WorldWideScience

Sample records for high contrast x-ray

  1. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  2. High-contrast x-ray microtomography in dental research

    Science.gov (United States)

    Davis, Graham; Mills, David

    2017-09-01

    X-ray microtomography (XMT) is a well-established technique in dental research. The technique has been used extensively to explore the complex morphology of the root canal system, and to qualitatively and quantitatively evaluate root canal instrumentation and filling efficacy in extracted teeth; enabling different techniques to be compared. Densitometric information can be used to identify and map demineralized tissue resulting from tooth decay (caries) and, in extracted teeth, the method can be used to evaluate different methods of excavation. More recently, high contrast XMT is being used to investigate the relationship between external insults to teeth and the pulpal reaction. When such insults occur, fluid may flow through dentinal tubules as a result of cracking or porosity in enamel. Over time, there is an increase in mineralization along the paths of the tubules from the pulp to the damaged region in enamel and this can be visualized using high contrast XMT. The scanner used for this employs time-delay integration to minimize the effects of detector inhomogeneity in order to greatly increase the upper limit on signal-to-noise ratio that can be achieved with long exposure times. When enamel cracks are present in extracted teeth, the presence of these pathways indicates that the cracking occurred prior to extraction. At high contrast, growth lines are occasionally seen in deciduous teeth which may have resulted from periods of maternal illness. Various other anomalies in mineralization resulting from trauma or genetic abnormalities can also be investigated using this technique.

  3. New tubes and techniques for flash X-ray diffraction and high contrast radiography

    International Nuclear Information System (INIS)

    Charbonnier, F.M.; Barbour, J.P.; Brewster, J.L.

    High energy electrons are particularly efficient in producing characteristic X-rays and soft polychromatic. A line of wide spectrum beryllium window flash X-ray tubes, ranging from 150 to 600kV, has been developed to exploit this property. Laue and Debye Scherrer flash X-ray diffraction patterns have been obtained using a single 30 ns pulse exposure. X-ray diffraction tests obtained are shown. Extremely high contrast flash radiography of small, low density objects has been obtained using industrial film without screen. Alternatively, particularly at high voltages and for subjects which include a broad range of materials and thicknesses, special film techniques can be used to produce extremely wide latitudes. Equipment, techniques and results are discussed

  4. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  5. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  6. Study of x-ray emission enhancement via high contrast femtosecond laser interacting with solid foil

    International Nuclear Information System (INIS)

    Chen, Liming; Kando, Masaki; Bulanov, S.V.; Koga, James K.; Tajima, Toshiki; Xu M.H.; Yuan X.H.; Li Y.T.; Dong Q.L.; Zhang J.

    2007-01-01

    We studied the hard x-ray emission and the Kα x-ray conversion efficiency (η K ) produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu Kα photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu η K shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10 -4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of η K . (author)

  7. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  8. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  9. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)

    2014-09-15

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

  10. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju

    2014-01-01

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier

  11. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  12. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  13. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  14. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  15. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  16. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S A; Marone, F; Hintermueller, C; Stampanoni, M [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bensadoun, J-C; Aebischer, P, E-mail: samuel.mcdonald@psi.c [EPFL, School of Life Sciences, Station 15, 1015 Lausanne (Switzerland)

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  17. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  18. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  19. Benchtop phase-contrast X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)], E-mail: o.gundogdu@surrey.ac.uk; Nirgianaki, E.; Che Ismail, E.; Jenneson, P.M.; Bradley, D.A. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-12-15

    Clinical radiography has traditionally been based on contrast obtained from absorption when X-rays pass through the body. The contrast obtained from traditional radiography can be rather poor, particularly when it comes to soft tissue. A wide range of media of interest in materials science, biology and medicine exhibit very weak absorption contrast, but they nevertheless produce significant phase shifts with X-rays. The use of phase information for imaging purposes is therefore an attractive prospect. Some of the X-ray phase-contrast imaging methods require highly monochromatic plane wave radiation and sophisticated X-ray optics. However, the propagation-based phase-contrast imaging method adapted in this paper is a relatively simple method to implement, essentially requiring only a microfocal X-ray tube and electronic detection. In this paper, we present imaging results obtained from two different benchtop X-ray sources employing the free space propagation method. X-ray phase-contrast imaging provides higher contrast in many samples, including biological tissues that have negligible absorption contrast.

  20. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    Science.gov (United States)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  1. X-ray imaging with monochromatic synchrotron radiation. Fluorescent and phase-contrast method

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-05-01

    To obtain the high sensitive x-ray images of biomedical object, new x-ray imaging techniques using fluorescent x-ray and phase-contrast x-ray are being developed in Japan. Fluorescent x-ray CT can detect very small amounts of specific elements in the order of ppm at one pixel, whereas phase-contrast x-ray imaging with interferometer can detect minute differences of biological object. Here, our recent experimental results are presented. (author)

  2. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  3. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  4. Synthesis of highly stable and biocompatible gold nanoparticles for use as a new X-ray contrast agent.

    Science.gov (United States)

    Iranpour, Pooya; Ajamian, Maral; Safavi, Afsaneh; Iranpoor, Nasser; Abbaspour, Abdolkarim; Javanmardi, Sanaz

    2018-04-18

    This work reports a novel reduction procedure for the synthesis of Gum Arabic (GA) capped-gold nanoparticles (AuNPs) in glucosammonium formate as a new ionic liquid. The GA coated AuNPs show good stability in physiological media. The synthesized AuNPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, dynamic light scattering and X-ray diffraction analysis. These stable AuNPs are introduced as a new contrast agent for X-ray Computed Tomography (X-ray CT). These nanoparticles have higher contrasting properties than the commercial contrast agent, Visipaque. The precursors used (Gum Arabic and glucose based-ionic liquid) for synthesis of AuNPs are biocompatible and non-toxic.

  5. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  6. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  7. X-ray Phase Contrast analysis - Digital wavefront development

    International Nuclear Information System (INIS)

    Idir, Mourad; Potier, Jonathan; Fricker, Sebastien; Snigirev, Anatoly; Snigireva, Irina; Modi, M. H.

    2010-01-01

    Optical schemes that enable imaging of the phase shift produced by an object have become popular in the x-ray region, where phase can be the dominant contrast mechanism. The propagation-based technique consists of recording the interference pattern produced by choosing one or several sample-to-detector distances. Pioneering studies, carried out making use of synchrotron radiation, demonstrated that this technique results in a dramatic increase of image contrast and detail visibility, allowing the detection of structures invisible with conventional techniques. An experimental and theoretical study of in-line hard x-ray phase-contrast imaging had been performed. The theoretical description of the technique is based on Fresnel diffraction. As an illustration of the potential of this quantitative imaging technique, high-resolution x-ray phase contrast images of simple objects will be presented.

