WorldWideScience

Sample records for high cop cycles

  1. High COP rotating wheel solid desiccant system

    Energy Technology Data Exchange (ETDEWEB)

    Macriss, R.A.; Zawacki, T.S.

    1982-06-01

    This paper presents a technical assessment of a third-generation desiccant cooling unit approaching ARI (American Refrigeration Institute) design-point Coefficient of Performance (COP) for cooling of 0.95, at a design-point Energy Efficiency Ratio(EER) of over 20, and a Seasonal Coefficient of Performance (SCOP) for heating of 0.75. Typically, solar-gas desiccant systems operate on open-cycle principles and can provide cooling, heating, ventilation, and/or humidification/dehumidification and use ambient air as the working fluid, thus avoiding the need for high-pressure, or highvacuum, sealed-refrigerant assemblies. Among several alternative solar-desiccant systems, the adiabatic, rotary-regenerative system is the most advanced open-cycle, solid-desiccant, heating-cooling system presently considered for solar applications. In addition to space heating and cooling, the system can inexpensively provide fresh makeup air due to its regenerative nature. Since 1974, two residential-size units have been under development, and laboratory, field, and manufacturing-cost evaluations have highlighted their potential advantages for space conditioning. Recently, a third ''advanced'' unit was designed, which incorporates identical technology to that of the earlier models and a higher effectiveness heat exchanger. Projected rated and seasonal cooling performance comparison between the ''advanced'' and earlier models are also presented for three climatic regions.

  2. High COP rotating wheel solid desiccant system

    Energy Technology Data Exchange (ETDEWEB)

    Macriss, R.A.; Zawacki, T.S.

    1982-01-01

    Solar and solar-gas activated desiccant space-conditioning systems can be reasonably compact, simple and void of high technology components, with operation that is intrinsically safe, of potentially long-life, and with moderate servicing demands. They can, further, operate in any US climate and utilize, even under maximum design conditions, low-grade thermal input, typical of low-cost, flat-plate collectors. A technical assessment is presented of a third-generation desiccant cooling unit approaching ARI (American Refrigeration Institute) design-point Coefficient of Performance (COP) for cooling of 0.95, at a design-point Energy Efficiency Ratio (EER) of over 20, and a Seasonal Coefficient of Performance (SCOP) for heating of 0.75. Typically, solar-gas desiccant systems operate on open-cycle principles and can provide cooling, heating, ventilation, and/or humidification/dehumidification and use ambient air as the working fluid, thus avoiding the need for high-pressure, or highvacuum, sealed-refrigerant assemblies. Among several alternative solar-desiccant systems, the adiabatic, rotary-regenerative system is the most advanced open-cycle, solid-desiccant, heating-cooling system presently considered for solar applications. In addition to space heating and cooling, the system can inexpensively provide fresh make-up air due to its regenerative nature. Since 1974, two residential-size units have been under development, and laboratory, field, and manufacturing-cost evaluations have highlighted their potential advantages for space conditioning. Recently, a third advanced unit was designed, which incorporates identical technology to that of the earlier models and a higher effectiveness heat exchanger. Projected rated and seasonal cooling performance comparison between the advanced and earlier models are also presented for three climatic regions.

  3. COP Prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning

    Directory of Open Access Journals (Sweden)

    Nat Suvarnakuta

    2014-03-01

    Full Text Available This paper presents the COP prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning. Using computational fluid dynamics (CFD technique, the performance of an ejector was analyzed in term of the entrainment ratio (Rm and critical back pressure (CBP. The results from this study were compared with a previous study of combined ejector refrigeration system for automotive air conditioning application [1] which the entrainment ratio (Rm were predicted from one-dimensional (1-D equation. The performance of an ejector (Rm and CBP from CFD and onedimensional method were analyzed and used as database for a mathematical modeling. In order to predict the COP of the combined system, a set of mathematical equations was developed using EES. The operating conditions are chosen accordingly as, intercooler temperature between 15 ๐ C and 25 ๐ C, condenser temperature equal to 35 ๐ C and evaporator temperature equal to 5 ๐ C. However, when generator temperatures are 80 ๐ C, 85 ๐ C and 90 ๐ C, the results showed average relative errors of the COP of an ejector refrigeration cycle (COPej, between CFD and 1-D are 44.64%, 50.47% and 59.68% respectively, and between CFD and 1-D NEW are 1.54%, 0.08% and 6.49% respectively.

  4. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions.

    Science.gov (United States)

    Maier, Alexander; Hoecker, Ute

    2015-01-01

    In Arabidopsis and many other plant species, anthocyanin pigments accumulate only after light exposure and not in darkness. Excess light of very high fluence rates leads to a further, very strong increase in anthocyanin levels. How excess light is sensed is not well understood. Here, we show that mutations in the key repressor of light signaling, the COP1/SPA complex, cause a strong hyperaccumulation of anthocyanins not only under normal light but also under excess, high light conditions. Hence, normal light signaling via COP1/SPA is required to prevent hyperaccumulation of anthocyanins under these high light conditions. However, since cop1 and spa mutants show a similar high-light responsiveness of anthocyanin accumulation as the wild type it remains to be resolved whether COP1/SPA is directly involved in the high-light response itself.

  5. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation

    KAUST Repository

    Yang, Xiulin

    2015-07-01

    There exists a strong demand to replace expensive noble metal catalysts with cheap metal sulfides or phosphides for hydrogen evolution reaction (HER). Recently metal phosphides such as NixP, FeP and CoP have been considered as promising candidates to replace Pt cathodes. Here we report that the nanocrystalline CoP nanosheet assembly on carbon cloth can be formed by a two-step process: electrochemical deposition of Co species followed by gas phase phosphidation. The CoP catalyst in this report exhibits a Tafel slope of 30.1mV/dec in 0.5M H2SO4 and 42.6mV/dec in 1M KOH. The high HER performance of our CoP catalysts is attributed to the rugae-like morphology which results in a high double-layer capacitance and high density of active sites, estimated as 7.77×1017sites/cm2. © 2015 Elsevier Ltd.

  6. The Changes of COP and Foot Pressure after One Hour's Walking Wearing High-heeled and Flat Shoes

    OpenAIRE

    Ko, Dong Yeol; Lee, Han Suk

    2013-01-01

    [Purpose] This study aimed to determine the most appropriate height for shoe heels by measuring the displacement of the COP (center of pressure) and changes in the distribution of foot pressure after walking in flat (0.5 cm), middle-heeled (4 cm), and high-heeled (9 cm) shoes for 1 hour. [Methods] A single-subject design was used, with 15 healthy women wearing shoes with heels of each height in a random order. The foot pressure and displacement of COP before and after walking in an ordinary e...

  7. THE EFFECT OF HIGH OVERVOLTAGES AT ELECTROCRYSTALLIZATION ON THE CORROSION RESISTANCE OF THE FILMS CO-P

    Directory of Open Access Journals (Sweden)

    V. O. Zabludovskyi

    2009-03-01

    Full Text Available Electrochemical and gravimetric methods are used in order to research the influence of high overvoltages during electroplating on corrosive and electrochemical behavior of amorphous Co-P films, which were made using deposition from water solution of an electrolyte. It is obtained that alloys, which were plated using higher overvoltages on cathode, are more corrosion-resistant.

  8. The Changes of COP and Foot Pressure after One Hour's Walking Wearing High-heeled and Flat Shoes.

    Science.gov (United States)

    Ko, Dong Yeol; Lee, Han Suk

    2013-10-01

    [Purpose] This study aimed to determine the most appropriate height for shoe heels by measuring the displacement of the COP (center of pressure) and changes in the distribution of foot pressure after walking in flat (0.5 cm), middle-heeled (4 cm), and high-heeled (9 cm) shoes for 1 hour. [Methods] A single-subject design was used, with 15 healthy women wearing shoes with heels of each height in a random order. The foot pressure and displacement of COP before and after walking in an ordinary environment for 1 hour were measured using an FDM-S (zebris Medical GmbH, Germany). [Results] The distribution of foot pressure did not change significantly after walking in middle-heeled (4 cm) shoes but did change significantly after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. Similarly, the COP was not significantly displaced after walking in middle-heeled (4 cm) shoes but was significantly displaced after walking in either flat (0.5 cm) or high-heeled (9 cm) shoes. [Conclusion] Both flat and high-heeled shoes had adverse effects on the body. Middle-heeled (4 cm) shoes are preferable to both flat (0.5 cm) and high-heeled (9 cm) shoes for the health and comfort of the feet.

  9. Liquid Phase Synthesis of CoP Nanoparticles with High Electrical Conductivity for Advanced Energy Storage

    Directory of Open Access Journals (Sweden)

    Guo-Qun Zhang

    2017-01-01

    Full Text Available Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1 and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles. The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.

  10. Synthesis of High Performance Cyclic Olefin Polymers (COPs with Ester Group via Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-08-01

    Full Text Available Novel ester group functionalized cyclic olefin polymers (COPs with high glass transition temperature, high transparency, good mechanical performance and excellent film forming ability have been achieved in this work via efficient ring-opening metathesis copolymerization of exo-1,4,4a,9,9a,10-hexahydro-9,10(1′,2′-benzeno-l,4-methanoanthracene (HBM and comonomers (5-norbornene-2-yl methylacetate (NMA, 5-norbornene-2-yl methyl 2-ethylhexanoate (NME or 5-norbornene-2-yl methyldodecanoate (NMD utilizing the Grubbs first generation catalyst, Ru(CHPh(Cl2(PCy32 (Cy = cyclohexyl, G1, followed by hydrogenation of double bonds in the main chain. The fully hydrogenated copolymers were characterized by nuclear magnetic resonance, FT-IR spectroscopy analysis, gel permeation chromatography, and thermo gravimetric analysis. Differential scanning calorimetry curves showed that the glass transition temperatures (Tg linearly decreased with the increasing of comonomers content, which was easily controlled by changing feed ratios of HBM and comonomers. Static water contact angles tests indicate that hydrophilicity of copolymers can also be modulated by changing the comonomers incorporation. Additionally, the mechanical performances of copolymers were also investigated.

  11. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution.

    Science.gov (United States)

    Liu, Qian; Tian, Jingqi; Cui, Wei; Jiang, Ping; Cheng, Ningyan; Asiri, Abdullah M; Sun, Xuping

    2014-06-23

    The development of effective and inexpensive hydrogen evolution reaction (HER) electrocatalysts for future renewable energy systems is highly desired. The strongly acidic conditions in proton exchange membranes create a need for acid-stable HER catalysts. A nanohybrid that consists of carbon nanotubes decorated with CoP nanocrystals (CoP/CNT) was prepared by the low-temperature phosphidation of a Co3O4/CNT precursor. As a novel non-noble-metal HER catalyst operating in acidic electrolytes, the nanohybrid exhibits an onset overpotential of as low as 40 mV, a Tafel slope of 54 mV dec(-1), an exchange current density of 0.13 mA cm(-2), and a Faradaic efficiency of nearly 100 %. This catalyst maintains its catalytic activity for at least 18 hours and only requires overpotentials of 70 and 122 mV to attain current densities of 2 and 10 mA cm(-2), respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Characterization of LeCOP1 gene in Lycopersicon esculentum ...

    African Journals Online (AJOL)

    LeCOP1 shared high sequence identity with a hypothetical protein in Vitis vinifera and E3 ubiquitin-protein ligase COP1 in Pisum sativum (76%). LeCOP1 gene exists single copy in the tomato genome. Expression of LeCOP1 gene under abiotic and oxidative stresses was investigated, including exposure to 200 mM NaCl, ...

  13. COPS science questions revisited: What have we learned so far from COPS?

    Science.gov (United States)

    Behrendt, A.; Wulfmeyer, V.; Kottmeier, Ch.; Richard, E.; Dorninger, M.; Di Girolamo, P.; Corsmeier, U.; Kalthoff, N.; Bauer, H.-S.

    2012-04-01

    The Convective and Orographically-induced Precipitation Study (COPS) was an international field campaign carried out in summer 2007 with the overall goal to advance the quality of forecasts of orographically-induced convective precipitation by 4-dimensional observations and modeling of its life cycle. The pre-convective environment, the formation of clouds and the onset and development of precipitation were observed in a low-mountain area in south-western Germany and eastern France covering the Vosges Mountains, the Rhine Valley, and the Black Forest Mountains during 18 Intensive Observations Periods from June 1 to August 31, 2007, under different forcing conditions. Meanwhile, in the nearly five years since the COPS field phase, a large number of results on analyses of selected COPS IOPs and of continuous measurements during the COPS period have been published; in a special issue of the Quarterly Journal of the Royal Meteorological Society alone, 21 papers appeared in January 2011. A second special issue on COPS results is currently in preparation for the Meteorologische Zeitschrift (MetZ). In this contribution, we will revisit the original science questions of COPS, summarize the results gained so far from COPS, and discuss questions which still remain open.

  14. High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature

    Directory of Open Access Journals (Sweden)

    Yuki Ueda

    2009-11-01

    Full Text Available This paper presents the performance of an advanced cascading adsorption cycle that utilizes a driven heat source temperature between 90–130 ºC. The cycle consists of four beds that contain silica gel as an adsorber fill. Two of the beds work in a single stage cycle that is driven by an external heat source, while the other two beds work in a mass recovery cycle that is driven by waste heat of sensible and adsorption heat of the high temperature cycle. The performances, in terms of the coefficient of performance (COP and the specific cooling power (SCP, are compared with conventional cascading-without-mass-recovery and single-stage cycles. The paper also presents the effect of the adsorbent mass on performance. The results show that the proposed cycle with mass recovery produces as high of a COP as the COP that is produced by the conventional cascading cycle. However, it produces a lower SCP than that of the single-stage cycle.

  15. Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction.

    Science.gov (United States)

    Zhang, Chao; Huang, Yi; Yu, Yifu; Zhang, Jingfang; Zhuo, Sifei; Zhang, Bin

    2017-04-01

    The exploration of a facile strategy to synthesize porous ultrathin nanosheets of non-layered materials, especially with exposed reactive facets, as highly efficient electrocatalysts for the hydrogen evolution reaction (HER), remains challenging. Herein we demonstrate a chemical transformation strategy to synthesize porous CoP ultrathin nanosheets with sub-1.1 nm thickness and exposed {200} facets via phosphidation of Co3O4 precursors. The resultant samples exhibit outstanding electrochemical HER performance: a low overpotential (only 56 and 131 mV are required for current densities of 10 and 100 mA cm(-2), respectively), a small Tafel slope of 44 mV per decade, a good stability of over 20 h, and a high mass activity of 151 A g(-1) at an overpotential of 100 mV. The latter is about 80 times higher than that of CoP nanoparticles. Experimental data and density functional theory calculations reveal that a high proportion of reactive {200} facets, high utilization efficiency of active sites, metallic nature, appropriate structural disorder, facile electron/mass transfer and rich active sites benefiting from the unique ultrathin and porous structure are the key factors for the greatly improved activity. Additionally, this facile chemical conversion strategy can be developed to a generalized method for preparing porous ultrathin nanosheets of CoSe2 and CoS that cannot be obtained using other methods.

  16. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: Catalytic promiscuity and cyclization of farnesyl pyrophosphate geometrical isomers

    Science.gov (United States)

    Lopez-Gallego, Fernando; Agger, Sean A.; Pella, Daniel A.; Distefano, Mark D.; Schmidt-Dannert, Claudia

    2010-01-01

    Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of a fungal genome survey. This study investigates the reaction mechanism and catalytic fidelity of the two enzymes. Cyclization of all-trans-FPP ((E,E)-FPP) was compared to the cyclization of the cis-trans isomer of FPP ((Z,E)-FPP) as a surrogate for the secondary cisoid neryl cation intermediate generated by sesquiterpene synthases capable of isomerizing the C2-C3 π bond of all-trans-FPP. Cop6 is a “high-fidelity” α-cuprenene synthase that retains its fidelity under various conditions tested. Cop4 is a catalytically promiscuous enzyme that cyclizes (E,E)-FPP into multiple products, including (−)-germacrene D and cubebol. Changing the pH of the reaction drastically alters the fidelity of Cop4 and makes it a highly selective enzyme. Cyclization of (Z,E)-FPP by Cop4 and Cop6 yields products that are very different from those obtained with (E,E)-FPP. Conversion of (E,E)-FPP proceeds via a (6R)-β-bisabolyl carbocation in the case of Cop6 and an (E,E)-germacradienyl carbocation in the case of Cop4. However, (Z,E)-FPP is cyclized via a (6S)-β-bisabolene carbocation by both enzymes. Structural modeling suggests that differences in the active site and the loop that covers the active site of the two enzymes may explain their different catalytic fidelities. PMID:20419721

  17. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers.

    Science.gov (United States)

    Lopez-Gallego, Fernando; Agger, Sean A; Abate-Pella, Daniel; Distefano, Mark D; Schmidt-Dannert, Claudia

    2010-05-17

    Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of a fungal genome survey. This study investigates the reaction mechanism and catalytic fidelity of the two enzymes. Cyclization of all-trans-FPP ((E,E)-FPP) was compared to the cyclization of the cis-trans isomer of FPP ((Z,E)-FPP) as a surrogate for the secondary cisoid neryl cation intermediate generated by sesquiterpene synthases, which are capable of isomerizing the C2--C3 pi bond of all-trans-FPP. Cop6 is a "high-fidelity" alpha-cuprenene synthase that retains its fidelity under various conditions tested. Cop4 is a catalytically promiscuous enzyme that cyclizes (E,E)-FPP into multiple products, including (-)-germacrene D and cubebol. Changing the pH of the reaction drastically alters the fidelity of Cop4 and makes it a highly selective enzyme. Cyclization of (Z,E)-FPP by Cop4 and Cop6 yields products that are very different from those obtained with (E,E)-FPP. Conversion of (E,E)-FPP proceeds via a (6R)-beta-bisabolyl carbocation in the case of Cop6 and an (E,E)-germacradienyl carbocation in the case of Cop4. However, (Z,E)-FPP is cyclized via a (6S)-beta-bisabolene carbocation by both enzymes. Structural modeling suggests that differences in the active site and the loop that covers the active site of the two enzymes might explain their different catalytic fidelities.

  18. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  19. Many jobs for one good cop - the COP9 signalosome guards development and defense.

    Science.gov (United States)

    Stratmann, Johannes W; Gusmaroli, Giuliana

    2012-04-01

    The COP9 signalosome (CSN) is a multiprotein complex that regulates the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate substrate proteins and thus target them for proteasomal degradation. This post-translational modification of proteins is arguably as important as reversible protein phosphorylation. The number of putative CRLs that recognize specific substrate proteins is vast, and known CRL substrates are involved in many cellular plant processes such as hormone signaling, the cell cycle, and regulation of growth, development, and defenses. By controlling the activity of CRLs, the CSN may integrate and fine-tune all of these processes. Recent research has unraveled in great mechanistic detail how the two multiprotein complexes CSN and CRL interact. As a consequence of CSN pleiotropy, complete loss of CSN function results in seedling lethality. However, recent work on plants that exhibit a partial loss of CSN function, has uncovered a role of the CSN during later life stages in processes such as development and defenses against pathogens and herbivorous insects. Not all aspects of development and defense are affected equally by CSN silencing, probably due to the differential participation and importance of CSN-regulated CRLs in these processes. This review will provide an overview of the highly complex regulation of CRL activity by CSN, and the many roles of the CSN in plant development and defense. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. Risk Management Capability Maturity and Performance of Complex Product and System (CoPS Projects with an Asian Perspective

    Directory of Open Access Journals (Sweden)

    Ren, Y.

    2014-07-01

    Full Text Available Complex Products and Systems (CoPS are high value, technology and engineering-intensive capital goods. The motivation of this study is the persistent high failure rate of CoPS projects, Asian CoPS provider’s weak capability and lack of specific research on CoPS risk management. This paper evaluates risk management maturity level of CoPS projects against a general CoPS risk management capability maturity model (RM-CMM developed by the authors. An Asian based survey was conducted to investigate the value of RM to project performance, and Asian (non-Japanese CoPS implementers’ perceived application of RM practices, their strengths and weaknesses. The survey result shows that higher RM maturity level leads to higher CoPS project performance. It also shows project complexity and uncertainty moderates the relationship between some RM practices and project performance, which implies that a contingency approach should be adopted to manage CoPS risks effectively. In addition, it shows that Asian CoPS implementers are weak in RM process and there are also rooms for improvement in the softer aspects of organizational capabilities and robustness.

  1. Climate change negotiations. COP-2 and beyond

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The Second Conference of the Parties to the UN Framework Convention on Climate Change (COP-2), which met in Geneva during July, 1996, was only a partial success when considered in relation to its avowed aims, gaining acceptance of the Second Assessment Report by IPCC (Intergovernmental Panel on Climate Change), producing an agreed Ministerial Declaration, making real advances towards a protocol, and agreeing Rules of Procedure. This paper describes the main aims of COP-2, consideration of and response to the IPCC`s Second Assessment Report, the COP-2 Ministerial Declaration, some significant statements by individual country delegations at COP-2, lack of progress on Rules of Procedure for the Conference, realization of returning the greenhouse gas emissions in industrialized countries based on the Montreal Protocol, differing views among countries to the Convention on a protocol, prospects for achieving agreement on a legally binding protocol at COP-3 planned for Kyoto, Japan in December, 1997, and recent scientific and technical findings.

  2. SPA Proteins Affect the Subcellular Localization of COP1 in the COP1/SPA Ubiquitin Ligase Complex during Photomorphogenesis.

    Science.gov (United States)

    Balcerowicz, Martin; Kerner, Konstantin; Schenkel, Christian; Hoecker, Ute

    2017-07-01

    The Arabidopsis ( Arabidopsis thaliana ) COP1/SPA ubiquitin ligase is a central repressor that suppresses light signaling in darkness by targeting positive regulators of the light response, mainly transcription factors, for degradation. Light inactivates COP1/SPA, in part by excluding COP1 from the nucleus. SPA proteins are essential cofactors of COP1, but their exact role in the COP1/SPA complex is thus far unknown. To unravel a potential role of SPA proteins in COP1 nucleocytoplasmic partitioning, we monitored the subcellular localization of COP1 in a spa1234 quadruple mutant ( spaQn ). We analyzed a YFP-COP1-expressing transgenic line and endogenous COP1 after subcellular fractionation. In dark-grown seedlings, both YFP-COP1 and endogenous COP1 accumulated in the nucleus in the absence and presence of SPA proteins, indicating that SPA proteins are not required for nuclear localization of COP1 in darkness. In contrast, in white light-grown seedlings, spaQn mutants failed to relocalize COP1 from the nucleus to the cytoplasm. Hence, SPA proteins are necessary for the light-controlled change in COP1 subcellular localization. We conclude that SPA proteins have a dual role: (1) they are required for light-responsiveness of COP1 subcellular localization, and (2) they promote COP1 activity in darkness in a fashion that is independent of the nuclear import/nuclear retention of COP1. © 2017 American Society of Plant Biologists. All Rights Reserved.

  3. Insect peptide CopA3-induced protein degradation of p27Kip1 stimulates proliferation and protects neuronal cells from apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Taek; Kim, Dae Hong; Lee, Min Bum; Nam, Hyo Jung; Kang, Jin Ku; Park, Mi Jung; Lee, Ik Hwan [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of); Seok, Heon [Department of Biomedical Science, Jungwon University, Goesan, Chungcheongbukdo 367-700 (Korea, Republic of); Lee, Dong Gun [School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Hwang, Jae Sam [Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707 (Korea, Republic of); Kim, Ho, E-mail: hokim@daejin.ac.kr [Department of Life Science, College of Natural Science, Daejin University, Pocheon, Gyeonggido 487-711 (Korea, Republic of)

    2013-07-19

    Highlights: •CopA3 peptide isolated from the Korean dung beetle has antimicrobial activity. •Our study reported that CopA3 has anticancer and immunosuppressive effects. •We here demonstrated that CopA3 has neurotropic and neuroprotective effects. •CopA3 degrades p27Kip1 protein and this mediates effects of CopA3 on neuronal cells. -- Abstract: We recently demonstrated that the antibacterial peptide, CopA3 (a D-type disulfide dimer peptide, LLCIALRKK), inhibits LPS-induced macrophage activation and also has anticancer activity in leukemia cells. Here, we examined whether CopA3 could affect neuronal cell proliferation. We found that CopA3 time-dependently increased cell proliferation by up to 31 ± 2% in human neuroblastoma SH-SY5Y cells, and up to 29 ± 2% in neural stem cells isolated from neonatal mouse brains. In both cell types, CopA3 also significantly inhibited the apoptosis and viability losses caused by 6-hydroxy dopamine (a Parkinson disease-mimicking agent) and okadaic acid (an Alzheimer’s disease-mimicking agent). Immunoblotting revealed that the p27Kip1 protein (a negative regulator of cell cycle progression) was markedly degraded in CopA3-treated SH-SY5Y cells. Conversely, an adenovirus expressing p27Kip1 significantly inhibited the antiapoptotic effects of CopA3 against 6-hydroxy dopamine- and okadaic acid-induced apoptosis, and decreased the neurotropic effects of CopA3. These results collectively suggest that CopA3-mediated protein degradation of p27Kip1 may be the main mechanism through which CopA3 exerts neuroprotective and neurotropic effects.

  4. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl

    2015-01-01

    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  5. The sequence of learning cycle activities in high school chemistry

    Science.gov (United States)

    Abraham, Michael R.; Renner, John W.

    The sequence of the three phases of two high school learning cycles in chemistry was altered in order to: (I ) give insights into the factors which account for the success of the learning cycle, (2) serve as an indirect test of the association between Piaget's theory and the learning cycle, and (3) to compare the learning cycle with traditional instruction. Each of the six sequences (one n o d and five altered) was studied with content and atritudc measures. The outcomes of the study supported the contention that the normal learning cycle sequence is the optimum sequence for achievement of content knowledge.

  6. Homologous Catalysts Based on Fe-Doped CoP Nanoarrays for High-Performance Full Water Splitting under Benign Conditions.

    Science.gov (United States)

    Ma, Min; Zhu, Guilei; Xie, Fengyu; Qu, Fengli; Liu, Zhiang; Du, Gu; Asiri, Abdullah M; Yao, Yadong; Sun, Xuping

    2017-08-24

    The design and development of earth-abundant electrocatalysts for efficient full water splitting under mild conditions are highly desired, yet remain a challenging task. A homologous Fe-doped Co-based nanoarray incorporating complementary catalysts is shown to effect high-performance and durable water splitting in near-neutral media. Iron-doped cobalt phosphate borate nanoarray on carbon cloth (Fe-Co-Pi-Bi/CC) derived from iron-doped cobalt phosphide on CC (Fe-CoP/CC) through oxidative polarization behaves as a highly active bimetallic electrocatalyst for water oxidation with an overpotential of 382 mV to afford a catalytic current density of 10 mA cm -2 in 0.1 m potassium borate (K-Bi, pH 9.2). Fe-CoP/CC is also highly active for the hydrogen evolution reaction, capable of driving 10 mA cm -2 at an overpotential of only 175 mV in 0.1 m K-Bi. A two-electrode water electrolyzer incorporating Fe-Co-Pi-Bi/CC as anode and Fe-CoP/CC as cathode achieves 10 mA cm -2 water-splitting current at a cell voltage of 1.95 V with strong long-term electrochemical durability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The two-component signal transduction system CopRS of Corynebacterium glutamicum is required for adaptation to copper-excess stress.

    Directory of Open Access Journals (Sweden)

    Stephanie Schelder

    Full Text Available Copper is an essential cofactor for many enzymes but at high concentrations it is toxic for the cell. Copper ion concentrations ≥50 µM inhibited growth of Corynebacterium glutamicum. The transcriptional response to 20 µM Cu(2+ was studied using DNA microarrays and revealed 20 genes that showed a ≥ 3-fold increased mRNA level, including cg3281-cg3289. Several genes in this genomic region code for proteins presumably involved in the adaption to copper-induced stress, e. g. a multicopper oxidase (CopO and a copper-transport ATPase (CopB. In addition, this region includes the copRS genes (previously named cgtRS9 which encode a two-component signal transduction system composed of the histidine kinase CopS and the response regulator CopR. Deletion of the copRS genes increased the sensitivity of C. glutamicum towards copper ions, but not to other heavy metal ions. Using comparative transcriptome analysis of the ΔcopRS mutant and the wild type in combination with electrophoretic mobility shift assays and reporter gene studies the CopR regulon and the DNA-binding motif of CopR were identified. Evidence was obtained that CopR binds only to the intergenic region between cg3285 (copR and cg3286 in the genome of C. glutamicum and activates expression of the divergently oriented gene clusters cg3285-cg3281 and cg3286-cg3289. Altogether, our data suggest that CopRS is the key regulatory system in C. glutamicum for the extracytoplasmic sensing of elevated copper ion concentrations and for induction of a set of genes capable of diminishing copper stress.

  8. Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Rui; Liu, Chao; Li, Jiansheng, E-mail: lijsh@mail.njust.edu.cn; Wang, Jing; Hu, Xingru; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun

    2017-05-05

    Highlights: • The CoP/PMS system was first presented for decomposition of pollutants. • CoP exhibited dramatic catalytic activity. • Broadened pH range and favorable anti-interference of anions were achieved. • A possible mechanism for activation of PMS by CoP was proposed. - Abstract: A new catalyst system of CoP/peroxymonosulfate (PMS) is presented, which achieved significant improvement in catalytic activity. Nanostructured CoP, obtained by a simple solid-state reaction, exhibited dramatic catalytic activity with 97.2% degradation of orange II of 100 ppm within 4 min. Moreover, the high efficiency could be reached for other phenolic pollutants, i.e., phenol and 4-chlorophenol. The reaction rate is much higher than the most reported catalysts. Effect of parameters on catalytic activity of the catalyst was studied in detail. Notably, initial pH of the solution had a slight negative effect on the catalytic performance over the pH range 4.07–10.92, suggesting that CoP has the great adaptability of pH. CoP/PMS demonstrated excellent anti-interference performance toward anions (Cl{sup −}, NO{sub 3}{sup −}, and HCO{sub 3}{sup −}). In addition, the pathway of degradation of orange II is proposed by analyzing its intermediates. Based on the XPS spectra of CoP, the identification of the reactive species (·OH and SO{sub 4}·{sup −}) by electron paramagnetic resonance (EPR) analysis and quenching tests, a possible mechanism for activation of PMS by CoP was proposed. Considering the dramatic catalytic activity, a wide range of pH catalyst suited, CoP is believed to provide robust support for the promising industrial application of AOPs.

  9. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

    Science.gov (United States)

    Holtkotte, Xu; Ponnu, Jathish; Ahmad, Margaret; Hoecker, Ute

    2017-10-01

    Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.

  10. CoP Sensing Framework on Web-Based Environment

    Science.gov (United States)

    Mustapha, S. M. F. D. Syed

    The Web technologies and Web applications have shown similar high growth rate in terms of daily usages and user acceptance. The Web applications have not only penetrated in the traditional domains such as education and business but have also encroached into areas such as politics, social, lifestyle, and culture. The emergence of Web technologies has enabled Web access even to the person on the move through PDAs or mobile phones that are connected using Wi-Fi, HSDPA, or other communication protocols. These two phenomena are the inducement factors toward the need of building Web-based systems as the supporting tools in fulfilling many mundane activities. In doing this, one of the many focuses in research has been to look at the implementation challenges in building Web-based support systems in different types of environment. This chapter describes the implementation issues in building the community learning framework that can be supported on the Web-based platform. The Community of Practice (CoP) has been chosen as the community learning theory to be the case study and analysis as it challenges the creativity of the architectural design of the Web system in order to capture the presence of learning activities. The details of this chapter describe the characteristics of the CoP to understand the inherent intricacies in modeling in the Web-based environment, the evidences of CoP that need to be traced automatically in a slick manner such that the evidence-capturing process is unobtrusive, and the technologies needed to embrace a full adoption of Web-based support system for the community learning framework.

  11. Damage Assessment of Stress-Thermal Cycled high temperature

    Science.gov (United States)

    Ju, Jae-Hyung; Prochazka, Michael; Ronke, Ben; Morgan, Roger; Shin, Eugence

    2004-01-01

    We report on the characterization of bismaleimide and polyimide carbon fiber composite, microcrack development under stress thermal cycling loading. Such cycles range from cryogenic temperatures associated with cryogenic fuel (LN, LOX) containment to high temperatures of 300 degrees Celsius associated with future hypervelocity aeropropulsion systems. Microcrack development thresholds as a function of temperature range of the thermal cycle; the number of cycles; the applied stress level imposed on the composite are reported. We have conducted stress-thermal cycles on thin bismaleimide-woven carbon fiber foils for three temperature range cycles: 1. Ambient temperature - -196 degrees celsius. 2. Ambient temperature - 150 degrees Celsius; 200 degrees Celsius; 250 degrees Celsius. 3. -196 degrees Celsius - 250 degrees Celsius. The Principle findings are that the full cycles from -196 degrees Celsius to to 250 degrees Celsius cause the most significant microcrack of development. These observations indicate that the high temperature portion of the cycle under load causes fiber-matrix interface failure and subsequent exposure to higher stresses at the cryogenic, low temperature region results in composite matrix microcracking as a result of the additional stresses associate with the fiber-matrix thermal expansion mismatch. Our initial studies for 12 ply PMR-II-50 polyimide/M60JB carbon fabric [0f,90f,90f,0f,0f,90f]ls composites will be presented. The stress-thermal cycle test procedure for these will be described. Moisture absorption characteristics between cycles will be used to monitor interconnected microcrack development. The applied stress level will be 75% of the composite cryogenic (-196 degrees Celsius) ultimate strength.

  12. Evolution of high duty cycle echolocation in bats

    DEFF Research Database (Denmark)

    Fenton, M. B.; Faure, P. A.; Ratcliffe, J. M.

    2012-01-01

    Duty cycle describes the relative 'on time' of a periodic signal. In bats, we argue that high duty cycle (HDC) echolocation was selected for and evolved from low duty cycle (LDC) echolocation because increasing call duty cycle enhanced the ability of echolocating bats to detect, lock onto and track...... fluttering insects. Most echolocators (most bats and all birds and odontocete cetaceans) use LDC echolocation, separating pulse and echo in time to avoid forward masking. They emit short duration, broadband, downward frequency modulated (FM) signals separated by relatively long periods of silence....... In contrast, bats using HDC echolocation emit long duration, narrowband calls dominated by a single constant frequency (CF) separated by relatively short periods of silence. HDC bats separate pulse and echo in frequency by exploiting information contained in Doppler-shifted echoes arising from their movements...

  13. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  14. Advanced adsorption cooling cum desalination cycle: A thermodynamic framework

    KAUST Repository

    Chakraborty, Anutosh

    2011-01-01

    We have developed a thermodynamic framework to calculate adsorption cooling cum desalination cycle performances as a function of pore widths and pore volumes of highly porous adsorbents, which are formulated from the rigor of thermodynamic property surfaces of adsorbent-adsorbate system and the adsorption interaction potential between them. Employing the proposed formulations, the coefficient of performance (COP) and overall performance ratio (OPR) of adsorption cycle are computed for various pore widths of solid adsorbents. These results are compared with experimental data for verifying the proposed thermodynamic formulations. It is found from the present analysis that the COP and OPR of adsorption cooling cum desalination cycle is influenced by (i) the physical characteristics of adsorbents, (ii) characteristics energy and (iii) the surface-structural heterogeneity factor of adsorbent-water system. The present study confirms that there exists a special type of adsorbents having optimal physical characteristics that allows us to obtain the best performance.

  15. Life-cycle costs of high-performance cells

    Science.gov (United States)

    Daniel, R.; Burger, D.; Reiter, L.

    1985-01-01

    A life cycle cost analysis of high efficiency cells was presented. Although high efficiency cells produce more power, they also cost more to make and are more susceptible to array hot-spot heating. Three different computer analysis programs were used: SAMICS (solar array manufacturing industry costing standards), PVARRAY (an array failure mode/degradation simulator), and LCP (lifetime cost and performance). The high efficiency cell modules were found to be more economical in this study, but parallel redundancy is recommended.

  16. High-Energy Solar Particle Events in Cycle 24

    Science.gov (United States)

    Gopalswamy, N.; Makela, P.; Yashiro, S.; Xie, H.; Akiyama, S.; Thakur, N.

    2015-01-01

    The Sun is already in the declining phase of cycle 24, but the paucity of high-energy solar energetic particle (SEP) events continues with only two ground level enhancement (GLE) events as of March 31, 2015. In an attempt to understand this, we considered all the large SEP events of cycle 24 that occurred until the end of 2014. We compared the properties of the associated CMEs with those in cycle 23. We found that the CME speeds in the sky plane were similar, but almost all those cycle-24 CMEs were halos. A significant fraction of (16%) of the frontside SEP events were associated with eruptive prominence events. CMEs associated with filament eruption events accelerate slowly and attain peak speeds beyond the typical GLE release heights. When we considered only western hemispheric events that had good connectivity to the CME nose, there were only 8 events that could be considered as GLE candidates. One turned out to be the first GLE event of cycle 24 (2012 May 17). In two events, the CMEs were very fast (>2000 km/s) but they were launched into a tenuous medium (high Alfven speed). In the remaining five events, the speeds were well below the typical GLE CME speed (2000 km/s). Furthermore, the CMEs attained their peak speeds beyond the typical heights where GLE particles are released. We conclude that several factors contribute to the low rate of high-energy SEP events in cycle 24: (i) reduced efficiency of shock acceleration (weak heliospheric magnetic field), (ii) poor latitudinal and longitudinal connectivity), and (iii) variation in local ambient conditions (e.g., high Alfven speed).

  17. Pedalling rate affects endurance performance during high-intensity cycling

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Hansen, Ernst Albin; Sjøgaard, Gisela

    2004-01-01

    The purpose of this study into high-intensity cycling was to: (1) test the hypothesis that endurance time is longest at a freely chosen pedalling rate (FCPR), compared to pedalling rates 25% lower (FCPR-25) and higher (FCPR+25) than FCPR, and (2) investigate how physiological variables, such as m...

  18. 7 CFR 457.126 - Popcorn cop isurance povisions.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Popcorn cop isurance povisions. 457.126 Section 457... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.126 Popcorn cop isurance povisions. The Popcorn Crop Insurance Provisions for the 1999 and succeeding crop years are as follows: FCIC...

  19. High-cycle fatigue strength of a pultruded composite material

    Directory of Open Access Journals (Sweden)

    L. Vergani

    2009-01-01

    Full Text Available Dealing with composites in polymeric matrix, the pultruded ones are among the more suitable for large production rates and volumes. For this reason, their use is increasing also in structural applications in civil and mechanical engineering. However, their use is still limited by the partial knowledge of their fatigue behaviour; in many applications it is, indeed, required a duration of many millions of cycles, while most of the data that can be found in literature refer to a maximum number of cycles equal to 3 millions. In this paper a pultruded composite used for manufacturing structural beams is considered and its mechanical behaviour characterized by means of static and high-cycle fatigue tests. The results allowed to determine the S-N curve of the material and to assess the existence of a fatigue limit. Observations at the scanning electronic microscope (SEM allowed to evaluate the damage mechanisms involved in the static and fatigue failure of the material.

  20. From COP15 to Copenhagen Fashion Week

    DEFF Research Database (Denmark)

    Sørensen, Lene Tolstrup

    Mobile application has become an important parameter when it comes to presenting possibilities for small handheld devices such as mobile phones. One of the trends within mobile application development is applications for special events such as sports, conferences and TV shows. The purpose...... of this paper is to present and discuss the challenges of developing event applications with a strong involvement of users. The concepts and characteristics of the Living Lab approach has been used to develop an event application for the Copenhagen Fashion Festival 2010. As part of the development process......, an application was developed for the Copenhagen held COP15 conference held in December 2009. The project shows that the Living Lab approach is challenging in relation to development of mobile event applications, and that the concept of stakeholders involved in the process could be modified to involve the right...

  1. Indonesian residential high rise buildings: A life cycle energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Utama, Agya; Gheewala, Shabbir H. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2009-11-15

    This study evaluates the effect of building envelopes on the life cycle energy consumption of high rise residential buildings in Jakarta, Indonesia. For high rise residential buildings, the enclosures contribute 10-50% of the total building cost, 14-17% of the total material mass and 20-30% of the total heat gain. The direct as well as indirect influence of the envelope materials plays an important role in the life cycle energy consumption of buildings. The initial embodied energy of typical double wall and single wall envelopes for high residential buildings is 79.5 GJ and 76.3 GJ, respectively. Over an assumed life span of 40 years, double walls have better energy performance than single walls, 283 GJ versus 480 GJ, respectively. Material selection, which depends not only on embodied energy but also thermal properties, should, therefore, play a crucial role during the design of buildings. (author)

  2. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  3. An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

    KAUST Repository

    Lin, Xiao-Li

    2016-04-29

    COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic phenotype. SIZ1 physically interacts with COP1 and mediates the sumoylation of COP1. A K193R substitution in COP1 blocks its SUMO modification and reduces COP1 activity in vitro and in planta. Consistently, COP1 activity is reduced in siz1 and the level of HY5, a COP1 target protein, is increased in siz1. Sumoylated COP1 may exhibits higher transubiquitination activity than does non-sumoylated COP1, but SIZ1-mediated SUMO modification does not affect COP1 dimerization, COP1-HY5 interaction, and nuclear accumulation of COP1. Interestingly, prolonged light exposure reduces the sumoylation level of COP1, and COP1 mediates the ubiquitination and degradation of SIZ1. These regulatory mechanisms may maintain the homeostasis of COP1 activity, ensuing proper photomorphogenic development in changing light environment. Our genetic and biochemical studies identify a function for SIZ1 in photomorphogenesis and reveal a novel SUMO-regulated ubiquitin ligase, COP1, in plants.

  4. The hybrid two stage anticlockwise cycle for ecological energy conversion

    Directory of Open Access Journals (Sweden)

    Cyklis Piotr

    2016-01-01

    Full Text Available The anticlockwise cycle is commonly used for refrigeration, air conditioning and heat pumps applications. The application of refrigerant in the compression cycle is within the temperature limits of the triple point and the critical point. New refrigerants such as 1234yf or 1234ze have many disadvantages, therefore natural refrigerants application is favourable. The carbon dioxide and water can be applied only in the hybrid two stages cycle. The possibilities of this solutions are shown for refrigerating applications, as well some experimental results of the adsorption-compression double stages cycle, powered with solar collectors are shown. As a high temperature cycle the adsorption system is applied. The low temperature cycle is the compression stage with carbon dioxide as a working fluid. This allows to achieve relatively high COP for low temperature cycle and for the whole system.

  5. Improvement In The COP Of Thermoelectric Cooler

    Directory of Open Access Journals (Sweden)

    Jatin Patel

    2015-08-01

    Full Text Available This paper described the study for heat transfer through thermoelectric cooler TEC by use of multistage thermoelectric module. To satisfy the heat dissipation of modern electronic element thermal designers have to increase fin area and fan speed to improve its cooling capacity. However the increase of fin area is restricted by the space. Besides the increase of fan speed would induce noise which damages human health. So air cooling by fan is hardly to meet the requirement of modern electronic component. Recently thermoelectric cooler TEC is applied to electronic cooling with the advantages of small size quietness and reliability. A typical thermoelectric cooler consists of p-type and n-type semiconductor pellets connected electrically in series and sandwiched between two ceramic substrates. Whenever direct current passes through the circuit it causes temperature differential between TEC sides. As a result one face of TEC which is called cold side will be cooled while its opposite face which is called hot side is simultaneously heated. The main problem over the use of TEC is the limited COP and its thermal performance. But these can be eliminated by use of multistage thermoelectric cooler.

  6. High duty cycle inverse Compton scattering X-ray source

    Science.gov (United States)

    Ovodenko, A.; Agustsson, R.; Babzien, M.; Campese, T.; Fedurin, M.; Murokh, A.; Pogorelsky, I.; Polyanskiy, M.; Rosenzweig, J.; Sakai, Y.; Shaftan, T.; Swinson, C.

    2016-12-01

    Inverse Compton Scattering (ICS) is an emerging compact X-ray source technology, where the small source size and high spectral brightness are of interest for multitude of applications. However, to satisfy the practical flux requirements, a high-repetition-rate ICS system needs to be developed. To this end, this paper reports the experimental demonstration of a high peak brightness ICS source operating in a burst mode at 40 MHz. A pulse train interaction has been achieved by recirculating a picosecond CO2 laser pulse inside an active optical cavity synchronized to the electron beam. The pulse train ICS performance has been characterized at 5- and 15- pulses per train and compared to a single pulse operation under the same operating conditions. With the observed near-linear X-ray photon yield gain due to recirculation, as well as noticeably higher operational reliability, the burst-mode ICS offers a great potential for practical scalability towards high duty cycles.

  7. The role of COP1 in repression of photoperiodic flowering.

    Science.gov (United States)

    Xu, Dongqing; Zhu, Danmeng; Deng, Xing Wang

    2016-01-01

    Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encodes a RING-finger E3 ubiquitin ligase and works in concert with SUPPRESSOR of phyA-105 (SPA) proteins to repress photoperiodic flowering by regulating proteasome-mediated degradation of CONSTANS (CO), a central regulator of photoperiodic flowering. In addition, COP1 and EARLY FLOWERING 3 (ELF3) indirectly modulate CO expression via the degradation of GIGANTEA (GI). Here, we summarize the current understanding of the molecular mechanisms underlying COP1's role in controlling of photoperiodic flowering.

  8. Very High Cycle Fatigue Behavior of TA11 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    JIAO Zehui

    2017-06-01

    Full Text Available The conventional fatigue test method was used to obtain the very high cycle fatigue (VHCF limits of 3×107 and 1×108 cycles for TA11 titanium alloy in different temperatures and stress ratios. Three parameter power function method was used to obtain the VHCF median S-N curves and equations. The results show that the VHCF strength of 3×107 and 1×108 cycles presented a continue reducing trend compared with the traditional 1 x 107 fatigue limit. This trend is not obvious in negative stress ratio (R=-1, but significant in normal stress ratio (R=0.1 and 0.5, and the reduction amplitude of room temperature tests was greater than that of elevated temperature tests. The fracture morphologies showed that the VHCF cracks initiat at the specimen surface of TA11 alloy in room temperature tests, and the VHCF cracks initiation ways in elevated temperature tests relate to the stress ratio. The cracks initiate at the specimen surface when R=0.1 and 0.5 but in the internal when R=0.5; The surface state of TA11 alloy specimens is the main cause of its fatigue life dispersion.

  9. Study of Value Co-Creation in CoPS

    OpenAIRE

    Mingli Zhang; Jianhua Ye

    2013-01-01

    Value co-creation is associated with specific investment in the context of CoPS. The feature of CoPS decides that the study of co-creation cannot execute without regarding asset specificity. This study considers that value co-creation will be associated with specific value, which is outcome of relationship value and asset specificity. Supplier and customer have a close relation, which conducts to specific investment and then it turns to obstacle for competitors. Trust, commitment and satisfac...

  10. Highly efficient 6-stroke engine cycle with water injection

    Science.gov (United States)

    Szybist, James P; Conklin, James C

    2012-10-23

    A six-stroke engine cycle having improved efficiency. Heat is recovered from the engine combustion gases by using a 6-stroke engine cycle in which combustion gases are partially vented proximate the bottom-dead-center position of the fourth stroke cycle, and water is injected proximate the top-dead-center position of the fourth stroke cycle.

  11. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  12. IgE-binding proliferative responses and skin test reactivity to Cop c 1, the first recombinant allergen from the basidiomycete Coprinus comatus.

    Science.gov (United States)

    Brander, K A; Borbély, P; Crameri, R; Pichler, W J; Helbling, A

    1999-09-01

    Basidiomycetes spores are ubiquitously distributed, found throughout the year in outdoor and indoor air, and represent relevant sources of aeroallergens associated with allergy and asthma. Cloning and characterization of Coprinus comatus (shaggy cap mushroom) allergens is essential to elucidate their molecular characteristics and to improve the diagnosis of allergy. A complementary DNA (cDNA) library of C comatus displayed on phage surface was screened with sera of basidiomycete-sensitized individuals. Subcloning and high-level expression of one of the enriched cDNAs allowed the isolation of a [His](6)-tagged recombinant protein formally termed rCop c 1. The allergenic properties of rCop c 1 were investigated in vitro by ELISA, inhibition experiments, immunoblots, and proliferation assays and in vivo by skin tests. The rCop c 1-encoding cDNA spans 435 bp and contains an open reading frame of 246 bp, predicting a protein of 8.96 kd without significant sequence homology to known proteins. Immunoblots with [His](6)-rCop c 1 fusion protein show a background free IgE-binding band of the expected size that can be completely inhibited by crude C comatus extracts in ELISA. rCop c 1 induced specific proliferative responses in PBMCs of C comatus-sensitized individuals. The incidence of sensitization to rCop c 1 among 92 sera of basidiomycete-sensitized individuals tested in ELISA was 25%, indicating that Cop c 1 is an intermediate allergen. However, prick tests showed that less than 2 pmol of the rCop c 1 protein was able to induce strong specific skin reactions in sensitized individuals. rCop c 1, the first cloned allergen from the genus Coprinus, fulfills all the criteria required to be classified as a clinically relevant allergen. The data demonstrate at the molecular level the presence of sensitizing molecules among Basidiomycetes, the most important source contributing to the total spore load in the outdoor air.

  13. Perception of Breakfast Ingestion Enhances High Intensity Cycling Performance.

    Science.gov (United States)

    Mears, Stephen A; Dickinson, Kathryn; Bergin-Taylor, Kurt; Dee, Reagan; Kay, Jack; James, Lewis J

    2017-09-27

    To examine the effect on short duration, high intensity cycling time trial performance when a semi-solid breakfast containing carbohydrate or a taste and texture matched placebo is ingested 90 minutes pre-exercise compared to a water control. Thirteen well trained cyclists (25 ± 8 years, 71.1 ± 5.9 kg, 1.76 ± 0.04 m, 383 ± 46 Wmax, VO2peak 4.42 ± 0.53 L·min(-1)) performed three experimental trials examining breakfast ingestion 90 minutes before a 10 minute steady state cycle (60% Wmax) and a ~20 minute time trial (to complete a workload target of 376 ± 36 kJ). Subjects consumed either water (WAT), a semi-solid carbohydrate breakfast (2 g carbohydrate·kg(-1) body mass; CHO) or a taste and texture matched placebo (PLA). Blood lactate and glucose concentrations were measured periodically throughout the rest and exercise periods. The time trial was completed quicker in CHO (1120 ± 69 s; P=0.006) and PLA (1112 ± 50 s; P=0.030) compared to WAT (1146 ± 74 s). Ingestion of carbohydrate caused an increase in blood glucose concentration throughout the rest period in CHO (peak at 30 minutes rest: 7.37 ± 1.10 mmol·l(-1); Pbreakfast (PLA or CHO) 90 minutes prior to the start of exercise. The improvement in performance is likely attributable to a psychological rather than physiological effect.

  14. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices.

    Science.gov (United States)

    Wan, Alwin M D; Moore, Thomas A; Young, Edmond W K

    2017-01-17

    Thermoplastic microfluidic devices offer many advantages over those made from silicone elastomers, but bonding procedures must be developed for each thermoplastic of interest. Solvent bonding is a simple and versatile method that can be used to fabricate devices from a variety of plastics. An appropriate solvent is added between two device layers to be bonded, and heat and pressure are applied to the device to facilitate the bonding. By using an appropriate combination of solvent, plastic, heat, and pressure, the device can be sealed with a high quality bond, characterized as having high bond coverage, bond strength, optical clarity, durability over time, and low deformation or damage to microfeature geometry. We describe the procedure for bonding devices made from two popular thermoplastics, poly(methyl-methacrylate) (PMMA), and cyclo-olefin polymer (COP), as well as a variety of methods to characterize the quality of the resulting bonds, and strategies to troubleshoot low quality bonds. These methods can be used to develop new solvent bonding protocols for other plastic-solvent systems.

  15. On high-cycle fatigue of 316L stents.

    Science.gov (United States)

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime.

  16. High solar cycle spectral variations inconsistent with stratospheric ozone observations

    CERN Document Server

    Ball, W T; Rozanov, E V; Kuchar, A; Sukhodolov, T; Tummon, F; Shapiro, A V; Schmutz, W

    2016-01-01

    Some of the natural variability in climate is understood to come from changes in the Sun. A key route whereby the Sun may influence surface climate is initiated in the tropical stratosphere by the absorption of solar ultraviolet (UV) radiation by ozone, leading to a modification of the temperature and wind structures and consequently to the surface through changes in wave propagation and circulation. While changes in total, spectrally-integrated, solar irradiance lead to small variations in global mean surface temperature, the `top-down' UV effect preferentially influences on regional scales at mid-to-high latitudes with, in particular, a solar signal noted in the North Atlantic Oscillation (NAO). The amplitude of the UV variability is fundamental in determining the magnitude of the climate response but understanding of the UV variations has been challenged recently by measurements from the SOlar Radiation and Climate Experiment (SORCE) satellite, which show UV solar cycle changes up to 10 times larger than p...

  17. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    Science.gov (United States)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  18. Performance Analysis of a Double-effect Adsorption Refrigeration Cycle with a Silica Gel/Water Working Pair

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2010-10-01

    Full Text Available A numerical investigation of the double-effect adsorption refrigeration cycle is examined in this manuscript. The proposed cycle is based on the cascading adsorption cycle, where condensation heat that is produced in the top cycle is utilized as the driving heat source for the bottom cycle. The results show that the double-effect cycle produces a higher coefficient of performance (COP as compared to that of the conventional single-stage cycle for driving temperatures between 100 °C and 150 °C in which the average cycle chilled water temperature is fixed at 9 °C. Moreover, the COP of the double-effect cycle is more than twice that of the single-stage cycle when the temperature reaches 130 °C. It is also observed that the adsorbent mass ratio of the high temperature cycle (HTC to the low temperature cycle (LTC affects the performance of the double-effect adsorption refrigeration cycle.

  19. Communication du changement à la COP22 | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    19 déc. 2016 ... Le CRDI a organisé neuf séances dans le cadre de la 22e Conférence des Parties (COP22) à la CCNUCC qui s'est tenue du 7 au 18 novembre 2016, à Marrakech. L'Accord de Paris ayant été ratifié et son entrée en vigueur ayant été prévue pour la veille de l'ouverture de la COP 22, la Convention a ...

  20. CoP in focus : community of practice on metropolitan food clusters, resource use efficiency and climate adaptation

    NARCIS (Netherlands)

    Kranendonk, R.P.; Hoechstetter, S.; Castillo, A.; Smeets, P.J.A.M.; Mansfeld, van M.J.M.; Eetgerink, F.; Cserhaty, M.; Kalas, N.; Schneider, U.

    2014-01-01

    This Pathfinder project develops a focused EU Community of Practice (CoP) on development of Agro food-clusters that focuses on innovation of high tech, large scale, industrialized and sustainable agriculture and food production for Metropoles. The Metropolitan food clusters significantly contribute

  1. Business cycle and innovation activity in medium-high and high technology industry in Poland

    Directory of Open Access Journals (Sweden)

    Dzikowski Piotr

    2015-12-01

    Full Text Available This article examines differences in an impact of business cycle phases on innovation activity in medium-high and high technology industry in Poland. It is assumed that each business cycle phase influences innovation activity in the same fashion, but its impact varies and it depends on the firm’s innovation activity. The higher innovation activity the less impact of business cycle. The scope of the survey relates to innovation in MHT and HT industry in Poland. The data concerns the innovation at the firm level and the diffusion “new for the company”. Innovation activity is defined by the following activities: (1 expenditure on research and development and investments in fixed assets not used so far such as: abuildings, premises and land; b machinery and equipment, c computer software; (2 implementation of new products and technological processes and (3 innovation cooperation. The methodological part of the analysis includes a logit modeling. The survey includes 1355 companies. Business cycle has a great influence on innovation activity in MTH and HT industry in Poland. The influence of recovery phase is positive whereas both stagnation and recession phases decrease the probability of innovation activity. The character of influence depends on the propensity to take innovation activity. The higher level of innovation activity the enterprises present the less influence of business cycle they get.

  2. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  3. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  4. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  5. Highlight: IDRC at COP21 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-04-13

    Apr 13, 2016 ... Image. IDRC participated in the UN climate conference (COP21) in Paris from November 30 to December 11, 2015, as part of Canada's official delegation. More than 20 of our developing-country grantees shared their research findings at official and parallel events over the course of the two weeks.

