α-epoxycholesterol) were identified and quantified by GC-MS. The addition of avocado extracts (∼600 GAE/kg patty) to patties significantly inhibited the formation of COPs during cooking. Cooked control (C) patties contained a larger variety and greater amounts of COPs than the avocado-treated (T) counterparts. COPs sharply increased in cooked patties during the subsequent chilled storage. This increase was significantly higher in C patties than in the T patties. Interestingly, the amount of COPs in cooked and chilled T patties was similar to those found in cooked C patties. The mechanisms implicated in cholesterol oxidation in a processed meat product, the protective effect of avocado phenolics, and the potential implication of lipid and protein oxidation are thoroughly described in the present paper.

  9. Characterization of the temperature evolution during high-cycle fatigue of the ULTIMET superalloy: Experiment and theoretical modeling

    Science.gov (United States)

    Jiang, L.; Wang, H.; Liaw, P. K.; Brooks, C. R.; Klarstrom, D. L.

    2001-09-01

    High-speed, high-resolution infrared thermography, as a noncontact, full-field, and nondestructive technique, was used to study the temperature variations of a cobalt-based ULTIMET alloy subjected to high-cycle fatigue. During each fatigue cycle, the temperature oscillations, which were due to the thermal-elastic-plastic effects, were observed and related to stress-strain analyses. A constitutive model was developed for predicting the thermal and mechanical responses of the ULTIMET alloy subjected to cyclic deformation. The model was constructed in light of internal-state variables, which were developed to characterize the inelastic strain of the material during cyclic loading. The predicted stress-strain and temperature responses were found to be in good agreement with the experimental results. In addition, the change of temperature during fatigue was employed to reveal the accumulation of fatigue damage, and the measured temperature was utilized as an index for fatigue-life prediction.

  10. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA.

    Science.gov (United States)

    Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu

    2017-10-01

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Variation in the stress response between high- and low-neuroticism female undergraduates across the menstrual cycle.

    Science.gov (United States)

    Liu, Qing; Zhou, Renlai; Oei, Tian P S; Wang, Qingguo; Zhao, Yan; Liu, Yanfeng

    2013-09-01

    This study was undertaken to elucidate possible relationships between menstrual cycle stage, neuroticism and behavioral and physiological responses to a cognitive challenge. The study investigated the differences between high neuroticism and low neuroticism groups across the menstrual cycle (luteal, menstrual and ovulatory stages). The Stroop color-naming task was used as a stressor. During the task, the galvanic skin response (GSR), heart rate (HR) and HR variability (HRV) were simultaneously recorded by a polygraph. The results showed a significant difference in reaction times (RT) on the Stroop task between the high- and low-neuroticism groups during menstruation. However, there were no significant RT differences between groups during the luteal or ovulatory cycle stages. The GSR of the high-neuroticism group during menstruation was significantly lower than it was in the luteal and ovulatory stages. Moreover, during menstruation, the cardiovascular responses (high-frequency HRV (HF) and low-frequency HRV (LF)) and accuracy on the Stroop task were positively correlated, while the correlations between HF, LF and the RT were negative. The results demonstrate that during menstruation, there were consistent variations in female behavior and physiology when facing a cognitive stressor. Specifically, the high-neuroticism group was more sensitive to the stressor than the low neuroticism group, with decreased reaction time on the Stroop task, and increased GSR and HRV.

  12. Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life.

    Science.gov (United States)

    Hu, Ping; Yan, Mengyu; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Li, Jiantao; Zhou, Liang; Li, Zhaohuai; Chen, Lineng; Mai, Liqiang

    2017-12-13

    Aqueous zinc-ion batteries attract increasing attention due to their low cost, high safety, and potential application in stationary energy storage. However, the simultaneous realization of high cycling stability and high energy density remains a major challenge. To tackle the above-mentioned challenge, we develop a novel Zn/V 2 O 5 rechargeable aqueous hybrid-ion battery system by using porous V 2 O 5 as the cathode and metallic zinc as the anode. The V 2 O 5 cathode delivers a high discharge capacity of 238 mAh g -1 at 50 mA g -1 . 80% of the initial discharge capacity can be retained after 2000 cycles at a high current density of 2000 mA g -1 . Meanwhile, the application of a "water-in-salt" electrolyte results in the increase of discharge platform from 0.6 to 1.0 V. This work provides an effective strategy to simultaneously enhance the energy density and cycling stability of aqueous zinc ion-based batteries.