  8. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  9. Bi-directional x-ray phase-contrast mammography.

    Directory of Open Access Journals (Sweden)

    Kai Scherer

    Full Text Available Phase-contrast x-ray imaging is a promising improvement of conventional absorption-based mammography for early tumor detection. This potential has been demonstrated recently, utilizing structured gratings to obtain differential phase and dark-field scattering images. However, the inherently anisotropic imaging sensitivity of the proposed mono-directional approach yields only insufficient diagnostic information, and has low diagnostic sensitivity to highly oriented structures. To overcome these limitations, we present a two-directional x-ray phase-contrast mammography approach and demonstrate its advantages by applying it to a freshly dissected, cancerous mastectomy breast specimen. We illustrate that the two-directional scanning procedure overcomes the insufficient diagnostic value of a single scan, and reliably detects tumor structures, independently from their orientation within the breast. Our results indicate the indispensable diagnostic necessity and benefit of a multi-directional approach for x-ray phase-contrast mammography.

  10. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    Science.gov (United States)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  11. X-ray phase contrast imaging at MAMI

    International Nuclear Information System (INIS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-01-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation σ h =(8.6±0.1) μm in the horizontal and σ v =(7.5±0.1) μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σ f =(1.2±0.4) μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σ v =(1.2±0.3)μm and a

  12. X-ray phase contrast imaging at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T. [Universitaet Mainz, Institut fuer Kernphysik, Mainz (Germany)

    2006-05-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40 keV. The electron beam spot size had standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in the horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4 m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be {sigma}{sub f}=(1.2{+-}0.4) {mu}m, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size

  13. X-ray phase contrast imaging at MAMI

    Science.gov (United States)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  14. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  15. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  16. X-ray contrast media-an overview

    International Nuclear Information System (INIS)

    Christiansen, Cathrine

    2005-01-01

    X-ray contrast media are chemically inert drugs which are given intravascularly in very high amounts within a very short time period. Although they are regarded as relatively safe drugs, adverse reactions can occur: these are normally divided into immediate and delayed reactions. The latter appear hours to days after injection. Immediate reactions have been drastically reduced since the introduction of non-ionic monomers and non-ionic dimers. However, the delayed reactions still occur in a frequency of 1-3% in X-ray contrast media exposed patients. The majority of these reactions are mild and manifest as skin eruption, but severe reactions can also occur. Further improvement of the safety of these drugs is only possible with a better understanding of etiologies behind the observed adverse reactions

  17. Depiction of blood vessels by x-ray phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [School of Engineering, University of Tokyo, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki (Japan)

    2001-04-01

    Blood vessels in livers of a mouse and a rat were depicted by phase-contrast x-ray imaging with an x-ray interferometer without using contrast agents. X-ray interference patterns were converted to image mapping x-ray phase shift caused by the livers using the technique of phase-shifting x-ray interferometry. The arteries and veins to and from the livers were tied before excision in order to prevent blood from flowing out of the liver. The x-ray phase shift caused by blood was substantially different from that caused by other soft sues, and consequently trees of blood vessels were revealed in the images. Vessels of diameter smaller than 0.1 mm were detected. This result suggests new possibilities for investigating vascular systems. (author)

  18. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  19. Observation of human tissue with phase-contrast x-ray computed tomography

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-05-01

    Human tissues obtained from cancerous kidneys fixed in formalin were observed with phase-contrast X-ray computed tomography (CT) using 17.7-keV synchrotron X-rays. By measuring the distributions of the X-ray phase shift caused by samples using an X-ray interferometer, sectional images that map the distribution of the refractive index were reconstructed. Because of the high sensitivity of phase- contrast X-ray CT, a cancerous lesion was differentiated from normal tissue and a variety of other structures were revealed without the need for staining.

  20. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging.

    Science.gov (United States)

    Pauwels, E; Van Loo, D; Cornillie, P; Brabant, L; Van Hoorebeke, L

    2013-04-01

    High resolution X-ray computed tomography (CT), or microCT, is a promising and already widely used technique in various scientific fields. Also for histological purposes it has great potential. Although microCT has proven to be a valuable technique for the imaging of bone structures, the visualization of soft tissue structures is still an important challenge due to their low inherent X-ray contrast. One way to achieve contrast enhancement is to make use of contrast agents. However, contrary to light and electron microscopy, knowledge about contrast agents and staining procedures is limited for X-ray CT. The purpose of this paper is to identify useful X-ray contrast agents for soft tissue visualization, which can be applied in a simple way and are also suited for samples larger than (1 cm)(3) . And 28 chemical substances have been investigated. All chemicals were applied in the form of concentrated aqueous solutions in which the samples were immersed. First, strips of green Bacon were stained to evaluate contrast enhancement between muscle and adipose tissue. Furthermore it was also tested whether the contrast agents remained fixed in the tissue after staining by re-immersing them in water. Based on the results, 12 contrast agents were selected for further testing on postmortem mice hind legs, containing a variety of different tissues, including muscle, fat, bone, cartilage and tendons. It was evaluated whether the contrast agents allowed a clearer distinction between the different soft tissue structures present. Finally also penetration depth was measured. And 26 chemicals resulted in contrast enhancement between muscle and adipose tissue in the Bacon strips. Mercury(II)chloride (HgCl2 ), phosphotungstic acid (PTA), phosphomolybdic acid (PMA) and ammonium orthomolybdate ((NH4 )2 MoO4 ) remained fixed after re-immersion in water. The penetration tests showed that potassium iodide (KI) and sodium tungstate can be most efficiently used for large samples of the order

  1. New developments in simulating X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Peterzol, A.; Berthier, J.; Duvauchelle, P.; Babot, D.; Ferrero, C.