  6. COP9 signalosome: a provider of DNA building blocks

    DEFF Research Database (Denmark)

    Nielsen, Olaf

    2003-01-01

    In fission yeast, the COP9 signalosome is required to activate ribonucleotide reductase for DNA synthesis. This is mediated via the ubiquitin ligase Pcu4, activation of which leads to degradation of the scaffold protein Spd1, which anchors the small ribonucleotide reductase subunit in the nucleus...

  7. Viewpoint A Viewpoint on COP 15: Dispatches from Copenhagen ...

    African Journals Online (AJOL)

    He is currently completing a PhD on biocultural diversity, community learning and agency. Since this edition of the SAJEE takes its theme as 'Environmental Education in the Year of COP 15', I thought it would be of interest to EEASA members if we published some of the 'coalface' experiences of a respected environmental ...

  8. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  9. The Mission Defines the Cycle: Turbojet, Turbofan and Variable Cycle Engines for High Speed Propulsion

    Science.gov (United States)

    2010-09-01

    gestion thermique) 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 38 19a...expand to ambient pressure. 2.1 Turbojet 2.1.1 “Dry” Turbojet The most simple gas turbine is the straight turbojet as sketched in the top part of...turbojet cycle data in table 1 are for an ideal convergent-divergent nozzle which expands the exhaust gases to ambient pressure. With the nozzle

  10. Thermodynamic optimisation and analysis of four Kalina cycle layouts for high temperature applications

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2015-01-01

    The Kalina cycle has seen increased interest in the last few years as an efficient alternative to the conventional steam Rankine cycle. However, the available literature gives little information on the algorithms to solve or optimise this inherently complex cycle. This paper presents a detailed...... approach to solve and optimise a Kalina cycle for high temperature (a turbine inlet temperature of 500°C) and high pressure (over 100bar) applications using a computationally efficient solution algorithm. A central receiver solar thermal power plant with direct steam generation was considered as a case...... study. Four different layouts for the Kalina cycle based on the number and/or placement of the recuperators in the cycle were optimised and compared based on performance parameters such as the cycle efficiency and the cooling water requirement. The cycles were modelled in steady state and optimised...

  11. eWaterCycle: A high resolution global hydrological model

    Science.gov (United States)

    van de Giesen, Nick; Bierkens, Marc; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin

    2014-05-01

    In 2013, the eWaterCycle project was started, which has the ambitious goal to run a high resolution global hydrological model. Starting point was the PCR-GLOBWB built by Utrecht University. The software behind this model will partially be re-engineered in order to enable to run it in a High Performance Computing (HPC) environment. The aim is to have a spatial resolution of 1km x 1km. The idea is also to run the model in real-time and forecasting mode, using data assimilation. An on-demand hydraulic model will be available for detailed flow and flood forecasting in support of navigation and disaster management. The project faces a set of scientific challenges. First, to enable the model to run in a HPC environment, model runs were analyzed to examine on which parts of the program most CPU time was spent. These parts were re-coded in Open MPI to allow for parallel processing. Different parallelization strategies are thinkable. In our case, it was decided to use watershed logic as a first step to distribute the analysis. There is rather limited recent experience with HPC in hydrology and there is much to be learned and adjusted, both on the hydrological modeling side and the computer science side. For example, an interesting early observation was that hydrological models are, due to their localized parameterization, much more memory intensive than models of sister-disciplines such as meteorology and oceanography. Because it would be deadly to have to swap information between CPU and hard drive, memory management becomes crucial. A standard Ensemble Kalman Filter (enKF) would, for example, have excessive memory demands. To circumvent these problems, an alternative to the enKF was developed that produces equivalent results. This presentation shows the most recent results from the model, including a 5km x 5km simulation and a proof of concept for the new data assimilation approach. Finally, some early ideas about financial sustainability of an operational global

  12. Light-induced COP9 signalosome expression in the Indian false vampire bat Megaderma lyra.

    Science.gov (United States)

    Rajan, K Emmanuvel; Rajkumar, R; Liao, Chen-Chug; Ganesh, A; Marimuthu, G

    2010-01-01

    The COP9 signalosome (CSN) is a multi-subunit protein complex conserved in plants and animals. CSN subunits have been identified as light-mediated master regulators of eukaryotic circadian clocks from fungi to animals. The Indian false vampire bat Megaderma lyra is completely adapted to an anthropic biotope and behavioral studies have reported that M. lyra exhibits light-sampling behavior to assess environmental light. LC-MS-MS results for a 36 kDa protein were analyzed using the Sequest search engine, and COP9 signalosome subunit 5 (CSN5) was pinpointed as having the highest score with 6 matching peptides. To confirm the presence of CSN5, up-regulated cDNA was amplified, sequenced, and identified as CSN5. Furthermore, semi-quantitative RT-PCR analysis demonstrated that the level of induction of CSN5 was regulated by environmental light. We estimated the level of expression across a light-dark cycle and observed a higher level of expression at the end of the light phase. Similarly, when the animal was shifted from continuous dark to light, CSN5 expression was induced. Correspondingly, we detected the similar pattern of translated protein with JAB1 antibody. Knowledge about the circadian rhythm and its molecular mechanism in Chiroptera is very limited and this study suggests that CSN5 might be involved in the M. lyra light-signaling process.

  13. Lightweight and Statistical Techniques for Petascale Debugging: Correctness on Petascale Systems (CoPS) Preliminry Report

    Energy Technology Data Exchange (ETDEWEB)

    de Supinski, B R; Miller, B P; Liblit, B

    2011-09-13

    Petascale platforms with O(10{sup 5}) and O(10{sup 6}) processing cores are driving advancements in a wide range of scientific disciplines. These large systems create unprecedented application development challenges. Scalable correctness tools are critical to shorten the time-to-solution on these systems. Currently, many DOE application developers use primitive manual debugging based on printf or traditional debuggers such as TotalView or DDT. This paradigm breaks down beyond a few thousand cores, yet bugs often arise above that scale. Programmers must reproduce problems in smaller runs to analyze them with traditional tools, or else perform repeated runs at scale using only primitive techniques. Even when traditional tools run at scale, the approach wastes substantial effort and computation cycles. Continued scientific progress demands new paradigms for debugging large-scale applications. The Correctness on Petascale Systems (CoPS) project is developing a revolutionary debugging scheme that will reduce the debugging problem to a scale that human developers can comprehend. The scheme can provide precise diagnoses of the root causes of failure, including suggestions of the location and the type of errors down to the level of code regions or even a single execution point. Our fundamentally new strategy combines and expands three relatively new complementary debugging approaches. The Stack Trace Analysis Tool (STAT), a 2011 R&D 100 Award Winner, identifies behavior equivalence classes in MPI jobs and highlights behavior when elements of the class demonstrate divergent behavior, often the first indicator of an error. The Cooperative Bug Isolation (CBI) project has developed statistical techniques for isolating programming errors in widely deployed code that we will adapt to large-scale parallel applications. Finally, we are developing a new approach to parallelizing expensive correctness analyses, such as analysis of memory usage in the Memgrind tool. In the first two

  14. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  15. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells

    OpenAIRE

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dong-chul; Hwang, Jae Sam

    2015-01-01

    CopA3 is a homodimeric α-helical peptide derived from coprisin which is a defensin-like antimicrobial peptide that was identified from the dung beetle, Copris tripartitus. CopA3 has been reported to have anticancer activity against leukemia cancer cells. In the present study, we investigated the anticancer activity of CopA3 in human gastric cancer cells. CopA3 reduced cell viability and it was cytotoxic to gastric cancer cells in the MTS and LDH release assay, respectively. CopA3 was shown to...

  16. Autoclave cycle optimization for high performance composite parts manufacturing

    OpenAIRE

    Nele, L.; Caggiano, A.; Teti, R.

    2016-01-01

    In aeronautical production, autoclave curing of composite parts must be performed according to a specified diagram of temperature and pressure vs time. Part-tool assembly thermal inertia and shape have a large influence on the heating and cooling rate, and therefore on the dwell time within the target temperature range. When simultaneously curing diverse composite parts, the total autoclave cycle time is driven by the part-tool assembly with the lower heating and cooling rates. With the aim t...

  17. COP15 for journalists: a guide to the UN climate change summit

    Energy Technology Data Exchange (ETDEWEB)

    Shanahan, Mike

    2009-11-15

    Governments gather in Denmark in December 2009 for what is perhaps the most important meeting since the end of the second world war. December is the deadline they have set themselves for agreeing on action to tackle climate change, and the COP15 conference in Copenhagen is where hopes are high that a new global deal can be struck. This briefing is a guide for journalists reporting on this event, its buildup and its aftermath. It explains key processes, major actions to be agreed and possible outcomes.

  18. Characterization of LeCOP1 gene in Lycopersicon esculentum ...

    African Journals Online (AJOL)

    uwerhiavwe

    remove DNA contamination. 5 µg of total RNA from each pool was reverse transcribed in the presence of Oligo(dT) and 9-mer random primer in a volume of 20 mL. The synthesized cDNA was diluted with 180 mL of water and used as template in real-time RT-PCR. PCR primers were designed to amplify ORF of LeCOP1 as ...

  19. Comprehensive Common Operating Picture (COP) for Disaster Response

    Science.gov (United States)

    2012-05-17

    practices for achieving situational awareness within each watch center nor are there reporting triggers. In the absence of standard procedures the regions are...believes) and does ( practices ) whenever the professional member performs in the usual and normal way.29 FEMA further understands doctrine as what it...This line of thinking is very similar to that of Richard McMaster and Chris Baber and their research on multi-agency use of a COP. They contend that

  20. Modelling and simulation of air-conditioning cycles

    Science.gov (United States)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2017-02-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(φ)} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(φ)} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  1. Automated respiratory cycles selection is highly specific and improves respiratory mechanics analysis.

    Science.gov (United States)

    Rigo, Vincent; Graas, Estelle; Rigo, Jacques

    2012-07-01

    Selected optimal respiratory cycles should allow calculation of respiratory mechanic parameters focusing on patient-ventilator interaction. New computer software automatically selecting optimal breaths and respiratory mechanics derived from those cycles are evaluated. Retrospective study. University level III neonatal intensive care unit. Ten mins synchronized intermittent mandatory ventilation and assist/control ventilation recordings from ten newborns. The ventilator provided respiratory mechanic data (ventilator respiratory cycles) every 10 secs. Pressure, flow, and volume waves and pressure-volume, pressure-flow, and volume-flow loops were reconstructed from continuous pressure-volume recordings. Visual assessment determined assisted leak-free optimal respiratory cycles (selected respiratory cycles). New software graded the quality of cycles (automated respiratory cycles). Respiratory mechanic values were derived from both sets of optimal cycles. We evaluated quality selection and compared mean values and their variability according to ventilatory mode and respiratory mechanic provenance. To assess discriminating power, all 45 "t" values obtained from interpatient comparisons were compared for each respiratory mechanic parameter. A total of 11,724 breaths are evaluated. Automated respiratory cycle/selected respiratory cycle selections agreement is high: 88% of maximal κ with linear weighting. Specificity and positive predictive values are 0.98 and 0.96, respectively. Averaged values are similar between automated respiratory cycle and ventilator respiratory cycle. C20/C alone is markedly decreased in automated respiratory cycle (1.27 ± 0.37 vs. 1.81 ± 0.67). Tidal volume apparent similarity disappears in assist/control: automated respiratory cycle tidal volume (4.8 ± 1.0 mL/kg) is significantly lower than for ventilator respiratory cycle (5.6 ± 1.8 mL/kg). Coefficients of variation decrease for all automated respiratory cycle parameters in all infants. "t

  2. High Cycle Fatigue Behavior of Shot-Peened Steels

    Science.gov (United States)

    Mirzazadeh, M. M.; Plumtree, A.

    2012-08-01

    The uniaxial fully reversed (R = -1) long life fatigue behavior of four shot-peened engineering steels with approximately the same hardness was investigated. Shot-peening, air-cooled forged AISI 1141 and crackable AISI 1070 steels had little effect on their fatigue limits (+2.5 and -2.0 pct, respectively). In the case of a powder forged 0.5 pct C steel, an increase in the fatigue limit of 10.4 pct was observed, albeit with a large standard deviation. Shot-peening quench and tempered AISI 1151 steel decreased its fatigue limit 12.0 pct, as a result of cyclic softening. In general, the beneficial effects of shot-peening these smooth specimens were relatively small. Neither cyclic softening nor hardening occurred in the non-shot-peened steels cycled under the same conditions.

  3. Cop-like operon: Structure and organization in species of the Lactobacillale order

    Directory of Open Access Journals (Sweden)

    ANGÉLICA REYES

    2006-01-01

    Full Text Available Copper is an essential and toxic trace metal for bacteria and, therefore, must be tightly regulated in the cell. Enterococcus hirae is a broadly studied model for copper homeostasis. The intracellular copper levels in E. hirae are regulated by the cop operon, which is formed by four genes: copA and copB that encode ATPases for influx and efflux of copper, respectively; copZ that encodes a copper chaperone; and copY, a copper responsive repressor. Since the complete genome sequence for E. hirae is not available, it is possible that other genes may encode proteins involved in copper homeostasis. Here, we identified a cop-like operon in nine species of Lactobacillale order with a known genome sequence. All of them always encoded a CopY-like repressor and a copper ATPase. The alignment of the cop-like operon promoter region revealed two CopY binding sites, one of which was conserved in all strains, and the second was only present in species of Streptococcus genus and L. johnsonii. Additional proteins associated to copper metabolism, CutC and Cupredoxin, also were detected. This study allowed for the description of the structure and organization of the cop operon and discussion of a phylogenetic hypothesis based on the differences observed in this operon's organization and its regulation in Lactobacillale order.

  4. Development of Internet algorithms and some calculations of power plant COP

    Science.gov (United States)

    Ustjuzhanin, E. E.; Ochkov, V. F.; Znamensky, V. E.

    2017-11-01

    focused on sharing: a) SW that is used to design power plants, for an example, Code - GTP_1(Z,R,Y) and b) client functions those are aimed to determine R properties of the working fluid at fixed points of the thermodynamic cycle. The program let us calculate energy criteria, Z, including the internal coefficient of performance (COP) for a power plant. We have discussed OI resources, among them OI resource that includes Code - GTP_1(Z,R,Y) and connected with a complex power plant included: i) several gas turbines, i) several compressors etc.

  5. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  6. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  7. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  8. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    Energy Technology Data Exchange (ETDEWEB)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  9. The COP1 E3-ligase interacts with FIP200, a key regulator of mammalian autophagy

    Directory of Open Access Journals (Sweden)

    Kobayashi Saori

    2013-01-01

    Full Text Available Abstract Background The ubiquitin ligase COP1, COnstitutively Photomorphogenic 1, functions in many biological responses in mammalian cells, but its downstream pathway remains unclear. Results Here, we identified FIP200, a key regulator of mammalian autophagy, as a novel COP1-interacting protein by yeast two-hybrid screening. The interaction was confirmed by a GST-pulldown assay. Split-GFP analysis revealed that interaction between COP1 and FIP200 predominantly occurred in the cytoplasm and was enhanced in cells treated with UV irradiation. Different forms of FIP200 protein were expressed in cultured mammalian cells, and ectopic expression of COP1 reduced one of such forms. Conclusions These data suggest that COP1 modulates FIP200-associated activities, which may contribute to a variety of cellular functions that COP1 is involved in.

  10. Caffeine withdrawal and high-intensity endurance cycling performance.

    Science.gov (United States)

    Irwin, Christopher; Desbrow, Ben; Ellis, Aleisha; O'Keeffe, Brooke; Grant, Gary; Leveritt, Michael

    2011-03-01

    In this study, we investigated the impact of a controlled 4-day caffeine withdrawal period on the effect of an acute caffeine dose on endurance exercise performance. Twelve well-trained and familiarized male cyclists, who were caffeine consumers (from coffee and a range of other sources), were recruited for the study. A double-blind placebo-controlled cross-over design was employed, involving four experimental trials. Participants abstained from dietary caffeine sources for 4 days before the trials and ingested capsules (one in the morning and one in the afternoon) containing either placebo or caffeine (1.5 mg · kg(-1) body weight · day(-1)). On day 5, capsules containing placebo or caffeine (3 mg · kg(-1) body weight) were ingested 90 min before completing a time trial, equivalent to one hour of cycling at 75% peak sustainable power output. Hence the study was designed to incorporate placebo-placebo, placebo-caffeine, caffeine-placebo, and caffeine-caffeine conditions. Performance time was significantly improved after acute caffeine ingestion by 1:49 ± 1:41 min (3.0%, P = 0.021) following a withdrawal period (placebo-placebo vs. placebo-caffeine), and by 2:07 ± 1:28 min (3.6%, P = 0.002) following the non-withdrawal period (caffeine-placebo vs. caffeine-caffeine). No significant difference was detected between the two acute caffeine trials (placebo-caffeine vs. caffeine-caffeine). Average heart rate throughout exercise was significantly higher following acute caffeine administration compared with placebo. No differences were observed in ratings of perceived exertion between trials. A 3 mg · kg(-1) dose of caffeine significantly improves exercise performance irrespective of whether a 4-day withdrawal period is imposed on habitual caffeine users.

  11. Mechanisms initiating deep convection over complex terrain during COPS

    Directory of Open Access Journals (Sweden)

    Christoph Kottmeier

    2008-12-01

    Full Text Available Precipitating convection in a mountain region of moderate topography is investigated, with particular emphasis on its initiation in response to boundary-layer and mid- and upper-tropospheric forcing mechanisms. The data used in the study are from COPS (Convective and Orographically-induced Precipitation Study that took place in southwestern Germany and eastern France in the summer of 2007. It is found that the initiation of precipitating convection can be roughly classified as being due to either: (i surface heating and low-level flow convergence; (ii surface heating and moisture supply overcoming convective inhibition during latent and/or potential instability; or (iii mid-tropospheric dynamical processes due to mesoscale convergence lines and forced mean vertical motion. These phenomena have to be adequately represented in models in order to improve quantitative precipitation forecast. Selected COPS cases are analysed and classified into these initiation categories. Although only a subset of COPS data (mainly radiosondes, surface weather stations, radar and satellite data are used here, it is shown that convective systems are captured in considerable detail by sensor synergy. Convergence lines were observed by Doppler radar in the location where deep convection is triggered several hours later. The results suggest that in many situations, observations of the location and timing of convergence lines will facilitate the nowcasting of convection. Further on, forecasting of the initiation of convection is significantly complicated if advection of potentially convective air masses over changing terrain features plays a major role. The passage of a frontal structure over the Vosges - Rhine valley - Black Forest orography was accompanied by an intermediate suppression of convection over the wide Rhine valley. Further downstream, an intensification of convection was observed over the Black Forest due to differential surface heating, a convergence line

  12. Constitutive Photomorphogensis Protein1 (COP1 mediated p53 pathway and its oncogenic role

    Directory of Open Access Journals (Sweden)

    Md. Golam Rabbani

    2014-05-01

    Full Text Available We have reviewed the COP1 mediated tumor suppressor protein p53 pathway and its oncogenic role. COP1 is a negative regulator of p53 and acts as a pivotal controller of p53-Akt death-live switch (Protein kinase B. In presence of p53, COP1 is overexpressed in breast, ovarian, gastric cancers, even without MDM2 (Mouse double minute-2 amplification. Following DNA damage, COP1 is phosphorylated instantly by ATM (Ataxia telangiectasia mutated and degraded by 14-3-3 and #963; following nuclear export and enhancing ubiquitination. In ATM lacking cell, other kinases, i.e. ATR (ataxia telangiectasia and Rad3-related protein, Jun kinases and DNA-PK (DNA-dependent protein kinase cause COP1 and CSN3 (COP9 signalosome complex subunit-3 phosphorylation and initiate COP1's down regulation. Although, it has been previously found that co-knockout of MDM2 and COP1 enhance p53's half life by eight fold, the reason is still unknown. Additionally, while interacting with p53, COP1 upregulate MDM2's E3 ubiquitin ligase, Akt, CSN6 (COP9 signalosome 6 activity and inhibit 14-3-3 and #963;'s negative regulation on MDM2 and COP1 itself. Conclusively, there persists an amplification loop among COP1, MDM2, Akt and 14-3-3 and #963; to regulate p53's stability and activity. However, the role of another tumor suppressor PTEN (phosphatase and tensin homologue is yet to be discovered. This study provides insight on the molecular genetic pathways related to cancer and might be helpful for therapeutic inventions. [Biomed Res Ther 2014; 1(5.000: 142-151

  13. Le climat comme fait socio-environnemental total, une analyse à chaud de la COP 21

    OpenAIRE

    Foyer, Jean

    2016-01-01

    Ce texte est paru dans une version écourtée dans la revue en ligne La Vie des Idées, sous le titre « Dans les coulisses de la COP 21 » Il est disponible sur http://www.laviedesidees.fr/Dans-les-coulisses-de-la-COP21.html; Ce texte, nourri par les discussion du projet collaboratif CLIMACOP; présente une analyse à chaud de la COP21 selon la grille d'analyse de la dialogie entre "climatisation du monde et globalisation du climat ". Il revient également sur différents enjeux centraux de la COP (r...

  14. Costs of drug delivery for CHOP, COP/CVP, and fludarabine: an international assessment.

    Science.gov (United States)

    Herold, Michael; Hieke, Klaus

    2003-01-01

    The purpose of this analysis was to assess the real-life direct costs of drug delivery for frequently used chemotherapeutic regimens in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). This was a retrospective analysis of direct costs of drug delivery (acquisition plus administration) of relapsed low-grade NHL in 424 patients in Canada, Germany, and Italy. Results were expressed as an average treatment cost per patient for six cycles of chemotherapy. Exchange rates used were $1 (Canada)= currency 0.672, 1 DM (Germany)= currency 0.511, and 1 Lit (Italy)= currency 0.000517. Direct costs of drug delivery were greater for inpatients receiving fludarabine (Canada currency 12,669; Italy currency 13,027) than for CHOP (Canada currency 7856; Germany currency 7218; Italy currency 4251) or COP/CVP (Canada currency 7360; Germany currency 8449). Treatment administration setting was a major cost driver with inpatient treatment up to 9-fold more expensive than the same regimen given to outpatients. Drug administration costs comprised the largest proportion of the total for each regimen in the inpatient setting (69-98%). Costs of drug delivery in the outpatient setting were 10% to 65% of those in the inpatient setting. Again, fludarabine was more expensive (Italy currency 8493; Canada currency 7269) than CHOP (Canada currency 4403; Germany currency 2150; Italy currency 1264) and COP/CVP (Canada currency 3009; Germany currency 867). Administration costs were 2.5- to 15-fold higher for inpatients compared to outpatients. Costs of drug administration are a major driver for total direct treatment costs in the treatment of relapsed low-grade NHL and are at least as important as drug acquisition costs. Drug administration practices, in terms of inpatient or outpatient treatment, are a major factor in determining overall direct costs. Therapeutic strategies, which offer shortened treatment duration and/or a simple mode of administration, are likely to be economically

  15. Thermodynamic Cycle Analysis and Experimental Investigate on a Two-stage Vapor Injection Low Temperature Air Source Heat Pump with a Variable Displacement Ratio Rotary Compressor

    OpenAIRE

    Huang, Hui; Liang, Xiangfei; Zhen, Bo; Huang, Boliang; Fang, Jinsheng; Zhuang, Rong

    2016-01-01

    Two-stage vapor injection compression cycle with flash tank was thermodynamically analyzed, the results showed that there existed the optimum theoretical displacement ratio of high stage to low stage corresponding to the maximum coefficient of performance(COP), the optimum displacement ratio and the volumetric heating capacity decreased with evaporation temperature decreasing. An optimum theoretical displacement ratio correlation for R290, R32 and R410A was given. A new type two-stage vapor i...

  16. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun spring using EPIK, COP, and travel time methods

    Science.gov (United States)

    Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina

    2016-04-01

    Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the

  17. PCR cycles above routine numbers do not compromise high-throughput DNA barcoding results.

    Science.gov (United States)

    Vierna, J; Doña, J; Vizcaíno, A; Serrano, D; Jovani, R

    2017-10-01

    High-throughput DNA barcoding has become essential in ecology and evolution, but some technical questions still remain. Increasing the number of PCR cycles above the routine 20-30 cycles is a common practice when working with old-type specimens, which provide little amounts of DNA, or when facing annealing issues with the primers. However, increasing the number of cycles can raise the number of artificial mutations due to polymerase errors. In this work, we sequenced 20 COI libraries in the Illumina MiSeq platform. Libraries were prepared with 40, 45, 50, 55, and 60 PCR cycles from four individuals belonging to four species of four genera of cephalopods. We found no relationship between the number of PCR cycles and the number of mutations despite using a nonproofreading polymerase. Moreover, even when using a high number of PCR cycles, the resulting number of mutations was low enough not to be an issue in the context of high-throughput DNA barcoding (but may still remain an issue in DNA metabarcoding due to chimera formation). We conclude that the common practice of increasing the number of PCR cycles should not negatively impact the outcome of a high-throughput DNA barcoding study in terms of the occurrence of point mutations.

  18. Fusion blanket for high-efficiency power cycles

    Energy Technology Data Exchange (ETDEWEB)

    Usher, J.L.; Powell, J.R.; Fillo, J.A.; Horn, F.L.; Lazareth, O.W.; Taussig, R.

    1980-01-01

    The efficiencies of blankets for fusion reactors are usually in the range of 30 to 40%, limited by the operating temperature (500/sup 0/C) of conventional structural materials such as stainless steels. In this project two-zone blankets are proposed; these blankets consist of a low-temperature shell surrounding a high-temperature interior zone. A survey of nucleonics and thermal hydraulic parameters has led to a reference blanket design consisting of a water-cooled stainless steel shell around a BeO, ZrO/sub 2/ interior (cooled by Ar) utilizing Li/sub 2/O for tritium breeding. In this design, approx. 60% of the fusion energy is deposited in the high-temperature interior. The maximum Ar temperature is 2230/sup 0/C leading to an overall efficiency estimate of 55 to 60% for this reference case.

  19. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  20. Life cycles of dominant mayflies (Ephemeroptera) on a torrent of the high Bolivian Andes

    Science.gov (United States)

    Molina, Carlos I; Puliafico, Kenneth P

    2016-03-01

    The mayflies of the temperate and cold zones have well-synchronized life cycles, distinct cohorts, short emergence and flight periods. In contrast, aquatic insects from the tropical zones are characterized by multivoltine life cycles, “non-discernible cohorts” and extended flight periods throughout the year. This report is the first observation of life cycle patterns made of two species of mayflies on a torrent in the high elevation Bolivian Andes. The samples were taken from four sites and four periods during a hydrological season. The life cycle of each species was examined using size-class frequency analysis and a monthly modal progression model (von Bertalanffy’s model) to infer the life cycle synchrony type. These first observations showed a moderately synchronized univoltine life cycle for Andesiops peruvianus (Ulmer, 1920), whereas Meridialaris tintinnabula Pescador and Peters (1987), had an unsynchronized multivoltine life cycle. These results showed that the generalization of all aquatic insects as unsynchronized multivoltine species in the Andean region may not be entirely accurate since there is still a need to further clarify the life cycle patterns of the wide variety of aquatic insects living in this high elevation tropical environment.

  1. Robust cold storage for low-output systems with COP > 100; Robuuste koudeopslag voor kleine vermogens met COP > 100

    Energy Technology Data Exchange (ETDEWEB)

    Broekhuizen, H.J. [Installect, Baak (Netherlands)

    2000-06-01

    Until recently cold storage systems were generally not regarded as feasible for systems with a capacity of less than 500 kW. The consultant Installect has now developed a system in conjunction with Westerlo Boringen which has made this a realistic option. The article discusses how, working from experiences gained in a number of trial projects, the obstacles were overcome and a new concept developed: the GeoThermic. The system delivers heat and cold with COPs > 100. Problems with infiltration and degasification are history. 2 refs.

  2. CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy.

    Science.gov (United States)

    Sarret, Géraldine; Favier, Adrien; Covès, Jacques; Hazemann, Jean-Louis; Mergeay, Max; Bersch, Beate

    2010-03-24

    Cupriavidus metallidurans CH34 is a bacterium that is resistant to high metal concentrations in the environment. Increased copper resistance is associated with the cop cluster on the large plasmid pMOL30 that is composed of at least 21 genes. The copK gene encodes a 74 residue periplasmic protein whose expression is strongly upregulated in the presence of copper. CopK was previously shown to cooperatively bind Cu(I) and Cu(II) in distinct, specific sites. The solution structure of Cu(I)-CopK and the characterization of the Cu(I) site by X-ray absorption spectroscopy and NMR are reported here. EXAFS spectra are in agreement with a tetrathioether Cu(I) site, providing so far unique spectral information on a 4S-coordinated Cu(I) in a protein. The methionine residues forming the Cu(I) site, M28, M38, M44, and M54, are identified by NMR. We propose the chemical shift of the methionine C(epsilon) as a new and sensitive probe for the detection of Cu(I) bound to thioether groups. The solution structure of Cu(I)-CopK demonstrates that Cu(I) binding induces a complete structural modification with the disruption of the second beta-sheet and a rotation of the C-terminal part of nearly 180 degrees around a hinge formed by asparagine 57. This conformational change is directly related to the loss of the dimer interface and most probably to the formation of the Cu(II) site involving histidine 70. The solution structure of Cu(I)-CopK therefore provides the molecular basis for the understanding of the Cu(I)/Cu(II) binding cooperativity.

  3. Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role

    Science.gov (United States)

    Ruairuen, Watcharee

    2015-01-01

    As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems. PMID:26368123

  4. Japanese high school students' usage of mobile phones while cycling.

    Science.gov (United States)

    Ichikawa, Masao; Nakahara, Shinji

    2008-03-01

    To investigate the perception and actual use of mobile phones among Japanese high school students while riding their bicycles, and their experience of bicycle crash/near-crash. A questionnaire survey was carried out at high schools that were, at the time of the survey, commissioned by the National Agency for the Advancement of Sports and Health to conduct school safety research. In the survey, we found that mobile phone use while riding a bicycle was quite common among the students during their commute, but those who have a higher perception of danger in this practice, and those who perceived that this practice is prohibited, were less likely to engage in this practice. Male students and students commuting to school by bicycle only were more likely to have used phones while riding. There was a significant relationship between phone usage while riding a bicycle and the experience of bicycle crash/near-crash, although its causality was not established. Bicycle crash/near-crash experienced while using a phone was less prevalent among the students who had a higher perception of danger in phone usage while riding, students who perceived that this practice is prohibited, and students with a shorter travel time by bicycle during the commute. Since mobile phone use while riding a bicycle potentially increases crash risk among cyclists, student bicycle commuters should be made aware of this risk. Moreover, they should be informed that cyclists' phone usage while riding is prohibited according to the road traffic law.

  5. Copper Tolerance and Characterization of a Copper-Responsive Operon, copYAZ, in an M1T1 Clinical Strain of Streptococcus pyogenes.

    Science.gov (United States)

    Young, Christie A; Gordon, Lily D; Fang, Zhong; Holder, Robert C; Reid, Sean D

    2015-08-01

    Infection with Streptococcus pyogenes is associated with a breadth of clinical manifestations ranging from mild pharyngitis to severe necrotizing fasciitis. Elevated levels of intracellular copper are highly toxic to this bacterium, and thus, the microbe must tightly regulate the level of this metal ion by one or more mechanisms, which have, to date, not been clearly defined. In this study, we have identified two virulence mechanisms by which S. pyogenes protects itself against copper toxicity. We defined a set of putative genes, copY (for a regulator), copA (for a P1-type ATPase), and copZ (for a copper chaperone), whose expression is regulated by copper. Our results indicate that these genes are highly conserved among a range of clinical S. pyogenes isolates. The copY, copA, and copZ genes are induced by copper and are transcribed as a single unit. Heterologous expression assays revealed that S. pyogenes CopA can confer copper tolerance in a copper-sensitive Escherichia coli mutant by preventing the accumulation of toxic levels of copper, a finding that is consistent with a role for CopA in copper export. Evaluation of the effect of copper stress on S. pyogenes in a planktonic or biofilm state revealed that biofilms may aid in protection during initial exposure to copper. However, copper stress appears to prevent the shift from the planktonic to the biofilm state. Therefore, our results indicate that S. pyogenes may use several virulence mechanisms, including altered gene expression and a transition to and from planktonic and biofilm states, to promote survival during copper stress. Bacterial pathogens encounter multiple stressors at the host-pathogen interface. This study evaluates a virulence mechanism(s) utilized by S. pyogenes to combat copper at sites of infection. A better understanding of pathogen tolerance to stressors such as copper is necessary to determine how host-pathogen interactions impact bacterial survival during infections. These insights may

  6. The Transcription Factor COL12 Is a Substrate of the COP1/SPA E3 Ligase and Regulates Flowering Time and Plant Architecture.

    Science.gov (United States)

    Ordoñez-Herrera, Natalia; Trimborn, Laura; Menje, Melanie; Henschel, Monique; Robers, Lennart; Kaufholdt, David; Hänsch, Robert; Adrian, Jessika; Ponnu, Jathish; Hoecker, Ute

    2018-02-01

    The ambient light environment controls many aspects of plant development throughout a plant's life cycle. Such complex control is achieved because a key repressor of light signaling, the Arabidopsis ( Arabidopsis thaliana ) COP1/SPA E3 ubiquitin ligase causes the degradation of multiple regulators of endogenous developmental pathways. This includes the CONSTANS (CO) transcription factor that is responsible for photoperiodic control of flowering time. There are 16 CO-like proteins whose functions are only partly understood. Here, we show that 14 CO-like (COL) proteins bind CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) and SUPPRESSOR OF PHYTOCHROME A-105 (SPA)1 in vitro. We subsequently focused on COL12 and show that COL12 binds COP1 and SPA proteins in vivo. The COL12 protein is degraded in darkness in a COP1-dependent fashion, indicating that COL12 is a substrate of the COP1/SPA ubiquitin ligase. Overexpression of COL12 causes late flowering specifically in long day conditions by decreasing the expression of FLOWERING LOCUS T This phenotype is genetically dependent on CO. Consistent with this finding, COL12 physically interacts with CO in vivo, suggesting that COL12 represses flowering by inhibiting CO protein function. We show that COL12 overexpression did not alter CO protein stability. It is therefore likely that COL12 represses the activity of CO rather than CO levels. Overexpression of COL12 also affects plant architecture by increasing the number of rosette branches and reducing inflorescence height. These phenotypes are CO independent. Hence, we suggest that COL12 affects plant development through CO-dependent and CO-independent mechanisms. © 2018 American Society of Plant Biologists. All Rights Reserved.

  7. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  8. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades

    Directory of Open Access Journals (Sweden)

    Shun-Peng Zhu

    2017-06-01

    Full Text Available Combined high and low cycle fatigue (CCF generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF resulting from high frequency vibrations and low cycle fatigue (LCF from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner’s rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  9. A Combined High and Low Cycle Fatigue Model for Life Prediction of Turbine Blades.

    Science.gov (United States)

    Zhu, Shun-Peng; Yue, Peng; Yu, Zheng-Yong; Wang, Qingyuan

    2017-06-26

    Combined high and low cycle fatigue (CCF) generally induces the failure of aircraft gas turbine attachments. Based on the aero-engine load spectrum, accurate assessment of fatigue damage due to the interaction of high cycle fatigue (HCF) resulting from high frequency vibrations and low cycle fatigue (LCF) from ground-air-ground engine cycles is of critical importance for ensuring structural integrity of engine components, like turbine blades. In this paper, the influence of combined damage accumulation on the expected CCF life are investigated for turbine blades. The CCF behavior of a turbine blade is usually studied by testing with four load-controlled parameters, including high cycle stress amplitude and frequency, and low cycle stress amplitude and frequency. According to this, a new damage accumulation model is proposed based on Miner's rule to consider the coupled damage due to HCF-LCF interaction by introducing the four load parameters. Five experimental datasets of turbine blade alloys and turbine blades were introduced for model validation and comparison between the proposed Miner, Manson-Halford, and Trufyakov-Kovalchuk models. Results show that the proposed model provides more accurate predictions than others with lower mean and standard deviation values of model prediction errors.

  10. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  11. High temperature high velocity direct power extraction using an open-cycle oxy-combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2017-09-29

    The implementation of oxy-fuel technology in fossil-fuel power plants may contribute to increased system efficiencies and a reduction of pollutant emissions. One technology that has potential to utilize the temperature of undiluted oxy-combustion flames is open-cycle magnetohydrodynamic (MHD) power generators. These systems can be configured as a topping cycle and provide high enthalpy, electrically conductive flows for direct conversion of electricity. This report presents the design and modeling strategies of a MHD combustor operating at temperatures exceeding 3000 K. Throughout the study, computational fluid dynamics (CFD) models were extensively used as a design and optimization tool. A lab-scale 60 kWth model was designed, manufactured and tested as part of this project. A fully-coupled numerical method was developed in ANSYS FLUENT to characterize the heat transfer in the system. This study revealed that nozzle heat transfer may be predicted through a 40% reduction of the semi-empirical Bartz correlation. Experimental results showed good agreement with the numerical evaluation, with the combustor exhibiting a favorable performance when tested during extended time periods. A transient numerical method was employed to analyze fuel injector geometries for the 60-kW combustor. The ANSYS FLUENT study revealed that counter-swirl inlets achieve a uniform pressure and velocity ratio when the ports of the injector length to diameter ratio (L/D) is 4. An angle of 115 degrees was found to increase distribution efficiency. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent

  12. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures.

    Science.gov (United States)

    Kilby, Melissa C; Molenaar, Peter C M; Slobounov, Semyon M; Newell, Karl M

    2017-01-01

    The experiment was setup to investigate the control of human quiet standing through the manipulation of augmented visual information feedback of selective properties of the motion of two primary variables in postural control: center of pressure (COP) and center of mass (COM). Five properties of feedback information were contrasted to a no feedback dual-task (watching a movie) control condition to determine the impact of visual real-time feedback on the coordination of the joint motions in postural control in both static and dynamic one-leg standing postures. The feedback information included 2D COP or COM position and macro variables derived from the COP and COM motions, namely virtual time-to-contact (VTC) and the COP-COM coupling. The findings in the static condition showed that the VTC and COP-COM coupling feedback conditions decreased postural motion more than the 2D COP or COM positional information. These variables also induced larger sway amplitudes in the dynamic condition showing a more progressive search strategy in exploring the stability limits. Canonical correlation analysis (CCA) found that COP-COM coupling contributed less than the other feedback variables to the redundancy of the system reflected in the common variance between joint motions and properties of sway motion. The COP-COM coupling had the lowest weighting of the motion properties to redundancy under the feedback conditions but overall the qualitative pattern of the joint motion structures was preserved within the respective static and dynamic balance conditions.

  13. Anticancer activity of CopA3 dimer peptide in human gastric cancer cells.

    Science.gov (United States)

    Lee, Joon Ha; Kim, In-Woo; Kim, Sang-Hee; Yun, Eun-Young; Nam, Sung-Hee; Ahn, Mi-Young; Kang, Dong-Chul; Hwang, Jae Sam

    2015-06-01

    CopA3 is a homodimeric α-helical peptide derived from coprisin which is a defensin-like antimicrobial peptide that was identified from the dung beetle, Copris tripartitus. CopA3 has been reported to have anticancer activity against leukemia cancer cells. In the present study, we investigated the anticancer activity of CopA3 in human gastric cancer cells. CopA3 reduced cell viability and it was cytotoxic to gastric cancer cells in the MTS and LDH release assay, respectively. CopA3 was shown to induce necrotic cell death of the gastric cancer cells by flow cytometric analysis and acridine orange/ethidium bromide staining. CopA3-induced cell death was mediated by specific interactions with phosphatidylserine, a membrane component of cancer cells. Taken together, these data indicated that CopA3 mainly caused necrosis of gastric cancer cells, probably through interactions with phosphatidylserine, which suggests the potential utility of CopA3 as a cancer therapeutic.

  14. Hybrid sulfur cycle operation for high-temperature gas-cooled reactors

    Science.gov (United States)

    Gorensek, Maximilian B

    2015-02-17

    A hybrid sulfur (HyS) cycle process for the production of hydrogen is provided. The process uses a proton exchange membrane (PEM) SO.sub.2-depolarized electrolyzer (SDE) for the low-temperature, electrochemical reaction step and a bayonet reactor for the high-temperature decomposition step The process can be operated at lower temperature and pressure ranges while still providing an overall energy efficient cycle process.

  15. High-cycle fatigue behavior of type 316 stainless steel at 593/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Raske, D.T.

    1980-01-01

    The available low- and high-cycle fatigue data on Type 316 stainless steel at 593 to 600/sup 0/C have been combined and analyzed to provide a preliminary strain-life correlation. This correlation was then reduced by the appropriate safety factors to a design curve and compared with the ASME T-1420-1B curve. The comparison indicates that significant increases in allowable fatigue cycles should be realized when the present study is concluded.

  16. Experimental Comparison of High Duty Cycle and Pulsed Active Sonars in a Littoral Environment

    Science.gov (United States)

    2015-09-30

    percent which means that 99% of the time , the track is out of date. In contrast, high duty cycle sonars (HDC) have duty cycles approaching 100% which...since the reverberation background for shallow water HDC has not been accurately modeled. To compare performance of HDC with conventional PAS in...the littorals, a set of experiments were conducted as part of the Target and Reverberation Experiment (TREX) in spring 2013. This was the first

  17. Core-Shell ZIF-8@ZIF-67 Derived CoP Nanoparticles-Embedded N-doped Carbon Nanotube Hollow Polyhedron for Efficient Over-all Water Splitting.

    Science.gov (United States)

    Pan, Yuan; Sun, Kaian; Liu, Shoujie; Cao, Xing; Wu, Konglin; Cheong, Weng-Chon; Chen, Zheng; Wang, Yu; Li, Yang; Liu, Yunqi; Wang, Dingsheng; Peng, Qing; Chen, Chen; Li, Yadong

    2018-01-17

    The construction of highly active and stable non-noble metal electrocatalysts for hydrogen and oxygen evolution reactions electrocatalysts is a major challenge for overall water splitting. Herein, we report a novel hybrid nanostructure with CoP na-noparticles (NPs) embedded in N-doped carbon nanotube hollow polyhedron (NCNHP) through a pyrolysis-oxidation-phosphidation strategy derived from core-shell ZIF-8@ZIF-67. Benefiting from the synergistic effects between highly active CoP NPs and NCNHP, the CoP/NCNHP hybrid exhibited outstanding bifunctional electrocatalytic performances. When the CoP/NCNHP was employed as both anode and cathode for overall water splitting, a potential as low as 1.64 V was needed to achieve the current density of 10 mA·cm-2, and it still exhibited superior activity after continuously working for 36 h with nearly negligible decay in potential. Density functional theory calculations indicated that the electron transfer from NCNHP to CoP could increase the electronic states of Co d-orbital around the Fermi level, which could increase binding strength with H, and therefore improve the electrocatalytic performance. The strong stability is attributed to high oxidation resistance of CoP surface protected by the NCNHP.

  18. The adverse effects of high fat induced obesity on female reproductive cycle and hormones

    Science.gov (United States)

    Donthireddy, Laxminarasimha Reddy

    The prevalence of obesity, an established risk and progression factor for abnormal reproductive cycle and tissue damage in female mice. It leads to earlier puberty, menarche in young females and infertility. There are extensive range of consequences of obesity which includes type-2 diabetes, cardiovascular disease and insulin resistance. Obesity is the interaction between dietary intake, genes, life style and environment. The interplay of hormones estrogen, insulin, and leptin is well known on energy homeostasis and reproduction. The aim of this study is to determine the effect of high fat induced obesity on reproductive cycles and its hormonal abnormalities on mice model. Two week, 3 month and 8 month long normal (WT) and very high fat diet (VHFD) diet course is followed. When mice are fed with very high fat diet, there is a drastic increase in weight within the first week later. There was a significant (panimals. 2 week, 3 month and 6 month time interval pap smear test results showed number of cells, length of estrous cycle and phases of the estrous cycle changes with VHFD mice(n=30) compared to normal diet mice(n=10). These results also indicate that the changes in the reproductive cycles in VHFD treated female mice could be due to the changes in hormones. Histo-pathological analyses of kidney, ovary, liver, pancreas, heart and lungs showed remarkable changes in some tissue on exposure to very high fat. Highly deposited fat packets observed surrounding the hepatocytes and nerve cells.

  19. Raman lidar observations of particle hygroscopicity during COPS

    Science.gov (United States)

    Stelitano, D.; Di Girolamo, P.; Summa, D.

    2012-04-01

    The characterization of particle hygroscopicity has primary importance for climate monitoring and prediction. Model studies have demonstrated that relative humidity (RH) has a critical influence on aerosol climate forcing. The relationship between aerosol backscattering and relative humidity has been investigated in numerous studies (among others, Pahlow et al., 2006; Wulfmeyer and Feingold, 2000; Veselovskii et al., 2009). Hygroscopic properties of aerosols influence particle size distribution and refractive index and hence their radiative effects. Aerosol particles tend to grow at large relative humidity values as a result of their hygroscopicity. Raman lidars with aerosol, water vapour and temperature measurement capability are potentially attractive tools for studying aerosol hygroscopicity as in fact they can provide continuous altitude-resolved measurements of particle optical, size and microphysical properties, as well as relative humidity, without perturbing the aerosols or their environment. Specifically, the University of Basilicata Raman lidar system (BASIL) considered for the present study, has the capability to perform all-lidar measurements of relative humidity based on the application of both the rotational and the vibrational Raman lidar techniques in the UV. BASIL was operational in Achern (Black Forest, Lat: 48.64 ° N, Long: 8.06 ° E, Elev.: 140 m) between 25 May and 30 August 2007 in the framework of the Convective and Orographically-induced Precipitation Study (COPS). During COPS, BASIL collected more than 500 hours of measurements, distributed over 58 measurement days and 34 intensive observation periods (IOPs). The present analysis is focused on selected case studies characterized by the presence of different aerosol types with different hygroscopic behaviour. The observed behaviour, dependent upon aerosol composition, may range from hygrophobic to strongly hygroscopic. Results from the different case studies will be illustrated and

  20. INFORMATION MODELING OF LIFE CYCLE OF HIGH-RISE CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Gusakova Elena Aleksandrovna

    2018-02-01

    Full Text Available To date, many years’ experience in the construction and operation of high-rise buildings has been accumulated. Its analysis reveals not only the engineering and organizational-technological specifics of such projects, but also systemic gaps in the field of management. In the implementation of large-scale and unique projects for high-rise buildings, the problems and tasks of improving approaches to managing the full life cycle of projects and methods, which will improve their competitiveness, become topical. The systems being used have largely exhausted their resource efficiency, which is associated with automation of traditional “inherited” processes and management structures, as well as development of IT-systems focused on digitalization of the activities of construction company, rather than the project. To solve these problems, it is proposed to carry out: reengineering of the schemes of information interaction between the project’s participants; formation of integrated digital environment for the life cycle of the project; development of systems for integrating data management and project management. Subject: problems, approaches and methods of digitalization of project’s life cycle management in relation to the specifics and features of high-rise buildings. Research objectives: substantiation of the most perspective approaches and methods of information modeling of high-rise construction as the basis for managing the full life cycle of the given project. Materials and methods: the experience of digitalization of design, construction, operation and development of high-rise buildings, presented in specialized literature, is analyzed. The methods for integrating information models of various stages of project’s life cycle and for information interaction of project’s participants are considered. Results: the concept of forming a single digital environment for the project is proposed, taking into account the features of the life

  1. High cycle fatigue properties of CLAM steel at 723 K and 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun; Zhai, Xiangwei; Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn; Li, Chunjing; Huang, Qunying

    2015-11-15

    Highlights: • High cycle fatigue properties of CLAM steel were investigated at 723 K and 823 K. • The condition fatigue limit at N = 10{sup 7} were 275 MPa and 235 MPa at 723 K and 823 K. • Fatigue strength decreased when stress and temperature increased at 723 K and 823 K. • Dislocation density decrease and subgrain coarsening during the test process were the possible reasons for fatigue limit decrease. - Abstract: This paper highlights the results of a study on the high cycle fatigue strength and fracture mechanism of China Low Activation Martensitic (CLAM) steel. The high cycle fatigue test results showed that the fatigue strength of CLAM steel decreased with the temperature, and the condition fatigue strengths (N = 10{sup 7}) were 275 MPa and 235 MPa at 723 K and 823 K, respectively. The fractograph results indicated that the fractures were mainly initiated from the surface of the specimen.

  2. The Importance of CoP in Transforming New Learning Communities into Experienced Ones in EFL Classrooms

    Science.gov (United States)

    Nagao, Akiko

    2017-01-01

    Since the Communities of Practice (CoP) concept has been adopted in various learning environments, visualizing its development in English as a foreign language (EFL) classrooms is complicated. Thus, based on the CoP concept, this study investigates the changes in learners' degrees of participation and CoP elements in EFL writing/reading classes…

  3. 30 CFR 285.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Science.gov (United States)

    2010-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 285.902 Section 285.902 Mineral Resources... SAP, COP, or GAP? (a) Except as otherwise authorized by MMS under § 285.909, within 2 years following... under your SAP, COP, or GAP, you must submit a decommissioning application and receive approval from the...

  4. Design of Helium Brayton Cycle for Small Modular High Temperature Gas cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoon Han; Lee, Je Kyoung; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)

    2012-05-15

    The small modular reactor (SMR) is gaining a lot of interest recently. Not only it can achieve better passive safety, but also it can be potentially utilized for the diverse applications to respond to the increasing global energy demands. As a part of the SMR development effort, SM-HTGR (Small Modular-High Temperature Gas-cooled Reactor), a 20MWth reactor is under development by the Korean Atomic Energy Research Institute (KAERI) for the complete passive safety, desalination and industrial process heat application. The Helium Brayton cycle is considered as a promising candidate for the SM-HTGR power conversion. The advantages of Helium Brayton cycles are: 1) helium is an inert gas that does not interact with structure material. 2) helium is chemically stable that helium Brayton cycle can be utilized under the high temperature circumstance. 3) higher thermal efficiency is achievable under higher outlet temperature range. Moreover, high temperature advantage can be utilized (reinforced) by diverting part of the heat for industrial process heat. This paper will discuss the progress on the helium power conversion cycle operating condition optimization by studying the sensitivity of the maximum pressure, pressure ratio and the component cooling on the total cycle efficiency

  5. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  6. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt

    2016-01-01

    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  7. Highly purified HMG versus recombinant FSH for ovarian stimulation in IVF cycles

    DEFF Research Database (Denmark)

    Platteau, P.; Nyboe, Andersen A.; Loft, A.

    2008-01-01

    The objective of this study was to compare the live birth rates resulting from ovarian stimulation with highly purified human menopausal gonadotrophin (HP-HMG), which combines FSH and human chorionic gonadotrophin-driven LH activities, or recombinant FSH (rFSH) alone in women undergoing IVF cycles....... An integrated analysis was performed of the raw data from two randomized controlled trials that were highly comparable in terms of eligibility criteria and post-randomization treatment regimens with either HP-HMG or rFSH for ovarian stimulation in IVF, following a long down-regulation protocol. All randomized...... subjects who received at least one dose of gonadotrophin in an IVF cycle (HP-HMG, n = 491; rFSH, n = 495) were included in the analysis. Subjects who underwent intracytoplasmic sperm injection cycles were excluded. The superiority of one gonadotrophin preparation over the other was tested using...

  8. New load cycling strategy for enhanced durability of high temperature proton exchange membrane fuel cell

    DEFF Research Database (Denmark)

    Thomas, Sobi; Jeppesen, Christian; Steenberg, Thomas

    2017-01-01

    The objective of this paper is to develop a new operational strategy to increase the lifetime of a high temperature proton exchange membrane (HT-PEMFCs) fuel cell system by using load cycling patterns to reduce the phosphoric acid loss from the fuel cell. Four single cells were operated under...... different current cycling profile, while one cell was operated at constant current density for comparison. Polarization curves and electrochemical impedance spectroscopy measurements were recorded during the course of the tests and analysed. Two different current densities, 0.2 Acm-2 for the lower end and 0.......8 Acm-2 for the higher end, were selected for the load cycling operation. The relaxation time, which is the period of time spent at low current density operation, is varied to understand how the performance over prolonged period behaves. The duration of the high current density operation is selected...

  9. Temperature and the sulfur cycle control monomethylmercury cycling in high Arctic coastal marine sediments from Allen Bay, Nunavut, Canada.

    Science.gov (United States)

    St Pierre, K A; Chétélat, J; Yumvihoze, E; Poulain, A J

    2014-01-01

    Monomethylmercury (MMHg) is a neurotoxin of concern in the Canadian Arctic due to its tendency to bioaccumulate and the importance of fish and wildlife in the Inuit diet. In lakes and wetlands, microbial sediment communities are integral to the cycling of MMHg; however, the role of Arctic marine sediments is poorly understood. With projected warming, the effect of temperature on the production and degradation of MMHg in Arctic environments also remains unclear. We examined MMHg dynamics across a temperature gradient (4, 12, 24 °C) in marine sediments collected in Allen Bay, Nunavut. Slurries were spiked with stable mercury isotopes and amended with specific microbial stimulants and inhibitors, and subsampled over 12 days. Maximal methylation and demethylation potentials were low, ranging from below detection to 1.13 pmol g(-1) h(-1) and 0.02 pmol g(-1) h(-1), respectively, suggesting that sediments are likely not an important source of MMHg to overlying water. Our results suggest that warming may result in an increase in Hg methylation - controlled by temperature-dependent sulfate reduction, without a compensatory increase in demethylation. This study highlights the need for further research into the role of high Arctic marine sediments and climate on the Arctic marine MMHg budget.

  10. Analysis of Refrigeration Cycle Performance with an Ejector

    Directory of Open Access Journals (Sweden)

    Wani J. R.

    2016-01-01

    Full Text Available A conventional refrigeration cycle uses expansion device between the condenser and the evaporator which has losses during the expansion process. A refrigeration cycle with ejector is a promising modification to improve the performance of conventional refrigeration cycle. The ejector is used to recover some of the available work so that the compressor suction pressure increases. To investigate the enhancement a model with R134a refrigerant was developed. To solve the set of equations and simulate the cycle performance a subroutine was written on engineering equation solver (EES environment. At specific conditions, the refrigerant properties are obtained from EES. At the design conditions the ejector refrigeration cycle achieved 5.141 COP compared to 4.609 COP of the conventional refrigeration cycle. This means that ejector refrigeration cycle offers better COP with 10.35% improvement compared to conventional refrigeration cycle. Parametric analysis of ejector refrigeration cycle indicated that COP was influenced significantly by evaporator and condenser temperatures, entrainment ratio and diffuser efficiency.

  11. Technologies for High-Energy and Long Cycle Life Lithium-Sulfur Pouch-Cell Batteries

    Science.gov (United States)

    Bruckner, Jan; Thieme, Soren; Bauer, Ingolf; Thummler, Philipp; Althues, Holger; Kaskel, Stefan

    2014-08-01

    The current lithium-ion battery technology is limited to about 250 Wh kg-1. In contrast the lithium-sulfur battery is expected to achieve more than 400 Wh kg-1 on cell level.[1,2] To date the biggest drawback of lithium- sulfur is its limited cycle stability of less than 200 cycles. Further, high energy densities can only be achieved if no excess of lithium and electrolyte is used and the areal loading of sulfur is high.[3]Here we demonstrate how the cycle stability can be extended to 1000 cycles using alternative silicon-carbon and all-carbon anodes instead of metallic lithium.[4] We also present a dry-processing technology for the sulfur cathode preparation. Besides no drying step and no toxic solvents, our process enables also twice the areal capacity (4-5 mAh cm-2) of slurry based technologies.[5] In addition we give results on the cycle stability and energy density of our lithium-sulfur pouch- cells (2.5+ Ah).

  12. High-temperature nuclear reactor power plant cycle for hydrogen and electricity production – numerical analysis

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2016-01-01

    Full Text Available High temperature gas-cooled nuclear reactor (called HTR or HTGR for both electricity generation and hydrogen production is analysed. The HTR reactor because of the relatively high temperature of coolant could be combined with a steam or gas turbine, as well as with the system for heat delivery for high-temperature hydrogen production. However, the current development of HTR’s allows us to consider achievable working temperature up to 750°C. Due to this fact, industrial-scale hydrogen production using copper-chlorine (Cu-Cl thermochemical cycle is considered and compared with high-temperature electrolysis. Presented calculations show and confirm the potential of HTR’s as a future solution for hydrogen production without CO2 emission. Furthermore, integration of a hightemperature nuclear reactor with a combined cycle for electricity and hydrogen production may reach very high efficiency and could possibly lead to a significant decrease of hydrogen production costs.

