WorldWideScience

Sample records for high conversion yield

  1. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe

    2014-09-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40, is capable of converting various biomass-derived substrates to formic acid and acetic acid with high selectivity in a water medium and oxygen atmosphere. Under optimized reaction conditions, H4PVMo11O40 gave an exceptionally high yield of formic acid (67.8%) from cellulose, far exceeding the values achieved in previous catalytic systems. Our study demonstrates that heteropoly acids are generally effective catalysts for biomass conversion due to their strong acidities, whereas the composition of metal addenda atoms in the catalysts has crucial influence on the reaction pathway and the product selectivity. © 2013 Elsevier B.V.

  2. Development of High Yield Feedstocks and Biomass Conversion Technology for Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Andrew G. [Univ. of Hawaii, Honolulu, HI (United States); Crow, Susan [Univ. of Hawaii, Honolulu, HI (United States); DeBeryshe, Barbara [Univ. of Hawaii, Honolulu, HI (United States); Ha, Richard [Hamakua Springs County Farms, Hilo, HI (United States); Jakeway, Lee [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Khanal, Samir [Univ. of Hawaii, Honolulu, HI (United States); Nakahata, Mae [Hawaiian Commercial and Sugar Company, Puunene, HI (United States); Ogoshi, Richard [Univ. of Hawaii, Honolulu, HI (United States); Shimizu, Erik [Univ. of Hawaii, Honolulu, HI (United States); Stern, Ivette [Univ. of Hawaii, Honolulu, HI (United States); Turano, Brian [Univ. of Hawaii, Honolulu, HI (United States); Turn, Scott [Univ. of Hawaii, Honolulu, HI (United States); Yanagida, John [Univ. of Hawaii, Honolulu, HI (United States)

    2015-04-09

    This project had two main goals. The first goal was to evaluate several high yielding tropical perennial grasses as feedstock for biofuel production, and to characterize the feedstock for compatible biofuel production systems. The second goal was to assess the integration of renewable energy systems for Hawaii. The project focused on high-yield grasses (napiergrass, energycane, sweet sorghum, and sugarcane). Field plots were established to evaluate the effects of elevation (30, 300 and 900 meters above sea level) and irrigation (50%, 75% and 100% of sugarcane plantation practice) on energy crop yields and input. The test plots were extensive monitored including: hydrologic studies to measure crop water use and losses through seepage and evapotranspiration; changes in soil carbon stock; greenhouse gas flux (CO2, CH4, and N2O) from the soil surface; and root morphology, biomass, and turnover. Results showed significant effects of environment on crop yields. In general, crop yields decrease as the elevation increased, being more pronounced for sweet sorghum and energycane than napiergrass. Also energy crop yields were higher with increased irrigation levels, being most pronounced with energycane and less so with sweet sorghum. Daylight length greatly affected sweet sorghum growth and yields. One of the energy crops (napiergrass) was harvested at different ages (2, 4, 6, and 8 months) to assess the changes in feedstock characteristics with age and potential to generate co-products. Although there was greater potential for co-products from younger feedstock, the increased production was not sufficient to offset the additional cost of harvesting multiple times per year. The feedstocks were also characterized to assess their compatibility with biochemical and thermochemical conversion processes. The project objectives are being continued through additional support from the Office of Naval Research, and the Biomass Research and Development

  3. Catalytic oxidative conversion of cellulosic biomass to formic acid and acetic acid with exceptionally high yields

    KAUST Repository

    Zhang, Jizhe; Sun, Miao; Liu, Xin; Han, Yu

    2014-01-01

    Direct conversion of raw biomass materials to fine chemicals is of great significance from both economic and ecological perspectives. In this paper, we report that a Keggin-type vanadium-substituted phosphomolybdic acid catalyst, namely H4PVMo11O40

  4. High-yield conversion of (R)-2-octanol from the corresponding racemate by stereoinversion using Candida rugosa.

    Science.gov (United States)

    Nie, Yao; Xu, Yan; Qing Mu, Xiao; Tang, Yan; Jiang, Juan; Hao Sun, Zhi

    2005-01-01

    Whole cells of Candida rugosa catalyzed the conversion of (R)-2-octanol from the corresponding racemate with the optical purity of 97% e.e. and yield of 92% in 10 h. The product was formed through a stereoinversion involving enantioselective oxidation and asymmetric reduction with 2-octanone as the intermediate.

  5. A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield

    International Nuclear Information System (INIS)

    Wang, Hsueh-Sheng; Huang, Kuo-Yang; Huang, Yuh-Jeen; Su, Yu-Chuan; Tseng, Fan-Gang

    2015-01-01

    Highlights: • A low-operating temperature of the POM-mode micro methanol reformer is obtained. • The effect of channel design on the performance is studied. • The effect of solid content and binder’ ratio on the performance is studied. • The centrifugal process is benefit for the modification of performance. • 98% of methanol conversion rate of the micro reformer can be obtained at 180 °C. - Abstract: A partial oxidation methanol micro reformer (POM-μReformer) with finger-shaped channels for low operating temperature and high conversing efficiency is proposed in this study. The micro reformer employs POM reaction for low temperature operation (less than 200 °C), exothermic reaction, and quick start-up, as well as air feeding capability; and the finger type reaction chambers for increasing catalyst loading as well as reaction area for performance enhancement. In this study, centrifugal technique was introduced to assist on the catalyst loading with high amount and uniform distribution. The solid content (S), binder’s ratio (B), and channel design (the ratio between channel’s length and width, R) were investigated in detail to optimize the design parameters. Scanning electron microscopy (SEM), gas chromatography (GC), and inductively coupled plasma-mass spectrometer (ICP-MS) were employed to analyze the performance of the POM-μReformer. The result depicted that the catalyst content and reactive area could be much improved at the optimized condition, and the conversion rate and hydrogen selectivity approached 97.9% and 97.4%, respectively, at a very low operating temperature of 180 °C with scarce or no binder in catalyst. The POM-μReformer can supply hydrogen to fuel cells by generating 2.23 J/min for 80% H 2 utilization and 60% fuel cell efficiency at 2 ml/min of supplied reactant gas, including methanol, oxygen and argon at a mixing ratio of 12.2%, 6.1% and 81.7%, respectively

  6. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    Science.gov (United States)

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Higuchi, Shin-ichi; Kawashima, Masatoshi

    1987-01-01

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  8. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  9. CONVERSION PRODUCT STRUCTURE AS TOOL TO INCREASE YIELD PROCESSING ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2014-01-01

    Full Text Available The authors' analysis of the performance of organizations, processing raw materials of agricultural origin, in particular, dealing with meat processing, identified the need to develop tools to increase their profitability. Unlike common approaches to assessing the profitability of the processing organizations, taking into account only the interests of the organization's leadership and buyers of products, the authors proposed and implemented a concept based on the interests of participants in the triune balance business activities: owners of capital, management organizations and consumers. As one of the tools for improving the yield of processing organizations are invited to transform their product mix of economic evaluations of profitability of each product line positions. Russian researchers income from product sales are traditionally measured by indicators such as net income, income from sales, profit margins and profitability level - in terms of return on sales. The disadvantage of using these indicators, according to the authors, is their lack of objectivity in the evaluation of the effectiveness of investment business owners. In this work was used unconventional and non-proliferation in the Russian practice, the rate of economic value added (EVA, a built - in system of profitability assortment positions. As indicators, the production of a particular product line units proposed and used two quantitative indicators - EVA level per unit of production and profitability of production (for EVA, as well as a quality parameter - the level of demand. Developed by the evaluation program transformation product structure represented as a matrix management capabilities, allowing to achieve a balance of interests of the triune main participants in business activity.

  10. Development of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Yamashita, Jun-ichi; Mochida, Takaaki; Uchikawa, Sadao.

    1988-01-01

    It is expected that the period of LWRs being the main source of electric power supply becomes long, therefore, the development of next generation LWRs placing emphasis on the effective utilization of uranium resources and the improvement of economical efficiency is necessary. In this paper, as the next generation BWRs subsequent to ABWRs, the concept of the core of high conversion type BWRs is reported, in which emphasis is placed on the saving of natural uranium resources by raising the rate of conversion to plutonium. This core is that of realizing the high rate of conversion by utilizing the void in the core, which is the feature of BWRs, and the case of making the change of the core structure relatively small by using cross type control rods and the case of changing the core structure for further heightening the rate of conversion and making control rods into cluster type are described. In order to meet the demand like this, Hitachi Ltd. has engaged in the development of the concept of the core of next generation LWRs. In the high conversion type BWRs, there is not large change in the reactor system and turbine system from the current BWRs. The features and the concept of the core of high conversion type BWRs are described. (Kako, I.)

  11. High yield fabrication of fluorescent nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Boudou, Jean-Paul; Curmi, Patrick A [Structure and Activity of Normal and Pathological Biomolecules-INSERM/UEVE U829, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf [3.Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart (Germany); Aubert, Pascal [Nanometric Media Laboratory, Universite d' Evry-Val d' Essonne, Batiment Maupertuis, Rue du pere Andre Jarlan, F-91025 Evry (France); Sennour, Mohamed; Thorel, Alain [Centre des Materiaux, Mines Paris, ParisTech, BP 87, F-91000 Evry (France); Gaffet, Eric [Nanomaterials Research Group-UMR 5060, CNRS, UTBM, Site de Sevenans, F-90010 Belfort (France)], E-mail: jpb.cnrs@free.fr, E-mail: pcurmi@univ-evry.fr, E-mail: f.jelezko@physik.uni-stuttgart.de

    2009-06-10

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  12. High yield fabrication of fluorescent nanodiamonds

    International Nuclear Information System (INIS)

    Boudou, Jean-Paul; Curmi, Patrick A; Jelezko, Fedor; Wrachtrup, Joerg; Balasubramanian, Gopalakrischnan; Reuter, Rolf; Aubert, Pascal; Sennour, Mohamed; Thorel, Alain; Gaffet, Eric

    2009-01-01

    A new fabrication method to produce homogeneously fluorescent nanodiamonds with high yields is described. The powder obtained by high energy ball milling of fluorescent high pressure, high temperature diamond microcrystals was converted in a pure concentrated aqueous colloidal dispersion of highly crystalline ultrasmall nanoparticles with a mean size less than or equal to 10 nm. The whole fabrication yield of colloidal quasi-spherical nanodiamonds was several orders of magnitude higher than those previously reported starting from microdiamonds. The results open up avenues for the industrial cost-effective production of fluorescent nanodiamonds with well-controlled properties.

  13. Development of high yielding mutants in lentil

    International Nuclear Information System (INIS)

    Rajput, M.A.; Sarwar, G.; Siddiqui, K.A.

    2001-01-01

    Full text: Lentil (Lens culinaris Medik.) locally known as Masoor, is the second most important rabi pulse crop, after chickpea, in Pakistan. It is cultivated on an area of over 63,400 ha, which constitutes about 4.83% of the total area under pulses. The annual production of the crop is 28,200 tones with an average yield of 445 kg/ha. Yield at the national level is very low, about one-half of the world's yield, which is mainly due to non-availability of high yield potential genotypes. Keeping in view the importance of mutants in developing a large number of new varieties, an induced mutations programme was initiated at AEARC, Tandojam during 1987-88, to develop high yielding varieties in lentil. For this, seeds of two lentil varieties, 'Masoor-85' and 'ICARDA-8' had been irradiated with gamma-rays ranging from 100-600 Gy in NIAB, Faisalabad during 1990. Selections were made in M2 on the basis of earliness, plant height, branches/plant and 100 grain weight. After confirming these mutants in M3 they were promoted in station yield trials and studied continuously for three consecutive years (1993- 1995). Overall results revealed that these mutants have consistent improvement of earliness in flowering and maturity. Plant height also increased in all mutant lines except AEL 23/40/91 where reduction in this attribute was observed as compared to parent variety. Mutant lines AEL 49/20/91 and AEL 13/30/91 showed improvement in 100 grain weight. The improvement of some agronomic characters enhanced the yield of mutant lines in comparison to parent varieties (Masoor-85 and ICARDA-8). The diversity in yield over the respective parents was computed from 6.94 to 60.12%. From these encouraging results it is hoped that mutant lines like AEL 12/30/91 and AEL 49/20/91 may serve as potential lentil genotypes in future. (author)

  14. High conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1975-01-01

    This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilisation of the high conversion potential are compared with others that aim at easier reprocessing and the 'environmental' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (orig./UA) [de

  15. PREOVULATORY FOLLICLE DEVELOPMENT IN HIGH YIELDING COWS

    Directory of Open Access Journals (Sweden)

    Radovan Tomášek

    2013-06-01

    Full Text Available The aim of the study was to examine the development of preovulatory follicles in pregnant and non-pregnant high yielding cows. The treatment by supergestran and oestrophan was used to synchronize the estrous cycle. Ovaries were monitored by transrectal ultrasonography. The linear increase of preovulatory follicles was observed in pregnant (P < 0,001 and non-pregnant (P < 0,001 cows during 8 days before ovulation. In conclusion, preovulatory follicles in pregnant and non-pregnant high yielding cows developed similarly.

  16. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  17. Low cost, high yield IFE reactors: Revisiting Velikhov's vaporizing blankets

    International Nuclear Information System (INIS)

    Logan, B.G.

    1992-01-01

    The performance (efficiency and cost) of IFE reactors using MHD conversion is explored for target blanket shells of various materials vaporized and ionized by high fusion yields (5 to 500 GJ). A magnetized, prestressed reactor chamber concept is modeled together with previously developed models for the Compact Fusion Advanced Rankine II (CFARII) MHD Balance-of-Plant (BoP). Using conservative 1-D neutronics models, high fusion yields (20 to 80 GJ) are found necessary to heat Flibe, lithium, and lead-lithium blankets to MHD plasma temperatures, at initial solid thicknesses sufficient to capture most of the fusion yield. Advanced drivers/targets would need to be developed to achieve a ''Bang per Buck'' figure-of-merit approx-gt 20 to 40 joules yield per driver $ for this scheme to be competitive with these blanket materials. Alternatively, more realistic neutronics models and better materials such as lithium hydride may lower the minimum required yields substantially. The very low CFARII BoP costs (contributing only 3 mills/kWehr to CoE) allows this type of reactor, given sufficient advances that non-driver costs dominate, to ultimately produce electricity at a much lower cost than any current nuclear plant

  18. High yielding rice mutants for West Bengal

    International Nuclear Information System (INIS)

    Debnath, A.R.; Sen, S.

    1980-01-01

    Four high yielding mutants with specific genetic corrections of the simply inherited characters were developed from IR-8 through X-irradiation. Recurrent selections of the promising isolates were made under diverse agro-climatic conditions in Winter and Summer seasons of West Bengal. The isolates CNM 6 and CNM 25 belonging to early maturity group and CNM 20 and CNM 31, to mid-early maturity group were finally selected at X 5 generation on the basis of their resistance qualities, maturity period and grain yield. They were evaluated upto X 10 qeneration at multi-locations as Pre-release and Minikit Varieties at State level. They were also placed at the National Screening Nursery (NSN) for screening against multiple diseases and pests at the National level. CNM 6 is reported to be promising in IRTP nurseries. It is reported that CNM 25 (IET 5646) ranked 2nd on the basis of average grain yield, CNM 20 (IET 5937) and CNM 31 (IET 5936) were resistant to diseases and with yield comparable to Jaya. These four productive mutants of superior types are widely accepted. CNM 6 is recommended for cultivation in Bankura and Birbhum districts and CNM 25 and CNM 31 in the different agro-climatic zones of West Bengal. (author)

  19. High green fodder yielding new grass varieties

    OpenAIRE

    C. Babu, K. Iyanar and A. Kalamani

    2014-01-01

    Two high biomass yielding forage grass varieties one each in Cumbu Napier hybrid and Guinea grass have been evolved at the Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore and identified for release at national (All India) level as Cumbu Napier hybrid grass CO (BN) 5 and Guinea grass CO (GG) 3 during 2012 and 2013 respectively. Cumbu Napier hybrid grass CO (BN) 5 secured first rank at all national level with reference to green ...

  20. Methods for high yield production of terpenes

    Energy Technology Data Exchange (ETDEWEB)

    Kutchan, Toni; Higashi, Yasuhiro; Feng, Xiaohong

    2017-01-03

    Provided are enhanced high yield production systems for producing terpenes in plants via the expression of fusion proteins comprising various combinations of geranyl diphosphate synthase large and small subunits and limonene synthases. Also provided are engineered oilseed plants that accumulate monoterpene and sesquiterpene hydrocarbons in their seeds, as well as methods for producing such plants, providing a system for rapidly engineering oilseed crop production platforms for terpene-based biofuels.

  1. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...... convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass...

  2. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  3. Advanced high conversion PWR: preliminary analysis

    International Nuclear Information System (INIS)

    Golfier, H.; Bellanger, V.; Bergeron, A.; Dolci, F.; Gastaldi, B.; Koberl, O.; Mignot, G.; Thevenot, C.

    2007-01-01

    In this paper, physical aspects of a HCPWR (High Conversion Light Water Reactor), which is an innovative PWR fuelled with mixed oxide and having a higher conversion ratio due to a lower moderation ratio. Moderation ratios lower than unity are considered which has led to low moderation PWR fuel assembly designs. The objectives of this parametric study are to define a feasibility area with regard to the following neutronic aspects: moderation ratio, Pu loading, reactor spectrum, irradiation time, and neutronic coefficients. Important thermohydraulic parameters are the pressure drop, the critical heat flux, the maximum temperature in the fuel rod and the pumping power. The thermohydraulic analysis shows that a range of moderation ratios from 0.8 to 1.2 is technically possible. A compromise between improved fuel utilization and research and development effort has been found for the moderation ration of about 1. The parametric study shows that there are 2 ranges of interest for the moderation ratio: -) moderation ratio between 0.8 and 1.2 with reduced fissile heights (> 3 m), hexagonal arrangement fuel assembly and square arrangement fuel assembly are possible; and -) moderation between 0.6 and 0.7 with a modification of the reactor operating conditions (reduction of the primary flow and of the thermal power), the fuel rods could be arranged inside a hexagonal fuel rod assembly. (A.C.)

  4. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  5. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2009-06-01

    Full Text Available Abstract Background Working at high solids (substrate concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. Results The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w. Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. Conclusion Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition

  6. Parametric study for high conversion pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teuchert, E.; Ruetten, H. J.

    1975-06-15

    Tables are presented of fuel cycle costs, conversion ratios and accompanying variations in fuel element designs for a 3,00 MWth high conversion pebble bed reactor with initial high enriched uranium/thorium cycle and subsequent recycling of U-233, Pu-239 and Pu-241.

  7. Mathematical Simulation of High-Conversion Binary Copolymerization

    Institute of Scientific and Technical Information of China (English)

    JiangWei; QinJiguang

    2005-01-01

    A new model for mathematical simulation of high-conversion binary copolymerization was established by combination of the concept of the three stage polymerization model (TSPM) proposed by Qin et al. for bulk free radical homopolymerization with the North equation to describe high-conversion copolymerization reaction exhibiting a strong gel effect, and the mathematical expressions of this new model were derived. Like TSPM, the new model also assmnes that the whole course of binary copolymerization can be divided into three different stages: low conversion, gel effect and glass effect stages. In addition, the reaction rate constants and the initiator efficiency at each copolymerization stage do not vary with conversion. Based on the expressions derived, a plot method for determining the overall rate constants and critical conversions was proposed. The literature data on conversion history for styrene (St)-methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA)-MMA copolymerizations were treated to examine the model, which shows that the model is satisfactory.

  8. Lignin conversion to high-octane fuel additives

    Energy Technology Data Exchange (ETDEWEB)

    Shabtai, J.; Zmierczak, W.; Kadangode, S. [University of Utah, Salt Lake City (United States); Chornet, E.; Johnson, D.K. [National Renewable Energy Laboratory, Golden, CO (United States)

    1999-07-01

    Continuing previous studies on the conversion of lignin to reformulated gasoline compositions, new lignin upgrading processes were developed that allow preferential production of specific high-octane fuel additives of two distinct types: (1) C{sub 7}-C{sub 10} alkylbenzenes; and (2) aryl methyl ethers, where aryl mostly = phenyl, 2-methylphenyl, 4-methylphenyl, and dimethylphenyl. Process (1) comprises base-catalyzed depolymerization (BCD) and simultaneous partial ({approx} 50%) deoxygenation of lignin at 270 - 290{sup o}C, in the presence of supercritical methanol as reaction medium, followed by exhaustive hydrodeoxygenation and attendant mild hydrocracking of the BCD product with sulfided catalysts to yield C{sub 8}-C{sub 10} alkylbenzenes as main products. Process (2) involves mild BCD at 250 - 270{sup o}C with preservation of the lignin oxygen, followed by selective C-C hydrocracking with solid superacid catalysts. This method preferentially yields a mixture of alkylated phenols, which upon acid-catalyzed etherification with methanol are converted into corresponding aryl methyl ethers (see above) possessing blending octane numbers in the range of 142-166. In a recent extension of this work, a greatly advantageous procedure for performing the BCD stage of processes (1) and (2) in water as reaction medium was developed. (author)

  9. Effect of yield and price risk on conversion from conventional to organic farming

    NARCIS (Netherlands)

    Acs, S.; Berentsen, P.B.M.; Huirne, R.B.M.; Asseldonk, van M.A.P.M.

    2009-01-01

    Although the benefits of organic farming are already well known, the conversion to organic farming does not proceed as the Dutch government expected. In order to investigate the conversion decisions of Dutch arable farms, a discrete stochastic dynamic utility-efficient programming (DUEP) model is

  10. Nuclear propulsion in high yield vessels

    International Nuclear Information System (INIS)

    Vergara Aimone, Julio

    2000-01-01

    Current developments in advanced ship design brings high-speed maritime transportation closer to reality, aiming to create new markets and to recover a fraction of the high value goods now shipped only by air. High-speed transport is growing at a rate of 15% per year, higher than air transport and at a fraction of air tariffs. Although such growth rate is restricted to passengers and automobiles, there is a potential for high-speed cargo in some routes. A recent proposal is Fast Ship, a 260 m long, 40 m wide concept designed to cruise from Philadelphia to Cherbourg in less that 4 days, for a door-to-door timely cargo delivery of 7 days, thanks to an advanced hull design, and a high power propulsion plant to compensate for weather-related delays. However, almost 40% of the total operation cost would be fuel. This appears to be a natural application for nuclear power, in a similar way to the golden age of this technology. A nuclear Fast Ship would save almost 5000 tons of a fuel per trip, and about half of such spare might be available for additional cargo. Furthermore, operation costs would be smaller and very stable to resource price fluctuation, plus a few other advantages. For other ocean markets, such as the Asia-America route, nuclear power would become a much better choice. This paper discusses the reactor type and layout suitable for such application. The ship designer is aware of the current proposal, although the power pack is not readily available today and its political aspects have not been dealt with. The economy of our nation relies on exports and almost 90% of such flow goes by sea. It is also possible that in the future, Mercosur might have a dependency on such high-speed transport mode and propulsion system (au)

  11. Nitrogen conversion during rapid pyrolysis of coal and petroleum coke in a high-frequency furnace

    International Nuclear Information System (INIS)

    Yuan, Shuai; Zhou, Zhi-jie; Li, Jun; Wang, Fu-chen

    2012-01-01

    Highlights: ► Use a high-frequency furnace to study N-conversion during rapid pyrolysis of coal. ► Scarcely reported N-conversion during rapid pyrolysis of petroleum coke was studied. ► Both of NH 3 and HCN can be formed directly from coal during rapid pyrolysis. ► NH 3 –N yields are higher than HCN–N yields in most conditions. ► NH 3 –N yields of petroleum coke increase with temperature and no HCN detected. -- Abstract: Rapid pyrolysis of three typical Chinese coals, lignite from Inner Mongolia, bituminous from Shenfu coalfield, and anthracite from Guizhou, as well as a petroleum coke were carried out in a drop-style high-frequency furnace. The reactor was induction coil heated and had a very small high-temperature zone, which could restrain secondary conversions of nitrogen products. The effects of temperature and coal rank on conversions of fuel-N to primary nitrogen products (char-N, HCN–N, NH 3 –N and (tar + N 2 )–N) have been investigated. The results showed that, the increasing temperature reduced the yields of char-N and promoted the conversion of fuel-N to N 2 . Char-N yields increased, while volatile-N yields decreased as the coal rank increased. In most of the conditions, NH 3 –N yields were higher than HCN–N yields during rapid pyrolysis of coal. In the case of petroleum coke, NH 3 –N yields increased gradually with the increasing temperature, but no HCN was detected. We argue that NH 3 –N can be formed directly through the primary pyrolysis without secondary reactions. Although volatile-N yields of lignite were higher than those of bituminous, yields of (HCN + NH 3 )–N in volatile-N of lignite were lower than those of bituminous. While the (HCN + NH 3 )–N yields of anthracite were the lowest of the three coals. Both of the (HCN + NH 3 )–N yields and (HCN + NH 3 )–N proportions in volatile-N of petroleum coke were lower than the three coals.

  12. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  13. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  14. Willow yield is highly dependent on clone and site

    DEFF Research Database (Denmark)

    Ugilt Larsen, Søren; Jørgensen, Uffe; Lærke, Poul Erik

    2014-01-01

    Use of high-yielding genotypes is one of the means to achieve high yield and profitability in willow (Salix spp.) short rotation coppice. This study investigated the performance of eight willow clones (Inger, Klara, Linnea, Resolution, Stina, Terra Nova, Tora, Tordis) on five Danish sites......, differing considerably in soil type, climatic conditions and management. Compared to the best clone, the yield was up to 36 % lower for other clones across sites and up to 51 % lower within sites. Tordis was superior to other clones with dry matter yields between 5.2 and 10.2 Mg ha−1 year−1 during the first...... 3-year harvest rotation, and it consistently ranked as the highest yielding clone on four of the five sites and not significantly lower than the highest yielding clone on the fifth site. The ranking of the other clones was more dependent on site with significant interaction between clone and site...

  15. Conversion of highly active waste to solids

    International Nuclear Information System (INIS)

    Scheffler, K.

    Borosilicate glasses were selected as matrix material for solidification of highly radioactive wastes. Current laboratory work on the VERA process is described. Goals were met by a five-component glass VG-38 and a glass-ceramic VC-15. The VERA process is described: flowsheet, denitration, calcinator, fusion facility

  16. High yielding mutants of blackgram variety 'PH-25'

    International Nuclear Information System (INIS)

    Misra, R.C.; Mohapatra, B.D.; Panda, B.S.

    2001-01-01

    Seeds of blackgram (Vigna mungo L.) variety 'PH-5' were treated with chemical mutagens ethyl methanesulfonate (EMS), nitrosoguanidine (NG), maleic hydrazide (MH) and sodium azide (NaN 3 ), each at 3 different concentrations. Thirty six mutant lines developed from mutagenic treatments along with parent varieties were tested in M 4 generation. The mutants showed wide variation in most of the traits and multivariante D 2 analysis showed genetic divergence among themselves. Twenty of the thirty mutants showed genetic divergence from parent. Ten selected high yielding mutants were tested in M 5 . Yield and other productive traits of five high yielding mutants in M 4 and M 5 are presented

  17. High ethanol yields using Aspergillus oryzae koji and corn media

    Energy Technology Data Exchange (ETDEWEB)

    Ziffer, J.; Iosif, M.C.

    1982-01-01

    High ethanol and stillage solids were achieved using whole corn mashes. Ethanol yields of 14% (98.5% of theory) and stillage levels of approximately 23% were obtained in 74-90 hours using mild acid pretreatment with A. oryzae wheat bran koji saccharification. High ethanol yields were also obtained with bacterial amylase, instead of the acid treatment, when the sterilization step was omitted. The implications of ethanol fermentation process modifications are explored.

  18. High-conversion HTRs and their fuel cycle

    International Nuclear Information System (INIS)

    Gutmann, H.; Hansen, U.; Larsen, H.; Price, M.S.T.

    1976-01-01

    The high-temperature reactors using graphite as structural core material and helium as coolant represent thermal reactor designs with a very high degree of neutron economy which, when using the thorium fuel cycle, offer, at least theoretically, the possibility of thermal breeding. Though this was already known from previous studies, the economic climate at that time was such that the achievement of high conversion ratios conflicted with the incentive for low fuel cycle costs. Consequently, thorium cycle conversion ratios of around 0.6 were found optimum, and the core and fuel element layout followed from the economic ground rules. The recent change in attitude, brought about partly by the slow process of realization of the limits to the earth's accessible high-grade uranium ore resources and more dramatically by the oil crisis, makes it necessary to concentrate attention again on the high conversion fuel cycles. This report discusses the principles of the core design and the fuel cycle layout for High Conversion HTRs (HCHTRs). Though most of the principles apply equally to HTRs of the pebble-bed and the prismatic fuel element design types, the paper concentrates on the latter. Design and fuel cycle strategies for the full utilization of the high conversion potential are compared with others that aim at easier reprocessing and the ''environmental'' fuel cycle. The paper concludes by discussing operating and fuel cycle characteristics and economics of HCHTRs, and how the latter impinge on the allowable price for uranium ore and the available uranium resources. (author)

  19. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    Resonant and quasi-resonant converters operated at frequencies above 30 MHz have attracted special attention in the last two decades. Compared to conventional converters operated at ~100 kHz, they offer significant advantages: smaller volume and weight, lower cost, and faster transient performance....... Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... method provides low complexity and low gate loss simultaneously. A direct design synthesis method is provided for resonant SEPIC converters employing this technique. Most experimental prototypes were developed using low cost, commercially available power semiconductors. Due to very fast transient...

  20. Oscillating thermionic conversion for high-density space power

    International Nuclear Information System (INIS)

    Jacobson, D.L.; Morris, J.F.

    1988-01-01

    The compactness, maneuverability, and productive weight utilization of space nuclear reactors benefit from the use of thermionic converters at high temperature. Nuclear-thermionic-conversion power requirements are discussed, and the role of oscillations in thermionic energy conversion (TEC) history is examined. Proposed TEC oscillations are addressed, and the results of recent studies of TEC oscillations are reviewed. The possible use of high-frequency TEC oscillations to amplify low-frequency ones is considered. The accomplishments of various programs studying the use of high-temperature thermionic oscillators are examined. 16 references

  1. [Study on High-yield Cultivation Measures for Arctii Fructus].

    Science.gov (United States)

    Liu, Shi-yong; Jiang, Xiao-bo; Wang, Tao; Sun, Ji-ye; Hu, Shang-qin; Zhang, Li

    2015-02-01

    To find out the high yield cultivation measures for Arctii Fructus. Completely randomized block experiment design method was used in the field planting, to analyze the effect of different cultivation way on agronomic characters, phenological phase,quality and quantity of Arctii Fructus. Arctium lappa planted on August 28 had the best results of plant height, thousand seeds weight and yield. The highest yield of Arctii Fructus was got at the density of 1,482 plants/667 m2. Arctiin content was in an increase trend with the planting time delay and planting density increasing. The plant height, thousand seeds weight, yield and arctiin content by split application of fertilizer were significantly higher than that by one-time fertilization. Compared with open field Arctium lappa, plant height, yield, arctiin content and relative water content of plastic film mulching Arctium lappa was higher by 7.74%, 10.87%, 6.38% and 24.20%, respectively. In the topping Arctium lappa, the yield was increased by 11.09%, with 39. 89% less branching number. Early planting time and topping shortened the growth cycle of Arctium lappa plant. The high-yield cultivation measures of Arctii Fructus are: around August 28 to sowing, planting density of 1 482 plants/667 m2, split application of fertilizer for four times, covering film on surface of the soil and topping in bolting.

  2. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  3. A meta-analysis of responses of canopy photosynthetic conversion efficiency to environmental factors reveals major causes of yield gap

    Science.gov (United States)

    Slattery, Rebecca A.; Ainsworth, Elizabeth A.; Ort, Donald R.

    2013-01-01

    Improving plant energy conversion efficiency (εc) is crucial for increasing food and bioenergy crop production and yields. Using a meta-analysis, the effects of greenhouse gases, weather-related stresses projected to intensify due to climate change, and management practices including inputs, shading, and intercropping on εc were statistically quantified from 140 published studies to identify where improvements would have the largest impact on closing yield gaps. Variation in the response of εc to treatment type and dosage, plant characteristics, and growth conditions were also examined. Significant mean increases in εc were caused by elevated [CO2] (20%), shade (18%), and intercropping (15%). εc increased curvilinearly up to 55% with nitrogen additions whereas phosphorus application was most beneficial at low levels. Significant decreases in εc of –8.4% due to elevated [O3], –16.8% due to water stress, and –6.5% due to foliar damage were found. A non-significant decrease in εc of –17.3% was caused by temperature stress. These results identify the need to engineer greater stress tolerance and enhanced responses to positive factors such as [CO2] and nitrogen to improve average yields and yield potential. Optimizing management strategies will also enhance the benefits possible with intercropping, shade, and pest resilience. To determine optimal practices for εc improvement, further studies should be conducted in the field since several responses were exaggerated by non-field experimental conditions. PMID:23873996

  4. Optimization of Dithionite Bleaching of High Yield Bagasse Pulp

    International Nuclear Information System (INIS)

    Mohamed, E.

    2005-01-01

    High yield bagasse pulp was prepared by soaking bagasse in 10 % cold sodium hydroxide for 24 hours and then refluxing for two hours at 95 degree C. Optimization of dithionite bleaching was attained by investigation of different parameters as consistency, temperature, time and ph. Effect of additives as chelating agent (EDTA) or stabilizing of bleaching solution (Zn compound and hexamethylene tetramine) was considered. The effect of air content was also studied. One and two stages bleaching of the pulp were investigated by using sodium dithionite (D) as a sole bleaching agent or after application of one stage bleaching by hydrogen peroxide to attain high brightness for high yield pulp

  5. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  6. Mechanical Conversion for High-Throughput TEM Sample Preparation

    International Nuclear Information System (INIS)

    Kendrick, Anthony B; Moore, Thomas M; Zaykova-Feldman, Lyudmila

    2006-01-01

    This paper presents a novel method of direct mechanical conversion from lift-out sample to TEM sample holder. The lift-out sample is prepared in the FIB using the in-situ liftout Total Release TM method. The mechanical conversion is conducted using a mechanical press and one of a variety of TEM coupons, including coupons for both top-side and back-side thinning. The press joins a probe tip point with attached TEM sample to the sample coupon and separates the complete assembly as a 3mm diameter TEM grid, compatible with commercially available TEM sample holder rods. This mechanical conversion process lends itself well to the high through-put requirements of in-line process control and to materials characterization labs where instrument utilization and sample security are critically important

  7. Setting the Record Straight on "High-Yield" Strategies

    Science.gov (United States)

    Marzano, Robert J.

    2009-01-01

    Widely credited with proposing nine "high-yield" instructional strategies, author Robert J. Marzano sets the record straight about the broader number of strategies identified by the research. He provides a list of 41 strategies and suggests more nuanced ways of using, observing, and evaluating them. (Contains 1 figure.)

  8. Executive Summary High-Yield Scenario Workshop Series Report

    Energy Technology Data Exchange (ETDEWEB)

    Leslie Park Ovard; Thomas H. Ulrich; David J. Muth Jr.; J. Richard Hess; Steven Thomas; Bryce Stokes

    2009-12-01

    To get a collective sense of the impact of research and development (R&D) on biomass resource availability, and to determine the feasibility that yields higher than baseline assumptions used for past assessments could be achieved to support U.S. energy independence, an alternate “High-Yield Scenario” (HYS) concept was presented to industry experts at a series of workshops held in December 2009. The workshops explored future production of corn/agricultural crop residues, herbaceous energy crops (HECs), and woody energy crops (WECs). This executive summary reports the findings of that workshop.

  9. Burnup calculation in microcells of high conversion reactors

    International Nuclear Information System (INIS)

    Gomez, S.E.; Salvatore, M.; Patino, N.E.; Abbate, M.J.

    1991-01-01

    The development of high converter reactors (HCR) requires careful burnup calculations because their main goals are reach high discharge burnup levels (Up to 50 GWd/T) and a close to one conversion ratio. Then, it is necessary a revision of design elements used for this type of calculation. In this work, a burnup module (BUM) developed in order to use nuclear data directly from evaluated data files is presented; these was included in the AMPX system. (author)

  10. Frequency conversion of high-intensity, femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Banks, P S

    1997-06-01

    Almost since the invention of the laser, frequency conversion of optical pulses via non- linear processes has been an area of active interest. However, third harmonic generation using ~(~1 (THG) in solids is an area that has not received much attention because of ma- terial damage limits. Recently, the short, high-intensity pulses possible with chirped-pulse amplification (CPA) laser systems allow the use of intensities on the order of 1 TW/cm2 in thin solids without damage. As a light source to examine single-crystal THG in solids and other high field inter- actions, the design and construction of a Ti:sapphire-based CPA laser system capable of ultimately producing peak powers of 100 TW is presented. Of special interest is a novel, all-reflective pulse stretcher design which can stretch a pulse temporally by a factor of 20,000. The stretcher design can also compensate for the added material dispersion due to propagation through the amplifier chain and produce transform-limited 45 fs pulses upon compression. A series of laser-pumped amplifiers brings the peak power up to the terawatt level at 10 Hz, and the design calls for additional amplifiers to bring the power level to the 100 TW level for single shot operation. The theory for frequency conversion of these short pulses is presented, focusing on conversion to the third harmonic in single crystals of BBO, KD*P, and d-LAP (deuterated I-arginine phosphate). Conversion efficiencies of up to 6% are obtained with 500 fs pulses at 1053 nm in a 3 mm thick BBO crystal at 200 GW/cm 2. Contributions to this process by unphasematched, cascaded second harmonic generation and sum frequency generation are shown to be very significant. The angular relationship between the two orders is used to measure the tensor elements of C = xt3)/4 with Crs = -1.8 x 1O-23 m2/V2 and .15Cri + .54Crs = 4.0 x 1O-23 m2/V2. Conversion efficiency in d-LAP is about 20% that in BBO and conversion efficiency in KD*P is 1% that of BBO. It is calculated

  11. A high yielding, better quality chickpea mutant variety 'NIFA-95'

    International Nuclear Information System (INIS)

    Hassan, S.; Javed, M.A.; Khattak, S.U.K.; Iqbal, M.M.

    2001-01-01

    Chickpea or gram (Cicer arietinum L.) is an important legume crop of Pakistan, grown on over one million hectares annually. The national average yield of the crop is very low (0.5 t/ha) and thus the country had to spent about 2 billion rupees ($ 50 million) on import of pulses. The main causes of low yield are non-availability of genetic sources for resistance to various diseases especially gram blight Ascochyta rabiei (Pass.) Lab., insect pest (Pod borer) and non-adoption of proper production technology by the farmers. This calls for earnest efforts of breeders to evolve high yielding and disease resistant varieties of chickpea for provision of quality seeds to the farming community to increase production of this important crop. Seeds of a highly blight susceptible variety '6153' were irradiated at 200 Gy dose of gamma radiation in 1985 and the promising mutant line CMN-446-4 was selected in M3 generation on the basis of disease resistance, greater number of pods and better plant type. After confirmation of its resistance to blight in M 4 and M 5 , the mutant line was evaluated in various trials at different locations. In the advanced and zonal yield trials during 1993-95, the line CMN-446-4 produced the highest grain yield of 2,600 kg/ha as compared to the rest of the mutants and varieties. The line was also evaluated in the chickpea national uniform yield trial, conducted on over 11 locations in the country during 1993-94. In this trial, the mutant line ranked 3rd by producing an average yield of 1,528 kg/ha as compared to the two check varieties 'Punjab-91' (1,316 kg/ha) and 'Paidar-91' (1,391 kg/ha). The mutant line CMN-446-4 is moderately resistant to gram blight, highly resistant to stored pest (pulse beetle), contains 25.3% more protein as compared to the parental variety 6153 and is also better in nitrogen fixing capacity.The proposal for release of the mutant line CMN-446-4 as a new variety under the name 'NIFA-95' for general cultivation in the rainfed

  12. A procedure validation for high conversion reactors fuel elements calculation

    International Nuclear Information System (INIS)

    Ishida, V.N.; Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The present work includes procedure validation of cross sections generation starting from nuclear data and the calculation system actually used at the Bariloche Atomic Center Reactor and Neutrons Division for its application to fuel elements calculation of a high conversion reactor (HCR). To this purpose, the fuel element calculation belonging to a High Conversion Boiling water Reactor (HCBWR) was chosen as reference problem, employing the Monte Carlo method. Various cases were considered: with and without control bars, cold of hot, at different vacuum fractions. Multiplication factors, reaction rates, power maps and peak factors were compared. A sensitivity analysis of typical cells used, the approximations employed to solve the transport equation (Sn or Diffusion), the 1-D or 2-D representation and densification of the spatial network used, with the aim of evaluating their influence on the parameters studied and to come to an optimum combination to be used in future design calculations. (Author) [es

  13. High enrichment to low enrichment core's conversion. Technical securities

    International Nuclear Information System (INIS)

    Abbate, P.; Madariaga, M.R.

    1990-01-01

    This work presents the fulfillment of the technical securities subscribed by INVAP S.E. for the conversion of a high enriched uranium core. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. These are neutronic and thermohydraulic securities. (Author) [es

  14. High-yield criteria for panoramic radiography. Final report

    International Nuclear Information System (INIS)

    White, S.C.; Forsythe, A.B.

    1982-06-01

    Panoramic radiographs should be obtained when the examination offers the prospect of providing information that will assist in patient care. The purpose of this study was to determine whether high-yield criteria could be developed for the use of panoramic radiographs in the treatment planning of patients seeking dental care. Clinicians were asked what signs or symptoms caused them to order a panoramic radiograph upon patient admission into the UCLA Dental Clinic. At the time the patient was radiographed, a variety of demographic and clinical measures were recorded. The most important high-yield criterion for the panoramic examination is whether the radiograph is ordered for 'general screening examination' (a negative predictor) and whether the radiograph was ordered for any specific examination (a positive predictor). The use of these (or any other) decision rules required clinical judgment of the costs (social and economic) of a missed positive finding relative to that of an unproductive examination

  15. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon

    International Nuclear Information System (INIS)

    Gutiérrez-Vélez, Víctor H; DeFries, Ruth; Uriarte, María; Lim, Yili; Pinedo-Vásquez, Miguel; Padoch, Christine; Baethgen, Walter; Fernandes, Katia

    2011-01-01

    High-yield agriculture potentially reduces pressure on forests by requiring less land to increase production. Using satellite and field data, we assessed the area deforested by industrial-scale high-yield oil palm expansion in the Peruvian Amazon from 2000 to 2010, finding that 72% of new plantations expanded into forested areas. In a focus area in the Ucayali region, we assessed deforestation for high- and smallholder low-yield oil palm plantations. Low-yield plantations accounted for most expansion overall (80%), but only 30% of their expansion involved forest conversion, contrasting with 75% for high-yield expansion. High-yield expansion minimized the total area required to achieve production but counter-intuitively at higher expense to forests than low-yield plantations. The results show that high-yield agriculture is an important but insufficient strategy to reduce pressure on forests. We suggest that high-yield agriculture can be effective in sparing forests only if coupled with incentives for agricultural expansion into already cleared lands.

  16. Evaluation of the body condition of high yielding cows

    OpenAIRE

    Grubić G.; Novaković Ž.; Aleksić S.; Sretenović Lj.; Pantelić V.; Ostojić-Andrić D.

    2009-01-01

    Problems which relate to production, health and reproduction in herds of high yielding cows very often occur due to insufficient knowledge and monitoring of energy reserves in cow organisms. Many researches and practical experiences in this field indicate significant relation between body condition and achieved results in production. Body condition of heads of cattle in certain stages of production cycle is important parameter of applied nutrition, but also entire technological procedure. In ...

  17. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  18. High conversion ratio plutonium recycle in pressurized water reactors

    International Nuclear Information System (INIS)

    Edlund, M.C.

    1975-01-01

    The use of Pu light water reactors in such a way as to minimise the depletion of Pu needed for future use, and therefore to reduce projected demands for U ore and U enrichment is envisaged. Fuel utilisation in PWRs could be improved by tightly-packed fuel rod lattices with conversion ratios of 0.8 to 0.9 compared with ratios of about 0.5 in Pu recycle designs using fuel to water volume ratios of currently operating PWRs. A conceptual design for the Babcock and Wilcox Company reactors now in operation is presented and for illustrative purposes thermalhydraulic design considerations and the reactor physics are described. Principle considerations in the mechanical design of the fuel assemblies are the effect of hydraulic forces, thermal expansion, and fission gas release. The impact of high conversion ratio plutionium recycle in separative work and natural U requirements for PWRs likely to be in operation by 1985 are examined. (U.K.)

  19. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  20. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Science.gov (United States)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  1. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    International Nuclear Information System (INIS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-01-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  2. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jisu [Inje University, College of Pharmacy (Korea, Republic of); Cha, Song-Hyun; Cho, Seonho [Seoul National University, Department of Naval Architecture and Ocean Engineering (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [Inje University, College of Pharmacy (Korea, Republic of)

    2016-06-15

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  3. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  4. Anhydrous ZnCl2: A Highly Efficient Reagent for Facile and Regioselective Conversion of Epoxides to β-Chlorohydrins

    Directory of Open Access Journals (Sweden)

    Ronak Eisavi

    2016-01-01

    Full Text Available Facile conversion of structurally different epoxides to the corresponding β-chlorohydrins was carried out successfully with anhydrous ZnCl2 in CH3CN. The reactions were carried out within 10-50 min to give β-chlorohydrins with perfect regioselectivity and high yields (80-97%.

  5. Glycerol etherification with TBA: high yield to poly-ethers using a membrane assisted batch reactor.

    Science.gov (United States)

    Cannilla, Catia; Bonura, Giuseppe; Frusteri, Leone; Frusteri, Francesco

    2014-05-20

    In this work, a novel approach to obtain high yield to poly-tert-butylglycerolethers by glycerol etherification reaction with tert-butyl alcohol (TBA) is proposed. The limit of this reaction is the production of poly-ethers, which inhibits the formation of poly-ethers potentially usable in the blend with conventional diesel for transportation. The results herein reported demonstrate that the use of a water permselective membrane offers the possibility to shift the equilibrium toward the formation of poly-ethers since the water formed during reaction is continuously and selectively removed from the reaction medium by the recirculation of the gas phase. Using a proper catalyst and optimizing the reaction conditions, in a single experiment, a total glycerol conversion can be reached with a yield to poly-ethers close to 70%, which represents data never before reached using TBA as reactant. The approach here proposed could open up new opportunities for all catalytic reactions affected by water formation.

  6. High-yield synthesis and optical response of gold nanostars

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pandian Senthil [Departamento de Quimica Fisica and Unidad Asociada CSIC-Universidade de Vigo, 36310 Vigo (Spain); Pastoriza-Santos, Isabel [Departamento de Quimica Fisica and Unidad Asociada CSIC-Universidade de Vigo, 36310 Vigo (Spain); RodrIguez-Gonzalez, Benito [Departamento de Quimica Fisica and Unidad Asociada CSIC-Universidade de Vigo, 36310 Vigo (Spain); Abajo, F Javier GarcIa de [Instituto de Optica-CSIC, Serrano 121, 28006 Madrid (Spain); Liz-Marzan, Luis M [Departamento de Quimica Fisica and Unidad Asociada CSIC-Universidade de Vigo, 36310 Vigo (Spain)

    2008-01-09

    Multipod Au nanoparticles (nanostars) with single crystalline tips were synthesized in extremely high yield through the reduction of HAuCl{sub 4} in a concentrated solution of poly(vinylpyrrolidone) (PVP) in N,N-dimethylformamide (DMF), in the presence of preformed Au nanoparticle seeds, but with no need for external energy sources. Nanostar dispersions display a well-defined optical response, which was found (through theoretical modeling) to comprise a main mode confined within the tips and a secondary mode confined in the central body. Calculations of the surface enhanced Raman scattering (SERS) response additionally show that this morphology will be relevant for sensing applications.

  7. High-yield synthesis and optical response of gold nanostars

    Science.gov (United States)

    Senthil Kumar, Pandian; Pastoriza-Santos, Isabel; Rodríguez-González, Benito; García de Abajo, F. Javier; Liz-Marzán, Luis M.

    2008-01-01

    Multipod Au nanoparticles (nanostars) with single crystalline tips were synthesized in extremely high yield through the reduction of HAuCl4 in a concentrated solution of poly(vinylpyrrolidone) (PVP) in N,N-dimethylformamide (DMF), in the presence of preformed Au nanoparticle seeds, but with no need for external energy sources. Nanostar dispersions display a well-defined optical response, which was found (through theoretical modeling) to comprise a main mode confined within the tips and a secondary mode confined in the central body. Calculations of the surface enhanced Raman scattering (SERS) response additionally show that this morphology will be relevant for sensing applications.

  8. High-yield synthesis and optical response of gold nanostars

    International Nuclear Information System (INIS)

    Kumar, Pandian Senthil; Pastoriza-Santos, Isabel; RodrIguez-Gonzalez, Benito; Abajo, F Javier GarcIa de; Liz-Marzan, Luis M

    2008-01-01

    Multipod Au nanoparticles (nanostars) with single crystalline tips were synthesized in extremely high yield through the reduction of HAuCl 4 in a concentrated solution of poly(vinylpyrrolidone) (PVP) in N,N-dimethylformamide (DMF), in the presence of preformed Au nanoparticle seeds, but with no need for external energy sources. Nanostar dispersions display a well-defined optical response, which was found (through theoretical modeling) to comprise a main mode confined within the tips and a secondary mode confined in the central body. Calculations of the surface enhanced Raman scattering (SERS) response additionally show that this morphology will be relevant for sensing applications

  9. High quantum yield graphene quantum dots decorated TiO_2 nanotubes for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-01-01

    Highlights: • High concentration yellow GQDs and TiO_2 nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO_2 nanotube. • The catalytic performance of GQDs/TiO_2 depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO_2 was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO_2 nanotubes (GQDs/TiO_2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO_2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO_2 nanotubes (TiO_2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO_2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO_2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO_2 composite.

  10. High enrichment to low enrichment core's conversion. Accidents analysis

    International Nuclear Information System (INIS)

    Abbate, P.; Rubio, R.; Doval, A.; Lovotti, O.