    2007-01-01

    A deterministic algorithm simulating phase contrast (PC) x-ray images for complex 3- dimensional (3D) objects is presented. This algorithm has been implemented in a simulation code named VXI (Virtual X-ray Imaging). The physical model chosen to account for PC technique is based on the Fresnel-Kirchhoff diffraction theory. The algorithm consists mainly of two parts. The first one exploits the VXI ray-tracing approach to compute the object transmission function. The second part simulates the PC image due to the wave front distortion introduced by the sample. In the first part, the use of computer-aided drawing (CAD) models enables simulations to be carried out with complex 3D objects. Differently from the VXI original version, which makes use of an object description via triangular facets, the new code requires a more 'sophisticated' object representation based on Non-Uniform Rational B-Splines (NURBS). As a first step we produce a spatial high resolution image by using a point and monochromatic source and an ideal detector. To simulate the polychromatic case, the intensity image is integrated over the considered x-ray energy spectrum. Then, in order to account for the system spatial resolution properties, the high spatial resolution image (mono or polychromatic) is convolved with the total point spread function of the imaging system under consideration. The results supplied by the presented algorithm are examined with the help of some relevant examples. (authors)

  2. Neutron and high-contrast X-ray micro-radiography as complementary tools for monitoring organosilicon consolidants in natural building stones

    Energy Technology Data Exchange (ETDEWEB)

    Slavíková, Monika, E-mail: Monika.Slavikova@vscht.cz [Department of Chemical Technology of Monuments Conservation, Institute of Chemical Technology in Prague, Prague 6 CZ-16628 (Czech Republic); Krejčí, František [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 2 CZ-12800 (Czech Republic); Kotlík, Petr [Department of Chemical Technology of Monuments Conservation, Institute of Chemical Technology in Prague, Prague 6 CZ-16628 (Czech Republic); Jakůbek, Jan [Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague 2 CZ-12800 (Czech Republic); Tomandl, Ivo; Vacík, Jiří [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, CZ-25800, Rez Near Prague (Czech Republic)

    2014-11-01

    The monitoring of consolidants and other treatment product in stones is currently of great importance in various restoration studies. We use neutron and high-contrast X-ray micro-radiography as complementary non-destructive techniques for monitoring of organosilicon consolidants in the Opuka stone. Thanks to different sensitivities of both techniques in relation to the elemental composition, the effect of addition of the contrast agent (3-iodopropyl)trimethoxysilane commonly used in stone consolidation monitoring with X-ray radiography is evaluated. As the addition of the contrast agent to the original consolidation product alters important parameters such as the penetration depth, the understanding of the behaviour of the modified consolidation mixture is essential for verification of the reliability of the method. By comparing results from both methods, the respective radiographs show consistency in terms of homogeneity and penetration depth for all investigated concentrations of the used contrast agent. The presented results further demonstrate that the application of the contrast agent apparently changes the penetration depth, but these changes are, especially for very low concentrations (up to 1%) for most of the studies needed, negligible.

  3. From Relativistic Electrons to X-ray Phase Contrast Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Garson, A. B. [Washington U., St. Louis; Anastasio, M. A. [Washington U., St. Louis

    2017-10-09

    We report the initial demonstrations of the use of single crystals in indirect x-ray imaging for x-ray phase contrast imaging at the Washington University in St. Louis Computational Bioimaging Laboratory (CBL). Based on single Gaussian peak fits to the x-ray images, we observed a four times smaller system point spread function (21 μm (FWHM)) with the 25-mm diameter single crystals than the reference polycrystalline phosphor’s 80-μm value. Potential fiber-optic plate depth-of-focus aspects and 33-μm diameter carbon fiber imaging are also addressed.

  4. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    Science.gov (United States)

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (3D images of cryo-preserved cells. The relatively low X-ray energy (3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Yao, S.; Zong, Y.; Fan, J.; Sun, Z.; Jiang, H.

    2015-01-01

    X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  6. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  7. Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Hetterich, Holger; Fill, Sandra [Klinikum der Ludwig-Maximilians-Univ., Muenchen (Germany). Inst. fuer Klinische Radiologie; Herzen, Julia [Technische Univ. Muenchen, Garching (Germany). Physik-Dept. und Inst. fuer Medizintechnik; Helmholtz-Zentrum Geesthacht, Geesthacht (Germany). Zentrum fuer Materialforschung] [and others

    2013-10-01

    Background: Tissue characterization of atherosclerosis by absorption-based imaging methods is limited due to low soft-tissue contrast. Grating-based phase-contrast computed tomography (PC-CT) may become an alternative for plaque assessment if the phase signal can be retrieved at clinically applicable photon energies. The aims of this feasibility study were (i) to characterize arterial vessels at low and high photon energies, (ii) to extract qualitative features and (iii) quantitative phase-contrast Hounsfield units (HU-phase) of plaque components at 53 keV using histopathology as gold standard. Materials and methods: Five human carotid artery specimens underwent grating-based PC-CT using synchrotron radiation of either 23 keV or 53 keV and histological work-up. Specimens without advanced atherosclerosis were used to extract signal criteria of vessel layers. Diseased specimens were screened for important plaque components including fibrous tissue (FT), lipid (LIP), necrotic core (NEC), intraplaque hemorrhage (IPH), inflammatory cell infiltration (INF) and calcifications (CA). Qualitative features as well as quantitative HU-phase were analyzed. Results: Thirty-three regions in 6 corresponding PC-CT scans and histology sections were identified. Healthy samples had the same signal characteristics at 23 keV and 53 keV with bright tunica intima and adventitia and dark media. Plaque components showed differences in signal intensity and texture at 53 keV. Quantitative analysis demonstrated the highest HU-phase of soft plaque in dense FT. Less organized LIP, NEC and INF were associated with lower HU-phase values. The highest HU-phase were measured in CA. Conclusion: PC-CT of atherosclerosis is feasible at high, clinically relevant photon energies and provides detailed information about plaque structure including features of high risk vulnerable plaques. (orig.)

  8. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Zhang, X.; Liu, J.; Wang, J.

    2016-01-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  9. Effect of fuel and nozzle geometry on the off-axis oscillation of needle in diesel injectors using high-speed X-ray phase contrast imaging

    Science.gov (United States)

    Zhang, X.; Liu, J.; Wang, J.

    2016-05-01

    The diesel spray characteristics are strongly influenced by the flow dynamics inside the injector nozzle. Moreover, the off-axis oscillation of needle could lead to variation of orifice flow in the nozzle. In this paper, the needle oscillation was investigated using high-speed X-ray phase contrast imaging and quantitative image processing. The effects of fuel, injection pressure and nozzle geometry on the needle oscillation were analyzed. The results showed that the vertical and horizontal oscillation of needle was independent on the injection pressure. The maximum oscillation range of 14μ m was found. Biodiesel application slightly decreased the needle oscillation due to high viscosity. The needle oscillation range increased generally with increasing hole number. The larger needle oscillation in multi-hole injectors was dominated by the geometry problem or production issue at lower needle lift. In addition, the influence of needle oscillation on the spray morphology was also discussed.