  13. The SafeCOP ECSEL Project: Safe Cooperating Cyber-Physical Systems Using Wireless Communication

    DEFF Research Database (Denmark)

    Pop, Paul; Scholle, Detlef; Hansson, Hans

    2016-01-01

    communication, multiple stakeholders, dynamic system definitions (openness), and unpredictable operating environments. SafeCOP will provide an approach to the safety assurance of CO-CPS, enabling thus their certification and development. The project will define a runtime manager architecture for runtime......This paper presents an overview of the ECSEL project entitled "Safe Cooperating Cyber-Physical Systems using Wireless Communication" (SafeCOP), which runs during the period 2016 -- 2019. SafeCOP targets safety-related Cooperating Cyber-Physical Systems (CO-CPS) characterised by use of wireless...

  14. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    Science.gov (United States)

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Expectancy of ergogenicity from sodium bicarbonate ingestion increases high-intensity cycling capacity

    National Research Council Canada - National Science Library

    Higgins, Matthew F; Shabir, Akbar

    2016-01-01

    ... ) influenced subsequent high-intensity cycling capacity. Eight recreationally active males (age, 21 ± 1 years; body mass, 75 ± 8 kg; height, 178 ± 4 cm; W PEAK = 205 ± 22 W) performed a graded incremental test to assess peak power output...

  16. Power cycle assessment of nuclear high temperature gas-cooled reactors

    OpenAIRE

    Herranz, L.E.; Linares, J.I.; Moratilla, B.Y.

    2009-01-01

    Power cycle assessment of nuclear high temperature gas-cooled reactors correspondance: Corresponding author. Tel.: +34 91 346 62 36; fax: +34 91 346 62 33. (Herranz, L.E.) (Herranz, L.E.) Unit of Nuclear Safety Research (CIEMAT) Avda. Complutense--> , 22 - 28040 Madrid - Spain--> - (Herranz, L.E.) Unit of Nuclear Safety Research (CIEMAT) Avda. Complutense--> , 22 - 28040 Madrid - Spain--...

  17. Prognostic Significance of Combination of Preoperative Platelet Count and Neutrophil-Lymphocyte Ratio (COP-NLR in Patients with Non-Small Cell Lung Cancer: Based on a Large Cohort Study.

    Directory of Open Access Journals (Sweden)

    Hua Zhang

    Full Text Available The aim of this study was to investigate the prognostic significance of the combination of the preoperative platelet count and neutrophil-lymphocyte ratio (COP-NLR for predicting postoperative survival of patients undergoing complete resection for non-small cell lung cancer (NSCLC.The preoperative COP-NLR was calculated on the basis of data obtained.Patients with both an increased platelet count (>30.0 × 104 mm(-3 and an elevated NLR (>2.3 were assigned a score of 2, and patients with one or neither were assigned as a score of 1 or 0, respectively.A total of 1238 NSCLC patients were enrolled in this analysis. Multivariate analysis using the 15 clinicolaboratory variables selected by univariate analyses demonstrated that the preoperative COP-NLR was an independent prognostic factor for DFS (HR: 1.834, 95%CI: 1.536 to 2.200, P<0.001 and OS (HR: 1.810, 95%CI: 1.587 to 2.056, P<0.001. In sub-analyses by tumor stage (I, II, IIIA, a significant association was found between DFS and OS and level of COP-NLR in each subgroup (P<0.001, P=0.002, P<0.001 for DFS, respectively; P<0.001, P=0.001, P<0.001 for OS. When the subgroup of patients with high-risk COP-NLR (score of 2 was analyzed, no benefit of adjuvant chemotherapy could be found (P=0.237 for DFS and P=0.165 for OS.The preoperative COP-NLR is able to predict the prognosis of patients with NSCLC and divide these patients into three independent groups before surgery. Our results also demonstrate that high-risk patients based on the COP-NLR do not benefit from adjuvant chemotherapy. Independent validation of our findings is warranted.

  18. Structural and biochemical characterization of the Cop9 signalosome CSN5/CSN6 heterodimer.

    Directory of Open Access Journals (Sweden)

    Melissa Birol

    Full Text Available The Cop9 signalosome complex (CSN regulates the functional cycle of the major E3 ubiquitin ligase family, the cullin RING E3 ubiquitin ligases (CRLs. Activated CRLs are covalently modified by the ubiquitin-like protein Nedd8 (neural precursor cell expressed developmentally down-regulated protein 8. CSN serves an essential role in myriad cellular processes by reversing this modification through the isopeptidase activity of its CSN5 subunit. CSN5 alone is inactive due to an auto-inhibited conformation of its catalytic domain. Here we report the molecular basis of CSN5 catalytic domain activation and unravel a molecular hierarchy in CSN deneddylation activity. The association of CSN5 and CSN6 MPN (for Mpr1/Pad1 N-terminal domains activates its isopeptidase activity. The CSN5/CSN6 module, however, is inefficient in CRL deneddylation, indicating a requirement of further elements in this reaction such as other CSN subunits. A hybrid molecular model of CSN5/CSN6 provides a structural framework to explain these functional observations. Docking this model into a published CSN electron density map and using distance constraints obtained from cross-linking coupled to mass-spectrometry, we find that the C-termini of the CSN subunits could form a helical bundle in the centre of the structure. They likely play a key scaffolding role in the spatial organization of CSN and precise positioning of the dimeric MPN catalytic core.

  19. A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen

    Science.gov (United States)

    Appleby, A. J.; Dhar, H. P.; Kim, Y. J.; Murphy, O. J.

    1989-01-01

    The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system.

  20. SIMULATING HYPE CYCLE CURVES WITH MATHEMATICAL FUNCTIONS : SOME EXAMPLES OF HIGH-TECH TRENDS IN JAPAN

    OpenAIRE

    Hiroshi Sasaki

    2015-01-01

    In this study, a method to simulate Gartner’s hype cycle [1] is proposed. A search of the academic literature on this topic provides no clear guidance on how to draw hype cycle curves with mathematical functions. This article explores a new process for simulating the curve as a combination of bell-shaped curves and S-shaped curves, and applies this process to some high-tech innovations in Japan. Trends in technologies such as customer relationship management (CRM), supply chain management (SC...

  1. Influence of time of day on reactions to cycling at a fixed high intensity.

    OpenAIRE

    Reilly, T; Baxter, C.

    1983-01-01

    The circadian cycle in all-out competitive performance may be due to changes in motivational drive to tolerate strenuous exercise rather than to rhythms in maximal physiological functions. This experiment explored the hypothesis that a fixed relative loading of high intensity aerobic effort could be sustained for longer in the evening compared with the morning. Eight females cycled to exhaustion at 95% VO2 max at 06.30 h. and at 22.00 h. after a 5 min, moderate load of 40% VO2 max. Oral tempe...

  2. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  3. Performance investigation of a waste heat-driven 3-bed 2-evaporator adsorption cycle for cooling and desalination

    KAUST Repository

    Thu, Kyaw

    2016-06-13

    Environment-friendly adsorption (AD) cycles have gained much attention in cooling industry and its applicability has been extended to desalination recently. AD cycles are operational by low-temperature heat sources such as exhaust gas from processes or renewable energy with temperatures ranging from 55 °C to 85 °C. The cycle is capable of producing two useful effects, namely cooling power and high-grade potable water, simultaneously. This article discusses a low temperature, waste heat-powered adsorption (AD) cycle that produces cooling power at two temperature-levels for both dehumidification and sensible cooling while providing high-grade potable water. The cycle exploits faster kinetics for desorption process with one adsorber bed under regeneration mode while full utilization of the uptake capacity by adsorbent material is achieved employing two-stage adsorption via low-pressure and high-pressure evaporators. Type A++ silica gel with surface area of 863.6 m2/g and pore volume of 0.446 cm3/g is employed as adsorbent material. A comprehensive numerical model for such AD cycle is developed and the performance results are presented using assorted hot water and cooling water inlet temperatures for various cycle time arrangements. The cycle is analyzed in terms of key performance indicators i.e.; the specific cooling power (SCP), the coefficient of performance (COP) for both evaporators and the overall system, the specific daily water production (SDWP) and the performance ratio (PR). Further insights into the cycle performance are scrutinized using a Dühring diagram to depict the thermodynamic states of the processes as well as the vapor uptake behavior of adsorbent. In the proposed cycle, the adsorbent materials undergo near saturation conditions due to the pressurization effect from the high pressure evaporator while faster kinetics for desorption process is exploited, subsequently providing higher system COP, notably up to 0.82 at longer cycle time while the

  4. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  5. Non-local high cycle fatigue criterion for metallic materials with corrosion defects

    Directory of Open Access Journals (Sweden)

    May Mohamed El

    2014-06-01

    Full Text Available Designing structures against corrosion fatigue has become a key problem for many engineering structures evolving in complex environmental conditions of humidity (aeronautics, civil engineering …. In this study, we investigate the effect of corrosion defects on the high cycle fatigue (HCF strength of a martensitic stainless steel with high specific mechanical strength, used in aeronautic applications. A volumetric approach based on Crossland equivalent stress is proposed. This can be applied to any real defects.

  6. High-Level Synthesis of DSP Applications Using Adaptive Negative Cycle Detection

    Directory of Open Access Journals (Sweden)

    Nitin Chandrachoodan

    2002-09-01

    Full Text Available The problem of detecting negative weight cycles in a graph is examined in the context of the dynamic graph structures that arise in the process of high level synthesis (HLS. The concept of adaptive negative cycle detection is introduced, in which a graph changes over time and negative cycle detection needs to be done periodically, but not necessarily after every individual change. We present an algorithm for this problem, based on a novel extension of the well-known Bellman-Ford algorithm that allows us to adapt existing cycle information to the modified graph, and show by experiments that our algorithm significantly outperforms previous incremental approaches for dynamic graphs. In terms of applications, the adaptive technique leads to a very fast implementation of Lawlers algorithm for the computation of the maximum cycle mean (MCM of a graph, especially for a certain form of sparse graph. Such sparseness often occurs in practical circuits and systems, as demonstrated, for example, by the ISCAS 89/93 benchmarks. The application of the adaptive technique to design-space exploration (synthesis is also demonstrated by developing automated search techniques for scheduling iterative data-flow graphs.

  7. High Content Image Based Analysis Identifies Cell Cycle Inhibitors as Regulators of Ebola Virus Infection

    Directory of Open Access Journals (Sweden)

    Sina Bavari

    2012-09-01

    Full Text Available Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.

  8. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)

    2002-11-01

    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  9. 3A Comparison between R-THP-COP and R-CHOP Regimens for the Treatment of Diffuse Large B-cell Lymphoma in Old Patients: A Single-institution Analysis.

    Science.gov (United States)

    Araie, Hiroaki; Sakamaki, Ippei; Matsuda, Yasufumi; Tai, Katsunori; Ikegaya, Satoshi; Itoh, Kazuhiro; Kishi, Shinji; Oiwa, Kana; Okura, Miyuki; Tasaki, Toshiki; Hosono, Naoko; Ueda, Takanori; Yamauchi, Takahiro

    2017-09-15

    Objective We retrospectively compared the clinical efficacy and toxicity of rituximab (R)-THP-COP (pirarubicin, cyclophosphamide, vincristine, and prednisolone) with that of R-CHOP (rituximab, adriamicin, cyclophosphamide, vincristine, and prednisolone) in previously untreated old patients with diffuse large B-cell lymphoma (DLBCL). Patients and Methods Patients admitted to our institution between 2004 and 2013 were examined. The patients received either R (375 mg/m2, day 1)-THP-COP (pirarubicin 50 mg/m2 day 1, cyclophosphamide 750 mg/m2 day 1, vincristine 1.4 mg/m2 day 1, and prednisolone 100 mg day 1-5) or R-CHOP (adriamicin 50 mg/m2 day 1, cyclophosphamide 750 mg/m2 day 1, vincristine 1.4 mg/m2 day 1, and prednisolone 100 mg day 1-5). The doses of chemotherapeutic agents were adjusted depending on the patient's age and associated complications. The treatment was performed for 6 to 8 cycles. Results Among 74 patients with DLBCL (median 76, range 65-90 years; male 39, female 35), 29 received R-THP-COP, while 45 received R-CHOP. The overall response rates were 94.6% (complete response 86.4%, partial response 8.1%). The 2-year overall and progression-free survival rates were 77.6% and 68.5% for the R-THP-COP regimen and 79.2% and 78.9% for R-CHOP, respectively. No significant differences were found between these two regimens regarding the clinical efficacies. The most frequent adverse event was neutropenia (72.4% for the R-THP-COP regimen, 88.9% for the R-CHOP regimen). The cardiac function as evaluated by ejection fraction values was not impaired in either regimen. Conclusion R-THP-COP was effective and safe as an alternative to R-CHOP.

  10. The role of COP1 in repression of photoperiodic flowering [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Dongqing Xu

    2016-02-01

    Full Text Available Plants use the circadian clock as a timekeeping mechanism to regulate photoperiodic flowering in response to the seasonal changes. CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1, initially identified as a central repressor of seedling photomorphogenesis, was recently shown to be involved in the regulation of light input to the circadian clock, modulating the circadian rhythm and flowering. COP1 encodes a RING-finger E3 ubiquitin ligase and works in concert with SUPPRESSOR of phyA-105 (SPA proteins to repress photoperiodic flowering by regulating proteasome-mediated degradation of CONSTANS (CO, a central regulator of photoperiodic flowering. In addition, COP1 and EARLY FLOWERING 3 (ELF3 indirectly modulate CO expression via the degradation of GIGANTEA (GI. Here, we summarize the current understanding of the molecular mechanisms underlying COP1’s role in controlling of photoperiodic flowering.

  11. 30 CFR 285.636 - What notices must I provide MMS following approval of my COP?

    Science.gov (United States)

    2010-07-01

    ... SHELF Plans and Information Requirements Activities Under An Approved Cop § 285.636 What notices must I... placement of facilities on the lease area under a Fabrication and Installation Report. (b) No later than 30...

  12. High Rate of Return to Cycling After Hip Arthroscopy for Femoroacetabular Impingement Syndrome.

    Science.gov (United States)

    Frank, Rachel M; Ukwuani, Gift; Clapp, Ian; Chahla, Jorge; Nho, Shane J

    2017-12-01

    Femoroacetabular impingement syndrome (FAIS) is most commonly diagnosed in athletes who sustain repetitive flexion and rotational loading to their hip. The purpose of this study was to evaluate a patient's ability to return to cycling after hip arthroscopy for FAIS. There is a high rate of return to cycling after hip arthroscopy. Retrospective analysis. Level 4. Consecutive patients who had identified themselves as cyclists and had undergone hip arthroscopy for the treatment of FAIS were reviewed. Pre- and postoperative physical examinations, imaging, and patient-reported outcomes (PROs) scores, including the modified Harris Hip Score (mHHS), Hip Outcome Score Activities of Daily Living (HOS-ADL) and Sports-Specific (HOS-SS) subscales, and visual analog scale for pain, as well as a cycling-specific questionnaire, were assessed for all patients. A total of 58 patients (62% female; mean age, 30.0 ± 7.1 years; mean body mass index, 23.2 ± 2.7 kg/m 2 ) were included. Prior to surgery, patients averaged 30 ± 42 miles per week (range, 2-300 miles). Fifty-five patients (95%) were forced to discontinue cycling at an average of 7.5 ± 6.2 months prior to surgery due to hip pain. Fifty-six patients (97%) returned to cycling at an average of 4.5 ± 2.5 months after surgery, with 33 (59%) returning to a better level of cycling and 23 (41%) to the same cycling level. Postoperatively, there was no difference in the average number of miles patients completed per week compared with preoperative values ( P = 0.08). At a mean follow-up of 31.14 ± 0.71 months (range, 24-48 months), all patients experienced significant improvements in mHHS, HOS-ADL, and HOS-SS PROs (all P cycling 97% of the time after hip arthroscopy for FAIS, with most of these patients returning at an average of 4.5 months after surgery. This information is helpful in counseling patients on their expectations with regard to returning to cycling after hip arthroscopy for FAIS. Cyclists return to sport 97% of the

  13. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing......This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel....... The processes investigated are: burr grinding, TIG dressing and ultrasonic impact treatment. The focus of this investigation is on the so-called medium cycle area, i.e. 10 000-500 000 cycles and very high stress ranges. In this area of fatigue design, the use of very high strength steel becomes necessary, since...

  14. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full

  15. Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2

    NARCIS (Netherlands)

    Ettema, T.J.G.; Brinkman, A.B.; Lamers, P.P.; Kornet, N.G.; Vos, W.M. de; van der Oost, J.

    2006-01-01

    Using a comparative genomics approach, a copper resistance gene cluster has been identified in multiple archaeal genomes. The cop cluster is predicted to encode a metallochaperone (CopM), a P-type copper-exporting ATPase (CopA) and a novel, archaea-specific transcriptional regulator (CopT) which

  16. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13C-lactate/13C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  17. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR technology with the supercritical (SC steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR reveal that the development of SCWR power plants still needs further research and development. The MHTGR SC plant coupling the existing technologies of current MHTGR module design with operation experiences of SC FPP will achieve high cycle efficiency in addition to its inherent safety. The standard once-reheat SC steam turbine cycle and the once-reheat steam cycle with life-steam have been studied and corresponding parameters were computed. Efficiencies of thermodynamic processes of MHTGR SC plants were analyzed, while comparisons were made between an MHTGR SC plant and a designed advanced passive PWR - AP1000. It was shown that the net plant efficiency of an MHTGR SC plant can reach 45% or above, 30% higher than that of AP1000 (35% net efficiency. Furthermore, an MHTGR SC plant has higher environmental competitiveness without emission of greenhouse gases and other pollutants.

  18. Three-Dimensional Sensor Common Operating Picture (3-D Sensor COP)

    Science.gov (United States)

    2017-01-01

    Picture (3-D Sensor COP). To test the 3-D Sensor COP, we took advantage of a sensor network that had been deployed for the Enterprise Challenge 2016 at... app .............9 Approved for public release; distribution is unlimited. 1 1. Introduction Fusion3D is a software application for...took advantage of a sensor network that had been deployed for the Enterprise Challenge 2016 (EC16) at Fort Huachuca in Sierra Vista, Arizona. The

  19. CyberCOP3D : Visualisation Collaborative et Immersive pour la cybersécurité

    OpenAIRE

    Kabil, Alexandre

    2017-01-01

    Rencontres doctorales; International audience; Data Visualization in cybersecurity uses Visual Analytics tech- niques in order to enhance user’s Situation Awareness through Common Operational Pictures. We propose in this paper a CyberCOP3D -an Immersive Collaborative COP- that will facilitate Cyber Situation Awareness. We will develop a model based on a collaborative activity analysis and a user-centered-design strategy, in order to de ne user’s personas, according through needs and usages.; ...

  20. Facile chemical synthesis and equilibrium unfolding properties of CopG

    OpenAIRE

    Wales, Thomas E.; Richardson, Jane S.; Fitzgerald, Michael C.

    2004-01-01

    The 45-amino acid polypeptide chain of the homodimeric transcriptional repressor, CopG, was chemically synthesized by stepwise solid phase peptide synthesis (SPPS) using a protocol based on Boc-chemistry. The product obtained from the synthesis was readily purified by reversed-phase HPLC to give a good overall yield (21% by weight). Moreover, the synthetic CopG constructs prepared in this work folded into three-dimensional structures similar to the wild-type protein prepared using conventiona...

  1. Vulnerability assessment of karst aquifer feeding Pertuso Spring (Central Italy): comparison between different applications of COP method

    Science.gov (United States)

    Sappa, Giuseppe; Ferranti, Flavia; Luciani, Giulia

    2016-04-01

    Vulnerability assessment of karst aquifers and vulnerability mapping are important tools for improved sustainable management and protection of karst groundwater resources. In this paper, to estimate the vulnerability degree of the karst aquifer feeding Pertuso Spring in Central Italy, two different implementations of COP method, supported by an open source GIS, were tested and a comparison of the vulnerability maps is proposed. The study area is a highly karstified carbonate aquifer located in the Upper Valley of the Aniene River, in the south-east part of Latium Region. The hydrogeological basin covers about 50 km2 and the karst aquifer provides a water supply of about 120.000 m3d-1. The well-developed karst features in this hydrogeological system is responsible of the fast infiltration of rainfall in the saturated zone and, consequently, of the high discharge rate of Pertuso Spring (up to 3 m3/s). Thus, in the aim of emphasizing the presence of these karst features, due to which, there are limited attenuation processes in the unsaturated zone, in this work COP method has been applied by the implementation of a new discretization methodology of the hydrogeological basin using polygonal layer. Therefore, the hydrogeological catchment basin has been divided into 52 polygonal layer, representative of outcropping lithology and karst features, to which COP method has been applied. The intrinsic vulnerability maps, produced using a GIS approach, has been examinated and compared with the maps obtained using traditional vulnerability assessment method, which provides the discretization of the study area generating a grid map to which associate the Vulnerability Indexes. The results of this study highlight vulnerability from low to very high. The maximum vulnerability degree is due to karstic features responsible of high recharge and high hydraulic conductivity. The new proposed discretization of the hydrogeological basin using polygonal layer raise four vulnerability

  2. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF regime up to 109 cycles

    Directory of Open Access Journals (Sweden)

    Eric eWycisk

    2015-12-01

    Full Text Available Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles.For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  3. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  4. A vision for an ultra-high resolution integrated water cycle observation and prediction system

    Science.gov (United States)

    Houser, P. R.

    2013-05-01

    Society's welfare, progress, and sustainable economic growth—and life itself—depend on the abundance and vigorous cycling and replenishing of water throughout the global environment. The water cycle operates on a continuum of time and space scales and exchanges large amounts of energy as water undergoes phase changes and is moved from one part of the Earth system to another. We must move toward an integrated observation and prediction paradigm that addresses broad local-to-global science and application issues by realizing synergies associated with multiple, coordinated observations and prediction systems. A central challenge of a future water and energy cycle observation strategy is to progress from single variable water-cycle instruments to multivariable integrated instruments in electromagnetic-band families. The microwave range in the electromagnetic spectrum is ideally suited for sensing the state and abundance of water because of water's dielectric properties. Eventually, a dedicated high-resolution water-cycle microwave-based satellite mission may be possible based on large-aperture antenna technology that can harvest the synergy that would be afforded by simultaneous multichannel active and passive microwave measurements. A partial demonstration of these ideas can even be realized with existing microwave satellite observations to support advanced multivariate retrieval methods that can exploit the totality of the microwave spectral information. The simultaneous multichannel active and passive microwave retrieval would allow improved-accuracy retrievals that are not possible with isolated measurements. Furthermore, the simultaneous monitoring of several of the land, atmospheric, oceanic, and cryospheric states brings synergies that will substantially enhance understanding of the global water and energy cycle as a system. The multichannel approach also affords advantages to some constituent retrievals—for instance, simultaneous retrieval of vegetation

  5. High Performance Cascading Adsorption Refrigeration Cycle with Internal Heat Recovery Driven by a Low Grade Heat Source Temperature

    OpenAIRE

    Yuki Ueda; Atsushi Akisawa; Aep Saepul Uyun; Takahiko Miyazaki

    2009-01-01

    This paper presents the performance of an advanced cascading adsorption cycle that utilizes a driven heat source temperature between 90–130 ºC. The cycle consists of four beds that contain silica gel as an adsorber fill. Two of the beds work in a single stage cycle that is driven by an external heat source, while the other two beds work in a mass recovery cycle that is driven by waste heat of sensible and adsorption heat of the high temperature cycle. The performances, in terms of the coeffic...

  6. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings.

    Science.gov (United States)

    Zheng, Yuyu; Cui, Xuefei; Su, Liang; Fang, Shuang; Chu, Jinfang; Gong, Qingqiu; Yang, Jianping; Zhu, Ziqiang

    2017-06-01

    A germinating seedling undergoes skotomorphogenesis to emerge from the soil and reach for light. During this phase, the cotyledons are closed, and the hypocotyl elongates. Upon exposure to light, the seedling rapidly switches to photomorphogenesis by opening its cotyledons and suppressing hypocotyl elongation. The E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is critical for maintaining skotomorphogenesis. Here, we report that jasmonate (JA) suppresses hypocotyl elongation and stimulates cotyledon opening in etiolated seedlings, partially phenocopying cop1 mutants in the dark. We also find that JA stabilizes several COP1-targeted transcription factors in a COP1-dependent manner. RNA-seq analysis further defines a JA-light co-modulated and cop1-dependent transcriptome, which is enriched for auxin-responsive genes and genes participating in cell wall modification. JA suppresses COP1 activity through at least two distinct mechanisms: decreasing COP1 protein accumulation in the nucleus; and reducing the physical interaction between COP1 and its activator, SUPPRESSOR OF PHYTOCHROME A-105 1 (SPA1). Our work reveals that JA suppresses COP1 activity to stabilize COP1 targets, thereby inhibiting hypocotyl elongation and stimulating cotyledon unfolding in etiolated Arabidopsis seedlings. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  7. Concept Design for a High Temperature Helium Brayton Cycle with Interstage Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Vernon, Milton E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pickard, Paul S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-12-01

    The primary metric for the viability of these next generation nuclear power plants will be the cost of generated electricity. One important component in achieving these objectives is the development of power conversion technologies that maximize the electrical power output of these advanced reactors for a given thermal power. More efficient power conversion systems can directly reduce the cost of nuclear generated electricity and therefore advanced power conversion cycle research is an important area of investigation for the Generation IV Program. Brayton cycles using inert or other gas working fluids, have the potential to take advantage of the higher outlet temperature range of Generation IV systems and allow substantial increases in nuclear power conversion efficiency, and potentially reductions in power conversion system capital costs compared to the steam Rankine cycle used in current light water reactors. For the Very High Temperature Reactor (VHTR), Helium Brayton cycles which can operate in the 900 to 950 C range have been the focus of power conversion research. Previous Generation IV studies examined several options for He Brayton cycles that could increase efficiency with acceptable capital cost implications. At these high outlet temperatures, Interstage Heating and Cooling (IHC) was shown to provide significant efficiency improvement (a few to 12%) but required increased system complexity and therefore had potential for increased costs. These scoping studies identified the potential for increased efficiency, but a more detailed analysis of the turbomachinery and heat exchanger sizes and costs was needed to determine whether this approach could be cost effective. The purpose of this study is to examine the turbomachinery and heat exchanger implications of interstage heating and cooling configurations. In general, this analysis illustrates that these engineering considerations introduce new constraints to the design of IHC systems that may require

  8. Long term testing of start-stop cycles on high temperature PEM fuel cell stack

    Science.gov (United States)

    Kannan, Arvind; Kabza, Alexander; Scholta, Joachim

    2015-03-01

    A PEM fuel cell with an operating temperature above 100 °C is desired for increasing the kinetics of reactions, reduced sensitivity to impurities of the fuel, as well as for the reduction of the requirements on thermal and water management systems. High Temperature Polymer Electrolyte Membrane Fuel Cells (HT-PEMFC) can effectively be combined with CHP systems to offer a simple system design and higher overall system efficiencies. For HT-PEMFC systems, the development of elaborated start/stop strategies is essential in mitigation of fuel cell degradation during these events. A 5 cell co-flow stack is assembled with BASF P1100W membrane electrode assembly (MEA) with an active area of 163.5 cm2. Continuous operation and more than 1500 start stop cycles have been performed in order to study the degradation effects of both continuous operation and of repeated start stops using a protective start-stop algorithm, which is designed to avoid the formation of aggressive cell potentials. The repeated use of this procedure led to a degradation of 26 μV/cycle at a current density of 0.25 A cm-2 and 11 μV/cycle at a current density of 0.03 A cm-2. At open circuit voltage (OCV), a higher degradation rate of 133 μV/cycle was observed.

  9. Coupling of Modular High-Temperature Gas-Cooled Reactor with Supercritical Rankine Cycle

    OpenAIRE

    Shutang Zhu; Ying Tang; Kun Xiao; Zuoyi Zhang

    2008-01-01

    This paper presents investigations on the possible combination of modular high-temperature gas-cooled reactor (MHTGR) technology with the supercritical (SC) steam turbine technology and the prospective deployments of the MHTGR SC power plant. Energy conversion efficiency of steam turbine cycle can be improved by increasing the main steam pressure and temperature. Investigations on SC water reactor (SCWR) reveal that the development of SCWR power plants still needs further research and develop...

  10. High Cycle Fatigue Damage Model for Delamination Crack Growth in CF/Epoxy Composite Laminates

    OpenAIRE

    Gornet, Laurent; Ijaz, Hassan

    2011-01-01

    International audience; This article presents the development of a fatigue damage model which helps to carry out simulation of the evolution of delamination in the laminated composite structures under cyclic loadings. A classical interface damage evolution law, which is commonly used to predict the static debonding process, is modified further to incorporate fatigue delamination effects due to high cycle loadings. An improved formulation is also presented to incorporate the 'R' ratio effects....

  11. Evaluation of catalyst for closed cycle operation of high energy pulsed CO2 lasers

    Science.gov (United States)

    Rogowski, R. S.; Miller, I. M.; Wood, G.; Schryer, D. R.; Hess, R. V.; Upchurch, B. T.

    1983-01-01

    Several catalyst materials have been tested for efficiency of converting CO and O2 to CO2 for use in a high energy CO2 laser. The composition of the gas mixtures was monitored by mass spectrometry and gas chromatography. A copper/copper oxide catalyst and a platinum/tin oxide catalyst were used for closed cycle operation of a CO2 laser (0.7 joules/pulse), operating at 10 pulses/sec.

  12. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  13. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.

    2011-11-22

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  14. Potentiation of sprint cycling performance: the effects of a high-inertia ergometer warm-up.

    Science.gov (United States)

    Munro, Lynne A; Stannard, Stephen R; Fink, Philip W; Foskett, Andrew

    2017-07-01

    Participant and protocol factors affect post-activation potentiation response. Performance enhancement is more consistent in highly-trained participants following multiple sets of a biomechanically similar conditioning activity. Providing optimal conditions, 6 international-level sprint cyclists executed multiple sets of short maximal conditioning contractions on a high-inertia ergometer before metered sprint performance. Three trial conditions were completed on separate days after a standardised warm-up: dynamic (DYN: 4 × 4 crank-cycles), isometric (ISO: 4 × 5-sec maximal voluntary contraction (MVC)), and control (CON: rest). Performance was measured from standing start to maximum velocity on an inertial-load ergometer at baseline (Pre), 4 (Post4), 8 (Post8) and 16 (Post16) min post-conditioning. Performance and biomechanical measures were assessed across 4 sprint segments, with magnitude-based inferences used to assess the likelihood that any affect was beneficial. Performance time only improved in DYN Post4, a 3.9% reduction during the first crank cycle (92% likely). On the ascending limb of the power-cadence relationship, peak torque and average power increased by 6.2% (94% likely) and 4.0% (87% likely), respectively. In ISOPost16, optimal cadence increased (82% likely) and average power improved over the descending limb (76% likely). DYN and ISO potentiated extremities of the torque-cadence relationship at distinct recovery times post-conditioning. This study suggests merit in including a high-inertia warm-up for sprint cycling.

  15. High-content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries.

    Science.gov (United States)

    Strezoska, Žaklina; Perkett, Matthew R; Chou, Eldon T; Maksimova, Elena; Anderson, Emily M; McClelland, Shawn; Kelley, Melissa L; Vermeulen, Annaleen; Smith, Anja van Brabant

    2017-06-10

    The CRISPR-Cas9 system has been utilized for large-scale, loss-of-function screens mainly using lentiviral pooled formats and cell-survival phenotypic assays. Screening in an arrayed format expands the types of phenotypic readouts that can be used to now include high-content, morphology-based assays, and with the recent availability of synthetic crRNA libraries, new studies are emerging. Here, we use a cell cycle reporter cell line to perform an arrayed, synthetic crRNA:tracrRNA screen targeting 169 genes (>600 crRNAs) and used high content analysis (HCA) to identify genes that regulate the cell cycle. Seven parameters were used to classify cells into cell cycle categories and multiple parameters were combined using a new analysis technique to identify hits. Comprehensive hit follow-up experiments included target gene expression analysis, confirmation of DNA insertions/deletions, and validation with orthogonal reagents. Our results show that most hits had three or more independent crRNAs per gene that demonstrated a phenotype with consistent individual parameters, indicating that our screen produced high-confidence hits with low off-target effects and allowed us to identify hits with more subtle phenotypes. The results of our screen demonstrate the power of using arrayed, synthetic crRNAs for functional phenotypic screening using multiparameter HCA assays. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Cure Cycle Effect on High-Temperature Polymer Composite Structures Molded by VARTM

    Directory of Open Access Journals (Sweden)

    Ahmed Khattab

    2013-01-01

    Full Text Available This paper presents an analytical and experimental investigation of cure cycle effect on carbon-fiber reinforced high-temperature polymer composite structures molded by vacuum assisted resin transfer molding (VARTM. The molded composite structure consists of AS4-8 harness carbon-fiber fabrics and a high-temperature polymer (Cycom 5250-4-RTM. Thermal and resin cure analysis is performed to model the cure cycle of the VARTM process. The temperature and cure variations with time are determined by solving the three-dimensional transient energy and species equations within the composite part. Several case studies were investigated by the developed analytical model. The same cases were also experimentally investigated to determine the ultimate tensile strength for each case. This study helps in developing a science based technology for the VARTM process for the understanding of the process behavior and the effect of the cure cycle on the properties of the molded high-temperature polymer composites.

  17. Unraveling the martian water cycle with high-resolution global climate simulations

    Science.gov (United States)

    Pottier, Alizée; Forget, François; Montmessin, Franck; Navarro, Thomas; Spiga, Aymeric; Millour, Ehouarn; Szantai, André; Madeleine, Jean-Baptiste

    2017-07-01

    Global climate modeling of the Mars water cycle is usually performed at relatively coarse resolution (200 - 300km), which may not be sufficient to properly represent the impact of waves, fronts, topography effects on the detailed structure of clouds and surface ice deposits. Here, we present new numerical simulations of the annual water cycle performed at a resolution of 1° × 1° (∼ 60 km in latitude). The model includes the radiative effects of clouds, whose influence on the thermal structure and atmospheric dynamics is significant, thus we also examine simulations with inactive clouds to distinguish the direct impact of resolution on circulation and winds from the indirect impact of resolution via water ice clouds. To first order, we find that the high resolution does not dramatically change the behavior of the system, and that simulations performed at ∼ 200 km resolution capture well the behavior of the simulated water cycle and Mars climate. Nevertheless, a detailed comparison between high and low resolution simulations, with reference to observations, reveal several significant changes that impact our understanding of the water cycle active today on Mars. The key northern cap edge dynamics are affected by an increase in baroclinic wave strength, with a complication of northern summer dynamics. South polar frost deposition is modified, with a westward longitudinal shift, since southern dynamics are also influenced. Baroclinic wave mode transitions are observed. New transient phenomena appear, like spiral and streak clouds, already documented in the observations. Atmospheric circulation cells in the polar region exhibit a large variability and are fine structured, with slope winds. Most modeled phenomena affected by high resolution give a picture of a more turbulent planet, inducing further variability. This is challenging for long-period climate studies.

  18. The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle.

    Science.gov (United States)

    Hanes, Steven D

    2014-01-01

    Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Optimization of advenced liquid natural gas-fuelled combined cycle machinery systems for a high-speed ferry

    DEFF Research Database (Denmark)

    Tveitaskog, Kari Anne; Haglind, Fredrik

    2012-01-01

    This paper is aimed at designing and optimizing combined cycles for marine applications. For this purpose, an in-house numerical simulation tool called DNA (Dynamic Network Analysis) and a genetic algorithm-based optimization routine are used. The top cycle is modeled as the aero-derivative gas....... Furthermore, practical and operational aspects of using these three machinery systems for a high-speed ferry are discussed. Two scenarios are evaluated. The first scenario evaluates the combined cycles with a given power requirement, optimizing the combined cycle while operating the gas turbine at part load....... The second scenario evaluates the combined cycle with the gas turbine operated at full load. For the first scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 46.3 % and 48.2 % for the single pressure and dual pressure steam cycles, respectively. The gas ORC...

  20. A high-power and fast charging Li-ion battery with outstanding cycle-life.

    Science.gov (United States)

    Agostini, M; Brutti, S; Navarra, M A; Panero, S; Reale, P; Matic, A; Scrosati, B

    2017-04-24

    Electrochemical energy storage devices based on Li-ion cells currently power almost all electronic devices and power tools. The development of new Li-ion cell configurations by incorporating innovative functional components (electrode materials and electrolyte formulations) will allow to bring this technology beyond mobile electronics and to boost performance largely beyond the state-of-the-art. Here we demonstrate a new full Li-ion cell constituted by a high-potential cathode material, i.e. LiNi0.5Mn1.5O4, a safe nanostructured anode material, i.e. TiO2, and a composite electrolyte made by a mixture of an ionic liquid suitable for high potential applications, i.e. Pyr1,4PF6, a lithium salt, i.e. LiPF6, and standard organic carbonates. The final cell configuration is able to reversibly cycle lithium for thousands of cycles at 1000 mAg-1 and a capacity retention of 65% at cycle 2000.

  1. Surface Characteristics and High Cycle Fatigue Performance of Shot Peened Magnesium Alloy ZK60

    Directory of Open Access Journals (Sweden)

    Jie Dong

    2011-01-01

    Full Text Available The current work investigated the effect of shot peening (SP on high cycle fatigue (HCF behavior of the hot-extruded ZK60 magnesium alloy. SP can significantly improve the fatigue life of the ZK60 alloy. After SP at the optimum Almen intensities, the fatigue strength at 107 cycles in the as-extruded (referred to as ZK60 and the T5 aging-treated (referred to as ZK60-T5 alloys increased from 140 and 150 MPa to 180 and 195 MPa, respectively. SP led to a subsurface fatigue crack nucleation in both ZK60 and ZK60-T5 alloys. The mechanism by which the compressive residual stress induced by shot peening results in the improvement of fatigue performance for ZK60 and ZK60-T5 alloys was discussed.

  2. A high-resolution time-depth view of dimethylsulphide cycling in the surface sea

    Science.gov (United States)

    Royer, S.-J.; Galí, M.; Mahajan, A. S.; Ross, O. N.; Pérez, G. L.; Saltzman, E. S.; Simó, R.

    2016-08-01

    Emission of the trace gas dimethylsulphide (DMS) from the ocean influences the chemical and optical properties of the atmosphere, and the olfactory landscape for foraging marine birds, turtles and mammals. DMS concentration has been seen to vary across seasons and latitudes with plankton taxonomy and activity, and following the seascape of ocean’s physics. However, whether and how does it vary at the time scales of meteorology and day-night cycles is largely unknown. Here we used high-resolution measurements over time and depth within coherent water patches in the open sea to show that DMS concentration responded rapidly but resiliently to mesoscale meteorological perturbation. Further, it varied over diel cycles in conjunction with rhythmic photobiological indicators in phytoplankton. Combining data and modelling, we show that sunlight switches and tunes the balance between net biological production and abiotic losses. This is an outstanding example of how biological diel rhythms affect biogeochemical processes.

  3. Performance characteristic of a Stirling refrigeration cycle in micro/nano scale

    Science.gov (United States)

    Nie, Wenjie; He, Jizhou; Du, Jianqiang

    2009-02-01

    The aim of the paper is to present the performance characteristics of a Stirling refrigeration cycle in micro/nano scale, in which the working substance of cycle is an ideal Maxwellian gas. Due to the quantum boundary effect on the gas particles confined in the finite domain, the cycle no longer possesses the condition of perfect regeneration. The inherent regenerative losses, the refrigeration heat and coefficient of performance (COP) of the cycle are derived. It is found that, for the micro/nano scaled Stirling refrigeration cycle devices, the refrigeration heat and COP of cycle all depend on the surface area of the system (boundary of cycle) besides the temperature of the heat reservoirs, the volume of system and other parameters, while for the macro scaled refrigeration cycle devices, the refrigeration heat and COP of cycle are independent of the surface area of the system. Variations of the refrigeration heat ratio rR and the COP ratio rε with the temperature ratio τ and volume ratio rV for the different surface area ratio rA are examined, which reveals the influence of the boundary of cycle on the performance of a micro/nano scaled Stirling refrigeration cycle. The results are useful for designing of a micro/nano scaled Stirling cycle device and may conduce to confirming experimentally the quantum boundary effect in the micro/nano scaled devices.

  4. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling.

    Science.gov (United States)

    Hoecker, Ute

    2017-06-01

    Light is a critical signal to integrate plant growth and development with the environment. Downstream of photoreceptors, the E3 ubiquitin ligase COP1/SPA is a key repressor of photomorphogenesis which targets many positive regulators of light signaling, mainly transcription factors, for degradation in darkness. In light-grown plants COP1/SPA activity is repressed, allowing light responses to occur. This review provides an overview on our current knowledge on COP1/SPA repressor function, focusing in particular on the roles of the respective protein domains and the mechanisms of light-induced inactivation of COP1/SPA. Moreover, we summarize how COP1 activity is regulated by other interacting proteins, such as a SUMO E3 ligase and Phytochrome-Interacting Factors (PIFs), as well as by hormones. At last, several novel functions of COP1 that were recently revealed are included. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Co in Protostars (cops): Herschel-Spire Spectroscopy of Embedded Protostars

    Science.gov (United States)

    Yang, Yao-Lun; Green, Joel D.; Evans, Neal J., II

    2017-06-01

    Protostars form from cold dense cores dominated by molecular gas and dust, showing excess continuum and rich spectra beyond 100 μm that are best observed by Herschel Space Observatory. Molecular emission reveals the properties of the surrounding gas and the underlying physical processes that govern the early stage of star formation. The CO in Protostars (COPS) Herschel program observes 27 embedded protostars with SPIRE, including several dominant molecular species, such as CO, ^{13}CO, H_{2}O, and HCO^{+}. The COPS dataset covers a unique wavelength range, allowing us to investigate the early stage of star formation across a large sample of sources. We detect CO rotational lines from J_{up} = 4 to 36, ^{13}CO lines from J_{up} = 5 to 10, and six H_{2}O lines, along with [N II] and [C I]. We have created an uniformly calibrated dataset with the data from Dust, Ice, and Gas In Time (DIGIT) Herschel Key Program and archival photometry, in which we characterize each source by its spectral energy distribution and evolutionary class. With an automatic line fitting pipeline, we detect 323 lines from 25 sources from which we successfully extracted 1D spectra, and 3068 lines from 27 sources observed in all spatial pixels of SPIRE. We analyze the correlations of the line strengths of every line pair from all lines detected with two methods from ASURV package, Spearman's ρ, which test whether the line strengths relation can be described by a monotonic function, and the Kendall z-value, which quantifies the similarity of the ordering of the line strengths of two lines. The distribution of correlations shows a systematic tendency coinciding with the wavelength coverages of the instruments, suggesting that the correlations should only be compared within the lines observed by each module. Within each module, the correlations of two CO line pairs show high correlations, which decrease as the difference of the upper J-level of the two CO lines increases. The smooth gradients of

  6. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  7. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  8. Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings

    Directory of Open Access Journals (Sweden)

    Kimberly Bawden

    2015-04-01

    Full Text Available We undertake Life Cycle Assessment (LCA of the cumulative energy demand (CED and global warming potential (GWP for a portfolio of 10 multi-family residences in the U.S. We argue that prior LCA studies of buildings use an inconsistent boundary for processes to be included in the supply chain: The operational phase includes all energy use in a building, but supply chains for the production of appliances, equipment and consumables associated with activities done in the building are neglected. We correct this by starting the analysis with an explicit definition of a functional unit, providing climate controlled space, and including processes associated with this functional unit. Using a hybrid LCA approach, the CED for low, mid and high-rise multi-family residences is found to increase from 30, 34, to 39 GJ/m2, respectively. This increase is due to the need for energy-intensive structural materials such as concrete and steel in taller buildings. With our approach, the share of materials and construction of total life cycle energy doubles to 26%, compared with a 13% share that would be obtained with inconsistent system boundaries used in prior studies. We thus argue that explicit definition of functional unit leads to an increase in the contribution of supply chains to building energy life cycles.

  9. Mutational analysis of βCOP (Sec26p identifies an appendage domain critical for function

    Directory of Open Access Journals (Sweden)

    Cerione Richard A

    2008-01-01

    Full Text Available Abstract Background The appendage domain of the γCOP subunit of the COPI vesicle coat bears a striking structural resemblance to adaptin-family appendages despite limited primary sequence homology. Both the γCOP appendage domain and an equivalent region on βCOP contain the FxxxW motif; the conservation of this motif suggested the existence of a functional appendage domain in βCOP. Results Sequence comparisons in combination with structural prediction tools show that the fold of the COOH-terminus of Sec26p is strongly predicted to closely mimic that of adaptin-family appendages. Deletion of the appendage domain of Sec26p results in inviability in yeast, over-expression of the deletion construct is dominant negative and mutagenesis of this region identifies residues critical for function. The ArfGAP Glo3p was identified via suppression screening as a potential downstream modulator of Sec26p in a manner that is independent of the GAP activity of Glo3p but requires the presence of the COOH-terminal ISS motifs. Conclusion Together, these results indicate an essential function for the predicted βCOP appendage and suggest that both COPI appendages perform a biologically active regulatory role with a structure related to adaptin-family appendage domains.

  10. Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric "Live High-Train Low"

    DEFF Research Database (Denmark)

    Bejder, Jacob; Andersen, Andreas Breenfeldt; Buchardt, Rie

    2017-01-01

    The aim was to investigate whether 6 weeks of normobaric "Live High-Train Low" (LHTL) using altitude tents affect highly trained athletes incremental peak power, 26-km time-trial cycling performance, 3-min all-out performance, and 30-s repeated sprint ability. In a double-blinded, placebo......-controlled cross-over design, seven highly trained triathletes were exposed to 6 weeks of normobaric hypoxia (LHTL) and normoxia (placebo) for 8 h/day. LHTL exposure consisted of 2 weeks at 2500 m, 2 weeks at 3000 m, and 2 weeks at 3500 m. Power output during an incremental test, ~26-km time trial, 3-min all...... conducted in a double-blinded, placebo-controlled cross-over design do not affect power output during an incremental test, a ~26-km time-trial test, or 3-min all-out exercise in highly trained triathletes. Furthermore, 30 s of repeated sprint ability was unaltered....

  11. Experimental investigation of crack initiation in face-centered cubic materials in the high and very high cycle fatigue regime

    Energy Technology Data Exchange (ETDEWEB)

    Straub, Thomas

    2016-07-01

    Materials in many modern small-scale applications are under complex cyclic stress states and undergo up to 10{sup 9} cycles. Fatigue mechanisms limit their lifetime and lead to failure. Therefore, the Very High Cycle Fatigue (VHCF) regime needs to be studied. This thesis investigates the fatigue mechanisms and crack initiation of nickel, aluminum and copper on a small-scale in the VHCF regime by means of innovative fatigue experimentation. Firstly, the development and implementation of a novel custom-built resonant fatigue setup showed that the resonant frequency of bending micro-samples changes with increasing cycle number due to the accumulating fatigue damage. Then, additional insights on early damage formation have been explored. Mechanisms, prior to crack initiation, such as slip band formation at a state where it appears in only a few grains, have been observed. Cyclic hardening, vacancy formation and oxidation formation may be considered as possible explanations for early fatigue mechanisms. In addition, the new experimental setup can be used to define parameters needed for crack initiation models. Finally, these crack initiation processes have been experimentally examined for pure aluminum and pure copper.

  12. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  13. Few-cycle high energy mid-infrared pulse from Ho:YLF laser

    Energy Technology Data Exchange (ETDEWEB)

    Murari, Krishna

    2017-04-15

    Over the past decade, development of high-energy ultrafast laser sources has led to important breakthroughs in attoscience and strong-field physics study in atoms and molecules. Coherent pulse synthesis of few-cycle high-energy laser pulse is a promising tool to generate isolated attosecond pulses via high harmonics generation (HHG). An effective way to extend the HHG cut-off energy to higher values is making use of long mid-infrared (MIR) driver wavelength, as the ponderomotive potential scales quadratically with wavelength. If properly scaled in energy to multi-mJ level and few-cycle duration, such pulses provide a direct path to intriguing attoscience experiments in gases and solids, which even permit the realization of bright coherent table-top HHG sources in the water-window and keV X-ray region. However, the generation of high-intensity long-wavelength MIR pulses has always remained challenging, in particular starting from high-energy picosecond 2-μm laser driver, that is suitable for further energy scaling of the MIR pulses to multi-mJ energies by utilizing optical parametric amplifiers (OPAs). In this thesis, a front-end source for such MIR OPA is presented. In particular, a novel and robust strong-field few-cycle 2-μm laser driver directly from picosecond Ho:YLF laser and utilizing Kagome fiber based compression is presented. We achieved: a 70-fold compression of 140-μJ, 3.3-ps pulses from Ho:YLF amplifier to 48 fs with 11 μJ energy. The work presented in this thesis demonstrates a straightforward path towards generation of few-cycle MIR pulses and we believe that in the future the ultrafast community will benefit from this enabling technology. The results are summarized in mainly four parts: The first part is focused on the development of a 2-μm, high-energy laser source as the front-end. Comparison of available technology in general and promising gain media at MIR wavelength are discussed. Starting from the basics of an OPA, the design criteria

  14. Absence of Respiratory Muscle Fatigue in High-Intensity Continuous or Interval Cycling Exercise.

    Science.gov (United States)

    Kurti, Stephanie P; Smith, Joshua R; Emerson, Sam R; Castinado, Kenneth M; Harms, Craig A

    2015-11-01

    Respiratory muscle fatigue (RMF) occurs during prolonged exercise (∼15-20 minutes) at >85% V[Combining Dot Above]O2max. However, RMF has been reported to occur in ∼3-6 minutes in various modes of exercise at a high intensity. It is not known if continuous cycling exercise vs. repeated bouts of high-intensity interval training (HIT) at >85% V[Combining Dot Above]O2max will lead to RMF. We hypothesized that RMF would occur after a constant load test and would be present before end exercise in an HIT protocol. Eight moderately active healthy men (21.7 ± 1.7 years; 181.3 ± 5.2 cm; 81.3 ± 2.3 kg) completed a V[Combining Dot Above]O2max test on a cycle ergometer. Subjects then completed 2 bouts of HIT (7 × 1 minute, 2-minute recovery between intervals) and 3 bouts of continuous exercise (CE) tests at 90% of peak power (determined from an incremental exercise test to exhaustion). Maximal inspiratory pressure (PIMAX) and expiratory pressure (PEMAX) were measured pre- and post-exercise for both HIT and CE and after each interval during HIT. Decreases in postexercise PIMAX and PEMAX compared with baseline were used to determine RMF. There were no differences (p > 0.05) in PIMAX or PEMAX pre- to post-exercise for HIT (PIMAX pre: 134 ± 51, post: 135 ± 50 cmH2O; PEMAX pre: 143 ± 41, post: 148 ± 46 cmH2O) or CE (PIMAX pre: 135 ± 54, post: 133 ± 52 cmH2O; PEMAX pre: 146 ± 46, post: 148 ± 46 cmH2O) indicating RMF was not present following CE and HIT. These data suggest that repeated high-intensity cycling exercise at 90% peak power in a CE or HIT protocol does not lead to RMF.

  15. High cycle torsional fatigue properties of 17-4PH stainless steel

    Directory of Open Access Journals (Sweden)

    K. Yanase

    2016-07-01

    Full Text Available Sensitivity to small defects under torsional fatigue loading condition is examined in the high cycle fatigue regime. Fatigue crack initiation and small crack growth behaviors were observed during fatigue testing and fractographic investigations were performed. The results are compared to the data obtained in the uniaxial fatigue tests, which allows the effect of biaxial stresses on the surface of material to be discussed. Finally, an approach for predicting the fatigue limit of 17-4PH stainless steel under torsional and tension-compression fatigue loadings is presented.

  16. Simulation of Delamination Under High Cycle Fatigue in Composite Materials Using Cohesive Models

    Science.gov (United States)

    Camanho, Pedro P.; Turon, Albert; Costa, Josep; Davila, Carlos G.

    2006-01-01

    A new thermodynamically consistent damage model is proposed for the simulation of high-cycle fatigue crack growth. The basis for the formulation is an interfacial degradation law that links Fracture Mechanics and Damage Mechanics to relate the evolution of the damage variable, d, with the crack growth rate da/dN. The damage state is a function of the loading conditions (R and (Delta)G) as well as the experimentally-determined crack growth rates for the material. The formulation ensures that the experimental results can be reproduced by the analysis without the need of additional adjustment parameters.

  17. Generating power at high efficiency combined cycle technology for sustainable energy production

    CERN Document Server

    Jeffs, E

    2008-01-01

    Combined cycle technology is used to generate power at one of the highest levels of efficiency of conventional power plants. It does this through primary generation from a gas turbine coupled with secondary generation from a steam turbine powered by primary exhaust heat. Generating power at high efficiency thoroughly charts the development and implementation of this technology in power plants and looks to the future of the technology, noting the advantages of the most important technical features - including gas turbines, steam generator, combined heat and power and integrated gasification com

  18. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    Science.gov (United States)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  19. The COP9 signalosome interacts with SCF UFO and participates in Arabidopsis flower development.

    Science.gov (United States)

    Wang, Xiping; Feng, Suhua; Nakayama, Naomi; Crosby, W L; Irish, Vivian; Deng, Xing Wang; Wei, Ning

    2003-05-01

    The COP9 signalosome (CSN) is involved in multiple developmental processes. It interacts with SCF ubiquitin ligases and deconjugates Nedd8/Rub1 from cullins (deneddylation). CSN is highly expressed in Arabidopsis floral tissues. To investigate the role of CSN in flower development, we examined the expression pattern of CSN in developing flowers. We report here that two csn1 partially deficient Arabidopsis strains exhibit aberrant development of floral organs, decline of APETALA3 (AP3) expression, and low fertility in addition to defects in shoot and inflorescence meristems. We show that UNUSUAL FLORAL ORGANS (UFO) forms a SCF(UFO) complex, which is associated with CSN in vivo. Genetic interaction analysis indicates that CSN is necessary for the gain-of-function activity of the F-box protein UFO in AP3 activation and in floral organ transformation. Compared with the previously reported csn5 antisense and csn1 null mutants, partial deficiency of CSN1 causes a reduction in the level of CUL1 in the mutant flowers without an obvious defect in CUL1 deneddylation. We conclude that CSN is an essential regulator of Arabidopsis flower development and suggest that CSN regulates Arabidopsis flower development in part by modulating SCF(UFO)-mediated AP3 activation.

  20. Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function.

    Directory of Open Access Journals (Sweden)

    Zhipeng Zhou

    Full Text Available The COP9 signalosome (CSN is a highly conserved multifunctional complex that has two major biochemical roles: cleaving NEDD8 from cullin proteins and maintaining the stability of CRL components. We used mutation analysis to confirm that the JAMM domain of the CSN-5 subunit is responsible for NEDD8 cleavage from cullin proteins in Neurospora crassa. Point mutations of key residues in the metal-binding motif (EX(nHXHX(10D of the CSN-5 JAMM domain disrupted CSN deneddylation activity without interfering with assembly of the CSN complex or interactions between CSN and cullin proteins. Surprisingly, CSN-5 with a mutated JAMM domain partially rescued the phenotypic defects observed in a csn-5 mutant. We found that, even without its deneddylation activity, the CSN can partially maintain the stability of the SCF(FWD-1 complex and partially restore the degradation of the circadian clock protein FREQUENCY (FRQ in vivo. Furthermore, we showed that CSN containing mutant CSN-5 efficiently prevents degradation of the substrate receptors of CRLs. Finally, we found that deletion of the CAND1 ortholog in N. crassa had little effect on the conidiation circadian rhythm. Our results suggest that CSN integrity plays major roles in hyphal growth, conidial development, and circadian function in N. crassa.