  13. Role of rescue IVF-ET treatment in the management of high response in stimulated IUI cycles.

    Science.gov (United States)

    Olufowobi, O; Sharif, K; Papaioannou, S; Mohamed, H; Neelakantan, D; Afnan, M

    2005-02-01

    Rescue in-vitro fertilisation and embryo transfer (IVF-ET) has been used in high response gonadotrophin intrauterine insemination (IUI) cycles to minimise the risks of ovarian hyperstimulation and multiple gestation. Such unplanned IVF treatment increases the cost of treatment. But can this added cost and the risks associated with IVF be justified? We present our experience with this treatment using clinical pregnancy and live birth rates as the primary outcomes. Between 1998 to 2001, 40 women undergoing IUI cycles who over responded (>3 follicles measuring >15 mm in diameter on the planned day of hCG administration) to gonadotrophin were offered the choice of conversion to IVF-ET or cancel the cycle. 17/40 declined rescue IVF/ET and had their cycles cancelled. 23/40 converted to IVF/ET and underwent transvaginal oocyte retrieval. 21/23 had embryo transferred. The clinical pregnancy and live birth rates were 52% and 48%, respectively. Rescue IVF-ET offers excellent clinical pregnancy and live birth rates in high responders. However, affordability can be an obstacle in the utilization of this treatment option.

  14. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao, E-mail: zcwang@fjnu.edu.cn

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.

  15. Technical ability of new MTR high-density fuel alloys regarding the whole fuel cycle

    International Nuclear Information System (INIS)

    Durand, J.P.; Maugard, B.; Gay, A.

    1998-01-01

    The development of new fuel alloys could provide a good opportunity to improve drastically the fuel cycle on the neutronic performances and the reprocessing point of view. Nevertheless, those parameters can only be considered if the fuel manufacture feasibility has been previously demonstrated. As a matter of fact, a MTR work group involving French partners (CEA, CERCA, COGEMA) has been set up in order to evaluate the technical ability of new fuels considering the whole fuel cycle. In this paper CERCA is presenting the preliminary results of UMo and UNbZr fuel plate manufacture, CEA is comparing to U 3 Si 2 the neutronic performances of fuels such as UMo, UN, UNbZr, while COGEMA is dealing with the reprocessing feasibility. (author)

  16. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  17. The use of low enriched uranium fuel cycle in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    The present paper begins with a brief review of the status of research and development of experimental VHTR in Japan. On the basis of the experience gained from these work, assessment is made of commercial HTRs. Material balance with fuel burnup is calculated for the two core models; one is HTGR for steam cycle and the other VHTR for process heat application. The results of assessment of commercial HTRs are compared with those for LWR

  18. Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers

    International Nuclear Information System (INIS)

    Yan, Gang; Bai, Tao; Yu, Jianlin

    2016-01-01

    This study presents a modified ejector expansion cycle with zeotropic mixtures (R290/R600a) for freezers, in which an ejector and a phase-separator are employed to enhance the cycle performance. Energetic and exergetic methods are used to theoretically investigate the system operating characteristics. In addition, comparative research among the modified cycle, conventional ejector expansion cycle and basic throttling cycle is carried out. The results demonstrate that the modified cycle exhibits higher refrigeration COP (coefficient of performance), volumetric refrigeration capacity and system exergy efficiency than conventional ejector expansion cycle and basic throttling cycle. Under the given operation conditions, the system performance improvements of the modified cycle in terms of the COP, refrigeration capacity and system exergy efficiency over the basic throttling cycle could reach about 56.0%, 4.5% and 77.7%, respectively. The performance characteristics of the proposed cycle show its potential practical advantages in freezer applications. - Highlights: • A zeotropic mixture based ejector refrigeration cycle with a separator is proposed. • Comparative research among the different cycles is carried out. • Energetic and exergetic methods are used to investigate the system performance. • The COP and system exergy efficiency are improved by 56.0% and 77.7%, respectively.

  19. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  20. A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine

    International Nuclear Information System (INIS)

    Capaldi, Pietro

    2014-01-01

    The paper focuses on the design and the overall performance of a 10 kW electric power microcogeneration plant suitable for local energy production, based on an Atkinson-cycle internal combustion engine prototype and entirely set by Istituto Motori of the Italian National Research Council. The engine was originally a wide-spread Diesel automotive unit, then converted into a methane spark ignition system and finally modified to perform an Atkinson/Miller cycle with an extended expansion, capable of a higher global efficiency and low gaseous emissions. The paper starts by defining the ratio which leaded to this specific choice among many other automotive and industrial engines, in order to obtain a reliable, long endurance, cost effective, high efficiency base, suitable for microcogeneration in residential or commercial applications. The new engine has been coupled with a liquid cooled induction generator, a set of heat exchangers and finally placed in a sealed containing case, to reduce both noise emission and heat losses. Then the plant has been tested as an electricity and heat production system, ready for grid connection thanks to a new designed management/control system. During endurance test a complete description of its functioning behaviour has been given. - Highlights: • A new high efficiency microcogenerator based on an Atkinson/Miller cycle engine. • Atkinson cycle together with stoichiometric operation deliver better performance. • A cost-effective microcogenerator based on widespread elements (automotive engine). • The chosen automotive engine has heavy duty characteristics (Diesel derived). • A conversion criteria from a Diesel to an Atkinson cycle engine was individuated

  1. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin

    2012-01-01

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression...... with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest...... soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency...