  10. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  11. High-temperature x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, A G; Romanova, A V; Prikhod' ko, N P

    1974-03-25

    A high-temperature x-ray chamber for taking x-ray photographs of flat horizontally set samples in a vacuum or gas medium is described. The chamber is fitted out with a water-cooled vacuum closed hull with a window letting the x-rays pass, a centering mechanism and a device for heating the samples. To widen its functional abilities the chamber is provided with a goniometric device, fixed immovably to the body foundation by means of two stands. Bearings are mounted to the stands; one of them is equipped with a screw wheel and an endless screw with a limb in the ring; a traverse to which a counter for the x-ray radiation is installed is attached to the shafts of both the bearings. The centering mechanism has a cooled metalic rod, which is connected through a spiral screw thread with the limb fixable by a fork. The position of the shaft of rotation of the counter is adjusted with the help of a nit, extended through the plug openings, positioned on the stands. The chamber can be applied for x-ray structural analyses.

  12. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  13. Highly porous nanoberyllium for X-ray beam speckle suppression

    Energy Technology Data Exchange (ETDEWEB)

    Goikhman, Alexander, E-mail: agoikhman@ymail.com; Lyatun, Ivan; Ershov, Petr [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Snigireva, Irina [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Wojda, Pawel [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); Gdańsk University of Technology, 11/12 G. Narutowicza, Gdańsk 80-233 (Poland); Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor [A. A. Bochvar High-Technology Scientific Research Institute for Inorganic Materials, Rogova str. 5a, Moscow 123098 (Russian Federation); Snigirev, Anatoly [Immanuel Kant Baltic Federal University, Nevskogo str. 14, Kaliningrad 236041 (Russian Federation); European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France)

    2015-04-09

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy.

  14. Highly porous nanoberyllium for X-ray beam speckle suppression

    International Nuclear Information System (INIS)

    Goikhman, Alexander; Lyatun, Ivan; Ershov, Petr; Snigireva, Irina; Wojda, Pawel; Gorlevsky, Vladimir; Semenov, Alexander; Sheverdyaev, Maksim; Koletskiy, Viktor; Snigirev, Anatoly

    2015-01-01

    A speckle suppression device containing highly porous nanoberyllium is proposed for manipulating the spatial coherence length and removing undesirable speckle structure during imaging experiments. This paper reports a special device called a ‘speckle suppressor’, which contains a highly porous nanoberyllium plate squeezed between two beryllium windows. The insertion of the speckle suppressor in an X-ray beam allows manipulation of the spatial coherence length, thus changing the effective source size and removing the undesirable speckle structure in X-ray imaging experiments almost without beam attenuation. The absorption of the nanoberyllium plate is below 1% for 1 mm thickness at 12 keV. The speckle suppressor was tested on the ID06 ESRF beamline with X-rays in the energy range from 9 to 15 keV. It was applied for the transformation of the phase–amplitude contrast to the pure amplitude contrast in full-field microscopy

  15. Cellular internalization and morphological analysis after intravenous injection of a highly hydrophilic octahedral rhenium cluster complex - a new promising X-ray contrast agent.

    Science.gov (United States)

    Krasilnikova, Anna A; Solovieva, Anastasiya O; Trifonova, Kristina E; Brylev, Konstantin A; Ivanov, Anton A; Kim, Sung-Jin; Shestopalov, Michael A; Fufaeva, Maria S; Shestopalov, Alexander M; Mironov, Yuri V; Poveshchenko, Alexander F; Shestopalova, Lidia V

    2016-11-01

    The octahedral cluster compound Na 2 H 8 [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] has been shown to be highly radio dense, thus becoming a promising X-ray contrast agent. It was also shown that this compound had low cytotoxic effect in vitro, low acute toxicity in vivo and was eliminated rapidly from the body through the urinary tract. The present contribution describes a more detailed cellular internalization assay and morphological analysis after intravenous injection of this hexarhenium cluster compound at different doses. The median lethal dose (LD 50 ) of intravenously administrated compound was calculated (4.67 ± 0.69 g/kg). Results of the study clearly indicated that the cluster complex H n [{Re 6 Se 8 }(P(C 2 H 4 CONH 2 )(C 2 H 4 COO) 2 ) 6 ] n-10 was not internalized into cells in vitro and induced only moderate morphological alterations of kidneys at high doses without any changes in morphology of liver, spleen, duodenum, or heart of mice. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  17. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  18. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    Science.gov (United States)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  19. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  20. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  1. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  2. Phase contrast imaging using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  3. Benchmarking the x-ray phase contrast imaging for ICF DT ice characterization using roughened surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, E; Kozioziemski, B; Moody, J; Koch, J; Mapoles, E; Montesanti, R; Youngblood, K; Letts, S; Nikroo, A; Sater, J; Atherton, J

    2008-06-26

    We use x-ray phase contrast imaging to characterize the inner surface roughness of DT ice layers in capsules planned for future ignition experiments. It is therefore important to quantify how well the x-ray data correlates with the actual ice roughness. We benchmarked the accuracy of our system using surrogates with fabricated roughness characterized with high precision standard techniques. Cylindrical artifacts with azimuthally uniform sinusoidal perturbations with 100 um period and 1 um amplitude demonstrated 0.02 um accuracy limited by the resolution of the imager and the source size of our phase contrast system. Spherical surrogates with random roughness close to that required for the DT ice for a successful ignition experiment were used to correlate the actual surface roughness to that obtained from the x-ray measurements. When comparing average power spectra of individual measurements, the accuracy mode number limits of the x-ray phase contrast system benchmarked against surface characterization performed by Atomic Force Microscopy are 60 and 90 for surrogates smoother and rougher than the required roughness for the ice. These agreement mode number limits are >100 when comparing matching individual measurements. We will discuss the implications for interpreting DT ice roughness data derived from phase-contrast x-ray imaging.

  4. Phase-contrast x-ray computed tomography for observing biological specimens and organic materials

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1995-02-01

    A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.

  5. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    Science.gov (United States)

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  6. X-ray spectral meter of high voltages for X-ray apparatuses

    International Nuclear Information System (INIS)

    Zubkov, I.P.; Larchikov, Yu.V.

    1993-01-01

    Design of the X-ray spectral meter of high voltages (XRSMHV) for medical X-ray apparatuses permitting to conduct the voltage measurements without connection to current circuits. The XRSMHV consists of two main units: the detector unit based on semiconductor detector and the LP4900B multichannel analyzer (Afora, Finland). The XRSMYV was tested using the pilot plant based on RUM-20 X-ray diagnostic apparatus with high-voltage regulator. It was shown that the developed XRSMHV could be certify in the range of high constant voltages form 40 up to 120 kV with the basic relative error limits ±0.15%. The XRSMHV is used at present as the reference means for calibration of high-voltage medical X-ray equipment

  7. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  8. Recent observations with phase-contrast x-ray computed tomography

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  9. Analyzer-based x-ray phase-contrast microscopy combining channel-cut and asymmetrically cut crystals

    International Nuclear Information System (INIS)

    Hoennicke, M. G.; Cusatis, C.