  1. GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum

    Directory of Open Access Journals (Sweden)

    P. Prikryl

    2010-06-01

    Full Text Available High-latitude irregularities can impair the operation of GPS-based devices by causing fluctuations of GPS signal amplitude and phase, also known as scintillation. Severe scintillation events lead to losses of phase lock, which result in cycle slips. We have used data from the Canadian High Arctic Ionospheric Network (CHAIN to measure amplitude and phase scintillation from L1 GPS signals and total electron content (TEC from L1 and L2 GPS signals to study the relative role that various high-latitude irregularity generation mechanisms have in producing scintillation. In the first year of operation during the current solar minimum the amplitude scintillation has remained very low but events of strong phase scintillation have been observed. We have found, as expected, that auroral arc and substorm intensifications as well as cusp region dynamics are strong sources of phase scintillation and potential cycle slips. In addition, we have found clear seasonal and universal time dependencies of TEC and phase scintillation over the polar cap region. A comparison with radio instruments from the Canadian GeoSpace Monitoring (CGSM network strongly suggests that the polar cap scintillation and TEC variations are associated with polar cap patches which we therefore infer to be main contributors to scintillation-causing irregularities in the polar cap.

  2. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  3. Development of a highly efficient burnable poison matrix material for cycle lifetime extension

    Energy Technology Data Exchange (ETDEWEB)

    Tulenko, J.S. [Florida Univ., 202 Nuclear Science Center, Gainesville, FL (United States); Baney, R.H.; Pressley, L. [Florida Univ., Gainesville, FL (United States)

    2001-07-01

    The University of Florida (UF) is carrying out basic research on a new class of thermally stable boron containing materials that from early indications appear to have special properties that will greatly enhance the performance of Burnable Poison Rod Assemblies (BPRA(tm)s) and address one of the major disadvantages of the use of boron shims. The new class of polymer materials, poly-acetylenic carbonyl-siloxane, termed ''Carborane'', were developed by Dr. T. Keller of the Naval Research Laboratory (NRL). Dr. T. Keller is cooperating in this research effort. Other classes of boron containing polymer materials are also under review. Displacement of water by the boron shims incurs an ''end of cycle reactivity penalty'' since at the end of cycle the moderator coefficient is strongly negative. ''Carborane'' has the property of being able to contain a tailored amount of boron while maintaining an extremely high hydrogen content, and at the same time being extremely stable to high temperatures and to neutron irradiation. Tests run by the NRL have shown that ''Carborane'' is stable to about 1000 C. The high hydrogen and carbon content contained in the ''Carborane'' Polymer offsets the large fuel cycle reactivity penalty which occurs with current generation BPRA(tm)s, as a result of the reactivity loss resulting from the BPRA(tm)s displacement of moderator water in the guide tubes of Pressurized Water Reactor (PWR) assemblies. Current generation BPRA utilize B{sub 4}C in an Al{sub 2}O{sub 3} matrix. In an attempt to minimize the reactivity penalty from water displacement, Westinghouse has developed a costly annular BPRA, called the Wet Annular Burnable Absorber (WABA) assembly. This burnable poison rod design reduces the moderator displacement by 22% by the use of a central annular water hole. The ''Carborane'' matrix proposed by the University of Florida

  4. Flow field analysis of high-speed helium turboexpander for cryogenic refrigeration and liquefaction cycles

    Science.gov (United States)

    Sam, Ashish Alex; Ghosh, Parthasarathi

    2017-03-01

    Turboexpander constitutes one of the vital components of Claude cycle based helium refrigerators and liquefiers that are gaining increasing technological importance. These turboexpanders which are of radial inflow in configuration are generally high-speed micro turbines, due to the low molecular weight and density of helium. Any improvement in efficiency of these machines requires a detailed understanding of the flow field. Computational Fluid Dynamics analysis (CFD) has emerged as a necessary tool for the determination of the flow fields in cryogenic turboexpanders, which is often not possible through experiments. In the present work three-dimensional transient flow analysis of a cryogenic turboexpander for helium refrigeration and liquefaction cycles were performed using Ansys CFX®, to understand the flow field of a high-speed helium turboexpander, which in turn will help in taking appropriate decisions regarding modifications of established design methodology for improved efficiency of these machines. The turboexpander is designed based on Balje's nsds diagram and the inverse design blade profile generation formalism prescribed by Hasselgruber and Balje. The analyses include the study of several losses, their origins, the increase in entropy due to these losses, quantification of losses and the effects of various geometrical parameters on these losses. Through the flow field analysis it was observed that in the nozzle, flow separation at the nozzle blade suction side and trailing edge vortices resulted in loss generation, which calls for better nozzle blade profile. The turbine wheel flow field analysis revealed that the significant geometrical parameters of the turbine wheel blade like blade inlet angle, blade profile, tip clearance height and trailing edge thickness need to be optimised for improved performance of the turboexpander. The detailed flow field analysis in this paper can be used to improve the mean line design methodology for turboexpanders used

  5. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Ade, Brian J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Sunny, Eva E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Betzler, Benjamin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Pinkston, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  6. Water-cooled hard-soldered kilowatt laser diode arrays operating at high duty cycle

    Science.gov (United States)

    Klumel, Genady; Karni, Yoram; Oppenhaim, Jacob; Berk, Yuri; Shamay, Moshe; Tessler, Renana; Cohen, Shalom; Risemberg, Shlomo

    2010-04-01

    High brightness laser diode arrays are increasingly found in defense applications either as efficient optical pumps or as direct energy sources. In many instances, duty cycles of 10- 20 % are required, together with precise optical collimation. System requirements are not always compatible with the use of microchannel based cooling, notwithstanding their remarkable efficiency. Simpler but effective solutions, which will not involve high fluid pressure drops as well as deionized water, are needed. The designer is faced with a number of challenges: effective heat removal, minimization of the built- in and operational stresses as well as precise and accurate fast axis collimation. In this article, we report on a novel laser diode array which includes an integral tap water cooling system. Robustness is achieved by all around hard solder bonding of passivated 940nm laser bars. Far field mapping of the beam, after accurate fast axis collimation will be presented. It will be shown that the design of water cooling channels , proper selection of package materials, careful design of fatigue sensitive parts and active collimation technique allow for long life time and reliability, while not compromising the laser diode array efficiency, optical power density ,brightness and compactness. Main performance characteristics are 150W/bar peak optical power, 10% duty cycle and more than 50% wall plug efficiency with less than 1° fast axis divergence. Lifetime of 0.5 Gshots with less than 10% power degradation has been proved. Additionally, the devices have successfully survived harsh environmental conditions such as thermal cycling of the coolant temperature and mechanical shocks.

  7. Four COPs and counting: achievements, underachievements and looming challenges in the early life of the WHO FCTC Conference of the Parties.

    Science.gov (United States)

    Liberman, Jonathan

    2012-03-01

    As the governing body of the WHO Framework Convention on Tobacco Control (FCTC), the Conference of the Parties (COP) is mandated to 'keep under regular review the implementation of the Convention and take the decisions necessary to promote its effective implementation'. The COP has a range of critical roles to play spanning the setting of normative standards, the building and dissemination of knowledge, the monitoring of implementation, the facilitation of international cooperation and the mobilisation of resources to support implementation. The COP has met four times to date. It has made significant achievements in the setting of normative standards, with the adoption of a number of high-standard implementation guidelines and a declaration recording the commitment of Parties to prioritise the implementation of health measures in the context of concerns about the effect of international trade and investment obligations. Less progress has been made in other areas, including a general lack of support for the conduct of needs assessments by developing countries-though needs assessments have been designated as a prerequisite to the mobilisation of funding support-and a reluctance to consider the adoption of a robust system of implementation review. Much remains to be done to build the FCTC's implementation support structure. Other looming challenges include maintaining the voice and influence of developing countries against priorities being overly dictated by wealthier Parties and in the face of recent cutbacks to travel support pushed by the European Union, and managing the likely resource demands and other risks of the proposed illicit trade protocol.

  8. Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus.

    Science.gov (United States)

    Liu, Yule; Schiff, Michael; Serino, Giovanna; Deng, Xing-Wang; Dinesh-Kumar, S P

    2002-07-01

    The tobacco N gene confers resistance to Tobacco mosaic virus (TMV) and encodes a toll-interleukin-1 receptor/nucleotide binding/Leu-rich repeat class protein. Recent evidence indicates that the Nicotiana benthamiana Rar1 gene (NbRar1), which encodes a protein with a zinc finger motif called CHORD (Cys- and His-rich domain), is required for the function of N. To investigate the role of NbRar1 in plant defense, we identified its interaction partners. We show that the NbRar1 protein interacts with NbSGT1, a highly conserved component of the SCF (Skp1/Cullin/F-box protein)-type E3 ubiquitin ligase complex involved in protein degradation. In addition, we show that NbSGT1 interacts with NbSKP1. Suppression of NbSGT1 and NbSKP1 shows that these genes play an important role in the N-mediated resistance response to TMV. Both NbRar1 and NbSGT1 associate with the COP9 signalosome, another multiprotein complex involved in protein degradation via the ubiquitin-proteasome pathway. Silencing of the NbCOP9 signalosome also compromises N-mediated resistance to TMV. Our results reveal new roles for SCF and the COP9 signalosome in plant defense signaling.

  9. Effects of leg massage on recovery from high intensity cycling exercise

    Science.gov (United States)

    Robertson, A; Watt, J; Galloway, S

    2004-01-01

    Background: The effect of massage on recovery from high intensity exercise is debatable. Many studies on massage suffer from methodological flaws such as poor standardisation of previous exercise, lack of dietary control, and inappropriate massage duration. Objective: To examine the effects of leg massage compared with passive recovery on lactate clearance, muscular power output, and fatigue characteristics after repeated high intensity cycling exercise, with the conditions before the intervention controlled and standardised. Methods: Nine male games players participated. They attended the laboratory on two occasions one week apart and at the same time of day. Dietary intake and activity were replicated for the two preceding days on each occasion. After baseline measurement of heart rate and blood lactate concentration, subjects performed a standardised warm up on the cycle ergometer. This was followed by six standardised 30 second high intensity exercise bouts, interspersed with 30 seconds of active recovery. After five minutes of active recovery and either 20 minutes of leg massage or supine passive rest, subjects performed a second standardised warm up and a 30 second Wingate test. Capillary blood samples were drawn at intervals, and heart rate, peak power, mean power, and fatigue index were recorded. Results: There were no significant differences in mean power during the initial high intensity exercise bouts (p = 0.92). No main effect of massage was observed on blood lactate concentration between trials (p = 0.82) or heart rate (p = 0.81). There was no difference in the maximum power (p = 0.75) or mean power (p = 0.66) in the subsequent Wingate test, but a significantly lower fatigue index was observed in the massage trial (p = 0.04; mean (SD) fatigue index 30.2 (4.1)% v 34.2 (3.3)%). Conclusions: No measurable physiological effects of leg massage compared with passive recovery were observed on recovery from high intensity exercise, but the subsequent effect on

  10. High cycle fatigue of AA6082 and AA6063 aluminum extrusions

    Science.gov (United States)

    Nanninga, Nicholas E.

    The high cycle fatigue behavior of hollow extruded AA6082 and AA6063 aluminum extrusions has been studied. Hollow extruded aluminum profiles can be processed into intricate shapes, and may be suitable replacements for fatigue critical automotive applications requiring reduced weight. There are several features inherent in hollow aluminum extrusions, such as seam welds, charge welds, microstructural variations and die lines. The effects of such extrusion variables on high cycle fatigue properties were studied by taking specimens from an actual car bumper extrusion. It appears that extrusion die lines create large anisotropy differences in fatigue properties, while welds themselves have little effect on fatigue lives. Removal of die lines greatly increased fatigue properties of AA6082 specimens taken transverse to the extrusion direction. Without die lines, anisotropy in fatigue properties between AA6082 specimens taken longitudinal and transverse to the extrusion direction, was significantly reduced, and properties associated with the orientation of the microstructure appears to be isotropic. A fibrous microstructure for AA6082 specimens showed great improvements in fatigue behavior. The effects of elevated temperatures and exposure of specimens to NaCl solutions was also studied. Exposure to the salt solution greatly reduced the fatigue lives of specimens, while elevated temperatures showed more moderate reductions in fatigue lives.

  11. Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue

    Science.gov (United States)

    Poncelet, M.; Doudard, C.; Calloch, S.; Weber, B.; Hild, F.

    2010-04-01

    Different approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as "self-heating tests." This paper focuses on two models whose parameters are tuned by resorting to self-heating tests and then used to predict high cycle fatigue properties. The first model is based upon a yield surface approach to account for stress multiaxiality at a microscopic scale, whereas the second one relies on a probabilistic modelling of microplasticity at the scale of slip-planes. Both model identifications are cost effective, relying mainly on quickly obtained temperature data in self-heating tests. They both describe the influence of the stress heterogeneity, the volume effect and the hydrostatic stress on fatigue limits. The thermal effects and mean fatigue limit predictions are in good agreement with experimental results for in and out-of phase tension-torsion loadings. In the case of fatigue under non-proportional loading paths, the mean fatigue limit prediction error of the critical shear stress approach is three times less than with the yield surface approach.

  12. Deriving respiration from high resolution 12-channel-ECG during cycling exercise

    Directory of Open Access Journals (Sweden)

    Schumann Andy

    2016-09-01

    Full Text Available Monitoring of cardiac and respiratory activity, is essential in several clinical interventions like bicycle ergometries. The respiration signal can be derived from the ECG if it is not recorded itself (ECG derived respiration, EDR. In this study, we tried to reconstruct breathing rates (BR from stress test high resolution 12-channel-ECGs in nine healthy subjects using higher order central moments. A mean absolute error per subjects of 2.9/min and relatively high correlation (rp = 0.85 and concordance coefficient (rc = 0.79 indicated a quite accurate reproduction of respiratory activity. The analysis of the different test stages revealed an increase of BR errors while subjects were effortful cycling compared to rest. During incremental cycling exercise test the mean absolute error per subjects was 3.4/min. Compared to the results reported in other studies at rest in supine position, this seems adequately accurate. In conclusion, our results indicate that EDR using higher order central moments is suited for monitoring BR during physical activity.

  13. Shutdown margin for high conversion BWRs operating in Th-{sup 233}U fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Shaposhnik, Y., E-mail: shaposhy@bgu.ac.il [NRCN – Nuclear Research Center Negev, POB 9001, Beer Sheva 84190 (Israel); Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E. [Department of Nuclear Engineering, Ben-Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Elias, E. [Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Technion City 32000, Haifa (Israel)

    2014-09-15

    Highlights: • BWR core operating in a closed self-sustainable Th-{sup 233}U fuel cycle. • Shutdown Margin in Th-RBWR design. • Fully coupled MC with fuel depletion and thermo-hydraulic feedback modules. • Thermal–hydraulic analysis includes MCPR observation. - Abstract: Several reactivity control system design options are explored in order to satisfy shutdown margin (SDM) requirements in a high conversion BWRs operating in Th-{sup 233}U fuel cycle (Th-RBWR). The studied core has an axially heterogeneous fuel assembly structure with a single fissile zone “sandwiched” between two fertile blanket zones. The utilization of an originally suggested RBWR Y-shape control rod in Th-RBWR is shown to be insufficient for maintaining adequate SDM to balance the high negative reactivity feedbacks, while maintaining fuel breeding potential, core power rating, and minimum Critical Power Ratio (CPR). Implementation of alternative reactivity control materials, reducing axial leakage through non-uniform enrichment distribution, use of burnable poisons, reducing number of pins as well as increasing pin diameter are also shown to be incapable of meeting the SDM requirements. Instead, an alternative assembly design, based on Rod Cluster Control Assembly with absorber rods was investigated. This design matches the reference ABWR core power and has adequate shutdown margin. The new concept was modeled as a single three-dimensional fuel assembly having reflective radial boundaries, using the BGCore system, which consists of the MCNP code coupled with fuel depletion and thermo-hydraulic feedback modules.

  14. Fatigue Strength and Crack Initiation Mechanism of Very-High-Cycle Fatigue for Low Alloy Steels

    Science.gov (United States)

    Hong, Youshi; Zhao, Aiguo; Qian, Guian; Zhou, Chengen

    2012-08-01

    The fatigue strength and crack initiation mechanisms of very-high-cycle fatigue (VHCF) for two low alloy steels were investigated. Rotary bending tests at 52.5 Hz with hour-glass type specimens were carried out to obtain the fatigue propensity of the test steels, for which the failure occurred up to the VHCF regime of 108 cycles with the S-N curves of stepwise tendency. Fractography observations show that the crack initiation of VHCF is at subsurface inclusion with "fish-eye" pattern. The fish-eye is of equiaxed shape and tends to tangent the specimen surface. The size of the fish-eye becomes large with the increasing depth of related inclusion from the surface. The fish-eye crack grows faster outward to the specimen surface than inward. The values of the stress intensity factor ( K I ) at different regions of fracture surface were calculated, indicating that the K I value of fish-eye crack is close to the value of relevant fatigue threshold (Δ K th ). A new parameter was proposed to interpret the competition mechanism of fatigue crack initiation at the specimen surface or at the subsurface. The simulation results indicate that large inclusion size, small grain size, and high strength of material will promote fatigue crack initiation at the specimen subsurface, which are in agreement with experimental observations.

  15. High-power UV-LED degradation: Continuous and cycled working condition influence

    Science.gov (United States)

    Arques-Orobon, F. J.; Nuñez, N.; Vazquez, M.; Segura-Antunez, C.; González-Posadas, V.

    2015-09-01

    High-power (HP) UV-LEDs can replace UV lamps for real-time fluoro-sensing applications by allowing portable and autonomous systems. However, HP UV-LEDs are not a mature technology, and there are still open issues regarding their performance evolution over time. This paper presents a reliability study of 3 W UV-LEDs, with special focus on LED degradation for two working conditions: continuous and cycled (30 s ON and 30 s OFF). Accelerated life tests are developed to evaluate the influence of temperature and electrical working conditions in high-power LEDs degradation, being the predominant failure mechanism the degradation of the package. An analysis that includes dynamic thermal and optical HP UV-LED measurements has been performed. Static thermal and stress simulation analysis with the finite element method (FEM) identifies the causes of package degradation. Accelerated life test results prove that HP UV-LEDs working in cycled condition have a better performance than those working in continuous condition.

  16. Enhancing the Properties of Conductive Polymer Hydrogels by Freeze-Thaw Cycles for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Li, Wanwan; Lu, Han; Zhang, Ning; Ma, Mingming

    2017-06-14

    We report that a postsynthesis physical process (freeze-thaw cycles) can reform the microstructure of conductive polymer hydrogels from clustered nanoparticles to interconnected nanosheets, leading to enhanced mechanical and electrochemical properties. The polyaniline-poly(vinyl alcohol) hydrogel after five freeze-thaw cycles (PPH-5) showed remarkable tensile strength (16.3 MPa), large elongation at break (407%), and high electrochemical capacitance (1053 F·g-1). The flexible supercapacitor based on PPH-5 provided a large capacitance (420 mF·cm-2 and 210 F·g-1) and high energy density (18.7 W·h·kg-1), whose robustness was demonstrated by its 100% capacitance retention after 1000 galvanostatic charge-discharge cycles or after 1000 mechanical folding cycles. The outstanding performance enables PPH-5 based supercapacitor as a promising power device for flexible electronics, which also demonstrates the merit of freeze-thaw cycles for enhancing the performance of functional hydrogels.

  17. High-Fat, High-Sugar Diet Disrupts the Preovulatory Hormone Surge and Induces Cystic Ovaries in Cycling Female Rats.

    Science.gov (United States)

    Volk, Katrina M; Pogrebna, Veronika V; Roberts, Jackson A; Zachry, Jennifer E; Blythe, Sarah N; Toporikova, Natalia

    2017-12-01

    Diet-induced obesity has been associated with various metabolic and reproductive disorders, including polycystic ovary syndrome. However, the mechanisms by which obesity influences the reproductive system are still not fully known. Studies have suggested that impairments in hormone signaling are associated with the development of symptoms such as acyclicity and ovarian cysts. However, these studies have often failed to address how these hormonal changes arise and how they might contribute to the progression of reproductive diseases. In the present study, we used a high-fat, high-sugar (HFHS) diet to induce obesity in a female rodent model to determine the changes in critical reproductive hormones that might contribute to the development of irregular estrous cycling and reproductive cycle termination. The HFHS animals exhibited impaired estradiol, progesterone (P4), and luteinizing hormone (LH) surges before ovulation. The HFHS diet also resulted in altered basal levels of testosterone (T) and LH. Furthermore, alterations in the basal P4/T ratio correlated strongly with ovarian cyst formation in HFHS rats. Thus, this model provides a method to assess the underlying etiology of obesity-related reproductive dysfunction and to examine an acyclic reproductive phenotype as it develops.

  18. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  19. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, D.J. (Allied-Signal Aerospace Company, Garrett Fluid Systems Division, 1300 West Warner Road, Tempe, Arizona 85284-2896 (US))

    1991-01-05

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  20. A complete life cycle assessment of high density polyethylene plastic bottle

    Science.gov (United States)

    Treenate, P.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.

  1. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  2. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Science.gov (United States)

    Spodniak, Miroslav; Klimko, Marek; Hocko, Marián; Žitek, Pavel

    This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  3. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations......-load electricity production shifts to a cleaner source than coal. Finally, the present study indicates that, in terms of emission reductions, the priority for Ireland is to phase out coal-based power plants. While investing in new storage capacity reduces system operating costs at high wind penetrations and limits...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  4. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    Science.gov (United States)

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified

  5. 50 CFR 23.87 - How does the United States develop documents and negotiating positions for a CoP?

    Science.gov (United States)

    2010-10-01

    ... documents and negotiating positions for a CoP? 23.87 Section 23.87 Wildlife and Fisheries UNITED STATES FISH... the United States develop documents and negotiating positions for a CoP? (a) In developing documents... with appropriate Federal, State, and tribal agencies; foreign governmental agencies; scientists...

  6. 30 CFR 285.659 - What requirements must I include in my SAP, COP, or GAP regarding air quality?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What requirements must I include in my SAP, COP, or GAP regarding air quality? 285.659 Section 285.659 Mineral Resources MINERALS MANAGEMENT SERVICE... must I include in my SAP, COP, or GAP regarding air quality? (a) You must comply with the Clean Air Act...

  7. Multiscale Hyperporous Silicon Flake Anodes for High Initial Coulombic Efficiency and Cycle Stability.

    Science.gov (United States)

    Ryu, Jaegeon; Hong, Dongki; Shin, Myoungsoo; Park, Soojin

    2016-11-22

    Three-dimensional (3D) hyperporous silicon flakes (HPSFs) are prepared via the chemical reduction of natural clay minerals bearing metal oxides. Natural clays generally have 2D flake-like structures with broad size distributions in the lateral dimension and varied thicknesses depending on the first processing condition from nature. They have repeating layers of silicate and metal oxides in various ratios. When the clay mineral is subjected to a reduction reaction, metal oxide layers can perform a negative catalyst for absorbing large amounts of exothermic heat from the reduction reaction of the silicate layers with metal reductant. Selectively etching out metal oxides shows a hyperporous nanoflake structure containing 100 nm macropores and meso-/micropores on its framework. The resultant HPSFs are demonstrated as anode materials for lithium-ion batteries. Compared to conventional micro-Si anodes, HPSFs exhibit exceptionally high initial Coulombic efficiency over 92%. Furthermore, HPSF anodes show outstanding cycling performance (reversible capacity of 1619 mAh g-1 at a rate of 0.5 C after 200 cycles, 95.2% retention) and rate performance (∼580 mAh g-1 at a rate of 10 C) owing to their distinctive structure.

  8. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test

    Directory of Open Access Journals (Sweden)

    Raul Domínguez

    2017-12-01

    Full Text Available Background: Beetroot juice (BJ is rich in inorganic nitrates and has proved effective at increasing blood nitric oxide (NO levels. When used as a supplement BJ has shown an ergogenic effect on cardiorespiratory resistance exercise modalities, yet few studies have examined its impact on high intensity efforts. Objective: To assess the effects of BJ intake on anaerobic performance in a Wingate test. Methods: Fifteen trained men (age 21.46 ± 1.72 years, height 1.78 ± 0.07 cm and weight 76.90 ± 8.67 kg undertook a 30-s maximum intensity test on an inertial cycle ergometer after drinking 70 mL of BJ (5.6 mmol NO3− or placebo. Results: Despite no impacts of BJ on the mean power recorded during the test, improvements were produced in peak power (6% (p = 0.034, average power 0–15 s (6.7% (p = 0.048 and final blood lactate levels (82.6% (p < 0.001, and there was a trend towards a shorter time taken to attain peak power (−8.4% (p = 0.055. Conclusions: Supplementation with BJ has an ergonomic effect on maximum power output and on average power during the first 15 s of a 30-s maximum intensity inertial cycle ergometer test.

  9. Closed Cycle Solar Refrigeration with the Calcium Chloride System ...

    African Journals Online (AJOL)

    A closed cycle solid absorption intermittent refrigerator, using CaC12 absorbent and NH3 refrigerant, was constructed and tested to obtain the instantaneous and cumulative available overall COP. The combined collector/absorber/generator unit had double glazing of 1.14 m2 exposed areas. The system was fitted with a ...

  10. Magnet design with high B(0) homogeneity for fast-field-cycling NMR applications.

    Science.gov (United States)

    Lips, O; Privalov, A F; Dvinskikh, S V; Fujara, F

    2001-03-01

    The design, construction, and performance of a low-inductance solenoidal coil with high B(0) homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B(0) inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B(0) field of 0.95 T at 800 A. The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 microH. Switching times below 200 micros can be achieved. During 6 months of operation the coil has shown good stability and reliability. Copyright 2001 Academic Press.

  11. Fiber-optic, anti-cycling, high pressure sodium street light control. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This is the Final Technical Progress Report on a project to develop and market a Fiber-Optic Anti-Cycling High Pressure Sodium Street Light Control. The field test units are now being made with a single vertical PC board design and contains a computer-on-a-chip or PROM IC to take the place of the majority of the components previously contained on the upper logic board. This will reduce the final costs of the unit when it is in production and increase the control`s flexibility. The authors have finished the soft tooling and have made the 400 plastic cases for the field test units. The new configuration of the cases entails a simplified design of the control shell which will have the lenses cast in place. The shell and base plastics are now finished and in final assembly awaiting the completion of the PC boards.

  12. High-cycle fatigue characteristics of weldable steel for light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Klesnil, M.; Polak, J.; Obrtlik, K. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie); Troshchenko, V.T.; Mishchenko, Yu.I.; Khamaza, L.A. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1982-11-01

    Czechoslovak and Soviet 15Kh2NMFA steel was used for running fatigue tests at temperatures of 20, 350 and 400 degC in the high-cycle range with various loading regimes. The results show that at the given temperatures in this type of steel a cyclic softening occurs. The fatigue characteristics were measured with great dispersion of results, but within this dispersion they are almost identical for various steels at the same temperature. Increased temperature results in the decrease in the amplitude of cyclic deformation stress and in the increase in the amplitude of plastic deformation. The diversity in the values of cyclic plasticity and stress response measured in the given mode may be explained by the lower level of softening and the non-homogeneous cyclic plastic deformation of material under the given constant conditions.

  13. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  14. Development of a Scale Model for High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2012-03-01

    The development of a comprehensive SCALE computational model for the High Flux Isotope Reactor (HFIR) is documented and discussed in this report. The SCALE model has equivalent features and functionality as the reference MCNP model for Cycle 400 that has been used extensively for HFIR safety analyses and for HFIR experiment design and analyses. Numerical comparisons of the SCALE and MCNP models for the multiplication constant, power density distribution in the fuel, and neutron fluxes at several locations in HFIR indicate excellent agreement between the results predicted with the two models. The SCALE HFIR model is presented in sufficient detail to provide the users of the model with a tool that can be easily customized for various safety analysis or experiment design requirements.

  15. Teaching Science Process Skills by Using the 5-Stage Learning Cycle in Junior High School

    Science.gov (United States)

    Safaah, E. S.; Muslim, M.; Liliawati, W.

    2017-09-01

    Science process skills are a set of skills used in scientific activities. Students with science process skills are actively involved in learning. Opportunities to be actively involved in learning can be obtained by students if the learning stage is designed in such a way. This article is about a lesson that is expected to teach students’ science process skills and can help build their understanding of the concept of buoyant force. This learning can be carried out for students at the junior high school level. This learning process uses the 5-stage learning cycle consisting of observation, manipulation, generalization, verification, and application phase. Each activity is expected to facilitates students to develop science process skills such as observing, inferring, predicting, asking questions, constructing hypotheses, designing experiments, applying concepts, and communicating.

  16. High temperature electrolyzer/fuel cell power cycle: Preliminary design considerations

    Science.gov (United States)

    Morehouse, Jeffrey H.

    1987-01-01

    A model of a high temperature electrolyzer/fuel cell, hydrogen/oxygen, thermally regenerative power cycle is developed and used to simulate system performance for varying system parameters. Initial estimates of system efficiency, weight, and volume are provided for a one KWe module assuming specific electrolyzer and fuel cell characteristics, both current and future. Specific interest is placed on examining the system responses to changes in device voltage versus current density operating curves, and the associated optimum operating ranges. The performance of a solar-powered, space based system in low earth orbit is examined in terms of the light-dark periods requiring storage. The storage design tradeoffs between thermal energy, electrical energy, and hydrogen/oxygen mass storage are examined. The current technology module is based on the 1000 C solid oxide electrolyzer cell and the alkaline fuel cell. The Future Technology system examines benefits involved with developing a 1800K electrolyzer operating with an advanced fuel cell.

  17. Development of the Comprehensive Observations of Proprioception (COP): Validity, Reliability, and Factor Analysis

    Science.gov (United States)

    Blanche, Erna Imperatore; Bodison, Stefanie; Chang, Megan C.; Reinoso, Gustavo

    2013-01-01

    OBJECTIVE We developed an observational tool, the Comprehensive Observations of Proprioception (COP), for identifying proprioceptive processing issues in children with developmental disabilities. METHOD Development of the COP underwent three phases. First, we developed items representing proprioceptive functions on the basis of an extensive literature review and consultation with occupational therapists. We then established interrater reliability and content, construct, and criterion validity. Finally, we completed a factor analysis of COP ratings of 130 children with known developmental disabilities. RESULTS Adequate validity and reliability were established. Factor analysis revealed a four-factor model that explained the underlying structure of the measure as it was hypothesized. CONCLUSION The COP is a valid criterion-referenced short observational tool that structures the clinician’s observations by linking a child’s behaviors to areas identified in the literature as relevant to proprioceptive processing. It takes 15 min to administer and can be used in a variety of contexts, such as the home, clinic, and school. PMID:23106989

  18. 50 CFR 23.88 - What are the resolutions and decisions of the CoP?

    Science.gov (United States)

    2010-10-01

    ..., EXPORTATION, AND IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false What are the resolutions and decisions of the CoP? 23.88 Section 23.88 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE...

  19. 50 CFR 23.86 - How can I obtain information on a CoP?

    Science.gov (United States)

    2010-10-01

    ... IMPORTATION OF WILDLIFE AND PLANTS (CONTINUED) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false How can I obtain information on a CoP? 23.86 Section 23.86 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE...

  20. Suicide by Cop in Film and Society: Dangerousness, Depression, and Justice

    Science.gov (United States)

    Stack, Steven; Bowman, Barbara; Lester, David

    2012-01-01

    Provoking police officers to kill oneself or "suicide by cop" (SBC) has received scholarly as well as public attention. The extent to which film representations of SBC reflect SBC in society in relation to danger, depression, and other features was assessed in this study. Data on cinematic portrayals of SBC are from 16 American films;…

  1. International climate change policy: background and significance of upcoming COP17 meeting for South Africa

    CSIR Research Space (South Africa)

    Thambiran, Tirusha

    2011-09-01

    Full Text Available COP17 is primarily a meeting about climate change and what can be done internationally to mitigate climate change. The overarching mitigation goal is to develop a legally binding agreement to control and limit the amount of GHGs that countries would...

  2. On massive carbide precipitation during high temperature low cycle fatigue in alloy 800H

    Energy Technology Data Exchange (ETDEWEB)

    Bhanu Sankara Rao, K.; Halford, G.R. (National Aeronautics Space Agency, Cleveland, OH (United States). Lewis Research Center); Schuster, H. (KFA, Juelich (Germany). Inst. for Reactor Materials)

    1994-08-15

    Alloys engineered for high-temperature application are frequently put into use in a thermodynamically unstable condition. Subsequent exposure to service temperatures may promote many thermally-assisted reactions such as formation, coarsening, and/or coalescence of precipitates. Superposition of cyclic straining may accelerate the kinetics of these reactions but also may cause reaction products having specific features not observed under simple thermal exposure. The influence of cyclic strain-induced microstructural changes on the fatigue behavior has to be considered in terms of their effects on both cyclic strength and life. The occurrence of massive (cellular) precipitation of M[sub 23]C[sub 6] on grain boundaries during elevated temperature low cycle fatigue testing has been reported in Type 304 stainless steel, Type 316 stainless steel, and Inconel 617 superalloy, and its presence has already been linked with reduction in high temperature ductility, an important engineering property on which low cycle fatigue (LCF) life depends to a large extent. Massive precipitation may render the austenitic engineering alloys susceptible to corrosion, which would have important bearing on the performance of these alloys in the oxidizing environments. Furthermore, the long term stability of massive M[sub 23]C[sub 6] particles is particularly important since the transformation of such a large structure into a brittle intermetallic phase (such as sigma) could produce a detrimental effect on the mechanical properties. The conditions and the mechanisms responsible for the occurrence of massive precipitation during LCF have not yet been established. This investigation is specifically aimed at understanding the influence of strain rate on massive precipitation and the mechanism responsible for the occurrence of massive M[sub 23]C[sub 6] precipitation in Alloy 800H during elevated temperature LCF testing.

  3. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ye [University of Science and Technology of China, Hefei, Anhui 230029 (China); Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China); Tang, Jingyu, E-mail: tangjy@ihep.ac.cn [University of Science and Technology of China, Hefei, Anhui 230029 (China); Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China); Yang, Zheng; Jing, Hantao [Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China)

    2014-02-11

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×10{sup 4} protons per cycle or 5×10{sup 5} protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  4. Statistical Analysis of High-Cycle Fatigue Behavior of Friction Stir Welded AA5083-H321

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Hariharan, A.; Yen, C.-F.; Cheeseman, B. A.; Fountzoulas, C.

    2011-08-01

    A review of the literature revealed that high-cycle fatigue data associated with friction stir-welded (FSW) joints of AA5083-H321 (a solid-solution-strengthened and strain-hardened/stabilized Al-Mg-Mn alloy) are characterized by a relatively large statistical scatter. This scatter is closely related to the intrinsic variability of the FSW process and to the stochastic nature of the workpiece material microstructure/properties as well as to the surface condition of the weld. Consequently, the use of statistical methods and tools in the analysis of FSW joints is highly critical. A three-step FSW-joint fatigue-strength/life statistical-analysis procedure is proposed in this study. Within the first step, the type of the most appropriate probability distribution function is identified. The parameters of the selected probability distribution function, along with their confidence limits, are computed in the second step. In the third step, a procedure is developed for assessment of the statistical significance of the effect of the FSW process parameters and fatigue specimen surface conditions. The procedure is then applied to a set of stress-amplitude versus number of cycles to failure experimental data in which the tool translational speed was varied over four levels, while the fatigue specimen surface condition was varied over two levels. The results obtained showed that a two-parameter weibull distribution function with its scale factor being dependent on the stress amplitude is the most appropriate choice for the probability distribution function. In addition, it is found that, while the tool translational speed has a first-order effect on the AA5083-H321 FSW-joint fatigue strength/life, the effect of the fatigue specimen surface condition is less pronounced.

  5. Combined momentum collimation studies in a high-intensity rapid cycling proton synchrotron

    Directory of Open Access Journals (Sweden)

    Jing-Yu Tang

    2011-05-01

    Full Text Available Momentum collimation in a high-intensity rapid cycling synchrotron (RCS is a very important issue. Based on the two-stage collimation principle, a combined momentum collimation method is proposed and studied in detail here. The method makes use of the combination of secondary collimators in both the longitudinal and transverse planes. The primary collimator is placed at a high-dispersion location of an arc, and the longitudinal and transverse secondary collimators are in the same arc and in the adjacent downstream dispersion-free long straight section, respectively. The particles with positive momentum deviations will be scattered and degraded by a carbon scraper and then collected mainly by the transverse collimators, whereas the particles with negative momentum deviations will be scattered by a tantalum scraper and mainly collected by the longitudinal secondary collimators. This is to benefit from the different effects of protons passing through a high atomic number material and a low atomic number material, as the former produces relatively more scattering than the latter for the same energy loss. The studies also reveal that momentum collimation is strongly dependent on the transverse beam correlation that comes from the injection painting. The relevant requirements on the lattice design are also discussed, especially for compact rings. The multiparticle simulations using both TURTLE and ORBIT codes are presented to show the physical images of the collimation method, which was carried out with the input of the RCS of China Spallation Neutron Source.

  6. Evolution of High-Frequency Turbulence During Limit-Cycle Oscillations on DIII-D

    Science.gov (United States)

    Rost, J. C.; Marinoni, A.; Davis, E. M.; Porkolab, M.; Burrell, K. H.

    2014-10-01

    Limit-cycle oscillations (LCO) can provide insight into the interplay between shear and turbulence in triggering the H-mode transition. The Phase Contrast Imaging (PCI) diagnostic on DIII-D is particularly sensitive to density fluctuations in the highly sheared flow in the H-mode/LCO edge due to sensitivity to finite radial wave number (kr ~kθ) and large bandwidth (10 kHz < f < 2 MHz). Each roughly 1 ms oscillation in the LCO (10s of ms) exhibits a period of highly Doppler shifted, highly sheared turbulence which terminates at a burst of low-f turbulence. As the Doppler backscattering (DBS) diagnostic records a gradual increase in fluctuation amplitude rather than a burst, the PCI signal can be explained by a sudden decrease in radial correlation length caused by a burst in zonal flows. Both diagnostics are consistent with results of 1D models. Comparison of LCOs of different durations reveals a threshold-like behavior in mean flow. Work supported by the US DOE under DE-FG02-94ER54235 and DE-FC02-04ER54698.

  7. Ternary cycle treatment of high saline wastewater from pesticide production using a salt-tolerant microorganism.

    Science.gov (United States)

    Wu, Xiang; Du, Ya-guang; Qu, Yi; Du, Dong-yun

    2013-01-01

    The material of this study is provided by biological aerobic treatment of high saline wastewater from pesticide production. The microorganism used for biodegradation has been identified by gene-sequencing as a strain of Bacillus sp. SCUN. The best growth condition for the salt-tolerant microorganism has been studied by varying the pH, immobilized microorganism dosage and temperature conditions. The feasibility of pretreating wastewater in ethyl chloride production containing 4% NaCl has been discussed. It was found that under the pH range of 6.0-8.0, immobilized microorganism dosage of 1.5 g/L, temperature of 30 °C, and NaCl concentration of 0-3%, the microorganism achieves the best growth for biodegradation. After domestication, the strain can grow under 4% NaCl. This salt-tolerant microorganism is effective in the pretreated high saline wastewater. With a newly developed ternary cycle treatment, the chemical oxygen demand removal approaches 58.3%. The theoretical basis and a new method for biological treatments in biodegradation of high saline wastewater in ethyl chloride production are discussed.

  8. Managing Intentionally Created Communities of Practice for Knowledge Sourcing across Organisational Boundaries: Insights on the Role of the CoP Manager

    Science.gov (United States)

    Garavan, Thomas N.; Carbery, Ronan; Murphy, Eamonn

    2007-01-01

    Purpose: The purpose of this article is to explore strategies used by communities of practice (CoPs) managers when managing intentionally created CoPs. Design/methodology/approach: Four intentionally created CoPs in Ireland are explored, using a qualitative research design with data from observation, interviews and analysis of documents. Findings:…

  9. Nonlinear effects of climate on boreal rodent dynamics: mild winters do not negate high-amplitude cycles.

    Science.gov (United States)

    Korpela, Katri; Delgado, Maria; Henttonen, Heikki; Korpimäki, Erkki; Koskela, Esa; Ovaskainen, Otso; Pietiäinen, Hannu; Sundell, Janne; Yoccoz, Nigel G; Huitu, Otso

    2013-03-01

    Small rodents are key species in many ecosystems. In boreal and subarctic environments, their importance is heightened by pronounced multiannual population cycles. Alarmingly, the previously regular rodent cycles appear to be collapsing simultaneously in many areas. Climate change, particularly decreasing snow quality or quantity in winter, is hypothesized as a causal factor, but the evidence is contradictory. Reliable analysis of population dynamics and the influence of climate thereon necessitate spatially and temporally extensive data. We combined data on vole abundances and climate, collected at 33 locations throughout Finland from 1970 to 2011, to test the hypothesis that warming winters are causing a disappearance of multiannual vole cycles. We predicted that vole population dynamics exhibit geographic and temporal variation associated with variation in climate; reduced cyclicity should be observed when and where winter weather has become milder. We found that the temporal patterns in cyclicity varied between climatically different regions: a transient reduction in cycle amplitude in the coldest region, low-amplitude cycles or irregular dynamics in the climatically intermediate regions, and strengthening cyclicity in the warmest region. Our results did not support the hypothesis that mild winters are uniformly leading to irregular dynamics in boreal vole populations. Long and cold winters were neither a prerequisite for high-amplitude multiannual cycles, nor were mild winters with reduced snow cover associated with reduced winter growth rates. Population dynamics correlated more strongly with growing season than with winter conditions. Cyclicity was weakened by increasing growing season temperatures in the cold, but strengthened in the warm regions. High-amplitude multiannual vole cycles emerge in two climatic regimes: a winter-driven cycle in cold, and a summer-driven cycle in warm climates. Finally, we show that geographic climatic gradients alone may not

  10. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Directory of Open Access Journals (Sweden)

    Hee Jin Shim

    Full Text Available Ionizing radiation (IR treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  11. High-dose irradiation induces cell cycle arrest, apoptosis, and developmental defects during Drosophila oogenesis.

    Science.gov (United States)

    Shim, Hee Jin; Lee, Eun-Mi; Nguyen, Long Duy; Shim, Jaekyung; Song, Young-Han

    2014-01-01

    Ionizing radiation (IR) treatment induces a DNA damage response, including cell cycle arrest, DNA repair, and apoptosis in metazoan somatic cells. Because little has been reported in germline cells, we performed a temporal analysis of the DNA damage response utilizing Drosophila oogenesis as a model system. Oogenesis in the adult Drosophila female begins with the generation of 16-cell cyst by four mitotic divisions of a cystoblast derived from the germline stem cells. We found that high-dose irradiation induced S and G2 arrests in these mitotically dividing germline cells in a grp/Chk1- and mnk/Chk2-dependent manner. However, the upstream kinase mei-41, Drosophila ATR ortholog, was required for the S-phase checkpoint but not for the G2 arrest. As in somatic cells, mnk/Chk2 and dp53 were required for the major cell death observed in early oogenesis when oocyte selection and meiotic recombination occurs. Similar to the unscheduled DNA double-strand breaks (DSBs) generated from defective repair during meiotic recombination, IR-induced DSBs produced developmental defects affecting the spherical morphology of meiotic chromosomes and dorsal-ventral patterning. Moreover, various morphological abnormalities in the ovary were detected after irradiation. Most of the IR-induced defects observed in oogenesis were reversible and were restored between 24 and 96 h after irradiation. These defects in oogenesis severely reduced daily egg production and the hatch rate of the embryos of irradiated female. In summary, irradiated germline cells induced DSBs, cell cycle arrest, apoptosis, and developmental defects resulting in reduction of egg production and defective embryogenesis.

  12. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans.

    Science.gov (United States)

    Singh, Kamna; Senadheera, Dilani B; Lévesque, Céline M; Cvitkovitch, Dennis G

    2015-08-01

    In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans Cop

  13. The copYAZ Operon Functions in Copper Efflux, Biofilm Formation, Genetic Transformation, and Stress Tolerance in Streptococcus mutans

    Science.gov (United States)

    Singh, Kamna; Senadheera, Dilani B.; Lévesque, Céline M.

    2015-01-01

    ABSTRACT In bacteria, copper homeostasis is closely monitored to ensure proper cellular functions while avoiding cell damage. Most Gram-positive bacteria utilize the copYABZ operon for copper homeostasis, where copA and copB encode copper-transporting P-type ATPases, whereas copY and copZ regulate the expression of the cop operon. Streptococcus mutans is a biofilm-forming oral pathogen that harbors a putative copper-transporting copYAZ operon. Here, we characterized the role of copYAZ operon in the physiology of S. mutans and delineated the mechanisms of copper-induced toxicity in this bacterium. We observed that copper induced toxicity in S. mutans cells by generating oxidative stress and disrupting their membrane potential. Deletion of the copYAZ operon in S. mutans strain UA159 resulted in reduced cell viability under copper, acid, and oxidative stress relative to the viability of the wild type under these conditions. Furthermore, the ability of S. mutans to form biofilms and develop genetic competence was impaired under copper stress. Briefly, copper stress significantly reduced cell adherence and total biofilm biomass, concomitantly repressing the transcription of the gtfB, gtfC, gtfD, gbpB, and gbpC genes, whose products have roles in maintaining the structural and/or functional integrity of the S. mutans biofilm. Furthermore, supplementation with copper or loss of copYAZ resulted in significant reductions in transformability and in the transcription of competence-associated genes. Copper transport assays revealed that the ΔcopYAZ strain accrued significantly large amounts of intracellular copper compared with the amount of copper accumulation in the wild-type strain, thereby demonstrating a role for CopYAZ in the copper efflux of S. mutans. The complementation of the CopYAZ system restored copper expulsion, membrane potential, and stress tolerance in the copYAZ-null mutant. Taking these results collectively, we have established the function of the S. mutans

  14. Very high cycle fatigue strength and crack growth of thin steel sheets

    Directory of Open Access Journals (Sweden)

    Mohand Ouarabi

    2016-03-01

    Full Text Available For basic observations or for industrial applications it is of interest to use flat specimens at very high frequency in the gigacycle regime. In this work, thin flat sheet, with 1.2 mm thickness of a complex phase ferrite-martensitic steels were considered for carrying out fatigue tests at high frequency (20 kHz up to the gigacycle regime (>109 cycles. The crack initiation tests were carried out with water cooling, while the crack growth test were carried out in laboratory air at room temperature. All the tests were carried out under loading ratio R=-1. To do that, special designs of specimens were made and computed using FEM for defining the stress amplitude for endurance tests. Special attachments for specimens to the ultrasonic system’s horn were enhanced. A particular FEM computing of the stress intensity range on crack growth specimens was carried out for determining the specimen dimensions and an equation that defines the stress intensity range as a function of the harmonic displacement amplitude, dynamic Young’s modulus, material density and crack length. Detailed procedures and fatigue results are presented in this paper.

  15. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  16. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    Science.gov (United States)

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  17. An operational high resolution ensemble kalman filter data assimilation cycle over South America

    Science.gov (United States)

    Cossetin, Camila; Goncalves, Luis; Silveira, Bruna; Vendrasco, Eder; Khamis, Eduardo; Sapucci, Luiz

    2016-04-01

    The brazilian Center for Weather Forecast and Climate Studies (CPTEC/INPE) has recently initiated an effort to develop operationally a high resolution probabilistic mesoscale analysis over the continental South America and portions of the surrounding south Pacific and Atlantic oceans. This work presents a high resolution regional ensemble Kalman filter (EnKF) system with the WRF model. It uses the gridpoint statistical interpolation (GSI) mantained by the Developmental Testbed Center (DTC) for observational data processing and observation operators. The initial tests were run at approximately 9 Km of spatial resolution and 20 members with 6-hourly data assimilation cycles using all regional observations and selected satellite radiances (AMSU-A, MHS and HIRS). The impact of the choice of covariance localization and covariance inflation in the model performance is assessed to demonstrate the sensitive to the tunning. A two-weeks simulation is performed to illustrate the system adjustment (spin up) and how the model errors and innovation respond during the first days of run. Furthermore, the relative contribution of satellite brightness temperature assimilation to the analysis increments is also evaluated.

  18. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle

    Science.gov (United States)

    Li, Zhiyuan; Ji, Xinmiao; Wang, Dongmei; Liu, Juanjuan; Zhang, Xin

    2016-01-01

    Mitosis is a fast process that involves dramatic cellular remodeling and has a high energy demand. Whether autophagy is active or inactive during the early stages of mitosis in a naturally dividing cell is still debated. Here we aimed to use multiple assays to resolve this apparent discrepancy. Although the LC3 puncta number was reduced in mitosis, the four different cell lines we tested all have active autophagic flux in both interphase and mitosis. In addition, the autophagic flux was highly active in nocodazole-induced, double-thymidine synchronization released as well as naturally occurring mitosis in HeLa cells. Multiple autophagy proteins are upregulated in mitosis and the increased Beclin-1 level likely contributes to the active autophagic flux in early mitosis. It is interesting that although the autophagic flux is active throughout the cell cycle, early mitosis and S phase have relatively higher autophagic flux than G1 and late G2 phases, which might be helpful to degrade the damaged organelles and provide energy during S phase and mitosis. PMID:27213594

  19. Highly Variable Cycle Nozzle Concept: Validation of Flow and Noise Predictions

    Science.gov (United States)

    Halbig, Michael C.

    2011-01-01

    Results from experimental and numerical studies of highly Variable Cycle (HVC) exhaust model were presented. The model was designed and fabricated under a Supersonics NRA awarded to Rolls-Royce. The model had a lobed mixer for the core stream nozzle, and elliptic fan stream nozzle, and an ejector. Experiments included far-field acoustic array, phased array, and Particle Image Velocimetry (PIV) measurements. Numerical studies included flow simulations using the WIND-US code and far-field acoustic solutions using an acoustic analogy developed by Goldstein (2003) and Leib and Goldstein (2011). Far-field acoustic measurements showed increased noise levels over the round baseline nozzle when using non-static forward flight conditions. Phased array measurements showed noise sources near the ejector doors when tones were produced for small ejector door positions. Ejector door separation identified in the experiments was reproduced in the numerical flow simulations. Acoustic solutions were unable to match levels measured in the peak jet noise direction indicating additional development work is needed to predict noise from highly three-dimensional flows.

  20. High Purity Americium-241 for Fuel Cycle R&D Program

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul A. Lessing

    2011-07-01

    Previously the U.S. Department of Energy released Am-241 for various applications such as smoke detectors and Am-Be neutron sources for oil wells. At this date there is a shortage of usable, higher purity Am-241 in metal and oxide form available in the United States. Recently, the limited source of Am-241 has been from Russia with production being contracted to existing customers. The shortage has resulted in the price per gram rising dramatically over the last few years. DOE-NE currently has need for high purity Am-241 metal and oxide to fabricate fuel pellets for reactor testing in the Fuel Cycle R&D program. All the available high purity americium has been gathered from within the DOE system of laboratories. However, this is only a fraction of the projected needs of FCRD over the next 10 years. Therefore, FCR&D has proposed extraction and purification concepts to extract Am-241 from a mixed AmO2-PuO2 feedstock stored at the Savannah River Site. The most simple extraction system is based upon high temperature reduction using lanthanum metal with concurrent evaporation and condensation to produce high purity Am metal. Metallic americium has over a four order of magnitude higher vapor pressure than plutonium. Results from small-scale reduction experiments are presented. These results confirm thermodynamic predictions that at 1000 deg C metallic lanthanum reduces both PuO2 and AmO2. Faster kinetics are expected for temperatures up to about 1500 deg C.

  1. The Effect of Recycling Education on High School Students' Conceptual Understanding about Ecology: A Study on Matter Cycle

    Science.gov (United States)

    Ugulu, Ilker; Yorek, Nurettin; Baslar, Suleyman

    2015-01-01

    The objective of this study is to analyze and determine whether a developed recycling education program would lead to a positive change in the conceptual understanding of ecological concepts associated with matter cycles by high school students. The research was conducted on 68 high school 10th grade students (47 female and 21 male students). The…

  2. A maximal cycle test with good validity and high repeatability in adults of all ages

    DEFF Research Database (Denmark)

    Eriksen, L; Tolstrup, J S; Larsen, Steen

    2014-01-01

    In 11 680 individuals (18-85 years) maximal oxygen consumption (VO2max) was estimated indirectly in a maximal cycle test using a prediction model developed in a young population (15-28 years). A subsample of 182 individuals (23-77 years) underwent 2 maximal cycle tests with VO2max estimated...

  3. The impact of high-frequency sedimentation cycles on stratigraphic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, M.A. [Argonne National Lab., IL (United States); Radovich, B.J.; Matthews, M.D. [Texaco Central Exploration Division, Bellaire, TX (United States)] [and others

    1997-01-01

    Global cyclostratigraphy, a methodology that utilizes climate change to evaluate sediment flux, characterizes the impact of sediment cycles on stratigraphy. Climatic succession, sediment yield cycles, and the phase relationship of sediment cycles to eustatic cycles are all determined in the early stages of basin analysis. Sedimentologic information is then used to assist in sequence evaluations. Climatic successions are intrinsically associated with global position (paleogeography) and are not necessarily synchronous with glacioeustatic sea-level cycles. A preliminary evaluation of the effect of climate on sediment supply from modem river systems indicates that sediment yield may vary by well over two orders of magnitude during one climate cycle. Consequently, basins in different climatic belts can have distinctly different volumes and lithologies for systems tracts that have similar base-level changes. The stratigraphic computer program Sedpak was utilized to examine the possible impact of different sedimentation cycles on sequence interpretation and reservoir forecasts. The effect of sedimentation cycles on reservoir distribution in real world sequences is demonstrated with a comparison of the Miocene section of the Surma basin, Bangladesh, and the Plio-Pleistocene section of the Gulf of Mexico. In the Surma basin, reservoirs are most likely to occur in transgressive and highstand systems tracts, while reservoirs in the Gulf of Mexico are more likely in lowstand prograding complexes.

  4. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    Science.gov (United States)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  5. The construction of the training process highly skilled athletes in soccer and field hockey in the annual cycle of training

    Directory of Open Access Journals (Sweden)

    Kostyukevych V.M.

    2013-08-01

    Full Text Available The purpose of the study - to justify the theoretical and methodological principles and concepts of the training process of building highly skilled athletes in soccer and field hockey in the annual cycle of training. The results . Calculate the ratio of training loads of different orientation in the annual cycle of training. Means of producing football players in the annual training cycle is as follows: non-specific (general training exercise - 45.6%, specific - 54.4% (special training exercise - 4.1% subsidiary - 22, 7%, competitive - 27.6% . Means of producing players in the annual training cycle is as follows: non-specific (general training exercise - 49.0%, specific - 51.0% (special training - 2.3% subsidiary - 26.1%, competitive exercise - 22.0% .

  6. Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines.

    Science.gov (United States)

    Hult, Johan; Richter, Mattias; Nygren, Jenny; Aldén, Marcus; Hultqvist, Anders; Christensen, Magnus; Johansson, Bengt

    2002-08-20

    High-repetition-rate laser-induced fluorescence measurements of fuel and OH concentrations in internal combustion engines are demonstrated. Series of as many as eight fluorescence images, with a temporal resolution ranging from 10 micros to 1 ms, are acquired within one engine cycle. A multiple-laser system in combination with a multiple-CCD camera is used for cycle-resolved imaging in spark-ignition, direct-injection stratified-charge, and homogeneous-charge compression-ignition engines. The recorded data reveal unique information on cycle-to-cycle variations in fuel transport and combustion. Moreover, the imaging system in combination with a scanning mirror is used to perform instantaneous three-dimensional fuel-concentration measurements.

  7. Behavior of Plain Concrete of a High Water-Cement Ratio after Freeze-Thaw Cycles

    Directory of Open Access Journals (Sweden)

    Huai-Shuai Shang

    2012-09-01

    Full Text Available An experimental study of plain concrete specimens of water-cement ratio 0.55, subjected to 0, 15, 25, 40, 50 and 75 cycles of freeze-thaw was completed. The dynamic modulus of elasticity (DME, weight loss, compressive strength, tensile strength, flexural strength, cleavage strength and stress-strain relationships of plain concrete specimens suffering from freeze-thaw cycles were measured. The experimental results showed that the strength decreased as the freeze-thaw cycles were repeated. A concise mathematic formula between DME, weight loss, mechanical properties and number of freeze-thaw cycles was also established. The influences of freeze-thaw cycles on the DME, weight loss and mechanical properties were analyzed. The experimental results serve as a reference for the maintenance, design and life prediction of dams, hydraulic structures, offshore structures, concrete roads and bridges in cold regions.