    1990-01-01

    This work analyzes the different accidents that may occur in the reactor's facility after the 20% high-enriched uranium core's conversion. The reactor (of 5 thermal Mw), built in the 50's and 60's, is of the 'swimming pool' type, with light water and fuel elements of the curve plates MTR type, enriched at 93.15 %. This analysis includes: a) accidents by reactivity insertion; b) accidents by coolant loss; c) analysis by flow loss and d) fission products release. (Author) [es

  11. Electrohydrodynamics: a high-voltage direct energy conversion process

    International Nuclear Information System (INIS)

    Brun, S.

    1967-04-01

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [fr

  12. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei.

    Science.gov (United States)

    Petrov, Kaloyan; Popova, Luiza; Petrova, Penka

    2017-06-01

    Lactobacillus paracasei DSM 23505 is able to produce high amounts of lactic acid (LA) by simultaneous saccharification and fermentation (SSF) of inulin. Aiming to obtain the highest possible amounts of LA and fructose, the present study is devoted to evaluate the impact of bivalent metal ions on the process of inulin conversion. It was shown that Mn 2+ strongly increases the activity of the purified key enzyme β-fructosidase. In vivo, batch fermentation kinetics revealed that the high Mn 2+ concentrations accelerated inulin hydrolysis by raise of the inulinase activity, and increased sugars conversion to LA through enhancement of the whole glycolytic flux. The highest LA concentration and yield were reached by addition of 15 mM Mn 2+ -151 g/L (corresponding to 40% increase) and 0.83 g/g, respectively. However, the relative quantification by real-time reverse transcription assay showed that the presence of Mn 2+ decreases the expression levels of fosE gene encoding β-fructosidase. Contrariwise, the full exclusion of metal ions resulted in fosE gene expression enhancement, blocked fructose transport, and hindered fructose conversion thus leading to huge fructose accumulation. During fed-batch with optimized medium and fermentation parameters, the fructose content reached 35.9% (w/v), achieving yield of 467 g fructose from 675 g inulin containing chicory flour powder (0.69 g/g). LA received in course of the batch fermentation and fructose gained by the fed-batch are the highest amounts ever obtained from inulin, thus disclosing the key role of Mn 2+ as a powerful tool to guide inulin conversion to targeted bio-chemicals.

  13. High efficiency heat transport and power conversion system for cascade

    International Nuclear Information System (INIS)

    Maya, I.; Bourque, R.F.; Creedon, R.L.; Schultz, K.R.

    1985-02-01

    The Cascade ICF reactor features a flowing blanket of solid BeO and LiAlO 2 granules with very high temperature capability (up to approx. 2300 K). The authors present here the design of a high temperature granule transport and heat exchange system, and two options for high efficiency power conversion. The centrifugal-throw transport system uses the peripheral speed imparted to the granules by the rotating chamber to effect granule transport and requires no additional equipment. The heat exchanger design is a vacuum heat transfer concept utilizing gravity-induced flow of the granules over ceramic heat exchange surfaces. A reference Brayton power cycle is presented which achieves 55% net efficiency with 1300 K peak helium temperature. A modified Field steam cycle (a hybrid Rankine/Brayton cycle) is presented as an alternate which achieves 56% net efficiency

  14. High yield neutron generators using the DD reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vainionpaa, J. H.; Harris, J. L.; Piestrup, M. A.; Gary, C. K.; Williams, D. L.; Apodaca, M. D.; Cremer, J. T. [Adelphi technology, 2003 E. Bayshore Rd. 94061, Redwood City, CA (United States); Ji, Qing; Ludewigt, B. A. [Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Jones, G. [G and J Enterprise, 1258 Quary Ln, Suite F, Pleasanton California 94566 (United States)

    2013-04-19

    A product line of high yield neutron generators has been developed at Adelphi technology inc. The generators use the D-D fusion reaction and are driven by an ion beam supplied by a microwave ion source. Yields of up to 5 Multiplication-Sign 10{sup 9} n/s have been achieved, which are comparable to those obtained using the more efficient D-T reaction. The microwave-driven plasma uses the electron cyclotron resonance (ECR) to produce a high plasma density for high current and high atomic ion species. These generators have an actively pumped vacuum system that allows operation at reduced pressure in the target chamber, increasing the overall system reliability. Since no radioactive tritium is used, the generators can be easily serviced, and components can be easily replaced, providing essentially an unlimited lifetime. Fast neutron source size can be adjusted by selecting the aperture and target geometries according to customer specifications. Pulsed and continuous operation has been demonstrated. Minimum pulse lengths of 50 {mu}s have been achieved. Since the generators are easily serviceable, they offer a long lifetime neutron generator for laboratories and commercial systems requiring continuous operation. Several of the generators have been enclosed in radiation shielding/moderator structures designed for customer specifications. These generators have been proven to be useful for prompt gamma neutron activation analysis (PGNAA), neutron activation analysis (NAA) and fast neutron radiography. Thus these generators make excellent fast, epithermal and thermal neutron sources for laboratories and industrial applications that require neutrons with safe operation, small footprint, low cost and small regulatory burden.

  15. combining high seed number and weight to improve seed yield

    African Journals Online (AJOL)

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea ... determining yield or quality, and the development of rapid and ..... C.G. 1981. Control of seed growth in soybeans.

  16. Power Conversion Study for High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    Chang Oh; Richard Moore; Robert Barner

    2005-01-01

    The Idaho National Laboratory (INL) is investigating a Brayton cycle efficiency improvement on a high temperature gas-cooled reactor (HTGR) as part of Generation-IV nuclear engineering research initiative. There are some technical issues to be resolved before the selection of the final design of the high temperature gas cooled reactor, called as a Next Generation Nuclear Plant (NGNP), which is supposed to be built at the INEEL by year 2017. The technical issues are the selection of the working fluid, direct vs. indirect cycle, power cycle type, the optimized design in terms of a number of intercoolers, and others. In this paper, we investigated a number of working fluids for the power conversion loop, direct versus indirect cycle, the effect of intercoolers, and other thermal hydraulics issues. However, in this paper, we present part of the results we have obtained. HYSYS computer code was used along with a computer model developed using Visual Basic computer language

  17. High Titer and Yields Achieved with Novel, Low-Severity Pretreatment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    NREL researchers obtained high concentration sugar syrups in enzymatic hydrolysis that are fermentable to ethanol and other advanced biofuels and intermediate products at high yields. The novel DMR process is simpler and bypasses all severe pretreatment methods, thus reducing the environmental impact. The results are unprecedented. Researchers achieved a high concentration of sugars (230g/L of monomeric sugar and 270 g/L total sugar) and this low toxicity, highly fermentable syrup yielded 86 g/L ethanol (> 90 percent conversion). In addition, the lignin streams from this process can readily be converted to jet or renewable diesel blendstocks through a hydrodeoxygenation step. The NREL-developed, low severity DMR process may potentially replace higher severity chemical pretreatments and associated expensive reactors constructed of exotic alloys with a simpler process, using commercial-scale equipment commonly associated with the pulp and paper industry, to produce high concentration, low toxicity sugar streams and highly reactive lignin streams from non-food renewable biomass for biological and catalytic upgrading to advanced biofuels and chemicals. The simpler DMR process with black liquor recycling could reduce environmental and life-cycle impacts, and repurpose shuttered pulp and paper mills to help revitalize rural economies.

  18. Improper ferroelectrics as high-efficiency energy conversion materials

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2017-05-15

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O{sub 3} and BaTiO{sub 3}, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca{sub 0.84}Sr{sub 0.16}){sub 8}[AlO{sub 2}]{sub 12}(MoO{sub 4}){sub 2} (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Improper ferroelectrics as high-efficiency energy conversion materials

    International Nuclear Information System (INIS)

    Wakamatsu, Toru; Tanabe, Kenji; Terasaki, Ichiro; Taniguchi, Hiroki

    2017-01-01

    An improper ferroelectric is a certain type of ferroelectrics whose primary order parameter is not polarization but another physical quantity such as magnetization. In contrast to a conventional proper ferroelectrics as represented by Pb(Zr,Ti)O_3 and BaTiO_3, the improper ferroelectrics has been inconceivable for practical applications thus far. Herein, we illustrate the great potential of improper ferroelectrics for efficient conversion of temperature fluctuation to electric energy, as demonstrated with (Ca_0_._8_4Sr_0_._1_6)_8[AlO_2]_1_2(MoO_4)_2 (CSAM-16). The present study has experimentally proven that CSAM-16 achieves an excellent electrothermal coupling factor and high electric field sensitivity for pyroelectric energy conversion that approach a practical level for application to self-powered autonomous electronic devices for rapidly spreading wireless sensor networks. The present results provide a novel approach to developing innovative pyroelectric energy harvesting devices using improper ferroelectrics. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. High yield silicon carbide pre-ceramic polymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Polysilanes which are substituted with (CH 3 ) 3 SiO-groups are useful for the preparation in high yields of fine grained silicon carbide ceramic materials. They consist of 0 to 60 mole % (CH 3 ) 2 Si units and 100 to 40 mole % CH 3 Si units, all Si valences not satisfied by CH 3 groups or Si atoms being directed to groups (CH 3 ) 3 SiO-, which siloxane groups amount to 23 to 61 weight % of the polysilane. They are prepared by reaction of the corresponding chloro- or bromo-methyl polysilanes with at least the stoichiometric amounts of (CH 3 ) 3 SiOSi(CH 3 ) 3 and water in the presence of a strong acid. (author)

  1. Low Power High Dynamic Range A/D Conversion Channel

    DEFF Research Database (Denmark)

    Marker-Villumsen, Niels; Rombach, Pirmin

    in the conversion channel in order to avoid distortion for large input signals. In combination with a low resolution A/D converter (ADC) and a digital gain block, the adaptive A/D conversion channel achieves an extended dynamic range beyond that of the ADC. This in turn reduces the current consumption......This work concerns the analysis of an adaptive analog-to-digital (A/D) conversion channel for use with a micro electromechanical system (MEMS) microphone for audio applications. The adaptive A/D conversion channel uses an automatic gain control (AGC) for adjusting the analog preamplifier gain...... of the conversion channel in comparison to a static A/D conversion channel; this at the cost of a reduced peak signal-to-noise ratio (SNR). The adaptive A/D conversion channel compensates for the change in analog gain by a digital gain, thus achieving a constant channel gain in the full dynamic range. However...

  2. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  3. Kinetic modeling of ethane pyrolysis at high conversion.

    Science.gov (United States)

    Xu, Chen; Al Shoaibi, Ahmed Sultan; Wang, Chenguang; Carstensen, Hans-Heinrich; Dean, Anthony M

    2011-09-29

    The primary objective of this study is to develop an improved first-principle-based mechanism that describes the molecular weight growth kinetics observed during ethane pyrolysis. A proper characterization of the kinetics of ethane pyrolysis is a prerequisite for any analysis of hydrocarbon pyrolysis and oxidation. Flow reactor experiments were performed with ~50/50 ethane/nitrogen mixtures with temperatures ranging from 550 to 850 °C at an absolute pressure of ~0.8 atm and a residence time of ~5 s. These conditions result in ethane conversions ranging from virtually no reaction to ~90%. Comparisons of predictions using our original mechanism to these data yielded very satisfactory results in terms of the temperature dependence of ethane conversion and prediction of the major products ethylene and hydrogen. However, there were discrepancies in some of the minor species concentrations that are involved in the molecular weight growth kinetics. We performed a series of CBS-QB3 analyses for the C(3)H(7), C(4)H(7), and C(4)H(9) potential energy surfaces to better characterize the radical addition reactions that lead to molecular weight growth. We also extended a published C(6)H(9) PES to include addition of vinyl to butadiene. The results were then used to calculate pressure-dependent rate constants for the multiple reaction pathways of these addition reactions. Inclusion of the unadjusted rate constants resulting from these analyses in the mechanism significantly improved the description of several of the species involved in molecular weight growth kinetics. We compare the predictions of this improved model to those obtained with a consensus model recently published as well as to ethane steam cracking data. We find that a particularly important reaction is that of vinyl addition to butadiene. Another important observation is that several radical addition reactions are partially equilibrated. Not only does this mean that reliable thermodynamic parameters are essential

  4. Plant growth analysis used as secondary traits in selection for high yield on groundnut

    International Nuclear Information System (INIS)

    Manshuri, A.G.; Nugrahaeni

    1996-01-01

    Groundnut growth and yield can be expressed as the product to solar radiation interception (Qi), conversion efficiency of radiation to total dry matter (Ek) and partitioning efficiency to economic yield (Ep) or harvest index. Groundnut genotypes differ in characters related to Qi, Ek and Ep, and the characters have the possibility to be used as secondary traits in selection for high yield. Extinction coefficient (k) and leaf area index (LAI) are the influential factors in increasing Qi. Variability in leaf size lead to the description of the existence of variability in k value within the genotypes under study. LAI three is the level necessary to attain 90 percent total radiation absorption in groundnut. An increased of LAI exceeding four would be inefficient for increasing the fraction of radiation absorption. Convertion efficiency of radiation to total dry matter (Ek) related to the rate of plant photosynthesis and respiration, inspite of the need study the field, however, the study was still limited. Harvest index can be used as a secondary trait to identify high yield genotypes. There was a positive correlation between pod yield and harvest index. An increased of harvest index by 1 percent caused an increased of dry pod as high as 0.365 g/plant. ICG 1697, ICGV 86844 and ICGV 87161 gave yield more than 3.5 t/ha, and their total dry matter (TDM) were 49.2, 52.5 and 40.7 g/plant, whereas their harvest indexes (HI) were 0.47, 0.46 and 0.55, respectively. Theoretically, improvement of the groundnut pod yield can be attained by using variety which has TDM 52.5 g/plant and HI 0.55. Using HI as secondary selection criteria, five genotypes were selected, i.e., G/C/LM-88-B-25 (HI 0.59), local Irian and local Lombok (HI 0.57), ICGV 87161 and LM/ICGV 87165-B-2-1 (HI 0.55). Two genotypes were selected for their high TDM, namely ICGV 86844 and LM/ICGV 87165-88-B-82 [in

  5. High yield CTMP fibres as a possibility of the more efficient yield of wood raw material

    Directory of Open Access Journals (Sweden)

    Klašnja Bojana A.

    2004-01-01

    Full Text Available The evident shortage of wood as a raw material has become a limiting factor in the pulp and paper industry which is the greatest consumer of wood in Europe. The situation in our country is similar. During the few past years, the production of poplar and willow pulpwood was 220.000 m3 per year, which is insufficient for the planned increase in the production of sulphate pulp (175.000 tons till 2005. This paper deals with the aspects of the more efficient yield of raw material, based on the significantly higher yield of CTMP fibres, as well as with the significance of the lower adverse effect on the environment. It also analyses the conditions of production and the quality of the obtained fibres, as a possible substitute for chemical pulp and secondary fibres in papers of different quality. The main reasons for the production and use of CTMP fibres in our country are reported.

  6. Nutrient Uptake by High-Yielding Cotton Crop in Brazil

    Directory of Open Access Journals (Sweden)

    José Luís Vilela Vieira

    2018-02-01

    Full Text Available ABSTRACT: Determining nutrient uptake and accumulation rates by cotton crops is important to define management strategies, especially for transgenic varieties, which are cultivated using high-technology approaches that require substantial investment to maximize yield. Currently in Brazil, the states of Bahia and Mato Grosso are responsible for 84.4 % of the total cotton growing area. In the present study, two trials were conducted in 2013, one that involved planting FM 940 GLT, FM 980 GLT, and FM 913 GLT varieties in the state of Bahia and the other which involved FM 940 GLT and FM 980 GLT varieties in the state of Mato Grosso. The aim of the two trials was to represent the two regions that currently encompass the largest areas of cotton cultivation. Tissue samples, consisting of leaves, stems, and reproductive components, were collected eleven times during the crop cycle for determination of nutrient content and shoot dry matter. After weighing, plant tissue samples were dried and ground to determine nutrient contents. Because there were no overall differences in nutrient contents and biomass accumulation of the varieties during the crop cycle, we undertook joint analysis of the data from all varieties at each site. Favorable climatic conditions in Bahia promoted plant biomass production that was twice as much as plants grown in Mato Grosso, with cotton yields of 6.2 and 3.8 t ha−1 of lint and seed, respectively. The maximum nutrient accumulation occurred between 137-150 days after emergence (DAE for N; 143-148 for P; 172-185 for K; 100 for Ca; 144-149 for Mg; and 153-158 for S. Maximum uptake ranged from 218-362 kg ha−1 N; 26-53 kg ha−1 P; 233-506 kg ha−1 K; 91-202 kg ha−1 Ca; 28-44 kg ha−1 Mg; and 19-61 kg ha−1 S. On average, the sites revealed nutrient export of 14, 2, 23, 3, 2, and 2 kg t−1 of lint and seed for N, P, K, Ca, Mg, and S, respectively, with little variation among sites. Extraction of nutrients per area by cotton

  7. Process and catalysts for hydrocarbon conversion. [high antiknock motor fuel

    Energy Technology Data Exchange (ETDEWEB)

    1940-02-14

    High anti-knock motor fuel is produced from hydrocarbons by subjecting it at an elevated temperature to contact with a calcined mixture of hydrated silica, hydrated alumina, and hydrated zirconia, substantially free from alkali metal compounds. The catalyst may be prepared by precipitating silica gel by the acidification of an aqueous solution of an alkali metal silicate, intimately mixing hydrated alumina and hydrated zirconia therewith, drying, purifying the composite to substantially remove alkali metal compounds, again drying, forming the dried material into particles, and finally calcining. The resultant conversion products may be fractionated to produce gasoline, hydrocarbon oil above gasoling boiling point range, and a gaseous fraction of olefins which are polymerized into gasoline boiling range polymers.

  8. Conceptual design study of high conversion light water reactor

    International Nuclear Information System (INIS)

    Okumura, Keisuke; Akie, Hiroshi; Mori, Takamasa; Nakagawa, Masayuki; Ishiguro, Yukio

    1990-06-01

    Since 1984, R and D work has been made for high conversion light water reactors (HCLWRs), at JAERI, to improve the natural uranium saving and effective plutonium utilization by the use of conventional or extended LWR technology. This report summarizes the results of the feasibility study made mainly from the viewpoint of nuclear design in the Phase-I Program (1985∼1989). Until now, the following various types of HCLWR core concepts have been investigated; 1) homogeneous core with tight pitch lattice of fuel rods, 2) homogeneous core with semi-tight pitch lattice, 3) spectral shift core using fertile rod with semi-tight pitch lattice, 4) flat-core, 5) axial heterogeneous core. The core burnup and thermohydraulic analyses during normal operations have been performed to clear up the burnup performances and feasibility for each core. Based on the analysis results, the axial heterogeneous HCLWR core was selected as the JAERI reference core. (author)

  9. Improving conversion yield of fermentable sugars into fuel ethanol in 1st generation yeast-based production processes.

    Science.gov (United States)

    Gombert, Andreas K; van Maris, Antonius J A

    2015-06-01

    Current fuel ethanol production using yeasts and starch or sucrose-based feedstocks is referred to as 1st generation (1G) ethanol production. These processes are characterized by the high contribution of sugar prices to the final production costs, by high production volumes, and by low profit margins. In this context, small improvements in the ethanol yield on sugars have a large impact on process economy. Three types of strategies used to achieve this goal are discussed: engineering free-energy conservation, engineering redox-metabolism, and decreasing sugar losses in the process. Whereas the two former strategies lead to decreased biomass and/or glycerol formation, the latter requires increased process and/or yeast robustness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. High Yield F-18 Target for KOTRON-13 Cyclotron

    International Nuclear Information System (INIS)

    Lee, W. K.; Song, J. Y.; Park, J. Y.; Jung, K. I.; Chae, S. K.

    2009-01-01

    Currently the domestic radiation market for medical diagnosis witnesses a high increase of the use of PET/CT for the purpose of cancer diagnosis, and the cases of cancer diagnosis using PET/CT increase by geometric progression every year. In case of domestic practice, full body scan is taken by using FDG medical isotope medicines mainly using F-18, but the necessity of various medical radioactive isotopes according to each medical purpose is increasing. F-18 output yield is directly proportional to energy of protons and beam current, and has correlation with heat production rate in case of target and decides the function of target in accordance with the efficiency of a cooling device. At present, in case of most F-18 target, when one irradiates beam in O-18 water of about 0.2∼5mL, one has to apply heat of over 300W, a high thermal energy per unit area is irradiated in target, which is easily damaged, and it has limitation in beam current. Currently, in case of commercial target, about 2,000W beam current is the maximum value, and in case of double-grid target developed by Korea Institute of Radiological and Medical Sciences in 2004, it was designed to stand up to about 1,000W theoretically, but in reality it can irradiate lower beam current than this because of the shortage of cooling efficiency. In general, the irradiation strength to produce radioactive isotopes given in the heat emission by target substance currently is limited to 50μA against target substance irradiated in 1.6mL. However, current KOTRON-13 cyclotron can accelerate proton beam with a high scope of strength marking 100μA thru 120μA by a continuous development. Therefore, it doesn't fully function compared with that of proton beam of KOTRON-13 cyclotron. The solution about this is to get over the problem of cooling target substance of cavity in the production system of radioactive isotopes. Especially, one has to develop the method to cool target substance, and provide higher F-18 yield than

  11. Photo-oxidation of histidine peptides yields high concentrations of unstable peroxides

    International Nuclear Information System (INIS)

    Policarpio, V.V.; Hawkins, C.L.; Davies, M.J.

    2003-01-01

    Oxidation of proteins by UV, and visible light in the presence of sensitizers, results in side chain modification as well as aggregation and fragmentation. In particular, singlet oxygen has been reported to oxidize Met, Trp, Tyr, Cys and His side chains in a selective manner. In this study the oxidation of histidine and its derivatives, and His-containing peptides is examined using a range of sensitizers, to determine whether peroxides are major intermediates, and the mechanism of formation of these species. Visible light-sensitised oxidation of Gly-His-Gly in the presence of oxygen and rose bengal gives unstable substrate-derived peroxides with the peroxide yield increasing with increasing photolysis time. Similar behaviour was detected with other photosensitizers, though the peroxide yields varied with the sensitizer at identical concentrations with rose bengal > aluminium phthalocyanine > hematoporphyrin IX > zinc phthalocyanine > tetrakisporphine. The peroxide yield was decreased in the presence of azide and enhanced when deuterium oxide was employed as the solvent, consistent with peroxide formation being singlet oxygen mediated. Experiments using anoxic conditions gave low yields of peroxides confirming the oxygen-dependence of these reactions. HPLC analysis showed rapid loss of the parent peptide, with subsequent formation of both stable and unstable products; these are currently being characterized by MS and NMR. Similar behavior has been observed with other His derivatives. The yield of singlet oxygen formed in these reactions has been estimated using a bleaching assay (N, N-dimethyl-4-nitrosoaniline). Quantification of singlet oxygen formation and Gly-His-Gly derived peroxide during rose bengal-mediated photooxidation indicated a conversion efficiency of the initial singlet oxygen into substrate-derived peroxides of ca. 75% indicating that peroxide formation is a highly efficient and major reaction pathway

  12. Implementation elements for conversion of general-purpose freeway lane into high-occupancy-vehicle lane

    Science.gov (United States)

    1997-01-01

    Conversion of a general-purpose freeway into a high-occupancy-vehicle (HOV) lane is an alternative to infrastructure addition for HOV system implementation. Research indicates that lane conversion is feasible technically if sufficient HOV usage and m...

  13. Diagnostics of Shiva Nova produced high yield thermonuclear events

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Banner, D.L.; Boyle, M.J.; Campbell, E.M.; Coleman, L.W.; Koppel, L.N.; Kornblum, H.N. Jr.; Rienecker, F.; Severyn, J.R.; Slivinsky, V.W.

    1978-01-01

    Experiments with the Shiva Nova laser facility which produce yield levels of scientific breakeven and above will result in neutron, x-ray and particle fluxes which will require specific attention to the survivability of diagnostic instrumentation. These yield levels will also allow the utilization of new diagnotics techniques which can provide detailed information on the state of the imploded fuel and pusher shells

  14. Fission product model for lattice calculation of high conversion boiling water reactor

    International Nuclear Information System (INIS)

    Iijima, S.; Yoshida, T.; Yamamoto, T.

    1988-01-01

    A high precision fission product model for boiling water reactor (BWR) lattice calculation was developed, which consists of 45 nuclides to be treated explicitly and one nonsaturating pseudo nuclide. This model is applied to a high conversion BWR lattice calculation code. From a study based on a three-energy-group calculation of fission product poisoning due to full fission products and explicitly treated nuclides, the multigroup capture cross sections and the effective fission yields of the pseudo nuclide are determined, which do not depend on fuel types or reactor operating conditions for a good approximation. Apart from nuclear data uncertainties, the model and the derived pseudo nuclide constants would predict the fission product reactivity within an error of 0.1% Δk at high burnup

  15. High-speed conversion of carbon dioxide into methanol using catalyst. Shokubai ni yoru nisanka tanso no kosoku methanol ka

    Energy Technology Data Exchange (ETDEWEB)

    Inui, T. (Kyoto University, Kyoto (Japan). Faculty of Enineering)

    1993-02-01

    This paper describes high-speed conversion of CO2 into methanol. When a Cu-Zn-Cr-Al oxide-based catalyst (MSCp catalyst) prepared by using a sedimentation process used for synthesizing methanol from CO is applied to converting CO2 into methanol, the methanol yield decreases down to a several fraction of CO to methanol conversion, with a possibility of greater catalytic deactivation. If this catalyst prepared by using a homogeneous gelation process (MSCg catalyst) is used, the yield of methanol from CO2 increases by 240 plus percent over the case of using the MSCp catalyst, and no catalytic deactivation occurs at all during a use for ten and odd hours. Further, when La2O3 is added to the MSCg catalyst at 4% by weight, the methanol yield increases by about two times as much as the case without addition, and the temperature at which the maximum yield is achieved shifts to a lower temperature side by about 20[degree]C. Combining Ag or Pd with the MSCg catalyst provides the same effects. The paper touches on an attempt of high-speed CO2 conversion using this catalyst loaded with ceramic fibers. 15 refs., 5 figs., 2 tabs.

  16. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Nutritional status of high yielding crossbred cow around parturition

    Directory of Open Access Journals (Sweden)

    Mohammad Yousuf

    2016-03-01

    Materials and methods: Nutritional status of cows around the peri-parturient period was investigated for six months in dairy farm. Seven to eight months' pregnant cows were selected for this study. Blood samples from 24 randomly selected cows were collected at stage-1, -2 and -3. The serum was stored at -20C until analyzing glucose, total protein (TP, albumin (Alb, triglycerides (Tg, cholesterol, high density lipoprotein (HDL, low density lipoprotein (LDL, calcium (Ca, magnesium (Mg and phosphorus (P. Results: An increasing trend of glucose level was evidenced (P=0.07 during stage-1. Instead, higher levels of TP were found during stage-3 as compared to the stage-1 and -2. The Alb levels differed significantly (P<0.01 among different stages. A significantly increased (P<0.01 cholesterol, Tg, and HDL were found after parturition (stage-2 and -3 than before parturition (stage-1. LDL was significantly (P=0.02 increased during stage-2 and -3. A significantly higher level of Ca (P<0.01, Mg (P<0.01 and P (P=0.03 were present during stage-1. Glucose, TP, cholesterol and Tg were significantly higher (P<0.01 in cows two months after parturition, while Alb was found to be the highest (P<0.01 in cows immediately after parturition. An increasing trend of LDL (P=0.07 and HDL (P=0.07 were found in the cows two months after parturition. However, Ca levels were significantly (P=0.04 higher in cows two months after parturition. Conclusion: The results indicate that there is alteration of biochemical levels among the study population at three different stages, and these data may be helpful in using the necessary nutrients to the the high yielding cows around their parturition. [J Adv Vet Anim Res 2016; 3(1.000: 68-74

  18. The Radioactive Waste Management course: 14 High-yield editions

    International Nuclear Information System (INIS)

    Alonso, A.; Gallego, E.; Marco, M. L.; Falcon, S.

    2003-01-01

    The doctorate course on Radioactive Waste Management was initiated in February 1988, by initiative of the Chair of Nuclear Technology, under the sponsoring of the national radioactive waste management company (ENRESA), in a fruitful collaboration between the Institute Artigas of the Technical School of Industrial Engineering and the Institute of Formation on Energy of the research centre CIEMAT. The course is also offered as a post-graduate through both institutes. After completion of fourteen consecutive editions in 2002, the course constituted a landmark in the field of nuclear education in Spain. The last edition offered, along 35 lessons published in two books, the general aspects of generation, treatment and conditioning of radioactive wastes, the basic Safety and Radiological Protection criteria, the detailed technical questions of the management of both low-intermediate.activity and the high-activity level, together with the wastes generated during decommissioning and dismantling of installations, as well as the general and institutional aspects. Experts in each field, belonging either to ENRESA, CIEMAT, the Nuclear Safety Council, the UPM and the industry, present such wide programme. A technical visit to the low and intermediate radioactive waste repository of El Cabril was also offered to the participants as part of the course, as in previous years the visit to the dismantling workers of Vandellos I NPP. More than 500 engineers and graduates in different science branches have participated in the course along 14 years, with both students and professionals belonging to ENRESA, the Nuclear Safety Council, CIEMAT and other research centers, hospitals, civil protection at different levels, service and engineering companies related with the radioactive waste management. Altogether, it is possible to say, as the title is expressed, that the course has given in these 14 years a high-production yield. (Author)

  19. All-Optical Ultra-High-Speed OFDM to Nyquist-WDM Conversion Based on Complete Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2016-01-01

    We propose a novel all-optical ultra-high-speed orthogonal frequency-division multiplexing (OFDM) to Nyquist wavelength-division multiplexing (Nyquist-WDM) conversion scheme, achieved by exchanging the temporal and spectral profiles using a complete optical Fourier transformation (OFT). This scheme...... enables high-speed OFDM to Nyquist-WDM conversion without complex optical/electrical/optical conversion. The all-optical OFDM transmitter is based on the generation of OFDM symbols with a low duty cycle by rectangular temporal gating, which in combination with optical time-division multiplexing yields...... a higher symbol-rate OFDM signal. In the receiver, the converted Nyquist-WDM super-channel is WDM demultiplexed into individual Nyquist-WDM channels using a rectangular optical bandpass filter, followed by optical sampling at the intersymbol-interference free point. In the experimental demonstration...

  20. Leadership conversations challenging high potential managers to become great leaders

    CERN Document Server

    Berson, Alan S

    2012-01-01

    Conversation techniques and tools that can help strong managers become great leaders Often the very same skills and traits that enable rising stars to achieve success ""tenacity, aggressiveness, self-confidence"" become liabilities when promoted into a leadership track. While managers'' conversations are generally transactional and centered on the task at hand, leaders must focus on people, asking great questions and aligning them with the vision for the future. Leadership mindsets and skills can be developed, and Leadership Conversations provides practical guidance for connecting with others

  1. High yield Cu-Co CPP GMR multilayer sensors

    International Nuclear Information System (INIS)

    Spallas, J., Mao, M., Law, B., Grabner, F., Cerjan, C., O'Kane, O.

    1997-01-01

    We have fabricated and tested GMR magnetic flux sensors that operate in the CPP mode. This work is a continuation of the ultra-high density magnetic sensor research introduced at INTERMAG 96. We have made two significant modifications to the process sequence. First, contact to the sensor is made through a metal conduit deposited in situ with the multilayers. This deposition replaces electroplating. This configuration ensures a good electrical interface between the top of multilayer stack and the top contact, and a continuous, conductive current path to the sensor. The consequences of this modification are an increase in yield of operational devices to ≥90% per wafer and a significant reduction of the device resistance to ≤560 milliohms and of the uniformity of the device resistance to ≤3%. Second, the as-deposited multilayer structure has been changed from [Cu 30 angstrom/Co 20 angstrom] 18 (third peak) to [Cu 20.5 angstrom/Co 12 angstrom] 30 (second peak) to increase the CPP and CIP responses. The sheet film second peak CIP GMR response is 18% and the sensitivity is 0.08 %/Oe. The sheet film third peak CIP GMR response is 8% and the sensitivity is 0. 05 %/Oe. The second peak CPP GMR response averaged over twenty devices on a four inch silicon substrate is 28% ± 6%. The response decreases radially from the substrate center. The average response at the center of the substrate is 33% ± 4%. The average second peak CPP sensitivity is 0.09 %/Oe ± 0.02 %/Oe. The best second peak CPP response from a single device is 39%. The sensitivity of that device is 0.13 %/Oe. The third peak CPP GMR response is approximately 14 %. The third peak CPP response sensitivity is 0.07 %/Oe. 6 refs., 3 figs

  2. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  3. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  4. Cacao Cultivation under Diverse Shade Tree Cover Allows High Carbon Storage and Sequestration without Yield Losses.

    Science.gov (United States)

    Abou Rajab, Yasmin; Leuschner, Christoph; Barus, Henry; Tjoa, Aiyen; Hertel, Dietrich

    2016-01-01

    One of the main drivers of tropical forest loss is their conversion to oil palm, soy or cacao plantations with low biodiversity and greatly reduced carbon storage. Southeast Asian cacao plantations are often established under shade tree cover, but are later converted to non-shaded monocultures to avoid resource competition. We compared three co-occurring cacao cultivation systems (3 replicate stands each) with different shade intensity (non-shaded monoculture, cacao with the legume Gliricidia sepium shade trees, and cacao with several shade tree species) in Sulawesi (Indonesia) with respect to above- and belowground biomass and productivity, and cacao bean yield. Total biomass C stocks (above- and belowground) increased fivefold from the monoculture to the multi-shade tree system (from 11 to 57 Mg ha-1), total net primary production rose twofold (from 9 to 18 Mg C ha-1 yr-1). This increase was associated with a 6fold increase in aboveground biomass, but only a 3.5fold increase in root biomass, indicating a clear shift in C allocation to aboveground tree organs with increasing shade for both cacao and shade trees. Despite a canopy cover increase from 50 to 93%, cacao bean yield remained invariant across the systems (variation: 1.1-1.2 Mg C ha-1 yr-1). The monocultures had a twice as rapid leaf turnover suggesting that shading reduces the exposure of cacao to atmospheric drought, probably resulting in greater leaf longevity. Thus, contrary to general belief, cacao bean yield does not necessarily decrease under shading which seems to reduce physical stress. If planned properly, cacao plantations under a shade tree cover allow combining high yield with benefits for carbon sequestration and storage, production system stability under stress, and higher levels of animal and plant diversity.

  5. High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction.

    Science.gov (United States)

    Lee, Seon-Hwa; Hong, Seung-Hye; Kim, Kyoung-Rok; Oh, Deok-Kun

    2017-08-01

    To produce tagatose from fructose with a high conversion rate and to establish a high-yield purification method of tagatose from the reaction mixture. Fructose at 1 M (180 g l -1 ) was converted to 0.8 M (144 g l -1 ) tagatose by a three-step enzymatic cascade reaction, involving hexokinase, plus ATP, fructose-1,6-biphosphate aldolase, phytase, over 16 h with a productivity of 9 g l -1 h -1 . No byproducts were detected. Tagatose was recrystallized from ethanol to a purity of 99.9% and a yield of 96.3%. Overall, tagatose at 99.9% purity was obtained from fructose with a yield of 77%. This is the first biotechnological production of tagatose from fructose and the first application of solvent recrystallization for the purification of rare sugars.

  6. Internal conversion coefficients of high multipole transitions: Experiment and theories

    International Nuclear Information System (INIS)

    Gerl, J.; Vijay Sai, K.; Sainath, M.; Gowrishankar, R.; Venkataramaniah, K.

    2008-01-01

    A compilation of the available experimental internal conversion coefficients (ICCs), α T , α K , α L , and ratios K/L and K/LM of high multipole (L > 2) transitions for a number of elements in the range 21 ≤ Z ≤ 94 is presented. Our listing of experimental data includes 194 data sets on 110 E3 transitions, 10 data sets on 6 E4 transitions, 11 data sets on 7 E5 transitions, 38 data sets on 21 M3 transitions, and 132 data sets on 68 M4 transitions. Data with less than 10% experimental uncertainty have been selected for comparison with the theoretical values of Hager and Seltzer [R.S. Hager, E.C. Seltzer, Nucl. Data Tables A 4 (1968) 1], Rosel et al. [F. Roesel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21 (1978) 91], and BRICC. The relative percentage deviations (%Δ) have been calculated for each of the above theories and the averages (%Δ-bar) are estimated. The Band et al. [I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81 (2002) 1] tables, using the BRICC interpolation code, are seen to give theoretical ICCs closest to experimental values

  7. High-Resolution Measurements of Low-Energy Conversion Electrons

    CERN Multimedia

    Gizon, A; Putaux, J

    2002-01-01

    Measurements of low-energy internal conversion electrons have been performed with high energy resolution in some N = 105 odd and odd-odd nuclei using a semi-circular spectrograph associated to a specific tape transport system. These experiments aimed to answer the following questions~: \\begin{itemize} \\item Do M3 isomeric transitions exist in $^{183}$Pt and $^{181}$Os, isotones of $^{184}$Au~? \\item Are the neutron configurations proposed to describe the isomeric and ground states of $^{184}$Au right or wrong~? \\item Does it exist an isomeric state in $^{182}$Ir, isotone of $^{181}$Os, $^{183}$Pt and $^{184}$Au~? \\item What are the spin and parity values of the excited states of $^{182}$Ir~? \\end{itemize} In $^{183}$Pt, the 35.0 keV M3 isomeric transition has been clearly observed and the reduced transition probability has been determined. The deduced hindrance factor is close to that observed in the neighbouring odd-odd $^{184}$Au nucleus. This confirms the neutron configurations previously proposed for the ...

  8. High-order harmonic conversion efficiency in helium

    International Nuclear Information System (INIS)

    Crane, J.K.

    1992-01-01

    Calculated results are presented for the energy, number of photons, and conversion efficiency for high-order harmonic generation in helium. The results show the maximum values that we should expect to achieve experimentally with our current apparatus and the important parameters for scaling this source to higher output. In the desired operating regime where the coherence length, given by L coh =πb/(q-1), is greater than the gas column length, l, the harmonic output can be summarized by a single equation: N q =[(π z n z b 3 τ q |d q | z )/4h]{(p/q)(2l/b) z }. N q - numbers of photons of q-th harmonic; n - atom density; b - laser confocal parameter; τ q - pulse width of harmonic radiation; q - harmonic order; p - effective order of nonlinearity. (Note the term in brackets, the phase-matching function, has been separated from the rest of the expression in order to be consistent with the relevant literature)

  9. High efficiency Dual-Cycle Conversion System using Kr-85.

    Science.gov (United States)

    Prelas, Mark A; Tchouaso, Modeste Tchakoua

    2018-04-26

    This paper discusses the use of one of the safest isotopes known isotopes, Kr-85, as a candidate fuel source for deep space missions. This isotope comes from 0.286% of fission events. There is a vast quantity of Kr-85 stored in spent fuel and it is continually being produced by nuclear reactors. In using Kr-85 with a novel Dual Cycle Conversion System (DCCS) it is feasible to boost the system efficiency from 26% to 45% over a single cycle device while only increasing the system mass by less than 1%. The Kr-85 isotope is the ideal fuel for a Photon Intermediate Direct Energy Conversion (PIDEC) system. PIDEC is an excellent choice for the top cycle in a DCCS. In the top cycle, ionization and excitation of the Kr-85:Cl gas mixture (99% Kr and 1% Cl) from beta particles creates KrCl* excimer photons which are efficiently absorbed by diamond photovoltaic cells on the walls of the pressure vessels. The benefit of using the DCCS is that Kr-85 is capable of operating at high temperatures in the primary cycle and the residual heat can then be converted into electrical power in the bottom cycle which uses a Stirling Engine. The design of the DCCS begins with a spherical pressure vessel of radius 13.7 cm with 3.7 cm thick walls and is filled with a Kr-85:Cl gas mixture. The inner wall has diamond photovoltaic cells attached to it and there is a sapphire window between the diamond photovoltaic cells and the Kr-85:Cl gas mixture which shields the photovoltaic cells from beta particles. The DCCS without a gamma ray shield has specific power of 6.49 W/kg. A removable 6 cm thick tungsten shield is used to safely limit the radiation exposure levels of personnel. A shadow shield remains in the payload to protect the radiation sensitive components in the flight package. The estimated specific power of the unoptimized system design in this paper is about 2.33 W/kg. The specific power of an optimized system should be higher. The Kr-85 isotope is relatively safe because it

  10. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  11. Consensus Through Conversation How to Achieve High-Commitment Decisions

    CERN Document Server

    Dressler, Larry

    2006-01-01

    Facilitation expert Larry Dressler's Consensus Through Conversation is a guide for the effective facilitation and practice of one of business's most popular - but most widely misunderstood - decision-making models: consensus.

  12. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  13. High pressure HC1 conversion of cellulose to glucose

    Energy Technology Data Exchange (ETDEWEB)

    Antonoplis, Robert Alexander [Univ. of California, Berkeley, CA (United States); Blanch, Harvey W. [Univ. of California, Berkeley, CA (United States); Wilke, Charles R. [Univ. of California, Berkeley, CA (United States)

    1981-08-01

    The production of ethanol from glucose by means of fermentation represents a potential long-range alternative to oil for use as a transportation fuel. Today's rising oil prices and the dwindling world supply of oil have made other fuels, such as ethanol, attractive alternatives. It has been shown that automobiles can operate, with minor alterations, on a 10% ethanol-gasoline mixture popularly known as gasohol. Wood has long been known as a potential source of glucose. Glucose may be obtained from wood following acid hydrolysis. In this research, it was found that saturating wood particles with HCl gas under pressure was an effective pretreatment before subjecting the wood to dilute acid hydrolysis. The pretreatment is necessary because of the tight lattice structure of cellulose, which inhibits dilute acid hydrolysis. HCl gas makes the cellulose more susceptible to hydrolysis and the glucose yield is doubled when dilute acid hydrolysis is preceded by HCl saturation at high pressure. The saturation was most effectively performed in a fluidized bed reactor, with pure HCl gas fluidizing equal volumes of ground wood and inert particles. The fluidized bed effectively dissipated the large amount of heat released upon HCl absorption into the wood. Batch reaction times of one hour at 314.7 p.s.i.a. gave glucose yields of 80% and xylose yields of 95% after dilute acid hydrolysis. A non-catalytic gas-solid reaction model, with gas diffusing through the solid limiting the reaction rate, was found to describe the HCl-wood reaction in the fluidized bed. HCl was found to form a stable adduct with the lignin residue in the wood, in a ratio of 3.33 moles per mole of lignin monomer. This resulted in a loss of 0.1453 lb. of HCl per pound of wood. The adduct was broken upon the addition of water. A process design and economic evaluation for a plant to produce 214 tons per day of glucose from air-dried ground Populus tristi gave an estimated glucose cost of 15.14 cents per pound

  14. Induction of high yielding and high protein containing chickpea mutant variety through gamma radiation

    International Nuclear Information System (INIS)

    Hassan, S.; Javed, M.A.; Khan, A.J.; Tariq, M.

    1997-01-01

    Pure seeds of a blight susceptible but high yielding chickpea variety 6153 were irradiated at 20 Kr(0.2 kGy) dose of gamma radiation and the mutant line CMN-446-4 was selected in M3 generation on the basis of high yield and disease resistance. After confirmation of its resistance to blight in M4 and M5, the mutant line CMN-446-4 along with other promising chickpea mutants were evaluated in various yield trials at different locations. The mutant line CMN-446-4 was got evaluated in chickpea national uniform yield trial conducted over two locations in the country during 1993-94. The mutant line, on average, ranked 3rd by producing significantly higher yield of 1528 kg/ha as compared to the two checked varieties Punjab-91 and Paidar-91 which yielded 1316 and 1391 kg/ha respectively. The mutant CMN-446-4 has significantly greater percentage of protein content (25.22%) compared to its parental variety having (20.12%). (author)

  15. Evaluation of high yielding soybean germplasm under water limitation.

    Science.gov (United States)

    Prince, Silvas J; Murphy, Mackensie; Mutava, Raymond N; Zhang, Zhengzhi; Nguyen, Na; Kim, Yoon Ha; Pathan, Safiullah M; Shannon, Grover J; Valliyodan, Babu; Nguyen, Henry T

    2016-05-01

    Limited information is available for soybean root traits and their plasticity under drought stress. To date, no studies have focused on examining diverse soybean germplasm for regulation of shoot and root response under water limited conditions across varying soil types. In this study, 17 genetically diverse soybean germplasm lines were selected to study root response to water limited conditions in clay (trial 1) and sandy soil (trial 2) in two target environments. Physiological data on shoot traits was measured at multiple crop stages ranging from early vegetative to pod filling. The phenotypic root traits, and biomass accumulation data are collected at pod filling stage. In trial 1, the number of lateral roots and forks were positively correlated with plot yield under water limitation and in trial 2, lateral root thickness was positively correlated with the hill plot yield. Plant Introduction (PI) 578477A and 088444 were found to have higher later root number and forks in clay soil with higher yield under water limitation. In sandy soil, PI458020 was found to have a thicker lateral root system and higher yield under water limitation. The genotypes identified in this study could be used to enhance drought tolerance of elite soybean cultivars through improved root traits specific to target environments. © 2015 Institute of Botany, Chinese Academy of Sciences.

  16. High positive computed tomography yields in the emergency ...

    African Journals Online (AJOL)

    when the diagnosis is uncertain.[1,2] It is therefore ... Methods. This was a retrospective record review of all patients who received CT ... period. Primary outcomes were to establish CT scan usage and positive yield rates. ... scans performed in the hospital. ... considered for surgical intervention may have a negative scan and.

  17. Improved Sugar Conversion and Ethanol Yield for Forage Sorghum (Sorghum bicolor L. Moench) Lines with Reduced Lignin Contents

    Science.gov (United States)

    Lignin is known to impede conversion of lignocellulose into ethanol. In this study, forage sorghum plants carrying brown midrib (bmr) mutations, which reduce lignin contents, were evaluated as bioenergy feedstocks. The near isogenic lines evaluated were: wild-type, bmr-6, bmr-12, and bmr-6 bmr-12...

  18. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    Science.gov (United States)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  19. High yielding small grain mutant of rice variety Pankaj

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-07-01

    Full text: By treatment with EMS a mutant has been produced from the variety Pankaj which has better tillering, longer panicle and more grains per panicle. In multilocation trials at Burdwan, Suri and Rampurhat in West Bengal it yielded significantly more than Pankaj and Mahsuri at all locations, with a mean 5.2t. The mutant named BU 79 would be a suitable substitute for Pankaj and similar long-duration rices. (author)

  20. High-yield production of biodiesel by non-catalytic supercritical methanol transesterification of crude castor oil (Ricinus communis)

    International Nuclear Information System (INIS)

    Román-Figueroa, Celián; Olivares-Carrillo, Pilar; Paneque, Manuel; Palacios-Nereo, Francisco Javier; Quesada-Medina, Joaquín

    2016-01-01

    The synthesis of biodiesel from crude castor oil in a catalyst-free process using supercritical methanol in a batch reactor was investigated, studying the evolution of intermediate products as well as the conversion of triglycerides and the yield of FAMEs (fatty acid methyl esters) (biodiesel). Experiments were carried out in a temperature range of 250–350 °C (10–43 MPa) at reaction times of 15–90 min for a methanol-to-oil molar ratio of 43:1. Maintaining thermal stability of biodiesel is one of the most important concerns in high-yield supercritical biodiesel production. Hence, thermal decomposition degree of FAMEs was also investigated in different reaction conditions. The maximum yield of FAMEs (96.5%) was obtained at 300 °C (21 MPa) and 90 min. Under these conditions, the conversion of triglycerides was complete, the yield of intermediate products was low (3.29 and 1.41% for monoglycerides and diglycerides, respectively), and thermal decomposition of FAMEs did not occur. The maximum degree of thermal decomposition (80.9%) was produced at 350 °C (43 MPa) and 90 min. Methyl ricinoleate, whose fatty acid chain was the most abundant (88.09 mol%) in castor oil, was very unstable above 300 °C and 60 min, leading to low yields of FAMEs under these conditions. - Highlights: • Supercritical synthesis of biodiesel from crude castor oil was investigated. • Supercritical methanolysis of crude castor oil reached a high yield of FAMEs. • Ricinoleic acid methyl ester was very unstable above 300 °C and 60 min reaction.

  1. A system approach to high quality picture-rate conversion

    NARCIS (Netherlands)

    Bartels, C.L.L.; Cordes, C.N.; Riemens, B.; Haan, de G.

    2010-01-01

    Various techniques have been implemented to improve the motion portrayal of flat-panel displays, of which the widespread introduction of motion-compensated picture-rate conversion systems is an essential part. However, a careful design of such systems is critical as they have the potential to

  2. Key requirements for high quality picture-rate conversion.

    NARCIS (Netherlands)

    Cordes, C.N.; Haan, de G.

    2009-01-01

    Past LCD-TV generations suffered from a poor motion portrayal, causing the blurring of moving objects. Hence, various techniques have been implemented to improve their motion portrayal, of which the widespread introduction of motion compensated picture-rate conversion in TV systems is an essential

  3. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  4. Proceedings of the technical committee on high conversion and high burnup reactors

    International Nuclear Information System (INIS)

    Shiroya, Seiji; Kanda, Keiji; Sekiya, Tamotsu

    1990-02-01

    The present issue is the proceedings of 'the Technical Committee on High Conversion and High Burnup Reactors' held at Kyoto University Research Reactor Institute (KURRI) on December 12 and 22, 1988. In this committee, members so much concerned with this theme were asked to report their recent accomplishment and activities. By such a program, the committee was intended to make a survey of future direction of research in this type of reactor. (J.P.N.)

  5. Harvester development for new high yielding SRC crops and markets

    International Nuclear Information System (INIS)

    2005-12-01

    Details are given of a project to develop a harvesting system that can produce fuel economically in a single pass to a required specification at a cost that is profitable for the grower while minimising the cost of the product. The project objectives listed include the development of a harvester drive chain and feeding systems to allow harvesting of the higher yielding crops now produced in the UK, determination of the most economic harvesting cycle for SRC crops, and production of fuels suitable for co-firing with coal in pulverised fuel systems or for gasification. The work programme and project conclusions are discussed

  6. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products.