    2007-01-01

    An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected. However, the long exposure times and the possibility to achieve high contrast microscopies by using extremely low attenuation-contrast samples motivated us to assemble the ABM setup using a synchrotron source. This setup was found to be useful for low contrast attenuation samples due to the low exposure time, high contrast, and spatial resolution found. Moreover, thanks to the combination with the nondispersive ABI setup, the diffraction-enhanced x-ray imaging algorithm could be applied

  10. Prolonged retainment of contrast media in renal tumours by oily X-ray contrast media

    International Nuclear Information System (INIS)

    Ryzkov, V.K.; Anisimov, V.N.

    1990-01-01

    In 194 patients with renal tumours an angiographic investigation with the oily X-ray contrast medium Iodolipol was carried out. A selective tropism of oily X-ray contrast media was found in the malignant zones only. The application of the preparation caused no complications. The oily X-ray contrast medium persisted in the tumours over several weeks or months. After embolization of the renal arteria a moderate size reduction of malign tumours in the first 10-14 d was seen. The ability of Iodolipol for a lasting retainment in malign tumour tissue allows a follow-up of the involution of the pathologic focus after arterial embolization of the tumour vessels. (author)

  11. High resolution x-ray microscope

    OpenAIRE

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-01-01

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens CRL made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, com...

  12. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  13. Microbubbles as contrast agent for in-line x-ray phase-contrast imaging

    International Nuclear Information System (INIS)

    Xi Yan; Zhao Jun; Tang Rongbiao; Wang Yujie

    2011-01-01

    In the present study, we investigated the potential of gas-filled microbubbles as contrast agents for in-line x-ray phase-contrast imaging (PCI) in biomedical applications. When imaging parameters are optimized, the microbubbles function as microlenses that focus the incoming x-rays to form bright spots, which can significantly enhance the image contrast. Since microbubbles have been shown to be safe contrast agents in clinical ultrasonography, this contrast-enhancement procedure for PCI may have promising utility in biomedical applications, especially when the dose of radiation is a serious concern. In this study, we performed both numerical simulations and ex vivo experiments to investigate the formation of the contrast and the effectiveness of microbubbles as contrast agents in PCI.

  14. X-ray phase contrast imaging at the Mainz Microtron MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Ghazaly, M. el

    2005-10-15

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. In a first series of experiments a polychromatic transition radiation X-ray source with typical photon energies in the range of 8-30 keV and a spot size of standard deviation {sigma}{sub h}=(8.6{+-}0.1) {mu}m in horizontal and {sigma}{sub v}=(7.5{+-}0.1) {mu}m in vertical direction was used to record refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 {mu}m. As detectors X-ray films were used. The source-to-detector distance amounted to 13 m. The edge enhancement contrast C{sub ref} = (I{sub max}-I{sub min})/(I{sub max}+I{sub min}) was investigated as a function of the distance between the object and the X-ray film which was varied between 0.5 and 5.5 m. In a second series of experiments holograms of strings were taken with a beam spot size {sigma}{sub v}=(0.50{+-}0.05) {mu}m and a monochromatic X-ray beam of 6 keV energy. The good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 {mu}m{sup 2} provides a highly efficient on-line detector. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. In a third series of experiments it was demonstrated that X-ray films are very useful detectors for the micro-focused and monochromized transition radiation X-ray source at MAMI. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the X-ray film Structurix D3 (Agfa) the standard deviation of the resolution was measured

  15. X-ray phase contrast imaging at the Mainz Microtron MAMI

    International Nuclear Information System (INIS)

    Ghazaly, M. el

    2005-10-01

    Experiments have been performed to explore the potential of the low emittance 855 MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. In a first series of experiments a polychromatic transition radiation X-ray source with typical photon energies in the range of 8-30 keV and a spot size of standard deviation σ h =(8.6±0.1) μm in horizontal and σ v =(7.5±0.1) μm in vertical direction was used to record refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450 μm. As detectors X-ray films were used. The source-to-detector distance amounted to 13 m. The edge enhancement contrast C ref = (I max -I min )/(I max +I min ) was investigated as a function of the distance between the object and the X-ray film which was varied between 0.5 and 5.5 m. In a second series of experiments holograms of strings were taken with a beam spot size σ v =(0.50±0.05) μm and a monochromatic X-ray beam of 6 keV energy. The good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13 x 13 μm 2 provides a highly efficient on-line detector. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. In a third series of experiments it was demonstrated that X-ray films are very useful detectors for the micro-focused and monochromized transition radiation X-ray source at MAMI. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the X-ray film Structurix D3 (Agfa) the standard deviation of the resolution was measured to be σ f =(1.1±0.4) μm, which is about a factor of 6 better as for

  16. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A novel three-dimensional X-ray microtomographic micro-imaging system which enables simultaneous measurement of differential phase contrast and absorption contrast has been developed. The optical system consists of a scanning microscope with one-dimensional focusing device and an imaging microscope with one-dimensional objective. A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown

  17. Dosimetry of x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Takayoshi; Abe, Nobuyuki; Kawanishi, Masaharu

    1980-01-01

    Study on the dosimetry of ionizing radiations, especially of X-rays, emitted from high-temperature plasms has been made. As to the unpolarized Bremsstrahlung, a brief method to estimate electron temperatures with TLD is described and evaluation of average energy and current of the run-away electrons in the turbulent heating Tokamak is made by observing the half-value layer of the emitted X-rays and the total exposure per one shot of the Tokamak discharge. As to the polarized one, it is shown that the anisotropic electron temperature is related to the degree of polarization of the X-rays. Furthermore, reference is made to the possibility of developing such X-ray generators as can emit nearly monochromatic X-rays (characteristic X-rays) or polarized ones arbitrarily. (author)

  18. Phase-contrast tomographic imaging using an X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Momose, A. [Hitachi Ltd, Advanced Research Lab., Saitama (Japan); Takeda, T.; Itai, Y. [Univ. of Tsukuba, Inst. of Clinical Medicine, Ibaraki (Japan); Yoneyama, A. [Hitachi Ltd, Central Resarch Lab., Tokyo (Japan); Hirano, K. [High Energy Accelerator Research Organization, Inst. of Materials Structure Science, Ibaraki (Japan)

    1998-05-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays. 35 refs.

  19. Phase-contrast tomographic imaging using an X-ray interferometer

    International Nuclear Information System (INIS)

    Momose, A.; Takeda, T.; Itai, Y.; Yoneyama, A.; Hirano, K.