  2. Frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr--Mo steel for fuel cladding, piping, and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging fromm 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature

  3. A frequency interpretation of hold-time experiments on high temperature low-cycle fatigue of steels for LMFBR

    International Nuclear Information System (INIS)

    Udoguchi, T.; Asada, Y.; Ichino, I.

    1975-01-01

    The effect of frequency or hold-time on the low-cycle fatigue strength of AISI 316 stainless steel and SCM 3 Cr-Mo steel for fuel cladding, piping and other structural members of LMFBR is investigated under high temperature conditions. Push-pull fatigue tests are conducted in air under conditions of fully reversed axial strain-control with a tensile strain hold-time ranging from 0 to 120 min for AISI 316, and with a tensile and an equal compressive strain hold-time ranging from 0 to 995 s for SCM 3. In these tests, a considerable decrease of fatigue life is observed as the hold-time is increased. An empirical formula is presented which can predict well the effect of hold-time on high temperature low-cycle fatigue life in terms of frequency. The formula is a little different from those in the literature. (author)

  4. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  5. Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime

    Science.gov (United States)

    Gu, Chao; Bao, Yan-ping; Gan, Peng; Wang, Min; He, Jin-shan

    2018-06-01

    This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue (VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions (Al2O3, MgO-Al2O3) and the matrix, while other cracks originated from the interior of inclusions (TiN, MnS). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.

  6. Life cycle analysis of small scale pellet boilers characterized by high efficiency and low emissions

    International Nuclear Information System (INIS)

    Monteleone, B.; Chiesa, M.; Marzuoli, R.; Verma, V.K.; Schwarz, M.; Carlon, E.; Schmidl, C.; Ballarin Denti, A.

    2015-01-01

    Highlights: • LCA was performed on innovative small scale pellet boilers. • Pellet boilers impacts were compared to oil and natural gas boilers impacts. • Both literature and experimental data were used for life cycle analysis. • The environmental impact due to all life cycle phases was envisaged. • Sensitivity tests evidenced realistic ways for pellet boilers impact reduction. - Abstract: This study focuses on the environmental impact assessment through Life Cycle Analysis (LCA) of two innovative 10 kW pellet boilers. In particular, the second boiler represents a technological evolution of the first one developed to improve its performance in terms of efficiency and environmental impact. For both boilers, emission factors measured during laboratory tests (full load tests and specific load cycle tests representative of real life boiler operation) have been used as input data in the life cycle analysis. The SimaPro software (v.8.0.4.30) was used for the LCA and the ReCiPe Midpoint method (European version H) was chosen to assess the environmental impact of all boilers (according to LCA ISO standards). In addition, the ReCiPe Endpoint method was used to compare the final results of all 5 boilers with literature data. The pelletisation process represented the most relevant share of the overall environmental impact followed by the operational phase, the manufacturing phase and the disposal phase. A sensitivity analysis performed on the most efficient pellet boiler evidenced the variation of the boiler’s environmental impact as a function of PM10 and NO X emission factors with respect to emission factors monitored during boiler full load operation. Moreover, the reduction of the boiler’s weight and the adoption of new electronic components led to a consistent reduction (−18%) of its environmental impact with respect to the previous technology. A second LCA has been carried on for a 15 kW oil boiler, a 15 kW natural gas boiler and a 15 kW pellet boiler

  7. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  8. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    International Nuclear Information System (INIS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-01-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  9. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung, E-mail: cwy@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2014-09-08

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  10. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  11. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  12. Nonproliferation and safeguards aspects of fuel cycle programs in reduction of excess separated plutonium and high-enriched uranium

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1995-01-01

    The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO 2 fuel loading once through cycle, and the 33 percent mixed oxide MOX loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO 2 once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments

  13. High-temperature low-cycle fatigue behaviour of HIP treated and untreated superalloy MAR-M247

    Czech Academy of Sciences Publication Activity Database

    Šulák, Ivo; Obrtlík, Karel; Čelko, L.