    Science.gov (United States)

    Liguori, Rossana; Ventorino, Valeria; Pepe, Olimpia; Faraco, Vincenza

    2016-01-01

    Lignocellulosic biomasses derived from dedicated crops and agro-industrial residual materials are promising renewable resources for the production of fuels and other added value bioproducts. Due to the tolerance to a wide range of environments, the dedicated crops can be cultivated on marginal lands, avoiding conflict with food production and having beneficial effects on the environment. Besides, the agro-industrial residual materials represent an abundant, available, and cheap source of bioproducts that completely cut out the economical and environmental issues related to the cultivation of energy crops. Different processing steps like pretreatment, hydrolysis and microbial fermentation are needed to convert biomass into added value bioproducts. The reactor configuration, the operative conditions, and the operation mode of the conversion processes are crucial parameters for a high yield and productivity of the biomass bioconversion process. This review summarizes the last progresses in the bioreactor field, with main attention on the new configurations and the agitation systems, for conversion of dedicated energy crops (Arundo donax) and residual materials (corn stover, wheat straw, mesquite wood, agave bagasse, fruit and citrus peel wastes, sunflower seed hull, switchgrass, poplar sawdust, cogon grass, sugarcane bagasse, sunflower seed hull, and poplar wood) into sugars and ethanol. The main novelty of this review is its focus on reactor components and properties.

  7. Breeding high yielding varieties of pigeon pea, mungbean and black gram using induced mutations

    International Nuclear Information System (INIS)

    Pawar, S.E.; Wanjari, K.B.

    1994-01-01

    The present communication emphasis the developing of high yielding varieties of pigeon pea, mungbean and black gram using induced mutation with disease resistance in these crops. This would help in stabilisation of the higher yield potential

  8. Yield strength of molybdenum, tantalum and tungsten at high strain rates and very high temperatures

    International Nuclear Information System (INIS)

    Škoro, G.P.; Bennett, J.R.J.; Edgecock, T.R.; Booth, C.N.

    2012-01-01

    Highlights: ► New experimental data on the yield strength of molybdenum, tantalum and tungsten. ► High strain rate effects at record high temperatures (up to 2700 K). ► Test of the consistency of the Zerilli–Armstrong model at very high temperatures. - Abstract: Recently reported results of the high strain rate, high temperature measurements of the yield strength of tantalum and tungsten have been analyzed along with new experimental results on the yield strength of molybdenum. Thin wires are subjected to high stress by passing a short, fast, high current pulse through a thin wire; the amplitude of the current governs the stress and the repetition rate of the pulses determines the temperature of the wire. The highest temperatures reached in the experiments were 2100 °C (for molybdenum), 2250 °C (for tantalum) and 2450 °C (for tungsten). The strain-rates in the tests were in the range from 500 to 1500 s −1 . The parameters for the constitutive equation developed by Zerilli and Armstrong have been determined from the experimental data and the results have been compared with the data obtained at lower temperatures. An exceptionally good fit is obtained for the deformation of tungsten.

  9. High PEC conversion efficiencies from CuSe film electrodes modified with metalloporphyrin/polyethylene matrices

    International Nuclear Information System (INIS)

    Zyoud, Ahed; Al-Kerm, Rola S.; Al-Kerm, Rana S.; Waseem, Mansur; Mohammed, H.S. Helal; Park, DaeHoon; Campet, Guy; Sabli, Nordin; Hilal, Hikmat S.

    2015-01-01

    Enhancement of hole-transfer across CuSe electrode/liquid junction can be facilitated by coating with metalloporphyrin complexes embedded inside polyethylene matrices. - Highlights: • CuSe films were electrochemically deposited onto FTO/Glass • Annealing CuSe film electrodes enhanced PEC characteristics • PEC characteristics were further enhanced by metalloporphyrin/polyethylene matrices, yielding ∼15% efficiency • Matrix behavior as charge transfer mediator enhanced electrode conversion efficiency and stability - Abstract: Electrodeposited CuSe film electrodes have been prepared onto FTO/glass by a facile method based on earlier methods described for other systems. The films were characterized, modified by annealing and further characterized. The films were then modified by coating with tetra(-4-pyridyl) pophyrinato-manganese (MnTPyP) complexes embedded inside commercial polyethylene (PE) matrices. The effects of modifications on different film properties, such as X-ray diffraction (XRD) patterns, surface morphology, photoluminescence (PL) spectra and electronic absorption spectra were investigated. Compared with other thin film electrode systems, very high photoelectrochemical (PEC) conversion efficiency values have been observed here. Pre-annealing the CuSe films at 150°C for 2 h, followed by attaching the MnTPyP/PE matrices remarkably enhanced their PEC characteristics. The conversion efficiency was significantly enhanced, from less than 1.0% to more than 15%. Fill factor (FF) was also enhanced from ∼30% to ∼80%. Values of open-circuit potential (V OC ) and short-circuit current (J SC ) were significantly enhanced. While annealing affects uniformity, particle inter-connection and surface texture of the CuSe films, the MnTPyP complex species behaves as an additional charge-transfer mediator across the film/electrolyte junction. Optimization of PEC characteristics, using different deposition times, different annealing temperatures, different

  10. Breeding high yielding, high protein spring wheats: Problems, progress and approaches to further advances

    International Nuclear Information System (INIS)

    Konzak, C.F.; Rubenthaler, G.L.

    1984-01-01

    Preliminary data offer promise that advances have been made in breeding hard red spring wheat selections with a yielding capacity about equal to current cultivars and with an increased capacity for producing high protein grain. The most promising new selections are derivatives of Magnif 41M1, CI17689, a semi-dwarf mutant of an Argentinian high protein cultivar. Rapid changes in disease and pest problems also required immediate attention and a reorientation of breeding materials and goals. Selection procedures suggested as promising include early generation (F 2 and F 3 ) screening for disease resistance and agronomic type, with screening for protein content delayed until F 4 or F 5 . Cultural conditions conducive for expressing the highest yield capacity are proposed as optimum for identifying those selections also able to produce high protein grain. A goal of routine production of 14.5% (or higher) protein grain is considered necessary and achievable under fertility management conditions required for maximum yield expression of agronomically competitive cultivars. Agronomically improved sources of high protein genes, an increasing number of induced high protein mutants, and numerous high protein crossbred derivatives of T. dicoccoides and Aegilops species have recently become available. These new or improved germplasm sources as well as a considerable reserve of yet untapped germplasm variability in other accessions of wild T. dicoccoides offer increased optimism that further, rapid advances in the breeding of adapted high yielding, high protein wheats are achievable. Improved breeding schemes, using induced male sterility mutants either to aid in crossing or to develop male sterile facilitated recurrent selection (MSFRS) populations, should contribute towards an earlier achievement of the desired goal while providing the basis for buffering against rapid changes in disease and pest problems

  11. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Harvester development for new high yielding SRC crops and markets

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Mark

    2005-07-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented.

  13. Using the Nova target chamber for high-yield targets

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1987-01-01

    The existing 2.2-m-radius Nova aluminum target chamber, coated and lined with boron-seeded carbon shields, is proposed for use with 1000-MJ-yield targets in the next laser facility. The laser beam and diagnostic holes in the target chamber are left open and the desired 10 -2 Torr vacuum is maintained both inside and outside the target chamber; a larger target chamber room is the vacuum barrier to the atmosphere. The hole area available is three times that necessary to maintain a maximum fluence below 12 J/cm 2 on optics placed at a radius of 10 m. Maximum stress in the target chamber wall is 73 MPa, which complies with the intent of the ASME Pressure Vessel Code. However, shock waves passing through the inner carbon shield could cause it to comminute. We propose tests and analyses to ensure that the inner carbon shield survives the environment. 13 refs

  14. Harvester development for new high yielding SRC crops and markets

    International Nuclear Information System (INIS)

    Paulson, Mark

    2005-01-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented

  15. Mutation induction and evaluation of high yield rice mutants

    International Nuclear Information System (INIS)

    Abdul Rahim Harun; Sobri Husein; Rusli Ibrahim

    2006-01-01

    The successful use of plant breeding for improving crops requires the existence of genetic variation of useful traits. Unfortunately, the desired variation is often lacking. However, radiation has been used to induce mutations and thereby generate genetic variation from which desired mutants may be selected. Mutation induction has become a proven way of creating variation within a crop variety. It offers the possibility of inducing desired attributes that either cannot be expressed in nature or have been lost during evolution. Rice is security food crop in Malaysia. Efforts were undertaken to enhance rice yield from 4.0 tones per hectare in 1995 to 5.5 tones per hectare in 2010. Proper management and good varieties are two factors that require for enhancing yield of rice. In this research, purified seeds of MR211 and MR219 were gamma irradiated at 100 to 400 Gray and sown for planting as M1 generation at MARDI experimental plot. The M2 population was sown in bulk with population size around 15,000 to 20,000 plants. Individual plant selection was carried out at maturity and each selected plant became a mutant line of M3 generation. Agronomic trial of M3 mutants lines were conducted in Mardi, Tanjung Karang, Selangor. About 115 of selected mutant lines were evaluated. Each row of those mutant lines were planted in two rows at planting distance of 25cm within and between rows. These mutant lines were visually observed and data were recorded in each of every mutant line. (Author)

  16. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Itai, Takaaki; Takahashi, Yoshio; Uruga, Tomoya; Tanida, Hajime; Iida, Atsuo

    2008-01-01

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-μm scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO 2 and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 μm 2 ) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-μm scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction

  17. Selective detection of Fe and Mn species at mineral surfaces in weathered granite by conversion electron yield X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)], E-mail: itai-epss@hiroshima-u.ac.jp; Takahashi, Yoshio [Department of Earth and Planetary Systems Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Uruga, Tomoya; Tanida, Hajime [Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Iida, Atsuo [Photon Factory, National Laboratory for High Energy Physics, O-ho, Tsukuba, Ibaraki 305 (Japan)

    2008-09-15

    A new method for the speciation of Fe and Mn at mineral surfaces is proposed using X-ray absorption fine structure in conversion electron yield mode (CEY-XAFS). This method generally reflects information on the species at the sub-{mu}m scale from the particle surface due to the limited escape depth of the inelastic Auger electron. The surface sensitivity of this method was assessed by experiments on two samples of granite showing different degrees of weathering. The XANES spectra of the Fe-K and Mn-K edge clearly gave different information for CEY and fluorescence (FL) modes. These XANES spectra of Fe and Mn show a good fit upon application of least-squares fitting using ferrihydrite/MnO{sub 2} and biotite as the end members. The XANES spectra collected by CEY mode provided more selective information on the secondary phases which are probably present at the mineral surfaces. In particular, CEY-XANES spectra of Mn indicated the presence of Mn oxide in unweathered granite despite a very small contribution of Mn oxide being indicated by FL-XANES and selective chemical-extraction analyses. Manganese oxide could not be detected by micro-beam XANES (beam size: 5 x 5 {mu}m{sup 2}) in unweathered granite, suggesting that Mn oxide thinly and ubiquitously coats mineral surface at a sub-{mu}m scale. This information is important, since Mn oxide can be the host for various trace elements. CEY-XAFS can prove to be a powerful tool as a highly sensitive surface speciation method. Combination of CEY and FL-XAFS will help identify minor phases that form at mineral surfaces, but identification of Fe and Mn oxides at mineral surfaces is critical to understand the migration of trace elements in water-rock interaction.

  18. Frequency of cardiac arrhythmias in high and low- yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Afshin Jafari Dehkordi

    2014-06-01

    Full Text Available Electrocardiography (ECG may be used to recognize cardiac disorders. Levels of milk production may change the serum electrolytes which its imbalance has a role in cardiac arrhythmia. Fifty high yielding and fifty low yielding Holstein dairy cows were used in this study. Electrocardiography was recorded by base-apex lead and blood samples were collected from jugular vein for measurement of serum elements such as sodium, potassium, calcium, phosphorous, iron and magnesium. Cardiac dysrhythmias were detected more frequent in low yielding Holstein cows (62.00% compared to high yielding Holstein cows (46.00%. The cardiac dysrhythmias that were observed in low yielding Holstein cows included sinus arrhythmia (34.70%, wandering pacemaker (22.45 %, bradycardia (18.37%, tachycardia (10.20%, atrial premature beat (2.04%, sinoatrial block (2.04%, atrial fibrillation (8.16% and atrial tachycardia (2.04%. The cardiac dysrhythmias were observed in high yielding Holstein cows including, sinus arrhythmia (86.95% and wandering pacemaker (13.05%. Also, notched P wave was observed to be 30% and 14% in high- and low- yielding Holstein cows respectively. The serum calcium concentration of low yielding Holstein cows was significantly lower than that of high yielding Holstein cows. There was not any detectable significant difference in other serum elements between high- and low- yielding Holstein cows. Based on the result of present study, could be concluded that low serum concentration of calcium results to more frequent dysrhythmias in low yielding Holstein cows.

  19. THE METALLICITY DEPENDENCE OF THE CO {yields} H{sub 2} CONVERSION FACTOR IN z {>=} 1 STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Genzel, R.; Tacconi, L. J.; Schreiber, N. M. Foerster; Gracia-Carpio, J.; Lutz, D.; Saintonge, A. [Max-Planck-Institut fuer extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching (Germany); Combes, F. [Observatoire de Paris, LERMA, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Bolatto, A. [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Neri, R.; Cox, P. [IRAM, 300 Rue de la Piscine, 38406 St. Martin d' Heres, Grenoble (France); Sternberg, A. [Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Cooper, M. C. [Department of Physics and Astronomy, Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States); Bouche, N. [Department of Physics, University of California, Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Bournaud, F. [Service d' Astrophysique, DAPNIA, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex (France); Burkert, A. [Universitaetssternwarte der Ludwig-Maximiliansuniversitaet, Scheinerstr. 1, D-81679 Muenchen (Germany); Comerford, J. [Department of Astronomy and McDonald Observatory, 1 University Station, C1402 Austin, TX 78712-0259 (United States); Davis, M.; Newman, S. [Department of Astronomy, Campbell Hall, University of California, Berkeley, CA 94720 (United States); Garcia-Burillo, S. [Observatorio Astronomico Nacional-OAN, Apartado 1143, 28800 Alcala de Henares- Madrid (Spain); Naab, T., E-mail: genzel@mpe.mpg.de, E-mail: linda@mpe.mpg.de [Max-Planck Institut fuer Astrophysik (MPA), Karl Schwarzschildstrasse 1, D-85748 Garching (Germany); and others

    2012-02-10

    We use the first systematic samples of CO millimeter emission in z {>=} 1 'main-sequence' star-forming galaxies to study the metallicity dependence of the conversion factor {alpha}{sub CO,} from CO line luminosity to molecular gas mass. The molecular gas depletion rate inferred from the ratio of the star formation rate (SFR) to CO luminosity, is {approx}1 Gyr{sup -1} for near-solar metallicity galaxies with stellar masses above M{sub S} {approx} 10{sup 11} M{sub Sun }. In this regime, the depletion rate does not vary more than a factor of two to three as a function of molecular gas surface density or redshift between z {approx} 0 and 2. Below M{sub S} the depletion rate increases rapidly with decreasing metallicity. We argue that this trend is not caused by starburst events, by changes in the physical parameters of the molecular clouds, or by the impact of the fundamental-metallicity-SFR-stellar mass relation. A more probable explanation is that the conversion factor is metallicity dependent and that star formation can occur in 'CO-dark' gas. The trend is also expected theoretically from the effect of enhanced photodissociation of CO by ultraviolet radiation at low metallicity. From the available z {approx} 0 and z {approx} 1-3 samples we constrain the slope of the log({alpha}{sub CO})-log (metallicity) relation to range between -1 and -2, fairly insensitive to the assumed slope of the gas-SFR relation. Because of the lower metallicities near the peak of the galaxy formation activity at z {approx} 1-2 compared to z {approx} 0, we suggest that molecular gas masses estimated from CO luminosities have to be substantially corrected upward for galaxies below M{sub S}.

  20. Internal conversion in highly stripped 83Kr ions

    International Nuclear Information System (INIS)

    Copnell, J.; Phillips, W.R.; Barnett, A.R.; Rehm, K.E.; Ahmad, I.; Gehring, J.; Glagola, B.G.; Kutschera, W.

    1995-01-01

    The total decay probabilities per unit time of the first excited 9.4-keV state in 83 Kr have been measured in ions of ionicity q from 28 to 32. Using a γ-decay probability per unit time of 0.255(2)x10 6 s -1 gives internal conversion coefficients of 14.6(11), 14.9(10), 14.1(9), 14.6(11), and 15.2(24) for q=28--32, respectively. These values are compared with theoretical predictions

  1. Separating heat stress from moisture stress: analyzing yield response to high temperature in irrigated maize

    Science.gov (United States)

    Carter, Elizabeth K.; Melkonian, Jeff; Riha, Susan J.; Shaw, Stephen B.

    2016-09-01

    Several recent studies have indicated that high air temperatures are limiting maize (Zea mays L.) yields in the US Corn Belt and project significant yield losses with expected increases in growing season temperatures. Further work has suggested that high air temperatures are indicative of high evaporative demand, and that decreases in maize yields which correlate to high temperatures and vapor pressure deficits (VPD) likely reflect underlying soil moisture limitations. It remains unclear whether direct high temperature impacts on yields, independent of moisture stress, can be observed under current temperature regimes. Given that projected high temperature and moisture may not co-vary the same way as they have historically, quantitative analyzes of direct temperature impacts are critical for accurate yield projections and targeted mitigation strategies under shifting temperature regimes. To evaluate yield response to above optimum temperatures independent of soil moisture stress, we analyzed climate impacts on irrigated maize yields obtained from the National Corn Growers Association (NCGA) corn yield contests for Nebraska, Kansas and Missouri. In irrigated maize, we found no evidence of a direct negative impact on yield by daytime air temperature, calculated canopy temperature, or VPD when analyzed seasonally. Solar radiation was the primary yield-limiting climate variable. Our analyses suggested that elevated night temperature impacted yield by increasing rates of phenological development. High temperatures during grain-fill significantly interacted with yields, but this effect was often beneficial and included evidence of acquired thermo-tolerance. Furthermore, genetics and management—information uniquely available in the NCGA contest data—explained more yield variability than climate, and significantly modified crop response to climate. Thermo-acclimation, improved genetics and changes to management practices have the potential to partially or completely

  2. High yield of low-energy pions from a high-energy primary proton beam

    International Nuclear Information System (INIS)

    Bertin, A.; Capponi, S.; De Castro, S.

    1987-01-01

    This paper presents the results of the first measurement on the yield of pions with momentum smaller than 220 MeV/c, produced by a 300 GeV/c proton beam. The measurements, performed at the CERN super proton synchrotron using tungsten production targets of different lengths, are discussed referring to the possibility of extending to high-energy laboratories the access to fundamental research involving low-energy pions and muons

  3. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  4. High School Student Physics Research Experience Yields Positive Results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-01-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a…

  5. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  6. Conversion of zero point energy into high-energy photons

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, B. I. [Universidad Autonoma de San Luis Potosi, Instituto de Fisica, Av. Manuel Nava No. 6, Zona Universitaria, 78290 San Luis Potosi, SLP (Mexico)

    2016-11-01

    An unusual phenomenon, observed in experiments is studied. X-ray laser bursts of keV energy are emitted from a metal where long-living states, resulting in population inversion, are totally unexpected. Anomalous electron-photon states are revealed to be formed inside the metal. These states are associated with narrow, 10{sup -11} cm, potential well created by the local reduction of zero point electromagnetic energy. In contrast to analogous van der Waals potential well, leading to attraction of two hydrogen atoms, the depth of the anomalous well is on the order of 1 MeV. The states in that well are long-living which results in population inversion and subsequent laser generation observed. The X-ray emission, occurring in transitions to lower levels, is due to the conversion of zero point electromagnetic energy. (Author)

  7. Gamma rays induced bold seeded high yielding mutant in chickpea

    International Nuclear Information System (INIS)

    Wani, A.A.; Anis, M.

    2001-01-01

    variety (12.64±0.14g). This ultimately resulted in an increase in the overall yield of the mutant plant (38.86±1.69g) as compared to Pusa-212 (30.05±0.59g). Gamma ray induced bold seeded mutants have been reported earlier by different workers. The decrease in the number of seeds per pod and pods/plant and increase in seed weight is evidence of the fact that each trait is affected independently by the mutagenic treatment. Although the mutant was morphologically distinct, cytologically it was normal. There were 8 perfect bivalents at metaphase and the anaphase segregation was normal. It is concluded that bold seeded mutant may be utilized in various breeding programs as a donor parent for boldness character of the mutant. On the other hand the mutant may also itself be improved through crosses with other parents to accommodate more seeds in its large sized pod, which remained almost 50% empty

  8. Conceptual design of a FGM thermoelectric energy conversion system for high temperature heat source. 1. Design of thermoelectric energy conversion unit

    International Nuclear Information System (INIS)

    Kambe, Mitsuru; Teraki, Junichi; Hirano, Toru.

    1996-01-01

    Thermoelectric (TE) power conversion system has been focused as a candidate of direct energy conversion systems for high temperature heat source to meet the various power requirements in next century. A concept of energy conversion unit by using TE cell elements combined with FGM compliant pads has been presented to achieve high thermal energy density as well as high energy conversion efficiency. An energy conversion unit consists of 8 couples of P-N cell elements sandwiched between two FGM compliant pads. Performance analysis revealed that the power generated by this unit was 11 watts which is nearly ten times as much as conventional unit of the same size. Energy conversion efficiency of 12% was expected based on the assumption of ZT = 1. All the member of compliant pads as well as TE cells could be bonded together to avoid thermal resistance. (author)

  9. Clickstream data yields high-resolution maps of science

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Johan [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory; Hagberg, Aric [Los Alamos National Laboratory; Bettencourt, Luis [Los Alamos National Laboratory; Chute, Ryan [Los Alamos National Laboratory; Rodriguez, Marko A [Los Alamos National Laboratory; Balakireva, Lyudmila [Los Alamos National Laboratory

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantagees of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science.

  10. Measuring oxygen yields of a thermal conversion/elemental analyzer-isotope ratio mass spectrometer for organic and inorganic materials through injection of CO.

    Science.gov (United States)

    Yin, Xijie; Chen, Zhigang

    2014-12-01

    The thermal conversion/elemental analyzer-isotope ratio mass spectrometer (TC/EA-IRMS) is widely used to measure the δ(18) O value of various substances. A premise for accurate δ(18) O measurement is that the oxygen in the sample can be converted into carbon monoxide (CO) quantitatively or at least proportionally. Therefore, a precise method to determine the oxygen yield of TC/EA-IRMS measurements is needed. Most studies have used the CO peak area obtained from a known amount of a solid reference material (for example, benzoic acid) to calibrate the oxygen yield of the sample. Although it was assumed that the oxygen yield of the solid reference material is 100%, no direct evidence has been provided. As CO is the analyte gas for δ(18) O measurement by IRMS, in this study, we use a six-port valve to inject CO gas into the TC/EA. The CO is carried to the IRMS by the He carrier gas and the CO peak area is measured by the IRMS. The CO peak area thus obtained from a known amount of the injected CO is used to calibrate the oxygen yield of the sample. The oxygen yields of commonly used organic and inorganic reference materials such as benzoic acid (C6 H5 COOH), silver phosphate (Ag3 PO4 ), calcium carbonate (CaCO3 ) and silicon dioxide (SiO2 ) are investigated at different reactor temperatures and sample sizes. We obtained excellent linear correlation between the peak area for the injected CO and its oxygen atom amount. C6 H5 COOH has the highest oxygen yield, followed by Ag3 PO4 , CaCO3 and SiO2 . The oxygen yields of TC/EA-IRMS are less than 100% for both organic and inorganic substances, but the yields are relatively stable at the specified reactor temperature and for a given quantity of sample. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Modeling of large aperture third harmonic frequency conversion of high power Nd:glass laser systems

    International Nuclear Information System (INIS)

    Henesian, M.A.; Wegner, P.J.; Speck, D.R.; Bibeau, C.; Ehrlich, R.B.; Laumann, C.W.; Lawson, J.K.; Weiland, T.L.

    1991-01-01

    To provide high-energy, high-power beams at short wavelengths for inertial-confinement-fusion experiments, we routinely convert the 1.053-μm output of the Nova, Nd:phosphate-glass, laser system to its third-harmonic wavelength. We describe performance and conversion efficiency modeling of the 3 x 3 arrays potassium-dihydrogen-phosphate crystal plates used for type II/type II phase-matched harmonic conversion of Nova 0.74-m diameter beams, and an alternate type I/type II phase-matching configuration that improves the third-harmonic conversion efficiency. These arrays provide energy conversion of up to 65% and intensity conversion to 70%. 19 refs., 11 figs

  12. Impact of various storage conditions on enzymatic activity, biomass components and conversion to ethanol yields from sorghum biomass used as a bioenergy crop.

    Science.gov (United States)

    Rigdon, Anne R; Jumpponen, Ari; Vadlani, Praveen V; Maier, Dirk E

    2013-03-01

    With increased mandates for biofuel production in the US, ethanol production from lignocellulosic substrates is burgeoning, highlighting the need for thorough examination of the biofuel production supply chain. This research focused on the impact storage has on biomass, particularly photoperiod-sensitive sorghum biomass. Biomass quality parameters were monitored and included biomass components, cellulose, hemicellulose and lignin, along with extra-cellular enzymatic activity (EEA) responsible for cellulose and hemicellulose degradation and conversion to ethanol yields. Analyses revealed dramatic decreases in uncovered treatments, specifically reduced dry matter content from 88% to 59.9%, cellulose content from 35.3% to 25%, hemicellulose content from 23.7% to 16.0% and ethanol production of 0.20 to 0.02gL(-1) after 6months storage along with almost double EEA activities. In contrast, biomass components, EEA and ethanol yields remained relatively stable in covered treatments, indicating covering of biomass during storage is essential for optimal substrate retention and ethanol yields. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. High lysine and high yielding mutants in wheat (Triticum aestivum) L

    International Nuclear Information System (INIS)

    Mohammad, T.; Mahmood, F.; Ahmad, A.; Sattar, A.; Khan, I.

    1988-01-01

    The dry seeds of the variety Lu-26 were irradiated with 20 krad of gamma rays. In M 2 about 300 mutant plants were selected for short stature, rust resistance and other desirable traits. As a result of further selection, in M 6 , eight superior lines were finally identified. The agronomic characteristics of these mutants, the parent variety (Lu-26) and a standard check variety (Pak-81) are shown. The selected mutants and commercially grown cultivars (Lu-26 and Pak-81) were studied for total protein content and amino acid pattern. The mutants WM-89-1, WM-6-17 and WM-81-2 showing high yield also contained comparatively high amounts of methionine and lysine. The lysine contents were 565, 410, and 370 mg/100g in the mutants WM-89-1, WM-6-17 and WM-81-2, respectively against a range value of 210-370 mg/100g in other mutants and 250-320 in the commercial cultivars. The mutant WM-81-2 was comparable to WM-56-1-5 in lysine content. The results of these experiments show a possibility of developing varieties having high yield and high amounts of essential amino acids such as lysine and methionine

  14. High quantum yield graphene quantum dots decorated TiO{sub 2} nanotubes for enhancing photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ailan, E-mail: qal67@163.com; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Highlights: • High concentration yellow GQDs and TiO{sub 2} nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO{sub 2} nanotube. • The catalytic performance of GQDs/TiO{sub 2} depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO{sub 2} was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO{sub 2} nanotubes (GQDs/TiO{sub 2} NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO{sub 2} NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO{sub 2} nanotubes (TiO{sub 2} NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO{sub 2} NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO{sub 2} NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO{sub 2} composite.

  15. Clickstream Data Yields High-Resolution Maps of Science

    Science.gov (United States)

    Bollen, Johan; Van de Sompel, Herbert; Rodriguez, Marko A.; Balakireva, Lyudmila

    2009-01-01

    Background Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Methodology Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Conclusions Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data. PMID:19277205

  16. Clickstream data yields high-resolution maps of science.

    Science.gov (United States)

    Bollen, Johan; Van de Sompel, Herbert; Hagberg, Aric; Bettencourt, Luis; Chute, Ryan; Rodriguez, Marko A; Balakireva, Lyudmila

    2009-01-01

    Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.

  17. Clickstream data yields high-resolution maps of science.

    Directory of Open Access Journals (Sweden)

    Johan Bollen

    Full Text Available BACKGROUND: Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. METHODOLOGY: Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. CONCLUSIONS: Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.

  18. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application.

    Science.gov (United States)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-11-01

    Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO3/g, comparable to commercially-available zeolite (310 mg CaCO3/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  20. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  1. LOGOS. HX: a core simulator for high conversion boiling water reactors

    International Nuclear Information System (INIS)

    Tsuiki, Makoto; Sakurada, Koichi; Yoshida, Hiroyuki.

    1988-01-01

    A three-dimensional physics simulator 'LOGOS. HX' has been developed for the designing analysis of high conversion boiling water reactor (HCBWR) cores. Its functions, calculational methods, and verification results will briefly be discussed. (author)

  2. High yield hydrolysis of seaweed-waste biomass using peracetic acid and ionic liquid treatments

    Science.gov (United States)

    Uju, Wijayanta, Agung Tri; Goto, Masahiro; Kamiya, Noriho

    2018-02-01

    Seaweed is one of the most promising bioethanol feedstocks. This water plant has high carbohydrate content but low lignin content, as a result it will be easier to be hydrolysed. This paper described hydrolysis of seaweed-waste biomass from the carrageenan (SWBC) industry using enzymatic saccharification or ionic liquids-HCl hydrolysis. In the first work, SWBC pretreated by peracetic acid (PAA) followed by ionic liquid (IL) caused enhance the cellulose conversion of enzymatic saccharification. At 48h saccharification, the value conversion almost reached 100%. In addition, the untreated SWBC also produced the cellulose conversion 77%. In the second work, SWBC or Bagasse with or without pretreated by PAA was hydrolyzed using ILs-HCl hydrolysis. The ILs used were 1-buthyl-3-methylpyridium chloride, [Bmpy][Cl] and 1-butyl-3-metyl imidazolium chloride ([Bmim][Cl]). [Bmpy][Cl]-HCl hydrolysis produced higher cellulose conversion than [Bmim][Cl]-HCl hydrolysis. The phenomenon was clearly observed on the Bagasse, which without pretreated by PAA. Furthermore, SWBC hydrolyzed by both ILs in the presence low concentration of HCl produced cellulose conversion 70-98% at 60-90 min of hydrolysis time. High cellulose conversion of SWBC on the both hydrolysis was caused by SWBC had the low lignin (4%). Moreover, IL treatments caused lowering of cellulose hydrogen bonds or even changed the cellulose characteristics from cellulose I to cellulose II which easily to be hydrolyzed. In the case of [Bmpy][Cl], this IL may reduce the degree polymerization of celluloses.

  3. Is the bulk mode conversion important in high density helicon plasma?

    Energy Technology Data Exchange (ETDEWEB)

    Isayama, Shogo; Hada, Tohru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-Kohen, Kasuga, Fukuoka 816-8580 (Japan); Shinohara, Shunjiro [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588 (Japan); Tanikawa, Takao [Research Institute of Science and Technology, Tokai University 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-06-15

    In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included in the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.

  4. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  5. Energy conversion assessment of vacuum, slow and fast pyrolysis processes for low and high ash paper waste sludge

    International Nuclear Information System (INIS)

    Ridout, Angelo J.; Carrier, Marion; Collard, François-Xavier; Görgens, Johann

    2016-01-01

    Highlights: • Vacuum, slow and fast pyrolysis of low and high ash paper waste sludge (PWS) is compared. • Reactor temperature and pellet size optimised to maximise liquid and solid product yields. • Gross energy recovery from solid and liquid was assessed. • Fast pyrolysis of low and high ash PWS offers higher energy conversions. - Abstract: The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (EC_s_u_m), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18–23 MJ kg"−"1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4–7 MJ kg"−"1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.

  6. Highly photoluminescent and photostable CdSe quantum dot-nylon hybrid composites for efficient light conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying; Riehle, Frank-Stefan [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany); Nitschke, Roland [Life Imaging Center, Centre of Systems Biology, University of Freiburg Habsburgerstr. 49, D-79104 Freiburg (Germany); Centre for Biological Signalling Studies (BIOSS), University of Freiburg (Germany); Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A novel in situ synthesis approach for highly luminescent CdSe core QDs-nylon hybrid materials. Black-Right-Pointing-Pointer Potential applications for light and energy conversion are demonstrated. Black-Right-Pointing-Pointer Three dimensional structures out of this hybrid material are available. - Abstract: Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).

  7. Biosyngas Fischer. Tropsch conversion by high Fe loaded supported catalysts prepared with ultrasound and microwave

    Energy Technology Data Exchange (ETDEWEB)

    Pirola, C.; Di Fronzo, A.; Boffito, D.C.; Bianchi, C. [Milano Univ. (Italy). Dipt. di Chimica; Di Michele, A. [Perugia Univ. (Italy). Dipt. di Fisica

    2012-07-01

    Catalysts with iron high loading of 30 wt%, promoted with K (2.0 wt%) and Cu (3.75 wt%), have been synthesized according to three different methods: (1) the traditional impregnation method (TR); (2) Ultrasound (US) assisted TR method; (3) Microwave (MW) assisted TR method. All the samples have been fully characterized by BET, ICP/OES, XRPD, TG-DTA, FT-IR, TPR, SEM and TEM and tested in a laboratory pilot plant for Fischer-Tropsch synthesis working at 220 C and 20 bar. The results of the catalysts characterization indicated that the morphology of the samples strongly depends on the method of preparation. The best FTS results in term of C{sub 2+} yield (41%) has been obtained using MW with a good value of the selectivity towards heavy hydrocarbons, while in term of CO conversion (58%), using US. The samples prepared with non-traditional methods show FTS better results, probably due to a more wide and uniform distribution of Fe in the medium during the synthesis phase. (orig.)

  8. Present status and subjects of research on heat removal in high conversion light water reactors

    International Nuclear Information System (INIS)

    Murao, Yoshio

    1990-01-01

    Merits of high conversion LWRs: (1) The utilization of nuclear fuel several times as much as that in LWRs is possible. The rate of effective utilization of uranium is 4-6%. (2) The active storage of plutonium is feasible. (3) The bridging to the nuclear fuel cycle industries in fast reactor age can be done. (4) These contribute to the control of plutonium storage as the partner of FBRs in fast reactor age. (5) These contribute to the flexibility of medium and long term energy strategy. The reduction of natural uranium demand by the introduction of high conversion LWRs: Assuming the scale of nuclear power facilities in 2030 as 107 million kW, and that HCLWRs are introduced from 2000, the reduction till 2100 is 13%. The features of high conversion LWRs, the effect of improving the conversion ratio by spectral hardening and so on are explained. The specification of high conversion LWRs is shown in comparison with other reactor types. The aim is the high conversion PWRs in which the same safety as conventional LWRs is ensured, and energy resources and economical efficiency are attractive. The schedule of the research and the subjects of the thermo-hydraulic engineering research are shown. (K.I.)

  9. Conceptual process for conversion of high level waste to glass

    International Nuclear Information System (INIS)

    1975-01-01

    During a ten-year period highly radioactive wastes amounting to 22 million gallons of salt cake and 5 million gallons of wet sludge are to be converted to 1.2 million gallons of glass and 24 million gallons of decontaminated salt cake and placed in the new storage facilities which will provide high assurance of containment with minimal reliance on maintenance and surveillance. The glass will contain nearly all of the radioactivity in a form that is highly resistant to leaching and dispersion. The salt cake will contain a small amount of residual radioactivity. The process is shown in Figure 1 and the facilities may be arranged in seven modules to accomplish seven tasks, (1) remove wastes from tanks, (2) separate sludge and salt, (3) decontaminate salt, (4) solidify and package sludge and 137 Cs, (5) solidify and package decontaminated salt, (6) store high level waste, and (7) store decontaminated salt cake

  10. The relationship between high street footfall, attraction and conversion

    OpenAIRE

    Graham, CD

    2016-01-01

    The three critical measures of retail performance are often suggested to be “location, location, location”. However this generalisation, like many others in the literature, is of little practical use without underpinning empirical evidence. At a time when high streets find themselves under pressure from emerging omni-channel shopping behaviours, now more than ever retail managers need reliable performance benchmarks and comparators. We report findings from a mass observation of high street sh...

  11. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongyang; Wang, Zhendong; Guo, Min [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Mei, E-mail: zhangmei@ustb.edu.cn [State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Jingbo [The Department of Chemistry, Texas A and M University-Kingsville, Kingsville, TX 78363 (United States); The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-11-15

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO{sub 3}/g, comparable to commercially-available zeolite (310 mg CaCO{sub 3}/g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China.

  12. Feasible conversion of solid waste bauxite tailings into highly crystalline 4A zeolite with valuable application

    International Nuclear Information System (INIS)

    Ma, Dongyang; Wang, Zhendong; Guo, Min; Zhang, Mei; Liu, Jingbo

    2014-01-01

    Highlights: • Concept to convert waste to valuable product is carried out in this study. • An industrially feasible and cost-effective approach was developed and optimized. • Highly crystalline and well-defined zeolite was produced under moderate conditions. • The zeolite derived from the bauxite tailings displayed high ion exchange capacity. • Bauxite tailings have potential application in heavy metal ions adsorbent. - Abstract: Bauxite tailings are a major type of solid wastes generated in the flotation process. The waste by-products caused significant environmental impact. To lessen this hazardous effect from poisonous mine tailings, a feasible and cost-effective solution was conceived and implemented. Our approach focused on reutilization of the bauxite tailings by converting it to 4A zeolite for reuse in diverse applications. Three steps were involved in the bauxite conversion: wet-chemistry, alkali fusion, and crystallization to remove impurities and to prepare porous 4A zeolite. It was found that the cubic 4A zeolite was single phase, in high purity, with high crystallinity and well-defined structure. Importantly, the 4A zeolite displayed maximum calcium ion exchange capacity averaged at 296 mg CaCO 3 /g, comparable to commercially-available zeolite (310 mg CaCO 3 /g) exchange capacity. Base on the optimal synthesis condition, the reaction yield of zeolite 4A from bauxite tailings achieved to about 38.43%, hence, this study will provide a new paradigm for remediation of bauxite tailings, further mitigating the environmental and health care concerns, particularly in the mainland of PR China

  13. 31 CFR 356.21 - How are awards at the high yield or discount rate calculated?

    Science.gov (United States)

    2010-07-01

    ... discount rate calculated? 356.21 Section 356.21 Money and Finance: Treasury Regulations Relating to Money... high yield or discount rate calculated? (a) Awards to submitters. We generally prorate bids at the highest accepted yield or discount rate under § 356.20(a)(2) of this part. For example, if 80.15% is the...

  14. Modified High Voltage Conversion Inverting Cuk DC-DC Converter for Renewable Energy Application

    DEFF Research Database (Denmark)

    Maroti, Pandav Kiran; Padmanaban, Sanjeevikumar; Wheeler, Patrick

    2017-01-01

    controlled device DC-DC topology. The voltage conversion ratio of proposed converter has increased by ten times of the conventional Cuk converterat a duty ratio of 90%. The detailed analysis of the voltage conversion ratio and losses occur due to internal resistance of components is done in the paper......The proposed exertion represents the modified high voltage conversion Cuk converter for renewable energy application. The proposed Cuk converter is a combination of the conventional boost converter and Cuk converter. The arrangement of the proposed converter make, such as, it becomes the single...

  15. SYNTACTIC ERRORS ANALYSIS IN THE CASUAL CONVERSATION 60 COMMITED BY TWO SENIOR HIGH STUDENTS

    Directory of Open Access Journals (Sweden)

    Anjar Setiawan

    2017-12-01

    Full Text Available Syntactic structures are the base of English grammar. This study was aimed to analyze the syntactic errors in the casual conversation commited by two senior high students of MAN 2 Semarang. The researcher used qualitative approach to analyze and interpret the meaning of casual conversation. Furthermore, the data collection had been transcribed and analyzed based on the areas of syntactic errors analysis. The findings of the study showed that all areas of syntactic errors happened during the conversation, included auxiliaries, tenses, article, preposition, and conjunction. Both speakers also had a relatively weak vocabulary and their sentences which were sometimes incomprehensible by the interlocutor.

  16. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    Science.gov (United States)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate

  17. Evaluation of fluence to dose equivalent conversion factors for high energy radiations, (1)

    International Nuclear Information System (INIS)

    Sato, Osamu; Uehara, Takashi; Yoshizawa, Nobuaki; Iwai, Satoshi; Tanaka, Shun-ichi.

    1992-09-01

    Computer code system and basic data have been investigated for evaluating fluence to dose equivalent conversion factors for photons and neutrons up to 10 GeV. The present work suggested that the conversion factors would be obtained by incorporating effective quality factors of charged particles into the HERMES (High Energy Radiation Monte Carlo Elaborate System) code system. The effective quality factors for charged particles were calculated on the basis of the Q-L relationships specified in the ICRP Publication-60. (author)

  18. High efficiency thermal to electric energy conversion using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1992-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1500 K. Depending on the nature of parasitic losses, overall thermal-to-electric conversion efficiencies greater than 20 percent are feasible.

  19. High-Power Microwave Transmission and Mode Conversion Program

    Energy Technology Data Exchange (ETDEWEB)

    Vernon, Ronald J. [Univ. of Wisconsin, Madison, WI (United States)

    2015-08-14

    This is a final technical report for a long term project to develop improved designs and design tools for the microwave hardware and components associated with the DOE Plasma Fusion Program. We have developed basic theory, software, fabrication techniques, and low-power measurement techniques for the design of microwave hardware associated gyrotrons, microwave mode converters and high-power microwave transmission lines. Specifically, in this report we discuss our work on designing quasi-optical mode converters for single and multiple frequencies, a new method for the analysis of perturbed-wall waveguide mode converters, perturbed-wall launcher design for TE0n mode gyrotrons, quasi-optical traveling-wave resonator design for high-power testing of microwave components, and possible improvements to the HSX microwave transmission line.

  20. High Conversion of Styrene, Ethylene, and Hydrogen to Linear Monoalkylbenzenes

    Directory of Open Access Journals (Sweden)

    David Hermann Lamparelli

    2018-05-01

    Full Text Available 1-Alkylbenzenes as a precursor of surfactants, can be produced from ethylene, styrene, and hydrogen. These intermediates, lacking tertiary carbons, are environmentally more benign than commercial ones that bear the aromatic ring linked to an internal carbon of the aliphatic chain. The one-pot synthesis of highly linear 1-alkylbenzenes (LABs through the homogeneous catalysis of olefin poly-insertion from cheap and largely available reagents can be carried out with a high turnover and selectivity. A purposely designed reactor that allows for the fine control of the three components feed, along with temperature, plays a key role in this achievement. A turnover of 194 g of LABs per mmol of catalyst per hour can be obtained with the simultaneous removal of polyethylene as a by-product.

  1. Optimization of components in high-yield synthesis of block copolymer-mediated gold nanoparticles

    International Nuclear Information System (INIS)

    Ray, Debes; Aswal, Vinod Kumar

    2012-01-01

    The optimization to achieve stable and high-yield gold nanoparticles in block copolymer-mediated synthesis has been examined. Gold nanoparticles are synthesized using block copolymer P85 in gold salt HAuCl 4 ·3H 2 O solution. This method usually has a very limited yield which does not simply increase with the increase in the gold salt concentration. We show that the yield can be enhanced by increasing the block copolymer concentration but is limited to the factor by which the concentration is increased. On the other hand, the presence of an additional reductant (trisodium citrate) in 1:1 molar ratio with gold salt enhances the yield by manyfold. In this case (with additional reductant), the stable and high-yield nanoparticles having size about 14 nm can be synthesized at very low block copolymer concentrations. These nanoparticles thus can be efficiently used for their application such as for adsorption of proteins.

  2. Quartz crystal microbalance-based system for high-sensitivity differential sputter yield measurements

    International Nuclear Information System (INIS)

    Rubin, B.; Topper, J. L.; Farnell, C. C.; Yalin, A. P.

    2009-01-01

    We present a quartz crystal microbalance-based system for high sensitivity differential sputter yield measurements of different target materials due to ion bombardment. The differential sputter yields can be integrated to find total yields. Possible ion beam conditions include ion energies in the range of 30-350 eV and incidence angles of 0 deg. - 70 deg. from normal. A four-grid ion optics system is used to achieve a collimated ion beam at low energy (<100 eV) and a two-grid ion optics is used for higher energies (up to 750 eV). A complementary weight loss approach is also used to measure total sputter yields. Validation experiments are presented that confirm high sensitivity and accuracy of sputter yield measurements.

  3. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Yellowhair, Julius E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Kwon, Hoyeong [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Alu, Andrea [Univ. of Texas, Austin, TX (United States). Dept. of Electrical and Computer Engineering; Jarecki, Robert L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.; Shinde, Subhash L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Concentrating Solar Technologies Dept.

    2016-09-01

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selective metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed

  4. Organic nonlinear crystals and high power frequency conversion

    International Nuclear Information System (INIS)

    Velsko, S.P.; Davis, L.; Wang, F.; Monaco, S.; Eimerl, D.

    1987-12-01

    We are searching for a new second- and third-harmonic generators among the salts of chiral organic acids and bases. We discuss the relevant properties of crystals from this group of compounds, including their nonlinear and phasematching characteristics, linear absorption, damage threshold and crystal growth. In addition, we summarize what is known concerning other nonlinear optical properties of these crystals, such as two-photon absorption, nonlinear refractive index, and stimulated Raman thresholds. A preliminary assessment is made of the potential of these materials for use in future high power, large aperture lasers such as those used for inertial confinement fusion experiments. 14 refs., 1 fig., 3 tabs

  5. Organic nonlinear crystals and high power frequency conversion

    International Nuclear Information System (INIS)

    Velsko, S.P.; Davis, L.; Wang, F.; Monaco, S.; Eimerl, D.

    1987-01-01

    The authors are searching for new second and third harmonic generators among the salts of organic acids and bases. They discuss the relevant properties of crystals from this group of compounds, including their nonlinear and phasematching characteristics, linear absorption, damage threshold and crystal growth. In addition, they summarize what is known concerning other nonlinear optical properties of these crystals, such as two-photon absorption, nonlinear refractive index, and stimulated Raman thresholds. A preliminary assessment is made of the potential of these materials for use in future high power, large aperture lasers such as those used for inertial confinement fusion experiments

  6. A Switched-Capacitor Based High Conversion Ratio Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Li, Kerui; Yin, Zhijian; Yang, Yongheng

    2017-01-01

    A high step-up switched-capacitor based converter is proposed in this paper. The proposed converter features high conversion ratio, low voltage stress and continuous input current, which makes it very suitable for renewable energy applications like photovoltaic systems. More importantly...... voltage gain, low voltage stress on the switches, continuous input current, and relatively high efficiency....

  7. High field MRI in the diagnosis of multiple sclerosis: high field-high yield?

    International Nuclear Information System (INIS)

    Wattjes, Mike P.; Barkhof, Frederik

    2009-01-01

    Following the approval of the U.S. Food and Drug Administration (FDA), high field magnetic resonance imaging (MRI) has been increasingly incorporated into the clinical setting. Especially in the field of neuroimaging, the number of high field MRI applications has been increased dramatically. Taking advantage on increased signal-to-noise ratio (SNR) and chemical shift, higher magnetic field strengths offer new perspectives particularly in brain imaging and also challenges in terms of several technical and physical consequences. Over the past few years, many applications of high field MRI in patients with suspected and definite multiple sclerosis (MS) have been reported including conventional and quantitative MRI methods. Conventional pulse sequences at 3 T offers higher lesion detection rates when compared to 1.5 T, particularly in anatomic regions which are important for the diagnosis of patients with MS. MR spectroscopy at 3 T is characterized by an improved spectral resolution due to increased chemical shift allowing a better quantification of metabolites. It detects significant axonal damage already in patients presenting with clinically isolated syndromes and can quantify metabolites of special interest such as glutamate which is technically difficult to quantify at lower field strengths. Furthermore, the higher susceptibility and SNR offer advantages in the field of functional MRI and diffusion tensor imaging. The recently introduced new generation of ultra-high field systems beyond 3 T allows scanning in submillimeter resolution and gives new insights into in vivo MS pathology on MRI. The objectives of this article are to review the current knowledge and level of evidence concerning the application of high field MRI in MS and to give some ideas of research perspectives in the future. (orig.)

  8. FLEXIBLE, HIGH CHAR YIELD HYBRIDSIL ADHESIVE MATERIALS FOR NEXT GENERATION ABLATIVE THERMAL PROTECTION SYSTEMS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic will create and empirically validate flexible, high char yield HybridSil adhesive nanocomposites for use within current and next generation polymer based...

  9. Improved Yield, Performance and Reliability of High-Actuator-Count Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The project team will conduct processing and design research aimed at improving yield, performance, and reliability of high-actuator-count micro-electro-mechanical...

  10. Creating a High-Touch Recruitment Event: Utilizing Faculty to Recruit and Yield Students

    Science.gov (United States)

    Freed, Lindsey R.; Howell, Leanne L.

    2018-01-01

    The following article describes the planning and implementation of a university student recruitment event that produced a high (new) student yield. Detailed descriptions of how staff and faculty worked together to plan and implement this event are described.

  11. Energetic conversion of European semi-natural grassland silages through the integrated generation of solid fuel and biogas from biomass: energy yields and the fate of organic compounds.