  8. On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles.

    Science.gov (United States)

    Westover, Andrew S; Freudiger, Daniel; Gani, Zarif S; Share, Keith; Oakes, Landon; Carter, Rachel E; Pint, Cary L

    2015-01-07

    We demonstrate the operation of a graphene-passivated on-chip porous silicon material as a high rate lithium battery anode with over 50 X power density, and 100 X energy density improvement compared to identically prepared on-chip supercapacitors. We demonstrate this Faradaic storage behavior to occur at fast charging rates (1-10 mA cm(-2)) where lithium locally intercalates into the nanoporous silicon, preventing the degradation and poor cycling performance attributed to deep storage in the bulk silicon. This device exhibits cycling performance that exceeds 10,000 cycles with capacity above 0.1 mA h cm(-2) without notable capacity fade. This demonstrates a practical route toward high power, high energy, and long lifetime all-silicon on-chip storage systems relevant toward integration into electronics, photovoltaics, and other silicon-based platforms.

  9. Exergoeconomic performance optimization for a steady-flow endoreversible refrigeration model including six typical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lingen; Kan, Xuxian; Sun, Fengrui; Wu, Feng [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2013-07-01

    The operation of a universal steady flow endoreversible refrigeration cycle model consisting of a constant thermal-capacity heating branch, two constant thermal-capacity cooling branches and two adiabatic branches is viewed as a production process with exergy as its output. The finite time exergoeconomic performance optimization of the refrigeration cycle is investigated by taking profit rate optimization criterion as the objective. The relations between the profit rate and the temperature ratio of working fluid, between the COP (coefficient of performance) and the temperature ratio of working fluid, as well as the optimal relation between profit rate and the COP of the cycle are derived. The focus of this paper is to search the compromised optimization between economics (profit rate) and the utilization factor (COP) for endoreversible refrigeration cycles, by searching the optimum COP at maximum profit, which is termed as the finite-time exergoeconomic performance bound. Moreover, performance analysis and optimization of the model are carried out in order to investigate the effect of cycle process on the performance of the cycles using numerical example. The results obtained herein include the performance characteristics of endoreversible Carnot, Diesel, Otto, Atkinson, Dual and Brayton refrigeration cycles.

  10. Very-High-Cycle-Fatigue of in-service air-engine blades, compressor and turbine

    Science.gov (United States)

    Shanyavskiy, A. A.

    2014-01-01

    In-service Very-High-Cycle-Fatigue (VHCF) regime of compressor vane and turbine rotor blades of the Al-based alloy VD-17 and superalloy GS6K, respectively, was considered. Surface crack origination occurred at the lifetime more than 1500 hours for vanes and after 550 hours for turbine blades. Performed fractographic investigations have shown that subsurface crack origination in vanes took place inspite of corrosion pittings on the blade surface. This material behavior reflected lifetime limit that was reached by the criterion VHCF. In superalloy GS6K subsurface fatigue cracking took place with the appearance of flat facet. This phenomenon was discussed and compared with specimens cracking of the same superalloy but prepared by the powder technology. In turbine blades VHCF regime appeared because of resonance of blades under the influenced gas stream. Both cases of compressor-vanes and turbine blades in-service cracking were discussed with crack growth period and stress equivalent estimations. Recommendations to continue aircrafts airworthiness were made for in-service blades.

  11. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency.

    Science.gov (United States)

    Gore, C J; Hahn, A G; Aughey, R J; Martin, D T; Ashenden, M J; Clark, S A; Garnham, A P; Roberts, A D; Slater, G J; McKenna, M J

    2001-11-01

    This study investigated whether hypoxic exposure increased muscle buffer capacity (beta(m)) and mechanical efficiency during exercise in male athletes. A control (CON, n=7) and a live high:train low group (LHTL, n=6) trained at near sea level (600 m), with the LHTL group sleeping for 23 nights in simulated moderate altitude (3000 m). Whole body oxygen consumption (VO2) was measured under normoxia before, during and after 23 nights of sleeping in hypoxia, during cycle ergometry comprising 4 x 4-min submaximal stages, 2-min at 5.6 +/- 0.4 W kg(-1), and 2-min 'all-out' to determine total work and VO(2peak). A vastus lateralis muscle biopsy was taken at rest and after a standardized 2-min 5.6 +/- 0.4 W kg(-1) bout, before and after LHTL, and analysed for beta(m) and metabolites. After LHTL, beta(m) was increased (18%, P buffer capacity. Further, reduced VO2 during normoxic exercise after LHTL suggests that improved exercise efficiency is a fundamental adaptation to LHTL.

  12. FACTORS THAT INFLUENCE IN SEDENTARY LIFESTYLE OF STUDENTS OF FOURTH CYCLE OF A PUBLIC HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Carlos Álvarez Bogantes

    2015-08-01

    Full Text Available There is sufficient evidence to say that women as they move into the education system to reduce physical activity levels of sedentary lifestyle that put them at higher risk for non-communicable diseases. This led to determine the reasons for the inactivity of a group of fourth cycle. In order to address this problem, a qualitative design using focus groups and depth interviews was used, applied to30 women of high school participated. The results indicate that the participants are unaware of the benefits that can give them an active life, possibly affecting their movement behavior. A key element that have expressed is little impact of physical education classes when promoting lifestyles movement of the participants in this study, especially for ignoring the needs and barriers that students have. Become clear that the sport orientation of physical education classes and lack the skills to participate in activities successfully, sedentary activities of friends, the attitudes of parents; curriculum and lack of facilities also have significant impact in the studied group.

  13. Generation of high-power few-cycle lasers via Brillouin-based plasma amplification

    Science.gov (United States)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Deng, Z. G.; Teng, J.; He, S. K.; Zhou, W. M.; Gu, Y. Q.

    2017-11-01

    Strong coupling stimulated Brillouin backscattering (sc-SBS) in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers. Here, we report on a new regime of brillouin-based plasma amplification, producing an amplified pulse with a duration of 5 fs and unfocused intensity of 6 × 1017 W/cm2. The results are obtained from 2D particle-in-cell simulations, using two circularly polarized pump and seed pulse with Gaussian transverse profile, both at an intensity of 2.74 × 1016 W/cm2, counter-propagating in a 0.3nc plasma. The significant compression of amplified seed is achieved as a result of sc-SBS amplification as well as additional compression by the interplay between self-phase modulation and negative group delay dispersion. We show that the amplified seed retains high beam qualities since the filamentation can be prevented due to the fast compression. This scheme may pave the way for few-cycle laser pulses to reach exawatt or even zetawatt regime.

  14. Structural and Electrochemical Investigation during the First Charging Cycles of Silicon Microwire Array Anodes for High Capacity Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2013-02-01

    Full Text Available Silicon microwire arrays embedded in Cu present exceptional performance as anode material in Li ion batteries. The processes occurring during the first charging cycles of batteries with this anode are essential for good performance. This paper sheds light on the electrochemical and structural properties of the anodes during the first charging cycles. Scanning Electron Microscopy, X-ray diffractommetry, and fast Fourier transformation impedance spectroscopy are used for the characterization. It was found that crystalline phases with high Li content are obtained after the first lithiation cycle, while for the second lithiation just crystalline phases with less Li are observable, indicating that the lithiated wires become amorphous upon cycling. The formation of a solid electrolyte interface of around 250 nm during the first lithiation cycle is evidenced, and is considered a necessary component for the good cycling performance of the wires. Analog to voltammetric techniques, impedance spectroscopy is confirmed as a powerful tool to identify the formation of the different Si-Li phases.

  15. Experimental study of R134a/R410A cascade cycle for variable refrigerant flow heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hun; Lee, Jae Wan; Park, Warn Gyu [Pusan National University, Busan (Korea, Republic of); Choi, Hwan Jong; Lee, Sang Hun; Oh, Sai Kee [LG Electronics, Changwon (Korea, Republic of)

    2015-11-15

    Cascade cycle is widely applied to heat pumps operating at low ambient temperature to overcome problems such as low heating capacity and Coefficient of performance (COP) deterioration A number of researches have been conducted on cascade cycle heat pumps, but most of those studies were focused on system optimization to determine optimal intermediate temperature in air-to-water heat pumps. However, experimental optimization in regard to air and water heating simultaneously using a cascade cycle has been an understudied area. Therefore, we focused on experimental analysis for a cascade system with Variable refrigerant flow (VRF) heat pumps. Experiments were conducted under a variety of operating conditions, such as ambient and water inlet temperature. COP increased up to 16% when water inlet temperature decreased. COP of VRF heat pumps with cascade cycle is three-times higher compared with conventional boilers as well as 17% higher compared to single heat pumps.

  16. Lower trunk muscle activity-induced alignment and cop position during single-leg standing.

    Science.gov (United States)

    Nakao, Tetsuya; Masuda, Kenichi; Kanai, Shigeyuki; Tsujita, Junzo; Hirakawa, Kazufumi; Okada, Shuichi

    2017-06-01

    [Purpose] The purpose of this study was to clarify fundamental changes induced by lower trunk muscle contraction during single-leg standing. [Subjects and Methods] Ten healthy normal males participated in this study. All subjects could accurately perform lower trunk muscle contraction-type Abdominal Expansion (AE), Abdominal Bracing (AB), and Abdominal Cave-in (AC). The alignment and position of the center of foot pressure (COP) during single-leg standing with SLR and step position after rotating the body from single-leg standing with maximum SLR were measured in each lower trunk muscle contraction type. [Results] When AC was performed during single-leg standing with SLR, the SLR angle increased, COP shifted backward, and the posterior tilt angle of the trunk and cross step distance decreased. [Conclusion] It was assumed that AC during wind-up increases the angle of lower limb elevation and decreases the posterior tilt angle of the trunk and cross step distance.

  17. Synthetic fuel production via carbon neutral cycles with high temperature nuclear reactors as a power source

    Energy Technology Data Exchange (ETDEWEB)

    Konarek, E.; Coulas, B.; Sarvinis, J. [Hatch Ltd., Mississauga, Ontario (Canada)

    2016-06-15

    This paper analyzes a number of carbon neutral cycles, which could be used to produce synthetic hydrocarbon fuels. Synthetic hydrocarbons are produced via the synthesis of Carbon Monoxide and Hydrogen. The . cycles considered will either utilize Gasification processes, or carbon capture as a source of feed material. In addition the cycles will be coupled to a small modular Nuclear Reactor (SMR) as a power and heat source. The goal of this analysis is to reduce or eliminate the need to transport diesel and other fossil fuels to remote regions and to provide a carbon neutral, locally produced hydrocarbon fuel for remote communities. The technical advantages as well as the economic case are discussed for each of the cycles presented. (author)

  18. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  19. Precursors of Solar Cycles 24 and 25 at Middle and High Latitudes

    Science.gov (United States)

    Golovko, A. A.

    2018-01-01

    Magnetic activity in the middle latitude zone from 40 to 60 degrees was investigated using a multifractal segmentation method. Statistics of magnetic knots with a size of 3-4" revealed the peak of maximum 20 times higher than the background level of the knots population number during 2007-2008, which preceded by two years the beginning of the solar cycle 24. A similar peak commenced in 2016 gives the prediction of the beginning of cycle 25 during 2018.

  20. ATD and CoP in a framework for investigating social networks in physics classrooms

    DEFF Research Database (Denmark)

    Bruun, Jesper

    2011-01-01

    The article presents a tool for analysing transcribed and annotated video recordings. The tool relies on a network representation of the data, where the nodes derive from categories of activities. Following a summary of the observed learning situation, it is suggested how anthropological theory o...... of the didactical (ATD) and communities of practice (CoP) can be incorporated in the network representation in order to investigate student discussion networks in physics classrooms....

  1. Fait saillant : Le CRDI à la 21e Conférence des Parties (COP21 ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    15 avr. 2016 ... Le CRDI a assisté à la Conférence des Nations Unies sur les changements climatiques (COP21) du 30 novembre au 11 décembre 2015 à titre de membre de la délégation canadienne officielle. Plus de 20 de nos bénéficiaires de pays en développement ont fait part de leurs résultats de recherche lors ...

  2. THE SYSTEMS ENGINEERING AND COPS THEORY AS MANAGEMENT TOOLS FOR INFORMATION TECHNOLOGY COMPLEX PROJECTS

    Directory of Open Access Journals (Sweden)

    José Eduardo de Figueiredo Freitas

    2008-09-01

    Full Text Available O presente trabalho trata de um estudo de caso, a fim de validar a aplicação de duas teorias – Gestão de Produtos e Sistemas Complexos (CoPS e Engenharia de Sistemas – como ferramentas modernas de gestão de projetos complexos na área de Tecnologia da Informação (TI. Em particular, procura-se mostrar a utilidade dessas ferramentas para a definição dos parâmetros de uma Rede de Comunicações de Grande Porte, na fase de projeto. Para tanto, tomou-se como objeto do mencionado estudo de caso o projeto da Rede Corporativa de Comunicações do Exército (EBNet, uma das maiores redes dessa natureza no País, reconhecidamente um projeto complexo. O projeto da EBNet é analisado à luz das teorias da abordagem de sistemas complexos – CoPS – e de Engenharia de Sistemas, concluindo-se quanto à validade das mesmas como ferramentas modernas para o gestor de projetos complexos na área de TI. Palavras-chave: Engenharia de Sistemas, Gestão de Produtos e Sistemas Complexos (CoPS, Redes de Comunicações, EBNet, Gestão de Tecnologia da Informação

  3. Performance analysis of a micro-scaled quantum Stirling refrigeration cycle

    Science.gov (United States)

    Lin, Bihong; Huang, Zhifu; Chen, Jincan

    2012-09-01

    The cycle model of a general micro-scaled regenerative quantum refrigerator working with an ideal Bose or Fermi gas is established. The combined effects of quantum boundary and degeneracy on the performance of the cycle are investigated based on the thermodynamic properties of a confined ideal Bose or Fermi gas. The inherent regenerative losses of the cycle are analyzed and calculated. Expressions for several important performance parameters, such as the refrigeration load, work input, and coefficient of performance (COP), are derived under the cases of the gas degeneracy, weak gas degeneracy, high temperature limit, and thermodynamic limit. The curves of the refrigeration load and coefficient of performance versus the volume and surface area ratios of the cycle and the refrigeration load versus the coefficient of performance are represented. The effects of the size effect on the refrigeration load and coefficient of performance are discussed. The general performance characteristics of the cycle are revealed. It is found that both the refrigeration load and coefficient of performance of the micro-scaled quantum Stirling refrigeration cycle depend on the surface area of the cyclic system besides the temperature of the heat reservoirs, the volume of cyclic system, and other parameters, while those of the macro-scaled refrigerator are independent of the surface area of a cyclic system. The results obtained here are more general and significant than those in the current literature.

  4. Study on a waste heat-driven adsorption cooling cum desalination cycle

    KAUST Repository

    Ng, Kim Choon

    2012-05-01

    This article presents the performance analysis of a waste heat-driven adsorption cycle. With the implementation of adsorption-desorption phenomena, the cycle simultaneously produces cooling energy and high-grade potable water. A mathematical model is developed using isotherm characteristics of the adsorbent/adsorbate pair (silica gel and water), energy and mass balances for the each component of the cycle. The cycle is analyzed using key performance parameters namely (i) specific cooling power (SCP), (ii) specific daily water production (SDWP), (iii) the coefficient of performance (COP) and (iv) the overall conversion ratio (OCR). The numerical results of the adsorption cycle are validated using experimental data. The parametric analysis using different hot and chilled water temperatures are reported. At 85°C hot water inlet temperature, the cycle generates 3.6 m 3 of potable water and 23 Rton of cooling at the produced chilled water temperature of 10°C. © 2012 Elsevier Ltd and IIR. All rights reserved.

  5. [Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia].

    Science.gov (United States)

    León, Juan Diego; González, María Isabel; Gallardo, Juan Fernando

    2011-12-01

    Plant litter production and decomposition are two important processes in forest ecosystems, since they provide the main organic matter input to soil and regulate nutrient cycling. With the aim to study these processes, litterfall, standing litter and nutrient return were studied for three years in an oak forest (Quercus humboldtii), pine (Pinus patula) and cypress (Cupressus lusitanica) plantations, located in highlands of the Central Cordillera of Colombia. Evaluation methods included: fine litter collection at fortnightly intervals using litter traps; the litter layer samples at the end of each sampling year and chemical analyses of both litterfall and standing litter. Fine litter fall observed was similar in oak forest (7.5 Mg ha/y) and in pine (7.8 Mg ha/y), but very low in cypress (3.5 Mg ha/y). Litter standing was 1.76, 1.73 and 1.3 Mg ha/y in oak, pine and cypress, respectively. The mean residence time of the standing litter was of 3.3 years for cypress, 2.1 years for pine and 1.8 years for oak forests. In contrast, the total amount of retained elements (N, P, S, Ca, Mg, K, Cu, Fe, Mn and Zn) in the standing litter was higher in pine (115 kg/ha), followed by oak (78 kg/ha) and cypress (24 kg/ha). Oak forests showed the lowest mean residence time of nutrients and the highest nutrients return to the soil as a consequence of a faster decomposition. Thus, a higher nutrient supply to soils from oaks than from tree plantations, seems to be an ecological advantage for recovering and maintaining the main ecosystem functioning features, which needs to be taken into account in restoration programs in this highly degraded Andean mountains.

  6. Low-dose methotrexate enhances cycling of highly anaplastic cancer cells.

    Science.gov (United States)

    Cipolleschi, Maria Grazia; Marzi, Ilaria; Rovida, Elisabetta; Olivotto, Massimo; Dello Sbarba, Persio

    2017-02-01

    We previously showed that cellular RedOx state governs the G1-S transition of AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem cell stage. This transition is impaired when the mithocondrial electron transport system is blocked by specific inhibitors (antimycin A) or the respiratory chain is saturated by adding to the cells high concentrations of pyruvate. The antimycin A or pyruvate block is removed by the addition of adequate concentrations of folate (F). This suggests that the G1-S transition of AH130 cells depends on a respiration-linked step of DNA synthesis related to folate metabolism. In the study reported here, we characterized the effects of methotrexate (MTX), an inhibitor of dihydofolate-reductase, on the G1-S transition of hepatoma cells, in the absence or the presence of exogenously added F, dihydrofolate (FH2) or tetrahydrofolate (FH4). MTX, at 1 μM or higher concentrations, inhibited G1-S transition. This inhibition was completely removed by exogenous folates. Surprisingly, 10 nM MTX stimulated G1-S transition. The addition of F, but not FH2 or FH4, significantly increased this effect. Furthermore, 10 nM MTX removed the block of the G1-S transition operated by antimycin A or pyruvate, an effect which was enhanced in the presence of F. Finally, the stimulatory effect of 10 nM MTX was inhibited in the presence of serine. Our findings indicated that, under certain conditions, MTX may stimulate, rather than inhibiting, the cycling of cancer cells exhibiting a stem cell-like phenotype, such as AH130 cells. This may impact the therapeutic use of MTX and of folates as supportive care.

  7. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  8. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  9. Coherent lidar modulated with frequency stepped pulse trains for unambiguous high duty cycle range and velocity sensing in the atmosphere

    DEFF Research Database (Denmark)

    Lindelöw, Per Jonas Petter; Mohr, Johan Jacob

    2007-01-01

    Range unambiguous high duty cycle coherent lidars can be constructed based on frequency stepped pulse train modulation, even continuously emitting systems could be envisioned. Such systems are suitable for velocity sensing of dispersed targets, like the atmosphere, at fast acquisition rates...

  10. Inhibition of cholesterol oxidation products (COPs) formation in emulsified porcine patties by phenolic-rich avocado (Persea americana Mill.) extracts.

    Science.gov (United States)

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Petrón, María Jesus; Estévez, Mario

    2012-03-07

    The effect of phenolic-rich extracts from avocado peel on the formation of cholesterol oxidation products (COPs) in porcine patties subjected to cooking and chill storage was studied. Eight COPs (7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol, cholestanetriol, 5,6β-epoxycholesterol, and 5,6α-epoxycholesterol) were identified and quantified by GC-MS. The addition of avocado extracts (∼600 GAE/kg patty) to patties significantly inhibited the formation of COPs during cooking. Cooked control (C) patties contained a larger variety and greater amounts of COPs than the avocado-treated (T) counterparts. COPs sharply increased in cooked patties during the subsequent chilled storage. This increase was significantly higher in C patties than in the T patties. Interestingly, the amount of COPs in cooked and chilled T patties was similar to those found in cooked C patties. The mechanisms implicated in cholesterol oxidation in a processed meat product, the protective effect of avocado phenolics, and the potential implication of lipid and protein oxidation are thoroughly described in the present paper.

  11. Genetic screening of spinal muscular atrophy using a real-time modified COP-PCR technique with dried blood-spot DNA.

    Science.gov (United States)

    Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Nakanishi, Kenta; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Lai, Poh San; Takeshima, Yasuhiro; Takeuchi, Atsuko; Bouike, Yoshihiro; Okamoto, Maya; Nishio, Hisahide; Shinohara, Masakazu

    2017-10-01

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder caused by mutations in SMN1. More than 95% of SMA patients carry homozygous SMN1 deletion. SMA is the leading genetic cause of infant death, and has been considered an incurable disease. However, a recent clinical trial with an antisense oligonucleotide drug has shown encouraging clinical efficacy. Thus, early and accurate detection of SMN1 deletion may improve prognosis of many infantile SMA patients. A total of 88 DNA samples (37 SMA patients, 12 carriers and 39 controls) from dried blood spots (DBS) on filter paper were analyzed. All participants had previously been screened for SMN genes by PCR restriction fragment length polymorphism (PCR-RFLP) using DNA extracted from freshly collected blood. DNA was extracted from DBS that had been stored at room temperature (20-25°C) for 1week to 5years. To ensure sufficient quality and quantity of DNA samples, target sequences were pre-amplified by conventional PCR. Real-time modified competitive oligonucleotide priming-PCR (mCOP-PCR) with the pre-amplified PCR products was performed for the gene-specific amplification of SMN1 and SMN2 exon 7. Compared with PCR-RFLP using DNA from freshly collected blood, results from real-time mCOP-PCR using DBS-DNA for detection of SMN1 exon 7 deletion showed a sensitivity of 1.00 (CI [0.87, 1.00])] and specificity of 1.00 (CI [0.90, 1.00]), respectively. We combined DNA extraction from DBS on filter paper, pre-amplification of target DNA, and real-time mCOP-PCR to specifically detect SMN1 and SMN2 genes, thereby establishing a rapid, accurate, and high-throughput system for detecting SMN1-deletion with practical applications for newborn screening. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  12. Supporting high-technology systems during periods of extended life-cycles by means of integrated logistics support

    Directory of Open Access Journals (Sweden)

    Lambert, K. R.

    2017-05-01

    Full Text Available The business environment is constantly changing. For organisations to gain competitive advantage, they require innovative methods to achieve future business goals. The capital assets of an organisation, such as its high-technology, complex systems, typically have long life-cycles, and are susceptible to obsolescence, requiring multifaceted support. Implementing integrated logistic support principles in supporting such systems improves the organisation’s bottom line and reduces the total ownership and life-cycle costs. The research consists of a literature review, a case study analysis, and a questionnaire.

  13. Aging precursors and degradation effects of SiC-MOSFET modules under highly accelerated power cycling conditions

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    A highly accelerated power cycling test platform using current source converter for SiC-MOSFET power modules is proposed. The control principles of delta and average junction temperatures are introduced. By using isolated thermal fibers, the junction temperature (Tj) variations can be monitored...... during the test process without removal of silicone gel. The power module is tested in the conditions of ΔTj=60 °C, mean temperature Tjm=145 °C and the maximum Tj=175 °C. By means of device analyzer, the degraded conditions of electrical parameters after power cycling test are fully investigated...

  14. Vce-based methods for temperature estimation of high power IGBT modules during power cycling - A comparison

    DEFF Research Database (Denmark)

    Amoiridis, Anastasios; Anurag, Anup; Ghimire, Pramod

    2015-01-01

    Temperature estimation is of great importance for performance and reliability of IGBT power modules in converter operation as well as in active power cycling tests. It is common to be estimated through Thermo-Sensitive Electrical Parameters such as the forward voltage drop (Vce) of the chip....... This experimental work evaluates the validity and accuracy of two Vce based methods applied on high power IGBT modules during power cycling tests. The first method estimates the chip temperature when low sense current is applied and the second method when normal load current is present. Finally, a correction factor...

  15. High rates of nitrogen cycling in volcanic soils from Chilean grasslands.

    Science.gov (United States)

    Dixon, E R; Cardenas, L; Alfaro, M; Salazar, F; Hatch, D J

    2011-06-15

    There are over one million hectares of pasture in Chile, and 80% and 50% of the country's milk and meat comes from 72% of this area, situated in the lake region of southern Chile. The soils are volcanic and a major characteristic is that they have very high organic matter (OM) contents with the potential to support plant growth with only moderate levels of added nitrogen (N). To understand better the potential fertility of these soils in order to maximise production and minimise losses of N, we undertook studies using the stable isotope of N ((15)N) to resolve the rates of the main internal N cycling processes in three soils representing the two main volcanic soil types: Osorno and Chiloé (Andisol) and Cudico (Ultisol). We also assessed the longer-term potential of these soils to sustain N release using anaerobic incubation. Gross rates (µg N g(-1) day(-1)) of mineralisation were 27.9, 27.1 and 15.5 and rates of immobilisation were 5.9, 12.0 and 6.3 for Osorno, Chiloé and Cudico, respectively, implying high rates of net mineralisation in these soils. This was confirmed by anaerobic incubation which gave potential seasonal net mineralisation indices of 1225, 1059 and 450 kg N ha(-1) in the top 10 cm soil layers of the three soils. However, plant production may still benefit from added N, as the release of N from organic sources may not be closely synchronised with crop demand. The low rates of nitrification that we found with these acidic soils suggest that the more mobile N (viz. nitrate-N) would be in limited supply and plants would have to compete for the less mobile ammonium-N with the soil microbial biomass. Nitrogen was mineralised in appreciable amounts even down to 60 cm depth, so that leaching could become significant, particularly if the soils were limed, which could enhance nitrification and N mobility through the soil profile. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  17. On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents

    DEFF Research Database (Denmark)

    Groot, Jens; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2015-01-01

    Li-ion batteries are known to undergo complex ageing processes, where the operating conditions have a profound and non-linear effect on both calendar life and cycle life. This is especially a challenge for the automotive industry, where the requirements on product lifetime and reliability...... are demanding. The aim of the present work is to quantify the ageing in terms of capacity fade and impedance growth as a function of operating conditions typical to high-power automotive applications; high charge and discharge rate, elevated temperatures and wide state-of-charge windows. The cycle life of 34...

  18. High-Dimensional Mutant and Modular Thermodynamic Cycles, Molecular Switching, and Free Energy Transduction.

    Science.gov (United States)

    Carter, Charles W

    2017-05-22

    Understanding how distinct parts of proteins produce coordinated behavior has driven and continues to drive advances in protein science and enzymology. However, despite consensus about the conceptual basis for allostery, the idiosyncratic nature of allosteric mechanisms resists general approaches. Computational methods can identify conformational transition states from structural changes, revealing common switching mechanisms that impose multistate behavior. Thermodynamic cycles use factorial perturbations to measure coupling energies between side chains in molecular switches that mediate shear during domain motion. Such cycles have now been complemented by modular cycles that measure energetic coupling between separable domains. For one model system, energetic coupling between domains has been shown to be quantitatively equivalent to that between dynamic side chains. Linkages between domain motion, switching residues, and catalysis make nucleoside triphosphate hydrolysis conditional on domain movement, confirming an essential yet neglected aspect of free energy transduction and suggesting the potential generality of these studies.

  19. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia.

    Science.gov (United States)

    Smirmaul, Bruno P C; de Moraes, Antonio Carlos; Angius, Luca; Marcora, Samuele M

    2017-01-01

    To investigate the effects of caffeine on performance, neuromuscular fatigue and perception of effort during high-intensity cycling exercise in moderate hypoxia. Seven adult male participants firstly underwent an incremental exercise test on a cycle ergometer in conditions of acute normobaric hypoxia (fraction inspired oxygen = 0.15) to establish peak power output (PPO). In the following two visits, they performed a time to exhaustion test (78 ± 3% PPO) in the same hypoxic conditions after caffeine ingestion (4 mg kg -1 ) and one after placebo ingestion in a double-blind, randomized, counterbalanced cross-over design. Caffeine significantly improved time to exhaustion by 12%. A significant decrease in subjective fatigue was found after caffeine consumption. Perception of effort and surface electromyographic signal amplitude of the vastus lateralis were lower and heart rate was higher in the caffeine condition when compared to placebo. However, caffeine did not reduce the peripheral and central fatigue induced by high-intensity cycling exercise in moderate hypoxia. The caffeine-induced improvement in time to exhaustion during high-intensity cycling exercise in moderate hypoxia seems to be mediated by a reduction in perception of effort, which occurs despite no reduction in neuromuscular fatigue.

  20. Collaborative Research on the Ultra High Bypass Ratio Engine Cycle to Reduce Noise, Emissions and Fuel Consumption

    Science.gov (United States)

    Hughes, Christopher

    2008-01-01

    A pictorial history of NASA development of advanced engine technologies for reducing environmental emissions and increasing performance from the 1970s to present is presented. The goals of the Subsonic Fixed Wing Program portion of the NASA Fundamental Aeronautics Program are addressed, along with the areas of investigation currently being pursued by the Ultra High Bypass Partnership Element of the Subsonic Fixed Wing Program to meet the goals. Ultra High Bypass cycle research collaboration successes with Pratt & Whitney are presented.

  1. Development of a high-performance transtibial cycling-specific prosthesis for the London 2012 Paralympic Games.

    Science.gov (United States)

    Dyer, Bryce; Woolley, Howard

    2017-10-01

    It has been reported that cycling-specific research relating to participants with an amputation is extremely limited in both volume and frequency. However, practitioners might participate in the development of cycling-specific prosthetic limbs. This technical note presents the development of a successful design of a prosthetic limb developed specifically for competitive cycling. This project resulted in a hollow composite construction which was low in weight and shaped to reduce a rider's aerodynamic drag. The new prosthesis reduces the overall mass of more traditional designs by a significant amount yet provides a more aerodynamic shape over traditional approaches. These decisions have yielded a measurable increase in cycling performance. While further refinement is needed to reduce the aerodynamic drag as much as possible, this project highlights the benefits that can exist by optimising the design of sports-specific prosthetic limbs. Clinical relevance This project resulted in the creation of a cycling-specific prosthesis which was tailored to the needs of a high-performance environment. Whilst further optimisation is possible, this project provides insight into the development of sports-specific prostheses.

  2. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle.

    Directory of Open Access Journals (Sweden)

    Rachel J Skilton

    Full Text Available BACKGROUND: Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB differentiates into a non-infectious replicative form known as a reticulate body (RB. RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non-infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence. PRINCIPAL FINDINGS: Addition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome. CONCLUSIONS: We have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate

  3. A slow-cycling subpopulation of melanoma cells with highly invasive properties

    DEFF Research Database (Denmark)

    Perego, M; Maurer, M; Wang, J X

    2017-01-01

    as label-retaining cells (LRC), with strong invasive properties. We demonstrate through live imaging that LRC are leaving the primary tumor mass at a very early stage and disseminate to peripheral organs. Through global proteome analyses, we identified the secreted protein SerpinE2/protease nexin-1......Melanoma is a heterogeneous tumor with different subpopulations showing different proliferation rates. Slow-cycling cells were previously identified in melanoma, but not fully biologically characterized. Using the label-retention method, we identified a subpopulation of slow-cycling cells, defined...

  4. CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars

    Science.gov (United States)

    Yang, Yao-Lun; Green, Joel D.; Evans, Neal J.; COPS Team

    2017-06-01

    Molecular emission from early stage protostars reveals the properties of the surrounding gas and the underlying physical processes that govern the early stage of star formation. The CO in Protostars (COPS) Herschel program observes 27 embedded protostars with SPIRE, including several molecular species, such as CO, 13CO, H2O, and HCO+, allowing us to investigate the processes that regulate the early stage of star formation across a large sample of sources. We detect CO rotational lines from Jup = 4 to 36, 13CO lines from Jup = 5 to 10, and six H2O lines, along with atomic lines, such as [N II] and [C I]. We have created an uniformly calibrated dataset with the data from Dust, Ice, and Gas In Time (DIGIT) Herschel Key Program and archival photometry, in which we characterize each source by its spectral energy distribution and evolutionary class. We detect 323 lines from 25 sources from which we successfully extracted 1D spectra, and 3068 lines from 27 sources observed in all spatial pixels of SPIRE. We analyze the correlations of the line strengths of every line pair from all lines detected in our sample with two methods from ASURV package, Spearman's ρ, which test whether the line strengths relation can be described by a monotonic function, and the Kendall z-value, which quantifies the similarity of the ordering of the line strengths of two lines. We notice that the distribution of correlations shows a systematic tendency coinciding with the wavelength coverages of the instruments, suggesting an instrumental bias. Within each module, the correlations of two CO line pairs show high correlations, which decrease as the difference of the upper J-level of the two CO lines increases. The smooth gradients of the distribution of correlations hint that the temperature and density of CO gas are continuously varying throughout the embedding envelope. If all CO gas in the envelope shares a same temperature or density, the correlations would be strong for two CO lines

  5. High gonadotropin dosage does not affect euploidy and pregnancy rates in IVF PGS cycles with single embryo transfer.

    Science.gov (United States)

    Barash, Oleksii O; Hinckley, Mary D; Rosenbluth, Evan M; Ivani, Kristen A; Weckstein, Louis N

    2017-11-01

    Does high gonadotropin dosage affect euploidy and pregnancy rates in PGS cycles with single embryo transfer? High gonadotropin dosage does NOT affect euploidy and pregnancy rates in PGS cycles with single embryo transfer. PGS has been proven to be the most effective and reliable method for embryo selection in IVF cycles. Euploidy and blastulation rates decrease significantly with advancing maternal age. In order to recruit an adequate number of follicles, the average dosage of gonadotropins administered during controlled ovarian stimulation in IVF cycles often increases significantly with advancing maternal age. A retrospective study of SNP (Single Nucleotide Polymorphism) PGS outcome data from blastocysts biopsied on day 5 or day 6 was conducted to identify differences in euploidy and clinical pregnancy rates. Seven hundred and ninety four cycles of IVF treatment with PGS between January 2013 and January 2017 followed by 651 frozen embryo transfers were included in the study (506 patients, maternal age (y.o.) - 37.2 ± 4.31). A total of 4034 embryos were analyzed (5.1 ± 3.76 per case) for euploidy status. All embryos were vitrified after biopsy, and selected embryos were subsequently thawed for a hormone replacement frozen embryo transfer cycle. All cycles were analyzed by total gonadotropin dosage (5000 IU), by number of eggs retrieved (1-5, 5-10, 10-15 and >15 eggs) and patient's age (IVF cycles) euploidy rates ranged from 62.3% (IVF cycle) to 67.5% (>5000 IU were used in the IVF cycle) (OR = 0.862, 95% CI 0.687-1.082, P = 0.2) and from 69.5% (1-5 eggs retrieved) to 60.0% (>15 eggs retrieved) (OR = 0.658, 95% CI 0.405-1.071, P = 0.09). Similar data were obtained in the oldest group of patients (≥41 y.o. - 189 IVF cycles): euploidy rates ranged from 30.7 to 26.4% (OR = 0.811, 95% CI 0.452-1.454, P = 0.481) when analyzed by total dosage of gonadotropins used in the IVF cycle and from 40.0 to 30.7% (OR = 0.531, 95% CI 0.204-1.384, P = 0.19), when assessed by the

  6. Experiencing the Product Life Cycle Management Highs and Lows through Dramatic Simulation

    Science.gov (United States)

    Pearce, Glenn; Jackson, John

    2009-01-01

    Product life cycle (PLC) stages and diagrams are briefly and dispassionately covered in the standard marketing textbook format with little attention to the social-psychological experiences of those actually participating. This qualitative study used process drama as a teaching tool and a research instrument to probe the PLC phenomenon in a…

  7. Granulosa cell cycle regulation and steroidogenesis in a high androstenedione follicular microenvironment

    Science.gov (United States)

    Anovulatory infertility (either chronic or sporadic anovulation) affects up to 40% of infertile women. In fact, sporadic anovulation in humans may often go undetected. Recent literature has reported that 8-13% of normally menstruating women (250 total, two reproductive cycles) exhibit sporadic anovu...

  8. High Sulfur Content Material with Stable Cycling in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Preefer, Molleigh B; Oschmann, Bernd; Hawker, Craig J; Seshadri, Ram; Wudl, Fred

    2017-11-20

    We demonstrate a novel crosslinked disulfide system as a cathode material for Li-S cells that is designed with the two criteria of having only a single point of S-S scission and maximizing the ratio of S-S to the electrochemically inactive framework. The material therefore maximizes theoretical capacity while inhibiting the formation of polysulfide intermediates that lead to parasitic shuttle. The material we report contains a 1:1 ratio of S:C with a theoretical capacity of 609 mAh g-1 . The cell gains capacity through 100 cycles and has 98 % capacity retention thereafter through 200 cycles, demonstrating stable, long-term cycling. Raman spectroscopy confirms the proposed mechanism of disulfide bonds breaking to form a S-Li thiolate species upon discharge and reforming upon charge. Coulombic efficiencies near 100 % for every cycle, suggesting the suppression of polysulfide shuttle through the molecular design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. High-resolution transcription atlas of the mitotic cell cycle in budding yeast

    DEFF Research Database (Denmark)

    Granovskaia, Marina V; Jensen, Lars J; Ritchie, Matthew E

    2010-01-01

    Extensive transcription of non-coding RNAs has been detected in eukaryotic genomes and is thought to constitute an additional layer in the regulation of gene expression. Despite this role, their transcription through the cell cycle has not been studied; genome-wide approaches have only focused on...

  10. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    Science.gov (United States)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  11. Distribution and cycling of lead in the high and low latitudinal Atlantic Ocean

    Science.gov (United States)

    Schlosser, C.; Menzel Barraqueta, J. L.; Rapp, I.; Pampin Baro, J.; Achterberg, E. P.

    2016-02-01

    Lead (Pb) is a toxic trace metal; even small quantities are lethal to most unicellular and multicellular organisms. Major sources of lead to the environment are the burning of coal, industrial mining, and the use of leaded gasoline (which has not been entirely phased out of use around the globe). These and other anthropogenic sources of Pb continue to pollute the environment and affect primary production and the development of heterotrophic organisms in the sea. Pb concentrations in oceanic waters are ten to a hundred times higher in surface waters than in deep waters (0.05 - 0.1 nmol L-1 compared to 1 - 5 pmol L-1), this deposition-like profile clearly reflecting the significant anthropogenic input of Pb to the ocean. In order to explore the cycling and fate of this anthropogenic Pb, we collected seawater from the polar North Atlantic (JC274 in 2013, GEOVIDE in 2014), the sub-tropical Atlantic (D361 in 2011 & M107 in 2014), the South Atlantic (JC068 in 2012), and the Atlantic sector of the Southern Ocean (JC271 in 2013). These samples were analyzed for their dissolved and soluble and total dissolvable Pb concentrations by off-line pre-concentration using a SeaFAST device (Elemental Science Inc.) and isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS, Thermo ElementXR). Results indicate that dissolved Pb exists mainly as colloidal species, which, as the precursors of larger particles are subsequently critical for the removal of lead from the water column. For example, the removal of colloidal Pb through particle scavenging was observed in the high productivity waters of the Mauritanian upwelling region and at the outlet of the La Plata River on the South American shelf. In terms of Pb pollution, highest Pb concentrations (up to 60 pmol L-1) were observed in the Agulhas current. But even remote locations, such as the northern Arctic Ocean and near South Georgia in the Southern Ocean, activities of man had an impact; the Pb concentrations of 30

  12. The 11-year solar cycle, the 27-day Sun's rotation and the area of the stratospheric Aleutian high

    Directory of Open Access Journals (Sweden)

    Boris Soukharev

    2001-03-01

    Full Text Available The effect of the 11-year solar cycle on the 30-hPa geopotential height and temperature fields in the area of the Aleutian high caused by solar activity oscillations resulting from the Sun's rotation (27.2 d is investigated, applying methods of statistical cross-spectral analysis to daily data for the period from 1965 to 1998. The area of the stratospheric Aleutian high is considered as an 'indicator' of the solar influence on the winter stratosphere proceeding from the results by LABITZKE and VAN LOON (1988, and VAN LOON and LABITZKE (1990. An effect of the 11-year solar cycle on the response of the summer middle stratosphere to solar activity oscillations on the time scale of the Sun's rotation is not found. In contrast to summer, the atmospheric responses in winter demonstrate clear differences between maximum and minimum of the 11-year solar cycle for the 27.2 d solar rotation periodicity and for the two other oscillations of 29.4 d and 25.3 d, resulting from the modulation of the 27.2 d solar-induced periodicity by the annual atmospheric variation. The atmospheric response for the fourth periodicity studied, the 17 d oscillation, which is supposed to be a normal mode of the atmosphere, close to the known 16-day wave (MADDEN, 1978, also shows a clear dependence on the 11-year solar cycle. For all the periodicities studied the coherence between the 10.7 cm solar radio flux and the 30-hPa height/temperature fields in the Aleutian high area in winter is on the average stronger at maxima than at minima of the 11-year solar cycle. The corresponding amplitudes of the solar-induced geopotential height and temperature perturbations are also larger at high than at low solar activity, with the largest differences revealed at the moderate and polar latitudes. Thus, we conclude that the response of the winter 30-hPa height/temperature fields in the area of the Aleutian high to solar oscillations on the time scale of the Sun's rotation is on the average

  13. A high-resolution and one-cycle conversion time-to-digital converter architecture for PET image applications.

    Science.gov (United States)

    Sheng, Duo; Chung, Ching-Che; Huang, Chih-Chung; Jian, Jia-Wei

    2013-01-01

    In this paper, a high-resolution and one-cycle conversion time-to-digital converter (TDC) architecture with cell-based design for positron emission tomography (PET) applications is presented. The proposed TDC employs a cascade-stage structure to achieve high timing resolution and wide sampling range at the same time. Besides, based on the proposed two-level conversion structure, the proposed TDC not only can achieve single cycle latency and high speed of operation, but also have low circuit complexity as compared with conventional approaches. Simulation results show that operation frequency of the proposed TDC can be improved to 200 MHz with 50 ps resolution. In addition, the proposed TDC can be implemented with standard cells, making it easily portable to different processes and very suitable for biomedical chip applications.

  14. Materials for the very high temperature reactor (VHTR): a versatile nuclear power station for combined cycle electricity and heat production

    Energy Technology Data Exchange (ETDEWEB)

    Hoffelner, W

    2005-07-01

    The International Generation IV Initiative provides a research platform for the development of advanced nuclear plants which are able to produce electricity and heat in a combined cycle. Very high-temperature gas-cooled reactors are considered as near-term deployable plants meeting these requirements. They build on high-temperature gas-cooled reactors which are already in operation. The main parts of such an advanced plant are: reactor pressure vessel, core and close-to-core components, gas turbine, intermediate heat exchanger, and hydrogen production unit. The paper discusses the VHTR concept, materials, fuel and hydrogen production based on discussions on research and development projects addressed within the generation IV community. It is shown that material limitations might restrict the outlet temperature of near-term deployable VHTRs to about 950 {sup o}C. The impact of the high temperatures on fuel development is also discussed. Current status of combined cycle hydrogen production is elaborated on. (author)

  15. Variation in the stress response between high- and low-neuroticism female undergraduates across the menstrual cycle.

    Science.gov (United States)

    Liu, Qing; Zhou, Renlai; Oei, Tian P S; Wang, Qingguo; Zhao, Yan; Liu, Yanfeng

    2013-09-01

    This study was undertaken to elucidate possible relationships between menstrual cycle stage, neuroticism and behavioral and physiological responses to a cognitive challenge. The study investigated the differences between high neuroticism and low neuroticism groups across the menstrual cycle (luteal, menstrual and ovulatory stages). The Stroop color-naming task was used as a stressor. During the task, the galvanic skin response (GSR), heart rate (HR) and HR variability (HRV) were simultaneously recorded by a polygraph. The results showed a significant difference in reaction times (RT) on the Stroop task between the high- and low-neuroticism groups during menstruation. However, there were no significant RT differences between groups during the luteal or ovulatory cycle stages. The GSR of the high-neuroticism group during menstruation was significantly lower than it was in the luteal and ovulatory stages. Moreover, during menstruation, the cardiovascular responses (high-frequency HRV (HF) and low-frequency HRV (LF)) and accuracy on the Stroop task were positively correlated, while the correlations between HF, LF and the RT were negative. The results demonstrate that during menstruation, there were consistent variations in female behavior and physiology when facing a cognitive stressor. Specifically, the high-neuroticism group was more sensitive to the stressor than the low neuroticism group, with decreased reaction time on the Stroop task, and increased GSR and HRV.

  16. Multi-cycle operation of enhanced biological phosphorus removal (EBPR) with different carbon sources under high temperature.

    Science.gov (United States)

    Shen, Nan; Chen, Yun; Zhou, Yan

    2017-05-01

    Many studies reported that it is challenging to apply enhanced biological phosphorus removal (EBPR) process at high temperature. Glycogen accumulating organisms (GAOs) could easily gain their dominance over poly-phosphate accumulating organisms (PAOs) when the operating temperature was in the range of 25 °C-30 °C. However, a few successful EBPR processes operated at high temperature have been reported recently. This study aimed to have an in-depth understanding on the impact of feeding strategy and carbon source types on EBPR performance in tropical climate. P-removal performance of two EBPR systems was monitored through tracking effluent quality and cyclic studies. The results confirmed that EBPR was successfully obtained and maintained at high temperature with a multi-cycle strategy. More stable performance was observed with acetate as the sole carbon source compared to propionate. Stoichiometric ratios of phosphorus and carbon transformation during both anaerobic and aerobic phases were higher at high temperature than low temperature (20±1 °C) except anaerobic PHA/C ratios within most of the sub-cycles. Furthermore, the fractions of PHA and glycogen in biomass were lower compared with one-cycle pulse feed operation. The microbial community structure was more stable in acetate-fed sequencing batch reactor (C2-SBR) than that in propionate-fed reactor (C3-SBR). Accumulibacter Clade IIC was found to be highly abundant in both reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao, E-mail: zcwang@fjnu.edu.cn

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27{sup Kip1} and p21{sup Cip1}, were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. - Highlights: • HFD induced-obesity leads to abnormal ovarian morphology. • HFD induced-obesity triggers excessive apoptosis in the ovary. • HFD induced-obesity up-regulates cell cycle inhibitors p21{sup Cip1} and p27{sup Kip1} in the ovary. • HFD induced-obesity causes cell cycle arrest in the ovary.

  18. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    Science.gov (United States)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  19. Crack path for run-out specimens in fatigue tests: is it belonging to high- or very-high-cycle fatigue regime?

    Directory of Open Access Journals (Sweden)

    A. Shanyavskiy

    2015-10-01

    Full Text Available Fatigue tests run-out specimens up to 106 – 5x107 load cycles are used to determine the stress level named “fatigue limit”. Nevertheless, it is not clear what kind of fatigue cracking takes or will take place in these specimens. To discuss this problem, fatigue tests of titanium alloy VT3-1 specimens have been performed under tension with different values of R-ratio and under rotating-bending after various thermo-mechanical treatments (tempering, surface hardening and their combinations. Well-known S-N curves in High-Cycle- Fatigue regime have been plotted with run-out specimens usually used for “fatigue limit” determination. Then, after fatigue tests, run-out specimens have been tensed up to their failure, and fracture surface analyses have been performed for all tested specimens. It is found that run-out specimens in all combinations of treatments, for different R-ratio, have fracture surfaces for crack path in Very-High-Cycle-Fatigue regime. Based on this result, all S-N curves have been reconstructed in duplex curves for High- and Very-High-Cycle-Fatigue regime without using knowledge about “fatigue limit”. Detailed fracture surfaces analyses have been developed, and crack paths have been compared for various combinations of materials and surface states.

  20. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.

    Directory of Open Access Journals (Sweden)

    Kazuki Heishima

    Full Text Available MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.

  1. MicroRNA-214 Promotes Apoptosis in Canine Hemangiosarcoma by Targeting the COP1-p53 Axis.

    Science.gov (United States)

    Heishima, Kazuki; Mori, Takashi; Sakai, Hiroki; Sugito, Nobuhiko; Murakami, Mami; Yamada, Nami; Akao, Yukihiro; Maruo, Kohji

    2015-01-01

    MicroRNA-214 regulates both angiogenic function in endothelial cells and apoptosis in various cancers. However, the regulation and function of miR-214 is unclear in canine hemangiosarcoma, which is a spontaneous model of human angiosarcoma. The expression and functional roles of miR-214 in canine hemangiosarcoma were presently explored by performing miRNA TaqMan qRT-PCR and transfecting cells with synthetic microRNA. Here, we report that miR-214 was significantly down-regulated in the cell lines used and in clinical samples of canine hemangiosarcoma. Restoration of miR-214 expression reduced cell growth and induced apoptosis in canine hemangiosarcoma cell lines through transcriptional activation of p53-regulated genes although miR-214 had a slight effect of growth inhibition on normal endothelial cells. We identified COP1, which is a critical negative regulator of p53, as a novel direct target of miR-214. COP1 was overexpressed and the specific COP1 knockdown induced apoptosis through transcriptional activation of p53-regulated genes as well as did miR-214-transfection in HSA cell lines. Furthermore, p53 knockdown abolished the miR-214-COP1-mediated apoptosis; thus, miR-214 and COP1 regulated apoptosis through controlling p53 in HSA. In conclusion, miR-214 functioned as a tumor suppressor in canine hemangiosarcoma by inducing apoptosis through recovering the function of p53. miR-214 down-regulation and COP1 overexpression is likely to contribute to tumorigenesis of HSA. Therefore, targeting miR-214-COP1-p53 axis would possibly be a novel effective strategy for treatment of canine hemangiosarcoma and capable of being applied to the development of novel therapeutics for human angiosarcoma.

  2. High-pressure refrigeration system with CO2 in automobile air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Wertenbach, J.; Kauf, F. [Daimler-Benz, Stuttgart (Germany)

    1998-12-31

    Due to high consumer acceptance of automobile air conditioning systems, the discussion of the effects of refrigerants on global warming is becoming more important to an environmentally-aware public. The consumption of fossil fuels to operate air conditioning systems, combined with refrigerant emissions, contribute to the greenhouse effect. Substitution of conventional refrigerants with CO2 reduces the load on heat-adsorbing gases in our atmosphere by providing an environment-friendly alternative. Because the amount of engine power devoted to air conditioning systems is limited, carbon dioxide makes an attractive substitute for HFC refrigerants in vehicle applications. In this paper, TEWI-figures for a vehicle with A/C System are considered, and the reduction potential due to CO2 as refrigerant as a motive for phasing out current technology is shown. This includes a comparison of COP`s between a conventional cold vapor cycle and the transcritical refrigerant cycle using CO2 to evaluate benefits and disadvantages. The high pressure refrigerant cycle has to be seen in the light of the requirement profile for introduced MACS. Furthermore, assorted results from the European RACE (Refrigeration and Automotive Climate systems under Environmental aspects) project are presented. The theory of the refrigerant cycle, tests results, packaging in a vehicle, and first experiences of component development are discussed, as well as difficulties in adapting this `Green Technology` to a car. 7 refs.

  3. Wear rates of highly cross-linked polyethylene humeral liners subjected to alternating cycles of glenohumeral flexion and abduction.

    Science.gov (United States)

    Peers, Sebastian; Moravek, James E; Budge, Matthew D; Newton, Michael D; Kurdziel, Michael D; Baker, Kevin C; Wiater, J Michael

    2015-01-01

    Although short-term outcomes of reverse total shoulder arthroplasty have been promising, long-term success may be limited due to device-specific complications, including scapular notching. Scapular notching has been explained primarily as mechanical erosion; however, the generation of wear debris may lead to further biologic changes contributing to the severity of scapular notching. A 12-station hip simulator was converted to a reverse total shoulder arthroplasty wear simulator subjecting conventional and highly cross-linked ultra-high-molecular-weight polyethylene humeral liners to 5 million cycles of alternating abduction-adduction and flexion-extension loading profiles. Highly cross-linked polyethylene liners (36.5 ± 10.0 mm(3)/million cycle) exhibited significantly lower volumetric wear rates compared with conventional polyethylene liners (83.6 ± 20.6 mm(3)/million cycle; P linked polyethylene (P linked wear particles had an equivalent circle diameter significantly smaller than wear particles from conventional polyethylene (P linked polyethylene liners significantly reduced polyethylene wear and subsequent particle generation. More favorable wear properties with the use of highly cross-linked polyethylene may lead to increased device longevity and fewer complications but must be weighed against the effect of reduced mechanical properties. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    Directory of Open Access Journals (Sweden)

    Dong-Hee Kim

    2014-05-01

    Full Text Available Ultraviolet (UV exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1 activity. A 9-mer peptide, CopA3 (CopA3 was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially prevented in human skin fibroblasts by CopA3 peptide in a dose-dependent manner. At a concentration of 25 μM, CopA3 nearly completely inhibited MMP-1 expression. These results suggest that CopA3, an insect peptide, is a potential candidate for the prevention and treatment of skin aging.

  5. Carbohydrate Mouth Rinsing Enhances High Intensity Time Trial Performance Following Prolonged Cycling

    Directory of Open Access Journals (Sweden)

    Nicholas D. Luden

    2016-09-01

    Full Text Available There is good evidence that mouth rinsing with carbohydrate (CHO solutions can enhance endurance performance (≥30 min. The impact of a CHO mouth rinse on sprint performance has been less consistent, suggesting that CHO may confer benefits in conditions of ‘metabolic strain’. To test this hypothesis, the current study examined the impact of late-exercise mouth rinsing on sprint performance. Secondly, we investigated the effects of a protein mouth rinse (PRO on performance. Eight trained male cyclists participated in three trials consisting of 120 min of constant-load cycling (55% Wmax followed by a 30 km computer-simulated time trial, during which only water was provided. Following 15 min of muscle function assessment, 10 min of constant-load cycling (3 min at 35% Wmax, 7 min at 55% Wmax was performed. This was immediately followed by a 2 km time trial. Subjects rinsed with 25 mL of CHO, PRO, or placebo (PLA at min 5:00 and 14:30 of the 15 min muscle function phase, and min 8:00 of the 10-min constant-load cycling. Magnitude-based inferential statistics were used to analyze the effects of the mouth rinse on 2-km time trial performance and the following physiological parameters: Maximum Voluntary Contract (MVC, Rating of Perceived Exertion (RPE, Heart Rate (HR, and blood glucose levels. The primary finding was that CHO ‘likely’ enhanced performance vs. PLA (3.8%, whereas differences between PRO and PLA were unclear (0.4%. These data demonstrate that late-race performance is enhanced by a CHO rinse, but not PRO, under challenging metabolic conditions. More data should be acquired before this strategy is recommended for the later stages of cycling competition under more practical conditions, such as when carbohydrates are supplemented throughout the preceding minutes/hours of exercise.

  6. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel

    DEFF Research Database (Denmark)

    Carstensen, J.V.; Mayer, H.; Brøndsted, P.

    2002-01-01

    Fatigue life data of cold worked tubes (diameter 4 mm, wall thicknesses 0.25 and 0.30 mm) of an austenitic stainless steel, AISI 904 L, were measured in the regime ranging from 2 × 105 to 1010 cycles to failure. The influence of the loading frequency was investigated as data were obtained...... scanning electron microscopy. Fatigue cracks initiate at the surface and no significant influence from frequency or from loading modes on fatigue crack initiation and growth is visible....