    1998-01-01

    Apparatus for phase-contrast X-ray computed tomography using a monolithic X-ray interferometer is presented with some observational results for human breast tissues. Structures characteristic of the tissues were revealed in the phase-contrast tomograms. The procedure of image analysis consists of phase retrieval from X-ray interference patterns and tomographic image reconstruction from the retrieved phase shift. Next, feasibility of phase-contrast imaging using a two-crystal X-ray interferometer was studied aiming at in vivo observation in the future. In a preliminary study, the two-crystal X-ray interferometer was capable of generating fringes of 70% visibility using synchrotron X-rays

  20. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model.

    Directory of Open Access Journals (Sweden)

    Arne Tapfer

    Full Text Available To explore the potential of grating-based x-ray phase-contrast computed tomography (CT for preclinical research, a genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC was investigated. One ex-vivo mouse specimen was scanned with different grating-based phase-contrast CT imaging setups covering two different settings: i high-resolution synchrotron radiation (SR imaging and ii dose-reduced imaging using either synchrotron radiation or a conventional x-ray tube source. These experimental settings were chosen to assess the potential of phase-contrast imaging for two different types of application: i high-performance imaging for virtual microscopy applications and ii biomedical imaging with increased soft-tissue contrast for in-vivo applications. For validation and as a reference, histological slicing and magnetic resonance imaging (MRI were performed on the same mouse specimen. For each x-ray imaging setup, attenuation and phase-contrast images were compared visually with regard to contrast in general, and specifically concerning the recognizability of lesions and cancerous tissue. To quantitatively assess contrast, the contrast-to-noise ratios (CNR of selected regions of interest (ROI in the attenuation images and the phase images were analyzed and compared. It was found that both for virtual microscopy and for in-vivo applications, there is great potential for phase-contrast imaging: in the SR-based benchmarking data, fine details about tissue composition are accessible in the phase images and the visibility of solid tumor tissue under dose-reduced conditions is markedly superior in the phase images. The present study hence demonstrates improved diagnostic value with phase-contrast CT in a mouse model of a complex endogenous cancer, promoting the use and further development of grating-based phase-contrast CT for biomedical imaging applications.

  1. [High-Performance Active Pixel X-Ray Sensors for X-Ray Astronomy

    Science.gov (United States)

    Bautz, Mark; Suntharalingam, Vyshnavi

    2005-01-01

    The subject grants support development of High-Performance Active Pixel Sensors for X-ray Astronomy at the Massachusetts Institute of Technology (MIT) Center for Space Research and at MIT's Lincoln Laboratory. This memo reports our progress in the second year of the project, from April, 2004 through the present.

  2. The significance of the allergy history in the use of intravenous X-ray contrast media

    International Nuclear Information System (INIS)

    Schmidt, M.; Kroczek, U.

    1986-01-01

    A restrospective study correlating allergy histories and reactions to X-ray contrast media was performed with a study group containing 519 patients receiving intravenous and infusion cholangiograms and 827 patients receiving intravenous and infusion pyelograms. Reactions against X-ray contrast media were observed significantly more frequently among patients with a positive allergy history independent of the suspected allergy (p [de

  3. Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development

    Science.gov (United States)

    Effect of X-ray Contrast Media, Chlorination, and Chloramination on Zebrafish Development Little is known about the vertebrate developmental toxicity of chlorinated or chloraminated drinking water (DW), iodinated X-ray contrast media (ICM, a common contaminate of DW) or how the c...

  4. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  5. Antibiofouling polymer coated gold nanoparticles as a dual modal contrast agent for X-ray and photoacoustic imaging

    International Nuclear Information System (INIS)

    Guojia Huang; Yi Yuan; Xing Da

    2011-01-01

    X-ray is one of the most useful diagnostic tools in hospitals in terms of frequency of use and cost, while photoacoustic (PA) imaging is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. In this study, for the first time, we used gold nanoparticles (GNPs) as a dual modal contrast agent for X-ray and PA imaging. Soft gelatin phantoms with embedded tumor simulators of GNPs in various concentrations are clearly shown in both X-ray and PA imaging. With GNPs as a dual modal contrast agent, X-ray can fast detect the position of tumor and provide morphological information, whereas PA imaging has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.

  6. Neutron and high-contrast X-ray micro-radiography as complementary tools for monitoring organosilicon consolidants in natural building stones

    Czech Academy of Sciences Publication Activity Database

    Slavíková, M.; Krejčí, F.; Kotlík, P.; Jakůbek, J.; Tomandl, Ivo; Vacík, Jiří

    2014-01-01

    Roč. 338, NOV (2014), s. 42-47 ISSN 0168-583X R&D Projects: GA TA ČR TA01010237; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : stone consolidation * neutron radiography * X-ray radiography * Organosilicon consolidants Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.124, year: 2014

  7. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  8. Simple, compact, high brightness source for x-ray lithography and x-ray radiography

    International Nuclear Information System (INIS)

    Hawryluk, A.M.

    1986-01-01

    A simple, compact, high brightness x-ray source has recently been built. This source utilizes a commercially available, cylindrical geometry electron beam evaporator, which has been modified to enhance the thermal cooling to the anode. Cooling is accomplished by using standard, low-conductivity laboratory water, with an inlet pressure of less than 50 psi, and a flow rate of approx.0.3 gal/min. The anode is an inverted cone geometry for efficient cooling. The x-ray source has a measured sub-millimeter spot size (FWHM). The anode has been operated at 1 KW e-beam power (10 KV, 100 ma). Higher operating levels will be investigated. A variety of different x-ray lines can be obtained by the simple interchange of anodes of different materials. Typical anodes are made from easily machined metals, or materials which are vacuum deposited onto a copper anode. Typically, a few microns of material is sufficient to stop 10 KV electrons without significantly decreasing the thermal conductivity through the anode. The small size and high brightness of this source make it useful for step and repeat exposures over several square centimeter areas, especially in a research laboratory environment. For an aluminum anode, the estimated Al-K x-ray flux at 10 cms from the source is 70 μW/cm 2

  9. Line focus x-ray tubes-a new concept to produce high brilliance x-rays.

    Science.gov (United States)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-10-27

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3[Formula: see text] generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy [Formula: see text] can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  10. In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science.

    Science.gov (United States)

    Mayo, Sheridan C; Stevenson, Andrew W; Wilkins, Stephen W

    2012-05-24

    X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

  11. Pharmacodynamics and tolerance of X-ray contrast media

    International Nuclear Information System (INIS)

    Schmiedel, E.