    Science.gov (United States)

    Hensgen, Frank; Bühle, Lutz; Donnison, Iain; Heinsoo, Katrin; Wachendorf, Michael

    2014-02-01

    Twelve European habitat types were investigated to determine the influence of the IFBB technique (integrated generation of biogas and solid fuel from biomass) on the fate of organic compounds and energy yields of semi-natural grassland biomass. Concentration of organic compounds in silage and IFBB press cake (PC), mass flows within that system and methane yields of IFBB press fluids (PF) were determined. The gross energy yield of the IFBB technique was calculated in comparison to hay combustion (HC) and whole crop digestion (WCD). The IFBB treatment increased fibre and organic matter (OM) concentrations and lowered non-fibre carbohydrates and crude protein concentrations. The PF was highly digestible irrespective of habitat types, showing mean methane yields between 312.1 and 405.0 LN CH4 kg(-1) VS. Gross energy yields for the IFBB system (9.75-30.19MWh ha(-1)) were in the range of HC, outperformed WCD and were influenced by the habitat type. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

    Directory of Open Access Journals (Sweden)

    Nahuel R. Peralta

    2016-10-01

    Full Text Available A timely and accurate crop yield forecast is crucial to make better decisions on crop management, marketing, and storage by assessing ahead and implementing based on expected crop performance. The objective of this study was to investigate the potential of high-resolution satellite imagery data collected at mid-growing season for identification of within-field variability and to forecast corn yield at different sites within a field. A test was conducted on yield monitor data and RapidEye satellite imagery obtained for 22 cornfields located in five different counties (Clay, Dickinson, Rice, Saline, and Washington of Kansas (total of 457 ha. Three basic tests were conducted on the data: (1 spatial dependence on each of the yield and vegetation indices (VIs using Moran’s I test; (2 model selection for the relationship between imagery data and actual yield using ordinary least square regression (OLS and spatial econometric (SPL models; and (3 model validation for yield forecasting purposes. Spatial autocorrelation analysis (Moran’s I test for both yield and VIs (red edge NDVI = NDVIre, normalized difference vegetation index = NDVIr, SRre = red-edge simple ratio, near infrared = NIR and green-NDVI = NDVIG was tested positive and statistically significant for most of the fields (p < 0.05, except for one. Inclusion of spatial adjustment to model improved the model fit on most fields as compared to OLS models, with the spatial adjustment coefficient significant for half of the fields studied. When selected models were used for prediction to validate dataset, a striking similarity (RMSE = 0.02 was obtained between predicted and observed yield within a field. Yield maps could assist implementing more effective site-specific management tools and could be utilized as a proxy of yield monitor data. In summary, high-resolution satellite imagery data can be reasonably used to forecast yield via utilization of models that include spatial adjustment to

  13. Comparison of biomolecule desorption yields for low and high energy primary ions

    International Nuclear Information System (INIS)

    Kamensky, I.; Hakansson, P.; Sundqvist, B.; McNeal, C.J.; MacFarlane, R.

    1982-01-01

    Ion induced desorption yields of molecular ions from samples of cesium iodide, glycylglycine, ergosterol, bleomycin and a trinucleoside diphosphate have been studied using primary beams of 54 MeV 63 Cu 9+ and 3 keV 133 Cs + . Mass analysis was performed with a time-of-flight technique. Each sample was studied with the same spectrometer for both low and high energy primary ions and without opening of the vacuum chamber in between the measurements. The results show that fast heavy ions give larger yields for all samples studied and that the yield ratios for high to low energy desorption increase with the mass of the sample molecule. (orig.)

  14. Advanced, High Power, Next Scale, Wave Energy Conversion Device

    Energy Technology Data Exchange (ETDEWEB)

    Mekhiche, Mike [Principal Investigator; Dufera, Hiz [Project Manager; Montagna, Deb [Business Point of Contact

    2012-10-29

    The project conducted under DOE contract DE‐EE0002649 is defined as the Advanced, High Power, Next Scale, Wave Energy Converter. The overall project is split into a seven‐stage, gated development program. The work conducted under the DOE contract is OPT Stage Gate III work and a portion of Stage Gate IV work of the seven stage product development process. The project effort includes Full Concept Design & Prototype Assembly Testing building on our existing PowerBuoy technology to deliver a device with much increased power delivery. Scaling‐up from 150kW to 500kW power generating capacity required changes in the PowerBuoy design that addressed cost reduction and mass manufacturing by implementing a Design for Manufacturing (DFM) approach. The design changes also focused on reducing PowerBuoy Installation, Operation and Maintenance (IO&M) costs which are essential to reducing the overall cost of energy. In this design, changes to the core PowerBuoy technology were implemented to increase capability and reduce both CAPEX and OPEX costs. OPT conceptually envisaged moving from a floating structure to a seabed structure. The design change from a floating structure to seabed structure would provide the implementation of stroke‐ unlimited Power Take‐Off (PTO) which has a potential to provide significant power delivery improvement and transform the wave energy industry if proven feasible.

  15. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    International Nuclear Information System (INIS)

    Sakamoto, Yukio

    2005-01-01

    Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of these data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality factors to consider the consistency between radiation weighting factors and Q-L relationship. The effective dose conversion coefficients obtained in this work were in good agreement with those recently evaluated by using FLUKA code for photons and electrons with all energies, and neutrons and protons below 500 MeV. There were some discrepancy between two data owing to the difference of cross sections in the nuclear reaction models. The dose conversion coefficients of effective dose equivalents for high energy radiations based on Q-L relation in ICRP Publication 60 were evaluated only in this work. The previous comparison between effective dose and effective dose equivalent made it clear that the radiation weighting factors for high energy neutrons and protons were overestimated and the modification was required. (author)

  16. Turkey's regulatory plans for high enriched to low enriched conversion of TR-2 reactor core

    International Nuclear Information System (INIS)

    Guelol Oezdere, Oya

    2003-01-01

    Turkey is a developing country and has three nuclear facilities two of which are research reactors and one pilot fuel production plant. One of the two research reactors is TR-2 which is located in Cekmece site in Istanbul. TR-2 Reactor's core is composed of both high enriched and low enriched fuel and from high enriched to low enriched core conversion project will take place in year 2005. This paper presents the plans for drafting regulations on the safety analysis report updates for high enriched to low enriched core conversion of TR-2 reactor, the present regulatory structure of Turkey and licensing activities of nuclear facilities. (author)

  17. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    Directory of Open Access Journals (Sweden)

    Nathaniel B Lyman

    Full Text Available Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  18. [Characteristics of phosphorus uptake and use efficiency of rice with high yield and high phosphorus use efficiency].

    Science.gov (United States)

    Li, Li; Zhang, Xi-Zhou; Li, Tinx-Xuan; Yu, Hai-Ying; Ji, Lin; Chen, Guang-Deng

    2014-07-01

    A total of twenty seven middle maturing rice varieties as parent materials were divided into four types based on P use efficiency for grain yield in 2011 by field experiment with normal phosphorus (P) application. The rice variety with high yield and high P efficiency was identified by pot experiment with normal and low P applications, and the contribution rates of various P efficiencies to yield were investigated in 2012. There were significant genotype differences in yield and P efficiency of the test materials. GRLu17/AiTTP//Lu17_2 (QR20) was identified as a variety with high yield and high P efficiency, and its yields at the low and normal rates of P application were 1.96 and 1.92 times of that of Yuxiang B, respectively. The contribution rate of P accumulation to yield was greater than that of P grain production efficiency and P harvest index across field and pot experiments. The contribution rates of P accumulation and P grain production efficiency to yield were not significantly different under the normal P condition, whereas obvious differences were observed under the low P condition (66.5% and 26.6%). The minimal contribution to yield was P harvest index (11.8%). Under the normal P condition, the contribution rates of P accumulation to yield and P harvest index were the highest at the jointing-heading stage, which were 93.4% and 85.7%, respectively. In addition, the contribution rate of P accumulation to grain production efficiency was 41.8%. Under the low P condition, the maximal contribution rates of P accumulation to yield and grain production efficiency were observed at the tillering-jointing stage, which were 56.9% and 20.1% respectively. Furthermore, the contribution rate of P accumulation to P harvest index was 16.0%. The yield, P accumulation, and P harvest index of QR20 significantly increased under the normal P condition by 20.6%, 18.1% and 18.2% respectively compared with that in the low P condition. The rank of the contribution rates of P

  19. High-flux/high-temperature solar thermal conversion: technology development and advanced applications

    Directory of Open Access Journals (Sweden)

    Romero Manuel

    2016-01-01

    Full Text Available Solar Thermal Power Plants have generated in the last 10 years a dynamic market for renewable energy industry and a pro-active networking within R&D community worldwide. By end 2015, there are about 5 GW installed in the world, most of them still concentrated in only two countries, Spain and the US, though a rapid process of globalization is taking place in the last few years and now ambitious market deployment is starting in countries like South Africa, Chile, Saudi Arabia, India, United Arab Emirates or Morocco. Prices for electricity produced by today's plants fill the range from 12 to 16 c€/kWh and they are capital intensive with investments above 4000 €/kW, depending on the number of hours of thermal storage. The urgent need to speed up the learning curve, by moving forward to LCOE below 10 c€/kWh and the promotion of sun-to-fuel applications, is driving the R&D programmes. Both, industry and R&D community are accelerating the transformation by approaching high-flux/high-temperature technologies and promoting the integration with high-efficiency conversion systems.

  20. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of high oleic acid soybean on seed oil, protein concentration, and yield

    Science.gov (United States)

    Soybeans with high oleic acid content are desired by oil processors because of their improved oxidative stability for broader use in food, fuel and other products. However, non-GMO high-oleic soybeans have tended to have low seed yield. The objective of this study was to test non-GMO, high-oleic s...

  2. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  3. Dose conversion coefficients for high-energy photons, electrons, neutrons and protons

    CERN Document Server

    Sakamoto, Y; Sato, O; Tanaka, S I; Tsuda, S; Yamaguchi, Y; Yoshizawa, N

    2003-01-01

    In the International Commission on Radiological Protection (ICRP) 1990 Recommendations, radiation weighting factors were introduced in the place of quality factors, the tissue weighting factors were revised, and effective doses and equivalent doses of each tissues and organs were defined as the protection quantities. Dose conversion coefficients for photons, electrons and neutrons based on new ICRP recommendations were cited in the ICRP Publication 74, but the energy ranges of theses data were limited and there are no data for high energy radiations produced in accelerator facilities. For the purpose of designing the high intensity proton accelerator facilities at JAERI, the dose evaluation code system of high energy radiations based on the HERMES code was developed and the dose conversion coefficients of effective dose were evaluated for photons, neutrons and protons up to 10 GeV, and electrons up to 100 GeV. The dose conversion coefficients of effective dose equivalent were also evaluated using quality fact...

  4. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    Science.gov (United States)

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bio-energy Alliance High-Tonnage Bio-energy Crop Production and Conversion into Conventional Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Capareda, Sergio [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; El-Halwagi, Mahmoud [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Hall, Kenneth R. [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Holtzapple, Mark [Texas A & M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Searcy, Royce [Texas A & M Univ., College Station, TX (United States). Dept. of Biological & Agricultural Engineering; Thompson, Wayne H. [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Baltensperger, David [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Myatt, Robert [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Blumenthal, Jurg [Texas A & M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences

    2012-11-30

    Maintaining a predictable and sustainable supply of feedstock for bioenergy conversion is a major goal to facilitate the efficient transition to cellulosic biofuels. Our work provides insight into the complex interactions among agronomic, edaphic, and climatic factors that affect the sustainability of bioenergy crop yields. Our results provide science-based agronomic response measures that document how to better manage bioenergy sorghum production from planting to harvest. We show that harvest aids provide no significant benefit as a means to decrease harvest moisture or improve bioenergy yields. Our efforts to identify optimal seeding rates under varied edaphic and climatological conditions reinforce previous findings that sorghum is a resilient plant that can efficiently adapt to changing population pressures by decreasing or increasing the numbers of additional shoots or tillers – where optimal seeding rates for high biomass photoperiod sensitive sorghum is 60,000 to 70,000 seeds per acre and 100,000 to 120,000 seeds per acre for sweet varieties. Our varietal adaptability trials revealed that high biomass photoperiod sensitive energy sorghum consistently outperforms conventional photoperiod insensitive sweet sorghum and high biomass forage sorghum as the preferred bioenergy sorghum type, with combined theoretical yields of both cellulosic and fermentable water-soluble sugars producing an average yield of 1,035 gallons of EtOH per acre. Our nitrogen trials reveal that sweet sorghums produce ample amounts of water-soluble sugars with minimal increases in nitrogen inputs, and that excess nitrogen can affect minor increases in biomass yields and cellulosic sugars but decrease bioenergy quality by decreasing water-soluble sugar concentrations and increasing ash content, specifically when plant tissue nitrogen concentrations exceed 0.6 %, dry weight basis. Finally, through our growth and re-growth trials, we show that single-cut high biomass sorghum bioenergy yields

  6. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  7. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws...

  8. Development of high yielding Soybean variety MACS 450 by using Kalitur mutant-MACS 111

    International Nuclear Information System (INIS)

    Raut, V.M.; Taware, S.P.; Halvankar, G.B.; Varghese, Philips

    2000-01-01

    A mutant variety -MACS 111 developed by treating seeds of indigenous black seeded 'Kalitur' variety with gamma irradiation + Ethyleneimine was used in development of high yielding varieties. MACS 450 a promising high yielding variety was selected from Bragg x MACS 111 cross by pedigree selection method. This variety gave the highest average seed yield in station trials (3422 kg/ha), coordinated breeding trials (2361 kg/ha) and varieties cum plant population trial (2215 kg/ha). On the basis of its performance in these trials it was released for commercial cultivation in Southern India. On all India basis, it also recorded the highest seed yield of 4076 kg/ha and 3582 kg/ha in Front line Demonstrations conducted on the farmers' field during 1998 and 1999 respectively. (author)

  9. All-optical ultra-high-speed OFDM to Nyquist-WDM conversion

    DEFF Research Database (Denmark)

    Guan, Pengyu; Røge, Kasper Meldgaard; Mulvad, Hans Christian Hansen

    2015-01-01

    We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER <10−9 performance for all channels.......We propose an all-optical ultra-high-speed OFDM to Nyquist-WDM conversion scheme based on complete OFT. An 8-subcarrier 640 Gbit/s DPSK OFDM super-channel is converted to eight 80-Gbit/s Nyquist-WDM channels with BER

  10. Conversion of fracture toughness testing values from small scale three point bending test specimens to small scale yielding state (SSY) by elastic-plastic stress analysis

    International Nuclear Information System (INIS)

    Ikonen, K.

    1993-07-01

    The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.)

  11. HIGH YIELD GENETICALLY MODIFIED WHEAT IN GERMANY: SOCIO ECONOMIC ASSESSMENT OF ITS POTENTIAL

    OpenAIRE

    Wree, Philipp; Sauer, Johannes

    2015-01-01

    High Yield Genetically Modified Wheat (HOSUT) HOSUT lines are an innovation in wheat breeding based on biotechnology with an incremental yield potential of ca. 28% compared to conventional wheat varieties. We apply the real option concept of Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) to do an ex-ante assessment of the socioeconomic potential of HOSUT lines for Germany. We analyze the cost and benefits to farmer and society within two scenarios. Our results of our scenar...

  12. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Arthanari, Haribabu; Shimada, Ichio; Wagner, Gerhard

    2015-01-01

    Detection of 15 N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15 N nuclei (TROSY 15 N H ) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow 15 N transverse relaxation and compensating for the inherently low 15 N sensitivity. The 15 N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY 15 N H component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a 15 N-detected 2D 1 H– 15 N TROSY-HSQC ( 15 N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ c  ∼ 40 ns). Unlike for 1 H detected TROSY, deuteration is not mandatory to benefit 15 N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording 15 N TROSY of proteins expressed in H 2 O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D 2 O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of 15 N H -detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz

  13. [Construction and high-density fermentation of alkaline pectate lyase high-yield yeast].

    Science.gov (United States)

    Wang, Xiaowen; Xiang, La; Xu, Ting; Lu, Zhenghui; Zhang, Guimin

    2017-12-25

    Pectate lyase is widely applied in ramie degumming and fabric bioscouring in the textile industry. Compared to conventional processes that involve high alkaline and high temperature treatment, enzyme based treatments have significant advantages in fibers protectiveness, improved efficiency of refining, reduced energy consumption and pollution. Hence, it would be highly desirable to construct high-yield alkaline pectate lyase engineered strains and reduce the pectate lyase production cost. In the previous study, pectate lyase gene pel from Bacillus subtilis168 was expressed in Pichia pastoris GS115 after codon usage optimization based on the vector pHBM905A. To improve the expression level, the vector pHBM905BDM with optimized promoter and signal peptide was used to express the optimized gene pels in GS115. The transformant had increased activity from 68 U/mL to 100 U/mL with the improvement in the transcription level by 27% measured by qPCR. The transformants were further screened on pectin plates, where higher halo forming strains were picked for shake-flask fermentation and strain GS115-pHBM905BDM-pels4 showed the highest activity of 536 U/mL. Then plasmid pPIC9K-pels was constructed and electroporated into the GS115-pHBM905BDM-pels4 cells. Subsequently, high-copy transformant was screened by using the medium containing antibiotics G418, strain GS115-pHBM905BDMpPIC9K- pels1 was identified with increased activity of 770 U/mL and the copy number of pels was 7 confirmed by qPCR. Finally, the activity of pectate lyase produced by GS115-pHBM905BDM-pPIC9K-pels1reached to 2 271 U/mL in a 5-L fermentor. The activity of pectate lyase in our study reached the highest level of expression in P. pastoris, showing good application potential in the textile industry.

  14. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  15. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.

    Science.gov (United States)

    Graf, Nadja; Altenbuchner, Josef

    2014-01-01

    Vanillin is one of the most important flavoring agents used today. That is why many efforts have been made on biotechnological production from natural abundant substrates. In this work, the nonpathogenic Pseudomonas putida strain KT2440 was genetically optimized to convert ferulic acid to vanillin. Deletion of the vanillin dehydrogenase gene (vdh) was not sufficient to prevent vanillin degradation. Additional inactivation of a molybdate transporter, identified by transposon mutagenesis, led to a strain incapable to grow on vanillin as sole carbon source. The bioconversion was optimized by enhanced chromosomal expression of the structural genes for feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase/aldolase (ech) by introduction of the strong tac promoter system. Further genetic engineering led to high initial conversion rates and molar vanillin yields up to 86% within just 3 h accompanied with very low by-product levels. To our knowledge, this represents the highest productivity and molar vanillin yield gained with a Pseudomonas strain so far. Together with its high tolerance for ferulic acid, the developed, plasmid-free P. putida strain represents a promising candidate for the biotechnological production of vanillin.

  16. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    Parawira, W.; Read, J.S.; Mattiasson, B.; Bjoernsson, L.

    2008-01-01

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-stage process. The results of this pilot-scale study show that the two-stage anaerobic digestion system is suitable for effective conversion of semi-solid agricultural residues as potato waste and sugar beet leaves

  17. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    Science.gov (United States)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  18. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-07-17

    Jul 17, 2012 ... Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in.

  19. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in this study. Based on the ...

  20. Irradiation Tests Supporting LEU Conversion of Very High Power Research Reactors in the US

    Energy Technology Data Exchange (ETDEWEB)

    Woolstenhulme, N. E.; Cole, J. I.; Glagolenko, I.; Holdaway, K. K.; Housley, G. K.; Rabin, B. H.

    2016-10-01

    The US fuel development team is developing a high density uranium-molybdenum alloy monolithic fuel to enable conversion of five high-power research reactors. Previous irradiation tests have demonstrated promising behavior for this fuel design. A series of future irradiation tests will enable selection of final fuel fabrication process and provide data to qualify the fuel at moderately-high power conditions for use in three of these five reactors. The remaining two reactors, namely the Advanced Test Reactor and High Flux Isotope Reactor, require additional irradiation tests to develop and demonstrate the fuel’s performance with even higher power conditions, complex design features, and other unique conditions. This paper reviews the program’s current irradiation testing plans for these moderately-high irradiation conditions and presents conceptual testing strategies to illustrate how subsequent irradiation tests will build upon this initial data package to enable conversion of these two very-high power research reactors.

  1. Sputtering yields of carbon based materials under high particle flux with low energy

    Science.gov (United States)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  2. Sputtering yields of carbon based materials under high particle flux with low energy

    International Nuclear Information System (INIS)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-01-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 similar 7x10 20 /m 2 s at 50 similar 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 similar 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam. ((orig.))

  3. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes.

    Science.gov (United States)

    Lin, Liangxu; Zhang, Shaowei

    2012-10-21

    We have developed an effective method to exfoliate and disintegrate multi-walled carbon nanotubes and graphite flakes. With this technique, high yield production of luminescent graphene quantum dots with high quantum yield and low oxidization can be achieved.

  4. Reduced use of allogeneic platelets through high-yield perioperative autologous plateletpheresis and reinfusion.

    Science.gov (United States)

    Alberts, Melissa; Bandarenko, Nicholas; Gaca, Jeffrey; Lockhart, Evelyn; Milano, Carmelo; Alexander, Stanlin; Linder, Dean; Lombard, Frederick W; Welsby, Ian J

    2014-05-01

    Intraoperative autologous platelet (PLT) collection as part of a multimodal blood conservation program carries a Class IIa recommendation from the Societies of Thoracic Surgeons and Cardiovascular Anesthesiologists, but achieving a suitable PLT yield limits its application. A novel, autologous, intraoperative, high-yield plateletpheresis collection program was established and retrospectively analyzed to identify potential improvements over previously reported plateletpheresis protocols. Targeting complex cardiothoracic surgery patients without recent anti-PLT agents, thrombocytopenia, or severe anemia, the program aimed to achieve a PLT yield of at least one standard apheresis unit (3.0 × 10(11) ) within 60 to 90 minutes and using an automated plateletpheresis device (Trima, Terumo BCT). Anesthetized and invasively monitored patients underwent plateletpheresis via a large-bore, indwelling central line placed for the surgery. Collection-related data for quality control purposes and subsequent PLT transfusion requirements were analyzed and reported. Forty-two patients donated autologous PLTs between 2011 and 2012. PLT yield was 4.5 (3.9-5.0) × 10(11) , which significantly exceeds previously reported yields, and procedure duration was 53.2 (48.4-57.9) minutes. As anticipated, postcollection PLT count decreased from 268 (242-293) × 10(9) to 182 (163-201) × 10(9) /L; hypocalcemia was minimized by infusion of 1 g of CaCl2 . Autologous PLT yield was inversely correlated with allogeneic PLT use, and avoidance of allogeneic PLT transfusion was increased when the autologous yield was the equivalent of 2 or more apheresis units. High-yield, intraoperative autologous PLT collection is achievable using an automated plateletpheresis device. Initial experience shows a reduction in reliance on allogeneic PLTs for complex cardiothoracic surgery. © 2013 American Association of Blood Banks.

  5. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

    Science.gov (United States)

    Kay, Jennifer E; Jewett, Michael C

    2015-11-01

    Cell-free metabolic engineering (CFME) is emerging as a powerful approach for the production of target molecules and pathway debugging. Unfortunately, high cofactor costs, limited cofactor and energy regeneration, and low volumetric productivities hamper the widespread use and practical implementation of CFME technology. To address these challenges, we have developed a cell-free system that harnesses ensembles of catalytic proteins prepared from crude lysates, or extracts, of cells to fuel highly active heterologous metabolic conversions. As a model pathway, we selected conversion of glucose to 2,3-butanediol (2,3-BD), a medium level commodity chemical with many industrial applications. Specifically, we engineered a single strain of Escherichia coli to express three pathway enzymes necessary to make meso-2,3-BD (m2,3-BD). We then demonstrated that lysates from this strain, with addition of glucose and catalytic amounts of cofactors NAD+ and ATP, can produce m2,3-BD. Endogenous glycolytic enzymes convert glucose to pyruvate, the starting intermediate for m2,3-BD synthesis. Strikingly, with no strain optimization, we observed a maximal synthesis rate of m2,3-BD of 11.3 ± 0.1 g/L/h with a theoretical yield of 71% (0.36 g m2,3-BD/g glucose) in batch reactions. Titers reached 82 ± 8 g/L m2,3-BD in a 30 h fed-batch reaction. Our results highlight the ability for high-level co-factor regeneration in cell-free lysates. Further, they suggest exciting opportunities to use lysate-based systems to rapidly prototype metabolic pathways and carry out molecular transformations when bioconversion yields (g product/L), productivities (g product/L/h), or cellular toxicity limit commercial feasibility of whole-cell fermentation. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Solutions for ultra-high speed optical wavelength conversion and clock recovery

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2006-01-01

    This paper reports on our recent advances in ultra-fast optical communications relying on ultra-short pulses densely stacked in ultra-high bit rate serial data signals at a single wavelength. The paper describes details in solutions for the network functionalities of wavelength conversion and clock...... recovery at bit rates up to 320 Gb/s...

  7. Restorative Justice Conferencing, Oral Language Competence, and Young Offenders: Are These High-Risk Conversations?

    Science.gov (United States)

    Snow, Pamela

    2013-01-01

    This article is concerned with the oral language demands (both talking and listening) associated with restorative justice conferencing--an inherently highly verbal and conversational process. Many vulnerable young people (e.g., those in the youth justice system) have significant, yet unidentified language impairments, and these could compromise…

  8. Ultra-high-speed wavelength conversion in a silicon photonic chip

    DEFF Research Database (Denmark)

    Hu, Hao; Ji, Hua; Galili, Michael

    2011-01-01

    We have successfully demonstrated all-optical wavelength conversion of a 640-Gbit/s line-rate return-to-zero differential phase-shift keying (RZ-DPSK) signal based on low-power four wave mixing (FWM) in a silicon photonic chip with a switching energy of only ~110 fJ/bit. The waveguide dispersion...... of the silicon nanowire is nano-engineered to optimize phase matching for FWM and the switching power used for the signal processing is low enough to reduce nonlinear absorption from twophoton- absorption (TPA). These results demonstrate that high-speed wavelength conversion is achievable in silicon chips...

  9. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  10. High-Yield Synthesis of Zinc Oxide Nanoparticles from Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    S. López-Cuenca

    2011-01-01

    Full Text Available The high-yield synthesis of zinc oxide (ZnO primary nanoparticles with high purity and with diameters between 6 and 22 nm using bicontinuous microemulsions is reported in this work. The ZnO nanoparticles were made by hydrolysis of Zn(NO32 with NaOH aqueous solution and precipitation, followed by calcination of the precipitate. Higher yields and productivities of ZnO nanoparticles were obtained compared to values produced with w/o micremulsions reported in the literature. Particles were characterized by transmission electronic microscopy (TEM, X-ray diffraction, and atomic absorption spectroscopy.

  11. High-ratio voltage conversion in CMOS for efficient mains-connected standby

    CERN Document Server

    Meyvaert, Hans

    2016-01-01

    This book describes synergetic innovation opportunities offered by combining the field of power conversion with the field of integrated circuit (IC) design. The authors demonstrate how integrating circuits enables increased operation frequency, which can be exploited in power converters to reduce drastically the size of the discrete passive components. The authors introduce multiple power converter circuits, which are very compact as result of their high level of integration. First, the limits of high-power-density low-voltage monolithic switched-capacitor DC-DC conversion are investigated to enable on-chip power granularization. AC-DC conversion from the mains to a low voltage DC is discussed, enabling an efficient and compact, lower-power auxiliary power supply to take over the power delivery during the standby mode of mains-connected appliances, allowing the main power converter of these devices to be shut down fully. Discusses high-power-density monolithic switched-capacitor DC-DC conversion in bulk CMOS,...

  12. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, H. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Rashidi, A.M., E-mail: Rashidiam@ripi.ir [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of); Rastegari, S.; Mirdamadi, S. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Alaei, M. [Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Blvd. Azadi Sport Complex, P.O. Box 14665-1998, Tehran (Iran, Islamic Republic of)

    2011-05-15

    Research highlights: {yields} Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. {yields} Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. {yields} Optimum growth condition is CO/H{sub 2} = 1/1, 100 cm{sup 3}/min, at 620 {sup o}C under long term repetitive thermal cycling. {yields} Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H{sub 2} = 1/1, total gas flow rate 100 cm{sup 3}/min, at 620 {sup o}C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  13. Precision measurements of high-energy conversion electron lines and determination of neutron binding energies

    International Nuclear Information System (INIS)

    Braumandl, F.

    1979-01-01

    The paper first discusses the energy accuracy of the BILL conversion electron spectrometer at the Grenoble high flux reactor. With an improved temperature stabilisation of the magnets, an energy accuracy of ΔE/E -5 can be reached. After this, highly exact measurements of high-energy conversion electron lines of the 200 Hg, 114 Cd, 165 Dy, 168 Er, 239 U nuclei and the 13 C, 28 Al 3 H and 92 Zr photoelectron lines were carried out. Energy calibration of the spectrometer was carried out in the 1.5 MeV to 6.5 MeV range with intensive high-energy transitions of the 200 Hg nucleus. Systematic calibration errors could be investigated by means of combinations between the calibration lines. A calibration for absolute energies was obtained by comparing low-energy gamma transitions of 200 Hg with the 411.8 keV gold standard. (orig.) [de

  14. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    Science.gov (United States)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  15. Climate Change Impacts on Sediment Yield in Headwaters of a High-latitude Region in China

    Science.gov (United States)

    Zhou, Y.; Xu, Y. J.; Wang, J., , Dr; Weihua, X.; Huang, Y.

    2017-12-01

    Climate change is expected to have strongest effects in higher latitude regions. Despite intensive research on possible hydrological responses to global warming in these regions, our knowledge of climate change on surface erosion and sediment yield in high-latitude headwaters is limited. In this study, we used the Soil and Water Assessment Tool (SWAT) to predict future runoff and sediment yield from the headwaters of a high-latitude river basin in China's far northeast. The SWAT model was first calibrated with historical discharge records and the model parameterization achieved satisfactory validation. The calibrated model was then applied to two greenhouse gas concentration trajectories, RCP4.5 and RCP8.5, for the period from 2020 to 2050 to estimate future runoff. Sediment yields for this period were predicted using a discharge-sediment load rating curve developed from field measurements in the past nine years. Our preliminary results show an increasing trend of sediment yield under both climate change scenarios, and that the increase is more pronounced in the summer and autumn months. Changes in precipitation and temperature seem to exert variable impacts on runoff and sediment yield at interannual and seasonal scales in these headwaters. These findings imply that the current river basin management in the region needs to be reviewed and improved in order to be effective under a changing climate.

  16. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  17. High liquid fuel yielding biofuel processes and a roadmap for the future transportation

    Science.gov (United States)

    Singh, Navneet R.

    In a fossil-fuel deprived world when crude oil will be scarce and transportation need cannot be met with electricity and transportation liquid fuel must be produced, biomass derived liquid fuels can be a natural replacement. However, the carbon efficiency of the currently known biomass to liquid fuel conversion processes ranges from 35-40%, yielding 90 ethanol gallon equivalents (ege) per ton of biomass. This coupled with the fact that the efficiency at which solar energy is captured by biomass (hydrodeoxygenation is proposed which can achieve liquid fuel yield of 215 ege/ton consuming 0.11 kg hydrogen per liter of oil. Due to the lower hydrogen consumption of the H2Bioil process, synergistically integrated transition pathways are feasible where hot syngas derived from coal gasification (H2Bioil-C) or a natural gas reformer (H 2Bioil-NG) is used to supply the hydrogen and process heat for the biomass fast-hydropyrolysis/hydrodeoxygenation. Another off-shoot of the H2Bioil process is the H2Bioil-B process, where hydrogen required for the hydropyrolysis is obtained from gasification of a fraction of the biomass. H2Bioil-B achieves the highest liquid fuel yield (126-146 ege/ton of biomass) reported in the literature for any self-contained conversion of biomass to biofuel. Finally, an integration of the H2Bioil process with the H2CAR process is suggested which can achieve 100% carbon efficiency (330 ege/ton of biomass) at the expense of 0.24 kg hydrogen/liter of oil. A sun-to-fuel efficiency analysis shows that extracting CO2 from air and converting it to liquid fuel is at least two times more efficient than growing dedicated fuel crops and converting them to liquid fuel even for the highest biomass growth rates feasible by algae. This implies that liquid fuel should preferably be produced from sustainably available waste (SAW) biomass first and if the SAW biomass is unable to meet the demand for liquid fuel, then, CO2 should be extracted from air and converted to

  18. Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

    Directory of Open Access Journals (Sweden)

    Guan-Nan Tan

    2016-01-01

    Full Text Available A novel Vivaldi rectenna operated at 35 GHz with high millimeter wave to direct current (MMW-to-DC conversion efficiency is presented and the arrays are investigated. The measured conversion efficiency is 51.6% at 35 GHz and the efficiency higher than 30% is from 33.2 GHz to 36.6 GHz when the input MMW power is 79.4 mW. The receiving Vivaldi antenna loaded with metamaterial units has a high gain of 10.4 dBi at 35 GHz. A SIW- (substrate integrated waveguide- to-microstrip transition is designed not only to integrate the antenna with the rectifying circuit directly but also to provide the DC bypass for the rectifying circuit. When the power density is 8.7 mW/cm2, the received MMW power of the antenna is 5.6 mW, and the maximum conversion efficiency of the rectenna element is 31.5%. The output DC voltage of the element is nearly the same as that of the parallel array and is about half of the series array. The DC power obtained by the 1 × 2 rectenna arrays is about two times as much as that of the element. The conversion efficiencies of the arrays are very close to that of the element. Large scale arrays could be expended for collecting more DC power.

  19. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    NARCIS (Netherlands)

    Logan, B.E.; Call, D.; Cheng, S.; Hamelers, H.V.M.; Sleutels, T.H.J.A.; Jeremiasse, A.W.; Rozendal, R.A.

    2008-01-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few

  20. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    In order to find resistant varieties and study the reaction of some newly released high yielding varieties to different levels of salinity of irrigation water an experiment was conducted at the Rice Research Institute of Iran-Amol station in a greenhouse. Eight varieties, cultivated in pots, were tested with three levels of salinity (2, ...

  1. CULTIVAR RELEASE - FAEM Carlasul: new white oat cultivar with high grain yield

    Directory of Open Access Journals (Sweden)

    Antônio Costa de Oliveira

    2012-01-01

    Full Text Available The white oat cultivar FAEM Carlasul was developed at the Plant Genomics and Breeding Center, Faculty of Agronomy Eliseu Maciel, Federal University of Pelotas, as a result of the cross between UFRGS 10 and 90SAT-28 (Coronado2/Cortez3/Pendek/ME 1563. It is characterized by high yield and grain quality.

  2. Induced high yielding mutant in green gram (Vigna radiata (L.) Wilczek)

    International Nuclear Information System (INIS)

    Pulivarthi, H.R.; Mary, T.N.

    1987-01-01

    Green gram (mungbean) plays a significant role in meeting the protein requirements in India, with its predominantly vegetarian population. Therefore, an attempt was made to induce desirable mutants. Dry seed of cultivar 'Pusa 105' were irradiated with gamma rays ranging from 10 to 50 krad. A high yielding mutant (Hy I) identified in the M 4 generation from 40 krad dose, has shown significant increases in the number of pods/plants, number of branches/plant, and yield/plant. Further work is in progress. Comparison of the mutant HyI with the parent cultivar Pusa 105 is given

  3. Screening on the high yield validamycin producing strain by implantation with N+ and Ti+ ion source

    International Nuclear Information System (INIS)

    Yu Long; An Xiao

    2007-01-01

    In order to compared the mutagenic effects of the validamycin producing the strain (Streptomyces hygroscopicus var. Jingganggensis Yen.) was implanted with two kinds of ion sources. The results showed that when two kinds of ion sources implanted into the strain by turns, more positive mutants and higher yield would be acquired. Using this method, a high-yielding strain B1-3 was obtained, which produce the titer of validamycin A of 21514, and was 54.4% higher than that of the original strain. (authors)

  4. Target design for high fusion yield with the double Z-pinch-driven hohlraum

    International Nuclear Information System (INIS)

    Vesey, R. A.; Herrmann, M. C.; Lemke, R. W.; Desjarlais, M. P.; Cuneo, M. E.; Stygar, W. A.; Bennett, G. R.; Campbell, R. B.; Christenson, P. J.; Mehlhorn, T. A.; Porter, J. L.; Slutz, S. A.

    2007-01-01

    A key demonstration on the path to inertial fusion energy is the achievement of high fusion yield (hundreds of MJ) and high target gain. Toward this goal, an indirect-drive high-yield inertial confinement fusion (ICF) target involving two Z-pinch x-ray sources heating a central secondary hohlraum is described by Hammer et al. [Phys. Plasmas 6, 2129 (1999)]. In subsequent research at Sandia National Laboratories, theoretical/computational models have been developed and an extensive series of validation experiments have been performed to study hohlraum energetics, capsule coupling, and capsule implosion symmetry for this system. These models have been used to design a high-yield Z-pinch-driven ICF target that incorporates the latest experience in capsule design, hohlraum symmetry control, and x-ray production by Z pinches. An x-ray energy output of 9 MJ per pinch, suitably pulse-shaped, is sufficient for this concept to drive 0.3-0.5 GJ capsules. For the first time, integrated two-dimensional (2D) hohlraum/capsule radiation-hydrodynamics simulations have demonstrated adequate hohlraum coupling, time-dependent radiation symmetry control, and the successful implosion, ignition, and burn of a high-yield capsule in the double Z-pinch hohlraum. An important new feature of this target design is mode-selective symmetry control: the use of burn-through shields offset from the capsule that selectively tune certain low-order asymmetry modes (P 2 ,P 4 ) without significantly perturbing higher-order modes and without a significant energy penalty. This paper will describe the capsule and hohlraum design that have produced 0.4-0.5 GJ yields in 2D simulations, provide a preliminary estimate of the Z-pinch load and accelerator requirements necessary to drive the system, and suggest future directions for target design work

  5. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  6. Factors affecting the optimal performance of a high-yield pulping operation

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Technology Centre, Pointe-Claire, PQ (Canada); Paris, J [Ecole Polytechnique, Montreal, PQ (Canada); Valada, J L [Quebec Univ., Trois-Rivieres, PQ (Canada)

    1995-06-01

    Strategies for operating a chemical-mechanical pulp mill were investigated from data based on process models from some one hundred pilot scale pulping runs. Optimal values for 55 process and pulp quality variables have been calculated by applying a genetic algorithm search to a fuzzy model of the overall system. Best pulp quality was achieved and maintained when the chemical pretreatment was conducted at moderately low temperatures using a high SO{sub 2} concentration, which produced high sulphonation and high yield at the same time. By characterizing the quality of the pulp at the fibre level, optimization results were said to be more easily transferable to other high yield pulping systems. 19 refs., 6 tabs.

  7. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    Directory of Open Access Journals (Sweden)

    Huey Fang Teh

    Full Text Available To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes.

  8. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  9. Maximization of DRAM yield by control of surface charge and particle addition during high dose implantation

    Science.gov (United States)

    Horvath, J.; Moffatt, S.

    1991-04-01

    Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.

  10. High-Yield Production of Levulinic Acid from Pretreated Cow Dung in Dilute Acid Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Jialei Su

    2017-02-01

    Full Text Available Agricultural waste cow dung was used as feedstock for the production of a high value–added chemical levulinic acid (LA in dilute acid aqueous solutions. A high LA yield of 338.9 g/kg was obtained from the pretreated cow dung, which was much higher than that obtained from the crude cow dung (135 g/kg, mainly attributed to the breakage of the lignin fraction in the lignocellulose structure of the cow dung by potassium hydroxide (KOH pretreatment, and thus enhanced the accessibility of cow dung to the acid sites in the catalytic reaction. Meanwhile, another value-added chemical formic acid could be obtained with a yield of ca. 160 g/kg in the process, implying a total production of ca. 500 g/kg yield for LA and formic acid from the pretreated cow dung with the proposed process. The developed process was shown to be tolerant to high initial substrate loading with a satisfied LA yield. This work provides a promising strategy for the value-increment utilization of liglocellulosic agricultural residues.

  11. The studies on radiation mutation breeding of Bacillus subtilis with high-yield of amylase

    International Nuclear Information System (INIS)

    Chen Xiaoming; Zhang Liang; Zhang Jianguo; Zhou Liwei

    2008-01-01

    The mutagenesis effects on the yield of amylase have been investigated with Bacillus subtilis irradiated by γ-rays and fast neutrons in once or twice irradiation at various dose rates and total irradiation doses. Several parameters such as flat transparent circle, colony diameter, transparent circle diameter and the ratio of flat transparent circle to colony diameter (HC) are used to estimate the radiation mutation of Bacillus subtilis. A series of results has been obtained as (1) Irradiation both with neutrons and γ-rays could make Bacillus subtilis mutationed to produce high-yield amylase effectively. (2) The average colony diameter of Bacillus subtilis irradiated by γ-rays or fast neutrons is smaller than that of control group at various total doses and dose rates. And their colony diameter becomes smaller slightly with the increment of γ-rays irradiation dose. (3) After the second neutrons irradiation, the values of average colony diameter, the biggest colony diameter, average transparent circle diameter and the biggest transparent circle diameter of all mutationed Bacillus subtilis exceed that of original strains greatly. (4) Three kinds of mutationed Bacillus subtilis strains with high-yield amylase have been screened out, in which two strains can produce high-yield amylase steadily after 15 times breeding. Their biggest colony diameter, the biggest transparent circle diameter and the biggest HC value are up to 8.32 mm, 22.38 mm and 5.39 respectively. (authors)

  12. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature

    International Nuclear Information System (INIS)

    Hidalgo-Manrique, P.; Herrera-Solaz, V.; Segurado, J.; Llorca, J.; Gálvez, F.; Ruano, O.A.; Yi, S.B.; Pérez-Prado, M.T.

    2015-01-01

    The mechanical behaviour in tension and compression of an extruded Mg–1 wt.% Mn–1 wt.% Nd (MN11) alloy was studied along the extrusion direction in the temperature range −175 °C to 300 °C at both quasi-static and dynamic strain rates. Microstructural analysis revealed that the as-extruded bar presents a recrystallized microstructure and a weak texture that remain stable in the whole temperature range. A remarkable reversed yield stress asymmetry was observed above 150 °C, with the compressive yield stress being significantly higher than the tensile yield stress. The origin of this anomalous reversed yield stress asymmetry, which to date remains unknown, was investigated through the analysis of the macro and microtexture development during deformation, as well as by means of crystal plasticity finite element simulations of a representative volume element of the polycrystal. The critical resolved shear stresses of slip and twining for simulated single crystals were obtained as a function of the temperature by means of an inverse optimisation strategy. Experimental and simulation results suggest that the reversed yield asymmetry may be primarily attributed to the non-Schmid behaviour of pyramidal 〈c + a〉 slip, which is the dominant deformation mechanism at high temperatures. It is proposed, furthermore, that the asymmetry is enhanced at quasi-static strain rates by the stronger interaction of 〈c + a〉 dislocations with the diffusing solute atoms and particles in compression than in tension

  13. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C.

    Science.gov (United States)

    Navarro, Pilar; Savoie, Jean-Michel

    2015-01-01

    To cultivate the button mushroom Agaricus bisporus in warm countries or during summer in temperate countries, while saving energy, is a challenge that could be addressed by using the biological diversity of the species. The objective was to evaluate the yield potential of eight wild strains previously selected in small scale experiments for their ability to produce mature fruiting bodies at 25°C and above. Culture units of 8 kg of compost were used. The yield expressed as weight or number per surface unit and earliness of fruiting were recorded during cultivation in climatic rooms at 17, 25 or 30°C. Only strains of A. bisporus var. burnettii were able to fruit at 30°C. At 25°C they produced the highest yields (27 kg m(-2)) and had best earliness. The yields at 25°C for the strains of A. bisporus var. bisporus ranged from 12 to 16 kg m(-2). The yield ratios 25°C/17°C ranged from 0.8 to 1.2. The variety burnettii originated in the Sonoran Desert in California showed adaptation for quickly producing fruiting bodies at high temperature when humidity conditions were favorable. Strains of the variety bisporus showed interesting potentials for their ability to produce mature fruiting bodies at higher temperature than present cultivars and might be used in breeding programs. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  14. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.

  15. Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins

    Science.gov (United States)

    Wang, Shujuan; Xing, Xiaolong; Li, Jian; Jing, Xinli

    2018-01-01

    The objective of the current work is to synthesize novel boron-containing polymers with excellent thermal resistance, and reveal the structure and the reason for the high char yield. Thus, poly (dihydroxybiphenyl borate) (PDDB) with a more rigid molecular chain, was successfully synthesized using 4,4‧-dihydroxybiphenyl and boric acid. Structural characterizations of the prepared PDDB were performed via NMR, FTIR, XPS, and XRD analyses. The results reveal that PDDB consists of aromatic, Phsbnd Osbnd B and Bsbnd Osbnd B structures as well as a small number of boron hydroxyl and phenolic hydroxyl groups. PDDB shows good solubility in strong polar solvents, which is of great importance for the modification of thermosetting resins. TGA combined with DSC were employed to evaluate the thermal properties of PDDB, and increases in the glass transition temperature (Tg) and char yield were observed with increased boron content. Tg and char yield of PDDB (800 °C, nitrogen atmosphere) reached up to 219 °C and 66.5%, respectively. PDDB was extensively characterized during pyrolysis to reveal the high char yield of PDDB. As briefly discussed, the boron oxide and boron carbide that formed during pyrolysis play a crucial role in the high char yield of PDDB, which reduces the release of volatile carbon dioxide and carbon. This research suggests that PDDB has great potential as a novel modified agent for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  16. Matter effects on the flavor conversions of solar neutrinos and high-energy astrophysical neutrinos

    Science.gov (United States)

    Huang, Guo-yuan; Liu, Jun-Hao; Zhou, Shun

    2018-06-01

    Can we observe the solar eclipses in the neutrino light? In principle, this is possible by identifying the lunar matter effects on the flavor conversions of solar neutrinos when they traverse the Moon before reaching the detectors at the Earth. Unfortunately, we show that the lunar matter effects on the survival probability of solar 8B neutrinos are suppressed by an additional factor of 1.2%, compared to the day-night asymmetry. However, we point out that the matter effects on the flavor conversions of high-energy astrophysical neutrinos, when they propagate through the Sun, can be significant. Though the flavor composition of high-energy neutrinos can be remarkably modified, it is quite challenging to observe such effects even in the next-generation of neutrino telescopes.

  17. Conversion of wastelands into state ownership for the needs of high-rise construction

    Science.gov (United States)

    Ganebnykh, Elena

    2018-03-01

    High-rise construction in big cities faces the problem of land shortage in downtown areas. Audit of economic complexes showed a large volume of wastelands. The conversion of wastelands into state and municipal ownership helps in part to solve the problem of the lack of space for high-rise construction in the urban area in the format of infill construction. The article investigates the problem of the conversion of wastelands into state and municipal ownership. The research revealed no clear algorithm for converting wastelands into state and municipal ownership. To form a unified system for identifying such plots, a universal algorithm was developed to identify and convert ownerless immovable property into state or municipal ownership.

  18. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    Energy Technology Data Exchange (ETDEWEB)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  19. Critical evaluation of high-temperature gas-cooled reactors applicable to coal conversion

    International Nuclear Information System (INIS)

    Spiewak, I.; Jones, J.E. Jr.; Rittenhouse, P.L.; DeStefano, J.R.; Delene, J.G.

    1975-12-01

    A critical review is presented of the technology and costs of very high-temperature gas-cooled reactors (VHTRs) applicable to nuclear coal conversion. Coal conversion processes suitable for coupling to reactors are described. Vendor concepts of the VHTR are summarized. The materials requirements as a function of process temperature in the range 1400 to 2000 0 F are analyzed. Components, environmental and safety factors, economics and nuclear fuel cycles are reviewed. It is concluded that process heat supply in the range 1400 to 1500 0 F could be developed with a high degree of assurance. Process heat at 1600 0 F would require considerably more materials development. While temperatures up to 2000 0 F appear to be attainable, considerably more research and risk were involved. A demonstration plant would be required as a step in the commercialization of the VHTR

  20. Fast and inexpensive synthesis of pentacene with high yield using 6,13-pentacenequinone as precursor

    Science.gov (United States)

    Mota, María L.; Rodriguez, Bibiana; Carrillo, Amanda; Ambrosio, Roberto C.; Luque, Priscy A.; Mireles, Marcela; Vivaldo, Israel; Quevedo, Manuel A.

    2018-02-01

    Pentacene is an important semiconductor in the field of organic electronics. In this work is presented an alternative synthesis procedure to obtain pentacene from 6,13-pentacenequinone as a precursor. Synthesis of pentacene was performed in two reactions, Diels-Adler cycloaddition of 6,13-pentacenequinone followed by 6,13-pentacenequinone reduction to pentacene, employing LiAlH4 as reducing agent. The products were characterized by Fourier Transform Infrared Spectroscopy (FTIR), 1H-Nuclear Magnetic Resonance Spectroscopy (1H-NMR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Ultraviolet-Visible Spectroscopy (UV-VIS). In this work, 6,13-pentacenequinone was synthetized with a high yield (55%) using an alternative method. The optimization process resulted in an overall reduction of reaction time while exhibiting high yield. The method presented here provides an affordable pentacene synthesis route with high purity, which can be further applied for research and development of organic electronic applications.

  1. Evaluation of a microwave high-power reception-conversion array for wireless power transmission

    Science.gov (United States)

    Dickinson, R. M.

    1975-01-01

    Initial performance tests of a 24-sq m area array of rectenna elements are presented. The array is used as the receiving portion of a wireless microwave power transmission engineering verification test system. The transmitting antenna was located at a range of 1.54 km. Output dc voltage and power, input RF power, efficiency, and operating temperatures were obtained for a variety of dc load and RF incident power levels at 2388 MHz. Incident peak RF intensities of up to 170 mW/sq cm yielded up to 30.4 kW of dc output power. The highest derived collection-conversion efficiency of the array was greater than 80 percent.

  2. Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets

    Science.gov (United States)

    Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong

    2016-07-01

    High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.

  3. Development of bioprocess for high density cultivation yield of the probiotic Bacillus coagulans and its spores

    Directory of Open Access Journals (Sweden)

    Kavita R. Pandey

    2016-09-01

    Full Text Available Bacillus coagulans is a spore forming lactic acid bacterium. Spore forming bacteria, have been extensively studied and commercialized as probiotics. Probiotics are produced by fermentation technology. There is a limitation to biomass produced by conventional modes of fermentation. With the great demand generated by range of probiotic products, biomass is becoming very valuable for several pharmaceutical, dairy and probiotic companies. Thus, there is a need to develop high cell density cultivation processes for enhanced biomass accumulation. The bioprocess development was carried out in 6.6 L bench top lab scale fermentor. Four different cultivation strategies were employed to develop a bioprocess for higher growth and sporulation efficiencies of probiotic B. coagulans. Batch fermentation of B. coagulans yielded 18 g L-1 biomass (as against 8.0 g L-1 productivity in shake flask with 60% spore efficiency. Fed-batch cultivation was carried out for glucose, which yielded 25 g L-1 of biomass. C/N ratio was very crucial in achieving higher spore titres. Maximum biomass yield recorded was 30 g L-1, corresponding to 3.8 × 1011 cells mL-1 with 81% of cells in sporulated stage. The yield represents increment of 85 times the productivity and 158 times the spore titres relative to the highest reported values for high density cultivation of B. coagulans.