    2016-01-01

    Roč. 54, č. 6 (2016), s. 471-481 ISSN 0023-432X R&D Projects: GA TA ČR(CZ) TA04011525; GA ČR(CZ) GA15-20991S Institutional support: RVO:68081723 Keywords : hot isostatic pressing * high-temperature low cycle fatigue * fatigue life curves * Ni-based superalloy * dislocation structures * planar bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.366, year: 2016

  14. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates....... The lightwave synthesized frequency sweeper is a suitable generator yielding fast pulse repetition rates and stable equidistant frequency steps. Theoretical range resolution profiles of modulated lidars are presented....

  15. Progress in high duty cycle, highly efficient fiber coupled 940-nm pump modules for high-energy class solid-state lasers

    Science.gov (United States)

    Platz, R.; Frevert, C.; Eppich, B.; Rieprich, J.; Ginolas, A.; Kreutzmann, S.; Knigge, S.; Erbert, G.; Crump, P.

    2018-03-01

    Diode lasers pump sources for future high-energy-class laser systems based on Yb-doped solid state amplifiers must deliver high optical intensities, high conversion efficiency (ηE = > 50%) at high repetition rates (f = 100 Hz) and long pulse widths (τ = 0.5…2 ms). Over the last decade, a series of pump modules has been developed at the Ferdinand-BraunInstitut to address these needs. The latest modules use novel wide-aperture single emitter diode lasers in passively side cooled stacks, operate at τ = 1 ms, f = 100…200 Hz and deliver 5…6 kW optical output power from a fiber with 1.9 mm core diameter and NA of 0.22, for spatial brightness BΩ > 1 MW/cm2 sr. The performance to date and latest developments in these high brightness modules are summarized here with recent work focusing on extending operation to other pumping conditions, as needed for alternative solid state laser designs. Specifically, the electro-optic, spectral and beam propagation characteristics of the module and its components are studied as a function of τ for a fixed duty cycle DC = 10% for τ = 1...100 ms, and first data is shown for continuous wave operation. Clear potential is seen to fulfill more demanding specifications without design changes. For example, high power long-pulse operation is demonstrated, with a power of > 5 kW at τ = 100 ms. Higher brightness operation is also confirmed at DC = 10% and τ = 1 ms, with > 5 kW delivered in a beam with BΩ > 4 MW/cm2 sr.

  16. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  17. New high expansion ratio gasoline engine for the TOYOTA hybrid system. Improving engine efficiency with high expansion ratio cycle; Hybrid system yo kobochohi gasoline engine. Kobochohi cycle ni yoru engine no kokoritsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takaoka, T; Ueda, T; Kobayashi, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    50% reduction of CO2 and fuel consumption have been achieved with the newly developed gasoline engine for the Toyota Hybrid System. This is achieved due to the combination of electric motors and the internal combustion engine which is optimized in the size, swept volume and heat cycle. By delaying the intake valve close timing a high expansion ratio (13.5:1) cycle has been realized. Electricmotor assist enable to cut the maximum engine speed, and friction loss. A best fuel consumption figure better than 230 g/kWh has been achieved. Elimination of lightload firing, motor assisted quick start and improvement of catalyst warm up makes to achieve the clean emission level such as 1/10 of Japanese `78 regulation limit. 10 refs., 16 figs., 1 tab.

  18. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399

  19. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  20. Core design options for high conversion BWRs operating in Th–233U fuel cycle

    International Nuclear Information System (INIS)

    Shaposhnik, Y.; Shwageraus, E.; Elias, E.

    2013-01-01

    Highlights: • BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. • Seed blanket optimization that includes assembly size array and axial dimensions. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal-hydraulic analysis includes MCPR observation. -- Abstract: Several options of fuel assembly design are investigated for a BWR core operating in a closed self-sustainable Th– 233 U fuel cycle. The designs rely on an axially heterogeneous fuel assembly structure consisting of a single axial fissile zone “sandwiched” between two fertile blanket zones, in order to improve fertile to fissile conversion ratio. The main objective of the study was to identify the most promising assembly design parameters, dimensions of fissile and fertile zones, for achieving net breeding of 233 U. The design challenge, in this respect, is that the fuel breeding potential is at odds with axial power peaking and the core minimum critical power ratio (CPR), hence limiting the maximum achievable core power rating. Calculations were performed with the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules. A single 3-dimensional fuel assembly having reflective radial boundaries was modeled applying simplified restrictions on the maximum centerline fuel temperature and the CPR. It was found that axially heterogeneous fuel assembly design with a single fissile zone can potentially achieve net breeding, while matching conventional BWR core power rating under certain restrictions to the core loading pattern design

  1. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    International Nuclear Information System (INIS)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-01-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10 8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines

  2. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  3. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  4. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro; Wessells, Colin D.; Huggins, Robert A.; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  5. Effects of mean tensile stresses on high-cycle fatigue life and strain accumulation in some reactor materials

    International Nuclear Information System (INIS)

    Soo, P.; Chow, J.G.Y.