    1987-01-01

    The improved tolerance of nonionic contrast media compared with conventional contrast media is mainly due to their lower osmolality and reduced allergoid potential. Tolerance advantages that have been definitely proven are, for example, low-pain contrast medium injection and superior systemic tolerance; side effects of an allergic pattern occur less often. Animals experiments have established that nonionic contrast media exercise a comparatively lower influence on the cardiovascular system. The haemodynamics of pulmonary circulation are less adversely affected on intravenous bolus injection. Reduced potential risk is to be expected especially in cardiac and bronchopulmonary high-risk patients. The reduced nephrotoxicity of nonionic contrast media was definitely established by clinical studies. Further systematic studies will however be required to provide an answer to the question whether this also entails a reduction in the incidence of renal failures induced by contrast media. (orig.) [de

  12. Ultra high resolution X-ray detectors

    International Nuclear Information System (INIS)

    Hess, U.; Buehler, M.; Hentig, R. von; Hertrich, T.; Phelan, K.; Wernicke, D.; Hoehne, J.

    2001-01-01

    CSP Cryogenic Spectrometers GmbH is developing cryogenic energy dispersive X-ray spectrometers based on superconducting detector technology. Superconducting sensors exhibit at least a 10-fold improvement in energy resolution due to their low energy gap compared to conventional Si(Li) or Ge detectors. These capabilities are extremely valuable for the analysis of light elements and in general for the analysis of the low energy range of the X-ray spectrum. The spectrometer is based on a mechanical cooler needing no liquid coolants and an adiabatic demagnetization refrigerator (ADR) stage which supplies the operating temperature of below 100 mK for the superconducting sensor. Applications include surface analysis in semiconductor industry as well material analysis for material composition e.g. in ceramics or automobile industry

  13. Optimization of in-line phase contrast particle image velocimetry using a laboratory x-ray source

    International Nuclear Information System (INIS)

    Ng, I.; Fouras, A.; Paganin, D. M.

    2012-01-01

    Phase contrast particle image velocimetry (PIV) using a laboratory x-ray microfocus source is investigated using a numerical model. Phase contrast images of 75 μm air bubbles, embedded within water exhibiting steady-state vortical flow, are generated under the paraxial approximation using a tungsten x-ray spectrum at 30 kVp. Propagation-based x-ray phase-contrast speckle images at a range of source-object and object-detector distances are generated, and used as input into a simulated PIV measurement. The effects of source-size-induced penumbral blurring, together with the finite dynamic range of the detector, are accounted for in the simulation. The PIV measurement procedure involves using the cross-correlation between temporally sequential speckle images to estimate the transverse displacement field for the fluid. The global error in the PIV reconstruction, for the set of simulations that was performed, suggests that geometric magnification is the key parameter for designing a laboratory-based x-ray phase-contrast PIV system. For the modeled system, x-ray phase-contrast PIV data measurement can be optimized to obtain low error ( 15 μm) of the detector, high geometric magnification (>2.5) is desired, while for large source size system (FWHM > 30 μm), low magnification (<1.5) would be suggested instead. The methods developed in this paper can be applied to optimizing phase-contrast velocimetry using a variety of laboratory x-ray sources.

  14. High energy resolution off-resonant X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wojciech, Blachucki [Univ. of Fribourg (Switzerland). Dept. of Physics

    2015-10-16

    This work treats of the high energy resolution off-resonant X-ray spectroscopy (HEROS) method of determining the density of unoccupied electronic states in the vicinity of the absorption edge. HEROS is an alternative to the existing X-ray absorption spectroscopy (XAS) methods and opens the way for new studies not achievable before.

  15. Quantitative breast tissue characterization using grating-based x-ray phase-contrast imaging

    Science.gov (United States)

    Willner, M.; Herzen, J.; Grandl, S.; Auweter, S.; Mayr, D.; Hipp, A.; Chabior, M.; Sarapata, A.; Achterhold, K.; Zanette, I.; Weitkamp, T.; Sztrókay, A.; Hellerhoff, K.; Reiser, M.; Pfeiffer, F.

    2014-04-01

    X-ray phase-contrast imaging has received growing interest in recent years due to its high capability in visualizing soft tissue. Breast imaging became the focus of particular attention as it is considered the most promising candidate for a first clinical application of this contrast modality. In this study, we investigate quantitative breast tissue characterization using grating-based phase-contrast computed tomography (CT) at conventional polychromatic x-ray sources. Different breast specimens have been scanned at a laboratory phase-contrast imaging setup and were correlated to histopathology. Ascertained tumor types include phylloides tumor, fibroadenoma and infiltrating lobular carcinoma. Identified tissue types comprising adipose, fibroglandular and tumor tissue have been analyzed in terms of phase-contrast Hounsfield units and are compared to high-quality, high-resolution data obtained with monochromatic synchrotron radiation, as well as calculated values based on tabulated tissue properties. The results give a good impression of the method’s prospects and limitations for potential tumor detection and the associated demands on such a phase-contrast breast CT system. Furthermore, the evaluated quantitative tissue values serve as a reference for simulations and the design of dedicated phantoms for phase-contrast mammography.

  16. Phase-contrast x-ray computed tomography for biological imaging

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji

    1997-10-01

    We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.

  17. Final Report - X-ray Studies of Highly Correlated Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Clement [Western Michigan Univ., Kalamazoo MI (United States)

    2017-11-27

    The overall goal of the research was to improve the capabilities of x-ray synchrotron instrumentation to enable cutting-edge research in condensed matter physics. The main goal of the current grant cycle was to find a method to measure the polarization of the scattered x-ray in resonant inelastic x-ray scattering. To do this, we developed a polarization analysis apparatus using a thin, toroidally bent single crystal, which could be set to reflect one or the other of the two polarization components in the scattered x-ray beam. Resonant x-ray scattering measurements were also carried out on interfaces and the charge density wave in high temperature superconducting materials.

  18. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  19. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tohoru E-mail: ttakeda@md.tsukuba.ac.jp; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu Quanwen; Thet Thet Lwin; Itai, Yuji

    2001-07-21

    Using a monolithic X-ray interferometer having the view size of 25 mmx25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  20. Phase-contrast X-ray computed tomography of non-formalin fixed biological objects

    Science.gov (United States)

    Takeda, Tohoru; Momose, Atsushi; Wu, Jin; Zeniya, Tsutomu; Yu, Quanwen; Thet-Thet-Lwin; Itai, Yuji

    2001-07-01

    Using a monolithic X-ray interferometer having the view size of 25 mm×25 mm, phase-contrast X-ray CT (PCCT) was performed for non-formalin fixed livers of two normal rats and a rabbit transplanted with VX-2 cancer. PCCT images of liver and cancer lesions resembled well those obtained by formalin fixed samples.

  1. The relationship between wave and geometrical optics models of coded aperture type x-ray phase contrast imaging systems.

    Science.gov (United States)

    Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro

    2010-03-01

    X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.