  4. Yield Evaluation of Nutrient-rich Potato Clones in High Hill of Nepal

    Directory of Open Access Journals (Sweden)

    Binod Prasad Luitel

    2017-05-01

    Full Text Available A study was conducted to evaluate the yield of nutrient-rich potato clones in high-hill districts: Dolakha and Jumla of Nepal during the years 2013 and 2014, respectively. Fourteen potato clones were tested as on-station and on-farm experiments at both districts, and those fourteen clones were compared to ‘Lady Rosita’ and ‘Jumli Local’ respectively as the check varieties in the first year experiment, 2013. Eight promising clones were selected from the first year experiment, and were evaluated and compared with same local varieties in the consecutive year, 2014. Two clones namely; CIP 395112.32 (19.3 tha-1 and CIP 393073.179 (17.8 tha-1 exhibited superior marketable tuber yield than that of ‘Lady Rosita’(14.2 tha-1 in Dolakha and five CIP clones namely; 395112.32 (25.5 tha-1, 393073.179 (22.5 tha-1, 394611.112 (20.9 tha-1, 390478.9 (19.9 tha-1 and 395017.229 (17.0 tha-1 showed higher marketable tuber yield than ‘Jumli Local’(14.5 tha-1. Based on two years’ phenotypic and tuber yield result, clones CIP 395112.32 and CIP 393073.179 are recommended to potato growers at high hills of Nepal for commercial cultivation.

  5. Highly-Efficient Thermoelectronic Conversion of Heat and Solar Radiation to Electric Power

    OpenAIRE

    Meir, Stefan

    2013-01-01

    Thermionic energy conversion has long been a candidate to convert solar radiation and the combustion heat of fossil fuels into electricity at high efficiencies. However, the formation of electron space charges has prevented the widespread use of the principle since its was first suggested in 1915. In this work, a novel mechanism to suppress the effects of the space charge was investigated: the acceleration of electrons in a special configuration of electric and magnetic fields. This work d...

  6. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander; Saih, Youssef; Gimenez, Michel; Pelletier, Jeremie; Kü hn, Fritz Elmar; D´ Elia, Valerio; Basset, Jean-Marie

    2016-01-01

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  7. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas

    KAUST Repository

    Barthel, Alexander

    2016-02-08

    Robust and selective catalytic systems based on early transition metal halides (Y, Sc, Zr) and organic nucleophiles were found able to quantitatively capture CO2 from diluted streams via formation of hemicarbonate species and to convert it to cyclic organic carbonates under ambient conditions. This observation was exploited in the direct and selective chemical fixation of flue gas CO2 collected from an industrial exhaust, affording high degrees of CO2 capture and conversion.

  8. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.

    Science.gov (United States)

    Li, Xin-Gui; Li, Ang; Huang, Mei-Rong

    2008-01-01

    Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.

  9. A novel concept for high conversion of coal to liquids. Final report, 1 September 1988--31 August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.; Shabtai, J.

    1994-04-01

    A batch microreactor was designed and fabricated as a means of investigating maximum yields of liquids obtainable in very short reaction times of the order of a few seconds, and the maximum ratios of liquids/hydrocarbon (HC) gases obtainable under those conditions. A Wyodak sub-bituminous coal, crushed and sieved to {minus}200 mesh particle size, was used in the experiments, with a temperature of 500{degrees}C and a pressure of 1500 psi. The fine coal particles were fed dry to the reactor and heated to reaction temperature in times of one to two seconds. At a time of 3 seconds at reaction temperature, in a single pass a liquid yield of 60% by weight of the coal was obtained, accompanied by a ratio of liquids/(HC) gases of 30/1. When the unreacted solids were recycled to the reactor, and the results combined with those of the first pass, a liquid yield of 82% by weight of the coal was achieved, accompanied by a ratio of liquids/HC gases of 30/1. This ratio represents only about 3 wt percent HC gases, much lower that is produced in current advanced technologies, and represents a large saving in hydrogen consumption. A simulated distillation technique was applied to the liquids. The liquid product contained 86% by weight (of the liquids) total distillables (boiling point below 538{degrees}C), including 70% by weight of low-boiling fractions in the gasoline, kerosene and gas oil range (boiling point up to 325{degrees}C). The liquid product exhibited a H/C ratio of 1.5, which is considerably higher than observed in current advanced technologies for the primary liquids. Several catalysts were investigated. Iron catalysts, specifically ferric chloride hexahydrate and ferric sulfate pentahydrate, each produced these high conversions and high ratios of liquids/HC gases.

  10. Interpersonal Movement Synchrony Responds to High- and Low-Level Conversational Constraints

    Directory of Open Access Journals (Sweden)

    Alexandra Paxton

    2017-07-01

    Full Text Available Much work on communication and joint action conceptualizes interaction as a dynamical system. Under this view, dynamic properties of interaction should be shaped by the context in which the interaction is taking place. Here we explore interpersonal movement coordination or synchrony—the degree to which individuals move in similar ways over time—as one such context-sensitive property. Studies of coordination have typically investigated how these dynamics are influenced by either high-level constraints (i.e., slow-changing factors or low-level constraints (i.e., fast-changing factors like movement. Focusing on nonverbal communication behaviors during naturalistic conversation, we analyzed how interacting participants' head movement dynamics were shaped simultaneously by high-level constraints (i.e., conversation type; friendly conversations vs. arguments and low-level constraints (i.e., perceptual stimuli; non-informative visual stimuli vs. informative visual stimuli. We found that high- and low-level constraints interacted non-additively to affect interpersonal movement dynamics, highlighting the context sensitivity of interaction and supporting the view of joint action as a complex adaptive system.

  11. High-yield production of herbicidal thaxtomins and analogs in a nonpathogenic Streptomyces strain.

    Science.gov (United States)

    Jiang, Guangde; Zhang, Yucheng; Powell, Magan M; Zhang, Peilan; Zuo, Ran; Zhang, Yi; Kallifidas, Dimitrios; Tieu, Albert M; Luesch, Hendrik; Loria, Rosemary; Ding, Yousong

    2018-03-30

    Thaxtomins are virulence factors of most plant pathogenic Streptomyces strains. Due to their potent herbicidal activity, attractive environmental compatibility and inherent biodegradability, thaxtomins are key active ingredients of bioherbicides approved by the United States Environmental Protection Agency. However, the low yield of thaxtomins in native Streptomyces producers limits their wide agricultural applications. Here, we describe the high-yield production of thaxtomins in a heterologous host. The thaxtomin gene cluster from S. scabiei 87.22 was cloned and expressed in S. albus J1074 after chromosomal integration. The production of thaxtomins and nitro-tryptophan analogs were observed using LC-MS analysis. When culturing the engineered S. albus J1074 in the minimal medium TMDc, the yield of the most abundant and herbicidal analog, thaxtomin A, was 10 times higher than S. scabiei 87.22, and optimization of the medium resulted in the highest yield of thaxtomin analogs at about 222 mg/L. Further engineering of the thaxtomin biosynthetic gene cluster through gene deletion led to the production of multiple biosynthetic intermediates important to the chemical synthesis of new analogs. Additionally, the versatility of the thaxtomin biosynthetic system in S. albus J1074 was capitalized to produce one unnatural fluorinated analog 5-F-thaxtomin A, whose structure was elucidated by a combination of MS and 1D and 2D NMR analyses. Natural and unnatural thaxtomins demonstrated potent herbicidal activity in radish seedling assays. These results indicated that S. albus J1074 has the potential to produce thaxtomins and thereof with high yield, fostering their agricultural applications. IMPORTANCE Thaxtomins are agriculturally valuable herbicidal natural products but the productivity of native producers is limiting. Heterologous expression of thaxtomin gene cluster in S. albus J1074 resulted in the highest yield of thaxtomins ever reported, representing a significant leap

  12. The analysis of mixtures of ortho and para-hydrogen and the catalytic conversion o.H{sub 2} {yields} p.H{sub 2}; Analyse des melanges d'ortho et para-hydrogenes et conversion catalytique o.H{sub 2} {yields} p.H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Botter, F; Dirian, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1956-07-01

    This report describes experiments undertaken to measure the catalytic activity at - 195 deg. C of different types of absorbents for the heterogeneous conversion o.H{sub 2} {yields} p.H{sub 2}. The analytical method employed is a differential measurement of the thermal conductivity of the gas. In contrast to the classic method of FARKAS we have worked at room temperature (the difference of several per cent between the thermal conductivities of ortho and para-hydrogen at this temperature being found sufficiently great) and with a continuously recording system. The gas is at atmospheric pressure. We have investigated also the possibilities of an industrial katharometer which would allow a great extension to be given to this method of analysis. The instrument proved satisfactory. It has been checked that the paramagnetic conversion obeys first order kinetics. A certain number of absorbing substances were tested and amongst them, the active carbons, often used in the laboratory for the production of para-hydrogen, were shown to be the least active. A chromium oxide-aluminium oxide catalyst prepared from data available in the literature had a very great activity. In addition, some observations of the influence of adsorbed gases on the catalytic activity are reported: the comparison with the literature data is not easy due to the uncertainty in the physico-chemical nature of the absorbents used in the two cases. Finally, some bibliographic data relative to the properties of the two forms of hydrogen, their measurement, and the different mechanisms of interconversion are given. (author) [French] Le present rapport rend compte des essais entrepris en vue de determiner l'activite catalytique a - 195 deg. C de differents types d'absorbants vis-a-vis de la reaction de conversion heterogene o.H{sub 2} {yields} p.H{sub 2}. Le procede analytique utilise est la mesure differentielle de la conductibilite thermique du gas. Contrairement a la classique methode de FARKAS, on a opere d

  13. Low LET radiolysis escape yields for reducing radicals and H2 in pressurized high temperature water

    Science.gov (United States)

    Sterniczuk, Marcin; Yakabuskie, Pamela A.; Wren, J. Clara; Jacob, Jasmine A.; Bartels, David M.

    2016-04-01

    Low Linear Energy Transfer (LET) radiolysis escape yields (G values) are reported for the sum (G(radH)+G(e-)aq) and for G(H2) in subcritical water up to 350 °C. The scavenger system 1-10 mM acetate/0.001 M hydroxide/0.00048 M N2O was used with simultaneous mass spectroscopic detection of H2 and N2 product. Temperature-dependent measurements were carried out with 2.5 MeV electrons from a van de Graaff accelerator, while room temperature calibration measurements were done with a 60Co gamma source. The concentrations and dose range were carefully chosen so that initial spur chemistry is not perturbed and the N2 product yield corresponds to those reducing radicals that escape recombination in pure water. In comparison with a recent review recommendation of Elliot and Bartels (AECL report 153-127160-450-001, 2009), the measured reducing radical yield is seven percent smaller at room temperature but in fairly good agreement above 150 °C. The H2 escape yield is in good agreement throughout the temperature range with several previous studies that used much larger radical scavenging rates. Previous analysis of earlier high temperature measurements of Gesc(radOH) is shown to be flawed, although the actual G values may be nearly correct. The methodology used in the present report greatly reduces the range of possible error and puts the high temperature escape yields for low-LET radiation on a much firmer quantitative foundation than was previously available.

  14. A simple, high-yield, apparatus for NEG coating of vacuum beamline elements

    International Nuclear Information System (INIS)

    Ron, G; Oort, R; Lee, D

    2010-01-01

    Non-Evaporable Getter (NEG) materials are extremely useful in vacuum systems for achieving Ultra High Vacuum. Recently, these materials have been used to coat the inner surfaces of vacuum components, acting as an internal, passive, vacuum pump. We have constructed a low cost apparatus, which allows coating of very small diameter vacuum tubes, used as differential pumping stages. Despite the relative ease of construction, we are routinely able to achieve high coating yields. We further describe an improvement to our system, which is able to achieve the same yield, at an even lower complexity by using an easily manufactured permanent magnet arrangement. The designs described are extendible to virtually any combination of length and diameter of the components to be coated.

  15. High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis

    International Nuclear Information System (INIS)

    Joung, Daeha; Chunder, A; Zhai, Lei; Khondaker, Saiful I

    2010-01-01

    We demonstrate high yield fabrication of field effect transistors (FET) using chemically reduced graphene oxide (RGO) sheets. The RGO sheets suspended in water were assembled between prefabricated gold source and drain electrodes using ac dielectrophoresis. With the application of a backgate voltage, 60% of the devices showed p-type FET behavior, while the remaining 40% showed ambipolar behavior. After mild thermal annealing at 200 deg. C, all ambipolar RGO FET remained ambipolar with increased hole and electron mobility, while 60% of the p-type RGO devices were transformed to ambipolar. The maximum hole and electron mobilities of the devices were 4.0 and 1.5 cm 2 V -1 s -1 respectively. High yield assembly of chemically derived RGO FET will have significant impact in scaled up fabrication of graphene based nanoelectronic devices.

  16. Epidemiology and impact of Fasciola hepatica exposure in high-yielding dairy herds.

    Science.gov (United States)

    Howell, Alison; Baylis, Matthew; Smith, Rob; Pinchbeck, Gina; Williams, Diana

    2015-09-01

    The liver fluke Fasciola hepatica is a trematode parasite with a worldwide distribution and is the cause of important production losses in the dairy industry. The aim of this observational study was to assess the prevalence of exposure to F. hepatica in a group of high yielding dairy herds, to determine the risk factors and investigate their associations with production and fertility parameters. Bulk milk tank samples from 606 herds that supply a single retailer with liquid milk were tested with an antibody ELISA for F. hepatica. Multivariable linear regression was used to investigate the effect of farm management and environmental risk factors on F. hepatica exposure. Higher rainfall, grazing boggy pasture, presence of beef cattle on farm, access to a stream or pond and smaller herd size were associated with an increased risk of exposure. Univariable regression was used to look for associations between fluke exposure and production-related variables including milk yield, composition, somatic cell count and calving index. Although causation cannot be assumed, a significant (phepatica exposure and estimated milk yield at the herd level, representing a 15% decrease in yield for an increase in F. hepatica exposure from the 25th to the 75th percentile. This remained significant when fertility, farm management and environmental factors were controlled for. No associations were found between F. hepatica exposure and any of the other production, disease or fertility variables. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Neutron yield from thick lead target by the action of high-energy electrons

    International Nuclear Information System (INIS)

    Noga, V.I.; Ranyuk, Yu.N.; Telegin, Yu.N.; Sorokin, P.V.

    1978-01-01

    The results are presented of studying the complete neutron yield from a lead target bombarded by high-energy electrons. Neutrons were recorded by the method of radio-active indicators. The dependence of the neutron yield on the target thickness varying from 0.2 to 8 cm was obtained at the energies of electrons of 230 and 1200 MeV. The neutron yield for the given energies with the target of 6 cm in thickness is in the range of saturation and is 0.1 +-0.03 and 0.65+-0.22 (neutr./MeV.el.), respectively. The neutron angular distributions were measured for different thicknesses of targets at the 201, 230 and 1200 MeV electrons. Within the error limits the angular distributions are isotropic. The dependence of neutron yield on the electron energy was examined for a 3 cm thick target. In the energy range of 100-1200 MeV these values are related by a linear dependence with the proportionality coefficient C=3x10 -4 (neutr./MeV.el.)

  18. The characteristics of high-yield genotype of early-mature mutant lines in barley

    International Nuclear Information System (INIS)

    Chen Xiulan; Han Yuepeng; He Zhentian; Yang Hefeng

    2000-01-01

    The correlation and genetic parameters of eight agronomic traits of 36 early mature mutant lines induced from barley Sunong 9052 were studied by stepwise regression and path analysis. The results showed that: (1) the growing period of early mutants was shortened 2-13 days from that of their parent and the trait of yield had a great mutation range; (2) the number of grain per panicle significantly correlated with the days from sowing to heading; (3) according to direct path coefficients, the main characters related with individual plant-yield were in order of productive panicle per plant > 1000-grain-weight > number of grain per panicle > fertility, the high-yield genotype had more productive panicle and higher 10000-grain-weight, and to increase the yield in the breeding of early mature mutation was to select the lines with more tillers and productive panicles, higher 1000-grain-weight and lower number of grain per panicle; (4) the higher broad-sense heritability and genetic variation coefficient were found in 1000-grain-weight and the days from sowing to heading

  19. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Science.gov (United States)

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  20. Remote systems requirements of the high-yield lithium injection fusion energy converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-01-01

    Remote systems will be required in the high-yield lithium injection fusion energy converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings, and welds must be done remotely. Ideas for remote maintenance of laser-beam blast baffles, optics, and target material traps are described. Radioisotope sources, their distributions, and exposure rates at various points in the reactor vicinity are presented

  1. High yield growth of patterned vertically aligned carbon nanotubes using inkjet-printed catalyst.

    Science.gov (United States)

    Beard, James D; Stringer, Jonathan; Ghita, Oana R; Smith, Patrick J

    2013-10-09

    This study reports on the fabrication of vertically aligned carbon nanotubes localized at specific sites on a growth substrate by deposition of a nanoparticle suspension using inkjet printing. Carbon nanotubes were grown with high yield as vertically aligned forests to a length of approximately 400 μm. The use of inkjet printing for catalyst fabrication considerably improves the production rate of vertically aligned patterned nanotube forests compared with conventional patterning techniques, for example, electron beam lithography or photolithography.

  2. Remote systems requirements of the High Yield Lithium Injection Fusion Energy (HYLIFE) converter concept

    International Nuclear Information System (INIS)

    Walker, P.E.

    1978-10-01

    Remote systems will be required in the High Yield Lithium Injection Fusion Energy Converter power plant proposed by Lawrence Livermore Laboratory. During inspection operations, viewing of the chamber interior and certain pumps, valve fittings and welds must be done remotely. Ideas for remote maintenance of laser beam blast baffles, optics, and target material traps are described. Radioisotope sources and their distributions, and exposure rates at various points in the reactor vicinity are presented

  3. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  4. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  5. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    Science.gov (United States)

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  6. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  7. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    International Nuclear Information System (INIS)

    Dong Guo-Xiang; Xia Song; Li Wei; Zhang An-Xue; Xu Zhuo; Wei Xiao-Yong; Shi Hong-Yu

    2016-01-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. (paper)

  8. Single component Mn-doped perovskite-related CsPb2ClxBr5-x nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes.

    Science.gov (United States)

    Wu, Hao; Xu, Shuhong; Shao, Haibao; Li, Lang; Cui, Yiping; Wang, Chunlei

    2017-11-09

    Single component nanocrystals (NCs) with white fluorescence are promising single layer color conversion media for white light-emitting diodes (LED) because the undesirable changes of chromaticity coordinates for the mixture of blue, green and red emitting NCs can be avoided. However, their practical applications have been hindered by the relative low photoluminescence (PL) quantum yield (QY) for traditional semiconductor NCs. Though Mn-doped perovskite nanocube is a potential candidate, it has been unable to realize a white-light emission to date. In this work, the synthesis of Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets with a pure white emission from a single component is reported. Unlike Mn-doped perovskite nanocubes with insufficient energy transfer efficiency, the current reported Mn-doped 2D perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets show a 10 times higher energy transfer efficiency from perovskite to Mn impurities at the required emission wavelengths (about 450 nm for perovskite emission and 580 nm for Mn emission). As a result, the Mn/perovskite dual emission intensity ratio surprisingly elevates from less than 0.25 in case of Mn-doped nanocubes to 0.99 in the current Mn-doped CsPb 2 Cl x Br 5-x nanoplatelets, giving rise to a pure white light emission with Commission Internationale de l'Eclairage (CIE) color coordinates of (0.35, 0.32). More importantly, the highest PL QY for Mn-doped perovskite-related CsPb 2 Cl x Br 5-x nanoplatelets is up to 49%, which is a new record for white-emitting nanocrystals with single component. These highly luminescent nanoplatelets can be blended with polystyrene (PS) without changing the white light emission but dramatically improving perovskite stability. The perovskite-PS composites are available not only as a good solution processable coating material for assembling LED, but also as a superior conversion material for achieving white light LED with a single conversion layer.

  9. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  10. High-yield acetonitrile | water triple phase boundary electrolysis at platinised Teflon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, John D.; MacDonald, Stuart M.; Fordred, Paul S.; Bull, Steven D. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Gu, Yunfeng; Yunus, Kamran; Fisher, Adrian C. [Department of Chemical Engineering, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Bulman-Page, Philip C. [School of Chemistry, University of East Anglia, Norwich, Norfolk NR4 7TJ (United Kingdom); Marken, Frank [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)], E-mail: f.marken@bath.ac.uk

    2009-11-30

    A dynamic acetonitrile | aqueous electrolyte phase boundary in contact with platinised Teflon working electrodes is investigated. High concentrations of salt in the aqueous phase (2 M NaCl and 0.1 M NaClO{sub 4}) ensure immiscibility and the polar nature of acetonitrile aids the formation of a well-behaved triple phase boundary reaction zone. The one-electron oxidation of tert-butylferrocene in the organic phase without intentionally added electrolyte is studied. The limiting current for the flowing triple phase boundary process is shown to be essentially volume flow rate independent. The process is accompanied by the transfer of perchlorate from the aqueous into the organic phase and the flux of anions is shown to be approximately constant along the dynamic acetonitrile | aqueous electrolyte | platinum line interface. A high rate of conversion (close to 100%) is achieved at slow volume flow rates and at longer platinum electrodes.

  11. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  12. Simple syntheses of 3-substituted indoles and their application for high yield 14C-labelling

    International Nuclear Information System (INIS)

    Schallenberg, J.; Meyer, E.

    1983-01-01

    Methods are described which allow the synthesis of several plant indole alkaloids and their metabolites at different scales. Compounds synthesized include gramine (1) (3-dimethylaminomethylindole) which is directly derived from indole, while its biosynthetic precursors 3-aminomethylindole (3) and 3-methylaminomethylindole (2) as well as indole3-carboxylic acid (7) are synthesized via indole-3-aldehyde (6). Slight changes of the experimental conditions allow syntheses with high yields not only at the molar but also at the μmolar level. This is extremely useful when isotope labelled compounds of high specific radioactivity are required for studies of plant metabolism. (orig.)

  13. Research Advances in High-Yielding Cultivation and Physiology of Super Rice

    Directory of Open Access Journals (Sweden)

    Jing FU

    2012-09-01

    Full Text Available In 1996, China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types. Today, approximately 80 super rice varieties have been released and some of them show high grain yields of 12–21 t/hm2 in field experiments. The main reasons for the high yields of super rice varieties, compared with those of conventional varieties, can be summarized as follows: more spikelets per panicle and larger sink size (number of spikelets per square meter; larger leaf area index, longer duration of green leaf, greater photosynthetic rate, higher lodging resistance, greater dry matter accumulation before the heading stage, greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period; and larger root system and greater root activity. However, there are two main problems in super rice production: poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets, and low and unstable seed-setting rate. Here, we review recent research advances in the crop physiology of super rice, focusing on biological features, formation of yield components, and population quality. Finally, we suggest further research on crop physiology of super rice.

  14. Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO 2 conversion

    Energy Technology Data Exchange (ETDEWEB)

    Halder, Avik; Kilianová, Martina; Yang, Bing; Tyo, Eric C.; Seifert, Soenke; Prucek, Robert; Panáček, Aleš; Suchomel, Petr; Tomanec, Ondřej; Gosztola, David J.; Milde, David; Wang, Hsien-Hau; Kvítek, Libor; Zbořil, Radek; Vajda, Stefan

    2018-06-01

    We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the starting nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.

  15. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  16. Thick sputtered tantalum coatings for high-temperature energy conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Stelmakh, Veronika, E-mail: stelmakh@mit.edu; Peykov, Daniel; Chan, Walker R.; Senkevich, Jay J.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan [Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Castillo, Robert; Coulter, Kent; Wei, Ronghua [Materials Engineering Department, Southwest Research Institute, San Antonio, Texas 78238 (United States)

    2015-11-15

    Thick sputtered tantalum (Ta) coatings on polished Inconel were investigated as a potential replacement for bulk refractory metal substrates used for high-temperature emitters and absorbers in thermophotovoltaic energy conversion applications. In these applications, high-temperature stability and high reflectance of the surface in the infrared wavelength range are critical in order to sustain operational temperatures and reduce losses due to waste heat. The reflectance of the coatings (8 and 30 μm) was characterized with a conformal protective hafnia layer as-deposited and after one hour anneals at 700, 900, and 1100 °C. To further understand the high-temperature performance of the coatings, the microstructural evolution was investigated as a function of annealing temperature. X-ray diffraction was used to analyze the texture and residual stress in the coatings at four reflections (220, 310, 222, and 321), as-deposited and after anneal. No significant changes in roughness, reflectance, or stress were observed. No delamination or cracking occurred, even after annealing the coatings at 1100 °C. Overall, the results of this study suggest that the thick Ta coatings are a promising alternative to bulk substrates and pave the way for a relatively low-cost and easily integrated platform for nanostructured devices in high-temperature energy conversion applications.

  17. High yield antibiotic producing mutants of Streptomyces erythreus induced by low energy ion implantation

    Science.gov (United States)

    Yu, Chen; Zhixin, Lin; Zuyao, Zou; Feng, Zhang; Duo, Liu; Xianghuai, Liu; Jianzhong, Tang; Weimin, Zhu; Bo, Huang

    1998-05-01

    Conidia of Streptomyces erythreus, an industrial microbe, were implanted by nitrogen ions with energy of 40-60 keV and fluence from 1 × 10 11 to 5 × 10 14 ions/cm 2. The logarithm value of survival fraction had good linear relationship with the logarithm value of fluence. Some mutants with a high yield of erythromycin were induced by ion implantation. The yield increment was correlated with the implantation fluence. Compared with the mutation results induced by ultraviolet rays, mutation effects of ion implantation were obvious having higher increasing erythromycin potency and wider mutation spectrum. The spores of Bacillus subtilis were implanted by arsenic ions with energy of 100 keV. The distribution of implanted ions was measured by Rutherford Backscattering Spectrometry (RBS) and calculated in theory. The mechanism of mutation induced by ion implantation was discussed.

  18. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  19. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    biotechnology hosts including safety, metabolic diversity, scalability, sustainability and low production cost. Over the past decades, considerable improvement has been made to express and secrete recombinant proteins in high levels: however current yields are still low. The first research project presented...... to the glycomodules, accumulation of a fusion protein was dramatically increased by up to 12 folds, with the maximum yield of 15 mg L-1. Characterization of the secreted Venus showed the presence of glycosylations and increased resistance to proteolytic degradation. The results from this thesis demonstrate...... the potential of microalgae as a cell factory for secretion of recombinant proteins. The second research project presented in this thesis aimed to establish a new robust method to allow in vivo measurements of metabolic enzyme activities in cyanobacteria, with a hope that the method would facilitate further...

  20. The 'Golden' cLFV channels {mu} {yields} e{gamma} and {mu} {yields} eee - the high-intensity frontier

    Energy Technology Data Exchange (ETDEWEB)

    Kettle, Peter-Raymond, E-mail: peter-raymond.kettle@psi.ch [Paul Scherrer Institut PSI, Laboratory for Particle Physics (Switzerland)

    2013-03-15

    The muon as a laboratory for studying charged lepton-flavour violation (cLFV) has proven to be one of the most sensitive areas to probe for 'New Physics', due to the muon's copious production rate and relatively long lifetime. The search at the intensity frontier with precision-type experiments is complementary to the search for new particles at the high-energy frontier of TeV colliders. Of the three 'golden' muon channels: {mu} {yields} e{gamma}, {mu} {yields} 3e and {mu} {yields} econversion, an overview of the status of the coincidence experiments MEG, together with the latest results, which constitute the most stringent limit to date on this decay and the recently initiated Mu3e experiment, will be given.

  1. Conversion of Mixed Plastic Wastes (High Density Polyethylene and Polypropylene) into Liquid Fuel

    International Nuclear Information System (INIS)

    Chaw Su Su Hmwe; Tint Tint Kywe; Moe Moe Kyaw

    2010-12-01

    In this study, mixed plastic wastes were converted into liquid fuels. Mixed plastic wastes used were high density polyethylene (HDPE) and polypropylene (PP). The pyrolysis of mixed plastic waste to liquid fuel was carried out with and without prepared zeolite catalyst.The catalyst was characterized by X-ray Diffraction (XRD). This catalyst was pre-treated for activation. The experiments were carried out at temperature range of 350-410C.Physical properties (density, kinematic, viscosity,refractive index)of prepared liquid fuel samples were measured. From this study, yields of liquid fuel and gas fuel were found to be 41-64% and 15-35% respectively. As for by products, char was obtained as the yield percentages from 9 to 14% and wax (yield% - 1 to 14) was formed during pyrolysis.

  2. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.; Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.; Schein, J.; Constantin, C.

    2008-01-01

    The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture ''cocktails'' used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  3. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E.; Rosen, M.; Glenzer, S.H.; Suter, L.J.; Girard, F.; Jadaud, J.P.; Schein, J.; Constantin, C.G.; Neumayer, P.; Landen, O.

    2008-01-01

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux

  4. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows.

    Science.gov (United States)

    Trevisi, E; Amadori, M; Cogrossi, S; Razzuoli, E; Bertoni, G

    2012-10-01

    Increased disease rates are commonly reported among high-yielding dairy cows in the transition period, extending from 3 weeks before to 3 weeks after calving, and characterized by the occurrence of an inflammatory response in terms of both positive and negative acute phase proteins (APP+ and APP-). To determine the above inflammatory response, the authors had developed the Liver Functionality Index (LFI), which defines the above condition on the basis of some APP- responses (albumin, cholesterol sensu stricto+bilirubin) during the first month of lactation. In this respect, low LFI values are associated to a high inflammatory response and vice versa. The relationship between LFI and inflammatory cytokine response was investigated from day -28 to day +28 with respect to calving in 12 periparturient dairy cows showing the six highest and six lowest LFI values within a cohort of 54 high-yielding dairy cows. The hypothesis being tested was that LFI and APP- on the whole could be used as readout of successful vs. non-successful adaptation to the transition period, with a strong association to disease occurrence. In fact, low LFI cows experienced many more disease cases (13 vs. 3 in high LFI Group) and related drug treatments till day +28. Interleukin-6 (IL-6) serum concentrations were always higher in low LFI cows (Pcows at risk in the transition period toward an improved farm management. Also, our study indicates that disease cases in periparturient, high-yielding dairy cows are correlated with signs of accentuated IL-6 response and other markers of inflammatory phenomena. These likely start in the late lactation period or around dry-off, as suggested by our prepartal data, and proceed at much greater levels after calving. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages.

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-12

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha -1 (B1), soil application of 2 kg B ha -1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results

  6. Boron application improves yield of rice cultivars under high temperature stress during vegetative and reproductive stages

    Science.gov (United States)

    Shahid, Mohammad; Nayak, Amaresh Kumar; Tripathi, Rahul; Katara, Jawahar Lal; Bihari, Priyanka; Lal, Banwari; Gautam, Priyanka

    2018-04-01

    It is reported that high temperatures (HT) would cause a marked decrease in world rice production. In tropical regions, high temperatures are a constraint to rice production and the most damaging effect is on spikelet sterility. Boron (B) plays a very important role in the cell wall formation, sugar translocation, and reproduction of the rice crop and could play an important role in alleviating high temperature stress. A pot culture experiment was conducted to study the effect of B application on high temperature tolerance of rice cultivars in B-deficient soil. The treatments comprised of four boron application treatments viz. control (B0), soil application of 1 kg B ha-1 (B1), soil application of 2 kg B ha-1 (B2), and foliar spray of 0.2% B (Bfs); three rice cultivars viz. Annapurna (HT stress tolerant), Naveen, and Shatabdi (both HT stress susceptible); and three temperature regimes viz. ambient (AT), HT at vegetative stage (HTV), and HT at reproductive stage (HTR). The results revealed that high temperature stress during vegetative or flowering stage reduced grain yield of rice cultivars mainly because of low pollen viability and spikelet fertility. The effects of high temperature on the spikelet fertility and grain filling varied among cultivars and the growth stages of plant when exposed to the high temperature stress. Under high temperature stress, the tolerant cultivar displays higher cell membrane stability, less accumulation of osmolytes, more antioxidant enzyme activities, and higher pollen viability and spikelet fertility than the susceptible cultivars. In the present work, soil application of boron was effective in reducing the negative effects of high temperature both at vegetative and reproductive stages. Application of B results into higher grain yield under both ambient and high temperature condition over control for all the three cultivars; however, more increase was observed for the susceptible cultivar over the tolerant one. The results suggest

  7. Modulating fluorescence quantum yield of highly concentrated fluorescein using differently shaped green synthesized gold nanoparticles

    International Nuclear Information System (INIS)

    John, Jisha; Thomas, Lincy; Kurian, Achamma; George, Sajan D.

    2016-01-01

    The interaction of dye molecules with differently shaped nanoparticles is of great interest owing to the potential applications in areas of bioimaging, sensing and photodynamic therapy (biology) as well as solar cells (photonics) applications. For such applications, noble metallic nanoparticles are commonly employed to either enhance or quench the luminescence of a nearby fluorophore. However, in most of the studies, the dye concentration is limited to avoid self-quenching. This paper reports the influence of differently shaped gold nanoparticles (spherical, bean and star), prepared via green synthesis, on the emission behavior as well as on the fluorescence quantum yield of fluorescein dye at concentrations for which self-quenching occurs. The emission behavior is probed via laser based steady state fluorescence whereas quantum yield is measured using a dual beam laser based thermal lens technique. The experimentally observed fluorescence quenching with a concomitant increase in thermal lens signal in the vicinity of nanoparticles are explained in terms of nonradiative energy transfer between the donor and the acceptor. Further, the influence of pH of the prepared gold nanofluid on the absorption, emission as well as quantum yield are also accounted. These studies elucidate that even at high concentrations of dye, the gold nanoparticle and its shape clearly influences the optical properties of nearby dye molecules and thus can be exploited for future applications. - Highlights: • Green synthesis of differently shaped gold nanoparticles. • Tailoring emission properties of fluorescein with respect to nanoparticle concentration and shape. • Tailoring the quantum yield of highly concentrated fluorescein with nanoparticles.

  8. High velocity pulse biopsy device enables controllable and precise needle insertion and high yield tissue acquisition.

    Science.gov (United States)

    Schässburger, Kai-Uwe; Paepke, Stefan; Saracco, Ariel; Azavedo, Edward; Ekström, Christina; Wiksell, Hans

    2018-02-01

    Minimally invasive biopsies are a cornerstone of breast cancer management with ultrasound being the preferred guidance modality. New developments in breast cancer management and advances in imaging technologies bring new challenges to current biopsy methodologies. A new biopsy device (NeoNavia® biopsy system, 14 G) was developed. It incorporates a pneumatic needle insertion mechanism that is intended to provide better control of needle progression and enable stepwise insertion without noticeable deformation or displacement of surrounding tissue as visualized under ultrasound. A new method of tissue acquisition was designed to achieve a sampling yield higher than standard methodologies. Needle dynamics was assessed on a specifically designed test bed and sampling performance was compared to a Magnum® biopsy instrument (Bard, Covington, GA, USA) in representative tissue models. The histological quality of samples obtained ex-vivo was evaluated. A pneumatic pulse was measured to accelerate the needle to a maximum velocity of 21.2 ± 2.5 m/s on a stroke length of 2.5 mm, achieving significantly higher acceleration, maximum velocity and power than current biopsy devices. Mean weight of samples obtained by the NeoNavia device were 3.5, 4.6, and 4.3 times higher when sampling was performed in turkey breast, calf thymus and swine pancreas, respectively, as compared to samples obtained with the Magnum instrument. Ex-vivo analysis indicates that the method of tissue acquisition has no apparent negative impact on the histopathologic quality of obtained samples. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. High conversion efficiency and high radiation resistance InP solar cells

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Itoh, Yoshio; Yamaguchi, Masafumi

    1987-01-01

    The fabrication of homojunction InP solar cells has been studied using impurity thermal diffusion, organometallic vapor phase epitaxy (OMVPE) and liquid phase epitaxy (LPE), and is discussed in this paper. Conversion efficiencies exceeding 20 % (AM1.5) are attained. These are the most efficient results ever reported for InP cells, and are comparable to those for GaAs cells. Electron and γ-ray irradiation studies have also been conducted for fabricated InP cells. The InP cells were found to have higher radiation resistance than GaAs cells. Through these studies, it has been demonstrated that the InP cells have excellent potential for space application. (author)

  10. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  11. High Temperature Fusion Reactor Cooling Using Brayton Cycle Based Partial Energy Conversion

    Science.gov (United States)

    Juhasz, Albert J.; Sawicki, Jerzy T.

    2003-01-01

    For some future space power systems using high temperature nuclear heat sources most of the output energy will be used in other than electrical form, and only a fraction of the total thermal energy generated will need to be converted to electrical work. The paper describes the conceptual design of such a partial energy conversion system, consisting of a high temperature fusion reactor operating in series with a high temperature radiator and in parallel with dual closed cycle gas turbine (CCGT) power systems, also referred to as closed Brayton cycle (CBC) systems, which are supplied with a fraction of the reactor thermal energy for conversion to electric power. Most of the fusion reactor's output is in the form of charged plasma which is expanded through a magnetic nozzle of the interplanetary propulsion system. Reactor heat energy is ducted to the high temperature series radiator utilizing the electric power generated to drive a helium gas circulation fan. In addition to discussing the thermodynamic aspects of the system design the authors include a brief overview of the gas turbine and fan rotor-dynamics and proposed bearing support technology along with performance characteristics of the three phase AC electric power generator and fan drive motor.

  12. Controlling Solid–Liquid Conversion Reactions for a Highly Reversible Aqueous Zinc–Iodine Battery

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huilin; Li, Bin; Mei, Donghai; Nie, Zimin; Shao, Yuyan; Li, Guosheng; Li, Xiaohong S.; Han, Kee Sung; Muller, Karl T.; Sprenkle, Vincent L.; Liu, Jun

    2017-10-30

    Aqueous rechargeable batteries are desirable for many energy storage applications due to their low cost and high safety. However, low capacity and short cycle life are the significant obstacles to their practical applications. Here, we demonstrate a highly reversible aqueous zinc-iodine battery using encapsulated iodine in microporous active carbon fibers (ACFs) as cathode materials through the rational control of solid-liquid conversion reactions. The experiments and density function theory (DFT) calculations were employed to investigate the effects of solvents and properties of carbon hosts, e.g. pore size, surface chemistries, on the adsorption of iodine species. The rational manipulation of the competition between the adsorption in carbon and solvation in electrolytes for iodine species is responsible for the high reversibility and cycling stability. The zinc-iodine batteries deliver a high capacity of 180 mAh g-1 at 1C and a stable cycle life over 3000 cycles with ~90% capacity retention as well as negligible self-discharge. We believe the principles for stabilizing the zinc-iodine system could provide new insight into conversion systems such as Li-S systems.

  13. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol

    International Nuclear Information System (INIS)

    Caspeta, Luis; Caro-Bermúdez, Mario A.; Ponce-Noyola, Teresa; Martinez, Alfredo

    2014-01-01

    Highlights: • Conversion of agave bagasse to fuel ethanol. • Ethanosolv-pretreatment variables were statistically adjusted. • 91% of total sugars found in agave bagasse were recovered. • 225 g/L glucose from 30%-consistency hydrolysis using mini-reactors with peg-mixers. • 0.25 g of ethanol per g of dry agave bagasse was obtained. - Abstract: Agave bagasse is the lignocellulosic residue accumulated during the production of alcoholic beverages in Mexico and is a potential feedstock for the production of biofuels. A factorial design was used to investigate the effect of temperature, residence time and concentrations of acid and ethanol on ethanosolv pretreatment and enzymatic hydrolysis of agave bagasse. This method and the use of a stirred in-house-made mini-reactor increased the digestibility of agave bagasse from 30% observed with the dilute-acid method to 98%; also allowed reducing the quantity of enzymes used to hydrolyze samples with solid loadings of 30% w/w and glucose concentrations up to 225 g/L were obtained in the enzymatic hydrolysates. Overall this process allows the recovery of 91% of the total fermentable sugars contained in the agave bagasse (0.51 g/g) and 69% of total lignin as co-product (0.11 g/g). The maximum ethanol yield under optimal conditions using an industrial yeast strain for the fermentation was 0.25 g/g of dry agave bagasse, which is 86% of the maximum theoretical (0.29 g/g). The effect of the glucose concentration and solid loading on the conversion of cellulose to glucose is discussed, in addition to prospective production of about 50 million liters of fuel ethanol using agave bagasse residues from the tequila industry as a potential solution to the disposal problems

  14. Isolation of hardy and high-yielding mutants in citronella (Cymbopogon winterianus)

    International Nuclear Information System (INIS)

    Kole, C.R.

    1990-01-01

    Full text: Citronella bears an essential oil of medicinal and aromatic importance. But little has been done for its genetic improvement. It is a clonally propagated crop and the genetic variability is too low for effective selection. Besides, various reproductive anomalies limit the scope for cross-breeding. With this in view, a mutation induction experiment was conducted. This crop is mostly grown in marginal lands and hardy genotypes are required. Exposure of vegetative slips of an improved strain (KS-CW-S-I) to x-rays at 3,6 and 9kR paved the way for selection of 53 elite M 1 V 2 clumps on the basis of the yield component characters. Mass screening under minimal cultural practices in a drought-prone zone in Western Orissa (India) led to identification of 16 potentially hardy clones (OJC-12 from 3kR, OJC-1, 3, 11, 18 and 20 from 6kR and OJC-4, 5, 6, 15, 21, 22, 24, 26, 30 and 31 from 9kR). The clones were planted with 3 replications in mid-monsoon, established during the remaining months of monsoon and grown thereafter under minimal cultural practices, i.e. no manure, fertiliser, irrigation, weeding or plant protection. Data on yield of fresh leaf and oil extracted from fresh leaves were recorded at harvest 6 months after planting at 5 to 6 leaf stage. The results revealed a highly significant variation with regard to yield of both leaf and oil. Six clones out-yielded the mother line for leaf as well as oil, and two clones surpassed the mother line in leaf yield only. The performance of clone OJC-3 was particularly encouraging. With 1.25 kg/plant leaf, 9.63cc/plant oil it superseded the yield of the mother line and other cultivars of this species (all around 0.6 kg/plant leaf, 5cc/plant oil) even when grown with irrigation. (author)

  15. The investigation for attaining the optimal yield of oil shale by integrating high temperature reactors

    International Nuclear Information System (INIS)

    Bhattacharyya, A.T.

    1984-03-01

    This work presents a systemanalytical investigation and shows how far a high temperature reactor can be integrated for achieving the optimal yield of kerogen from oil shale. About 1/3 of the produced components must be burnt out in order to have the required high temperature process heat. The works of IGT show that the hydrogen gasification of oil shale enables not only to reach oil shale of higher quality but also allows to achieve a higher extraction quantity. For this reason a hydro-gasification process has been calculated in this work in which not only hydrogen is used as the gasification medium but also two high temperature reactors are integrated as the source of high temperature heat. (orig.) [de

  16. Efficiency of radical yield in alkylthymine and alkyluracil by high-LET irradiation

    International Nuclear Information System (INIS)

    Nakagawa, Seiko; Ohta, Nobuaki; Murakami, Takeshi

    2010-01-01

    Penthylthymines and hexyl-, nonyl-, and decyl- uracils were irradiated by C-ion (3.5 GeV) and γ-ray at 77 K. ESR spectra were measured to study radiation induced radicals in the temperature range from 108 to 273 K. A dihydro-5-yl (5-yl) radical formed by H addition to C6 carbon and a secondary alkyl radical by C-H bond fission at the second carbon from the end of the alkyl group were produced at 108 K. A dihydrouracil-6-yl (6-yl) radical formed by H addition to C5 carbon increased with increasing temperature for alkyluracils. The spectral feature obtained by C-ion irradiation was coincident with that by γ-irradiation. Total radical yields increased by alkylation and with increasing the length of alkyl chain. Yields of both 5-yl and secondary alkyl radicals irradiated by C-ion were less than those by γ-ray for penthylthymines and hexyluracil. On the contrary, radical yields were almost the same between ion and γ-ray irradiation for nonyl- and decyl-uracil. Mechanism of radical formation and effect of high-LET irradiation were discussed.

  17. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    Science.gov (United States)

    Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.

    2018-03-01

    Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  18. Studies of fission fragment yields via high-resolution γ-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Wilson J.N.

    2018-01-01

    Full Text Available Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.

  19. Design of a Highly Stable, High-Conversion-Efficiency, Optical Parametric Chirped-Pulse Amplification System with Good Beam Quality

    International Nuclear Information System (INIS)

    Guardalben, M.J.; Keegan, J.; Waxer, L.J.; Bagnoud, V.; Begishev, I.A.; Puth, J.; Zuegel, J.D.

    2003-01-01

    OAK B204 An optical parametric chirped-pulse amplifier (OPCPA) design that provides 40% pump-to-signal conversion efficiency and over-500-mJ signal energy at 1054 nm for front-end injection into a Nd:glass amplifier chain is presented. This OPCPA system is currently being built as the prototype front end for the OMEGA EP (extended performance) laser system at the University of Rochester's Laboratory for Laser Energetics. Using a three-dimensional spatial and temporal numerical model, several design considerations necessary to achieve high conversion efficiency, good output stability, and good beam quality are discussed. The dependence of OPCPA output on the pump beam's spatiotemporal shape and the relative size of seed and pump beams is described. This includes the effects of pump intensity modulation and pump-signal walk-off. The trade-off among efficiency, stability, and low output beam intensity modulation is discussed

  20. High-power waveguide resonator second harmonic device with external conversion efficiency up to 75%

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2018-06-01

    We report on a highly efficient waveguide resonator device for the production of 775 nm light using a titanium indiffused LiNbO3 waveguide resonator. When scanning the resonance, the device produces up to 110 mW of second harmonic power with 140 mW incident on the device—an external conversion efficiency of 75%. The cavity length is also locked, using a Pound–Drever–Hall type locking scheme, involving feedback to either the cavity temperature or the laser frequency. With laser frequency feedback, a stable output power of approximately 28 mW from a 52 mW pump is seen over one hour.

  1. Line filter design of parallel interleaved VSCs for high power wind energy conversion systems

    DEFF Research Database (Denmark)

    Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand; Teodorescu, Remus

    2015-01-01

    The Voltage Source Converters (VSCs) are often connected in parallel in a Wind Energy Conversion System (WECS) to match the high power rating of the modern wind turbines. The effect of the interleaved carriers on the harmonic performance of the parallel connected VSCs is analyzed in this paper...... limit. In order to achieve the desired filter performance with optimal values of the filter parameters, the use of a LC trap branch with the conventional LCL filter is proposed. The expressions for the resonant frequencies of the proposed line filter are derived and used in the design to selectively...

  2. Evaluation of some resonance self-shielding procedures employed in high conversion light water reactor design

    International Nuclear Information System (INIS)

    Patino, N.E.; Abbate, M.J.; Sbaffoni, M.M.

    1990-01-01

    The procedures employed in the treatment of the resonance shielding effect have been identified as one of the causes of the large discrepancies found in the neutronic calculation of high conversion light water reactors (HCLWRs), indicating the need for a revision of the self-shielding procedures employed. In this work some well known techniques applied in HCLWR self-shielding calculations are evaluated; the study involves the comparison of methods for the generation of group constants, the analysis of the impact of considering some isotopes as infinitely diluted and the evaluation of the usual approximations utilized for the treatment of heterogeneities

  3. Analysis of proinsulin and its conversion products by reversed-phase high-performance liquid chromatography

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Nielsen, Jens Høiriis

    1993-01-01

    . Most mammals produce a single insulin, but in rodents two non-allelic insulin genes are expressed. There is an inverse ratio between the two insulins in rats and mice, the reason for this being unknown. It has been suggested that differences in transcription, translation (biosynthesis) and...... PIM (intact proinsulin or its intermediates) has been incompletely determined. Studies of the biosynthesis of proinsulins and their conversion with the purpose of revealing some of these points depend on accessible reversed-phase high-performance liquid chromatographic (RP-HPLC) analyses capable...

  4. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics

    DEFF Research Database (Denmark)

    Pinilla-Herrero, Irene; Borfecchia, Elisa; Holzinger, Julian

    2018-01-01

    suggest that catalytic activity is associated with [Zn(H2O)n(OH)]+ species located in the exchange positions of the materials with little or no contribution of ZnO or metallic Zn. The effect of Zn/Al ratio on their catalytic performance in methanol conversion to aromatics has been investigated. In all...... cases, higher Zn content causes an increase in the yield of aromatics while keeping the production of alkanes low. For similar Zn contents, high densities of Al sites favour the hydrogen transfer reactions and alkane formation whereas in samples with low Al contents, and thus higher Zn/Al ratio...

  5. Potential design modifications for the High Yield Lithium Injection Fusion Energy (HYLIFE) reaction chamber

    International Nuclear Information System (INIS)

    Pitts, J.H.; Hovingh, J.; Meier, W.R.; Monsler, M.J.; Powell, E.G.; Walker, P.E.

    1979-01-01

    Generation of electric power from inertial confinement fusion requires a reaction chamber. One promising type, the High Yield Lithium Injection Fusion Energy (HYLIFE) chamber, includes a falling array of liquid lithium jets. These jets act as: (1) a renewable first wall and blanket to shield metal components from x-ray and neutron exposure, (2) a tritium breeder to replace tritium burned during the fusion process, and (3) an absorber and transfer medium for fusion energy. Over 90% of the energy produced in the reaction chamber is absorbed in the lithium jet fall. Design aspects are included

  6. MOCVD Process Technology for Affordable, High-Yield, High-Performance MESFET Structures. MIMIC Phase 3

    Science.gov (United States)

    1993-01-26

    development of large-area deposition for producing high efficiency solar cells."I This earlier work suggested that, with the appropriate modifications, the...using a numerical technique described previously.(2ŗ ) The model simultaneously solves the equations of continuity, motion, differential thermal energy ...Undoped IkeA 1.0 mnn BUBSTRATE Beni rNSIif *A FIGURE 2-4. EPrrAXIAL STRUCTURE FOR BUFFER LEAKAGE TESTS. 350 um 350 um Contact Contact G-20 um , CAP

  7. A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator

    International Nuclear Information System (INIS)

    Waldmann, Ole; Ludewigt, Bernhard

    2010-01-01

    We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5 · 10 11 n/s for D-T and ∼ 1 · 10 10 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60 · 6 mm 2 ) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm 2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

  8. THE ADAPTATION TEST ON YARDLONG BEAN LINES TOLERANT TO APHIDS AND HIGH YIELD

    Directory of Open Access Journals (Sweden)

    Kuswanto

    2011-06-01

    Full Text Available The adaptation trial was applied to determine the benefits of genotype-environmental inter-action, adaptability and stability of lines. The previous research successfully obtained 8 UB lines which had high yield and tolerant to aphids. These lines belong to plant breeding laboratory of Brawijaya University, which had stability and a high potential can be immediately released to the public. Research was conducted in 2010, dry and rainy season, on 3 locations of yardlong bean, namely Malang, Kediri and Jombang. Randomized Block Design was applied in these locations.Genotype-environment interaction was analyzed with combined analysis of nested design.The adaptability and stability were known from regression analysis based on the stability of Eberhart and Russel. There were 6 stabile lines, namely UB7070P1, UB24089X1, UB606572, UB61318, UB7023J44, and UB715, respectively. They were recommended to be released as new varieties which had pest tolerance and high yield. The UBPU was suitable to be developed in marginal land. The 6 new varieties had registered to Agriculture Department Republic of Indonesia, namely, Brawijaya 1, Brawijaya 3, Brawijaya 4, Bagong 2, Bagong 3 dan Bagong Ungu, respectively.