    1977-05-01

    An assessment has been made of the effects of mean tensile stresses on the high-cycle fatigue behavior of solution-treated Type 304 stainless steel, normalized and tempered 2 1 / 4 Cr-1Mo steel, Incoloy-800H, and low-carbon Incoloy-800. Mean stresses are usually detrimental to fatigue strength, especially at high temperatures and stress levels, where significant creep can occur during fatigue cycling. Depending on the magnitudes of the alternating and mean stresses, failure may be creep or fatigue controlled. Strain accumulation is also affected by these stress levels and possibly, also, by the cyclic work-hardening characteristics of the material. It is shown that the Goodman Law for estimating mean stress effects is inadequate, since it does not account for time-dependent deformation. An alternative expression not having such a limitation was, therefore, derived and this relates the alternating and mean stresses to the time to failure. Based on limited metallographic observations of fatigue striations in the 2 1 / 4 Cr-1Mo steel an estimate was made of the crack propagation rate. It was found that a crack of critical size could, under certain conditions, propagate through most of the specimen diameter in a matter of seconds. This presents a more significant safety problem than the case for a crack extending under low-cycle conditions since preventative measures probably could not be implemented before the crack had grown to a large size

  6. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  7. Montmorency Cherries Reduce the Oxidative Stress and Inflammatory Responses to Repeated Days High-Intensity Stochastic Cycling

    Directory of Open Access Journals (Sweden)

    Phillip G. Bell

    2014-02-01

    Full Text Available This investigation examined the impact of Montmorency tart cherry concentrate (MC on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16 were divided into equal groups and consumed 30 mL of MC or placebo (PLA, twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH, interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, interleukin-1-beta (IL-1-β, high-sensitivity C-reactive protein (hsCRP and creatine kinase (CK were conducted. LOOH (p < 0.01, IL-6 (p < 0.05 and hsCRP (p < 0.05 responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.

  8. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  9. Very High Cycle Fatigue Crack Initiation Mechanism in Nugget Zone of AA 7075 Friction Stir Welded Joint

    Directory of Open Access Journals (Sweden)

    Chao He

    2017-01-01

    Full Text Available Very high cycle fatigue behavior of nugget zone in AA 7075 friction stir welded joint was experimentally investigated using ultrasonic fatigue testing system (20 kHz to clarify the crack initiation mechanism. It was found that the fatigue strength of nugget zone decreased continuously even beyond 107 cycles with no traditional fatigue limits. Fatigue cracks initiated from the welding defects located at the bottom side of the friction stir weld. Moreover, a special semicircular zone could be characterized around the crack initiation site, of which the stress intensity factor approximately equaled the threshold of fatigue crack propagation rate. Finally, a simplified model was proposed to estimate the fatigue life by correlating the welding defect size and applied stress. The predicted results are in good agreement with the experimental results.

  10. Summary of workshop on materials issues in low emission boilers and high efficiency coal-fired cycles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The purpose of the workshop was to review with experts in the field the materials issues associated with two of the primary coal power systems being developed by the DOE Office of Fossil Energy. The DOE-FE Advanced Power Systems Program includes natural gas-based and coal-based power systems. Major activities in the natural gas-based power systems area include the Advanced Turbine Systems (ATS) Program, the Fuel Cells Program, and Hybrid Cycles. The coal-based power systems projects include the Low Emissions Boiler Systems (LEBS) Program, the High-Performance Power Systems Program (HIPPS), the Integrated (Coal) Gasification Combined-Cycle Program, and the Fluidized-Bed Combustion Program. This workshop focused on the materials issues associated with the LEBS and HIPPS technologies.

  11. Reducing emissions from deforestation and degradation in developing countries (REDD): insights from the UNFCCC COP-13 in Bali

    International Nuclear Information System (INIS)

    Wertz-Kanounnikoff, S.

    2007-01-01

    At the 10. anniversary of the Kyoto Protocol, the goal to reduce greenhouse gas (GHG) emissions that cause climate change remains of alarming importance. According to the Intergovernmental Panel on Climate Change, these emissions have grown by 70% since 1970; and in 2005 the concentration of the most important GHG, carbon dioxide (CO 2 ), peaked at its highest level for 650,000 years (IPCC 2007). The proposal to compensate reduced emissions from deforestation and degradation in developing countries (REDD), as an