  7. Thermodynamical and technological assessment for short thermodynamical cycle for hydrogen production. Examples of the high temperature iron oxide and cerium chloride cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lemort, F.; Lafon, C. [Commissariat a l' energie atomique (CEA), Rhone Valley Research Center BP17171, 30207 Bagnols-sur-Ceze Cedex (France); Charvin, P.; Abanades, S. [PROMES-CNRS-UPR 8521 BP5 Odeillo 66120 Font Romeu Cedex (France)

    2006-07-01

    Some investigations have pointed out that the physicochemical properties of the reactants involved in a thermodynamical cycle could make the running of an industrial process very difficult. For instance, the sintering of the solid, the possible reactivity of the embedding matrix,... induce additional operation and then lower very sensibly the efficiency of the cycle. Furthermore, if the toxicity of the reactants is taken into consideration, the attractiveness of this cycle decreases. If other considerations than the efficiency are taken into consideration, it is possible to investigate short cycles involving no more than three chemical steps. The present paper shows the first results obtained from the studies carried out on this kind of cycle that has either medium efficiency but involving inoffensive reactants or higher efficiency but involving more toxic reactants such as chlorides but even so acceptable. In the first case illustrated by the iron oxide cycle, it seems that the medium efficiency can be partially offset by using abundant and inexpensive energy source. Furthermore the experimental investigations have demonstrated the possibility to find a way making the running of the cycle easier. In the second one illustrated by the cerium chloride cycle, the significant industrial experience regarding the chemical engineering of the chloride could make the industrial development easier. In this case, a primary flow sheet has been proposed. (authors)

  8. Low cycle notched fatigue behavior and life predictions of A723 high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Troiano, E.; Underwood, J.H.; Crayon, D. [Army Armament Research, Development and Engineering Center, Watervliet, NY (United States). Benet Labs.

    1995-12-31

    Two types of ASTM A723 steels have been investigated for their low cycle fatigue behavior. Specimens were tested in four-point bending, both with and without notches, and the measured fatigue lives were compared with those predicted by Neubers notch analysis, and standard fracture mechanics life prediction techniques. Comparison of measured and predicted lives indicate that the elastic/plastic Neuber analysis under predicts the measured fatigue life by as much as 67% at large strains, and becomes a better predictor of life as the applied strains decrease. The elastic Neubers analysis also under predicts the measured fatigue lives by 45% at large applied strains, but seems to accurately predict lives at reversals to failure greater than 100. The fracture mechanics approach assumes elastic stresses at the crack tip, and predicts lives within 30% over the full range of strains investigated. The results show that the Neuber notch analysis is not as good an indicator of the low cycle fatigue behavior of A723 steels as is the fracture mechanics life prediction techniques. As the life cycles to failure decreases, the Neubers analysis predicts lives that are two to three times more conservative than those experimentally measured.

  9. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  10. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-09-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  11. Toxicity features of high glucose on endothelial cell cycle and protection by Dan Gua-Fang in ECV-304 in high glucose medium.

    Science.gov (United States)

    Heng, Xian-Pei; Chen, Ke-Ji; Hong, Zhen-Feng; He, Wei-Dong; Chu, Ke-Dan; Lin, Jiu-Mao; Zheng, Hai-Xia; Yang, Liu-Qing; Huang, Su-Ping; Lan, Yuan-Long; Chen, Ling; Guo, Fang

    2013-08-01

    To study the toxicity features of high glucose on the endothelial cell cycle and the influence of Dan Gua-Fang, a Chinese herbal compound prescription, on the reproductive cycle of vascular endothelial cells cultivated under a high glucose condition; to reveal the partial mechanisms of Dan Gua-Fang in the prevention and treatment of endothelial injury caused by hyperglycemia in diabetes mellitus (DM); and offer a reference for dealing with the vascular complications of DM patients with long-term high blood glucose. Based on the previous 3-(4,5)-dimethylthiahiazo (z-y1)-3-5-diphenytetrazoliumromide (MTT) experiment, under different medium concentrations of glucose and Dangua liquor, the endothelial cells of vein-304 (ECV-304) were divided into 6 groups as follows: standard culture group (Group A, 5.56 mmol/L glucose); 1/300 herb-standard group (Group B); high glucose culture group (Group C, 16.67 mmol/L glucose); 1/150 herb-high glucose group (Group D); 1/300 herb-high glucose group (Group E); and 1/600 herb-high glucose group (Group F). The cell cycle was assayed using flow cytometry after cells were cultivated for 36, 72 and 108 h, respectively. (1) The percentage of cells in the G0/G1 phase was significantly increased in Group C compared with that in Group A (P<0.05), while the percentage of S-phase (S%) cells in Group C was significantly reduced compared with Group A (P<0.05); the latter difference was dynamically related to the length of growing time of the endothelial cells in a high glucose environment. (2) The S% cells in Group A was decreased by 30.25% (from 40.23% to 28.06%) from 36 h to 72 h, and 12.33% (from 28.06% to 24.60%) from 72 h to 108 h; while in Group C, the corresponding decreases were 23.05% and 21.87%, respectively. The difference of S% cells between the two groups reached statistical significance at 108 h (P<0.05). (3) The percentage difference of cells in the G2/M phase between Group C and Group A was statistically significant at 72 h (P<0

  12. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Zeng, Xianglong; Guo, Hairun; Zhou, Binbin

    2012-01-01

    We propose an efficient approach to improve few-cycle soliton compression with cascaded quadratic nonlinearities by using an engineered multi-section structure of the nonlinear crystal. By exploiting engineering of the cascaded quadratic nonlinearities, in each section soliton compression...... with a low effective order is realized, and high-quality few-cycle pulses with large compression factors are feasible. Each subsequent section is designed so that the compressed pulse exiting the previous section experiences an overall effective self-defocusing cubic nonlinearity corresponding to a modest...... soliton order, which is kept larger than unity to ensure further compression. This is done by increasing the cascaded quadratic nonlinearity in the new section with an engineered reduced residual phase mismatch. The low soliton orders in each section ensure excellent pulse quality and high efficiency...

  13. Analytical Switching Cycle Modeling of Bidirectional High Voltage Flyback Converter for Capacitive Load Considering Core Loss Effect

    DEFF Research Database (Denmark)

    Huang, Lina; Zhang, Zhe; Andersen, Michael A. E.

    2015-01-01

    With the advancement of material science, various smart materials with intrinsic capacitive property are emerging. The high voltage (HV) power electronics converters with bidirectional energy flow functionality for supplying the capacitive load are highly demanded. A switching cycle based...... of configuration and working principle. Considering the parasitic elements as well as the core loss effect, the converter is modeled with analytical formulas for one switching cycle. The comparison between the model based calculation results and prototype experiments based measurement results are used to validate...... analytical model of HV bidirectional converter driving capacitive load is beneficial in thoroughly understanding the operational behavior, investigating the energy efficiency and optimizing the design. In this paper, a HV bidirectional flyback converter for capacitive load is generally discussed in terms...

  14. An analysis of the thermodynamic cycles with high-temperature nuclear reactor for power generation and hydrogen co-production

    Directory of Open Access Journals (Sweden)

    Dudek Michał

    2017-01-01

    Full Text Available In the present paper, numerical analysis of the thermodynamic cycle with the high-temperature nuclear gas reactor (HTGR for electricity and hydrogen production have been done. The analysed system consists of two independent loops. The first loop is for HTGR and consists of a nuclear reactor, heat exchangers, and blower. The second loop (Rankine cycle consist of up-to four steam turbines, that operate in heat recovery system. The analysis of the system shows that it is possible to achieve significantly higher efficiency than could be offered by traditional nuclear reactor technology (PWR and BWR. It is shown that the thermal efficiency about 52.5% it is possible to achieve when reactor works at standard conditions and steam is superheated up to 530oC. For the cases when the steam has supercritical conditions the value of thermal efficiency is still very high and equal about 50%.

  15. High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle.

    Science.gov (United States)

    Seeber, Martin; Scherer, Reinhold; Wagner, Johanna; Solis-Escalante, Teodoro; Müller-Putz, Gernot R

    2015-05-15

    Investigating human brain function is essential to develop models of cortical involvement during walking. Such models could advance the analysis of motor impairments following brain injuries (e.g., stroke) and may lead to novel rehabilitation approaches. In this work, we applied high-density EEG source imaging based on individual anatomy to enable neuroimaging during walking. To minimize the impact of muscular influence on EEG recordings we introduce a novel artifact correction method based on spectral decomposition. High γ oscillations (>60Hz) were previously reported to play an important role in motor control. Here, we investigate high γ amplitudes while focusing on two different aspects of a walking experiment, namely the fact that a person walks and the rhythmicity of walking. We found that high γ amplitudes (60-80Hz), located focally in central sensorimotor areas, were significantly increased during walking compared to standing. Moreover, high γ (70-90Hz) amplitudes in the same areas are modulated in relation to the gait cycle. Since the spectral peaks of high γ amplitude increase and modulation do not match, it is plausible that these two high γ elements represent different frequency-specific network interactions. Interestingly, we found high γ (70-90Hz) amplitudes to be coupled to low γ (24-40Hz) amplitudes, which both are modulated in relation to the gait cycle but conversely to each other. In summary, our work is a further step towards modeling cortical involvement during human upright walking. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Elemental Sulfur and Molybdenum Disulfide Composites for Li-S Batteries with Long Cycle Life and High-Rate Capability.

    Science.gov (United States)

    Dirlam, Philip T; Park, Jungjin; Simmonds, Adam G; Domanik, Kenneth; Arrington, Clay B; Schaefer, Jennifer L; Oleshko, Vladimir P; Kleine, Tristan S; Char, Kookheon; Glass, Richard S; Soles, Christopher L; Kim, Chunjoong; Pinna, Nicola; Sung, Yung-Eun; Pyun, Jeffrey

    2016-06-01

    The practical implementation of Li-S technology has been hindered by short cycle life and poor rate capability owing to deleterious effects resulting from the varied solubilities of different Li polysulfide redox products. Here, we report the preparation and utilization of composites with a sulfur-rich matrix and molybdenum disulfide (MoS2) particulate inclusions as Li-S cathode materials with the capability to mitigate the dissolution of the Li polysulfide redox products via the MoS2 inclusions acting as "polysulfide anchors". In situ composite formation was completed via a facile, one-pot method with commercially available starting materials. The composites were afforded by first dispersing MoS2 directly in liquid elemental sulfur (S8) with sequential polymerization of the sulfur phase via thermal ring opening polymerization or copolymerization via inverse vulcanization. For the practical utility of this system to be highlighted, it was demonstrated that the composite formation methodology was amenable to larger scale processes with composites easily prepared in 100 g batches. Cathodes fabricated with the high sulfur content composites as the active material afforded Li-S cells that exhibited extended cycle lifetimes of up to 1000 cycles with low capacity decay (0.07% per cycle) and demonstrated exceptional rate capability with the delivery of reversible capacity up to 500 mAh/g at 5 C.

  17. Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Novy, Frantisek; Skorik, Viktor [Zilina Univ. (Slovakia). Dept. of Materials Engineering; Janecek, Milos [Charles Univ., Prague (Czech Republic). Dept. of Physics of Materials; Mueller, Julia; Wagner, Lothar [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Materials Science and Technology

    2009-03-15

    The very high cycle fatigue properties of extruded AZ31, AZ80, and ZK60 magnesium alloys were investigated. Fatigue tests were performed at ultrasonic cyclic frequency and at a load ratio of R = -1 at ambient temperature using smooth electropolished specimens. Fatigue failures were observed at lifetimes above 10{sup 9} cycles. The fatigue life was found to increase with decreasing stress amplitude. The fracture surfaces and fracture profiles of selected specimens cycled until failure were examined. The purpose of the study was to determine the role of the microstructure on the fatigue crack nucleation and growth. Furthermore, the fatigue properties were discussed on the basis of microstructure and the presence of inclusions which are known as crack initiation sites. In AZ31 and AZ80 alloys only surface-induced fatigue cracks were observed. On the other hand, in the ZK60 alloy both surface- and interior-induced fatigue cracks were observed. Both mechanisms operate in the ZK60 also at a lifetime of around 10{sup 1}0 cycles. Interior-induced fatigue cracks were accompanied by clear fish-eye marks on the fracture surfaces of the ZK60 alloy. (orig.)

  18. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development.

    Science.gov (United States)

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  20. Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100 (Preprint)

    Science.gov (United States)

    2009-03-01

    transition fatigue regimes; however, microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue...and Socie [57] considered the affect of microplastic 14 Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base...considers the local stress state as affected by intergranular interactions and microplasticity . For the calculations given below, the volumes over which

  1. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    OpenAIRE

    Theresa Weith; Florian Heberle; Markus Preißinger; Dieter Brüggemann

    2014-01-01

    The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM) and octamethyltrisiloxane (MDM) are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process...

  2. Regenerative Polysulfide-Scavenging Layers Enabling Lithium-Sulfur Batteries with High Energy Density and Prolonged Cycling Life.

    Science.gov (United States)

    Liu, Fang; Xiao, Qiangfeng; Wu, Hao Bin; Sun, Fei; Liu, Xiaoyan; Li, Fan; Le, Zaiyuan; Shen, Li; Wang, Ge; Cai, Mei; Lu, Yunfeng

    2017-03-28

    Lithium-sulfur batteries, notable for high theoretical energy density, environmental benignity, and low cost, hold great potential for next-generation energy storage. Polysulfides, the intermediates generated during cycling, may shuttle between electrodes, compromising the energy density and cycling life. We report herein a class of regenerative polysulfide-scavenging layers (RSL), which effectively immobilize and regenerate polysulfides, especially for electrodes with high sulfur loadings (e.g., 6 mg cm-2). The resulting cells exhibit high gravimetric energy density of 365 Wh kg-1, initial areal capacity of 7.94 mAh cm-2, low self-discharge rate of 2.45% after resting for 3 days, and dramatically prolonged cycling life. Such blocking effects have been thoroughly investigated and correlated with the work functions of the oxides as well as their bond energies with polysulfides. This work offers not only a class of RSL to mitigate shuttling effect but also a quantified design framework for advanced lithium-sulfur batteries.

  3. A robust signal processing method for quantitative high-cycle fatigue crack monitoring using soft elastomeric capacitor sensors

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki

    2017-04-01

    A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.

  4. Survey report for fiscal 1998. Evaluation by industrial circles of the COP3 outcome and their future response (America); 1998 nendo chosa hokokusho. COP3 no kekka ni taisuru sangyokai no hyoka oyobi kongo no taio ni tsuite (Beikoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Response in America to COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) is investigated. Office of Energy Efficiency and Renewable Energy (EE) of America's Department of Energy conducts activities designed to protect environments and supports America's economic competitiveness. The scope of EE activities is quite wide, covering efforts at energy efficiency improvement and renewal energy utilization for all energy consuming sectors involving construction work and equipment for buildings, various industries and public utility works, and transportation. EE also supports and promotes the development of advanced industrial materials, electric vehicles, hybrid vehicles, fuel cells, etc. In the field of renewable energy, it deals with the exploitation of sunlight, biomass, wind force, water power, geothermal energy, etc. It also supports efficiency improvement efforts being undertaken through studies of advanced power transmission and distribution, high-temperature superconduction, energy storage, etc. The said supports are provided not only by Federal Government but also by state governments, and include financial aids. A number of programs are under way, worked out and promoted by the respective bureaus and departments. They are evaluated, protected, and implemented through the partnership of official and civilian organizations. (NEDO)

  5. New, Improved Version of the mCOP-PCR Screening System for Detection of Spinal Muscular Atrophy Gene (SMN1) Deletion.

    Science.gov (United States)

    Shinohara, Masakazu; Ar Rochmah, Mawaddah; Nakanishi, Kenta; Harahap, Nur Imma Fatimah; Niba, Emma Tabe Eko; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Bouike, Yoshihiro; Nishio, Hisahide

    2017-09-07

    Spinal muscular atrophy (SMA) is a frequent autosomal recessive disorder, characterized by lower motor neuron loss in the spinal cord. More than 95% of SMA patients show homozygous survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique. However, non-specific amplification products were observed with mCOP-PCR, which might lead to erroneous interpretation of the screening results. To establish an improved version of the mCOP-PCR screening system without non-specific amplification. DNA samples were assayed using a new version of the mCOP-PCR screening system. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The new mCOP-PCR method contained a targeted pre-amplification step of the region, including an SMN1-specific nucleotide, prior to the mCOP-PCR step. mCOP-PCR products were electrophoresed on agarose gels. No non-specific amplification products were detected in electrophoresis gels with the new mCOP-PCR screening system. An additional targeted pre-amplification step eliminated non-specific amplification from mCOP-PCR screening.

  6. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation.

    Science.gov (United States)

    Ranjan, Aashish; Dickopf, Stephen; Ullrich, Kristian K; Rensing, Stefan A; Hoecker, Ute

    2014-07-01

    Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis. To this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants. Our results show that COP1 protein sequences from Physcomitrella, rice and Arabidopsis have

  7. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation

    Science.gov (United States)

    2014-01-01

    Background Plants have evolved light sensing mechanisms to optimally adapt their growth and development to the ambient light environment. The COP1/SPA complex is a key negative regulator of light signaling in the well-studied dicot Arabidopsis thaliana. COP1 and members of the four SPA proteins are part of an E3 ubiquitin ligase that acts in darkness to ubiquitinate several transcription factors involved in light responses, thereby targeting them for degradation by the proteasome. While COP1 is also found in humans, SPA proteins appear specific to plants. Here, we have functionally addressed evolutionary conservation of COP1 and SPA orthologs from the moss Physcomitrella, the monocot rice and the dicot Arabidopsis. Results To this end, we analyzed the activities of COP1- and SPA-like proteins from Physcomitrella patens and rice when expressed in Arabidopsis. Expression of rice COP1 and Physcomitrella COP1 protein sequences predominantly complemented all phenotypic aspects of the viable, hypomorphic cop1-4 mutant and the null, seedling-lethal cop1-5 mutant of Arabidopsis: rice COP1 fully rescued the constitutive-photomorphogenesis phenotype in darkness and the leaf expansion defect of cop1 mutants, while it partially restored normal photoperiodic flowering in cop1. Physcomitrella COP1 partially restored normal seedling growth and flowering time, while it fully restored normal leaf expansion in the cop1 mutants. In contrast, expression of a SPA ortholog from Physcomitrella (PpSPAb) in Arabidopsis spa mutants did not rescue any facet of the spa mutant phenotype, suggesting that the PpSPAb protein is not functionally conserved or that the Arabidopsis function evolved after the split of mosses and seed plants. The SPA1 ortholog from rice (OsSPA1) rescued the spa mutant phenotype in dark-grown seedlings, but did not complement any spa mutant phenotype in light-grown seedlings or in adult plants. Conclusion Our results show that COP1 protein sequences from Physcomitrella

  8. CopR binds and bends its target DNA: a footprinting and fluorescence resonance energy transfer study.

    Science.gov (United States)

    Steinmetzer, Katrin; Behlke, Joachim; Brantl, Sabine; Lorenz, Mike

    2002-05-01

    Plasmid pIP501 encoded transcriptional repressor CopR is one of the two regulators of plasmid copy number. Previous data suggested that CopR is a HTH protein belonging to a family of 578 HTH proteins (termed HTH 3-family). Only a very limited number of proteins in this family, among them lambda c1 repressor, 434 c1 repressor and P22 c2 repressor, have been characterized in detail so far. Previously, a CopR structural model was built based on structural homologies to the 434 c1 and P22 c2 repressor and used to identify amino acids involved in DNA binding and dimerization. Site-directed mutagenesis in combination with electrophoretic mobility shift assay (EMSA), dimerization studies and circular dichroism (CD) measurements verified the model predictions. In this study we used hydroxyl radical footprinting and fluorescence resonance energy transfer (FRET) measurements to obtain detailed information about the structure of the DNA in the CopR-DNA complex. Our results show that the DNA is bent gently around the protein, comparable to the bending angle of 20-25 degrees observed in the 434 c1 repressor-DNA complex and the lambda c1 repressor-DNA complex. The shape of CopR dimers as determined by sedimentation velocity experiments is extended and accounts for the relatively large area of protection observed with hydroxyl radical footprinting.

  9. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200°C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200°C and 40 bar was found to be acceptable after 399

  10. Influence of defects on the very high cycle fatigue behaviour of forged aeronautic titanium alloy

    Directory of Open Access Journals (Sweden)

    Nikitin Alexander

    2014-06-01

    Full Text Available This paper is focused on fatigue failure of forged aeronautic titanium alloy Ti-6Al-4Mo under VHCF loading. Continuous fatigue tests were carried out in gigacycle fatigue regime (up to on 1010 cycles on specimens machined from real aircraft compressor disk produced by forging. It has been shown, that crack initiation site shifts from surface to subsurface location with stress amplitude decreasing and fatigue life increasing. Microstructural inhomogeneities so that “hard” alpha particles, borders of large alpha lamella clusters and TiN particles are the cause of fatigue crack nucleation in forged Ti-6Al-4Mo titanium alloy under VHCF loading.

  11. First Law Analysis of a Two-stage Ejector-vapor Compression Refrigeration Cycle working with R404A

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2011-10-01

    Full Text Available The traditional two-stage vapor compression refrigeration cycle might be replaced by a two-stage ejector-vapor compression refrigeration cycle if it is aimed the decrease of irreversibility during expansion. In this respect, the expansion valve is changed with an ejector. The performance improvement is searched in the case of choosing R404A as a refrigerant. Using the ejector as an expansion device ensures a higher value for COP compared to the traditional case. On the basis of the ejector approach it possible to identify the highest COP value for a given condensation temperature, when the evaporation temperature varies.

  12. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  13. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  14. Control of multicellular development by the physically interacting deneddylases DEN1/DenA and COP9 signalosome.

    Directory of Open Access Journals (Sweden)

    Martin Christmann

    Full Text Available Deneddylases remove the ubiquitin-like protein Nedd8 from modified proteins. An increased deneddylase activity has been associated with various human cancers. In contrast, we show here that a mutant strain of the model fungus Aspergillus nidulans deficient in two deneddylases is viable but can only grow as a filament and is highly impaired for multicellular development. The DEN1/DenA and the COP9 signalosome (CSN deneddylases physically interact in A. nidulans as well as in human cells, and CSN targets DEN1/DenA for protein degradation. Fungal development responds to light and requires both deneddylases for an appropriate light reaction. In contrast to CSN, which is necessary for sexual development, DEN1/DenA is required for asexual development. The CSN-DEN1/DenA interaction that affects DEN1/DenA protein levels presumably balances cellular deneddylase activity. A deneddylase disequilibrium impairs multicellular development and suggests that control of deneddylase activity is important for multicellular development.

  15. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline.

    Science.gov (United States)

    Pulvino, Mary; Chen, Luojing; Oleksyn, David; Li, Jing; Compitello, George; Rossi, Randy; Spence, Stephen; Balakrishnan, Vijaya; Jordan, Craig; Poligone, Brian; Casulo, Carla; Burack, Richard; Shapiro, Joel L; Bernstein, Steven; Friedberg, Jonathan W; Deshaies, Raymond J; Land, Hartmut; Zhao, Jiyong

    2015-06-20

    In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes.

  16. Inositol hexakisphosphate (IP6) generated by IP5K mediates cullin-COP9 signalosome interactions and CRL function.

    Science.gov (United States)

    Scherer, Paul C; Ding, Yan; Liu, Zhiqing; Xu, Jing; Mao, Haibin; Barrow, James C; Wei, Ning; Zheng, Ning; Snyder, Solomon H; Rao, Feng

    2016-03-29

    The family of cullin-RING E3 Ligases (CRLs) and the constitutive photomorphogenesis 9 (COP9) signalosome (CSN) form dynamic complexes that mediate ubiquitylation of 20% of the proteome, yet regulation of their assembly/disassembly remains poorly understood. Inositol polyphosphates are highly conserved signaling molecules implicated in diverse cellular processes. We now report that inositol hexakisphosphate (IP6) is a major physiologic determinant of the CRL-CSN interface, which includes a hitherto unidentified electrostatic interaction between the N-terminal acidic tail of CSN subunit 2 (CSN2) and a conserved basic canyon on cullins. IP6, with an EC50 of 20 nM, acts as an intermolecular "glue," increasing cullin-CSN2 binding affinity by 30-fold, thereby promoting assembly of the inactive CRL-CSN complexes. The IP6 synthase, Ins(1,3,4,5,6)P5 2-kinase (IPPK/IP5K) binds to cullins. Depleting IP5K increases the percentage of neddylated, active Cul1 and Cul4A, and decreases levels of the Cul1/4A substrates p27 and p21. Besides dysregulating CRL-mediated cell proliferation and UV-induced apoptosis, IP5K depletion potentiates by 28-fold the cytotoxic effect of the neddylation inhibitor MLN4924. Thus, IP5K and IP6 are evolutionarily conserved components of the CRL-CSN system and are potential targets for cancer therapy in conjunction with MLN4924.

  17. Combination of sago and soy-protein supplementation during endurance cycling exercise and subsequent high-intensity endurance capacity.

    Science.gov (United States)

    Ghosh, Asok Kumar; Rahaman, A Abdul; Singh, Rabindarjeet

    2010-06-01

    The purpose of the study was to investigate whether a combination of sago and soy protein ingested during moderate-intensity cycling exercise can improve subsequent high-intensity endurance capacity compared with a carbohydrate in the form of sago and with a placebo. The participants were 8 male recreational cyclists with age, weight, and VO2max of 21.5 +/- 1.1 yr, 63.3 +/- 2.4 kg, and 39.9 +/- 1.1 ml . kg(-1) . min(-1), respectively. The design of the study was a randomized, double-blind placebo-controlled crossover comprising 60 min of exercise on a cycle ergometer at 60% VO2max followed by a time-to-exhaustion ride at 90% VO2max. The sago feeding provided 60 g of carbohydrate, and the sago-soy combination provided 52.5 g of carbohydrate and 15 g of protein, both at 20-min intervals during exercise. Times to exhaustion for the placebo, sago, and sago-soy supplementations were 4.09 +/- 1.28, 5.49 +/- 1.20, and 7.53 +/- 2.02 min, respectively. Sago-soy supplementation increased endurance by 84% (44-140%; p sago, respectively. The plasma insulin response was elevated above that with placebo during sago and sago-soy supplementations. The authors conclude that a combination of sago and soy protein can delay fatigue during high-intensity cycling.

  18. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage.

    Science.gov (United States)

    Pasta, Mauro; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2012-01-01

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles.

  19. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  20. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage

    KAUST Repository

    Pasta, Mauro

    2012-10-23

    New types of energy storage are needed in conjunction with the deployment of solar, wind and other volatile renewable energy sources and their integration with the electric grid. No existing energy storage technology can economically provide the power, cycle life and energy efficiency needed to respond to the costly short-term transients that arise from renewables and other aspects of grid operation. Here we demonstrate a new type of safe, fast, inexpensive, long-life aqueous electrolyte battery, which relies on the insertion of potassium ions into a copper hexacyanoferrate cathode and a novel activated carbon/polypyrrole hybrid anode. The cathode reacts rapidly with very little hysteresis. The hybrid anode uses an electrochemically active additive to tune its potential. This high-rate, high-efficiency cell has a 95% round-trip energy efficiency when cycled at a 5C rate, and a 79% energy efficiency at 50C. It also has zero-capacity loss after 1,000 deep-discharge cycles. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. Montmorency Cherries Reduce the Oxidative Stress and Inflammatory Responses to Repeated Days High-Intensity Stochastic Cycling

    Directory of Open Access Journals (Sweden)

    Phillip G. Bell

    2014-02-01

    Full Text Available This investigation examined the impact of Montmorency tart cherry concentrate (MC on physiological indices of oxidative stress, inflammation and muscle damage across 3 days simulated road cycle racing. Trained cyclists (n = 16 were divided into equal groups and consumed 30 mL of MC or placebo (PLA, twice per day for seven consecutive days. A simulated, high-intensity, stochastic road cycling trial, lasting 109 min, was completed on days 5, 6 and 7. Oxidative stress and inflammation were measured from blood samples collected at baseline and immediately pre- and post-trial on days 5, 6 and 7. Analyses for lipid hydroperoxides (LOOH, interleukin-6 (IL-6, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, interleukin-1-beta (IL-1-β, high-sensitivity C-reactive protein (hsCRP and creatine kinase (CK were conducted. LOOH (p < 0.01, IL-6 (p < 0.05 and hsCRP (p < 0.05 responses to trials were lower in the MC group versus PLA. No group or interaction effects were found for the other markers. The attenuated oxidative and inflammatory responses suggest MC may be efficacious in combating post-exercise oxidative and inflammatory cascades that can contribute to cellular disruption. Additionally, we demonstrate direct application for MC in repeated days cycling and conceivably other sporting scenario’s where back-to-back performances are required.

  2. High temperature, low-cycle fatigue of copper-base alloys for rocket nozzles. Part 2: Strainrange partitioning and low-cycle fatigue results at 538 deg C

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1976-01-01

    Low-cycle fatigue tests of 1/2 Hard AMZIRC Copper and NARloy Z were performed in argon at 538 C to determine partitioned strain range versus life relationships. Strain-controlled low-cycle fatigue tests of a Zr-Cr-Mg copper-base alloy were also performed. Strain ranges, lower than those employed in previous tests, were imposed in order to extend the fatigue life curve out to approximately 400,000 cycles. An experimental copper alloy and an experimental silver alloy were also studied. Tensile tests were performed in air at room temperature and in argon at 538 C. Strain-controlled low-cycle fatigue tests were performed at 538 C in argon to define the fatigue life over the regime from 300 to 3,000 cycles. For the silver alloy, three additional heat treatments were introduced, and a limited evaluation of the short-term tensile and low-cycle fatigue behavior at 538 C was performed.

  3. Sub-cycle ionization dynamics revealed by trajectory resolved, elliptically-driven high-order harmonic generation

    Science.gov (United States)

    Larsen, E. W.; Carlström, S.; Lorek, E.; Heyl, C. M.; Paleček, D.; Schafer, K. J.; L’Huillier, A.; Zigmantas, D.; Mauritsson, J.

    2016-01-01

    The sub-cycle dynamics of electrons driven by strong laser fields is central to the emerging field of attosecond science. We demonstrate how the dynamics can be probed through high-order harmonic generation, where different trajectories leading to the same harmonic order are initiated at different times, thereby probing different field strengths. We find large differences between the trajectories with respect to both their sensitivity to driving field ellipticity and resonant enhancement. To accurately describe the ellipticity dependence of the long trajectory harmonics we must include a sub-cycle change of the initial velocity distribution of the electron and its excursion time. The resonant enhancement is observed only for the long trajectory contribution of a particular harmonic when a window resonance in argon, which is off-resonant in the field-free case, is shifted into resonance due to a large dynamic Stark shift. PMID:27991521

  4. Summary of workshop on materials issues in low emission boilers and high efficiency coal-fired cycles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The purpose of the workshop was to review with experts in the field the materials issues associated with two of the primary coal power systems being developed by the DOE Office of Fossil Energy. The DOE-FE Advanced Power Systems Program includes natural gas-based and coal-based power systems. Major activities in the natural gas-based power systems area include the Advanced Turbine Systems (ATS) Program, the Fuel Cells Program, and Hybrid Cycles. The coal-based power systems projects include the Low Emissions Boiler Systems (LEBS) Program, the High-Performance Power Systems Program (HIPPS), the Integrated (Coal) Gasification Combined-Cycle Program, and the Fluidized-Bed Combustion Program. This workshop focused on the materials issues associated with the LEBS and HIPPS technologies.

  5. SmartCop: Enabling Smart Traffic Violations Ticketing in Vehicular Named Data Networks

    Directory of Open Access Journals (Sweden)

    Syed Hassan Ahmed

    2016-01-01

    Full Text Available Recently, various applications for Vehicular Ad hoc Networks (VANETs have been proposed and smart traffic violation ticketing is one of them. On the other hand, the new Information-Centric Networking (ICN architectures have emerged and been investigated into VANETs, such as Vehicular Named Data Networking (VNDN. However, the existing applications in VANETs are not suitable for VNDN paradigm due to the dependency on a “named content” instead of a current “host-centric” approach. Thus, we need to design the emerging and new architectures for VNDN applications. In this paper, we propose a smart traffic violation ticketing (TVT system for VNDN, named as SmartCop, that enables a cop vehicle (CV to issue tickets for traffic violation(s to the offender(s autonomously, once they are in the transmission range of that CV. The ticket issuing delay, messaging cost, and percentage of violations detected for varying number of vehicles, violators, CVs, and vehicles speeds are estimated through simulations. In addition, we provide a road map of future research directions for enabling safe driving experience in future cars aided with VNDN technology.

  6. Al-Doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity.

    Science.gov (United States)

    Zhang, Rong; Tang, Chun; Kong, Rongmei; Du, Gu; Asiri, Abdullah M; Chen, Liang; Sun, Xuping

    2017-04-06

    The scalable production of hydrogen fuel through electrochemical water reduction needs efficient Earth-abundant electrocatalysts to make the whole water-splitting process more energy efficient. In this Article, we report that an Al-doped CoP nanoarray on carbon cloth (Al-CoP/CC) behaves as a durable hydrogen evolution electrocatalyst with superhigh activity in 0.5 M H2SO4. It demands a pretty low overpotential of 23 mV to drive a geometrical catalytic current density of 10 mA cm-2, outperforming all reported non-precious metal catalysts. Density functional theory calculations reveal that Al-CoP has a more thermo-neutral hydrogen adsorption free energy than CoP. Notably, this Al-CoP/CC is also superior in activity and durability as a bifunctional catalyst for alkaline water electrolysis, and its two-electrode water electrolyser delivers 10 mA cm-2 water-splitting current at a cell voltage of 1.56 V in 1.0 M KOH. This work offers us an attractive cost-effective catalyst electrode in water-splitting devices for large-scale production of hydrogen fuels.

  7. Simulation of Organic Matter and Pollutant Evolution during Composting: The COP-Compost Model.

    Science.gov (United States)

    Lashermes, G; Zhang, Y; Houot, S; Steyer, J P; Patureau, D; Barriuso, E; Garnier, P

    2013-01-01

    Organic pollutants (OPs) are potentially present in composts and the assessment of their content and bioaccessibility in these composts is of paramount importance. In this work, we proposed a model to simulate the behavior of OPs and the dynamic of organic C during composting. This model, named COP-Compost, includes two modules. An existing organic C module is based on the biochemical composition of the initial waste mixture and simulates the organic matter transformation during composting. An additional OP module simulates OP mineralization and the evolution of its bioaccessibility. Coupling hypotheses were proposed to describe the interactions between organic C and OP modules. The organic C module, evaluated using experimental data obtained from 4-L composting pilots, was independently tested. The COP-Compost model was evaluated during composting experiments containing four OPs representative of the major pollutants detected in compost and targeted by current and future regulations. These OPs included a polycyclic aromatic hydrocarbon (fluoranthene), two surfactants (4--nonylphenol and a linear alkylbenzene sulfonate), and an herbicide (glyphosate). Residues of C-labeled OP with different bioaccessibility were characterized by sequential extraction and quantified as soluble, sorbed, and nonextractable fractions. The model was calibrated and coupling the organic C and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    Science.gov (United States)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  9. Round robin comparison of tensile results on GlidCop Al25

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.J. [Pacific Northwest National Lab., Richland, WA (United States); Zinkle, S.J. [Oak Ridge National Lab., TN (United States); Fabritsiev, S.A. [D.V. Efremov Inst. of Electro-Physical Apparatus, St. Petersburg (Russian Federation); Pokrovsky, A.S. [V.I. Lenin Research Inst. of Atomic Reactors, Dimitrovgrad (Russian Federation)

    1998-09-01

    A round robin comparison of the tensile properties of GlidCop{trademark} Al25 oxide dispersion strengthened copper was initiated between collaborating laboratories to evaluate the test and analysis procedures used in the irradiation experiments in SRIAR in Dimitrovgrad. The tests were conducted using the same tensile specimen geometry as used in previous irradiation experiments, with tests at each laboratory being conducted in air or vacuum at 25, 150, and 300 C at a strain rate of 3 {times} 10{sup {minus}4} s{sup {minus}1}. The strength of the GlidCop Al25 decreased as the test temperature increased, with no observable effect of testing in air versus vacuum on the yield and ultimate strengths. The uniform elongation decreased by almost a factor of 3 when the test temperature was raised from room temperature to 300 C, but the total elongation remained roughly constant over the range of test temperatures. Any effect of testing in air on the ductility may have been masked by the scatter introduced into the results because each laboratory tested the specimens in a different grip setup. In light of this, the results of the round robin tests demonstrated that the test and analysis procedures produced essentially the same values for tensile yield and ultimate, but significant variability was present in both the uniform and total elongation measurements due to the gripping technique.

  10. Effects of Vocal Fold Nodules on Glottal Cycle Measurements Derived from High-Speed Videoendoscopy in Children.

    Directory of Open Access Journals (Sweden)

    Rita R Patel

    Full Text Available The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5-11 years and 20 age and gender matched typically developing children (5-11 years during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video. A total of 12 kinematic features representing spatial and temporal characteristics of vibratory motion were calculated. Average values and standard deviations (cycle-to-cycle variability of the following kinematic features were computed: normalized peak displacement, normalized average opening velocity, normalized average closing velocity, normalized peak closing velocity, speed quotient, and open quotient. Group differences between children with and without vocal fold nodules were statistically investigated. While a moderate effect size was observed for the spatial feature of speed quotient, and the temporal feature of normalized average closing velocity in children with nodules compared to vocally normal children, none of the features were statistically significant between the groups after Bonferroni correction. The kinematic analysis of the mid-membranous vocal fold displacement revealed that children with nodules primarily differ from typically developing children in closing phase kinematics of the glottal cycle, whereas the opening phase kinematics are similar. Higher speed quotients and similar opening phase velocities suggest greater relative forces are acting on vocal fold in the closing phase. These findings suggest that future large-scale studies should focus on spatial and temporal features related to the closing phase of the glottal cycle for differentiating the kinematics of children with and without vocal fold nodules.

  11. Effects of Vocal Fold Nodules on Glottal Cycle Measurements Derived from High-Speed Videoendoscopy in Children.

    Science.gov (United States)

    Patel, Rita R; Unnikrishnan, Harikrishnan; Donohue, Kevin D

    2016-01-01

    The goal of this study is to quantify the effects of vocal fold nodules on vibratory motion in children using high-speed videoendoscopy. Differences in vibratory motion were evaluated in 20 children with vocal fold nodules (5-11 years) and 20 age and gender matched typically developing children (5-11 years) during sustained phonation at typical pitch and loudness. Normalized kinematic features of vocal fold displacements from the mid-membranous vocal fold point were extracted from the steady-state high-speed video. A total of 12 kinematic features representing spatial and temporal characteristics of vibratory motion were calculated. Average values and standard deviations (cycle-to-cycle variability) of the following kinematic features were computed: normalized peak displacement, normalized average opening velocity, normalized average closing velocity, normalized peak closing velocity, speed quotient, and open quotient. Group differences between children with and without vocal fold nodules were statistically investigated. While a moderate effect size was observed for the spatial feature of speed quotient, and the temporal feature of normalized average closing velocity in children with nodules compared to vocally normal children, none of the features were statistically significant between the groups after Bonferroni correction. The kinematic analysis of the mid-membranous vocal fold displacement revealed that children with nodules primarily differ from typically developing children in closing phase kinematics of the glottal cycle, whereas the opening phase kinematics are similar. Higher speed quotients and similar opening phase velocities suggest greater relative forces are acting on vocal fold in the closing phase. These findings suggest that future large-scale studies should focus on spatial and temporal features related to the closing phase of the glottal cycle for differentiating the kinematics of children with and without vocal fold nodules.

  12. Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors

    Science.gov (United States)

    Qiu, Zhipeng; Wang, Yesheng; Bi, Xu; Zhou, Tong; Zhou, Jin; Zhao, Jinping; Miao, Zhichao; Yi, Weiming; Fu, Peng; Zhuo, Shuping

    2018-02-01

    The development of supercapacitors with high energy density and power density is an important research topic despite many challenging issues exist. In this work, porous carbon material was prepared from corn straw biochar and used as the active electrode material for electric double-layer capacitors (EDLCs). During the KOH activation process, the ratio of KOH/biochar significantly affects the microstructure of the resultant carbon, which further influences the capacitive performance. The optimized carbon material possesses typical hierarchical porosity composed of multi-leveled pores with high surface area and pore volume up to 2790.4 m2 g-1 and 2.04 cm3 g-1, respectively. Such hierarchical micro-meso-macro porosity significantly improved the rate performance of the biochar-based carbons. The achieved maximum specific capacitance was 327 F g-1 and maintained a high value of 205 F g-1 at a ultrahigh current density of 100 A g-1. Meanwhile, the prepared EDLCs present excellent cycle stability in alkaline electrolytes for 120 000 cycles at 5 A g-1. Moreover, the biochar-based carbon could work at a high voltage of 1.6 V in neutral Na2SO4, and exhibit a high specific capacitance of 227 F g-1, thus giving an outstanding energy density of 20.2 Wh kg-1.

  13. Wear Assessment in High Cycle Rolling Contact Fatigue Using Semi-Analytical Approach

    Directory of Open Access Journals (Sweden)

    Michal ŠOFER

    2013-06-01

    Full Text Available Presented paper deals with ratcheting prediction in the field of contact fatigue for the case of line contact. For the stated purposes, the wear model proposed by A. Mazzu [1] is used, which stands out for its simplicity and time efficiency. The model is based on non-linear kinematic and isotropic hardening rule of Chaboche and Lemaitre. Mazzu´s approach is used in order to estimate the wear of wheel specimen as well as plastic shear strain accumulation in case of rolling/sliding contact after cycles in range from 4.10^5 to 1.10^6. Obtained results are compared with experimental data, available on author´s department.

  14. Life Cycle Assessment of high ligno-cellulosic biomass pyrolysis coupled with anaerobic digestion.

    Science.gov (United States)

    Righi, Serena; Bandini, Vittoria; Marazza, Diego; Baioli, Filippo; Torri, Cristian; Contin, Andrea

    2016-07-01

    A Life Cycle Assessment is conducted on pyrolysis coupled to anaerobic digestion to treat corn stovers and to obtain bioenergy and biochar. The analysis takes into account the feedstock treatment process, the fate of products and the indirect effects due to crop residue removal. The biochar is considered to be used as solid fuel for coal power plants or as soil conditioner. All results are compared with a corresponding fossil-fuel-based scenario. It is shown that the proposed system always enables relevant primary energy savings of non-renewable sources and a strong reduction of greenhouse gases emissions without worsening the abiotic resources depletion. Conversely, the study points out that the use of corn stovers for mulch is critical when considering acidification and eutrophication impacts. Therefore, removal of corn stovers from the fields must be planned carefully. Copyright © 2016. Published by Elsevier Ltd.

  15. High cycle fatigue of weld repaired cast Ti-6AI-4V

    Science.gov (United States)

    Hunter, G. B.; Hodi, F. S.; Eagar, T. W.

    1982-09-01

    In order to determine the effects of weld repair on fatigue life of titanium-6Al-4V castings, a series of specimens was exposed to variations in heat treatment, weld procedure, HIP cycle, cooling rate, and surface finish. The results indicate that weld repair is not detrimental to HCF properties as fatigue cracks were located primarily in the base metal. Fine surface finish and large colony size are the primary variables improving the fatigue life. The fusion zone resisted fatigue crack initiation due to a basketweave morphology and thin grain boundary alpha. Multipass welds were shown not to affect fatigue life when compared with single pass welds. A secondary HIP treatment was not detrimental to fatigue properties, but was found to be unnecessary.

  16. Impact of a Permo-Carboniferous high O2 event on the terrestrial carbon cycle

    Science.gov (United States)

    Beerling, D. J.; Berner, R. A.

    2000-01-01

    Independent models predicting the Phanerozoic (past 600 million years) history of atmospheric O2 partial pressure (pO2) indicate a marked rise to approximately 35% in the Permo-Carboniferous, around 300 million years before present, with the strong potential for altering the biogeochemical cycling of carbon by terrestrial ecosystems. This potential, however, would have been modified by the prevailing atmospheric pCO2 value. Herein, we use a process-based terrestrial carbon cycle model forced with a late Carboniferous paleoclimate simulation to evaluate the effects of a rise from 21 to 35% pO2 on terrestrial biosphere productivity and assess how this response is modified by current uncertainties in the prevailing pCO2 value. Our results indicate that a rise in pO2 from 21 to 35% during the Carboniferous reduced global terrestrial primary productivity by 20% and led to a 216-Gt (1 Gt = 1012 kg) C reduction in the vegetation and soil carbon storage, in an atmosphere with pCO2 = 0.03%. However, in an atmosphere with pCO2 = 0.06%, the CO2 fertilization effect is larger than the cost of photorespiration, and ecosystem productivity increases leading to the net sequestration of 117 Gt C into the vegetation and soil carbon reservoirs. In both cases, the effects result from the strong interaction between pO2, pCO2, and climate in the tropics. From this analysis, we deduce that a Permo-Carboniferous rise in pO2 was unlikely to have exerted catastrophic effects on ecosystem productivity (with pCO2 = 0.03%), and if pCO2 levels at this time were >0.04%, the water-use efficiency of land plants may even have improved. PMID:11050154

  17. Status and Development of the United Nations Framework Convention on Climate Change. Summary of the Paris COP21 and Marrakesh COP22 Summits

    Directory of Open Access Journals (Sweden)

    Javier Aldaz Berruezo

    2017-06-01

    Full Text Available The climate information provided by meteorological organizations on the situation and evolution of climate in the past few years can not be more alarming. From a scientific point of view, the evidence of climate change is indisputable. The causes are also well known: the action of man, which has altered natural processes. There is only some uncertainty about its potential effects, although we know that the worst is yet to come. The Paris COP21 Summit opened a window in the hope that the objectives and agreements that were reached in it - replacing those of the Kyoto Protocol, in force up to 2020 - signify a turning point in the fight against change climate. A maximum increase of 2 °C with respect to pre-industrial temperatures and a revision of the commitments every five years are the most important achievements of this Summit. However, Paris did not specify the operability of the agreements; for example, sanctions in case of non-compliance were not included, financial tools were not defined and the agreements were not binding. These tasks were left pending for the Marrakech Summit, the second part of the Paris event. Unfortunately, Marrakech has not lived up to expectations. The results of Marrakech can not be more disappointing. Without excusing the postponement of vital decisions, the international environment was not the most conducive for the countries that ratified the Paris Agreement to go ahead and do what was necessary for its implementation.

  18. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    The conventional high frequency signal injection method is to superimpose a high frequency voltage signal to the commanded stator voltage before space vector modulation. Therefore, the magnitude of the voltage used for machine torque production is limited. In this paper, a new high frequency...

  19. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    Science.gov (United States)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  20. NOx, Soot, and Fuel Consumption Predictions under Transient Operating Cycle for Common Rail High Power Density Diesel Engines

    Directory of Open Access Journals (Sweden)

    N. H. Walke

    2016-01-01

    Full Text Available Diesel engine is presently facing the challenge of controlling NOx and soot emissions on transient cycles, to meet stricter emission norms and to control emissions during field operations. Development of a simulation tool for NOx and soot emissions prediction on transient operating cycles has become the most important objective, which can significantly reduce the experimentation time and cost required for tuning these emissions. Hence, in this work, a 0D comprehensive predictive model has been formulated with selection and coupling of appropriate combustion and emissions models to engine cycle models. Selected combustion and emissions models are further modified to improve their prediction accuracy in the full operating zone. Responses of the combustion and emissions models have been validated for load and “start of injection” changes. Model predicted transient fuel consumption, air handling system parameters, and NOx and soot emissions are in good agreement with measured data on a turbocharged high power density common rail engine for the “nonroad transient cycle” (NRTC. It can be concluded that 0D models can be used for prediction of transient emissions on modern engines. How the formulated approach can also be extended to transient emissions prediction for other applications and fuels is also discussed.

  1. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Steuer, S., E-mail: Susanne.Steuer@ensma.fr [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Villechaise, P. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Pollock, T.M. [Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050 (United States); Cormier, J. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France)

    2015-10-01

    The influence of high thermal gradient processing on the creep and low cycle fatigue properties of the AM1 Ni-based single crystal superalloy has been studied. Isothermal creep (from 750 °C up to 1200 °C) and low cycle fatigue (750 °C and 950 °C) experiments were performed for AM1 alloy solidified with a conventional radiation cooled (Bridgman) and higher thermal gradient liquid-metal cooled (LMC) casting process to produce coarse and finer-scaled dendritic structures, respectively. There was no significant effect of the casting technique on creep properties, due to the very similar microstructures (γ′-size and γ-channel width) established after full heat treatment of both Bridgman and LMC samples. For low cycle fatigue properties, the benefit of the higher gradient LMC process was dependent on the testing temperature. At 750 °C, cracks primarily initiated at pores created by solidification shrinkage in both Bridgman and LMC samples. Samples produced by the LMC technique demonstrated fatigue lives up to 4 times longer, compared to the Bridgman samples, due to refined porosity. At 950 °C the low cycle fatigue properties of the LMC and conventionally solidified material were not distinguishable due to a shift of crack initiation sites from internal pores to oxidized surface layers or near-surface pores. The benefit of the LMC approach was, however, apparent in fatigue at 950 °C when testing in a vacuum environment. Based on these results, a crack initiation model based on the local slip activity close to casting defect is proposed.

  2. Influence of the Atmospheric Mass on the High Energy Cosmic Ray Muons during a Solar Cycle

    Directory of Open Access Journals (Sweden)

    A. H. Maghrabi

    2015-01-01

    Full Text Available The rate of the detected cosmic ray muons depends on the atmospheric mass, height of pion production level, and temperature. Corrections for the changes in these parameters are importance to know the properties of the primary cosmic rays. In this paper, the effect of atmospheric mass, represented here by the atmospheric pressure, on the cosmic ray was studied using data from the KACST muon detector during the 2002–2012 period. The analysis was conducted by calculating the barometric coefficient (α using regression analysis between the two parameters. The variation of α over different time scales was investigated. The results revealed a seasonal cycle of α with a maximum in September and a minimum in March. Data from Adelaide muon detector were used, and different monthly variation was found. The barometric coefficient displays considerable variability at the interannual scale. Study of the annual variations of α indicated cyclic variation with maximums between 2008 and 2009 and minimums between 2002 and 2003. This variable tendency is found to be anticorrelated with the solar activity, represented by the sunspot number. This finding was compared with the annual trend of α for the Adelaide muon detector for the same period of time, and a similar trend was found.

  3. Acceleration of Charged Particles by High Intensity Few-Cycle Laser Pulses

    CERN Document Server

    Schramm, Ulrich; Geissler, Michael; Grüner, Florian; Habs, Dietrich; Karsch, Stefan; Krausz, Ferenc; Meyer-ter-Vehn, J; Schmid, K; Schreiber, J; Tsakiris, George; Veisz, Laszlo; Witte, Klaus

    2005-01-01

    Only recently a breakthrough in laser plasma acceleration has been achieved with the observation of intense (nC) mono-energetic (10% relative width) electron beams in the 100MeV energy range.* Above the wave-breaking threshold the electrons are trapped and accelerated in a single wake of the laser pulse, called bubble, according to PIC simulations.** However, pulse energis varied from shot-to-shot in the experiments. At the MPQ Garching we prepare the stable acceleration of electrons by this bubble regime by the use of 10TW few-cycle laser pulse. As the pulse lenght of 5-10fs remains below the plasma period also at higher plama densities, we expect the scheme to be more stable and efficient. The status of the experiment will be reported. Further, we exploit a colliding beam setup existing at the Jena multi TW laser system for the investigation of the positron generation in the electron-electron collision or in the collision of hard X-rays resulting from Thomson backscattering. The presentation of results on h...

  4. High-Performance Hydrogen Storage Nanoparticles Inside Hierarchical Porous Carbon Nanofibers with Stable Cycling.

    Science.gov (United States)

    Xia, Guanglin; Chen, Xiaowei; Zhao, Yan; Li, Xingguo; Guo, Zaiping; Jensen, Craig M; Gu, Qinfen; Yu, Xuebin

    2017-05-10

    An effective route based on space-confined chemical reaction to synthesize uniform Li2Mg(NH)2 nanoparticles is reported. The hierarchical pores inside the one-dimensional carbon nanofibers (CNFs), induced by the creation of well-dispersed Li3N, serve as intelligent nanoreactors for the reaction of Li3N with Mg-containing precursors, resulting in the formation of uniformly discrete Li2Mg(NH)2 nanoparticles. The nanostructured Li2Mg(NH)2 particles inside the CNFs are capable of complete hydrogenation and dehydrogenation at a temperature as low as 105 °C with the suppression of ammonia release. Furthermore, by virtue of the nanosize effects and space-confinement by the porous carbon scaffold, no degradation was observed after 50 de/rehydrogenation cycles at a temperature as low as 130 °C for the as-prepared Li2Mg(NH)2 nanoparticles, indicating excellent reversibility. Moreover, the theoretical calculations demonstrate that the reduction in particle size could significantly enhance the H2 sorption of Li2Mg(NH)2 by decreasing the relative activation energy barrier, which agrees well with our experimental results. This method could represent an effective, general strategy for synthesizing nanoparticles of complex hydrides with stable reversibility and excellent hydrogen storage performance.

  5. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  6. Collaborative Writing Revision Process among Learners of English as a Foreign Language (EFL) in an Online Community of Practice (CoP)

    Science.gov (United States)

    Razak, Norizan Abdul; Saeed, Murad Abdu

    2014-01-01

    This qualitative study aimed to identify the revision strategies among learners of English as a foreign language (EFL). It also examined the focus of these strategies and learners' participation and membership in an online community of practice (CoP). As part of shared practices in this online CoP via a Facebook group, these revision writing…

  7. 30 CFR 285.700 - What reports must I submit to MMS before installing facilities described in my approved SAP, COP...

    Science.gov (United States)

    2010-07-01

    ... installing facilities described in my approved SAP, COP, or GAP? 285.700 Section 285.700 Mineral Resources... § 285.700 What reports must I submit to MMS before installing facilities described in my approved SAP... in your approved COP (§ 285.632(a)) and, when required by this part, your SAP (§ 285.614(b)) or GAP...

  8. Digital Micromirror Device (DMD-Based High-Cycle Torsional Fatigue Testing Micromachine for 1D Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenchen Jiang

    2016-03-01

    Full Text Available Fatigue behavior of nanomaterials could ultimately limit their applications in variable nano-devices and flexible nanoelectronics. However, very few existing nanoscale mechanical testing instruments were designed for dedicated fatigue experiments, especially for the challenging torsional cyclic loading. In this work, a novel high-cycle torsion straining micromachine, based on the digital micromirror device (DMD, has been developed for the torsional fatigue study on various one-dimensional (1D nanostructures, such as metallic and semiconductor nanowires. Due to the small footprint of the DMD chip itself and its cable-remote controlling mechanisms, it can be further used for the desired in situ testing under high-resolution optical or electron microscopes (e.g., scanning electron microscope (SEM, which allows real-time monitoring of the fatigue testing status and construction of useful structure-property relationships for the nanomaterials. We have then demonstrated its applications for testing nanowire samples with diameters about 100 nm and 500 nm, up to 1000 nm, and some of them experienced over hundreds of thousands of loading cycles before fatigue failure. Due to the commercial availability of the DMD and millions of micromirrors available on a single chip, this platform could offer a low-cost and high-throughput nanomechanical solution for the uncovered torsional fatigue behavior of various 1D nanostructures.

  9. BIODEGRADACIÓN DE COMPUESTOS ORGÁNICOSPERSISTENTES (COP: I. EL CASO DE LOS BIFENILOSPOLICLORADOS (PCB

    Directory of Open Access Journals (Sweden)

    ZIV ARBELI

    2009-01-01

    Full Text Available RESUMEN Los contaminantes orgánicos persistentes poseen propiedades tóxicas, son resistentes a la degradación, se bioacumulan y son transportados por el aire, el agua y las especies migratorias a través de las fronteras internacionales; en consecuencia se depositan lejos del lugar de su liberación, acumulándose en ecosistemas terrestres y acuáticos. Para atender a esta problemática a nivel mundial se firmó el 23 de mayo de 2001 el Convenio de Estocolmo. Aunque por ahora los COP estan prohibidos en la mayoria de los países, todavía existen en el mundo muchos sitios contaminados con estas sustancias. La remediación de sitios que presentan contaminantes orgánicos persistentes requiere consideraciones distintas a las contempladas en la recupe-ración por contaminación de hidrocarburos. El siguiente texto revisa la literatura sobre la biodegradación anaeróbica y aeróbica de los bifeniles policlorados (PCB y las posibles estrategias para estimular dicha biodegradación. La degradación de los demás COP será descritas en textos adicionales. Palabras clave: contaminantes orgánicos persistentes (COP; bifeniles policlorados (PCB; biodegradación; biorremediación. ABSTRACT Persistent organic pollutants are chemicals that are toxic to humans and wildlife, remain intact in the environment for long periods, accumulate in living organisms and can become widely distributed geographically by air, water or migrating species. As a result, these contaminants have been found all over the world including in places, such as the Polar Regions, which are very far from their application site. The Stockholm Convention was signed in 23/5/01 in order to cope with this international environmental problem. Although POPs were banned by most countries, there are still a lot of sites contaminated with these substances. The remediation of these sites is problematic and requires distinct considerations from those which are established for hydrocarbon

  10. Generation of high-photon flux-coherent soft x-ray radiation with few-cycle pulses.

    Science.gov (United States)

    Demmler, Stefan; Rothhardt, Jan; Hädrich, Steffen; Krebs, Manuel; Hage, Arvid; Limpert, Jens; Tünnermann, Andreas

    2013-12-01

    We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3·10(8) photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10(-9), which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.