  9. Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckl, C.; Boni, R.; Ehrne, F.; Forrest, C. J.; Glebov, V. Yu.; Katz, J.; Lonobile, D. J.; Magoon, J.; Regan, S. P.; Shoup, M. J.; Sorce, A.; Sorce, C.; Sangster, T. C.; Weiner, D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2016-05-15

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera in a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.

  10. High conversion Th-U{sup 233} fuel assembly for current generation of PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Baldova, D.; Fridman, E. [Reactor Safety Div., Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, Dresden, 01314 (Germany)

    2012-07-01

    This paper presents a preliminary design of a high conversion Th-U{sup 233} fuel assembly applicable for current generation of Pressurized Water Reactor (PWRs). The considered fuel assembly has a typical 17 x 17 PWR lattice. However in order to increase the conversion of Th{sup 232} to U{sup 233}, the assembly was subdivided into the two regions called seed and blanket. The central seed region has a higher than blanket U{sup 233} content and acts as a neutron source for the peripheral blanket region. The latest acts as a U{sup 233} breeder. While the seed fuel pins have a standard dimensions the blanket fuel radius was increased in order to reduce the moderation and to facilitate the resonance neutron absorption in blanket Th{sup 232}. The U{sup 233} content in the seed and blanket regions was optimized to achieve maximal initial to discharged fissile inventory ratio (FIR) taking into account the target fuel cycle length of 12 months with 3-batch reloading scheme. In this study the neutronic calculations were performed on the fuel assembly level using Helios deterministic lattice transport code. The fuel cycle length and the core k{sub eff} were estimated by applying the Non Linear Reactivity Model. The applicability of the HELIOS code for the analysis of the Th-based high conversion designs was confirmed with the help of continuous-energy Monte-Carlo code SERPENT. The results of optimization studies show that for the heterogeneous seed and blanket (SB) fuel assembly the FIR of about 0.95 can be achieved. (authors)

  11. Conversational Repair in School-Aged Children with High-Functioning Autism

    Directory of Open Access Journals (Sweden)

    Pei-Mei Lu

    2015-12-01

    Full Text Available The main purpose of this study was to investigate the conversational repair skills of Mandarin Chinese-speaking children with high-functioning autism (HFA as compared with those of typically developing children (TD. Ten school-aged children (age 9 to 12 with HFA were recruited and matched against ten TD children in the control group based on age, gender, and verbal intelligence level. During three different conversation situations (free talk, story picture description, play, an examiner engineered 9 episodes of communicative breakdowns. Each consisted of a stacked series of three prompts for responding to requests for clarification (RQCLs (i.e.‘What?’, ‘I don’t understand’, ‘I still don’t know’. Verbal responses to each RQCL were then coded for further analyses. The results showed that (1 In response to the stacked series RQCLs, children with HFA were similar to the control group children in evidencing repetition, revision, and addition types of repair. Furthermore, children with HFA showed fewer cue type of repair and more inappropriate type of repair than TD group. (2For both groups, the pattern of responding over the series of RQCLs was similar in varying the repetition and revision types of repair strategies. However, the pattern in the addition, cue, and inappropriate types of repair strategies were different. Children with HFA were significantly more likely to respond to an RQCL with an inappropriate response than the language and age-matched controls. It is suggested that teachers and parents could facilitate the conversational repair skills of children with high-functioning autism by offering them opportunities to manage different types of communicative breakdowns.

  12. Algorithm for evaluating the effectiveness of a high-rise development project based on current yield

    Science.gov (United States)

    Soboleva, Elena

    2018-03-01

    The article is aimed at the issues of operational evaluation of development project efficiency in high-rise construction under the current economic conditions in Russia. The author touches the following issues: problems of implementing development projects, the influence of the operational evaluation quality of high-rise construction projects on general efficiency, assessing the influence of the project's external environment on the effectiveness of project activities under crisis conditions and the quality of project management. The article proposes the algorithm and the methodological approach to the quality management of the developer project efficiency based on operational evaluation of the current yield efficiency. The methodology for calculating the current efficiency of a development project for high-rise construction has been updated.

  13. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  14. Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs. low-yield pathways

    Directory of Open Access Journals (Sweden)

    D. K. Henze

    2008-05-01

    Full Text Available Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitric oxide (NO or hydroperoxy radical (HO2 to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to global formation of SOA, with a total production nearly equal that of toluene and xylene combined. Global production of SOA from aromatic sources via the mechanisms identified here is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Uncertainty in these estimates owing to factors ranging from the atmospheric relevance of chamber conditions to model deficiencies result in an estimated range of SOA production from aromatics of 2–12 Tg/yr. Though this uncertainty range affords a significant anthropogenic contribution to global SOA, it is evident from comparisons to recent observations that additional pathways for

  15. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    Science.gov (United States)

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  16. MOCVD process technology for affordable, high-yield, high-performance MESFET structures. Phase 3: MIMIC

    Science.gov (United States)

    1993-01-01

    Under the MIMIC Program, Spire has pursued improvements in the manufacturing of low cost, high quality gallium arsenide MOCVD wafers for advanced MIMIC FET applications. As a demonstration of such improvements, Spire was tasked to supply MOCVD wafers for comparison to MBE wafers in the fabrication of millimeter and microwave integrated circuits. In this, the final technical report for Spire's two-year MIMIC contract, we report the results of our work. The main objectives of Spire's MIMIC Phase 3 Program, as outlined in the Statement of Work, were as follows: Optimize the MOCVD growth conditions for the best possible electrical and morphological gallium arsenide. Optimization should include substrate and source qualification as well as determination of the optimum reactor growth conditions; Perform all work on 75 millimeter diameter wafers, using a reactor capable of at least three wafers per run; and Evaluate epitaxial layers using electrical, optical, and morphological tests to obtain thickness, carrier concentration, and mobility data across wafers.

  17. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  18. Yield gains of coffee plants from phosphorus fertilization may not be generalized for high density planting

    Directory of Open Access Journals (Sweden)

    Samuel Vasconcelos Valadares

    2014-06-01

    Full Text Available Inconclusive responses of the adult coffee plant to phosphorus fertilization have been reported in the literature, especially when dealing with application of this nutrient in high density planting systems. Thus, this study was carried out for the purpose of assessing the response of adult coffee plants at high planting density in full production (in regard to yield and their biennial cycle/stability to the addition of different sources and application rates of P in the Zona da Mata region of Minas Gerais, Brazil. The experiment with coffee plants of the Catucaí Amarelo 6/30 variety was carried out over four growing seasons. Treatments were arranged in a full factorial design [(4 × 3 + 1] consisting of four P sources (monoammonium phosphate, simple superphosphate, natural reactive rock phosphate from Algeria (Djebel-Onk, and FH 550®, three P rates (100, 200, and 400 kg ha-1 year-1 of P2O5, and an additional treatment without application of the nutrient (0 kg ha-¹ year-¹. A randomized block experimental design was used with three replicates. The four seasons were evaluated as subplots in a split plot experiment. The P contents in soil and leaves increased with increased rates of P application. However, there was no effect from P application on the yield and its biennial cycle/stability regardless of the source used over the four seasons assessed.

  19. Microstructure, mechanical properties and microtexture of friction stir welded S690QL high yield steel

    Energy Technology Data Exchange (ETDEWEB)

    Paillard, Pascal [Institut des Matériaux Jean Rouxel, UMR 6205, Polytech Nantes, Site de la Chantrerie, BP 50609, 44306 Nantes cedex 3 (France); Bertrand, Emmanuel, E-mail: emmanuel.bertrand@univ-nantes.fr [Institut des Matériaux Jean Rouxel, UMR 6205, Polytech Nantes, Site de la Chantrerie, BP 50609, 44306 Nantes cedex 3 (France); Allart, Marion; Benoit, Alexandre [Institut de Recherche Technologique Jules Verne, Chemin du Chaffault, 44340 Bouguenais (France); Ruckert, Guillaume [DCNS Research, Technocampus Ocean, 5 rue de l' Halbrane, 44340 Bouguenais (France)

    2016-12-15

    Two try-out campaigns of friction stir welding (FSW) were performed with different friction parameters to join S690QL high yield strength steel. The welds were investigated at macroscopic and microscopic scales using optical and electronic microscopy and microhardness mapping. Welds of the second campaign exhibit microstructures and mechanical properties in accordance with requirements for service use. Microtexture measurements were carried out in different zones of welds by electron backscattered diffraction (EBSD). It is shown that that texture of the bottom of the weld is similar to that of the base metal, suggesting a diffusion bonding mechanism. Finally, the mechanical properties (tensile strength, resilience, bending) were established on the most promising welds. It is shown that it is possible to weld this high yield strength steel using FSW process with satisfactory geometric, microstructural and mechanical properties. - Highlights: •1000 mm ∗ 400 mm ∗ 8 mm S690QL steel plates are joined by friction stir welding (FSW). •Maximum hardness is reduced by optimization of process parameters. •Various microstructures are formed but no martensite after process optimization. •Texture is modified in mechanically affected zones of the weld. •Texture in the bottom of the weld is preserved, suggesting diffusion bonding.

  20. Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    or convert to a functional conversion coating. In the last several decades chromate conversion coating (CrCCs) have been the most common conversion coatings used for aluminium alloys. Due to the toxicity of the hexavalent chrome, however, environmental friendly alternatives to CrCCs have been investigated...

  1. High yielding and early maturing mutants in mungbean (Vigna radiata (L) Wilczek)

    International Nuclear Information System (INIS)

    Malik, I.A.

    1988-01-01

    Mungbean in Pakistan is grown on about 79 thousand hectares with an annual production of around 39600 t. The poor yield of cultivars may be largely due to their indeterminate excessive vegetative growth, low harvest index, and susceptibility to various diseases. Lack of synchrony in maturity and pod shattering are also limiting factors. Mutation breeding of mungbean at NIAB has the object of evolving early and uniform maturing high yielding mutants. Seeds of mungbean strains Pak-22 and RC71-27 were irradiated with 60 Co gamma rays (5 kR to 80 kR) in 1977. After selecting mutants in the M 2 , further selections were made in M 3 for earliness, uniform maturity, short plant stature and larger number of pods/plant. In the M 4 , 62 selections were subjected to micro plot yield trials and seed protein analysis. Selection was continued in the advanced generations and performance was studied in multilocational trials arranged through the Department of Agriculture. The important characteristics of two mutants namely NM19-19 (derivative of strain Pak 22 at 40 kR) and NM121-25 (derivative of strain RC71-27 at 20 kR) are listed and their field performance is summarized. Both the mutants are short statured and have erect determinate growth habit. They mature early by a margin of 16 days and yield higher. The high harvest index of the mutants indicates their efficiency in partitioning photosynthates towards grain formation. Because of their synchrony in maturity and top fruit bearing habit the mutants are amenable to mechanized harvesting. The early maturity in mutants also makes them more suitable for intercropping practices. The mutants possess greater degree of tolerance to yellow mosaic disease and have shown wide adaptability and stability when grown under different agroclimatic conditions. Both the mutants have been released in 1986, by the Punjab Seed Council as commercial varieties under the names of 'NIAB Mung 121-25' and 'NIAB Mung 19-19' respectively

  2. Breeding for earliness, high yield and disease resistance in rice by means of induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Haq, M S; Ali, S M; Maniruzzaman, A F.M.; Mansur, A; Islam, R [Atomic Energy Centre, Dacca (Pakistan)

    1970-03-01

    Ten varieties of Boro, Aus and Aman rice were treated with 30 kR of gamma rays from the 500-Ci {sup 60}Co source of the Atomic Energy Centre of Dacca. In addition, two rice varieties were treated with EMS and dES. To suppress tillering, the seeds were sown late and at a high seed rate. 300 normal-looking fertile M{sub 1} plants from each variety were harvested at random. The M{sub 2} progenies were sown on a plant-to-row basis to select for high yield, earliness, blast resistance and response to large doses of nitrogen fertilizer. Characters like plant height, number of tillers, fertile tillers, length of panicle and time from sowing to maturity were checked. As the results showed great variability in the mutagen-treated material the chances for successful selection are promising. (author)

  3. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  4. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    International Nuclear Information System (INIS)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H.

    1985-01-01

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs

  5. Toward High-Power Klystrons With RF Power Conversion Efficiency on the Order of 90%

    CERN Document Server

    Baikov, Andrey Yu; Syratchev, Igor

    2015-01-01

    The increase in efficiency of RF power generation for future large accelerators is considered a high priority issue. The vast majority of the existing commercial high-power RF klystrons operates in the electronic efficiency range between 40% and 55%. Only a few klystrons available on the market are capable of operating with 65% efficiency or above. In this paper, a new method to achieve 90% RF power conversion efficiency in a klystron amplifier is presented. The essential part of this method is a new bunching technique - bunching with bunch core oscillations. Computer simulations confirm that the RF production efficiency above 90% can be reached with this new bunching method. The results of a preliminary study of an L-band, 20-MW peak RF power multibeam klystron for Compact Linear Collider with the efficiency above 85% are presented.

  6. Parametric studies for the nuclear design of high-conversion pressurized water reactors

    International Nuclear Information System (INIS)

    Axmann, J.; Oldekop, W.

    1987-01-01

    Undermoderated high-conversion pressurized water reactors with steel canning tubes offer the possibility of high burnup together with a comparatively low consumption of fissionable material; however, they require a relatively large inventory of fissionable material. The effects of different fuel compositions upon the specific consumption of fissionable material are investigated for a fixed burnup and moderator-to-fuel volume ratios varying between 0.5 and 2.0. Moreover, the required inventory of fissionable material is determined and the influence on the costs of electric power generation is shown. Further investigations deal with the neutron-physical effects of decreasing fuel rod diameters and the influence of differing steel additives. It appears that the parasitic neutron absorption by alloying constituents depends on the moderation level in a non-uniform manner and that the contribution of the fissionable material to the electric power generation costs is rather independent of the moderator-to-fuel volume ratio. (orig.) [de

  7. Type I parametric down conversion of highly focused Gaussian beams in finite length crystals

    International Nuclear Information System (INIS)

    Jeronimo-Moreno, Yasser; Jáuregui, R

    2014-01-01

    This paper presents a study of the correlations in wave vector space of photon pairs generated by type I spontaneous parametric down conversion using a Gaussian pump beam. The analysis covers both moderate focused and highly focused regimes, paying special attention to the angular spectrum and the conditional angular spectrum. Simple analytic expressions are derived that allow a detailed study of the dependence of these spectra on the waist of the source and the length of the nonlinear crystal. These expressions are in good agreement with numerical expectations and reported experimental results. They are used to make a systematic search of optimization parameters that improve the feasibility of using highly focused Gaussian beams to generate idler and signal photons with predetermined mean values and spread of their transverse wave vectors. (papers)

  8. Potential for efficient frequency conversion at high average power using solid state nonlinear optical materials

    International Nuclear Information System (INIS)

    Eimerl, D.

    1985-01-01

    High-average-power frequency conversion using solid state nonlinear materials is discussed. Recent laboratory experience and new developments in design concepts show that current technology, a few tens of watts, may be extended by several orders of magnitude. For example, using KD*P, efficient doubling (>70%) of Nd:YAG at average powers approaching 100 KW is possible; and for doubling to the blue or ultraviolet regions, the average power may approach 1 MW. Configurations using segmented apertures permit essentially unlimited scaling of average power. High average power is achieved by configuring the nonlinear material as a set of thin plates with a large ratio of surface area to volume and by cooling the exposed surfaces with a flowing gas. The design and material fabrication of such a harmonic generator are well within current technology

  9. Modeling of the dynamics of wind to power conversion including high wind speed behavior

    DEFF Research Database (Denmark)

    Litong-Palima, Marisciel; Bjerge, Martin Huus; Cutululis, Nicolaos Antonio

    2016-01-01

    This paper proposes and validates an efficient, generic and computationally simple dynamic model for the conversion of the wind speed at hub height into the electrical power by a wind turbine. This proposed wind turbine model was developed as a first step to simulate wind power time series...... for power system studies. This paper focuses on describing and validating the single wind turbine model, and is therefore neither describing wind speed modeling nor aggregation of contributions from a whole wind farm or a power system area. The state-of-the-art is to use static power curves for the purpose...... of power system studies, but the idea of the proposed wind turbine model is to include the main dynamic effects in order to have a better representation of the fluctuations in the output power and of the fast power ramping especially because of high wind speed shutdowns of the wind turbine. The high wind...

  10. Barriers to high conversion operations in an ebullated bed unit -- Relationship between sedimentation and operability

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, D. [Criterion Catalysts Company L.P., Houston, TX (United States)

    2000-07-01

    Ebullated-Bed (EB) catalytic processes are high temperature, high pressure residue hydrocrackers, which transform sour feeds into light, sweet products. EB processes typically involve one or more trains, with one, two, or three EB reactors in series. The key to operating any EB process is to control the 'sediment' which tends to increase with increasing level of conversion. Sediment problems are generally attributed to the catalyst. While this is true in some cases, there are certain problems that occur regardless of the catalyst used, whereas in some situations sediments from the EB process can actually be controlled by the catalyst. This paper describes two typical sedimentation patterns; one in which the sediment increases, and another in which sediment decreases as the EB products move through the recovery section. The benefits of sediment control are illustrated for the latter sedimentation pattern.

  11. Establishing a high yielding streptomyces-based cell-free protein synthesis system.

    Science.gov (United States)

    Li, Jian; Wang, He; Kwon, Yong-Chan; Jewett, Michael C

    2017-06-01

    Cell-free protein synthesis (CFPS) has emerged as a powerful platform for applied biotechnology and synthetic biology, with a range of applications in synthesizing proteins, evolving proteins, and prototyping genetic circuits. To expand the current CFPS repertoire, we report here the development and optimization of a Streptomyces-based CFPS system for the expression of GC-rich genes. By developing a streamlined crude extract preparation protocol and optimizing reaction conditions, we were able to achieve active enhanced green fluorescent protein (EGFP) yields of greater than 50 μg/mL with batch reactions lasting up to 3 h. By adopting a semi-continuous reaction format, the EGFP yield could be increased to 282 ± 8 μg/mL and the reaction time was extended to 48 h. Notably, our extract preparation procedures were robust to multiple Streptomyces lividans and Streptomyces coelicolor strains, although expression yields varied. We show that our optimized Streptomyces lividans system provides benefits when compared to an Escherichia coli-based CFPS system for increasing percent soluble protein expression for four Streptomyces-originated high GC-content genes that are involved in biosynthesis of the nonribosomal peptides tambromycin and valinomycin. Looking forward, we believe that our Streptomyces-based CFPS system will contribute significantly towards efforts to express complex natural product gene clusters (e.g., nonribosomal peptides and polyketides), providing a new avenue for obtaining and studying natural product biosynthesis pathways. Biotechnol. Bioeng. 2017;114: 1343-1353. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Recent advances on conversion and co-production of acetone-butanol-ethanol into high value-added bioproducts.

    Science.gov (United States)

    Xin, Fengxue; Dong, Weiliang; Jiang, Yujia; Ma, Jiangfeng; Zhang, Wenming; Wu, Hao; Zhang, Min; Jiang, Min

    2018-06-01

    Butanol is an important bulk chemical and has been regarded as an advanced biofuel. Large-scale production of butanol has been applied for more than 100 years, but its production through acetone-butanol-ethanol (ABE) fermentation process by solventogenic Clostridium species is still not economically viable due to the low butanol titer and yield caused by the toxicity of butanol and a by-product, such as acetone. Renewed interest in biobutanol as a biofuel has spurred technological advances to strain modification and fermentation process design. Especially, with the development of interdisciplinary processes, the sole product or even the mixture of ABE produced through ABE fermentation process can be further used as platform chemicals for high value added product production through enzymatic or chemical catalysis. This review aims to comprehensively summarize the most recent advances on the conversion of acetone, butanol and ABE mixture into various products, such as isopropanol, butyl-butyrate and higher-molecular mass alkanes. Additionally, co-production of other value added products with ABE was also discussed.

  13. Brayton Power Conversion Unit Tested: Provides a Path to Future High-Power Electric Propulsion Missions

    Science.gov (United States)

    Mason, Lee S.

    2003-01-01

    Closed-Brayton-cycle conversion technology has been identified as an excellent candidate for nuclear electric propulsion (NEP) power conversion systems. Advantages include high efficiency, long life, and high power density for power levels from about 10 kWe to 1 MWe, and beyond. An additional benefit for Brayton is the potential for the alternator to deliver very high voltage as required by the electric thrusters, minimizing the mass and power losses associated with the power management and distribution (PMAD). To accelerate Brayton technology development for NEP, the NASA Glenn Research Center is developing a low-power NEP power systems testbed that utilizes an existing 2- kWe Brayton power conversion unit (PCU) from previous solar dynamic technology efforts. The PCU includes a turboalternator, a recuperator, and a gas cooler connected by gas ducts. The rotating assembly is supported by gas foil bearings and consists of a turbine, a compressor, a thrust rotor, and an alternator on a single shaft. The alternator produces alternating-current power that is rectified to 120-V direct-current power by the PMAD unit. The NEP power systems testbed will be utilized to conduct future investigations of operational control methods, high-voltage PMAD, electric thruster interactions, and advanced heat rejection techniques. The PCU was tested in Glenn s Vacuum Facility 6. The Brayton PCU was modified from its original solar dynamic configuration by the removal of the heat receiver and retrofitting of the electrical resistance gas heater to simulate the thermal input of a steady-state nuclear source. Then, the Brayton PCU was installed in the 3-m test port of Vacuum Facility 6, as shown. A series of tests were performed between June and August of 2002 that resulted in a total PCU operational time of about 24 hr. An initial test sequence on June 17 determined that the reconfigured unit was fully operational. Ensuing tests provided the operational data needed to characterize PCU

  14. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  15. Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    Science.gov (United States)

    Gehre, Matthias; Renpenning, Julian; Geilmann, Heike; Qi, Haiping; Coplen, Tyler B.; Kümmel, Steffen; Ivdra, Natalija; Brand, Willi A.; Schimmelmann, Arndt

    2017-01-01

    Rationale: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H2) is responsible for non-quantitative H2 yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer–Chromium/High-Temperature Conversion Isotope Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems.

  16. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  17. Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes

    Science.gov (United States)

    Dong, Guo-Xiang; Shi, Hong-Yu; Xia, Song; Li, Wei; Zhang, An-Xue; Xu, Zhuo; Wei, Xiao-Yong

    2016-08-01

    In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency, covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%. At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. Project supported by the National Natural Science Foundation of China (Grant Nos. 61471292, 61331005, 61471388, 51277012, 41404095, and 61501365), the 111 Project, China (Grant No. B14040), the National Basic Research Program of China (Grant No. 2015CB654602), and the China Postdoctoral Science Foundation ( Grant No. 2015M580849).

  18. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    Science.gov (United States)

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival

    2015-01-01

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  19. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling.

    Science.gov (United States)

    Rollin, Joseph A; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K; Wu, Chang-Hao; Adams, Michael W W; Senger, Ryan S; Zhang, Y-H Percival

    2015-04-21

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L(-1)⋅h(-1). The productivity was further enhanced to 54 mmol H2⋅L(-1)⋅h(-1) by increasing reaction temperature, substrate, and enzyme concentrations--an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  20. Electrohydrodynamics: a high-voltage direct energy conversion process; L'electrohydrodynamique: Un procede de conversion directe d'energie a haute tension

    Energy Technology Data Exchange (ETDEWEB)

    Brun, S [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-04-15

    This analysis consists of a theoretical and practical study of a high-tension electrical power generator based on the Van de Graaff generator principle, the main difference being that the charges produced are transported by a gas in motion and not by a belt. The electrical and thermal properties of such a generator are studied, as well as the difficult problem of the production of the ionised particles used in the conversion. A certain number of results already published on this process for converting kinetic energy into electrical energy is given, as well as some possible applications in the field of space technology. (author) [French] Cette analyse est une etude theorique et pratique d'un generateur de puissance electrique a haute tension, base sur le principe du generateur Van de Graaff, la difference principale etant que les charges produites sont transportees pur un gaz en mouvement et non par une courroie. Les proprietes electriques et thermiques d'un tel generateur sont etudiees ainsi que le probleme delicat de la production des particules ionisees utilisees dans la conversion. Un certain nombre de resultats publies sur ce procede de conversion d'energie cinetique en energie electrique sont reproduits, ainsi que les applications possibles aux problemes spatiaux. (auteur)

  1. Mechanisms of radiation - chemical conversion of high-paraffinic crude oil

    International Nuclear Information System (INIS)

    Zaikin, Yu.A.; Zaikina, R.F.; Silverman, J.

    2002-01-01

    Complete text of publication follows. Regularities of radiation-thermal cracking (RTC) are studied in high-paraffinic oil. Irradiation of oil samples by 2 MeV electrons was performed using a special facility assembled at the electron accelerator ELU-4. The following characteristic RTC features were observed in oil with high contents of heavy paraffins: low level of isomerization in light RTC fractions; very high polymerization rate and low olefin contents in RTC products; relatively low yields of light fractions at low irradiation dose rates; increase in the molecular weight of the gasoline fraction as the irradiation dose rate grows. Similar intense polymerization of RTC products was observed in our experiments with such wastes of oil extraction as asphalt-pitch-paraffin sediments (APPS). Theoretically this feedstock contains great reserves of hydrogen, and, therefore, has high potential yields of light fractions. However, in this case RTC was accompanied by intense reactions of polymerization and chemical adsorption that limited the maximum yields of light RTC products to 40% in our experiments. A specific feature of APPS radiation-induced destruction is formation of the big amount of a reactive paraffinic residue. As a result of interaction with the polymerizing residue the light liquid fractions were completely absorbed and the heavy residue got denser and solidified after several days of exposure at room temperature. RTC regularities in heavy paraffinic oil differ from those observed both in highly viscous petroleum feedstock and light paraffin oils. We attribute these observations to the behavior of heavy alkyl radicals that initiate polymerization and isomerization in heavy paraffin fractions

  2. Use of 15N dilution method for screening soybean lines with high yield and high nitrogen fixation ability

    International Nuclear Information System (INIS)

    Li Haixian; Li Xinmin; Danso, S.K.A.

    1998-01-01

    15 N dilution method was used for screening soybean lines with high nitrogen fixation ability. Screened lines 1005, 8502, 2096, 943, 1454 and Dongnong-42 have high nitrogen fixation ability with their % Ndfa of about 70%. 1454 and 1555 are both high yield and high nitrogen fixation lines. The ability of nitrogen fixation was not related to the yield, but related to maturing time. The cultivars with different maturing time have different levels of nitrogen fixation ability. The longer the maturing period is, the greater the ability of nitrogen fixation it has. There were ten cultivars or lines used in the test of 1992 and 1994. Although the weather condition were greatly different between the two years the results of seven cultivars or lines were the same, indicating that nitrogen fixation ability of the soybean is stable with years. Using 15 N dilution method to estimate nitrogen fixation ability of soybean is reliable, however, the % Ndfa of lines 8502 and 2096 increased by 19% in 1994, a rainy year, indicating that a change in % Ndfa with a few varieties maybe caused by weather

  3. Future consequences of decreasing marginal production efficiency in the high-yielding dairy cow.

    Science.gov (United States)

    Moallem, U

    2016-04-01

    The objectives were to examine the gross and marginal production efficiencies in high-yielding dairy cows and the future consequences on dairy industry profitability. Data from 2 experiments were used in across-treatments analysis (n=82 mid-lactation multiparous Israeli-Holstein dairy cows). Milk yields, body weights (BW), and dry matter intakes (DMI) were recorded daily. In both experiments, cows were fed a diet containing 16.5 to 16.6% crude protein and net energy for lactation (NEL) at 1.61 Mcal/kg of dry matter (DM). The means of milk yield, BW, DMI, NEL intake, and energy required for maintenance were calculated individually over the whole study, and used to calculate gross and marginal efficiencies. Data were analyzed in 2 ways: (1) simple correlation between variables; and (2) cows were divided into 3 subgroups, designated low, moderate, and high DMI (LDMI, MDMI, and HDMI), according to actual DMI per day: ≤ 26 kg (n=27); >26 through 28.2 kg (n=28); and >28.2 kg (n=27). The phenotypic Pearson correlations among variables were analyzed, and the GLM procedure was used to test differences between subgroups. The relationships between milk and fat-corrected milk yields and the corresponding gross efficiencies were positive, whereas BW and gross production efficiency were negatively correlated. The marginal production efficiency from DM and energy consumed decreased with increasing DMI. The difference between BW gain as predicted by the National Research Council model (2001) and the present measurements increased with increasing DMI (r=0.68). The average calculated energy balances were 1.38, 2.28, and 4.20 Mcal/d (standard error of the mean=0.64) in the LDMI, MDMI, and HDMI groups, respectively. The marginal efficiency for milk yields from DMI or energy consumed was highest in LDMI, intermediate in MDMI, and lowest in HDMI. The predicted BW gains for the whole study period were 22.9, 37.9, and 75.8 kg for the LDMI, MDMI, and HDMI groups, respectively. The

  4. Harnessing the respiration machinery for high-yield production of chemicals in metabolically engineered Lactococcus lactis

    DEFF Research Database (Denmark)

    Liu, Jianming; Wang, Zhihao; Kandasamy, Vijayalakshmi

    2017-01-01

    on metabolically engineered Lactococcus lactis strains to optimize the production of acetoin and (R,R)−2,3-butanediol (R-BDO). In the absence of an external electron acceptor, a surplus of two NADH per acetoin molecule is produced. We found that a fully activated respiration was able to efficiently regenerate NAD......+, and a high titer of 371 mM (32 g/L) of acetoin was obtained with a yield of 82% of the theoretical maximum. Subsequently, we extended the metabolic pathway from acetoin to R-BDO by introducing the butanediol dehydrogenase gene from Bacillus subtilis. Since one mole of NADH is consumed when acetoin...... is converted into R-BDO per mole, only the excess of NADH needs to be oxidized via respiration. Either by fine-tuning the respiration capacity or by using a dual-phase fermentation approach involving a switch from fully respiratory to non-respiratory conditions, we obtained 361 mM (32 g/L) R-BDO with a yield...

  5. Monte carlo calculation of energy deposition and ionization yield for high energy protons

    International Nuclear Information System (INIS)

    Wilson, W.E.; McDonald, J.C.; Coyne, J.J.; Paretzke, H.G.

    1985-01-01

    Recent calculations of event size spectra for neutrons use a continuous slowing down approximation model for the energy losses experienced by secondary charged particles (protons and alphas) and thus do not allow for straggling effects. Discrepancies between the calculations and experimental measurements are thought to be, in part, due to the neglect of straggling. A tractable way of including stochastics in radiation transport calculations is via the Monte Carlo method and a number of efforts directed toward simulating positive ion track structure have been initiated employing this technique. Recent results obtained with our updated and extended MOCA code for charged particle track structure are presented here. Major emphasis has been on calculating energy deposition and ionization yield spectra for recoil proton crossers since they are the most prevalent event type at high energies (>99% at 14 MeV) for small volumes. Neutron event-size spectra can be obtained from them by numerical summing and folding techniques. Data for ionization yield spectra are presented for simulated recoil protons up to 20 MeV in sites of diameters 2-1000 nm

  6. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Ghorbani, H.; Rashidi, A.M.; Rastegari, S.; Mirdamadi, S.; Alaei, M.

    2011-01-01

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H 2 = 1/1, 100 cm 3 /min, at 620 o C under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H 2 = 1/1, total gas flow rate 100 cm 3 /min, at 620 o C for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  7. Improvement on the light yield of a high-Z inorganic scintillator GSO(Ce)

    CERN Document Server

    Kamae, T; Isobe, N; Kokubun, M; Kubota, A; Osone, S; Takahashi, T; Tsuchida, N; Ishibashi, H

    2002-01-01

    Cerium-doped gadolinium silicic dioxide crystal, GSO(Ce), is a high-Z non-hydroscopic scintillator that gives higher light yield than BGO, and can potentially replace NaI(Tl), CsI(Tl) and BGO in many applications. Its production cost, however, has been substantially higher than any of them, while its energy resolution has been worse than that of NaI(Tl) or CsI(Tl). The merit did not overcome these deficiencies except in limited applications. We developed a low background phoswich counter (the well-type phoswich counter) for the Hard X-ray Detector of the Astro-E project based on GSO scintillator. In the developmental work, we have succeeded in improving the light yield of GSO(Ce) by 40-50%. For energies above 500 keV, a large GSO(Ce) crystal (4.5 cmx4.5phi cm) now gives energy resolution comparable to or better than the best NaI(Tl) when read out with a phototube. With a small GSO(Ce) crystal (5x5x5 mm sup 3) and a photodiode, an energy resolution comparable to or better than the best CsI(Tl) has been obtaine...

  8. Scintillation and ionization yields produced by α-particles in high-density gaseous xenon

    International Nuclear Information System (INIS)

    Kusano, H.; Ishikawa, T.; Lopes, J.A.M.; Miyajima, M.; Shibamura, E.; Hasebe, N.

    2012-01-01

    The average numbers of scintillation photons and liberated electrons produced by 5.49-MeV α-particles were measured in high-density gaseous xenon. The density range is 0.12–1.32 g/cm 3 for scintillation measurements at zero electric field, and 0.12–1.03 g/cm 3 for the scintillation and ionization measurements under various electric fields. The density dependence of scintillation yield at zero electric field was observed. The W s -value, which is defined as the average energy expended per photon, increases with density and becomes almost constant in the density range above 1.0 g/cm 3 . Anti-correlations between average numbers of scintillation photons and liberated electrons were found to vary with density. It was also found that the total number of scintillation photons and liberated electrons decreases with increasing density. Several possible reasons for the variation in scintillation and ionization yields with density are discussed.

  9. Manthar-03: a high-yielding cultivar of wheat released for general cultivation in Southern Punjab

    International Nuclear Information System (INIS)

    Hussain, M.; Akhtar, L.H.; Nasim, M.

    2010-01-01

    We report the release of a new wheat variety Manthar-03. 'Manthar-03' is a high yielding and rust resistant variety of bread wheat with erect growth habit. It was released in the year 2003 as a general purpose variety. Manthar-03 is a selection from CIMMYT material (Entry No. 42 of 29 International Bread Wheat Screening Nursery) made at Regional Agricultural Research Institute (RARI), Bahawalpur during 1996-97. This strain has the famous CIMMYT line 'Kauz' in its parentage (KAUZ//ALTAR 84/AOS). Its pedigree is CM11163-6M-20Y-10M- 0M-0B. It is a more adapted and a high yielder. Genetically, this strain differs from existing commercial cultivars of Punjab. Resistance against leaf rust (5MRMS to 10MR), RRI value of 6.7 and 7.6 for leaf rust and ACI values of 3.4 and 0.7 for leaf rust) and high yield potential (6300 kg ha-1 ) are the major attributes of Manthar-03 that make it a superior variety for its target regions. Manthar-03 is tolerant to wheat aphid and Helicoverpa armigera. The thousand seed weight of this variety is 40-44 g. Seed is amber in color and contains 12.97% protein, 8.2% dry gluten and 1.55% ash. It has good chapati making quality. Plant type of Manthar-03 is erect with plant height 94 cm and droopy flag leaves. It is lodging resistant. It completes heading in 98 days and matures in 142 days. Manthar-03 performs better when planted from 15, November to 1, December, keeping 125 kg ha/sup -1/ seed rate and 125-85-50 kg NPK ha/sup -1/ are applied. (author)

  10. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    International Nuclear Information System (INIS)

    Barber, Ignasi; Perez-Rossello, Jeannette M.; Kleinman, Paul K.; Wilson, Celeste R.

    2015-01-01

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  11. The yield of high-detail radiographic skeletal surveys in suspected infant abuse

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Ignasi [Hospital Vall d' Hebron, Universitat Autonoma de Barcelona, Pediatric Radiology Department, Barcelona (Spain); Perez-Rossello, Jeannette M.; Kleinman, Paul K. [Boston Children' s Hospital, Radiology Department, Boston, MA (United States); Wilson, Celeste R. [Boston Children' s Hospital, Division of General Pediatrics, Boston, MA (United States)

    2014-07-06

    Skeletal surveys are routinely performed in cases of suspected child abuse, but there are limited data regarding the yield of high-detail skeletal surveys in infants. To determine the diagnostic yield of high-detail radiographic skeletal surveys in suspected infant abuse. We reviewed the high-detail American College of Radiology standardized skeletal surveys performed for suspected abuse in 567 infants (median: 4.4 months, SD 3.47; range: 4 days-12 months) at a large urban children's hospital between 2005 and 2013. Skeletal survey images, radiology reports and medical records were reviewed. A skeletal survey was considered positive when it showed at least one unsuspected fracture. In 313 of 567 infants (55%), 1,029 definite fractures were found. Twenty-one percent (119/567) of the patients had a positive skeletal survey with a total of 789 (77%) unsuspected fractures. Long-bone fractures were the most common injuries, present in 145 children (26%). The skull was the site of fracture in 138 infants (24%); rib cage in 77 (14%), clavicle in 24 (4.2%) and uncommon fractures (including spine, scapula, hands and feet and pelvis) were noted in 26 infants (4.6%). Of the 425 infants with neuroimaging, 154 (36%) had intracranial injury. No significant correlation between positive skeletal survey and associated intracranial injury was found. Scapular fractures and complex skull fractures showed a statistically significant correlation with intracranial injury (P = 0.029, P = 0.007, respectively). Previously unsuspected fractures are noted on skeletal surveys in 20% of cases of suspected infant abuse. These data may be helpful in the design and optimization of global skeletal imaging in this vulnerable population. (orig.)

  12. High yield growth of uniform ZnS nanospheres with strong photoluminescence properties

    International Nuclear Information System (INIS)

    Li, Yuan; Li, Qing; Wu, Huijie; Zhang, Jin; Lin, Hua; Nie, Ming; Zhang, Yu

    2013-01-01

    Graphical abstract: High-yield ZnS nanospheres with an average diameter of 80 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant PVP. It was found that PVP plays a crucial role in the formation of uniform ZnS nanospheres. A possible self-assembling growth mechanism was proposed. The UV–vis spectrum indicates that the as-prepared ZnS nanospheres exhibit a dramatic blue-shift. PL spectrum reveals that the ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. Highlights: ► High-yield ZnS nanospheres were generated conveniently in aqueous solution. ► The amount of surfactant PVP plays a crucial role on the morphology and size of the products. ► A tentative explanation for the growth mechanism of ZnS nanospheres was proposed. ► The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. ► PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. - Abstract: High yield ZnS nanospheres were generated conveniently in aqueous solution with the assistance of surfactant polyvinyl pyrrolidone (PVP). The products were characterized by XRD, EDX, XPS, FESEM, TEM and HRTEM. The as-prepared ZnS nanospheres were uniform with an average diameter of 80 nm. The role of PVP in the forming of ZnS nanospheres was investigated. The results indicated that surfactant PVP plays a crucial role on the morphology and size of the products. Moreover, a tentative explanation for the growth mechanism of ZnS nanospheres was proposed. UV–vis and PL absorption spectrum were used to investigate the optical properties of ZnS nanospheres. The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm.

  13. Monte Carlo simulation for neutron yield produced by bombarding thick targets with high energy heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Yoon, Moo Hyun; Lee, Hee Seock [POSTECH, Pohang (Korea, Republic of)

    2013-04-15

    One of radiation shielding issues at heavy-ion accelerator facilities is to estimate neutron production by primary heavy ions. A few Monte Carlo transport codes such as FLUKA and PHITS can work with primary heavy ions. Recently IBS/RISP((Rare Isotope Science Project) started to design a high-energy, high-power rare isotope accelerator complex for nuclear physics, medical and material science and applications. There is a lack of experimental and simulated data about the interaction of major beam, {sup 238}U with materials. For the shielding design of the end of first accelerating section section, we calculate a differential neutron yield using the FLUKA code for the interaction of 18.5 MeV/u uranium ion beam with thin carbon stripper of 1.3 μm). The benchmarking studies were also done to prove the yield calculation for 400 MeV/n {sup 131}Xe and other heavy ions. In this study, the benchmarking for Xe-C, Xe-Cu, Xe-Al, Xe-Pb and U-C, other interactions were performed using the FLUKA code. All of results show that the FLUKA can evaluate the heavy ion induced reaction with good uncertainty. For the evaluation of neutron source term, the calculated neutron yields are shown in Fig. 2. The energy of Uranium ion beam is only 18.5 MeV/u, but the energy of produced secondary neutrons was extended over 100 MeV. So the neutron shielding and the damage by those neutrons is expected to be serious. Because of thin stripper, the neutron intensity at forward direction was high. But the the intensity of produced secondary photons was relatively low and mostly the angular property was isotropic. For the detail shielding design of stripper section of RISP rare istope accelerator, the benchmarking study and preliminary evaluation of neutron source term from uranium beam have been carried out using the FLUKA code. This study is also compared with the evaluation results using the PHITS code performed coincidently. Both studies shows that two monte carlo codes can give a good results for

  14. Uranium conversion

    International Nuclear Information System (INIS)

    Oliver, Lena; Peterson, Jenny; Wilhelmsen, Katarina

    2006-03-01

    FOI, has performed a study on uranium conversion processes that are of importance in the production of different uranium compounds in the nuclear industry. The same conversion processes are of interest both when production of nuclear fuel and production of fissile material for nuclear weapons are considered. Countries that have nuclear weapons ambitions, with the intention to produce highly enriched uranium for weapons purposes, need some degree of uranium conversion capability depending on the uranium feed material available. This report describes the processes that are needed from uranium mining and milling to the different conversion processes for converting uranium ore concentrate to uranium hexafluoride. Uranium hexafluoride is the uranium compound used in most enrichment facilities. The processes needed to produce uranium dioxide for use in nuclear fuel and the processes needed to convert different uranium compounds to uranium metal - the form of uranium that is used in a nuclear weapon - are also presented. The production of uranium ore concentrate from uranium ore is included since uranium ore concentrate is the feed material required for a uranium conversion facility. Both the chemistry and principles or the different uranium conversion processes and the equipment needed in the processes are described. Since most of the equipment that is used in a uranium conversion facility is similar to that used in conventional chemical industry, it is difficult to determine if certain equipment is considered for uranium conversion or not. However, the chemical conversion processes where UF 6 and UF 4 are present require equipment that is made of corrosion resistant material

  15. BRS FC402: high-yielding common bean cultivar with carioca grain, resistance to anthracnose and fusarium wilt

    Directory of Open Access Journals (Sweden)

    Leonardo Cunha Melo

    2016-12-01

    Full Text Available BRS FC402 is a common bean cultivar of the carioca-grain group with commercial grain quality, suitable for cultivation in 21 Brazilian states. Cultivar has a normal cycle (85-94 days, high yield potential (4479 kg ha-1, 10.1% higher mean yield than the controls (2462 kg ha-1 and resistance to fusarium wilt and anthracnose.

  16. BRS 369RF and BRS 370RF: Glyphosate tolerant, high-yielding upland cotton cultivars for central Brazilian savanna

    Directory of Open Access Journals (Sweden)

    Camilo de Lelis Morello

    2015-12-01

    Full Text Available BRS 369RF and BRS 370RF were developed by the EMBRAPA as a part of efforts to create high-yielding germplasm with combinations of transgenic traits. BRS 369RF and BRS 370RF are midseason cultivars and have yield stability, adaptation to the central Brazilian savanna, good fiber quality and tolerance to glyphosate herbicide.

  17. Molecular signature of high yield (growth influenza a virus reassortants prepared as candidate vaccine seeds.

    Directory of Open Access Journals (Sweden)

    Manojkumar Ramanunninair

    Full Text Available Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8, to provide the high yield reassortant (HYR viral 'seeds' for vaccine production. HYR must contain the hemagglutinin (HA and neuraminidase (NA genes of wt virus and one to six 'internal' genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo.The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2 and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry.Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA.In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine 'seed' viruses.

  18. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm.

    Science.gov (United States)

    Wong, Yick Ching; Teh, Huey Fang; Mebus, Katharina; Ooi, Tony Eng Keong; Kwong, Qi Bin; Koo, Ka Loo; Ong, Chuang Kee; Mayes, Sean; Chew, Fook Tim; Appleton, David R; Kulaveerasingam, Harikrishna

    2017-06-21

    The oil yield trait of oil palm is expected to involve multiple genes, environmental influences and interactions. Many of the underlying mechanisms that contribute to oil yield are still poorly understood. In this study, we used a microarray approach to study the gene expression profiles of mesocarp tissue at different developmental stages, comparing genetically related high- and low- oil yielding palms to identify genes that contributed to the higher oil-yielding palm and might contribute to the wider genetic improvement of oil palm breeding populations. A total of 3412 (2001 annotated) gene candidates were found to be significantly differentially expressed between high- and low-yielding palms at at least one of the different stages of mesocarp development evaluated. Gene Ontologies (GO) enrichment analysis identified 28 significantly enriched GO terms, including regulation of transcription, fatty acid biosynthesis and metabolic processes. These differentially expressed genes comprise several transcription factors, such as, bHLH, Dof zinc finger proteins and MADS box proteins. Several genes involved in glycolysis, TCA, and fatty acid biosynthesis pathways were also found up-regulated in high-yielding oil palm, among them; pyruvate dehydrogenase E1 component Subunit Beta (PDH), ATP-citrate lyase, β- ketoacyl-ACP synthases I (KAS I), β- ketoacyl-ACP synthases III (KAS III) and ketoacyl-ACP reductase (KAR). Sucrose metabolism-related genes such as Invertase, Sucrose Synthase 2 and Sucrose Phosphatase 2 were found to be down-regulated in high-yielding oil palms, compared to the lower yield palms. Our findings indicate that a higher carbon flux (channeled through down-regulation of the Sucrose Synthase 2 pathway) was being utilized by up-regulated genes involved in glycolysis, TCA and fatty acid biosynthesis leading to enhanced oil production in the high-yielding oil palm. These findings are an important stepping stone to understand the processes that lead to

  19. Facile and High-Yielding Synthesis of TAM Biradicals and Monofunctional TAM Radicals.

    Science.gov (United States)

    Trukhin, Dmitry V; Rogozhnikova, Olga Yu; Troitskaya, Tatiana I; Vasiliev, Vladimir G; Bowman, Michael K; Tormyshev, Victor M

    2016-04-01

    Facile and high-yielding procedures for synthesis of monocarboxylic acid derivatives of triarylmethyl radicals (TAMs) were developed. Reaction of methyl thioglycolate with tris(2,3,5,6-tetrathiaaryl)methyl cation smoothly afforded the monosubstituted TAM derivative, which was hydrolyzed to a monocarboxylic acid, with the TAM moiety attached to thioglycolic acid via the sulfur atom. Alternatively, the diamagnetic tricarboxylic acid precursor of Finland trityl was transformed to a trimethyl ester and partially hydrolyzed under controlled conditions. The diester product was isolated and the remaining fractions were converted back to the trimethyl ester for production of more diester. The first representatives of TAM biradicals with different TAM cores and interspin distances were obtained by reaction of these new TAM monocaboxylic acids with N,N'-dimethylethylenediamine.

  20. High yield silicon carbide from alkylated or arylated pre-ceramic polymer

    International Nuclear Information System (INIS)

    Baney, R.H.; Gaul, J.H.

    1982-01-01

    Alkylated or arylated methylpolysilanes which exhibit ease of handling and are used to obtain silicon carbide ceramic materials in high yields contain 0 to 60 mole percent (CH 3 ) 2 Si double bond units and 40 to 100 mole percent CH 3 Si triple bond units, wherein there is also bonded to the silicon atoms other silicon atoms and additional alkyl radicals of 1 to 4 carbon atoms or phenyl. They may be prepared by reaction of a Grignard reagent RMgX, where X is halogen and R is Csub(1-4)-alkyl or phenyl, with a starting material which is a solid at 25 0 C, and is identical to the product except that the remaining bonds on the silicon atoms are attached to another silicon atom, or a chlorine or a bromine atom. Ceramics result from heating the polysilane products to 1200 0 C, optionally with fillers. (author)

  1. Garnet Yield Strength at High Pressures and Implications for Upper Mantle and Transition Zone Rheology

    International Nuclear Information System (INIS)

    Kavner, A.

    2008-01-01

    Garnet helps control the mechanical behavior of the Earth's crust, mantle, and transition zone. Here, measurements are presented suggesting that garnet, long considered to be a high-viscosity phase, is actually weaker than the other dominant components in the transition zone. The mechanical behavior of garnet at high pressures was examined using radial diffraction techniques in the diamond anvil cell. The yield strength of grossular garnet was inferred from synchrotron X-ray measurements of differential lattice strains. The differential stress was found to increase from 1.3 (±0.6) GPa at a hydrostatic pressure 5.8 (±1.1) GPa to 4.1 (±0.4) GPa at 15.7 (±1.0) GPa, where it was level to 19 GPa. The strength results are consistent with inferred strength values for majorite garnet from measurements in the diamond cell normal geometry, bolstering the idea that garnet-structured materials may all have similar strengths. In this low-temperature, high differential stress regime, garnet is shown to be significantly weaker than anhydrous ringwoodite and to have a strength similar to hydrous ringwoodite. This result suggests that the presence of water in the transition zone may not be required to explain a weak rheology, and therefore models of transition zone behavior built assuming that garnet is the high-strength phase may need to be revised.