  11. Worker dose under high-power operation of the J-PARC 3 GeV Rapid Cycling Synchrotron

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazami

    2017-01-01

    Full Text Available The J-PARC 3 GeV Rapid Cycling Synchrotron (RCS delivers a 1-MW, high-intensity beam to facilities downstream. In such high-intensity accelerators, the operational beam intensity is limited to keep worker exposure to the residual dose within acceptable tolerances. Therefore, we continue to pursue accelerator commissioning that reduces beam loss. In order to achieve further high-intensity operation, the J-PARC accelerator system has been drastically upgraded over the past two years. As a result, it was found that beam loss decreased, whereas output power increased; the residual doses were kept at the same level or decreased in RCS. A malfunction of a collimator occurred in April 2016, and we replaced it to a spare duct in a hurry. The broken collimator was higher activated, but exposure to workers was kept within the acceptable level.

  12. Evaluation of intrinsic groundwater vulnerability to pollution: COP method for pilot area of Carrara hydrogeological system (Northern Tuscany, Italy)

    Science.gov (United States)

    Baldi, B.; Guastaldi, E.; Rossetto, R.

    2009-04-01

    During the characterization of the Apuan Alps groundwater body ( "Corpo Idrico Sotterraneo Significativo", briefly CISS) (Regione Toscana, 2007) the intrinsic vulnerability has been evaluated for Carrara hydrogeological system (Northern Tuscany, Italy) by means of COP method, developed within COST 620 European Action (Zwalhlen, 2003). This system is both characterized by large data availability and it is considered an highly risky zone since groundwater protection problems (turbidity of the tapped spring waters and hydrocarbons contamination) and anthropic activity (marble quarries). The study area, 20 Km2large, has high relief energy, with elevations ranging from 5 to 1700 m amsl in almost 5 km. Runoff is scarce except during heavy rainfall; due to the presence of carbonate rocks infiltration is high: groundwater discharge at 155-255 m amsl. The area is located in the north-western part of Apuan Alps Metamorphic Complex, characterized by carbonate and non-carbonate rocks belonging to the non-metamorphic Tuscan Units (Carnic-Oligocene), Mesozoic Succession, Middle-Triassic Succession, and metamorphic Paleozoic rocks. The main geological structure of the area is the Carrara Syncline, constituted prevalently by dolostones, marbles and cherty limestones. These carbonate formations define several moderately to highly productive hydrogeological units, characterized by fissured and karst flow. Hydrogeological system may be subdivided in two different subsets, because of both geo-structural set up and area conformation. However, these are hydrogeologically connected since anisotropy and fractures of karst groundwater. The southern boundary of Carrara hydrogeological system shows important dammed springs, defined by low productive units of Massa Unit (Cambriano?-Carnic). COP methodology for evaluating intrinsic vulnerability of karst groundwater is based on three main factors for the definition of vulnerability itself: COPIndex = C (flow Concentration) *O (Overlying layers

  13. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Shaun D. [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, James [Brayton Energy, LLC, Portsmouth, NH (United States); Nash, James [Brayton Energy, LLC, Portsmouth, NH (United States); Farias, Jason [Brayton Energy, LLC, Portsmouth, NH (United States); Kesseli, Devon [Brayton Energy, LLC, Portsmouth, NH (United States); Caruso, William [Brayton Energy, LLC, Portsmouth, NH (United States)

    2016-04-06

    This project has performed solar receiver designs for two supercritical carbon dioxide (sCO2) power cycles. The first half of the program focused on a nominally 2 MWe power cycle, with a receiver designed for test at the Sandia Solar Thermal Test Facility. This led to an economical cavity-type receiver. The second half of the program focused on a 10 MWe power cycle, incorporating a surround open receiver. Rigorous component life and performance testing was performed in support of both receiver designs. The receiver performance objectives are set to conform to the US DOE goals of 6¢/kWh by 2020 . Key findings for both cavity-type and direct open receiver are highlighted below: A tube-based absorber design is impractical at specified temperatures, pressures and heat fluxes for the application; a plate-fin architecture however has been shown to meet performance and life targets; the $148/kWth cost of the design is significantly less than the SunShot cost target with a margin of 30%; the proposed receiver design is scalable, and may be applied to both modular cavity-type installations as well as large utility-scale open receiver installations; the design may be integrated with thermal storage systems, allowing for continuous high-efficiency electrical production during off-sun hours; costs associated with a direct sCO2 receiver for a sCO2 Brayton power cycle are comparable to those of a typical molten salt receiver; lifetimes in excess of the 90,000 hour goal are achievable with an optimal cell geometry; the thermal performance of the Brayton receiver is significantly higher than the industry standard, and enables at least a 30% efficiency improvement over the performance of the baseline steam-Rankine boiler/cycle system; brayton’s patent-pending quartz tube window provides a greater than five-percent efficiency benefit to the receiver by reducing both convection and radiation losses.

  14. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3

    Science.gov (United States)

    Wildes, A. R.; Simonet, V.; Ressouche, E.; Ballou, R.; McIntyre, G. J.

    2017-11-01

    The magnetic properties and magnetic structure are presented for CoPS3, a quasi-two-dimensional antiferromagnet on a honeycomb lattice with a Néel temperature of TN ∼120 K. The compound is shown to have XY-like anisotropy in its susceptibility, and the anisotropy is analysed to extract crystal field parameters. For temperatures between 2 K and 300 K, no phase transitions were observed in the field-dependent magnetization up to 10 Tesla. Single-crystal neutron diffraction shows that the magnetic propagation vector is k  =  (0 1 0) with the moments mostly along the {a} axis and with a small component along the {c} axis, which largely verifies the previously-published magnetic structure for this compound. The magnetic Bragg peak intensity decreases with increasing temperature as a power law with exponent 2β = 0.60 +/- 0.01 for T > 0.9~TN .

  15. It Takes Two to Tango. Climate Policy at COP 10 in Buenos Aires and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Ott, H.E.; Brouns, B.; Sterk, W.; Wittneben, B. [Wuppertal Institute for Climate, Environment and Energy, Wuppertal (Germany)

    2005-07-01

    The question of how to deal with the USA was once again one of the key concerns at the Tenth Conference of Parties (COP10) in Buenos Aires, Brazil, 6-17 December 2004. The European Union made a rather futile attempt to 'dance' with the United States, soon realizing that it takes two to tango. The main arena for this attempt was a rather innocent issue, namely the question of whether to organise seminars to discuss future directions of the regime. This issue is explored in this article first, followed by an analysis of the decisions taken on adaptation and the Clean Development Mechanism as well as of other decisions. The article concludes with an outlook on international climate policy in the years to come.

  16. Copépodos parásitos en Genypterus blacodes (Osteichtes

    Directory of Open Access Journals (Sweden)

    Paulina Donoso.

    2017-01-01

    Full Text Available Los peces del género Genypterus son un recurso importante en la industria pesquera, y estos se encuentran expuestos a una serie de ectoparásitos, entre los se encuentran los copépodos los cuales pueden ser muy específicos en sus hospedederos. Una de las especies parásitas corresponde a Sphyrium laevigatum el cual parasita además tres especies de importancia económica en las pesquerías locales chilenas. Se discuten en el presente trabajo la situación de S. laevigatum en G. blacodes, así como aspectos ecológicos y biogeográficos.

  17. Discursos e vozes na cobertura jornalística das COP15 e 16

    Directory of Open Access Journals (Sweden)

    Ilza Maria Tourinho Girardi

    2013-12-01

    Full Text Available O texto apresenta um exercício de análise da cobertura das Conferências da ONU sobre Mudanças Climáticas, COP 15 e 16, em revistas brasileiras e portuguesas publicadas em 2009 e 2010. Examina como foi construído o discurso sobre sustentabilidade e quais foram as vozes acionadas. Por meio da leitura produzida, teórica e metodologicamente baseada na análise do discurso e das fontes, foi possível evidenciar a predominância de um discurso ecotecnocrático e a opção privilegiada por fontes dos campos político e econômico

  18. Experiment investigation of laser shock peening on TC6 titanium alloy to improve high cycle fatigue performance

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Xiangfan, E-mail: skingkgd@163.com; He, Weifeng; Zhou, Liucheng; Li, Qipeng; Wang, Xuede

    2014-01-31

    Laser shock peening (LSP) is an innovative surface treatment technique, and can significantly improve the fatigue performance of metallic components. In this paper, the objective of this work was to improve the fatigue resistance of TC6 titanium alloy by laser shock peening. Firstly, the effects on the microstructure and mechanical properties with different LSP impacts were investigated, which were observed and measured by X-ray diffraction (XRD), transmission electron microscope (TEM), residual stress tester and microhardness tester. Specially, nanostructure was detected in the laser-peened surface layer with multiple LSP impacts. Whereafter, a better parameter was chosen to be applied on the standard vibration fatigue specimens. Via the high-cycle vibration fatigue tests, the high cycle fatigue limits of the specimens without and with LSP were obtained and compared. The fatigue results demonstrate that LSP can effectively improve the fatigue limit of TC6 titanium alloy. The strengthening mechanism was indicated by analyzing the effects on the microstructure and mechanical properties comprehensively.

  19. Research report for fiscal 1998. Industrial circles' evaluation of the outcome of COP3 and their response thereto (France); 1998 nendo chosa hokokusho. COP3 no kekka ni taisuru sangyokai no hyoka oyobi kongo no taio ni tsuite (France)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Since the CO{sub 2} emission reduction cost is high under the COP3 (Third Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change) rulings, they have made it clear that they will positively resort to the flexibility mechanism. This is to reserve a room for freely selecting power generation methods other than nuclear technologies with their nuclear power plants scheduled for renovation in the neighborhood of 2010. But the industrial circles are slow in responding, failing to accept the carbon fund concept. As for measures for greenhouse gas emissions reduction, since they depend on energy saving for their success, the response specially of the transportation division will be the key. In the industrial division, success depends on a voluntary consensus among industries that consume much energy. As steps to economize the trend of people's energy consumption, an energy tax and environmental tax are scheduled to be imposed. An overall program for greenhouse gas emission reduction is being drafted by a government committee, with the outline to be made known in May 1999 for finalization in autumn the same year. A power market liberalization bill has already been prepared, and a decision will soon be made on a plan for the second phase targets. France with take part in COP5, Bonn, Germany, with a general proposal carrying what are stated above. (NEDO)

  20. Study of the hyperabsorption-cycle heat pumps. Final report, December 1981-December 1982

    Energy Technology Data Exchange (ETDEWEB)

    Zawacki, T.S.; Macriss, R.Aa.

    1983-03-01

    The conventional absorption cycle has been commercialized for at least 30 to 40 years and has played a significant role in current development of gas-fired, absorption-type heat pumps for residential applications. The major inherent limitation of the conventional absorption cycle is its relatively low coefficient of performance (COP) even under the best conditions. This report presents a preliminary assessment of a radically new cycle, termed the 'Hyperabsorption' cycle, which uses saturated salt solutions (three phases present). Literature data on fluid systems, cycle formulation and conceptualization and performance calculations are presented.

  1. Gait COP trajectory of left side hip-dislocation and scoliotic patient using ankle-foot orthoses

    Science.gov (United States)

    Chong, Albert K.; Alrikabi, Redha; Milburn, Peter

    2017-07-01

    Plantar pressure-sensing mats and insole plantar sensor pads are ideal low-cost alternatives to force plates for capturing plantar COP excursion during gait. The acquired COP traces, in the form of pedobarographic images are favored by many clinicians and allied health professionals for evaluation of foot loading and balance in relation to foot biomechanics, foot injury, foot deformation, and foot ulceration. Researchers have recommended the use of COP trace for the biomechanical study of the deformed foot and lower-limb to improve orthosis design and testing. A correctly designed orthoses improves mobility and reduces pain in the foot, lower limb and lower spine region during gait. The research was carried out to evaluate the performance of two types of orthosis, namely: a custom-molded orthosis and an over-the-counter molded orthosis to determine the quality of gait of an adult scoliotic patient. COP trace patterns were compared with those of a healthy adult and showed the design of the custom-molded orthosis resulted in an improved quality of movements and provided enhanced stability for the deformed left foot during gait.

  2. Applications of RFID technology in dismounted soldier solution systems – study of mCOP system capabilities

    Directory of Open Access Journals (Sweden)

    Chmielewski Mariusz

    2016-01-01

    Full Text Available This paper discusses application of RFID technology in Dismounted Soldier Solutions gathered from the development and demonstration of mCOP platform. The software has been developed to elaborate Network Enabled Capabilities in tactical environments. Presented research was a part of demonstration prepared for the European Defence Agency. The main aim of the tool is the delivery of command support capabilities utilizing data fusion and integration mechanisms implemented in heterogeneous military mobile networks. Application of military integration standards such as JC3IEDM, NFFI and TSO supports interoperability with BMS class systems. Utilisation of RFID technology in mCOP software has several purposes, mainly used for process automation of authorisation and personal identification. Indirectly such functionalities can be used for implementation of UAV supported - Blue Force Tracking and IFF services. This research elaborates a set of implemented ideas for such solutions. Developed system serves as a multi-level and multi-platform command and control system supporting military and crisis operations. A crucial part of the system - mCOP, the handheld application for tactical level commanders, serves as personal toolkit for location monitoring and combat situation distribution and management. The tool delivers a set of tailored functionalities supporting commander’s situation awareness and decision making process. The mCOP hosting device equipped with RFID delivers also means of tactical , emergency, micro network communication.

  3. Design of a Walking Assistance Lower Limb Exoskeleton for Paraplegic Patients and Hardware Validation Using CoP

    Directory of Open Access Journals (Sweden)

    Jung-Hoon Kim

    2013-02-01

    Full Text Available The design of an assistive lower limb exoskeleton robot for paraplegic patients that can measure the centre of pressure is presented. In contrast with most biped walking robots, the centre of pressure (CoP or zero moment point (ZMP has not been actively used in the operation of exoskeleton robots. In order to measure CoP in our exoskeleton robot, two kinds of force sensor units are installed in the exoskeleton: low profile force sensors in foot modules to measure the human weight transferred to the ground and a load cell at the shank frame to measure the supporting force. The CoP of the exoskeleton robot is calculated from the above force sensors, an inclinometer at the waist, and the positions of 14 DOF exoskeleton joints with an algorithm to change the fixed pivot using a foot contact sensor. Experiments on an able-bodied person wearing the designed exoskeleton and walking on the ground are performed to validate the designed hardware system. Through the experiments, the trajectory of the CoP of the exoskeleton with a wearer are calculated based on the proposed algorithm and it is compared with the value measured by a commercial pressure measurement system.

  4. Actualizing Communities of Practice (COPs and Situated Learning for A Sustainable Eco-Village

    Directory of Open Access Journals (Sweden)

    Maria Victoria Pineda

    2016-05-01

    Full Text Available An eco-village as defined by Robert Gilman is a “human-scale, full-featured settlement where you feel you know the others, and human activities are integrated with natural, biological systems.” Roland Mayerl argued that this maybe ideal, but there are huge challenges. He claims the challenges are at different levels—there is the physical layer that constitutes food production, animals, water and wastewater treatment. Other layers will be the built environment, the economic system and the governance in the village.This paper argues that one of the challenging layers is the human layer that was excluded in the modeling of many eco-village works. While there are many good models of an eco-village, sustainability will primarily be laid on the shoulders of the members of the community or the village for that matter. Sustainability should be espoused by the members of the eco-village. But how can sustainability be attained? What sustainability approach or strategy can be employed?“Communities of practice (COP are formed by people who engage in a process of collective learning in a shared domain of human endeavor.“ (Wenger, 2004 COPs are concepts commonly applied in organizations and virtual communities. Using this approach together with periphery participation and situated learning, this paper presents a human-based model of a sustainable eco-village and some useful examples.The paper also argues that an eco-village necessitates the support of technology in enhancing and preserving the shared practices. Hence, use of social media deployed in the web is one of the recommended ways that also permit collective action among members of the eco-village.

  5. SMA Diagnosis: Detection of SMN1 Deletion with Real-Time mCOP-PCR System Using Fresh Blood DNA.

    Science.gov (United States)

    Niba, Emma Tabe Eko; Ar Rochmah, Mawaddah; Harahap, Nur Imma Fatimah; Awano, Hiroyuki; Morioka, Ichiro; Iijima, Kazumoto; Saito, Toshio; Saito, Kayoko; Takeuchi, Atsuko; Lai, Poh San; Bouike, Yoshihiro; Nishio, Hisahide; Shinohara, Masakazu

    2017-12-18

    Spinal muscular atrophy (SMA) is one of the most common autosomal recessive disorders. The symptoms are caused by defects of lower motor neurons in the spinal cord. More than 95% of SMA patients are homozygous for survival motor neuron 1 (SMN1) deletion. We previously developed a screening system for SMN1 deletion based on a modified competitive oligonucleotide priming-PCR (mCOP-PCR) technique using dried blood spot (DBS) on filter paper. This system is convenient for mass screening in the large population and/or first-tier diagnostic method of the patients in the remote areas. However, this system was still time-consuming and effort-taking, because it required pre-amplification procedure to avoid non-specific amplification and gel-electrophoresis to detect the presence or absence of SMN1 deletion. When the fresh blood samples are used instead of DBS, or when the gel-electrophoresis is replaced by real-time PCR, we may have a simpler and more rapid diagnostic method for SMA. To establish a simpler and more rapid diagnostic method of SMN1 deletion using fresh blood DNA. DNA samples extracted from fresh blood and stored at 4 ℃ for 1 month. The samples were assayed using a real-time mCOP-PCR system without pre-amplification procedures. DNA samples had already been genotyped by PCR-restriction fragment length polymorphism (PCR-RFLP), showing the presence or absence of SMN1 exon 7. The DNA samples were directly subjected to the mCOP-PCR step. The amplification of mCOP-PCR was monitored in a real-time PCR apparatus. The genotyping results of the real-time mCOP-PCR system using fresh blood DNA were completely matched with those of PCR-RFLP. In this real-time mCOP-PCR system using fresh blood-DNA, it took only four hours from extraction of DNA to detection of the presence or absence of SMN1 deletion, while it took more than 12 hours in PCR-RFLP. Our real-time mCOP-PCR system using fresh blood DNA was rapid and accurate, suggesting it may be useful for the first

  6. High strength reinforcing steel bars : low-cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  7. High strength reinforcing steel bars : low cycle fatigue behavior : final report - part B.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcing steel, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) reinfor...

  8. Exploring the Behaviour of Emerging Contaminants in the Water Cycle using the Capabilities of High Resolution Mass Spectrometry.

    Science.gov (United States)

    Hollender, Juliane; Bourgin, Marc; Fenner, Kathrin B; Longrée, Philipp; Mcardell, Christa S; Moschet, Christoph; Ruff, Matthias; Schymanski, Emma L; Singer, Heinz P

    2014-11-01

    To characterize a broad range of organic contaminants and their transformation products (TPs) as well as their loads, input pathways and fate in the water cycle, the Department of Environmental Chemistry (Uchem) at Eawag applies and develops high-performance liquid chromatography (LC) methods combined with high-resolution tandem mass spectrometry (HRMS/MS). In this article, the background and state-of-the-art of LC-HRMS/MS for detection of i) known targets, ii) suspected compounds like TPs, and iii) unknown emerging compounds are introduced briefly. Examples for each approach are taken from recent research projects conducted within the department. These include the detection of trace organic contaminants and their TPs in wastewater, pesticides and their TPs in surface water, identification of new TPs in laboratory degradation studies and ozonation experiments and finally the screening for unknown compounds in the catchment of the river Rhine.

  9. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G.F., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2011-01-10

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper-chlorine (Cu-Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to {approx}950 K, at a high COP of {approx}6.5. Based on measured data available in past literature, the authors have determined the T-s diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches {approx}2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper-chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at {approx}950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by

  10. Supplement of TCA cycle intermediates protects against high glucose/palmitate-induced INS-1 beta cell death.

    Science.gov (United States)

    Choi, Sung-E; Lee, Youn-Jung; Hwang, Geum-Sook; Chung, Joo Hee; Lee, Soo-Jin; Lee, Ji-Hyun; Han, Seung Jin; Kim, Hae Jin; Lee, Kwan-Woo; Kim, Youngsoo; Jun, Hee-Sook; Kang, Yup

    2011-01-15

    The aim of this study is to investigate the effect of mitochondrial metabolism on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death. Long-term treatment of INS-1 cells with HG/PA impaired energy-producing metabolism accompanying with depletion of TCA cycle intermediates. Whereas an inhibitor of carnitine palmitoyl transferase 1 augmented HG/PA-induced INS-1 cell death, stimulators of fatty acid oxidation protected the cells against the HG/PA-induced death. Furthermore, whereas mitochondrial pyruvate carboxylase inhibitor phenylacetic acid augmented HG/PA-induced INS-1 cell death, supplementation of TCA cycle metabolites including leucine/glutamine, methyl succinate/α-ketoisocaproic acid, dimethyl malate, and valeric acid or treatment with a glutamate dehydrogenase activator, aminobicyclo-heptane-2-carboxylic acid (BCH), significantly protected the cells against the HG/PA-induced death. In particular, the mitochondrial tricarboxylate carrier inhibitor, benzene tricarboxylate (BTA), also showed a strong protective effect on the HG/PA-induced INS-1 cell death. Knockdown of glutamate dehydrogenase or tricarboxylate carrier augmented or reduced the HG/PA-induced INS-1 cell death, respectively. Both BCH and BTA restored HG/PA-induced reduction of energy metabolism as well as depletion of TCA intermediates. These data suggest that depletion of the TCA cycle intermediate pool and impaired energy-producing metabolism may play a role in HG/PA-induced cytotoxicity to beta cells and thus, HG/PA-induced beta cell glucolipotoxicity can be protected by nutritional or pharmacological maneuver enhancing anaplerosis or reducing cataplerosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Effects of resistance-guided high intensity interval functional electrical stimulation cycling on an individual with paraplegia: A case report.

    Science.gov (United States)

    Dolbow, David R; Credeur, Daniel P

    2017-09-04

    Individuals with spinal cord injury (SCI) are more than twice as likely to develop and die from cardio-metabolic diseases as compared to able-bodied. This increased risk is thought to be in part due to accelerated muscle atrophy and reduced blood flow through sublesional arteries. Thus, strategies to recondition paralyzed skeletal muscles may help reduce cardio-metabolic disease risk. The purpose of this case report was to examine the impact of a novel, resistance-guided, high intensity interval training functional electrical stimulation (RG-HIIT-FES) cycling program on cardio-metabolic health in people with chronic SCI. One adult female with chronic T10 SCI. A novel RG-HIIT-FES cycling program three times per week for 10 weeks. Measures of body composition and cardio-metabolic health (vascular endothelial function of the brachial artery via flow-mediated dilation) and HbA1c blood values were performed at baseline and following completion of the RG-HIIT-FES program. Total body lean mass and legs lean mass increased 2.8% and 5.3% respectively while vastus lateralis thickness increased by 59.5%. Reactive hyperemia and flow mediated dilation change in brachial artery diameter increased by 11.1% and 147.7% following the program, respectively. HbA1c level changed minimally (5 to 4.9%). This case report suggests that RG-HIIT-FES cycling was an effective strategy to improve lean mass, and systemic vascular endothelial health in an individual with chronic SCI.

  12. A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays.

    Science.gov (United States)

    Chan, Grace Ka Yan; Kleinheinz, Tracy L; Peterson, David; Moffat, John G

    2013-01-01

    In order to efficiently characterize both antiproliferative potency and mechanism of action of small molecules targeting the cell cycle, we developed a high-throughput image-based assay to determine cell number and cell cycle phase distribution. Using this we profiled the effects of experimental and approved anti-cancer agents with a range mechanisms of action on a set of cell lines, comparing direct cell counting versus two metabolism-based cell viability/proliferation assay formats, ATP-dependent bioluminescence, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) reduction, and a whole-well DNA-binding dye fluorescence assay. We show that, depending on compound mechanisms of action, the metabolism-based proxy assays are frequently prone to 1) significant underestimation of compound potency and efficacy, and 2) non-monotonic dose-response curves due to concentration-dependent phenotypic 'switching'. In particular, potency and efficacy of DNA synthesis-targeting agents such as gemcitabine and etoposide could be profoundly underestimated by ATP and MTS-reduction assays. In the same image-based assay we showed that drug-induced increases in ATP content were associated with increased cell size and proportionate increases in mitochondrial content and respiratory flux concomitant with cell cycle arrest. Therefore, differences in compound mechanism of action and cell line-specific responses can yield significantly misleading results when using ATP or tetrazolium-reduction assays as a proxy for cell number when screening compounds for antiproliferative activity or profiling panels of cell lines for drug sensitivity.

  13. Low-dose methotrexate enhances cycling of highly anaplastic cancer cells

    OpenAIRE

    Cipolleschi, Maria Grazia; Marzi, Ilaria; Rovida, Elisabetta; Olivotto, Massimo; Dello Sbarba, Persio

    2016-01-01

    ABSTRACT We previously showed that cellular RedOx state governs the G1-S transition of AH130 hepatoma, a tumor spontaneously reprogrammed to the embryonic stem cell stage. This transition is impaired when the mithocondrial electron transport system is blocked by specific inhibitors (antimycin A) or the respiratory chain is saturated by adding to the cells high concentrations of pyruvate. The antimycin A or pyruvate block is removed by the addition of adequate concentrations of folate (F). Thi...

  14. Design and fabrication of highly open nickel cobalt sulfide nanosheets on Ni foam for asymmetric supercapacitors with high energy density and long cycle-life

    Science.gov (United States)

    Zha, Daosong; Fu, Yongsheng; Zhang, Lili; Zhu, Junwu; Wang, Xin

    2018-02-01

    Nickel cobalt sulfides (NiCo-S) are promising electrode materials for high-performance supercapacitors but normally show poor rate capability and unsatisfactory long-term endurance. To overcome these disadvantages, a properly constructed electrode architecture with abundant electron transport channels, excellent electronic conductivity and robust structural stability is required. Herein, considering that in situ transformation can mostly retain the specific structural advantages of the precursors, a two-step strategy is purposefully developed to construct a binder-free electrode composed of interconnected NiCo-S nanosheets on Ni foam (NiCo-S/NF), in which NiCo-S/NF is synthesized via the in situ sulfuration of networked acetate anion-intercalated nickel cobalt layered double hydroxide nanosheets loaded on Ni foam (A-NiCo-LDH/NF). Noticeably, the optimized Ni1Co1-S/NF exhibits an ultrahigh specific capacitance of 2553.9 F g-1 at 0.5 A g-1, excellent rate capability (1898.1 F g-1 at 50 A g-1) and superior cycling stability (nearly 90% capacitance retention after 10,000 cycles). Furthermore, the assembled asymmetric supercapacitor based on Ni1Co1-S/NF demonstrates a high energy density of 58.1 Wh kg-1 at a power density of 796 W kg-1 and impressive long-term durability even after a repeated charge/discharge process as long as 70,000 cycles (∼92% capacitance retention). The attractive properties endow the Ni1Co1-S/NF electrode with significant potential for high-performance energy storage devices.

  15. On the solar cycle variation in the barometer coefficients of high latitude neutron monitors

    Science.gov (United States)

    Kusunose, M.; Ogita, N.

    1985-01-01

    Evaluation of barometer coefficients of neutron monitors located at high latitudes has been performed by using the results of the spherical harmonic analysis based on the records from around twenty stations for twelve years from January 1966 to December 1977. The average of data at eight stations, where continuous records are available for twelve years, show that the absolute value of barometer coefficient is in positive correlation with the cosmic ray neutron intensity. The variation rate of the barometer coefficient to the cosmic ray neutron intensity is influenced by the changes in the cutoff rigidity and in the primary spectrum.

  16. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Rice, Charles M

    2013-01-01

    More than two decades of intense research has provided a detailed understanding of hepatitis C virus (HCV), which chronically infects 2% of the world's population. This effort has paved the way for the development of antiviral compounds to spare patients from life-threatening liver disease....... An exciting new era in HCV therapy dawned with the recent approval of two viral protease inhibitors, used in combination with pegylated interferon-α and ribavirin; however, this is just the beginning. Multiple classes of antivirals with distinct targets promise highly efficient combinations, and interferon...

  17. Significant Impact of Glacial Meltwater on the Pelagic Carbon Cycle in a High Arctic Greenland Fjord

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Bruhn, Annette; Sejr, Mikael Kristian

    2014-01-01

    Global warming has accelerated the melting of the Greenland Ice Cap (GIC) resulting in increased loading of coastal waters with meltwater and associated inorganic particles and organic matter, a development that is projected to be enhanced in the future. In Young Sound, North Eastern Greenland...... with respiration rates 2–3 fold higher in the turbid inner fjord than in the outer less turbid waters. At high turbidity close to a river outlet, gross primary production (O2 mass balance in bottles) was below detection whereas these both were around 2 µM O2 d-1 in the outer part of the fjord and in the Greenland...

  18. High Cycling Performance Cathode Material: Interconnected LiFePO4/Carbon Nanoparticles Fabricated by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Zhigao Yang

    2014-01-01

    Full Text Available Interconnected LiFePO4/carbon nanoparticles for Li-ion battery cathode have been fabricated by sol-gel method followed by a carbon coating process involving redox reactions. The carbon layers coated on the LiFePO4 nanoparticles not only served as a protection layer but also supplied fast electrons by building a 3D conductive network. As a cooperation, LiFePO4 nanoparticles encapsulated in interconnected conductive carbon layers provided the electrode reactions with fast lithium ions by offering the lithium ions shortening and unobstructed pathways. Field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD tests showed optimized morphology. Electrochemical characterizations including galvanostatic charge/discharge, cyclic voltammetry (CV, and electrochemical impedance spectroscopy (EIS tests, together with impedance parameters calculated, all indicated better electrochemical performance and excellent cycling performance at high rate (with less than 9.5% discharge capacity loss over 2000 cycles, the coulombic efficiency maintained about 100%.

  19. The Ferrocyanide/Stabilized Carbon System, a New Class of High Rate, Long Cycle Life, Aqueous Electrolyte Batteries

    KAUST Repository

    Huggins, R. A.

    2013-02-21

    Transient energy sources, such as wind and solar systems are getting increased attention. Their integration with the energy distribution grid requires methods for energy storage. The required characteristics of this type of storage are quite different from those for energy storage in portable devices. Size and weight are not so important. Instead, matters such as power, cost, calendar life, cycle life, and safety become paramount. A new family of hexacyanoferrate materials with the same open framework crystal structure as Prussian Blue has been recently developed with characteristics ideally suited for this type of application. Several monovalent cations can be rapidly and reversibly inserted into these materials, with very little crystallographic distortion, leading to high rates and long cycle lives. In addition, a new type of composite negative electrode material has been developed that has the rapid kinetics typical of carbon electrodes, but with a potential that varies little with the state of charge. The result is the development of a new battery system, the ferrocyanide/stabilized carbon, MHCF-SC, system. © 2013 The Electrochemical Society.

  20. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    Science.gov (United States)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  1. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu [German Aerospace Center (DLR), Neustrelitz (Germany). Inst. of Communications and Navigation; Mersha, Mogese Wassaie [Bahir Dar Univ. (Ethiopia). Washera Geospace and Radar Science Lab.

    2017-04-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, smallscale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6 N, 37.4 E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement setup and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  2. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  3. Scintillation measurements at Bahir Dar during the high solar activity phase of solar cycle 24

    Science.gov (United States)

    Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens; Sato, Hiroatsu; Wassaie Mersha, Mogese

    2017-01-01

    Small-scale ionospheric disturbances may cause severe radio scintillations of signals transmitted from global navigation satellite systems (GNSSs). Consequently, small-scale plasma irregularities may heavily degrade the performance of current GNSSs such as GPS, GLONASS or Galileo. This paper presents analysis results obtained primarily from two high-rate GNSS receiver stations designed and operated by the German Aerospace Center (DLR) in cooperation with Bahir Dar University (BDU) at 11.6° N, 37.4° E. Both receivers collect raw data sampled at up to 50 Hz, from which characteristic scintillation parameters such as the S4 index are deduced. This paper gives a first overview of the measurement set-up and the observed scintillation events over Bahir Dar in 2015. Both stations are located close to one another and aligned in an east-west, direction which allows us to estimate the zonal drift velocity and spatial dimension of equatorial ionospheric plasma irregularities. Therefore, the lag times of moving electron density irregularities and scintillation patterns are derived by applying cross-correlation analysis to high-rate measurements of the slant total electron content (sTEC) along radio links between a GPS satellite and both receivers and to the associated signal power, respectively. Finally, the drift velocity is derived from the estimated lag time, taking into account the geometric constellation of both receiving antennas and the observed GPS satellites.

  4. Integrating Concept Mapping and the Learning Cycle To Teach Diffusion and Osmosis Concepts to High School Biology Students.

    Science.gov (United States)

    Odom, Arthur L.; Kelly, Paul V.

    2001-01-01

    Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…

  5. Effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 350 degrees C

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Eldrup, Morten Mostgaard

    2001-01-01

    Screening experiments were carried out to determine the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) copper alloys. Tensile...

  6. A Simulation Method for High-Cycle Fatigue-Driven Delamination using a Cohesive Zone Model

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Turon, A.; Lindgaard, Esben

    2016-01-01

    A novel computational method for simulating fatigue-driven mixed-mode delamination cracks in laminated structures under cyclic loading is presented. The proposed fatigue method is based on linking a cohesive zone model for quasi-static crack growth and a Paris' law-like model described...... on parameter fitting of any kind. The method has been implemented as a zero-thickness eight-node interface element for Abaqus and as a spring element for a simple finite element model in MATLAB. The method has been validated in simulations of mode I, mode II, and mixed-mode crack loading for both self......-similar and non-self-similar crack propagation. The method produces highly accurate results compared with currently available methods and is capable of simulating general mixed-mode non-self-similar crack growth problems....

  7. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    CERN Document Server

    Schubert, O; Langer, F; Urbanek, B; Lange, C; Huttner, U; Golde, D; Meier, T; Kira, M; Koch, S W; Huber, R

    2016-01-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of highspeed electronics, electro-optics, and fundamental solid-state physics. Intense light pulses in the terahertz (THz) spectral range have opened fascinating vistas: Since THz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for THz amplitudes reaching atomic field strengths. We exploit controlled THz waveforms with peak fields of 72 MV/cm to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire THz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and in...

  8. The Laminated Marca Shale: High-Frequency Climate Cycles From the Latest Cretaceous

    Science.gov (United States)

    Davies, A.; Kemp, A. E.; Weedon, G.; Barron, J. A.

    2005-12-01

    The Latest Cretaceous (Maastrichtian) Marca Shale Member, California, displays a well-preserved record of alternating terrigenous and diatomaceous laminae couplets, remarkably similar in lithology to recent laminated sediments from the Gulf of California and Santa Barbara Basin. This similarity, together with the recognition of intra- and inter-annual variability in the diatom flora, implies an annual origin for these couplets. High-resolution backscattered electron imagery has identified two sublaminae types within the varved succession; near monospecific lamina of Chaetoceros-type resting spore and of large Azpeitiopsis morenoensis. The composition and occurrence of these laminae is similar to ENSO forced intra-annual variability of diatom flora along the modern Californian margin. Relative thickness variations in terrigenous and biogenic laminae (proxies for precipitation and productivity respectively) also exhibit similar characteristics to variability in Quaternary varves from the Santa Barbara Basin, shown to be imparted by ENSO forcing. In order to track changes in the levels of bottom water oxygenation within the basin, a bioturbation index was established. Periods when bioturbation was minimal (enhanced benthic anoxia) coincide with times of greatest diatomaceous export flux and also lowest flux of detrital material. Conversely, periods of enhanced bioturbation correspond with reduced diatomaceous export flux and an increased flux of detrital material, comparable with ENSO forced variations in diatomaceous and terrigenous export flux and associated benthic oxygenation levels in Pleistocene varves off the Californian margin. Power spectra obtained from time-series analysis of the bioturbation index and laminae thickness variations exhibit strong signals within the ENSO band. This research implies that high-frequency climate perturbations are inherent components of the climate system and that ENSO-type variability was not confined to the dynamic climate

  9. Metal recovery from high-grade WEEE: a life cycle assessment.

    Science.gov (United States)

    Bigum, Marianne; Brogaard, Line; Christensen, Thomas H

    2012-03-15

    Based on available data in the literature the recovery of aluminium, copper, gold, iron, nickel, palladium and silver from high-grade WEEE was modeled by LCA. The pre-treatment of WEEE included manual sorting, shredding, magnetic sorting, Eddy-current sorting, air classification and optical sorting. The modeled metallurgical treatment facility included a Kaldo plant, a converter aisle, an anode refinery and a precious metal refinery. The metallurgic treatment showed significant environmental savings when credited the environmental load from avoided production of the same amount of metals by mining and refining of ore. The resource recovery per tonne of high-grade WEEE ranged from 2g of palladium to 386kg of iron. Quantified in terms of person-equivalents the recovery of palladium, gold, silver, nickel and copper constituted the major environmental benefit of the recovery of metals from WEEE. These benefits are most likely underestimated in the model, since we did not find adequate data to include all the burdens from mining and refining of ore; burdens that are avoided when metals are recovered from WEEE. The processes connected to the pre-treatment of WEEE were found to have little environmental effect compared to the metallurgical treatment. However only 12-26% of silver, gold and palladium are recovered during pre-treatment, which suggest that the reduction of the apparent losses of precious metals as palladium, gold and silver during pre-treatment of WEEE is of environmental importance. Our results support in a quantitative manner that metal recovery from WEEE should be quantified with respect to the individual metals recovered and not as a bulk metal recovery rate. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Enhanced absorption cycle computer model

    Science.gov (United States)

    Grossman, G.; Wilk, M.

    1993-09-01

    Absorption heat pumps have received renewed and increasing attention in the past two decades. The rising cost of electricity has made the particular features of this heat-powered cycle attractive for both residential and industrial applications. Solar-powered absorption chillers, gas-fired domestic heat pumps, and waste-heat-powered industrial temperature boosters are a few of the applications recently subjected to intensive research and development. The absorption heat pump research community has begun to search for both advanced cycles in various multistage configurations and new working fluid combinations with potential for enhanced performance and reliability. The development of working absorption systems has created a need for reliable and effective system simulations. A computer code has been developed for simulation of absorption systems at steady state in a flexible and modular form, making it possible to investigate various cycle configurations with different working fluids. The code is based on unit subroutines containing the governing equations for the system's components and property subroutines containing thermodynamic properties of the working fluids. The user conveys to the computer an image of his cycle by specifying the different subunits and their interconnections. Based on this information, the program calculates the temperature, flow rate, concentration, pressure, and vapor fraction at each state point in the system, and the heat duty at each unit, from which the coefficient of performance (COP) may be determined. This report describes the code and its operation, including improvements introduced into the present version. Simulation results are described for LiBr-H2O triple-effect cycles, LiCl-H2O solar-powered open absorption cycles, and NH3-H2O single-effect and generator-absorber heat exchange cycles. An appendix contains the user's manual.

  11. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    Science.gov (United States)

    Forman, R. G.; Zanganeh, M.

    2014-01-01

    This paper describes the results of a research program conducted to improve the understanding of fatigue crack growth rate behavior in the threshold growth rate region and to answer a question on the validity of threshold region test data. The validity question relates to the view held by some experimentalists that using the ASTM load shedding test method does not produce valid threshold test results and material properties. The question involves the fanning behavior observed in threshold region of da/dN plots for some materials in which the low R-ratio data fans out from the high R-ratio data. This fanning behavior or elevation of threshold values in the low R-ratio tests is generally assumed to be caused by an increase in crack closure in the low R-ratio tests. Also, the increase in crack closure is assumed by some experimentalists to result from using the ASTM load shedding test procedure. The belief is that this procedure induces load history effects which cause remote closure from plasticity and/or roughness changes in the surface morphology. However, experimental studies performed by the authors have shown that the increase in crack closure is a result of extensive crack tip bifurcations that can occur in some materials, particularly in aluminum alloys, when the crack tip cyclic yield zone size becomes less than the grain size of the alloy. This behavior is related to the high stacking fault energy (SFE) property of aluminum alloys which results in easier slip characteristics. Therefore, the fanning behavior which occurs in aluminum alloys is a function of intrinsic dislocation property of the alloy, and therefore, the fanned data does represent the true threshold properties of the material. However, for the corrosion sensitive steel alloys tested in laboratory air, the occurrence of fanning results from fretting corrosion at the crack tips, and these results should not be considered to be representative of valid threshold properties because the fanning is

  12. Noncanonical role ofArabidopsisCOP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness.

    Science.gov (United States)

    Ling, Jun-Jie; Li, Jian; Zhu, Danmeng; Deng, Xing Wang

    2017-03-28

    The E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) has been known to mediate key signaling factors for degradation via the ubiquitin/26S proteasome pathway in both plants and animals. Here, we report a noncanonical function of Arabidopsis COP1, the central repressor of photomorphogenesis, in the form of a COP1/ SUPPRESSOR of phyA-105 (SPA) complex. We show that the COP1/SPA complex associates with and stabilizes PHYTOCHROME INTERACTING FACTOR 3 (PIF3) to repress photomorphogenesis in the dark. We identify the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) as a kinase of PIF3, which induces PIF3 degradation via 26S proteasome during skotomorphogenesis. Mutations on two typical BIN2 phosphorylation motifs of PIF3 lead to a strong stabilization of the protein in the dark. We further show that the COP1/SPA complex promotes PIF3 stability by repressing BIN2 activity. Intriguingly, without affecting BIN2 expression, the COP1/SPA complex modulates BIN2 activity through interfering with BIN2-PIF3 interaction, thereby inhibiting BIN2-mediated PIF3 phosphorylation and degradation. Taken together, our results suggest another paradigm for COP1/SPA complex action in the precise control of skotomorphogenesis.

  13. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex.

    Science.gov (United States)

    Sheerin, David J; Menon, Chiara; zur Oven-Krockhaus, Sven; Enderle, Beatrix; Zhu, Ling; Johnen, Philipp; Schleifenbaum, Frank; Stierhof, York-Dieter; Huq, Enamul; Hiltbrunner, Andreas

    2015-01-01

    Phytochromes function as red/far-red photoreceptors in plants and are essential for light-regulated growth and development. Photomorphogenesis, the developmental program in light, is the default program in seed plants. In dark-grown seedlings, photomorphogenic growth is suppressed by the action of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)/SUPPRESSOR OF phyA-105 (SPA) complex, which targets positive regulators of photomorphogenic growth for degradation by the proteasome. Phytochromes inhibit the COP1/SPA complex, leading to the accumulation of transcription factors promoting photomorphogenesis; yet, the mechanism by which they inactivate COP1/SPA is still unknown. Here, we show that light-activated phytochrome A (phyA) and phytochrome B (phyB) interact with SPA1 and other SPA proteins. Fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy analyses show that SPAs and phytochromes colocalize and interact in nuclear bodies. Furthermore, light-activated phyA and phyB disrupt the interaction between COP1 and SPAs, resulting in reorganization of the COP1/SPA complex in planta. The light-induced stabilization of HFR1, a photomorphogenic factor targeted for degradation by COP1/SPA, correlates temporally with the accumulation of phyA in the nucleus and localization of phyA to nuclear bodies. Overall, these data provide a molecular mechanism for the inactivation of the COP1/SPA complex by phyA- and phyB-mediated light perception. © 2015 American Society of Plant Biologists. All rights reserved.

  14. Avances en la exposición contable de CoPs y memorias GRI = Advances in CoPs and GRI reports as accounting statements

    Directory of Open Access Journals (Sweden)

    Liliana Fernández Lorenzo

    2012-07-01

    Full Text Available Actualmente para lograr un desarrollo sustentable, la sociedad requiere que las organizaciones asuman su responsabilidad socio-ambiental y emitan información acerca de los impactos que su actividad genera en el medioambiente.Dicha información mayormente se presenta a través de las denominadas Memorias o Reportes de Sostenibilidad, que responden a distintas formas y contenidos. Cada vez son más los informes que se elaboran siguiendo los lineamientos del Pacto Mundial (PM y del Global Reporting Initiative (GRI.Consideramos que la información sobre la responsabilidad socio-ambiental debería reunir los requisitos que hacen a toda buena información contable, para incrementar su utilidad.Para comprobarlo, se realiza un estudio de casos a los fines de determinar las características generales de estos informes elaborados bajo pautas del PM y del GRI conjuntamente, concluyendo que la información presentada en las memorias analizadas no reúne los requisitos de una buena información contable.A fin de que la exposición de las CoPs y memorias de sostenibilidad GRI, pueda calificarse de contable, se expresan sintéticamente los indicadores analizados agregando su relación porcentual y se incorporan al Estado Contable Socio-ambiental realizado de acuerdo al modelo base de la FCE-UNLP, considerado como un estado contable (Fernández Lorenzo y Geba, 2008.Nowadays in order to achieve sustainable development, organizations are required to take on their social and environmental responsibility and give information about the impact of their activities in the environment.This information is usually presented through sustainability reports, which widely differ in content and layout. Many organizations worldwide have assumed their responsibility by implementing Global Reporting Initiative (GRI and United Nations Global Compact (GC guidelines.We consider that the information regarding socio-environmental responsibility, should meet the characteristics of the

  15. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally

  16. Solar cycle variations of the energetic H/He intensity ratio at high heliolatitudes and in the ecliptic plane

    Directory of Open Access Journals (Sweden)

    D. Lario

    2003-06-01

    Full Text Available We study the variability of the heliospheric energetic proton-to-helium abundance ratios during different phases of the solar cycle. We use energetic particle, solar wind, and magnetic field data from the Ulysses, ACE and IMP-8 spacecraft to compare the H/He intensity ratio at high heliographic latitudes and in the ecliptic plane. During the first out-of-ecliptic excursion of Ulysses (1992–1996, the HI-SCALE instrument measured corotating energetic particle intensity enhancements characterized by low values (< 10 of the 0.5–1.0 MeV nucleon-1 H/He intensity ratio. During the second out-of-ecliptic excursion of Ulysses (1999–2002, the more frequent occurrence of solar energetic particle events resulted in almost continuously high (< 20 values of the H/He ratio, even at the highest heliolatitudes reached by Ulysses. Comparison with in-ecliptic measurements from an identical instrument on the ACE spacecraft showed similar H/He values at ACE and Ulysses, suggesting a remarkable uniformity of energetic particle intensities in the solar maximum heliosphere at high heliolatitudes and in the ecliptic plane. In-ecliptic observations of the H/He intensity ratio from the IMP-8 spacecraft show variations between solar maximum and solar minimum similar to those observed by Ulysses at high heliographic latitudes. We suggest that the variation of the H/He intensity ratio throughout the solar cycle is due to the different level of transient solar activity, as well as the different structure and duration that corotating solar wind structures have under solar maximum and solar minimum conditions. During solar minimum, the interactions between the two different types of solar wind streams (slow vs. fast are strong and long-lasting, allowing for a continuous and efficient acceleration of interstellar pickup He +. During solar maximum, transient events of solar origin (characterized by high values of the H/He ratio are able to globally fill the heliosphere. In

  17. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    Science.gov (United States)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  18. Structural optimisation of a high speed Organic Rankine Cycle generator using a genetic algorithm and a finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Palko, S. [Machines Division, ABB industry Oy, Helsinki (Finland)

    1997-12-31

    The aim in this work is to design a 250 kW high speed asynchronous generator using a genetic algorithm and a finite element method for Organic Rankine Cycle. The characteristics of the induction motors are evaluated using two-dimensional finite element method (FEM) The movement of the rotor and the non-linearity of the iron is included. In numerical field problems it is possible to find several local extreme for an optimisation problem, and therefore the algorithm has to be capable of determining relevant changes, and to avoid trapping to a local minimum. In this work the electromagnetic (EM) losses at the rated point are minimised. The optimisation includes the air gap region. Parallel computing is applied to speed up optimisation. (orig.) 2 refs.

  19. Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications

    Science.gov (United States)

    Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.

    1992-01-01

    Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.

  20. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. I. Study of high RH cycling test with air RH at 62%/100%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, CNRS-Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of high air relative humidity (RH) cycling (RH{sub C} 62%/100%) on the degradation mechanisms of a single (5 x 5 cm{sup 2}) proton exchange membrane fuel cells was investigated. The cell performance was compared to a cell operated at constant humidification (RH{sub C} = 62%). Runs were conducted over approximately 1,500 h at 0.3 A cm{sup -2}. The overall loss in cell performance for the high RH cycling test was 12 {mu}V h{sup -1} whereas it was at 3 {mu}V h{sup -1} under constant humidification. Impedance spectroscopy reveals that the ohmic and charge transfer resistances were little modified in both runs. H{sub 2} crossover measurement indicated that both high RH cycling and constant RH test did not promote serious effect on gas permeability. The electroactive surface loss for anode and cathode during high air RH cycling was more significant than at constant RH operation. The water uptake determined by {sup 1}H nuclear magnetic resonance within the membrane electrode assembly (MEA) after high RH cycling was reduced by 12% in comparison with a fresh MEA. Transmission electron microscopy showed bubbles and pinholes formation in the membrane, catalyst particles agglomeration (also observed by X-ray diffraction), catalyst particles migration in the membrane and thickness reduction of the catalytic layers. Scanning electron microscopy was conducted to observe the changes in morphology of gas diffusion layers after the runs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    Science.gov (United States)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  2. Fluorescence imaging-based high-throughput screening of fast- and slow-cycling LOV proteins.

    Directory of Open Access Journals (Sweden)

    Fuun Kawano

    Full Text Available Light-oxygen-voltage (LOV domains function as blue light-inducible molecular switches. The photosensory LOV domains derived from plants and fungi have provided an indispensable tool for optogenetics. Here we develop a high-throughput screening system to efficiently improve switch-off kinetics of LOV domains. The present system is based on fluorescence imaging of thermal reversion of a flavin cofactor bound to LOV domains. We conducted multi site-directed random mutagenesis of seven amino acid residues surrounding the flavin cofactor of the second LOV domain derived from Avena sativa phototropin 1 (AsLOV2. The gene library was introduced into Escherichia coli cells. Then thermal reversion of AsLOV2 variants, respectively expressed in different bacterial colonies on agar plate, was imaged with a stereoscopic fluorescence microscope. Based on the mutagenesis and imaging-based screening, we isolated 12 different variants showing substantially faster thermal reversion kinetics than wild-type AsLOV2. Among them, AsLOV2-V416T exhibited thermal reversion with a time constant of 2.6 s, 21-fold faster than wild-type AsLOV2. With a slight modification of the present approach, we also have efficiently isolated 8 different decelerated variants, represented by AsLOV2-V416L that exhibited thermal reversion with a time constant of 4.3 × 10(3 s (78-fold slower than wild-type AsLOV2. The present approach based on fluorescence imaging of the thermal reversion of the flavin cofactor is generally applicable to a variety of blue light-inducible molecular switches and may provide a new opportunity for the development of molecular tools for emerging optogenetics.

  3. Systems Analyses of Advanced Brayton Cycles For High Efficiency Zero Emission Plants

    Energy Technology Data Exchange (ETDEWEB)

    A. D. Rao; J. Francuz; H. Liao; A. Verma; G. S. Samuelsen

    2006-11-01

    Table 1 shows that the systems efficiency, coal (HHV) to power, is 35%. Table 2 summarizes the auxiliary power consumption within the plant. Thermoflex was used to simulate the power block and Aspen Plus the balance of plant. The overall block flow diagram is presented in Figure A1.3-1 and the key unit process flow diagrams are shown in subsequent figures. Stream data are given in Table A1.3-1. Equipment function specifications are provided in Tables A1.3-2 through 17. The overall plant scheme consists of a cryogenic air separation unit supplying 95% purity O{sub 2} to GE type high pressure (HP) total quench gasifiers. The raw gas after scrubbing is treated in a sour shift unit to react the CO with H{sub 2}O to form H{sub 2} and CO{sub 2}. The gas is further treated to remove Hg in a sulfided activated carbon bed. The syngas is desulfurized and decarbonized in a Selexol acid gas removal unit and the decarbonized syngas after humidification and preheat is fired in GE 7H type steam cooled gas turbines. Intermediate pressure (IP) N{sub 2} from the ASU is also supplied to the combustors of the gas turbines as additional diluent for NOx control. A portion of the air required by the ASU is extracted from the gas turbines. The plant consists of the following major process units: (1) Air Separation Unit (ASU); (2) Gasification Unit; (3) CO Shift/Low Temperature Gas Cooling (LTGC) Unit; (4) Acid Gas Removal Unit (AGR) Unit; (5) Fuel Gas Humidification Unit; (6) Carbon Dioxide Compression/Dehydration Unit; (7) Claus Sulfur Recovery/Tail Gas Treating Unit (SRU/TGTU); and (8) Power Block.

  4. Fluorescence Imaging-Based High-Throughput Screening of Fast- and Slow-Cycling LOV Proteins

    Science.gov (United States)

    Kawano, Fuun; Aono, Yuki; Suzuki, Hideyuki; Sato, Moritoshi

    2013-01-01

    Light-oxygen-voltage (LOV) domains function as blue light-inducible molecular switches. The photosensory LOV domains derived from plants and fungi have provided an indispensable tool for optogenetics. Here we develop a high-throughput screening system to efficiently improve switch-off kinetics of LOV domains. The present system is based on fluorescence imaging of thermal reversion of a flavin cofactor bound to LOV domains. We conducted multi site-directed random mutagenesis of seven amino acid residues surrounding the flavin cofactor of the second LOV domain derived from Avena sativa phototropin 1 (AsLOV2). The gene library was introduced into Escherichia coli cells. Then thermal reversion of AsLOV2 variants, respectively expressed in different bacterial colonies on agar plate, was imaged with a stereoscopic fluorescence microscope. Based on the mutagenesis and imaging-based screening, we isolated 12 different variants showing substantially faster thermal reversion kinetics than wild-type AsLOV2. Among them, AsLOV2-V416T exhibited thermal reversion with a time constant of 2.6 s, 21-fold faster than wild-type AsLOV2. With a slight modification of the present approach, we also have efficiently isolated 8 different decelerated variants, represented by AsLOV2-V416L that exhibited thermal reversion with a time constant of 4.3×103 s (78-fold slower than wild-type AsLOV2). The present approach based on fluorescence imaging of the thermal reversion of the flavin cofactor is generally applicable to a variety of blue light-inducible molecular switches and may provide a new opportunity for the development of molecular tools for emerging optogenetics. PMID:24367542

  5. Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition.

    Directory of Open Access Journals (Sweden)

    Li-hua Tu

    Full Text Available BACKGROUND: The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP, throughfall (TF, stemflow (SF, surface runoff (SR, forest floor leachate (FFL, soil water at the depth of 40 cm (SW1 and 100 cm (SW2 were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0-1 m were 351.7 and 7752.8 kg ha(-1. Open field nitrogen deposition at the study site was 113.8 kg N ha(-1 yr(-1, which was one of the highest in the world. N-NH4(+, N-NO3(- and dissolved organic N (DON accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3(- and DON but not N-NH4(+. The flux of total dissolved N (TDN to the forest floor was greater than that in open field precipitation by 17.7 kg N ha(-1 yr(-1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1. CONCLUSIONS/SIGNIFICANCE: The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.

  6. Diversification and reproductive isolation: cryptic species in the only New World high-duty cycle bat, Pteronotus parnellii

    Directory of Open Access Journals (Sweden)

    Clare Elizabeth L

    2013-01-01

    Full Text Available Abstract Background Molecular techniques are increasingly employed to recognize the presence of cryptic species, even among commonly observed taxa. Previous studies have demonstrated that bats using high-duty cycle echolocation may be more likely to speciate quickly. Pteronotus parnellii is a widespread Neotropical bat and the only New World species to use high-duty cycle echolocation, a trait otherwise restricted to Old World taxa. Here we analyze morphological and acoustic variation and genetic divergence at the mitochondrial COI gene, the 7th intron region of the y-linked Dby gene and the nuclear recombination-activating gene 2, and provide extensive evidence that P. parnellii is actually a cryptic species complex. Results Central American populations form a single species while three additional species exist in northern South America: one in Venezuela, Trinidad and western Guyana and two occupying sympatric ranges in Guyana and Suriname. Reproductive isolation appears nearly complete (only one potential hybrid individual found. The complex likely arose within the last ~6 million years with all taxa diverging quickly within the last ~1-2 million years, following a pattern consistent with the geological history of Central and northern South America. Significant variation in cranial measures and forearm length exists between three of the four groups, although no individual morphological character can discriminate these in the field. Acoustic analysis reveals small differences (5–10 kHz in echolocation calls between allopatric cryptic taxa that are unlikely to provide access to different prey resources but are consistent with divergence by drift in allopatric species or through selection for social recognition. Conclusions This unique approach, considering morphological, acoustic and multi-locus genetic information inherited maternally, paternally and bi-parentally, provides strong support to conclusions about the cessation of gene flow and

  7. Optimization of the cycle life performance of VRLA batteries, working under high rate, partial state of charge (HRPSOC) conditions

    Science.gov (United States)

    Fernández, M.; Trinidad, F.; Valenciano, J.; Sánchez, A.

    On hybrid vehicle applications, batteries must work in a rather low state of charge (SOC), in order to be able to recover as much of the regenerative braking energy as possible. Usually SOC values around 60% are used, which promotes the development of new unexpected failure modes not previously found, mainly associated with heavy sulphation of the negative plates. In order to try to optimise the cycle life performance to the point of making these batteries a real alternative for the application of hybrid vehicles, a series of tests have been undertaken, aimed to optimise the key parameters that from previous experience are known to determine life duration in high rate low state of charge (HRPSOC) conditions. Previous works have been focused on trying to determine the optimum composition of positive and negative active material, concerning paste density in the positive, and additives in negative. In order to overcome the deleterious effect of heavy sulphation in negative plates on cycle life, the use of conductivity enhancers additives such as graphite has been proposed. The objective of this project is to optimize the performance of the glass microfiber separators, in order to maintain a high degree of compression in the group, as well as to avoid acid stratification and development of short circuits along the battery life. To do this, different glass microfiber separators with inert additives, as well as different fiber composition have been tested. Results obtained up to now, indicate a remarkable good performance of the VRLA batteries with the new separators containing very fine fiberglass and silica fillers as an additive.

  8. COPS: a sensitive and accurate tool for detecting somatic Copy Number Alterations using short-read sequence data from paired samples.

    Directory of Open Access Journals (Sweden)

    Neeraja M Krishnan

    Full Text Available Copy Number Alterations (CNAs such as deletions and duplications; compose a larger percentage of genetic variations than single nucleotide polymorphisms or other structural variations in cancer genomes that undergo major chromosomal re-arrangements. It is, therefore, imperative to identify cancer-specific somatic copy number alterations (SCNAs, with respect to matched normal tissue, in order to understand their association with the disease. We have devised an accurate, sensitive, and easy-to-use tool, COPS, COpy number using Paired Samples, for detecting SCNAs. We rigorously tested the performance of COPS using short sequence simulated reads at various sizes and coverage of SCNAs, read depths, read lengths and also with real tumor:normal paired samples. We found COPS to perform better in comparison to other known SCNA detection tools for all evaluated parameters, namely, sensitivity (detection of true positives, specificity (detection of false positives and size accuracy. COPS performed well for sequencing reads of all lengths when used with most upstream read alignment tools. Additionally, by incorporating a downstream boundary segmentation detection tool, the accuracy of SCNA boundaries was further improved. Here, we report an accurate, sensitive and easy to use tool in detecting cancer-specific SCNAs using short-read sequence data. In addition to cancer, COPS can be used for any disease as long as sequence reads from both disease and normal samples from the same individual are available. An added boundary segmentation detection module makes COPS detected SCNA boundaries more specific for the samples studied. COPS is available at ftp://115.119.160.213 with username "cops" and password "cops".

  9. HCdc14A is involved in cell cycle regulation of human brain vascular endothelial cells following injury induced by high glucose, free fatty acids and hypoxia.

    Science.gov (United States)

    Su, Jingjing; Zhou, Houguang; Tao, Yinghong; Guo, Zhuangli; Zhang, Shuo; Zhang, Yu; Huang, Yanyan; Tang, Yuping; Hu, Renming; Dong, Qiang

    2015-01-01

    Cell cycle processes play a vital role in vascular endothelial proliferation and dysfunction. Cell division cycle protein 14 (Cdc14) is an important cell cycle regulatory phosphatase. Previous studies in budding yeast demonstrated that Cdc14 could trigger the inactivation of mitotic cyclin-dependent kinases (Cdks), which are required for mitotic exit and cytokinesis. However, the exact function of human Cdc14 (hCdc14) in cell cycle regulation during vascular diseases is yet to be elucidated. There are two HCdc14 homologs: hCdc14A and hCdc14B. In the current study, we investigated the potential role of hCdc14A in high glucose-, free fatty acids (FFAs)-, and hypoxia-induced injury in cultured human brain vascular endothelial cells (HBVECs). Data revealed that high glucose, FFA, and hypoxia down-regulated hCdc14A expression remarkably, and also affected the expression of other cell cycle-related proteins such as cyclin B, cyclin D, cyclin E, and p53. Furthermore, the combined addition of the three stimuli largely blocked cell cycle progression, decreased cell proliferation, and increased apoptosis. We also determined that hCdc14A was localized mainly to centrosomes during interphase and spindles during mitosis using confocal microscopy, and that it could affect the expression of other cycle-related proteins. More importantly, the overexpression of hCdc14A accelerated cell cycle progression, enhanced cell proliferation, and promoted neoplastic transformation, whereas the knockdown of hCdc14A using small interfering RNA produced the opposite effects. Therefore, these findings provide novel evidence that hCdc14A might be involved in cell cycle regulation in cultured HBVECs during high glucose-, FFA-, and hypoxia-induced injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  11. Population cycles are highly correlated over long time series and large spatial scales in two unrelated species: Greater sage-grouse and cottontail rabbits

    Science.gov (United States)

    Fedy, B.C.; Doherty, K.E.

    2011-01-01

    Animal species across multiple taxa demonstrate multi-annual population cycles, which have long been of interest to ecologists. Correlated population cycles between species that do not share a predator-prey relationship are particularly intriguing and challenging to explain. We investigated annual population trends of greater sage-grouse (Centrocercus urophasianus) and cottontail rabbits (Sylvilagus sp.) across Wyoming to explore the possibility of correlations between unrelated species, over multiple cycles, very large spatial areas, and relatively southern latitudes in terms of cycling species. We analyzed sage-grouse lek counts and annual hunter harvest indices from 1982 to 2007. We show that greater sage-grouse, currently listed as warranted but precluded under the US Endangered Species Act, and cottontails have highly correlated cycles (r = 0. 77). We explore possible mechanistic hypotheses to explain the synchronous population cycles. Our research highlights the importance of control populations in both adaptive management and impact studies. Furthermore, we demonstrate the functional value of these indices (lek counts and hunter harvest) for tracking broad-scale fluctuations in the species. This level of highly correlated long-term cycling has not previously been documented between two non-related species, over a long time-series, very large spatial scale, and within more southern latitudes. ?? 2010 US Government.

  12. BIODEGRADACIÓN DE COMPUESTOS ORGÁNICOSPERSISTENTES (COP: I. EL CASO DE LOS BIFENILOSPOLICLORADOS (PCB

    Directory of Open Access Journals (Sweden)

    ARBELI ZIV

    2009-04-01

    Full Text Available

    RESUMEN

    Los contaminantes orgánicos persistentes poseen propiedades tóxicas, son resistentes a la degradación, se bioacumulan y son transportados por el aire, el agua y las especies migratorias a través de las fronteras internacionales; en consecuencia se depositan lejos del lugar de su liberación, acumulándose en ecosistemas terrestres y acuáticos. Para atender a esta problemática a nivel mundial se firmó el 23 de mayo de 2001 el Convenio de Estocolmo. Aunque por ahora los COP estan prohibidos en la mayoria de los países, todavía existen en el mundo muchos sitios contaminados con estas sustancias. La remediación de sitios que presentan contaminantes orgánicos persistentes requiere consideraciones distintas a las contempladas en la recupe-ración por contaminación de hidrocarburos. El siguiente texto revisa la literatura sobre la biodegradación anaeróbica y aeróbica de los bifeniles policlorados (PCB y las posibles estrategias para estimular dicha biodegradación. La degradación de los demás COP será descritas en textos adicionales.

    Palabras clave: contaminantes orgánicos persistentes (COP; bifeniles policlorados (PCB; biodegradación; biorremediación.


    ABSTRACT

    Persistent organic pollutants are chemicals that are toxic to humans and wildlife, remain intact in the environment for long periods, accumulate in living organisms and can become widely distributed geographically by air, water or migrating species. As a result, these contaminants have been found all over the world including in places, such as the Polar Regions, which are very far from their application site. The Stockholm Convention was signed

  13. CopA3 Peptide Prevents Ultraviolet-Induced Inhibition of Type-I Procollagen and Induction of Matrix Metalloproteinase-1 in Human Skin Fibroblasts

    OpenAIRE

    Dong-Hee Kim; Han-Hyuk Kim; Hyeon-Jeong Kim; Hyun-Gug Jung; Jae-Myo Yu; Eun-Su Lee; Yong-Hun Cho; Dong-In Kim; Bong-Jeun An

    2014-01-01

    Ultraviolet (UV) exposure is well-known to induce premature aging, which is mediated by matrix metalloproteinase-1 (MMP-1) activity. A 9-mer peptide, CopA3 (CopA3) was synthesized from a natural peptide, coprisin, which is isolated from the dung beetle Copris tripartitus. As part of our continuing search for novel bioactive natural products, CopA3 was investigated for its in vitro anti-skin photoaging activity. UV-induced inhibition of type-I procollagen and induction of MMP-1 were partially ...

  14. Enforcing the minimum drinking age: state, local and agency characteristics associated with compliance checks and Cops in Shops programs.

    Science.gov (United States)

    Montgomery, Jacob M; Foley, Kristie Long; Wolfson, Mark

    2006-02-01

    To identify state, local and organizational characteristics associated with local law enforcement agencies' implementation of two dramatically different approaches to enforcement of underage drinking laws: compliance checks and Cops in Shops programs. Compliance checks use underage decoys to attempt to purchase alcohol from retail merchants, while Cops in Shops programs deploy undercover law enforcement officers in alcohol outlets to detect and cite persons under the age of 21 who attempt to purchase alcohol. Cross-sectional telephone interview conducted as part of the Tobacco Enforcement Study (TES), which examined enforcement of laws related to youth access to tobacco. Data were collected in 1999 among law enforcement agencies in all 50 states of the United States. Representatives of city police departments, departments of public safety, sheriffs or county police were included (n = 920 local agencies). Alcohol compliance checks and Cops in Shops programs were the primary outcomes. Covariates included state level policies (e.g. beer tax), agency resources (e.g. number of sworn officers) and community demographics (e.g. college dormitory population). Local enforcement agencies were more likely to perform alcohol compliance checks than to have a Cops in Shops program (73.9% compared to 41.1% in cities > 25 000 and 55.7% compared to 23.9% in cities compliance checks for tobacco age-of-sale laws was positively associated with alcohol compliance checks and Cops in Shops (OR 3.30, P Education (DARE) officer was negatively related to conducting compliance checks (OR 0.67, P = 0.03). Special community policing units were associated with departments having Cops in Shops programs (OR 1.80, P = 0.006). This study used a nationally representative sample of communities to better understand state and local factors that shape local law enforcement agencies' use of two distinct approaches to underage drinking enforcement. The strong link observed between tobacco and alcohol

  15. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  16. Seasonal cycles enhance disparities between low- and high-income countries in exposure to monthly temperature emergence with future warming

    Science.gov (United States)

    Harrington, Luke J.; Frame, David J.; Hawkins, Ed; Joshi, Manoj

    2017-11-01

    A common proxy for the adaptive capacity of a community to the impacts of future climate change is the range of climate variability which they have experienced in the recent past. This study presents an interpretation of such a framework for monthly temperatures. Our results demonstrate that emergence into genuinely ‘unfamiliar’ climates will occur across nearly all months of the year for low-income nations by the second half of the 21st century under an RCP8.5 warming scenario. However, high income countries commonly experience a large seasonal cycle, owing to their position in the middle latitudes: as a consequence, temperature emergence for transitional months translates only to more-frequent occurrences of heat historically associated with the summertime. Projections beyond 2050 also show low-income countries will experience 2–10 months per year warmer than the hottest month experienced in recent memory, while high-income countries will witness between 1–4 months per year hotter than any month previously experienced. While both results represent significant departures that may bring substantive societal impacts if greenhouse gas emissions continue unabated, they also demonstrate that spatial patterns of emergence will compound existing differences between high and low income populations, in terms of their capacity to adapt to unprecedented future temperatures.

  17. Three-dimensional graphene foam supported Fe₃O₄ lithium battery anodes with long cycle life and high rate capability.

    Science.gov (United States)

    Luo, Jingshan; Liu, Jilei; Zeng, Zhiyuan; Ng, Chi Fan; Ma, Lingjie; Zhang, Hua; Lin, Jianyi; Shen, Zexiang; Fan, Hong Jin

    2013-01-01

    Fe3O4 has long been regarded as a promising anode material for lithium ion battery due to its high theoretical capacity, earth abundance, low cost, and nontoxic properties. However, up to now no effective and scalable method has been realized to overcome the bottleneck of poor cyclability and low rate capability. In this article, we report a bottom-up strategy assisted by atomic layer deposition to graft bicontinuous mesoporous nanostructure Fe3O4 onto three-dimensional graphene foams and directly use the composite as the lithium ion battery anode. This electrode exhibits high reversible capacity and fast charging and discharging capability. A high capacity of 785 mAh/g is achieved at 1C rate and is maintained without decay up to 500 cycles. Moreover, the rate of up to 60C is also demonstrated, rendering a fast discharge potential. To our knowledge, this is the best reported rate performance for Fe3O4 in lithium ion battery to date.

  18. COP-compost: a software to study the degradation of organic pollutants in composts.

    Science.gov (United States)

    Zhang, Y; Lashermes, G; Houot, S; Zhu, Y-G; Barriuso, E; Garnier, P

    2014-02-01

    Composting has been demonstrated to be effective in degrading organic pollutants (OP) whose behaviour depends on the composting conditions, the microbial populations activated and interactions with organic matters. The fate of OP during composting involves complex mechanisms and models can be helpful tools for educational and scientific purposes, as well as for industrialists who want to optimise the composting process for OP elimination. A COP-Compost model, which couples an organic carbon (OC) module and an organic pollutant (OP) module and which simulates the changes of organic matter, organic pollutants and the microbial activities during the composting process, has been proposed and calibrated for a first set of OP in a previous study. The objectives of the present work were (1) to introduce the COP-Compost model from its convenient interface to a potential panel of users, (2) to show the variety of OP that could be simulated, including the possibility of choosing between degradation through co-metabolism or specific metabolism and (3) to show the effect of the initial characteristics of organic matter quality and its microbial biomass on the simulated results of the OP dynamic. In the model, we assumed that the pollutants can be adsorbed on organic matter according to the biochemical quality of the OC and that the microorganisms can degrade the pollutants at the same time as they degrade OC (by co-metabolism). A composting experiment describing two different (14)C-labelled organic pollutants, simazine and pyrene, were chosen from the literature because the four OP fractions simulated in the model were measured during the study (the mineralised, soluble, sorbed and non-extractable fractions). Except for the mineralised fraction of simazine, a good agreement was achieved between the simulated and experimental results describing the evolution of the different organic fractions. For simazine, a specific biomass had to be added. To assess the relative importance

  19. Second Round Of Studies On Advanced Power Generation Based On Combined Cycle Using A Single High-pressure Fluidized Bed Boiler And Consuming Biomass

    OpenAIRE

    de Souza-Santos M.L.; Chavez J.V.

    2012-01-01

    Following a preliminary study of power generation processes consuming sugar-cane bagasse; this second round indicates the possibility of almost doubling the current efficiency presently obtained in conventional mills. A combined cycle uses highly pressurized fluidized bed boiler to provide steam above critical temperature to drive steam-turbine cycle while the flue-gas is injected into gas turbines. The present round also shows that gains over usual BIG/GT (Biomass In-tegrated Gasification/Ga...

  20. Low cadence interval training at moderate intensity does not improve cycling performance in highly trained veteran cyclists

    Science.gov (United States)

    Kristoffersen, Morten; Gundersen, Hilde; Leirdal, Stig; Iversen, Vegard V.

    2014-01-01

    Purpose: The aim of the present study was to investigate effects of low cadence training at moderate intensity on aerobic capacity, cycling performance, gross efficiency, freely chosen cadence, and leg strength in veteran cyclists. Method: Twenty-two well trained veteran cyclists [age: 47 ± 6 years, maximal oxygen consumption (VO2max): 57.9 ± 3.7 ml · kg−1 · min−1] were randomized into two groups, a low cadence training group and a freely chose cadence training group. Respiratory variables, power output, cadence and leg strength were tested before and after a 12 weeks training intervention period. The low cadence training group performed 12 weeks of moderate [73–82% of maximal heart rate (HRmax)] interval training (5 × 6 min) with a cadence of 40 revolutions per min (rpm) two times a week, in addition to their usual training. The freely chosen cadence group added 90 min of training at freely chosen cadence at moderate intensity. Results: No significant effects of the low cadence training on aerobic capacity, cycling performance, power output, cadence, gross efficiency, or leg strength was found. The freely chosen cadence group significantly improved both VO2max (58.9 ± 2.4 vs. 62.2 ± 3.2 ml · kg−1 · min−1), VO2 consumption at lactate threshold (49.4 ± 3.8 vs. 51.8 ± 3.5 ml · kg−1 · min−1) and during the 30 min performance test (52.8 ± 3.0 vs. 54.7 ± 3.5 ml · kg−1 · min−1), and power output at lactate threshold (284 ± 47 vs. 294 ± 48 W) and during the 30 min performance test (284 ± 42 vs. 297 ± 50 W). Moreover, a significant difference was seen when comparing the change in freely chosen cadence from pre- to post between the groups during the 30 min performance test (2.4 ± 5.0 vs. −2.7 ± 6.2). Conclusion: Twelve weeks of low cadence (40 rpm) interval training at moderate intensity (73–82% of HRmax) twice a week does not improve aerobic capacity, cycling performance or leg strength in highly trained veteran cyclists

  1. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  2. Nitrogen Cycling Considerations for Low-Disturbance, High-Carbon Soil Management in Climate-Adaptive Agriculture

    Science.gov (United States)

    Bruns, M. A.; Dell, C. J.; Karsten, H.; Bhowmik, A.; Regan, J. M.

    2016-12-01

    Agriculturists are responding to climate change concerns by reducing tillage and increasing organic carbon inputs to soils. Although these management practices are intended to enhance soil carbon sequestration and improve water retention, resulting soil conditions (moister, lower redox, higher carbon) are likely to alter nitrogen cycling and net greenhouse gas (GHG) emissions. Soils are particularly susceptible to denitrification losses of N2O when soils are recently fertilized and wet. It is paradoxical that higher N2O emissions may occur when farmers apply practices intended to make soils more resilient to climate change. As an example, the application of animal manures to increase soil organic matter and replace fossil fuel-based fertilizers could either increase or decrease GHGs. The challenges involved with incorporating manures in reduced-tillage soils often result in N2O emission spikes immediately following manure application. On the other hand, manures enrich soils with bacteria capable of dissimilatory nitrate reduction to ammonium (DNRA), a process that could counter N2O production by denitrification. Since bacterial DNRA activity is enhanced by labile forms of carbon, the forms of carbon in soils may play a role in determining the predominant N cycling processes and the extent and duration of DNRA activity. A key question is how management can address the tradeoff of higher N2O emissions from systems employing climate-adaptive practices. Management factors such as timing and quality of carbon inputs therefore may be critical considerations in minimizing GHG emissions from low-disturbance, high-carbon cropping systems.

  3. Large scale motions of multiple limit-cycle high Reynolds number annular and toroidal rotor/stator cavities

    Science.gov (United States)

    Bridel-Bertomeu, Thibault; Gicquel, L. Y. M.; Staffelbach, G.

    2017-06-01

    Rotating cavity flows are essential components of industrial applications but their dynamics are still not fully understood when it comes to the relation between the fluid organization and monitored pressure fluctuations. From computer hard-drives to turbo-pumps of space launchers, designed devices often produce flow oscillations that can either destroy the component prematurely or produce too much noise. In such a context, large scale dynamics of high Reynolds number rotor/stator cavities need better understanding especially at the flow limit-cycle or associated statistically stationary state. In particular, the influence of curvature as well as cavity aspect ratio on the large scale organization and flow stability at a fixed rotating disc Reynolds number is fundamental. To probe such flows, wall-resolved large eddy simulation is applied to two different rotor/stator cylindrical cavities and one annular cavity. Validation of the predictions proves the method to be suited and to capture the disc boundary layer patterns reported in the literature. It is then shown that in complement to these disc boundary layer analyses, at the limit-cycle the rotating flows exhibit characteristic patterns at mid-height in the homogeneous core pointing the importance of large scale features. Indeed, dynamic modal decomposition reveals that the entire flow dynamics are driven by only a handful of atomic modes whose combination links the oscillatory patterns observed in the boundary layers as well as in the core of the cavity. These fluctuations form macro-structures, born in the unstable stator boundary layer and extending through the homogeneous inviscid core to the rotating disc boundary layer, causing its instability under some conditions. More importantly, the macro-structures significantly differ depending on the configuration pointing the need for deeper understanding of the influence of geometrical parameters as well as operating conditions.

  4. Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects.

    Directory of Open Access Journals (Sweden)

    Adam T Szafran

    Full Text Available Understanding how androgen receptor (AR function is modulated by exposure to steroids, growth factors or small molecules can have important mechanistic implications for AR-related disease therapies (e.g., prostate cancer, androgen insensitivity syndrome, AIS, and in the analysis of environmental endocrine disruptors.We report the development of a high throughput (HT image-based assay that quantifies AR subcellular and subnuclear distribution, and transcriptional reporter gene activity on a cell-by-cell basis. Furthermore, simultaneous analysis of DNA content allowed determination of cell cycle position and permitted the analysis of cell cycle dependent changes in AR function in unsynchronized cell populations. Assay quality for EC50 coefficients of variation were 5-24%, with Z' values reaching 0.91. This was achieved by the selective analysis of cells expressing physiological levels of AR, important because minor over-expression resulted in elevated nuclear speckling and decreased transcriptional reporter gene activity. A small screen of AR-binding ligands, including known agonists, antagonists, and endocrine disruptors, demonstrated that nuclear translocation and nuclear "speckling" were linked with transcriptional output, and specific ligands were noted to differentially affect measurements for wild type versus mutant AR, suggesting differing mechanisms of action. HT imaging of patient-derived AIS mutations demonstrated a proof-of-principle personalized medicine approach to rapidly identify ligands capable of restoring multiple AR functions.HT imaging-based multiplex screening will provide a rapid, systems-level analysis of compounds/RNAi that may differentially affect wild type AR or clinically relevant AR mutations.

  5. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    Science.gov (United States)

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  6. Diurnal cycle of methane flux from a lake, with high emissions during nighttime caused by convection in the water

    Science.gov (United States)

    Podgrajsek, E.; Sahlee, E.; Rutgersson, A.

    2012-12-01

    Many studies have stressed the importance of lakes as major contributors of methane to the atmosphere (e.g. Bastviken et al 2011). However there is still a lack of continuous long time flux measurements over lakes as well as poor understanding of the magnitude of methane fluxes through ebullition and vegetation pathways. In this study the Eddy covariance method has been used for measuring methane fluxes from a lake in central Sweden. At several occasions during the long time measuring campaign (autumn 2010-autumn 2012), a diurnal cycle of methane, with high fluxes during night and low during day, has been captured. Some of the high flux events during nighttime were comparable in magnitude to what previously only been measured from vegetation regions in lakes at these latitudes (e.g. Kankaala et al 2004) and from tropical reservoirs (e.g. Bastviken 2009). During these occasions the difference between air and water temperature (ΔT=Ta-Tw) also displayed an diurnal cycle, with ΔT being positive during day and negative during night with the corresponding change in the sensible heat flux i.e. negative during daytime and positive during nighttime. The high nighttime methane fluxes could be explained with this difference in air and water temperature, which will cool the water surface during night, creating convective mixing in the lake, while during daytime the water will be stably stratified. Temperature measurements made at different vertical levels in the lake water confirm this water stratification. The nighttime convective mixing may act to disturb the bottom water, triggering methane ebullition events and bringing methane rich water up to the surface, which can be emitted to the atmosphere. With this study we want to emphasis the necessity of introducing also complex physical processes when estimating air-water exchange fluxes and also measure methane fluxes not only at few occasions during daytime but also during night and for longer measuring periods. References

  7. The Production of Food and Fiber: An Adaptation of CoP Features for Sustainable Water Use in Agribusiness

    Directory of Open Access Journals (Sweden)

    Keith D. Harris

    2016-11-01

    Full Text Available Fresh water and arable land are essential for agricultural production and food processing. However, managing conflicting demands over water and land can be challenging for business leaders, environmentalists and other stakeholders. This paper characterizes these challenges as wicked problems. Wicked problems are ill-formed, fuzzy, and messy, because they involve many clients and decisions makers with conflicting values. They are also not solvable, but rather must be managed. How can agribusiness leaders effectively manage wicked problems, especially if they have little practice in doing so? This paper argues that a Community of Practice (CoP and its tripartite elements of domain, community and practice can be effective in helping businesses manage wicked problems by focusing on the positive links between environmental stewardship and economic performance. Empirically, the paper examines three agribusinesses to assess the extent in which CoP is used as a strategy for sustainable water management.

  8. Research and development of an air-cycle heat-pump water heater. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dieckmann, J.T.; Erickson, A.J.; Harvey, A.C.; Toscano, W.M.

    1979-10-01

    A prototype reverse Brayton air cycle heat pump water heater has been designed and built for residential applications. The system consists of a compressor/expander, an air-water heat exchanger, an electric motor, a water circulation pump, a thermostat, and fluid management controls. The prototype development program consisted of a market analysis, design study, and development testing. A potential residential market for the new high-efficiency water heater of approximately 480,000 units/y was identified. The retail and installation cost of this water heater is estimated to be between $500 and $600 which is approximately $300 more than a conventional electric water heater. The average payback per unit is less than 3-1/2 y and the average recurring energy cost savings after the payback period is approximately $105/y at the average seasonal coefficient of performance (COP) of 1.7. As part of the design effort, a thermodynamic parametric analysis was performed on the water heater system. It was determined that to obtain a coefficient of performance of 1.7, the isentropic efficiency of both the compressor and the expander must be at least 85%. The selected mechanical configuration is described. The water heater has a diameter of 25 in. and a height of 73 in. The results of the development testing of the prototype water heater system showed: the electrical motor maximum efficiency of 78%; the compressor isentropic efficiency is 95 to 119% and the volumetric efficiency is approximately 85%; the expander isentropic efficiency is approximately 58% and the volumetric efficiency is 92%; a significant heat transfer loss of approximately 16% occurred in the expander; and the prototype heat pump system COP is 1.26 which is less than the design goal of at least 1.7. Future development work is recommended.

  9. A Simulation of Low and High Cycle Fatigue Failure Effects for Metal Matrix Composites Based on Innovative J₂-Flow Elastoplasticity Model.

    Science.gov (United States)

    Wang, Zhaoling; Xiao, Heng

    2017-09-24

    New elastoplastic J 2 -flow constitutive equations at finite deformations are proposed for the purpose of simulating the fatigue failure behavior for metal matrix composites. A new, direct approach is established in a two-fold sense of unification. Namely, both low and high cycle fatigue failure effects of metal matrix composites may be simultaneously simulated for various cases of the weight percentage of reinforcing particles. Novel results are presented in four respects. First, both the yield condition and the loading-unloading conditions in a usual sense need not be involved but may be automatically incorporated into inherent features of the proposed constitutive equations; second, low-to-high cycle fatigue failure effects may be directly represented by a simple condition for asymptotic loss of the material strength, without involving any additional damage-like variables; third, both high and low cycle fatigue failure effects need not be separately treated but may be automatically derived as model predictions with a unified criterion for critical failure states, without assuming any ad hoc failure criteria; and, finally, explicit expressions for each incorporated model parameter changing with the weight percentage of reinforcing particles may be obtainable directly from appropriate test data. Numerical examples are presented for medium-to-high cycle fatigue failure effects and for complicated duplex effects from low to high cycle fatigue failure effects. Simulation results are in good agreement with experimental data.

  10. Life-Cycle Energy Implications of Downtown High-Rise vs. Suburban Low-Rise Living: An Overview and Quantitative Case Study for Chicago

    Directory of Open Access Journals (Sweden)

    Peng Du

    2015-09-01

    Full Text Available It is commonly accepted that the concentration of people in high-density urban city centers, which are typically dominated by medium- and high-rise buildings located close to public transit systems, offers greater overall energy efficiency and lower life-cycle greenhouse gas emissions than lower-density expanded suburbs, which are dominated by low-rise single-family buildings and larger per-person automobile travel requirements. However, few studies have combined quantitative analyses of the life-cycle energy use of both buildings and transportation in both urban and suburban areas, especially in American cities. This work uses a variety of data sources to provide a quantitative comparison of the life-cycle energy consumption associated with residential life (including buildings, transportation, and supporting infrastructure in prototypical downtown high-rises and suburban low-rises in and around Chicago, IL. We estimate that downtown high-rise living in Chicago, IL accounts for approximately 25% more life-cycle energy per person per year than suburban low-rise living, on average, contrary to some common beliefs (best estimates were ~141 and ~113 GJ/person/year, respectively. Building operational energy use was found to be the largest contributor of the total life-cycle energy in both the downtown high-rise and suburban low-rise cases, followed by vehicle operational energy.

  11. Law, Urban Violence and Order: Cop Shows as a Brazilian TV Genre

    Directory of Open Access Journals (Sweden)

    Luiza Lusvarghi

    2014-04-01

    Full Text Available A new type of Brazilian drama series has taken place on local  TV -  the cop shows. Although they are not popular as the telenovela (soap operas, definitively they came to stay.  International channels like Fox and HBO are benefited by Tax Benefits Rule which provides financial conditions for the production of those home market, and are now competing with the two greatest media Brazilian  groups – Record and Globo.  The worldwide success of “Cidade de Deus” (City of God, 2002, Fernando Meirelles, released abroad like a gangster movie, and “Tropa de Elite” (Elite Squad, 2005, Jose Padilha, Berlin Golden Bear Award 2008, which sequel “Elit Squad: The Enemy Within” (2010 became the biggest box office record of Brazilian Cinema, could be partially contributed to motivate that new kind of production, which mix up social exclusion, urban violence with the very known old formulas of American serials, as the franchise “Law and Order” and its various spin-offs.

  12. Microscale electrodes integrated on COP for real sample Campylobacter spp. detection.

    Science.gov (United States)

    Morant-Miñana, M Carmen; Elizalde, J

    2015-08-15

    Campylobacter spp. are responsible for acute bacterial diseases in human worldwide. Nowadays campilobacteriosis is considered the most common foodborne illness in the European Union. In this paper the first electrochemical genosensor based on thin-film gold electrodes deposited onto Cyclo Olefin Polymer (COP) substrates was fabricated for the detection of Campylobacter spp in food matrices. The sensing element is characterized by several surface techniques and the sensitivity of the biosensor have been studied. A good linear relationship was obtained for the concentrations of PCR amplicon of Campylobacter spp. between 1 and 25 nM with a limit of detection (LOD) of 90 pM. Real samples have been validated with poultry meat samples and results were comparable with the PCR product samples. This is the last step for the fabrication of a Lab on a Chip (LOC), a biodevice integrating DNA sensor technology into microfluidic system, believed to perform an automated and complete assay, including sample preparation, PCR amplification, and electrochemical detection of Campylobacter spp. in raw poultry meat samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Life cycle impacts of ethanol production from spruce wood chips under high-gravity conditions.

    Science.gov (United States)

    Janssen, Matty; Xiros, Charilaos; Tillman, Anne-Marie

    2016-01-01

    Development of more sustainable biofuel production processes is ongoing, and technology to run these processes at a high dry matter content, also called high-gravity conditions, is one option. This paper presents the results of a life cycle assessment (LCA) of such a technology currently in development for the production of bio-ethanol from spruce wood chips. The cradle-to-gate LCA used lab results from a set of 30 experiments (or process configurations) in which the main process variable was the detoxification strategy applied to the pretreated feedstock material. The results of the assessment show that a process configuration, in which washing of the pretreated slurry is the detoxification strategy, leads to the lowest environmental impact of the process. Enzyme production and use are the main contributors to the environmental impact in all process configurations, and strategies to significantly reduce this contribution are enzyme recycling and on-site enzyme production. Furthermore, a strong linear correlation between the ethanol yield of a configuration and its environmental impact is demonstrated, and the selected environmental impacts show a very strong cross-correlation ([Formula: see text] in all cases) which may be used to reduce the number of impact categories considered from four to one (in this case, global warming potential). Lastly, a comparison with results of an LCA of ethanol production under high-gravity conditions using wheat straw shows that the environmental performance does not significantly differ when using spruce wood chips. For this comparison, it is shown that eutrophication potential also needs to be considered due to the fertilizer use in wheat cultivation. The LCA points out the environmental hotspots in the ethanol production process, and thus provides input to the further development of the high-gravity technology. Reducing the number of impact categories based only on cross-correlations should be done with caution. Knowledge of the

  14. High priority nuclear data request list. The data for long-lived fission products, minor actinides and the thorium cycle

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, J. [Organisation for Economic Co-Operation and Development, Nuclear Energy Agency, 75 - Paris (France)

    2002-07-01

    This workshop is organised by the Research Group GEDEON together with CERN, OECD-NEA and the CFDN (French Committee for Nuclear Data). It is the continuation of the one at CERN on September 21 and 22, 1998, jointly organised with EC, GEDEON and OCDE-NEA. This last one is centred on the CERN proposal of a facility for neutron production up to 250 MeV, devoted to neutron data measurements. The first aim of the Paris workshop is to identify the present status of specific nuclear data relevant to innovative options (accelerator driven system - ADS and thorium) in the nuclear fuel cycle, beyond what has been gathered for standard reactors (PWR, FBR) and for the associated fuel cycles based on uranium and plutonium. The following topics were presented and discussed: 1. extension of present evaluated nuclear data files beyond 20 MeV needed to correctly describe the high energy part (up to approximately 200 MeV) of the spallation process used to generate the external neutrons needed for the sub-critical assemblies; 2. differential and integral cross section data in relation with the use of a thorium based; 3. the same for minor actinides and some long-lived fission residues likely to be destroyed in reactors; 4. the same for new type of materials such as lead or lead-bismuth, to be used as spallation target or as cooling, in relation with corrosion and irradiation effects. Beyond these specific issues, ADS will also take advantage of better known nuclear data coming from the existing reactors in operation. Very recent results related to spallation target physics such as neutron and residues production from heavy targets were also presented at this workshop. One very important aim of this workshop is also to bring physicists from different origin, especially from CERN, to cooperate in a program on nuclear data in relation with innovative options. This document brings together two articles entitled ''high priority nuclear data request list. The data for long lived

  15. A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature.

    Science.gov (United States)

    Shih, Yu-Jen; Liu, Chia-Hsun; Lan, Wei-Cheng; Huang, Yao-Hui

    2014-09-01

    Chemical oxo-precipitation (COP), which combines treatment with an oxidant and precipitation using metal salts, was developed for treating boron-containing water under milder conditions (room temperature, pH 10) than those of conventional coagulation processes. The concentration of boron compounds was 1000mg-BL(-1). They included boric acid (H3BO3) and perborate (NaBO3). Precipitation using calcium chloride eliminated 80% of the boron from the perborate solution, but was unable to treat boric acid. COP uses hydrogen peroxide (H2O2) to pretreat boric acid, substantially increasing the removal of boron from boric acid solution by chemical precipitation from less than 5% to 80%. Furthermore, of alkaline earth metals, barium ions are the most efficient precipitant, and can increase the 80% boron removal to 98.5% at [H2O2]/[B] and [Ba]/[B] molar ratios of 2 and 1, respectively. The residual boron in the end water of COP contained 15ppm-B: this value cannot be achieved using conventional coagulation processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model.

    Science.gov (United States)

    Zhang, Yuan; Guan, Yidong; Shi, Qi

    2015-02-01

    Organic pollutants (OPs) are potentially present in composts, and the assessment of their content and bioaccessibility in these composts is of paramount importance to minimize the risk of soil contamination and improve soil fertility. In this work, integration of the dynamics of organic carbon (OC) and OPs in an overall experimental framework is first proposed and adopted to validate the applicability of the COP-Compost model and to calibrate the model parameters on the basis of what has been achieved with the COP-Compost model. The COP-Compost model was evaluated via composting experiments containing 16 US Environmental Protection Agency (USEPA) polycyclic aromatic hydrocarbons (PAHs) and the sorption coefficient (Kd) values of two types of OP: fluorenthene (FLT) and pyrene (PHE). In our study, these compounds are used to characterize the sequential extraction and are quantified as soluble, sorbed, and non-extractable fractions. The model was calibrated, and coupling the OC and OP modules improved the simulation of the OP behavior and bioaccessibility during composting. The results show good agreement between the simulated and experimental results describing the evolution of different organic pollutants using the OP module, as well as the coupling module. However, no clear relationship is found between the Kd and the property of organic fractions. Further estimation of parameters is still necessary to modify the insufficiency of this present research.

  17. "Sleuthing through the Rock Cycle": An Online Guided Inquiry Tool for Middle and High School Geoscience Education

    Science.gov (United States)

    Schifman, Laura; Cardace, Dawn; Kortz, Karen; Saul, Karen; Gilfert, Amber; Veeger, Anne I.; Murray, Daniel P.

    2013-01-01

    The rock cycle is a key component of geoscience education at all levels. In this paper, we report on a new guided inquiry curricular module, "Sleuthing through the Rock Cycle," which has a blended online/offline constructivist design with comprehensive teaching notes and has been successful in pilot use in Rhode Island middle and high…

  18. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    Science.gov (United States)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  19. Catalyst Degradation Under Potential Cycling as an Accelerated Stress Test for PBI-Based High-Temperature PEM Fuel Cells - Effect of Humidification

    DEFF Research Database (Denmark)

    Søndergaard, Tonny; Cleemann, Lars Nilausen; Zhong, Lijie

    2017-01-01

    In the present work, high-temperature polymer electrolyte membrane fuel cells were subjected to accelerated stress tests of 30,000 potential cycles between 0.6 and 1.0 V at 160 textdegreeC (133 h cycling time). The effect that humidity has on the catalyst durability was studied by testing either...... with or without humidification of the nitrogen that was used as cathode gas during cycling segments. Pronounced degradation was seen from the polarization curves in both cases, though permanent only in the humidified case. In the unhumidified case, the performance loss was more or less recoverable following 24 h...... humidification of this region. Catalyst degradation due to platinum dissolution, transport of its ions, and eventual recrystallization is reduced when this portion of the acid dries out. Consequently, catalyst particles are only mildly affected by the potential cycling in the unhumidified case....

  20. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (todarodes pacificus).

    Science.gov (United States)

    Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun

    2015-05-01

    This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®

  1. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple.

    Science.gov (United States)

    Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhao, Xian-Yan; Zhang, Hua-Lei; Shu, Huai-Rui; Hao, Yu-Jin

    2012-10-01

    MdMYB1 is a crucial regulator of light-induced anthocyanin biosynthesis and fruit coloration in apple (Malus domestica). In this study, it was found that MdMYB1 protein accumulated in the light but degraded via a ubiquitin-dependent pathway in the dark. Subsequently, the MdCOP1-1 and MdCOP1-2 genes were isolated from apple fruit peel and were functionally characterized in the Arabidopsis (Arabidopsis thaliana) cop1-4 mutant. Yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that MdMYB1 interacts with the MdCOP1 proteins. Furthermore, in vitro and in vivo experiments indicated that MdCOP1s are necessary for the ubiquitination and degradation of MdMYB1 protein in the dark and are therefore involved in the light-controlled stability of the MdMYB1 protein. Finally, a viral vector-based transformation approach demonstrated that MdCOP1s negatively regulate the peel coloration of apple fruits by modulating the degradation of the MdMYB1 protein. Our findings provide new insight into the mechanism by which light controls anthocyanin accumulation and red fruit coloration in apple and even other plant species.

  2. COPS5 protein overexpression increases amyloid plaque burden, decreases spinophilin-immunoreactive puncta, and exacerbates learning and memory deficits in the mouse brain.

    Science.gov (United States)

    Wang, Ruizhi; Wang, Hongjie; Carrera, Ivan; Xu, Shaohua; Lakshmana, Madepalli K

    2015-04-03

    Brain accumulation of neurotoxic amyloid β (Aβ) peptide because of increased processing of amyloid precursor protein (APP), resulting in loss of synapses and neurodegeneration, is central to the pathogenesis of Alzheimer disease (AD). Therefore, the identification of molecules that regulate Aβ generation and those that cause synaptic damage is crucial for future therapeutic approaches for AD. We demonstrated previously that COPS5 regulates Aβ generation in neuronal cell lines in a RanBP9-dependent manner. Consistent with the data from cell lines, even by 6 months, COPS5 overexpression in APΔE9 mice (APΔE9/COPS5-Tg) significantly increased Aβ40 levels by 32% (p plaque burden both in the cortex (54%, p < 0.01) and hippocampus (64%, p < 0.01). Interestingly, COPS5 overexpression increased RanBP9 levels in the brain, which, in turn, led to increased amyloidogenic processing of APP, as reflected by increased levels of sAPPβ and decreased levels of sAPPα. Furthermore, COPS5 overexpression reduced spinophilin in both the cortex (19%, p < 0.05) and the hippocampus (20%, p < 0.05), leading to significant deficits in learning and memory skills. Therefore, like RanBP9, COPS5 also plays a pivotal role in amyloid pathology in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Co3O4/CoP composite hollow polyhedron: A superior catalyst with dramatic efficiency and stability for the room temperature reduction of 4-nitrophenol

    Science.gov (United States)

    Liu, Xing; Li, Xiangqing; Qin, Lixia; Mu, Jin; Kang, Shi-Zhao

    2018-03-01

    In the present work, Co3O4/CoP composite hollow polyhedrons were prepared and characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and N2 adsorption-desorption isotherms. Then, the catalytic activity of the as-prepared Co3O4/CoP hollow polyhedrons was evaluated for the borohydride-assisted reduction of 4-nitrophenol at room temperature. The results indicate that the as-prepared Co3O4/CoP hollow polyhedrons are an efficient recyclable catalyst for the reduction of 4-nitrophenol. When the 4-nitrophenol initial concentration is 1.0 × 10-4 mol L-1 (100 mL), almost 100% 4-nitrophenol can be reduced within 3 min in the presence of the Co3O4/CoP hollow polyhedrons. The apparent rate constant of the 4-nitrophenol reduction is 1.61 min-1 at room temperature, and the activity factor is about 5.37 × 104 mL min-1 g-1, which is almost two times higher than that over Ag nanoparticles. Finally, the catalytic mechanism was preliminarily discussed. It is found that CoP plays an important role in the catalytic process. Here, CoP serves as active sites, which leads to efficient formation of hydrogen atoms from BH4- and fast electron transfer.

  4. A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime

    Science.gov (United States)

    Sun, Chengqi; Liu, Xiaolong; Hong, Youshi

    2015-06-01

    In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.

  5. Cycle length and COD/N ratio determine properties of aerobic granules treating high-nitrogen wastewater.

    Science.gov (United States)

    Cydzik-Kwiatkowska, Agnieszka; Bernat, Katarzyna; Zielińska, Magdalena; Wojnowska-Baryła, Irena

    2014-07-01

    Aerobic granule characteristic in sequencing batch reactors treating high-nitrogen digester supernatant was investigated at cycle lengths (t) of 6, 8 and 12 h with the COD/N ratios in the influent of 4.5 and 2.3. The biomass production (Y obs) correlated with the extracellular polymeric substances (EPS) in grams per COD removed. Denitrification efficiency significantly decreased as the amount of EPS in biomass increased, suggesting that organic assimilation in EPS hampers nitrogen removal. Granule hydrophobicity was highest at t of 8 h; the t has to be long enough to remove pollutants, but not so long that excessive biomass starvation causes extracellular protein consumption that decreases hydrophobicity. At a given t, reducing the COD/N ratio improved hydrophobicity that stimulates cell aggregation. At t of 6 h and the COD/N ratio of 2.3, the dominance of 0.5-1.0 mm granules favored simultaneous nitrification and denitrification and resulted in the highest nitrogen removal.

  6. Damage estimates for European and U.S.sites using the U.S. high-cycle fatigue data base

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, H.J. [Wind Energy Technology, Sandia National Lab., Albuquerque, NM (United States)

    1996-09-01

    This paper uses two high-cycle fatigue data bases, one for typical U.S. blade materials and one for European materials, to analyze the service lifetime of a wind turbine blade subjected to the WISPER load spectrum for northern European sites and the WISPER protocol load spectrum for U.S. wind farm sites. The U.S. data base contains over 2200 data points that were obtained using coupon testing procedures. These data are used to construct a Goodman diagram that is suitable for analyzing wind turbine blades. This result is compared to the Goodman diagram derived from the European fatigue data base FACT. The LIFE2 fatigue analysis code for wind turbines is then used to predict the service lifetime of a turbine blade subjected to the two loading histories. The results of this study indicate that the WISPER load spectrum from northern European sites significantly underestimates the WISPER protocol load spectrum from a U.S. wind farm site, i.e., the WISPER load spectrum significantly underestimates the number and magnitude of the loads observed at a U.S. wind farm site. Further, the analysis demonstrate that the European and the U.S. fatigue material data bases are in general agreement for the prediction of tensile failures. However, for compressive failures, the two data bases are significantly different, with the U.S. data base predicting significantly shorter service lifetimes than the European data base. (au) 14 refs.

  7. Performance of Siloxane Mixtures in a High-Temperature Organic Rankine Cycle Considering the Heat Transfer Characteristics during Evaporation

    Directory of Open Access Journals (Sweden)

    Theresa Weith

    2014-08-01

    Full Text Available The application of the Organic Rankine Cycle to high temperature heat sources is investigated on the case study of waste heat recovery from a selected biogas plant. Two different modes of operation are distinguished: pure electric power and combined heat and power generation. The siloxanes hexamethyldisiloxane (MM and octamethyltrisiloxane (MDM are chosen as working fluids. Moreover, the effect of using mixtures of these components is analysed. Regarding pure electricity generation, process simulations using the simulation tool Aspen Plus show an increase in second law efficiency of 1.3% in case of 97/03 wt % MM/MDM-mixture, whereas for the combined heat and power mode a 60/40 wt % MM/MDM-mixture yields the highest efficiency with an increase of nearly 3% compared to most efficient pure fluid. Next to thermodynamic analysis, measurements of heat transfer coefficients of these siloxanes as well as their mixtures are conducted and Kandlikar’s correlation is chosen to describe the results. Based on that, heat exchanger areas for preheater and evaporator are calculated in order to check whether the poorer heat transfer characteristics of mixtures devalue their efficiency benefit due to increased heat transfer areas. Results show higher heat transfer areas of 0.9% and 14%, respectively, compared to MM.

  8. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  9. Conferencia de Cambio Climático: resultados de la COP 20 en Perú

    Directory of Open Access Journals (Sweden)

    Wilfredo Bulege Gutiérrez

    2014-12-01

    Full Text Available El sentir ciudadano en defensa de la calidad de vida es ya de preocupación e indignación global. Siguiendo a Mónica Araya (1, podemos decir que a menor contaminación, más espacios verdes y mayor energía limpia, y a medida que estas aspiraciones entran en el imaginario ciudadano, van creándose condiciones favorables para el reclamo masivo y uso global de energía renovable. La reconocida economista costarricense y negociadora en cambio climático por su país, destaca que la petición en línea planteada por los ciudadanos este año ha exigido a los gobiernos optar por la energía limpia al cien por ciento, reclamo apoyado por 2,2 millones de personas en el mundo, y que la Marcha Popular por el Clima del 21 de septiembre de 2014 ha marcado un hito. Más de 400 000 ciudadanos caminaron pacíficamente por las calles de Manhattan apoyados por 3 000 actos que iban desde Bogotá hasta Sydney. Hubo marchas en 166 países con lúcidas expresiones ciudadanas a favor de una economía que no dañe la salud de las personas, que crezca a través del uso de energía renovable y sea justa (1. Según una encuesta del Banco Interamericano de Desarrollo (BID, al ciudadano latinoamericano le preocupa el cambio climático (2. Sabe que es un problema real y que puede llegar a impactar su entorno. Ya el 2 de noviembre oímos a la comunidad científica internacional a través del Panel Intergubernamental de Cambio Climático (IPCC, al publicar su Quinto Informe –el más reciente-, en el que la realidad y urgencia de atender el fenómeno del cambio climático es impostergable (1. Establecida en la Cumbre de Río en 1992, la Convención Marco de las Naciones Unidas sobre el Cambio Climático (CMNUCC entra en vigor en 1994 con el objetivo de reducir las concentraciones de gases de efecto invernadero (GEI en la atmósfera, y en 1995 impulsa la Conferencia de las Partes (COP, por sus siglas en inglés como órgano supremo de toma de decisiones. Los 195 pa

  10. Modeling high-peak-power few-cycle field waveform generation by optical parametric amplification in the long-wavelength infrared.

    Science.gov (United States)

    Voronin, A A; Lanin, A A; Zheltikov, A M

    2016-10-03

    Extended coupled-wave analysis of optical parametric chirped-pulse amplification (OPCPA) reveals regimes whereby high-peak-power few-cycle pulses can be generated in the long-wavelength infrared (LWIR) spectral range. Broadband OPCPA in suitable nonlinear crystals pumped at around 2 μm and seeded either through the signal or the idler input is shown to enable the generation of high-power field waveforms with pulse widths shorter than two field cycles within the entire LWIR range.

  11. Optimization and model reduction in the high dimensional parameter space of a budding yeast cell cycle model

    Science.gov (United States)

    2013-01-01

    Background Parameter estimation from experimental data is critical for mathematical modeling of protein regulatory networks. For realistic networks with dozens of species and reactions, parameter estimation is an especially challenging task. In this study, we present an approach for parameter estimation that is effective in fitting a model of the budding yeast cell cycle (comprising 26 nonlinear ordinary differential equations containing 126 rate constants) to the experimentally observed phenotypes (viable or inviable) of 119 genetic strains carrying mutations of cell cycle genes. Results Starting from an initial guess of the parameter values, which correctly captures the phenotypes of only 72 genetic strains, our parameter estimation algorithm quickly improves the success rate of the model to 105–111 of the 119 strains. This success rate is comparable to the best values achieved by a skilled modeler manually choosing parameters over many weeks. The algorithm combines two search and optimization strategies. First, we use Latin hypercube sampling to explore a region surrounding the initial guess. From these samples, we choose ∼20 different sets of parameter values that correctly capture wild type viability. These sets form the starting generation of differential evolution that selects new parameter values that perform better in terms of their success rate in capturing phenotypes. In addition to producing highly successful combinations of parameter values, we analyze the results to determine the parameters that are most critical for matching experimental outcomes and the most competitive strains whose correct outcome with a given parameter vector forces numerous other strains to have incorrect outcomes. These “most critical parameters” and “most competitive strains” provide biological insights into the model. Conversely, the “least critical parameters” and “least competitive strains” suggest ways to reduce the computational complexity of the

  12. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-01-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging. PMID:27319783

  13. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability.

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M

    2016-06-20

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm(2), a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  14. Re-cycling mercury: the role of stocking non-native fish in high-altitude lakes

    Science.gov (United States)

    Hansson, S. V.; Le Roux, G.; Sonke, J.

    2016-12-01

    Mercury (Hg) is a globally distributed pollutant that can be carried long distances and be deposited remote from its original source. It is also one of the few natural abundant trace metals that serves no biological purpose, i.e. is highly toxic to humans and other biota. Studies have also shown that Hg-deposition increases with increasing altitude, leading to a higher load of contamination to these already sensitive environments. Any additional sources of Hg to high-altitude aquatic systems are therefore of high concern. Today introduced non-indigenous fish can be found in aquatic systems on all contents, with the exception of Antarctica. However, the social and economic benefits gained by these introductions often weighs against the ecological impacts. E.g. studies have shown that introduction of carnivore fish can lead to alternation of the aquatic food web and introduce pathogens causing population declines or even extinction. Few studies however have looked at the introduction of non-native fish to high altitude aquatic systems in the scope of heavy-metal contamination. By using a combined geochemical and isotopic approach, we therefore study the introduction of brown trout as a potential source of Hg-contamination in three high altitude lakes in the French Pyrenees. We combine analysis of δ13C and δ15N, with tot-Hg and Hg-isotopes in samples of biofilm, invertebrates, common minnow and brow trout and compare these with data from trout bred at a local fish farm, providing the fish used when stocking lakes in the nearby region. Our results show that levels of tot-Hg in trout from our sites surpasses literature values by 5 times or more and that MIF and MDF Hg-isotope signatures shows clear relationship with fish size and with δ15N. However, there is a clear difference in the Hg-isotopic signatures of the wild trout compared to the farmed. Whereas δ202Hg and Δ199Hg-signatures of the wild trout aligns with the onsite food chain (biofilm, plankton, common

  15. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries.

    Science.gov (United States)

    Wang, Xia; Sun, Pingping; Qin, Jinwen; Wang, Jianqiang; Xiao, Ying; Cao, Minhua

    2016-05-21

    Metal phosphides are great promising anode materials for lithium-ion batteries with a high gravimetric capacity. However, significant challenges such as low capacity, fast capacity fading and poor cycle stability must be addressed for their practical applications. Herein, we demonstrate a versatile strategy for the synthesis of a novel three-dimensional porous molybdenum phosphide@carbon hybrid (3D porous MoP@C hybrid) by a template sol-gel method followed by an annealing treatment. The resultant hybrid exhibits a 3D interconnected ordered porous structure with a relatively high surface area. Benefiting from its advantages of microstructure and composition, the 3D porous MoP@C hybrid displays excellent lithium storage performance as an anode material for lithium-ion batteries in terms of specific capacity, cycling stability and long-cycle life. It presents stable cycling performance with a high reversible capacity up to 1028 mA h g(-1) at a current density of 100 mA g(-1) after 100 cycles. By ex situ XRD, HRTEM, SAED and XPS analyses, the 3D porous MoP@C hybrid was found to follow the Li-intercalation reaction mechanism (MoP + xLi(+) + e(-)↔ LixMoP), which was further confirmed by ab initio calculations based on density functional theory.

  16. Sex-Related Differences in Self-Paced All Out High-Intensity Intermittent Cycling: Mechanical and Physiological Responses

    Science.gov (United States)

    Panissa, Valéria L. G.; Julio, Ursula F.; França, Vanessa; Lira, Fabio S.; Hofmann, Peter; Takito, Monica Y.; Franchini, Emerson

    2016-01-01

    The purpose of this study was to compare sex-related responses to a self-paced all out high-intensity intermittent exercise (HIIE). 9 women and 10 men were submitted to a maximal incremental test (to determine maximum aerobic power - MAP and VO2peak), and an HIIE cycling (60x8s:12s, effort:pause). During the protocol the mean value of V̇O2 and heart rate for the entire exercise (VO2total and HRtotal) as well as the values only in the effort or pause (V̇O2effort, VO2pause and HReffort and HRpause) relative to VO2peak were measured. Anaerobic power reserve (APR), blood lactate [La] and the respiratory exchange ratio (RER) were also measured. These variables were compared between men and women using the unpaired t test. Men used greater APR (109 ± 12%MAP vs 92 ± 6%MAP) with similar V̇O2total (74 ± 7 vs 78 ± 8% VO2peak), however, when effort and pause were analysed separately, V̇O2effort (80 ± 9 vs 80 ± 5%VO2peak) was similar between sexes, whil