  2. Diagnostic Yield of Transbronchial Biopsy in Comparison to High Resolution Computerized Tomography in Sarcoidosis Cases

    Science.gov (United States)

    Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan

    2018-04-25

    This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License

  3. Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property

    International Nuclear Information System (INIS)

    Yan Shancheng; Sun Litao; Qu Peng; Huang Ninping; Song Yinchen; Xiao Zhongdang

    2009-01-01

    Large-scale high quality CdS nanowires with uniform diameter were synthesized by using a rapid and simple solvothermal route. Field emission scan electron microscopy (FESEM) and transmission electron microscopy (TEM) images show that the CdS nanowires have diameter of about 26 nm and length up to several micrometres. High resolution TEM (HRTEM) study indicates the single-crystalline nature of CdS nanowires with an oriented growth along the c-axis direction. The optical properties of the products were characterized by UV-vis absorption spectra, photoluminescence spectra and Raman spectra. The resistivity, electron concentration and electron mobility of single NW are calculated by fitting the symmetric I-V curves measured on single NW by the metal-semiconductor-metal model based on thermionic field emission theory. - Graphical abstract: Large-scale high quality CdS nanowires (NWs) with uniform diameter were synthesized by using a rapid and simple solvothermal route. The reaction time is reduced to 2 h, comparing to other synthesis which needed long reaction time up to 12 h. In addition, the as-prepared CdS nanowires have more uniform diameter and high yield. More importantly, the I-V curve of present single CdS nanowire has a good symmetric characteristic as expected by the theory.

  4. Ortho-para conversion in the solid hydrogens at high pressures

    International Nuclear Information System (INIS)

    Strzhemechny; Hemley, R.J.

    2003-01-01

    At low pressures the ortho-para conversion in H 2 and D 2 is a slow process governed by the magnetic dipole interaction of nuclear magnetic moments, phonons being the main energy sink. As the pressure is raised to a few GPa and the Debye temperature increases substantially, the conversion energy finds itself in an area where phonon states are depleted and conversion slows down. The recent Raman and NMR experiments showed that the conversion rate in H 2 after an initial slowdown predicted by theory increases immensely. As for solid D 2 , conversion rates have apparently not yet been directly measured under pressure. In order to explain the anomaly observed in H 2 , we have suggested a new conversion mechanism, in which the basic conversion-producing interaction only initiates conversion whereas the energy is removed by rotational excitations via the stronger electric quadrupole-quadrupole interaction. Estimated conversion rates are in good qualitative agreement with available experimental observations. Here we extend the theory to solid D 2 taking into account the differences between H 2 and D 2 in the molecular and solid-state parameters. The new libron-mediated channel is predicted to result for D 2 in conversion rates under pressure that are by an order of magnitude larger than at P = 0

  5. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    International Nuclear Information System (INIS)

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-01-01

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion

  6. Pathomorphological characteristics of abomasal ulcers in high-yielding dairy cows

    Directory of Open Access Journals (Sweden)

    Kureljušić Branislav

    2013-01-01

    Full Text Available The aim of this paper was to investigate the morphology, localization and typization of abomasal ulcers in high-yielding dairy cows, as a contribution to the existing knowledge on the subject. A total of ten high-yielding dairy cows which died during the period of early puerperium and two Holstein heifers which died in late pregnancy after transport to a new location were investigated in this study. Samples of altered abomasal tissue were taken at necropsy for further histopathology and mycology investigations. The disclosed ulcerations of the abomasums in twelve investigated animals differed among them not only as far as localization and morphology are concerned, but also in the degree of intramural penetration. Such differences distinguished them into four types. Ulcerations of type one and type two, recorded in two heifers and six cows, as well as in one cow with lymphoma of the abomasum. Perforating ulcer of type three, with circumscripted peritonitis was diagnosed in one cow in the corpus of the abomasum close to the curvatura major. An interesting finding was the simultaneous occurrence of type four perforating ulcer and ulcer-type one, which were located next to each other. Histopathological examination of the structure of the ulcerated abomasum dyed with the hematoxylin-eosin method showed that coagulation necrosis in the area of the ulceration revealed a moderate inflammatory infiltrate in the lamina propria. In the cow affected with lymphoma, a copious tumorous lymphoid infiltrate was concurrent. Mycotic ulcerative abomasitis was described in a cow seven days after calving. In these lesions Aspergillus fumigatus and Mucor spp. were isolated. Histopathological analysis of tissue samples dyed with the Grocott method, described septed and nonsepted hyphae in the blood vessels and surrounding tissue of the tunica mucosa and submucosa.

  7. Metallic metasurfaces for high efficient polarization conversion control in transmission mode.

    Science.gov (United States)

    Li, Tong; Hu, Xiaobin; Chen, Huamin; Zhao, Chen; Xu, Yun; Wei, Xin; Song, Guofeng

    2017-10-02

    A high efficient broadband polarization converter is an important component in integrated miniaturized optical systems, but its performances is often restricted by the material structures, metallic metasurfaces for polarization control in transmission mode never achieved efficiency above 0.5. Herein, we theoretically demonstrate that metallic metasurfaces constructed by thick cross-shaped particles can realize a high efficient polarization transformation over a broadband. We investigated the resonant properties of designed matesurfaces and found that the interaction between double FP cavity resonances and double bulk magnetic resonances is the main reason to generate a high transmissivity over a broadband. In addition, through using four resonances effect and tuning the anisotropic optical response, we realized a high efficient (> 0.85) quarter-wave plate at the wavelength range from 1175nm to 1310nm and a high efficient (> 0.9) half-wave plate at the wavelength range from 1130nm to 1230nm. The proposed polarization converters may have many potential applications in integrated polarization conversion devices and optical data storage systems.

  8. Consideration of ultra-high temperature nuclear heat sources for MHD conversion systems

    International Nuclear Information System (INIS)

    Holman, R.R.; Tobin, J.M.; Young, W.E.

    1975-01-01

    The nuclear technology reactors developed and tested in the Nuclear Engine Rocket Vehicle Application (NERVA) program operated with fuel exit gas temperatures in excess of 2600 K. This experience provided a significant ultra-high temperature technology base and design insight for commercial power applications. Design approaches to accommodate fission product retention and other key prevailing requirements are examined in view of the basic overriding functional requirements, and some interesting reconsiderations are suggested. Predicted overall system performance potentials for a 2000 K MHD conversion system and reactor parameter requirements are compared and related to existing technology status. Needed verification and development efforts are suggested. A reconsideration of basic design approaches is suggested that could open the door for immediate development of ultrahigh temperature nuclear heat sources for advanced energy systems

  9. Parametric study on thermal-hydraulic characteristics of high conversion light water reactor

    International Nuclear Information System (INIS)

    Mori, Takamasa; Nakagawa, Masayuki; Fujii, Sadao.

    1988-11-01

    To assess the feasibility of high conversion light water reactors (HCLWRs) from the thermal-hydraulic viewpoint, parametric study on thermal-hydraulic characteristics of HCLWR has been carried out by using a unit cell model. It is assumed that a HCLWR core is contained in a current 1000 MWe PWR plant. At the present study, reactor core parameters such as fuel pin diameter, pitch, core height and linear heat rate are widely and parametrically changed to survey the relation between these parameters and the basic thermal-hydraulic characteristics, i.e. maximum fuel temperature, minimum DNBR, reduction of reactor thermal output and so on. The validity of the unit cell model used has been ensured by comparison with the result of a subchannel analysis carried out for a whole core. (author)

  10. Neutrino flavor conversions in high-density astrophysical and cosmological environments

    International Nuclear Information System (INIS)

    Saviano, Ninetta

    2014-03-01

    The topic of this thesis is the study of the neutrino flavor conversions in high-density environments: the supernovae and the the Early Universe. Remarkably, these represent the only two cases in which neutrinos themselves contribute to the ''background medium'' for their propagation, making their oscillations a non-linear phenomenon. In particular, in the dense supernova core, the neutrino-neutrino interactions can lead in some situations to surprising and counterintuitive collective phenomena, when the entire neutrino system oscillates coherently as a single collective mode. In this context, we have shown that during the early SN accretion phase (post-bounce times 10 -3 ) in order to suppress the sterile neutrino production and to find a better agreement between the cosmological and laboratory hints. Finally, we discuss the implications of our results on Big-Bang Nucleosynthesis and on the Cosmic Microwave Background from data measured by the Planck experiment.

  11. Computational screening of new inorganic materials for highly efficient solar energy conversion

    DEFF Research Database (Denmark)

    Kuhar, Korina

    2017-01-01

    in solar cells convert solar energy into electricity, and PC uses harvested energy to conduct chemical reactions, such as splitting water into oxygen and, more importantly, hydrogen, also known as the fuel of the future. Further progress in both PV and PC fields is mostly limited by the flaws in materials...... materials. In this work a high-throughput computational search for suitable absorbers for PV and PC applications is presented. A set of descriptors has been developed, such that each descriptor targets an important property or issue of a good solar energy conversion material. The screening study...... that we have access to. Despite the vast amounts of energy at our disposal, we are not able to harvest this solar energy efficiently. Currently, there are a few ways of converting solar power into usable energy, such as photovoltaics (PV) or photoelectrochemical generation of fuels (PC). PV processes...

  12. Novel high efficient speed sensorless controller for maximum power extraction from wind energy conversion systems

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2016-01-01

    Highlights: • Novel sensorless MPPT technique without drawbacks of other sensor/sensorless methods. • Tracking the actual MPP of WECSs, no tracking the MPP of their wind turbines. • Actually extracting the highest output power from WECSs. • Novel MPPT technique having the MPPT efficiency more than 98.5% for WECSs. • Novel MPPT technique having short convergence time for WECSs. - Abstract: In this study, a novel high accurate sensorless maximum power point tracking (MPPT) method is proposed. The technique tracks the actual maximum power point of a wind energy conversion system (WECS) at which maximum output power is extracted from the system, not the maximum power point of its wind turbine at which maximum mechanical power is obtained from the turbine, so it actually extracts the highest output power from the system. The technique only uses input voltage and current of the converter used in the system, and neither needs any speed sensors (anemometer and tachometer) nor has the drawbacks of other sensor/sensorless based MPPT methods. The technique has been implemented as a MPPT controller by constructing a WECS. Theoretical results, the technique performance, and its advantages are validated by presenting real experimental results. The real static-dynamic response of the MPPT controller is experimentally obtained that verifies the proposed MPPT technique high accurately extracts the highest instant power from wind energy conversion systems with the MPPT efficiency of more than 98.5% and a short convergence time that is only 25 s for the constructed system having a total inertia and friction coefficient of 3.93 kg m 2 and 0.014 N m s, respectively.

  13. High-yield Synthesis of Multiwalled Carbon Nanotube by Mechanothermal Method

    Directory of Open Access Journals (Sweden)

    Manafi SA

    2009-01-01

    Full Text Available Abstract This study reports on the mechanothermal synthesis of multiwalled carbon nanotube (MWCNTs from elemental graphite powder. Initially, high ultra-active graphite powder can be obtained by mechanical milling under argon atmosphere. Finally, the mechanical activation product is heat-treated at 1350°C for 2–4 h under argon gas flow. After heat-treatment, active graphite powders were successfully changed into MWCNTs with high purity. The XRD analyses showed that in the duration 150 h of milling, all the raw materials were changed to the desired materials. From the broadening of the diffraction lines in the XRD patterns, it was concluded that the graphite crystallites were nanosized, and raising the milling duration resulted in the fineness of the particles and the increase of the strain. The structure and morphology of MWCNTs were investigated using scanning electron microscopy (SEM and high-resolution transmission electron microscopy (HRTEM. The yield of MWCNTs was estimated through SEM and TEM observations of the as-prepared samples was to be about 90%. Indeed, mechanothermal method is of interest for fundamental understanding and improvement of commercial synthesis of carbon nanotubes (CNTs. As a matter of fact, the method of mechanothermal guarantees the production of MWCNTs suitable for different applications.

  14. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI 2 ) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E g = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG ampersand G/EM on 96 HgI 2 spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI 2 which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs

  15. R and D on the power conversion system for gas turbine high temperature reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Takada, Shoji; Yan Xing; Kosugiyama, Shinichi; Katanishi, Shoji; Kunitomi, Kazuhiko

    2004-01-01

    JAERI is conducting R and D on the power conversion system of the GTHTR300 plant, in parallel with plant design work. The design of the power conversion system is based on a regenerative, non-intercooled, closed Brayton cycle with helium gas as the working fluid. A single-shaft, axial-flow turbo-compressor and a directly coupled electric generator run on magnetic bearings. Major R and D issues for the power conversion system are aerodynamic performance of the helium gas compressor, high load capacity magnetic bearings and performance of magnetic bearing supported rotor, and operability and controllability of the closed-cycle gas turbine system. Three test plans were set up to address theses issues, aiming at verifying the design of the GTHTR300 power conversion system and establishing key technologies of a closed-cycle helium gas turbine system. The compressor aerodynamic performance test is aiming at verifying the aerodynamic performance and design method of the helium compressor. A 1/3-scale, four-stage compressor test model and a helium gas loop were designed and fabricated. The model was designed to simulate the repeating stage flow, and at the same time have satisfactorily high machining precision, Reynolds number and measurement accuracy. The helium gas operating pressure is varied to investigate the effects of the Reynolds number on the efficiency and surge margin. Two sets of blades were fabricated to evaluate the effects of the end-wall over-camber angle. Test results will provide the basis for further improvement in the GTHTR300 compressor design. The magnetic bearing development test is aiming at developing the technology of the magnetic bearing supported rotor system. The test rig composed of 1/3-scale turbo-compressor and generator rotor models that are connected together by a flexible coupling. Each rotor models are supported by two radial magnetic bearings with a high load capacity that is about 1/10 of the GTHTR300 design. The rotor models were

  16. High-quality LaVO3 films as solar energy conversion material

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Brahlek, Matthew; Ji, Xiaoyu; Lei, Shiming; Lapano, Jason

    2017-01-01

    Mott insulating oxides and their heterostructures have recently been identified as potential photovoltaic materials with favorable absorption properties and an intrinsic built-in electric field that can efficiently separate excited electron hole pairs. At the same time, they are predicted to overcome the Shockley-Queisser limit due to strong electron electron interaction present. Despite these premises a high concentration of defects commonly observed in Mott insulating films acting as recombination centers can derogate the photovoltaic conversion efficiency. With use of the self-regulated growth kinetics in hybrid molecular beam epitaxy, this obstacle can be overcome. High-quality, stoichiometric LaVO 3 films were grown with defect densities of in-gap states up to 2 orders of magnitude lower compared to the films in the literature, and a factor of 3 lower than LaVO 3 bulk single crystals. Photoconductivity measurements revealed a significant photoresponsivity increase as high as tenfold of stoichiometric LaVO 3 films compared to their nonstoichiometric counterparts. Furthermore, this work marks a critical step toward the realization of high-performance Mott insulator solar cells beyond conventional semiconductors.

  17. Does high yield spread dampen economic growth? : the case of US-Japan

    Directory of Open Access Journals (Sweden)

    Yutaka Kurihara

    2014-04-01

    Full Text Available This article focuses on the relationship between the United States' and Japan's yield spread of interest rates and economic growth in Japan. The yield spread is defined in this article as the difference between the Japanese government bond yield minus the US government bond yield. Some studies have tackled this issue and found a negative relationship between the yield spread and economic growth; however, recent studies have shown no or a weak relationship. This problem has not yet consensus in spite of its importance. As the Japanese interest rate has been quite low since the adoption of the zero interest rate policy at the end of 1990s, the situation may change the results. The empirical results show that reliability of yield spread as a leading indicator of output growth exists in Japan; however, term structure of interest rate is not related to economic growth.

  18. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production].

    Science.gov (United States)

    Jin, Yingfu; Han, Li; Zhang, Shasha; Li, Shizhong; Liu, Weifeng; Tao, Yong

    2017-11-25

    To optimize key enzymes, such as to explore the gene resources and to modify the expression level, can maximize metabolic pathways of target products. β-carotene is a terpenoid compound with important application value. Lycopene cyclase (CrtY) is the key enzyme in β-carotene biosynthesis pathway, catalyzing flavin adenine dinucleotide (FAD)-dependent cyclization reaction and β-carotene synthesis from lycopene precursor. We optimized lycopene cyclase (CrtY) to improve the synthesis of β-carotene and determined the effect of CrtY expression on metabolic pathways. Frist, we developed a β-carotene synthesis module by coexpressing the lycopene β-cyclase gene crtY with crtEBI module in Escherichia coli. Then we simultaneously optimized the ribosome-binding site (RBS) intensity and the species of crtY using oligo-linker mediated DNA assembly method (OLMA). Five strains with high β-carotene production capacity were screened out from the OLMA library. The β-carotene yields of these strains were up to 15.79-18.90 mg/g DCW (Dry cell weight), 65% higher than that of the original strain at shake flask level. The optimal strain CP12 was further identified and evaluated for β-carotene production at 5 L fermentation level. After process optimization, the final β-carotene yield could reach to 1.9 g/L. The results of RBS strength and metabolic intermediate analysis indicated that an appropriate expression level of CrtY could be beneficial for the function of the β-carotene synthesis module. The results of this study provide important insight into the optimization of β-carotene synthesis pathway in metabolic engineering.

  19. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    International Nuclear Information System (INIS)

    Huang Qi-Zhang; Zhu Yan-Qing; Shi Ji-Fu; Wang Lei-Lei; Zhong Liu-Wen; Xu Gang

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module. The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%. Additionally, with the 3D-printed microfluidic device serving as water cooling, the temperature of the DSC can be effectively controlled, which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module. Moreover, the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%. The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition. (paper)

  20. Dye-sensitized solar cell module realized photovoltaic and photothermal highly efficient conversion via three-dimensional printing technology

    Institute of Scientific and Technical Information of China (English)

    Qi-Zhang Huang; Yan-Qing Zhu; Ji-Fu Shi; Lei-Lei Wang; Liu-Wen Zhong; Gang Xu

    2017-01-01

    Three-dimensional (3D) printing technology is employed to improve the photovoltaic and photothermal conversion efficiency of dye-sensitized solar cell (DSC) module.The 3D-printed concentrator is optically designed and improves the photovoltaic efficiency of the DSC module from 5.48% to 7.03%.Additionally,with the 3D-printed microfluidic device serving as water cooling,the temperature of the DSC can be effectively controlled,which is beneficial for keeping a high photovoltaic conversion efficiency for DSC module.Moreover,the 3D-printed microfluidic device can realize photothermal conversion with an instantaneous photothermal efficiency of 42.1%.The integrated device realizes a total photovoltaic and photothermal conversion efficiency of 49% at the optimal working condition.

  1. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    Science.gov (United States)

    Tavano, Alessandro; Pesarin, Anna; Murino, Vittorio; Cristani, Marco

    2014-01-01

    Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs). SCPs assume that whenever an agent's process changes state (e.g., from silence to speech), it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  2. Automatic conversational scene analysis in children with Asperger syndrome/high-functioning autism and typically developing peers.

    Directory of Open Access Journals (Sweden)

    Alessandro Tavano

    Full Text Available Individuals with Asperger syndrome/High Functioning Autism fail to spontaneously attribute mental states to the self and others, a life-long phenotypic characteristic known as mindblindness. We hypothesized that mindblindness would affect the dynamics of conversational interaction. Using generative models, in particular Gaussian mixture models and observed influence models, conversations were coded as interacting Markov processes, operating on novel speech/silence patterns, termed Steady Conversational Periods (SCPs. SCPs assume that whenever an agent's process changes state (e.g., from silence to speech, it causes a general transition of the entire conversational process, forcing inter-actant synchronization. SCPs fed into observed influence models, which captured the conversational dynamics of children and adolescents with Asperger syndrome/High Functioning Autism, and age-matched typically developing participants. Analyzing the parameters of the models by means of discriminative classifiers, the dialogs of patients were successfully distinguished from those of control participants. We conclude that meaning-free speech/silence sequences, reflecting inter-actant synchronization, at least partially encode typical and atypical conversational dynamics. This suggests a direct influence of theory of mind abilities onto basic speech initiative behavior.

  3. Development of high yielding mutants of Brassica campestris L. cv. Toria selection through gamma rays irradiation

    International Nuclear Information System (INIS)

    Javed, M.A.; Siddiqui, M.A.; Khan, M.K.R.; Khatri, A.; Khan, I.A.; Dahar, N.A.; Khanzada, M.H.; Khan, R.

    2003-01-01

    Homogeneous seeds of Brassica campestris L. cv. Toria selection were treated with different doses of gamma rays (750, 1000 and 1250 Gy) to induce genetic variability for the selection of new genotypes with improved agronomic traits. After passing through different stages of selection, two promising mutants were selected for further studies. Two selected mutants along with 5 other entries including parent variety were evaluated for yield and yield components in yield trials for two consecutive years. The mutant TS96-752 was significantly (P less than or equal to 0.05) superior to all other entries in grain yield but at par with FSD 86028-3

  4. A novel on-chip high to low voltage power conversion circuit

    International Nuclear Information System (INIS)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong; Lai Xinquan; Ye Qiang; Li Xianrui

    2009-01-01

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 μm BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm 2 area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  5. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    International Nuclear Information System (INIS)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna; Martin, Lane W.; King, William P.

    2014-01-01

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO 3 film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10 5  kV/cm-s, and temperature change rates as high as 6 × 10 5  K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cycles are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems

  6. A novel on-chip high to low voltage power conversion circuit

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hui; Wang Songlin; Mou Zaixin; Guo Baolong [Institute of Mechano-electronic Engineering, Xidian University, Xi' an 71007 (China); Lai Xinquan; Ye Qiang; Li Xianrui, E-mail: whui94@126.co [Institute of Electronic CAD, Xidian University, Xi' an 710071 (China)

    2009-03-15

    A novel power supply transform technique for high voltage IC based on the TSMC 0.6 mum BCD process is achieved. An adjustable bandgap voltage reference is presented which is different from the traditional power supply transform technique. It can be used as an internal power supply for high voltage IC by using the push-pull output stage to enhance its load capability. High-order temperature compensated circuit is designed to ensure the precision of the reference. Only 0.01 mm{sup 2} area is occupied using this novel power supply technique. Compared with traditional technique, 50% of the area is saved, 40% quiescent power loss is decreased, and the temperature coefficient of the reference is only 4.48 ppm/deg. C. Compared with the traditional LDO (low dropout) regulator, this power conversion architecture does not need external output capacitance and decreases the chip-pin and external components, so the PCB area and design cost are also decreased. The testing results show that this circuit works well.

  7. Screening of high-yield GTF yeast by N+-implantation

    International Nuclear Information System (INIS)

    Gao Yanhong; Lv Jiaping; Liu Lu; Li Shurong

    2009-01-01

    In this study, one of the highest chromium-resistant strain was screened from 12 tested brewer's yeast. N + ion implantation was used to mutate this yeast and screened high-yield GTF yeast strains with Chromium tolerance method. The mutagenesis was conducted by 50 KeV N + ion implantation with the doses of 1 x 2.6 x 10 13 , 2 x 2.6 x 10 13 , 3 x 2.6 x 10 13 , 4 x 2.6 x 10 13 , 5 x 2.6 x 10 13 and 6 x 2.6 x 10 13 ion/cm 2 . Results showed that the optimum dose was 4 x 2.6 x 10 13 ion/cm 2 , and a strain M11-1A11 of high-producing GTF was obtained. Its organic Cr content was increased by 22.4% than the original strain. Its fermentation property was stable after 5 generation transfer inoculation. (authors)

  8. Theoretical investigations on the high light yield of the LuI3:Ce scintillator

    International Nuclear Information System (INIS)

    Vasil'ev, A.N.; Iskandarova, I.M.; Scherbinin, A.V.; Markov, I.A.; Bagatur'yants, A.A.; Potapkin, B.V.; Srivastava, A.M.; Vartuli, J.S.; Duclos, S.J.

    2009-01-01

    The extremely high scintillation efficiency of lutetium iodide doped by cerium is explained as a result of at least three factors controlling the energy transfer from the host matrix to activator. We propose and theoretically validate the possibility of a new channel of energy transfer to excitons and directly to cerium, namely the Auger process when Lu 4f hole relaxes to the valence band hole with simultaneous creation of additional exciton or excitation of cerium. This process should be efficient in LuI 3 , and inefficient in LuCl 3 . To justify this channel, we perform calculations of density of states using a periodic plane-wave density functional approach. The second factor is the increase of the efficiency of valence hole capture by cerium in the row LuCl 3 -LuBr 3 -LuI 3 . The third one is the increase of the efficiency of energy transfer from self-trapped excitons to cerium ions in the same row. The latter two factors are verified by cluster ab initio calculations. We estimate either the relaxation of these excitations and barriers for the diffusion of self-trapped holes (STH) and self-trapped exciton (STE). The performed estimations theoretically justify the high LuI 3 :Ce 3+ scintillator yield.

  9. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    Martine, J.F.; Siband, P.; Bonhomme, R.

    1999-01-01

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m -2 ·d -1 ), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author) [fr

  10. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    Science.gov (United States)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  11. Limited Seed and Seed Yield Response of Calendula to Applied Nitrogen Does Not Justify Risk of Environmental Damage from High Urea Application Rates

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2018-03-01

    Full Text Available Calendula (Calendula officinalis L. seed, due to its high calendic acid content, is recognized as a potential environmentally safe substitute for volatile organic compounds. Agronomic guidelines for nitrogen (N management to produce calendula seed oil on a commercial scale are limited. Post-harvest soil N has the potential to move off-farm and contribute to water quality degradation (e.g., hypoxia in the Gulf of Mexico. Establishing N management guidelines should consider agronomic response and potential environmental risk. Calendula seed and oil yield, oil content, harvest index, N use, seed N use efficiency, oil N use efficiency, agronomic efficiency, vegetative growth, and the amount of residual soil-N following harvest response to five urea N rates (0, 34, 67, 134, and 202 kg N ha−1 were assessed in a replicated field study repeated for two growing seasons. Seed yield increased with N rate, but because of the low N conversion efficiency, there appeared to be minimal yield gains in applying N beyond 34 kg ha−1. The lowest amount of soil-N left underutilized in the soil was predicted to occur at 39 kg N ha−1 and was adequate for seed and seed oil commercial calendula production on a Mollisol in the Northern Midwest United States.

  12. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population.

    Science.gov (United States)

    Wai, Ching Man; Zhang, Jisen; Jones, Tyler C; Nagai, Chifumi; Ming, Ray

    2017-10-11

    Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.

  13. The design study of an ultra-high power EB/X-ray conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    He, Zi-Feng, E-mail: hezifeng@sinap.ac.cn; Li, Deming; Huang, Jian-Ming; Yang, Yong-Jin; Zhu, Xi-Kai; Zhang, Yu-Tian

    2014-10-15

    Highlights: • We describe a 100 kW electron beam to X-rays conversion system. • We give an idea to improve the conversion efficiency and lifetime of the target. • We describe the design and thermal characteristics of the X-ray converter. - Abstract: X-ray conversion is a frequent need for irradiating the products that cannot be processed by electron beams, duo to their limited penetration capacity in materials, in radiation sterilization of disposable healthcare products and food irradiation. In this paper, we report the design of a conversion facility with a 5-MeV/120-kW electron accelerator, regarding the considerations on selection of the target materials and target structure, design of the electron beam transport line and approaches to improve the conversion efficiency and lifetime.

  14. Semi-dwarf tef lines for high seed yield and lodging tolerance in ...

    African Journals Online (AJOL)

    The grain of tef is not only nutritious but also gluten-free, the cause for celiac disease, which affects humans world wide. The objective of this study was to evaluate the morpho-agronomic performance of newly developed semi-dwarf tef genotypes for grain yield and yield related agronomic traits under diverse environmental ...

  15. Induction of embryogenic callus and plantlet regeneration from young leaves of high yielding mature oil palm

    Directory of Open Access Journals (Sweden)

    Yeedum, I.

    2004-09-01

    Full Text Available Callus induction and plantlet regeneration from young leaves of high-yielding mature oil palm were carried out using 10-year and 20-year-old trees from Thepa Research Station, Faculty of Natural Resources,Prince of Songkla University, Hat Yai, and Trang Agricultural College, respectively. Culture media used in this experiment were Murashige and Skoog (1962 and Oil Palm supplemented with various concentrations of α-naphthaleneacetic acid (NAA or 2,4- dichlorophenoxy acetic acid (2,4-D or dicamba (Di and antioxidants.Young leaves from 6th to 11st frond were excised, sterilized, cut into 5x5 mm pieces and cultured in the dark at 26±4ºC or 28±0.5ºC for 3 months. The results revealed that MS medium with 200 mg/l ascorbic acid (As and 1 mg/l Di (MS-AsDi gave the highest callus induction percentage (7.93 after culture for 3 months at 28±0.5ºC. Leaf segments from 6th - 8th frond yielded callus forming percentage at 10% (averaged from 1, 2.5 and 5 mg/l Di containing MS medium. Ascorbic acid as an antioxidant at concentration of 200 mg/l supplemented in MS medium in the presence of 2.5 mg/l Di produced the highest callus induction percentage (11.2 and number of nodules (7.06. A high percentage of embryogenic callus formation (66.67 was obtained when the calli were transferred to the same medium component supplemented with 0.5 mg/l Di and 1,000 mg/l casein hydrolysate (CH (MS-AsDiCH. Haustorial-staged embryos were observed to be isolated as an individual embryo and germinated on MS medium without plant growth regulator (MS-free. Development of root could be classified into two distinct types, fibrous and tap root.

  16. Milk yield and composition, nutrition, body conformation traits, body condition scores, fertility and diseases in high-yielding dairy cows--Part 1.

    Science.gov (United States)

    Aeberhard, K; Bruckmaier, R M; Kuepfer, U; Blum, J W

    2001-03-01

    Twenty-nine pairs of high-yielding dairy cows (HC; > or = 45 kg/day reached at least once during lactation) and corresponding control cows (CC; with milk yields representing the average yield of the herds) were examined on 29 Swiss farms from March 1995 to September 1996. The hypotheses were tested that there are differences in feed intake, body-conformation traits, body weight (BW), body condition score (BCS), fertility status and disease incidence between HC and CC cows. Cows were studied 2 weeks before and at 5, 9, 13, 17 and 40 weeks post-partum. HC cows produced more energy-corrected milk (ECM) than CC cows (10,670 +/- 321 kg in 293 +/- 5 days and 8385 +/- 283 kg in 294 +/- 4 days, respectively; P cows (46.2 +/- 1.1 and 36.2 +/- 1.0 kg ECM/day, respectively; P cows (7.6 +/- 0.5 and 5.7 +/- 0.5 kg/day, respectively) and dry matter intakes (measured in week 5 of lactation over 3 days on six farms) were greater in HC than in CC cows (24.0 +/- 1.1 and 20.3 +/- 1.1 kg/day, respectively; P cows were taller than CC cows (wither heights 143.3 +/- 0.8 and 140.1 +/- 0.8 cm, respectively; P cows was greater than in CC cows throughout the study, differences and decreases of BW during lactation were not significant. BCS at the end of pregnancy and decrements during lactation were similar in HC and CC cows. Fertility parameters were similar in HC and CC cows. Incidences of mastitis, claw and feet problems, hypocalcemia/downer cow syndrome, ovarian cysts and abortions were similar in HC and CC cows, but there were more indigestion problems in HC than in CC cows.

  17. A high conversion-gain Q-band InP DHBT subharmonic mixer using LO frequency doubler

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Vidkjær, Jens; Krozer, Viktor

    2008-01-01

    The paper presents analysis and design of a Q-band subharmonic mixer (SHM) with high conversion gain. The SHM consists of a local oscillator (LO) frequency doubler, RF pre-amplifier, and single-ended mixer. The SHM has been fabricated in a high-speed InP double heterojunction bipolar transistor (...

  18. Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine

    Science.gov (United States)

    Ladd, John

    There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.

  19. High-yield well modes and production practices in the Longwangmiao Fm gas reservoirs, Anyue Gas Field, central Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Zhongren Yu

    2016-12-01

    Full Text Available The lithologic Longwangmiao Fm gas reservoirs are situated in the Moxi Block of the Anyue Gas Field, central Sichuan Basin. Due to their great heterogeneity affected by the differential roles of lithologic facies and karstification, huge differences exist in the single-well gas yield tests. To improve the development efficiency of gas reservoirs and achieve the goal of “high yield but with few wells to be drilled”, it is especially important to establish a high-yield gas well mode by use of cores, logging, seismic data, etc., and through analysis of reservoir properties, high-yield controlling factors, and seismic response features of quality reservoirs and so on. The following findings were achieved. (1 The positive relationship between yield and the thickness of dissolved vug reservoirs is obvious. (2 The dissolved vug reservoirs are reflected as the type of honeycomb dark patches from the image logging and the conventional logging is featured generally by “Three Lows and Two Highs (i.e., low GR, low RT and low DEN but high AC and high CNL”. (3 From the seismic profile, the highlighted spots (strong peaks correspond to the bottom boundary of the Longwangmiao Fm reservoirs. The trough waves in larger amplitude represents that there are more well-developed karsts in the reservoirs. On this basis, high-quality 3D seismic data was used for tracking and fine interpretation of those highlighted spots and trough waves on the strong peaks to describe the plane distribution of high-yield dissolved vug reservoirs in this study area. This study is of great significance to the good planning of development wells and well trajectory planning and adjustment. As a result, high-thickness dissolved vug reservoirs have been targeted in this study area with the tested gas yield of 28 wells reaching up to 100 × 104 m3/d among the completed and tested 30 wells in total.

  20. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion.

    Science.gov (United States)

    Zhang, Zhen; Sui, Xin; Li, Pei; Xie, Ganhua; Kong, Xiang-Yu; Xiao, Kai; Gao, Longcheng; Wen, Liping; Jiang, Lei

    2017-07-05

    The osmotic energy existing in fluids is recognized as a promising "blue" energy source that can help solve the global issues of energy shortage and environmental pollution. Recently, nanofluidic channels have shown great potential for capturing this worldwide energy because of their novel transport properties contributed by nanoconfinement. However, with respect to membrane-scale porous systems, high resistance and undesirable ion selectivity remain bottlenecks, impeding their applications. The development of thinner, low-resistance membranes, meanwhile promoting their ion selectivity, is a necessity. Here, we engineered ultrathin and ion-selective Janus membranes prepared via the phase separation of two block copolymers, which enable osmotic energy conversion with power densities of approximately 2.04 W/m 2 by mixing natural seawater and river water. Both experiments and continuum simulation help us to understand the mechanism for how membrane thickness and channel structure dominate the ion transport process and overall device performance, which can serve as a general guiding principle for the future design of nanochannel membranes for high-energy concentration cells.

  1. Conversion of the RB reactor neutrons by highly enriched uranium fuel and lithium deuteride

    International Nuclear Information System (INIS)

    Strugar, P.; Sotic, O.; Ninkovic, M.; Pesic, M.; Altiparmakov, D.

    1981-01-01

    A thermal-to-fast-neutron converter has been constructed at the RB reactor. The material used for the conversion of thermal neutrons is highly enriched uranium fuel of Soviet production applied in Yugoslav heavy water experimental reactors RA and RB. Calculations and preliminary measurements show that the spectrum of converted neutrons only slightly differs from that of fission neutrons. The basic characteristics of converted neutrons can be expressed by the neutron radiation dose of 800 rad (8 Gy) for 1 h of reactor operation at a power level of 1 kW. This dose is approximately 10 times higher than the neutron dose at the same place without converter. At the same time, thermal neutron and gamma radiation doses are negligible. The constructed neutron converter offers wide possibilities for applications in reactor and nuclear physics and similar disciplines, where neutron spectra of high energies are required, as well as in the domain of neutron dosimetry and biological irradiations in homogeneous fields of larger dimensions. The possibility of converting thermal reactor neutrons with energies of about 14 MeV with the aid of lithium deuteride from natural lithium has been considered too. (author)

  2. In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion

    Science.gov (United States)

    McIntyre, Melissa Dawn

    Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region

  3. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  4. Identified particle yield associated with a high-$p_T$ trigger particle at the LHC

    CERN Document Server

    Veldhoen, Misha; van Leeuwen, Marco

    Identified particle production ratios are important observables, used to constrain models of particle production in heavy-ion collisions. Measurements of the inclusive particle ratio in central heavy-ion collisions showed an increase of the baryon-to-meson ratio compared to proton-proton collisions at intermediate pT, the so-called baryon anomaly. One possible explanation of the baryon anomaly is that partons from the thermalized deconfined QCD matter hadronize in a different way compared to hadrons produced in a vacuum jet. In this work we extend on previous measurements by measuring particle ratios in the yield associated with a high-pT trigger particle. These measurements can potentially further constrain the models of particle production since they are sensitive to the difference between particles from a jet and particles that are produced in the bulk. We start by developing a particle identification method that uses both the specific energy loss of a particle and the time of flight. From there, we presen...

  5. High-yield water-based synthesis of truncated silver nanocubes

    International Nuclear Information System (INIS)

    Chang, Yun-Min; Lu, I-Te; Chen, Chih-Yuan; Hsieh, Yu-Chi; Wu, Pu-Wei

    2014-01-01

    Highlights: • Development of a water-based formula to fabricate truncated Ag nanocubes. • The sample exhibits (1 0 0), (1 1 0), and (1 1 1) on the facets, edges, and corners. • The sample shows three characteristic absorption peaks due to plasma resonance. -- Abstract: A high-yield water-based hydrothermal synthesis was developed using silver nitrate, ammonia, glucose, and cetyltrimethylammonium bromide (CTAB) as precursors to synthesize truncated silver nanocubes with uniform sizes and in large quantities. With a fixed CTAB concentration, truncated silver nanocubes with sizes of 49.3 ± 4.1 nm were produced when the molar ratio of glucose/silver cation was maintained at 0.1. The sample exhibited (1 0 0), (1 1 0), and (1 1 1) planes on the facets, edges, and corners, respectively. In contrast, with a slightly larger glucose/silver cation ratio of 0.35, well-defined nanocubes with sizes of 70.9 ± 3.8 nm sizes were observed with the (1 0 0) plane on six facets. When the ratio was further increased to 1.5, excess reduction of silver cations facilitated the simultaneous formation of nanoparticles with cubic, spherical, and irregular shapes. Consistent results were obtained from transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption measurements

  6. High-yield water-based synthesis of truncated silver nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yun-Min; Lu, I-Te; Chen, Chih-Yuan; Hsieh, Yu-Chi; Wu, Pu-Wei, E-mail: ppwu@mail.nctu.edu.tw

    2014-02-15

    Highlights: • Development of a water-based formula to fabricate truncated Ag nanocubes. • The sample exhibits (1 0 0), (1 1 0), and (1 1 1) on the facets, edges, and corners. • The sample shows three characteristic absorption peaks due to plasma resonance. -- Abstract: A high-yield water-based hydrothermal synthesis was developed using silver nitrate, ammonia, glucose, and cetyltrimethylammonium bromide (CTAB) as precursors to synthesize truncated silver nanocubes with uniform sizes and in large quantities. With a fixed CTAB concentration, truncated silver nanocubes with sizes of 49.3 ± 4.1 nm were produced when the molar ratio of glucose/silver cation was maintained at 0.1. The sample exhibited (1 0 0), (1 1 0), and (1 1 1) planes on the facets, edges, and corners, respectively. In contrast, with a slightly larger glucose/silver cation ratio of 0.35, well-defined nanocubes with sizes of 70.9 ± 3.8 nm sizes were observed with the (1 0 0) plane on six facets. When the ratio was further increased to 1.5, excess reduction of silver cations facilitated the simultaneous formation of nanoparticles with cubic, spherical, and irregular shapes. Consistent results were obtained from transmission electron microscopy, scanning electron microscopy, X-ray diffraction, and UV–visible absorption measurements.

  7. Generation of high-yield insulin producing cells from human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Jafarian, Arefeh; Taghikhani, Mohammad; Abroun, Saeid; Pourpak, Zahra; Allahverdi, Amir; Soleimani, Masoud

    2014-07-01

    Allogenic islet transplantation is a most efficient approach for treatment of diabetes mellitus. However, the scarcity of islets and long term need for an immunosuppressant limits its application. Recently, cell replacement therapies that generate of unlimited sources of β cells have been developed to overcome these limitations. In this study we have described a stage specific differentiation protocol for the generation of insulin producing islet-like clusters from human bone marrow mesenchymal stem cells (hBM-MSCs). This specific stepwise protocol induced differentiation of hMSCs into definitive endoderm, pancreatic endoderm and pancreatic endocrine cells that expressed of sox17, foxa2, pdx1, ngn3, nkx2.2, insulin, glucagon, somatostatin, pancreatic polypeptide, and glut2 transcripts respectively. In addition, immunocytochemical analysis confirmed protein expression of the above mentioned genes. Western blot analysis discriminated insulin from proinsulin in the final differentiated cells. In derived insulin producing cells (IPCs), secreted insulin and C-peptide was in a glucose dependent manner. We have developed a protocol that generates effective high-yield human IPCs from hBM-MSCs in vitro. These finding suggest that functional IPCs generated by this procedure can be used as a cell-based approach for insulin dependent diabetes mellitus.

  8. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy

    Directory of Open Access Journals (Sweden)

    Sissi Dolci

    2017-10-01

    Full Text Available Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks. Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

  9. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  10. MULTI-KEV X-Ray Yields From High-Z Gas Targets Fielded At Omega

    International Nuclear Information System (INIS)

    Kane, J.O.; Fournier, K.B.; May, M.J.; Colvin, J.D.; Thomas, C.A.; Marrs, R.E.; Compton, S.M.; Moody, J.D.; Bond, E.J.; Davis, J.F.

    2010-01-01

    The authors report on modeling of x-ray yield from gas-filled targets shot at the OMEGA laser facility. The OMEGA targets were 1.8 mm long, 1.95 mm in diameter Be cans filled with either a 50:50 Ar:Xe mixture, pure Ar, pure Kr or pure Xe at ∼ 1 atm. The OMEGA experiments heated the gas with 20 kJ of 3ω (∼ 350 nm) laser energy delivered in a 1 ns square pulse. the emitted x-ray flux was monitored with the x-ray diode based DANTE instruments in the sub-keV range. Two-dimensional x-ray images (for energies 3-5 keV) of the targets were recorded with gated x-ray detectors. The x-ray spectra were recorded with the HENWAY crystal spectrometer at OMEGA. Predictions are 2D r-z cylindrical with DCA NLTE atomic physics. Models generally: (1) underpredict the Xe L-shell yields; (2) overpredict the Ar K-shell yields; (3) correctly predict the Xe thermal yields; and (4) greatly underpredict the Ar thermal yields. However, there are spreads within the data, e.g. the DMX Ar K-shell yields are correctly predicted. The predicted thermal yields show strong angular dependence.

  11. EXTREME METEOROLOGICAL CONDITIONS AND METABOLIC PROFILE IN HIGH YIELDING HOLSTEINFRIESIAN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Z. GERGÁCZ

    2008-10-01

    Full Text Available The impact of two years (2002 and 2003 with different summer temperature extremes on variation in metabolic profile was analyzed in blood and urine samples taken from healthy, primiparous (n = 371 and multiparous (n = 795 high yielding Holstein-Friesian dairy cows. In this study main focus was lead on three most critical physiological phases, thus cows were assigned into three groups as follows: (1 dry cows for 10 days prior to calving; (2 cows 1-30 days after delivery, and (3 cows with more than 31 days post partum. Findings reveal clear response of the cows to heat in selected blood (hemoglobin, plasma aceto-acetic-acid, FFA, AST, glucose, urea and urine (pH, NABE and urea parameters. In the majority of cows, glucose and hemoglobin level, one of the most significant blood parameters, indicated symptoms of insufficient energy supply. Further metabolic indicators differed more or less from reference values depending on actual condition. Due to heat load dry matter intake has been decreased even by 10-15 per cent in primiparous cows. They were expected to increase body weight and size and simultaneously produce attain at large milk yields. In doing so that cows would have require large amount of nutrients. Out of parameters such as hemoglobin, glucose, FFA, AST and blood-urea differed from the reference values in most cases; however, this phenomenon seemed to be present in almost every case for hemoglobin and glucose. The lack of energy caused by heat stress can be contributed to the decrease of dry matter intake which has been indicated by the urea levels and pH both in blood and urine prevailing unfavorable and insufficient feeding practice. The results reconfirm the need to reconsider both the actual feeding practice (e.g. to increase of nutrient content in rations, reduce the intake of soluble proteins in rumen, pay attention of crude fiber in Total Mixed Rations (TMR, NDF and ADF, avoid overfeeding of inorganic buffers, to control moisture

  12. Absorbed-dose beam quality conversion factors for cylindrical chambers in high energy photon beams.

    Science.gov (United States)

    Seuntjens, J P; Ross, C K; Shortt, K R; Rogers, D W

    2000-12-01

    Recent working groups of the AAPM [Almond et al., Med. Phys. 26, 1847 (1999)] and the IAEA (Andreo et al., Draft V.7 of "An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water," IAEA, 2000) have described guidelines to base reference dosimetry of high energy photon beams on absorbed dose to water standards. In these protocols use is made of the absorbed-dose beam quality conversion factor, kQ which scales an absorbed-dose calibration factor at the reference quality 60Co to a quality Q, and which is calculated based on state-of-the-art ion chamber theory and data. In this paper we present the measurement and analysis of beam quality conversion factors kQ for cylindrical chambers in high-energy photon beams. At least three chambers of six different types were calibrated against the Canadian primary standard for absorbed dose based on a sealed water calorimeter at 60Co [TPR10(20)=0.572, %dd(10)x=58.4], 10 MV [TPR10(20)=0.682, %dd(10)x=69.6), 20 MV (TPR10(20)=0.758, %dd(10)x= 80.5] and 30 MV [TPR10(20) = 0.794, %dd(10)x= 88.4]. The uncertainty on the calorimetric determination of kQ for a single chamber is typically 0.36% and the overall 1sigma uncertainty on a set of chambers of the same type is typically 0.45%. The maximum deviation between a measured kQ and the TG-51 protocol value is 0.8%. The overall rms deviation between measurement and the TG-51 values, based on 20 chambers at the three energies, is 0.41%. When the effect of a 1 mm PMMA waterproofing sleeve is taken into account in the calculations, the maximum deviation is 1.1% and the overall rms deviation between measurement and calculation 0.48%. When the beam is specified using TPR10(20), and measurements are compared with kQ values calculated using the version of TG-21 with corrected formalism and data, differences are up to 1.6% when no sleeve corrections are taken into account. For the NE2571 and the NE2611A chamber types, for which the most literature data are

  13. Breeding sesame for diseases and shatter resistant high yielding varieties with induced mutations

    International Nuclear Information System (INIS)

    Kang, C.W.

    2001-01-01

    ''Suwon 144'', derived from the cross between ''Danbaeckkae'' and mutant MY-74-2 and in spite of its higher yield and quality compared to the check variety, did not pass the nomination to the Committee of Main Crops New Varieties under the Ministry of Agriculture and Forestry, due to the decision of the committee to limit the number of new varieties in sesame as a minor crop in Korea. ''Suwon 144'' will be released again for a fifth year to RYT in 1998. 5,282 cross combinations and 4,341 lines including 1,388 crossings of F 1 were crossed and released to the experimental field of NCES in 1997. Mutants and their cross combinations were released and constituted more than half among them. Seeds of ''Suwon 152'' were treated with NaN 3 and tested for germinability. The other seeds were released and harvested in the experimental field and 419 mutant lines were selected among all the mutant lines. Mutants or materials from cross breeding with mutants occupied 71% (675) among a total of 952 promising lines in yield trials of OYT, PYT, AYT and RYT. For variability of NaN 3 induced genetic male sterile (GMS) mutants and development of restorer/s of GMS, GMS lines were planted, and male sterility (MS) expression evaluated on each line. The selected 4 MS lines with 50% MS were crossed in 22 combinations with 7 recommended varieties. For development of genic-cytoplasmic MS (GCMS) using NaN 3 induced GMS mutants, 40 recommended local Korean and introduced cultivars were crossed in 57 combinations with 4 selected GMS lines expressing 50% male sterility. Various and many sources of unique characteristics have been continuously created through induced mutations, such as determinate; dwarf, lodging,- Phytophthora blight- and shatter- resistant; indehiscent, seamless, taller, stronger thick stems, dense capsule bearing type, semi-dwarf, better maturity, male sterility, smaller seeds, pure white seed coat color and high yields. Lines with these induced desirable characteristics were

  14. High-energy (>70 keV) x-ray conversion efficiency measurement on the ARC laser at the National Ignition Facility

    Science.gov (United States)

    Chen, Hui; Hermann, M. R.; Kalantar, D. H.; Martinez, D. A.; Di Nicola, P.; Tommasini, R.; Landen, O. L.; Alessi, D.; Bowers, M.; Browning, D.; Brunton, G.; Budge, T.; Crane, J.; Di Nicola, J.-M.; Döppner, T.; Dixit, S.; Erbert, G.; Fishler, B.; Halpin, J.; Hamamoto, M.; Heebner, J.; Hernandez, V. J.; Hohenberger, M.; Homoelle, D.; Honig, J.; Hsing, W.; Izumi, N.; Khan, S.; LaFortune, K.; Lawson, J.; Nagel, S. R.; Negres, R. A.; Novikova, L.; Orth, C.; Pelz, L.; Prantil, M.; Rushford, M.; Shaw, M.; Sherlock, M.; Sigurdsson, R.; Wegner, P.; Widmayer, C.; Williams, G. J.; Williams, W.; Whitman, P.; Yang, S.

    2017-03-01

    The Advanced Radiographic Capability (ARC) laser system at the National Ignition Facility (NIF) is designed to ultimately provide eight beamlets with a pulse duration adjustable from 1 to 30 ps, and energies up to 1.5 kJ per beamlet. Currently, four beamlets have been commissioned. In the first set of 6 commissioning target experiments, the individual beamlets were fired onto gold foil targets with energy up to 1 kJ per beamlet at 20-30 ps pulse length. The x-ray energy distribution and pulse duration were measured, yielding energy conversion efficiencies of 4-9 × 10-4 for x-rays with energies greater than 70 keV. With greater than 3 J of such x-rays, ARC provides a high-precision x-ray backlighting capability for upcoming inertial confinement fusion and high-energy-density physics experiments on NIF.

  15. High Photoluminescence Quantum Yields in Organic Semiconductor-Perovskite Composite Thin Films.

    Science.gov (United States)

    Longo, Giulia; La-Placa, Maria-Grazia; Sessolo, Michele; Bolink, Henk J

    2017-10-09

    One of the obstacles towards efficient radiative recombination in hybrid perovskites is a low exciton binding energy, typically in the orders of tens of meV. It has been shown that the use of electron-donor additives can lead to a substantial reduction of the non-radiative recombination in perovskite films. Herein, the approach using small molecules with semiconducting properties, which are candidates to be implemented in future optoelectronic devices, is presented. In particular, highly luminescent perovskite-organic semiconductor composite thin films have been developed, which can be processed from solution in a simple coating step. By tuning the relative concentration of methylammonium lead bromide (MAPbBr 3 ) and 9,9spirobifluoren-2-yl-diphenyl-phosphine oxide (SPPO1), it is possible to achieve photoluminescent quantum yields (PLQYs) as high as 85 %. This is attributed to the dual functions of SPPO1 that limit the grain growth while passivating the perovskite surface. The electroluminescence of these materials was investigated by fabricating multilayer LEDs, where charge injection and transport was found to be severely hindered for the perovskite/SPPO1 material. This was alleviated by partially substituting SPPO1 with a hole-transporting material, 1,3-bis(N-carbazolyl)benzene (mCP), leading to bright electroluminescence. The potential of combining perovskite and organic semiconductors to prepare materials with improved properties opens new avenues for the preparation of simple lightemitting devices using perovskites as the emitter. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops.

    Science.gov (United States)

    Mayerová, Markéta; Petrová, Šárka; Madaras, Mikuláš; Lipavský, Jan; Šimon, Tomáš; Vaněk, Tomáš

    2017-06-01

    Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the Příbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants' aboveground and belowground biomass and in woody plants' leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg -1 in twigs and 16.74 and 1188 mg kg -1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg -1 , respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.

  17. Mutation and screening of high-alcoholic-yield yeast by HEPE and optimization of the fermentation condition

    International Nuclear Information System (INIS)

    Han Jingjing; Lu Jiangtao; Zhang Qin; Wang Yan; Fu Yujie; Wang Shilong; Fu Haiying

    2011-01-01

    The Saccharomyces Cerevisiae YE0 was mutated using high-energy-pulse-electron (HEPE) beam. After ethanol stress and determination of the alcohol yield by gas chromatograph, the mutant YF1 with high alcoholic yield was obtained. The results showed that under the optimized fermentation conditions (34 degree C as the fermentation temperature, 72 h as the fermentation time and 30% as the glucose concentration), the alcoholic yield of YF1 was 15.57% which was 58.23% higher than that of the original strain YE0 (9.84%) under the same conditions. The growth rate and lethal temperature of the mutant YF1 were obviously enhanced to the original strain YE0. The mutant YF1 has a great potential application in industrial production of alcohol. And it can also be used as the original strain for further mutagenesis to get the strain of higher alcoholic yield. (authors)

  18. [Effects of nitrogen application level on soil nitrate accumulation and ammonia volatilization in high-yielding wheat field].

    Science.gov (United States)

    Wang, Dong; Yu, Zhenwen; Yu, Wenming; Shi, Yu; Zhou, Zhongxin

    2006-09-01

    The study showed that during the period from sowing to pre-wintering, the soil nitrate in high-yielding wheat field moved down to deeper layers, and accumulated in the layers below 140 cm. An application rate of 96-168 kg N x hm(-2) increased the nitrate content in 0-60 cm soil layer and the wheat grain yield and its protein content, and decreased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen. Applying 240 kg N x hm(-2) promoted the downward movement of soil nitrate and its accumulation in deeper layers, increased the proportion of apparent N loss to applied N and the ammonia volatilization loss from basal nitrogen, had no significant effect on the protein content of wheat grain, but decreased the grain yield. The appropriate application rate of nitrogen on high-yielding wheat field was 132-204 kg N x hm(-2).

  19. Wavelength conversion of a 40 Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Tokle, Torger; Geng, Yan

    2005-01-01

    Wavelength conversion of a 40-Gb/s return-to-zero differential phase-shift keying signal is demonstrated in a highly nonlinear photonic crystal fiber (HNL-PCF) for the first time. A conversion efficiency of -20 dB for a pump power of 23 dBm and a conversion bandwidth of 31 nm, essentially limited...

  20. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  1. Pictorial Conversations.

    Science.gov (United States)

    Hooper, Kristina

    1982-01-01

    Provides the rationale for considering communication in a graphic domain and suggests a specific goal for designing work stations which provide graphic capabilities in educational settings. The central element of this recommendation is the "pictorial conversation", a highly interactive exchange that includes pictures as the central elements.…

  2. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    Energy Technology Data Exchange (ETDEWEB)

    Hursin, M.; Koeberl, O.; Perret, G. [Paul Scherrer Institut PSI, 5232 Villigen (Switzerland)

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  3. A Low-cost, High-yield Process for the Direct Productin of High Energy Density Liquid Fuel from Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States); Delgass, W. N. [Purdue Univ., West Lafayette, IN (United States); Ribeiro, F. [Purdue Univ., West Lafayette, IN (United States)

    2013-08-31

    The primary objective and outcome of this project was the development and validation of a novel, low-cost, high-pressure fast-hydropyrolysis/hydrodeoxygenation (HDO) process (H2Bioil) using supplementary hydrogen (H2) to produce liquid hydrocarbons from biomass. The research efforts under the various tasks of the project have culminated in the first experimental demonstration of the H2Bioil process, producing 100% deoxygenated >C4+ hydrocarbons containing 36-40% of the carbon in the feed of pyrolysis products from biomass. The demonstrated H{sub 2}Bioil process technology (i.e. reactor, catalyst, and downstream product recovery) is scalable to a commercial level and is estimated to be economically competitive for the cases when supplementary H2 is sourced from coal, natural gas, or nuclear. Additionally, energy systems modeling has revealed several process integration options based on the H2Bioilprocess for energy and carbon efficient liquid fuel production. All project tasks and milestones were completed or exceeded. Novel, commercially-scalable, high-pressure reactors for both fast-hydropyrolysis and hydrodeoxygenation were constructed, completing Task A. These reactors were capable of operation under a wide-range of conditions; enabling process studies that lead to identification of optimum process conditions. Model compounds representing biomass pyrolysis products were studied, completing Task B. These studies were critical in identifying and developing HDO catalysts to target specific oxygen functional groups. These process and model compound catalyst studies enabled identification of catalysts that achieved 100% deoxygenation of the real biomass feedstock, sorghum, to form hydrocarbons in high yields as part of Task C. The work completed during this grant has identified and validated the novel and commercially scalable H2Bioil process for production of hydrocarbon fuels from biomass. Studies on

  4. Type conversion by high-energy particles in Hg1-xCdxTe compounds

    International Nuclear Information System (INIS)

    Blanchard, C.; Favre, J.; Barbot, J.F.; Desoyer, J.C.; Toulemonde, M.; Konczykowski, M.; Le Scoul, D.; Dessus, J.L.

    1990-01-01

    p-type crystals of the ternary compounds Hg 1-x Cd x Te have been irradiated with high-energy ions and electrons. Electron-beam-induced current signals on xenon- and krypton-irradiated Hg 1-x Cd x Te show that n-type conversion, occurring all along the ion path, is related to the presence of mercury atoms. Resistivity and Hall measurements on carbon-, oxygen-, xenon- and electron-irradiated Hg 0.8 Cd 0.2 Te crystals allow us to determine the effective cross section for atomic displacement. We observe, for electron-irradiated samples, a saturation in carrier concentration interpreted as the pinning of the Fermi level at a resonant donor state 370 meV above the bottom of the conduction band. Comparison between ion and electron irradiations shows that electrically active produced defects are mainly due to atomic collisions. Additional reduction of defect production efficiency for xenon ions may be the onset of some energy transfer from electronic loss to target atoms

  5. On the sensitivity of HCPWR [high conversion pressurized water reactors] microcell calculations to geometrical treatment

    International Nuclear Information System (INIS)

    Sbaffoni, Maria; Abbate, Maximo; Patino, Nestor

    1990-01-01

    Nuclear reactor microcell calculations are, normally, carried out using simplified geometrical models which do not include the total number of homogeneous zones actually present. Regarding the particular case of High Conversion Pressurized Water Reactors (HCPWR), the revision of this approximation has been done to determine the sensitivity of its neutronic parameters to the use of these models. The study was performed comparing multiplication factors, reaction rates and neutron spectra, obtained using different geometrical treatments for a HCPWR typical microcell. From the results, it can be asserted that, if only two zones should be used in the calculation, the model which dilutes the clad into the moderator gives best results for the neutron fluxes, but the model that mix it with the fuel is better for k-infinite and reaction rate values. Considering the significance of these parameters on the physical behaviour of the reactor, the last one is recommended for cell calculations. Even if there is a slight difference between the cells considered, some results of this work were also compared with those of the NEACRP HCLWR benchmark with good agreement, so it can be concluded that the methodology here used for data processing and calculations is applicable to HCR's cell studies. (Author)

  6. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode

    DEFF Research Database (Denmark)

    Marina, O.A.; Mogensen, Mogens Bjerg

    1999-01-01

    Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials such as n......Direct electrochemical oxidation of methane was attempted on a gadolinia-doped ceria Ce(0.6)Gd(0.4)O(1.8) (CG4) electrode in a solid oxide fuel cell using a porous gold-CG4 mixture as current collector Gold is relatively inert to methane in contrast to other popular SOFC anode materials...... such as nickel and platinum. CG4 was found to exhibit a low electrocatalytic activity for methane oxidation as well as no significant reforming activity implying that the addition of an electrocatalyst or cracking catalyst to the CG4 anode is required for SOFC operating on methane. The methane conversion...... observed at the open-circuit potential and low anodic overpotentials seems to be due to thermal methane cracking in the gas phase and on the alumina surfaces in the cell housing. At high anodic overpotentials, at electrode potentials where oxygen evolution was expected to take place, the formation of CO(2...

  7. Feasibility survey on international cooperation for high efficiency energy conversion technology in fiscal 1993

    Science.gov (United States)

    1994-03-01

    Following cooperative researches on fuel cell jointly conducted by NEDO and EGAT (Electricity Generating Authority of Thailand), the survey on international cooperation relating to high efficiency energy conversion technology was carried out for the ASEAN countries. The paper summed up the results of the survey. The study of the international cooperation is made for the following three items: a program for periodical exchange of information with EGAT, a project for cooperative research on phosphoric acid fuel cell in Indonesia, and a project for cooperative research with EGAT on electric power storage by advanced battery. In Malaysia, which is small in scale of state, part of the Ministry of Energy, Telecommunication and Posts is only in charge of the energy issue. Therefore, the situation is that they cannot answer well to many items of research/development cooperation brought in from Japan. The item of medium- and long-term developmental research in the Philippines is about the problems which are seen subsequently in the Manila metropolitan area where the problem of outage is being settled. Accordingly, it is essential to promote the cooperative research, well confirming policies and systems of the Ministry of Energy and the national electricity corporation.

  8. Transverse Electromagnetic Mode Conversion for High-Harmonic Self-Probing Spectroscopy

    Directory of Open Access Journals (Sweden)

    Antoine Camper

    2015-02-01

    Full Text Available We report on high-order harmonic (HHG two-source interferometry (TSI in molecular gases. We used a 0-\\(\\pi\\ phase plate to create two bright spots at the focus of a lens by converting a Gaussian laser beam into a TEM please define \\(_{01}\\ Transverse Electromagnetic Mode. The two bright foci produce two synchronized HHG sources. One of them is used to probe on-going dynamics in the generating medium, while the other serves to heterodyne the signal. The interference of the emissions in the far–field gives access to the phase difference between the two sources. In self–probing HHG phase spectroscopy, one of the two sources is used as a reference while the other one probes some on goin dynamics in the generating medium. We first compute overlap integrals to investigate the mode conversion efficiency. We then establish a clear relation between the laser phase-front curvature and the far-field overlap of the two HHG beams. Both Fresnel diffraction calculations and an experimental lens position scan are used to reveal variations of the phase front inclination in each source. We show that this arrangement offers \\(\\frac{\\lambda_{XUV}}{100}\\ precision, enabling extremely sensitive phase measurements. Finally, we use this compact setup for TSI and measure phase variations across the molecular alignment revival of nitrogen and in vibrating sulfur hexafluoride. In both gases, the phase variations change sign around the ionization threshold of the investigated molecule.

  9. High-Efficiency, Nanowire Based Thermoelectric Devices for Radioisotope Power Conversion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal responds to topic S3.03 of the 2010 NASA SBIR solicitation, for Power Generation and Conversion. Thermoelectric devices offer a simple and...

  10. Design study on evaluation for power conversion system concepts in high temperature gas cooled reactor with gas turbine

    International Nuclear Information System (INIS)

    Minatsuki, Isao; Mizokami, Yorikata

    2007-01-01

    The design studies on High Temperature Gas Cooled Reactor with Gas Turbine (HTGR-GT) have been performed, which were mainly promoted by Japan Atomic Energy Agency (JAEA) and supported by fabricators in Japan. HTGR-GT plant feature is almost determined by selection of power conversion system concepts. Therefore, plant design philosophy is observed characteristically in selection of them. This paper describes the evaluation and analysis of the essential concepts of the HTGR-GT power conversion system through the investigations based on our experiences and engineering knowledge as a fabricator. As a result, the following concepts were evaluated that have advantages against other competitive one, such as the horizontal turbo machine rotor, the turbo machine in an individual vessel, the turbo machine with single shaft, the generator inside the power conversion vessel, and the power conversion system cycle with an intercooler. The results of the study can contribute as reference data when the concepts will be selected. Furthermore, we addressed reasonableness about the concept selection of the Gas Turbine High Temperature Reactor GTHTR300 power conversion system, which has been promoted by JAEA. As a conclusion, we recognized the GTHTR300 would be one of the most promising concepts for commercialization in near future. (author)

  11. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  12. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    International Nuclear Information System (INIS)

    Renfro, David G.; Cook, David Howard; Freels, James D.; Griffin, Frederick P.; Ilas, Germina; Sease, John D.; Chandler, David

    2012-01-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  13. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  14. Status of the conversion working plan in the High Flux Reactor (Petten, The Netherlands)

    International Nuclear Information System (INIS)

    Hendriks, J.A.; Thijssen, P.J.M.; Wijtsma, F.J.; Gevers, A.; Guidez, J.

    2000-01-01

    The conversion from HEU to LEU has often many disadvantages: flux penalties, increase of fuel consumption, cost and delay to obtain a new license etc. But to fulfill the non-proliferation programme, and to simplify the future fuel supply, the HFR renewed in 1998 studies on conversion possibilities. To minimize the conversion costs, these studies were made with a progressive conversion that avoids the need of one new core and permits to begin the conversion with a replacement of 5 elements at each cycle. Hence the conversion can be made in 7 cycles, without special elements and with a normal bum-up for each element. To avoid an increase of fuel consumption, an increase of the fuel cycle length from 24.7 to 28.3 days was also considered. This point allows reducing the number of annual cycles from 1 to 10 and enables in one cycle to have the possibility of four successive irradiations for Molybdenum production (7 days) in one irradiation position. A working plan for fuel licensing has been sent to the safety authorities and is presented in the paper. (author)

  15. Air-insufflated high-definition dacryoendoscopy yields significantly better image quality than conventional dacryoendoscopy

    Directory of Open Access Journals (Sweden)

    Sasaki T

    2017-08-01

    -insufflated HDD is safe, and yields significantly better image quality than CD and saline-irrigated HDD. Keywords: pressure-controlled air-insufflated, high-definition dacryoendoscopy, saline-irrigated dacryoendoscopy, emphysema

  16. High diagnostic yield of syndromic intellectual disability by targeted next-generation sequencing.

    Science.gov (United States)

    Martínez, Francisco; Caro-Llopis, Alfonso; Roselló, Mónica; Oltra, Silvestre; Mayo, Sonia; Monfort, Sandra; Orellana, Carmen

    2017-02-01

    Intellectual disability is a very complex condition where more than 600 genes have been reported. Due to this extraordinary heterogeneity, a large proportion of patients remain without a specific diagnosis and genetic counselling. The need for new methodological strategies in order to detect a greater number of mutations in multiple genes is therefore crucial. In this work, we screened a large panel of 1256 genes (646 pathogenic, 610 candidate) by next-generation sequencing to determine the molecular aetiology of syndromic intellectual disability. A total of 92 patients, negative for previous genetic analyses, were studied together with their parents. Clinically relevant variants were validated by conventional sequencing. A definitive diagnosis was achieved in 29 families by testing the 646 known pathogenic genes. Mutations were found in 25 different genes, where only the genes KMT2D, KMT2A and MED13L were found mutated in more than one patient. A preponderance of de novo mutations was noted even among the X linked conditions. Additionally, seven de novo probably pathogenic mutations were found in the candidate genes AGO1, JARID2, SIN3B, FBXO11, MAP3K7, HDAC2 and SMARCC2. Altogether, this means a diagnostic yield of 39% of the cases (95% CI 30% to 49%). The developed panel proved to be efficient and suitable for the genetic diagnosis of syndromic intellectual disability in a clinical setting. Next-generation sequencing has the potential for high-throughput identification of genetic variations, although the challenges of an adequate clinical interpretation of these variants and the knowledge on further unknown genes causing intellectual disability remain to be solved. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate

    International Nuclear Information System (INIS)

    Guzman de Villoria, R; Hart, A J; Steiner, S A III; Wardle, B L; Figueredo, S L; Slocum, A H

    2009-01-01

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al 2 O 3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of ∼1 mm are achieved at substrate speeds up to 2.4 mm s -1 . Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  18. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.

    Science.gov (United States)

    Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L

    2009-10-07

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  19. A multi-region assessment of population rates of cardiac catheterization and yield of high-risk coronary artery disease

    Directory of Open Access Journals (Sweden)

    Clement Fiona M

    2011-11-01

    Full Text Available Abstract Background There is variation in cardiac catheterization utilization across jurisdictions. Previous work from Alberta, Canada, showed no evidence of a plateau in the yield of high-risk disease at cardiac catheterization rates as high as 600 per 100,000 population suggesting that the optimal rate is higher. This work aims 1 To determine if a previously demonstrated linear relationship between the yield of high-risk coronary disease and cardiac catheterization rates persists with contemporary data and 2 to explore whether the linear relationship exists in other jurisdictions. Methods Detailed clinical information on all patients undergoing cardiac catheterization in 3 Canadian provinces was available through the Alberta Provincial Project for Outcomes Assessment in Coronary Heart (APPROACH disease and partner initiatives in British Columbia and Nova Scotia. Population rates of catheterization and high-risk coronary disease detection for each health region in these three provinces, and age-adjusted rates produced using direct standardization. A mixed effects regression analysis was performed to assess the relationship between catheterization rate and high-risk coronary disease detection. Results In the contemporary Alberta data, we found a linear relationship between the population catheterization rate and the high-risk yield. Although the yield was slightly less in time period 2 (2002-2006 than in time period 1(1995-2001, there was no statistical evidence of a plateau. The linear relationship between catheterization rate and high-risk yield was similarly demonstrated in British Columbia and Nova Scotia and appears to extend, without a plateau in yield, to rates over 800 procedures per 100,000 population. Conclusions Our study demonstrates a consistent finding, over time and across jurisdictions, of linearly increasing detection of high-risk CAD as population rates of cardiac catheterization increase. This internationally-relevant finding

  20. Land usage attributed to corn ethanol production in the United States: sensitivity to technological advances in corn grain yield, ethanol conversion, and co-product utilization.

    Science.gov (United States)

    Mumm, Rita H; Goldsmith, Peter D; Rausch, Kent D; Stein, Hans H

    2014-01-01

    Although the system for producing yellow corn grain is well established in the US, its role among other biofeedstock alternatives to petroleum-based energy sources has to be balanced with its predominant purpose for food and feed as well as economics, land use, and environmental stewardship. We model land usage attributed to corn ethanol production in the US to evaluate the effects of anticipated technological change in corn grain production, ethanol processing, and livestock feeding through a multi-disciplinary approach. Seven scenarios are evaluated: four considering the impact of technological advances on corn grain production, two focused on improved efficiencies in ethanol processing, and one reflecting greater use of ethanol co-products (that is, distillers dried grains with solubles) in diets for dairy cattle, pigs, and poultry. For each scenario, land area attributed to corn ethanol production is estimated for three time horizons: 2011 (current), the time period at which the 15 billion gallon cap for corn ethanol as per the Renewable Fuel Standard is achieved, and 2026 (15 years out). Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of US corn acreage was attributable to ethanol when accounting for feed co-product utilization. By 2026, land area attributed to corn ethanol production is reduced to 11% to 19% depending on the corn grain yield level associated with the four corn production scenarios, considering oil replacement associated with the soybean meal substituted in livestock diets with distillers dried grains with solubles. Efficiencies in ethanol processing, although producing more ethanol per bushel of processed corn, result in less co-products and therefore less offset of corn acreage. Shifting the use of distillers dried grains with solubles in feed to dairy cattle, pigs, and poultry substantially reduces land area attributed to corn ethanol production. However, because distillers dried grains with solubles

  1. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Directory of Open Access Journals (Sweden)

    Ayako Okuno

    Full Text Available Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA, and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  2. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties.

    Science.gov (United States)

    Okuno, Ayako; Hirano, Ko; Asano, Kenji; Takase, Wakana; Masuda, Reiko; Morinaka, Yoichi; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-01-01

    Traditional breeding for high-yielding rice has been dependent on the widespread use of fertilizers and the cultivation of gibberellin (GA)-deficient semi-dwarf varieties. The use of semi-dwarf plants facilitates high grain yield since these varieties possess high levels of lodging resistance, and thus could support the high grain weight. Although this approach has been successful in increasing grain yield, it is desirable to further improve grain production and also to breed for high biomass. In this study, we re-examined the effect of GA on rice lodging resistance and biomass yield using several GA-deficient mutants (e.g. having defects in the biosynthesis or perception of GA), and high-GA producing line or mutant. GA-deficient mutants displayed improved bending-type lodging resistance due to their short stature; however they showed reduced breaking-type lodging resistance and reduced total biomass. In plants producing high amounts of GA, the bending-type lodging resistance was inferior to the original cultivars. The breaking-type lodging resistance was improved due to increased lignin accumulation and/or larger culm diameters. Further, these lines had an increase in total biomass weight. These results show that the use of rice cultivars producing high levels of GA would be a novel approach to create higher lodging resistance and biomass.

  3. High yield purification of full-length functional hERG K+ channels produced in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Molbaek, Karen; Scharff-Poulsen, Peter; Hélix-Nielsen, Claus

    2015-01-01

    knowledge this is the first reported high-yield production and purification of full length, tetrameric and functional hERG. This significant breakthrough will be paramount in obtaining hERG crystal structures, and in establishment of new high-throughput hERG drug safety screening assays....

  4. High-yield production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate.

    Science.gov (United States)

    Zhang, Min; Gu, Lei; Cheng, Chao; Zhu, Junru; Wu, Hao; Ma, Jiangfeng; Dong, Weiliang; Kong, Xiangping; Jiang, Min; Ouyang, Pingkai

    2017-08-01

    Chicory is an agricultural plant with considerable potential as a carbohydrate substrate for low-cost production of biochemicals. In this work, the production of mannitol by Leuconostoc pseudomesenteroides CTCC G123 from chicory-derived inulin hydrolysate was investigated. The bioconversion process initially suffered from the leakage of fructose to the phosphoketolase pathway, resulting in a low mannitol yield. When inulin hydrolysate was supplemented with glucose as a substrate for mannitol production in combination with aeration induction and nicotinic acid induced redox modulation strategies, the mannitol yield greatly improved. Under these conditions, significant improvement in the glucose consumption rate, intracellular NADH levels and mannitol dehydrogenase specific activity were observed, with mannitol production increasing from 64.6 to 88.1 g/L and overall yield increase from 0.69 to 0.94 g/g. This work demonstrated an efficient method for the production of mannitol from inulin hydrolysate with a high overall yield.

  5. Noise and conversion performance of a high-Tc superconducting Josephson junction mixer at 0.6 THz

    Science.gov (United States)

    Gao, Xiang; Du, Jia; Zhang, Ting; Guo, Yingjie Jay

    2017-11-01

    This letter presents both theoretical and experimental investigations on the noise and conversion performance of a high-Tc superconducting (HTS) step-edge Josephson-junction mixer at the frequency of 0.6 THz and operating temperatures of 20-40 K. Based on the Y-factor and U-factor methods, a double-sideband noise temperature of around 1000 K and a conversion gain of -3.5 dB were experimentally obtained at 20 K. At the temperature of 40 K, the measured mixer noise and conversion efficiency are around 2100 K and -10 dB, respectively. The experimental data are in good agreement with the numerical analysis results using the three-port model. A detailed performance comparison with other reported HTS terahertz mixers has confirmed the superior performance of our presented mixer device.

  6. Effects of Lignocellulosic Compounds on the Yield, Nanostructure and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Broström, Markus; Kling, Jens

    reactor. The specific objectives of this study were to: (1) obtain knowledge about lignocellulosic compounds and monolignols influence on the yield, nanostructure, composition, and reactivity of soot during high-temperature gasification, (2) understand the influence of Soxhlet extraction on the soot......Gasification offers the utilization of biomass to a wide variety of applications such as heat, electricity, chemicals and transport fuels in an efficient and sustainable manner. High soot yields in the high-temperature entrained flow gasification lead to intensive gas cleaning and can cause...... primary, secondary and teriary pyrolysis products such as organic acids, aldehydes and phenolics [1]. In this study, therefore, the impacts of lignocellulosic compounds and monolignols (syringol, guaiacol, p-hydroxyphenol) on the yield and characteristics of soot were investigated at 1250°C in a drop tube...

  7. New high yielding mutant varieties of mustard (Brassica campestris L. var. yellow sarson)

    International Nuclear Information System (INIS)

    Rahman, A.; Das, M.L.; Pathan, A.J.

    1992-01-01

    Mutation breeding work at the Bangladesh Institute of Nuclear Agriculture has been successful with the development of a number of promising mutants and with the release of two mutant varieties of mustard (Brassica campestris L. var. Yellow Sarson), Agrani and Safal, for commercial cultivation in Bangladesh. The mutant varieties have higher seed and oil yield with higher biomass production, tolerance to Alternaria blight and aphid under field conditions. The average seed yield of the varieties is 1726 and 1754 kg/ha as compared to 1447 kg/ha of the best check Sonali. These varieties have 42-43 per cent oil in the seed. (author). 7 refs., 3 tabs

  8. Neutronic characteristics of FLWR in the transition phase changing from high conversion core to breeder core

    International Nuclear Information System (INIS)

    Akie, Hiroshi; Nakano, Yoshihiro; Okubo, Tsutomu

    2009-01-01

    Innovative Water Reactor for Flexible Fuel Cycle (FLWR) is a low moderation type boiling water reactor which can realize plutonium multiple recycling and breeding. For the introduction stage of FLWR, a high conversion (HC) type FLWR is proposed to keep technical continuity from current light water reactors. The HC core of FLWR has a less tight fuel lattice with lower coolant void fraction than the breeder (BR) type core. The HC type FLWR core is to be shifted to the BR core by only replacing the fuel assemblies of the same outer shape and size in the same reactor system. In the HC to BR transition phase of FLWR, there exist both types of fuel assemblies in the same core configuration. In the HC assembly, neutron spectrum is softer than in the BR assembly, and the axial fuel and blanket arrangement is different from the BR assembly. Due to these differences, there might appear a power peaking in the adjacent region between HC and BR assemblies. The power distribution in the HC + BR assemblies mixed core configuration is studied by performing assembly calculations and core calculations on a few assemblies local geometry and the whole core geometry. As a result, although a power peaking can be locally very large in the HC and BR assemblies adjacent regions, such local power peakings are shown to be effectively reduced by considering a rod-wise fuel enrichment distribution. In the whole core calculation, it seems possible to optimize the fuel assembly loading and shuffling pattern to avoid large power level mismatch between the assemblies. It is expected that FLWR can be shifted from HC type to BR type without major neutronic difficulties. (author)

  9. Critical heat flux experiments for high conversion light water reactor, (3)

    International Nuclear Information System (INIS)

    Iwamura, Takamichi; Okubo, Tsutomu; Suemura, Takayuki; Hiraga, Fujio; Murao, Yoshio

    1990-03-01

    As a part of the thermal-hydraulic feasibility study of a high conversion light water reactor (HCLWR), critical heat flux (CHF) experiments were performed using triangular array rod bundles under steady-state and flow reduction transient conditions. The geometries of test sections were: rod outer diameter 9.5 mm, number of rods 4∼7, heated length 0.5∼1.0 m, and pitch to diameter ratio (P/D) 1.126∼1.2. The simulated fuel rod was a stainless steel tube and uniformly heated electrically with direct current. In the steady-state tests, pressures ranged: 1.0∼3.9 Mpa, mass velocities: 460∼4270 kg/s·m 2 , and exit qualities: 0.02∼0.35. In the transient tests, the times to CHF detection ranged from 0.5 to 25.4 s. The steady-state CHF's for the 4-rod test sections were higher than those for the 7-rod test sections with respect to the bundle averaged flow conditions. The measured CHF's increased with decreasing the heated length and decreased with decreasing the P/D. Based on the local flow conditions obtained with the subchannel analysis code COBRA-IV-I, KfK correlation agreed with the CHF data within 20 %, while WSC-2, EPRI-B and W, EPRI-Columbia and Kattor correlations failed to give satisfactory agreements. Under flow reduction rates less than 6 %/s, no significant difference in the onset conditions of DNB (departure from nucleate boiling) was recognized between the steady-state and transient conditions. At flow reduction rates higher than 6 %/s, on the other hand, the DNB occurred earlier than the DNB time predicted with the steady-state experiments. (author)

  10. Ultrastable green fluorescence carbon dots with a high quantum yield for bioimaging and use as theranostic carriers

    DEFF Research Database (Denmark)

    Yang, Chuanxu; Thomsen, Rasmus Peter; Ogaki, Ryosuke

    2015-01-01

    to widely used semiconductor quantum dots. However, it remains a great challenge to prepare highly stable, water-soluble green luminescent Cdots with a high quantum yield. Herein we report a new synthesis route for green luminescent Cdots imbuing these desirable properties and demonstrate their potential...... in biomedical applications. Oligoethylenimine (OEI)–β-cyclodextrin (βCD) Cdots were synthesised using a simple and fast heating method in phosphoric acid. The synthesised Cdots showed strong green fluorescence under UV excitation with a 30% quantum yield and exhibited superior stability over a wide pH range. We...

  11. Selection of High Oil Yielding Trees of Millettia pinnata (L.) Panigrahi, Vegetative Propagation and Growth in the Field

    OpenAIRE

    Ni Luh Arpiwi; I Made Sutha Negara; I Nengah Simpen

    2017-01-01

    Millettia pinnata (L.) Panigrahi is a potential legume tree that produces seed oil for biodiesel feedstock. The initial step for raising a large-scale plantation of the species is selection of high oil yielding trees from the natural habitat. This is followed by vegetative propagation of the selected trees and then testing the growth of the clone in the field. The aim of the present study was to select high-oil yielding trees of M. pinnata, to propagate the selected trees by budding and to e...

  12. High yield of culture-based diagnosis in a TB-endemic setting

    NARCIS (Netherlands)

    Demers, Anne-Marie; Verver, Suzanne; Boulle, Andrew; Warren, Robin; van Helden, Paul; Behr, Marcel A.; Coetzee, David

    2012-01-01

    Background: In most of the world, microbiologic diagnosis of tuberculosis (TB) is limited to microscopy. Recent guidelines recommend culture-based diagnosis where feasible. Methods: In order to evaluate the relative and absolute incremental diagnostic yield of culture-based diagnosis in a

  13. The Eel River, northwestern California; high sediment yields from a dynamic landscape

    Science.gov (United States)

    Thomas E. Lisle

    1990-01-01

    The Eel River draining the Coast Range of northwestern California has the highest recorded average suspended sediment yield per drainage area of any river of its size or larger unaffected by volcanic eruptions or active glaciers in the conterminous United States (1,720 t/km 2 yr from 9,390 km 2 ; Brown and Ritter, 1971).

  14. Predicting yields of high priced trimmed beef cuts by means of ...

    African Journals Online (AJOL)

    The linear models included carcass weight and visual assessment of fatness and conformation by means of seven fat and five conformation classes. Amount of variation accounted for (R2) was the most favourable for total yield (87.3%) and the least favourable for the rib-eye cut (43.5%). Carcass weight contributed to most ...

  15. High-yielding cascade enzymatic synthesis of 5-methyluridine using a novel combination of nucleoside phosphorylases

    CSIR Research Space (South Africa)

    Visser, Daniel F

    2010-07-01

    Full Text Available and thymine. A 5-methyluridine yield of 79% on guanosine was achieved in a reaction slurry at a 53 mM (1.5% w/w) guanosine concentration. 5-Methyluridine is an intermediate in synthetic routes to thymidine and the antiretroviral drugs zidovudine...

  16. semi-dwarf tef lines for high seed yield and lodging tolerance

    African Journals Online (AJOL)

    ACSS

    Three genotypes, namely RIL- 91, RIL-244 and RIL-11, gave the highest seed yield, ranging between 4.4 to 4.7 t ha-1, compared to .... lodging tolerant tef varieties, adapting to the changing ..... moisture stress areas (Tsedey) was grouped.

  17. Response of high yielding rice varieties to NaCl salinity in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... the percentage of fertility, stem weight and white grain weight (Kavousi, 1995). ... yield falling in accordance with rising salinity or electrical conduction of ... Due to the effect of salinity on height reduction and its significant effect ..... leaf elongation in maize Is not Mediated by changes in cell wall. Acidification ...

  18. N-(m-[125I]iodophenyl)maleimide: an agent for high yield radiolabeling of antibodies

    International Nuclear Information System (INIS)

    Khawli, L.A.; Van den Abbeele, A.D.; Kassis, A.I.

    1992-01-01

    In an effort to radiolabel antibodies, N-(m-[ 125 I]iodophenyl)maleimide (m-[ 125 I]IPM) was prepared by the demetallation of an N-[m-tri-(n-butyl)stannylphenyl]maleimide intermediate. The unlabeled intermediate was synthesized in ≥ 75% yield using a palladium catalyzed reaction of hexabutylditin with m-bromoaniline, followed by reaction with maleic anhydride and ring annulation. All products were confirmed by NMR and elemental analysis. Labeling with 125 I was carried out in a biphasic mixture containing chloramine-T (radiochemical yield ≥ 70%). Rabbit IgG modified with the heterobifunctional crosslinking agent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) and bovine serum albumin were conjugated with m-[ 125 I]IPM (yield: 40 and 80%, respectively). In addition, m-[ 125 I]IPM was conjugated to rabbit IgG subunits (HL) in 70% yield. The in vitro stability of the radiolabeled proteins in serum showed < 1% deiodination over 24h. (author)

  19. Factors affecting the size of ovulatory follicles and conception rate in high-yielding dairy cows.

    Science.gov (United States)

    Mokhtari, A; Kafi, M; Zamiri, M J; Akbari, R

    2016-03-01

    Two studies were designed to determine (1) the effects of Heatsynch and Ovsynch protocols versus spontaneous ovulation and (2) the effects of calving problems, clinical uterine infections, and clinical mastitis on the size of the ovulatory follicle, conception rate, and embryonic/fetal (E/F) death in high-yielding dairy cows. In study 1, cows without the history of calving problems, clinical uterine infections, and clinical mastitis were randomly allocated to either an Ovsynch (n = 45) or Heatsynch (n = 39) ovulation synchronization protocol or spontaneous ovulation (n = 43) groups. Blood samples were collected on the day of artificial insemination (AI) to measure progesterone (P4), estradiol-17β, and insulin-like growth factor 1 (IGF-1) and 7 days later to measure P4. Study 2 consisted of cows (n = 351) with or without the history of calving problems, clinical uterine infections, and clinical mastitis which were artificially inseminated after a 55-day voluntary waiting period. Transrectal ultrasonography was performed at the time of AI to measure the ovulatory follicle size and on Days 30 and 68 after AI to diagnose pregnancy in both studies. In study 1, the mean (±standard error of the mean) diameter of the ovulatory follicle was greater (P = 0.0005) and E/F mortality was lower (P = 0.007) for the spontaneous ovulation group compared with Ovsynch and Heatsynch groups. Serum concentration of P4 on Day 7 after AI was correlated with the size of the ovulatory follicle (P = 0.007). Conception rate at Days 30 and 68 was not significantly different between the three experimental groups in study 1. Cows with serum IGF-1 concentrations greater than 55 ng/mL at AI had significantly higher Day 68 conception rate (50% vs. 24%) and lower E/F death (16.6% vs. 40%) compared to cows with serum IGF-1 concentrations lower than 56 ng/mL at AI. The conception rate on Days 30 and 68 for follicles of 10 to 14 mm in diameter (34% and 21.8%) was significantly lower than follicles of

  20. Innovations in papermaking: An LCA of printing and writing paper from conventional and high yield pulp

    International Nuclear Information System (INIS)

    Manda, B.M. Krishna; Blok, Kornelis; Patel, Martin K.

    2012-01-01

    Pulp and paper industry is facing challenges such as resource scarcity and greenhouse gas (GHG) emissions. The objective of this research is to investigate whether the use of new coatings (micro or nano TiO 2 ) and different pulp types could bring savings in wood, energy, GHG emissions and other environmental impacts in comparison with conventional printing and writing paper. We studied three types of pulp, namely i) unbleached virgin kraft pulp, ii) recovered fiber, and iii) high yield virgin chemithermo-mechanical pulp (CTMP). A life cycle assessment (LCA) was conducted from cradle to grave. Applying attributional modeling, we found that wood savings amount to 60% for the nanoparticle coated recovered fiber paper and 35% for the micro TiO 2 coated CTMP paper. According to the ReCiPe single score impact assessment method, the new product configurations allow the reduction of the environmental impacts by 10–35% compared to conventional kraft paper. Applying consequential modeling, we found larger energy and GHG emission savings compared to attributional modeling because the saved wood is used for producing energy, thereby replacing fossil fuels. The nanoparticle coated recovered fiber paper offered savings of non-renewable energy use (NREU) by 100% (13 GJ/ton paper) and GHG emission reduction by 75% (0.6 ton CO 2 eq./ton paper). Micro TiO 2 coated CTMP paper offered NREU savings by 25% (3 GJ/ton paper) and savings of GHG emissions by 10% (0.1 ton CO 2 eq./ton paper). The taking into account of all environmental impacts with the ReCiPe single score method leads to comparable results as that of attributional modeling. We conclude that the nanoparticle coated recovered fiber paper offered the highest savings and lowest environmental impacts. However, human toxicity and ecotoxicity impacts of the nanoparticles were not included in this analysis and need further research. If this leads to the conclusion that the toxicity impacts of the nanoparticles are serious, then

  1. Numerical investigation of power requirements for ultra-high-speed serial-to-parallel conversion

    DEFF Research Database (Denmark)

    Lillieholm, Mads; Mulvad, Hans Christian Hansen; Palushani, Evarist

    2012-01-01

    We present a numerical bit-error rate investigation of 160-640 Gbit/s serial-to-parallel conversion by four-wave mixing based time-domain optical Fourier transformation, showing an inverse scaling of the required pump energy per bit with the bit rate.......We present a numerical bit-error rate investigation of 160-640 Gbit/s serial-to-parallel conversion by four-wave mixing based time-domain optical Fourier transformation, showing an inverse scaling of the required pump energy per bit with the bit rate....

  2. High-accuracy resolver-to-digital conversion via phase locked loop based on PID controller

    Science.gov (United States)

    Li, Yaoling; Wu, Zhong

    2018-03-01

    The problem of resolver-to-digital conversion (RDC) is transformed into the problem of angle tracking control, and a phase locked loop (PLL) method based on PID controller is proposed in this paper. This controller comprises a typical PI controller plus an incomplete differential which can avoid the amplification of higher-frequency noise components by filtering the phase detection error with a low-pass filter. Compared with conventional ones, the proposed PLL method makes the converter a system of type III and thus the conversion accuracy can be improved. Experimental results demonstrate the effectiveness of the proposed method.

  3. High-pressure homogenization of raw and pasteurized milk modifies the yield, composition, and texture of queso fresco cheese.

    Science.gov (United States)

    Escobar, D; Clark, S; Ganesan, V; Repiso, L; Waller, J; Harte, F

    2011-03-01

    High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Development of a New Class of Scintillating Fibres with Very Short Decay Time and High Light Yield

    International Nuclear Information System (INIS)

    Borshchev, O.; Ponomarenko, S.; Surin, N.; Cavalcante, A.B.R.; Gavardi, L.; Gruber, L.; Joram, C.; Shinji, O.

    2017-01-01

    We present first studies of a new class of scintillating fibres which are characterised by very short decay times and high light yield. The fibres are based on a novel type of luminophores admixed to a polystyrene core matrix. These so-called Nanostructured Organosilicon Luminophores (NOL) have high photoluminescense quantum yield and decay times just above 1 ns. A blue and a green emitting prototype fibre with 250 μm diameter were produced and characterised in terms of attenuation length, ionisation light yield, decay time and tolerance to x-ray irradiation. The well-established Kuraray SCSF-78 and SCSF-3HF fibres were taken as references. Even though the two prototype fibres mark just an intermediate step in an ongoing development, their performance is already on a competitive level. In particular, their decay time constants are about a factor of two shorter than the fastest known fibres, which makes them promising candidates for time critical applications.

  5. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    Science.gov (United States)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  6. Evaluation for reasonableness of power conversion system concepts in the gas turbine high temperature reactor (GTHTR300)

    International Nuclear Information System (INIS)

    Minatsuki, I.; Mizokami, Y.

    2007-01-01

    The conceptual design study for the Gas Turbine High Temperature Reactor (GTHTR300) was completed in 2004. In GTHTR300, SECO (Simple, Economical Competitiveness and Originality) is advocated as design philosophy in order to minimize technical and economical requirement. Furthermore the design of the GTHTR300 was developed with reflecting various view points from utilities, manufacturers and research organizations. In GTHTR300, the horizontal turbo machine rotor, the turbo machine in a separated vessel, the turbo machine with single rotor, the generator inside the power conversion vessel, and the power conversion system without inter-coolers were selected as major power conversion system concepts. This paper describes the investigation and analysis about the major concepts of GTHTR300 power conversion system in order to evaluate reasonableness of GTHTR300 design approach and acceptability with using experience and engineering knowledge of Mitsubishi Heavy Industries, Ltd., which were accumulated through the activities of HTGR-GT and HTTR (High Temperature Engineering Test Reactor) designing, manufacturing, fabricating and testing. From the result of the evaluation, it was concluded that the selection of each concept in GTHTR300 was reasonable as based on the original design philosophy SECO. As a conclusion, we expect the GTHTR300 to become one of the most promising concepts for commercialization in near future. (authors)

  7. The "polyenviromic risk score": Aggregating environmental risk factors predicts conversion to psychosis in familial high-risk subjects.

    Science.gov (United States)

    Padmanabhan, Jaya L; Shah, Jai L; Tandon, Neeraj; Keshavan, Matcheri S

    2017-03-01

    Young relatives of individuals with schizophrenia (i.e. youth at familial high-risk, FHR) are at increased risk of developing psychotic disorders, and show higher rates of psychiatric symptoms, cognitive and neurobiological abnormalities than non-relatives. It is not known whether overall exposure to environmental risk factors increases risk of conversion to psychosis in FHR subjects. Subjects consisted of a pilot longitudinal sample of 83 young FHR subjects. As a proof of principle, we examined whether an aggregate score of exposure to environmental risk factors, which we term a 'polyenviromic risk score' (PERS), could predict conversion to psychosis. The PERS combines known environmental risk factors including cannabis use, urbanicity, season of birth, paternal age, obstetric and perinatal complications, and various types of childhood adversity, each weighted by its odds ratio for association with psychosis in the literature. A higher PERS was significantly associated with conversion to psychosis in young, familial high-risk subjects (OR=1.97, p=0.009). A model combining the PERS and clinical predictors had a sensitivity of 27% and specificity of 96%. An aggregate index of environmental risk may help predict conversion to psychosis in FHR subjects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Establishment of a Digital Knowledge Conversion Architecture Design Learning with High User Acceptance

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Apollo; Weng, Kuo-Hua

    2017-01-01

    The purpose of this study is to design a knowledge conversion and management digital learning system for architecture design learning, helping students to share, extract, use and create their design knowledge through web-based interactive activities based on socialization, internalization, combination and externalization process in addition to…

  9. Patchy zooplankton grazing and high energy conversion efficiency: ecological implications of sandeel behavior and strategy

    DEFF Research Database (Denmark)

    Deurs, Mikael van; Christensen, Asbjørn; Rindorf, Anna

    2013-01-01

    of prey. Here we studied zooplankton consumption and energy conversion efficiency of lesser sandeel (Ammodytes marinus) in the central North Sea, using stomach data, length and weight-at-age data, bioenergetics, and hydrodynamic modeling. The results suggested: (i) Lesser sandeel in the Dogger area depend...... sandeel densities and growth rates per area than larger habitats...

  10. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    Czech Academy of Sciences Publication Activity Database

    Lee, S.M.; Hrma, P.; Kloužek, Jaroslav; Pokorný, R.; Hujová, Miroslava; Dixon, D.R.; Schweiger, M. J.; Kruger, A.A.

    2017-01-01

    Roč. 43, č. 16 (2017), s. 13113-13118 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : oxygen mass balance * feed-to-glass conversion * evolved gas * oxygen partial pressure * Fe redox ratio Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 2.986, year: 2016

  11. Conversational Behaviors in Youth with High-Functioning ASD and Asperger Syndrome

    Science.gov (United States)

    Paul, Rhea; Orlovski, Stephanie Miles; Marcinko, Hillary Chuba; Volkmar, Fred

    2009-01-01

    Twenty-nine youth with autism spectrum disorders and 26 with typical development between 12 and 18 years of age were engaged in structured interviews (ADOS). The interviews were videotaped and rated for atypical conversational behaviors by trained raters, using the Pragmatic Rating Scale (Landa et al. "Psychol Med" 22:245-254, 1992). The ASD group…

  12. Experimental verification of high spectral entanglement for pulsed waveguided spontaneous parametric down-conversion

    DEFF Research Database (Denmark)

    Avenhaus, M.; Chekhova, M. V.; Krivitsky, Leonid

    2009-01-01

    We study the spectral properties of spontaneous parametric down-conversion (SPDC) in a periodically poled waveguided structure of potassium-titanyl-phosphate (KTP) crystal pumped by ultrashort pulses. Our theoretical analysis reveals a strongly entangled and asymmetric structure of the two...

  13. Highly efficient power system based on direct fission fragment energy conversion utilizing magnetic collimation

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel V.; Hart, Ron R.; Parish, Theodore A.

    2003-01-01

    The present study was focused on developing a technologically feasible power system that is based on direct fission fragment energy conversion utilizing magnetic collimation. The new concept is an attempt to combine several advantageous design solutions, which have been proposed for application in both fission and fusion reactors, into one innovative system that can offer exceptional energy conversion efficiency. The analysis takes into consideration a wide range of operational aspects including fission fragment escape from the fuel, collimation, collection, criticality, long-term performance, energy conversion efficiency, heat removal, and safety characteristics. Specific characteristics of the individual system components and the entire system are evaluated. Consistent analysis and evaluation of the technological feasibility of the concept were achieved using state-of-the-art computer codes that allowed realistic and consistent modeling. The calculated energy conversion efficiencies for the presented designs without a thermodynamic cycle and with the heavy water cycle are 52% and 62%, respectively. The analysis indicates that efficiencies up to 90% are potentially achievable. (author)

  14. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Ramos-Martinez, Erick Miguel; Fimognari, Lorenzo; Sakuragi, Yumiko

    2017-09-01

    Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP) n , wherein n = 10 or 20]. The yields of the (SP) n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP) n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP) n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP) n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  16. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    Science.gov (United States)

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of Biomass Feedstock on the Yield and Reactivity of Soot from Fast Pyrolysis at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter A.; Glarborg, Peter

    This study investigated the effect of feedstock on the yield, nanostructure and reactivity of soot. Woody and herbaceous biomass were pyrolyzed at high heating rates and temperatures of 1250 and 1400°C in a drop tube furnace. The collected solid residues were structurally characterized by electro...

  18. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    Science.gov (United States)

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  19. Hydroxyl radical yields in the tracks of high energy 13C6+ and 36Ar18+ ions in liquid water

    International Nuclear Information System (INIS)

    Baldacchino, G.; Vigneron, G.; Renault, J.P.; Le Caer, S.; Pin, S.; Mialocq, J.-C.; Balanzat, E.; Bouffard, S.

    2006-01-01

    This article reports the determination of the OH · radiolytic yields in water irradiated by high energy C 6+ and Ar 18+ ions with LET values of 32 ± 2 and 280 ± 10 eV nm -1 . The time evolution of the yields between 9 x 10 -11 and 9 x 10 -8 s was deduced using the scavenging method with SCN - and Br - and pulse radiolysis with pulses of 5 and 10 μs. The thiocyanate chemical system is less affected with the local high dose rates specific to the high LET particles than the bromide system. At 32 eV nm -1 with C 6+ ions, G(OH · ) reaches a maximum of 1.5 x 10 -7 mol J -1 at 1 ns and decreases at earlier times. With Ar 18+ ions of 280 eV nm -1 G(OH · ) is always increasing at early times up to 1.6 x 10 -7 mol J -1 at 9 x 10 -11 s. In this case the evolution of the hydroxyl radical yields agrees with the high local concentrations obtained with Ar 18+ and C 6+ ions and depicted in recent literature with the yields of the hydrated electron in the ns range

  20. Exogenously applied plant growth regulators enhance the morpho-physiological growth and yield of rice under high temperature

    Directory of Open Access Journals (Sweden)

    Shah Fahad

    2016-08-01

    Full Text Available A two-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR on rice growth and yield attributes under high day (HDT and high night temperature (HNT. Two rice cultivars (IR-64 and Huanghuazhan were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc, alpha-tocopherol (Ve, brassinosteroids (Br, methyl jasmonates (MeJA and triazoles (Tr were applied. High temperature severely affected rice morphology, and also reduced leaf area, above- and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.