  2. X-ray phase-contrast micro-tomography and image analysis of wood microstructure

    International Nuclear Information System (INIS)

    Mayo, Sheridan; Evans, Robert; Chen, Fiona; Lagerstrom, Ryan

    2009-01-01

    A number of commercially important properties of wood depend on details of the wood micro- and nano- structure. CSIRO Forest Biosciences have developed SilviScan, an analytical instrument which uses a number of high-speed techniques for analyzing these properties. X-ray micro-tomographic analysis of wood samples provides detailed 3D reconstructions of the wood microstructure which can be used to validate results from SilviScan measurements. A series of wood samples was analysed using laboratory-based phase-contrast x-ray micro-tomography. Image analysis techniques were applied to the 3D data sets to extract significant features and statistical properties of the specimens. These data provide a means of verification of results from the more rapid SilviScan techniques, and will clarify the results of micro-diffraction studies of wood microfibrils.

  3. Ultra-high vacuum compatible optical chopper system for synchrotron x-ray scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hao, E-mail: hc000211@ohio.edu [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Cummings, Marvin; Shirato, Nozomi; Stripe, Benjamin; Preissner, Curt; Freeland, John W. [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rosenmann, Daniel [Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Kersell, Heath; Hla, Saw-Wai [Nanoscale and Quantum Phenomena Institute, Physics & Astronomy Department, Ohio University, Athens, Ohio 45701 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Rose, Volker, E-mail: vrose@anl.gov [Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States)

    2016-01-28

    High-speed beam choppers are a crucial part of time-resolved x-ray studies as well as a necessary component to enable elemental contrast in synchrotron x-ray scanning tunneling microscopy (SX-STM). However, many chopper systems are not capable of operation in vacuum, which restricts their application to x-ray studies with high photon energies, where air absorption does not present a significant problem. To overcome this limitation, we present a fully ultra-high vacuum (UHV) compatible chopper system capable of operating at variable chopping frequencies up to 4 kHz. The lightweight aluminum chopper disk is coated with Ti and Au films to provide the required beam attenuation for soft and hard x-rays with photon energies up to about 12 keV. The chopper is used for lock-in detection of x-ray enhanced signals in SX-STM.

  4. 'Taking X-ray phase contrast imaging into mainstream applications' and its satellite workshop 'Real and reciprocal space X-ray imaging'.

    Science.gov (United States)

    Olivo, Alessandro; Robinson, Ian

    2014-03-06

    A double event, supported as part of the Royal Society scientific meetings, was organized in February 2013 in London and at Chicheley Hall in Buckinghamshire by Dr A. Olivo and Prof. I. Robinson. The theme that joined the two events was the use of X-ray phase in novel imaging approaches, as opposed to conventional methods based on X-ray attenuation. The event in London, led by Olivo, addressed the main roadblocks that X-ray phase contrast imaging (XPCI) is encountering in terms of commercial translation, for clinical and industrial applications. The main driver behind this is the development of new approaches that enable XPCI, traditionally a synchrotron method, to be performed with conventional laboratory sources, thus opening the way to its deployment in clinics and industrial settings. The satellite meeting at Chicheley Hall, led by Robinson, focused on the new scientific developments that have recently emerged at specialized facilities such as third-generation synchrotrons and free-electron lasers, which enable the direct measurement of the phase shift induced by a sample from intensity measurements, typically in the far field. The two events were therefore highly complementary, in terms of covering both the more applied/translational and the blue-sky aspects of the use of phase in X-ray research. 

  5. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    International Nuclear Information System (INIS)

    Sun, Weiyuan; Liu, Zhiguo; Sun, Tianxi; Peng, Song; Ma, Yongzhong; Ding, Xunliang

    2014-01-01

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays

  6. Numerical design of in-line X-ray phase-contrast imaging based on ellipsoidal single-bounce monocapillary

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-05-11

    A new device using an ellipsoidal single-bounce monocapillary X-ray optics was numerically designed to realize in-line X-ray phase-contrast imaging by using conventional laboratory X-ray source with a large spot. Numerical simulation results validated the effectiveness of the proposed device and approach. The ellipsoidal single-bounce monocapillary X-ray optics had potential applications in the in-line phase contrast imaging with polychromatic X-rays.

  7. Imaging efficiency of an X-ray contrast agent-incorporated polymeric microparticle.

    Science.gov (United States)

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-01-01

    Biocompatible polymeric encapsulants have been widely used as a delivery vehicle for a variety of drugs and imaging agents. In this study, X-ray contrast agent (iopamidol) is encapsulated into a polymeric microparticle (polyvinyl alcohol) as a particulate flow tracer in synchrotron X-ray imaging system. The physical properties of the designed microparticles are investigated and correlated with enhancement in the imaging efficiency by experimental observation and theoretical interpretation. The X-ray absorption ability of the designed microparticle is assessed by Beer-Lambert-Bouguer law. Particle size, either in dried state or in solvent, primarily dominates the X-ray absorption ability under the given condition, thus affecting imaging efficiency of the designed X-ray contrast flow tracers. Copyright © 2011 John Wiley & Sons, Ltd.

  8. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  9. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    International Nuclear Information System (INIS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-01-01

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα 1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample

  10. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Science.gov (United States)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-08-01

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα1 line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  11. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  12. High temperature X-ray topography on silicon and gallium arsenide

    International Nuclear Information System (INIS)

    Krueger, H.E.

    1976-01-01

    Beginning with a review of the different theories of X-ray scattering on perfect and deformed crystals, results of the dynamic theory relevant specifically for X-ray topography are presented. The reflected intensity recorded in a X-ray topogram is discussed as a function of the angle of incidence, crystal thickness and lateral distribution. These results, together with fundamental relations of the DT which are developed in the annex, give insight into the contrasts induced by defects. Using practical examples Borrmann contrast, contrast produced by point defect agglomerates and dislocations and the Burgers vector method are explained. Thus the whole spectrum of contrast phenomena observed in the experimental part of the paper is presented. The experimental results were achieved with a high-temperature X-ray topography facility constructed for this purpose. The facility is described. (orig./HPOE) [de

  13. Superiority of Low Energy 160 KV X-Rays Compared to High Energy 6 MV X-Rays in Heavy Element Radiosensitization for Cancer Treatment

    Science.gov (United States)

    Lim, Sara N.; Pradhan, Anil K.; Nahar, Sultana N.; Barth, Rolf F.; Yang, Weilian; Nakkula, Robin J.; Palmer, Alycia; Turro, Claudia

    2013-06-01

    High energy X-rays in the MeV range are generally employed in conventional radiation therapy from linear accelerators (LINAC) to ensure sufficient penetration depths. However, lower energy X-rays in the keV range may be more effective when coupled with heavy element (high-Z or HZ) radiosensitizers. Numerical simulations of X-ray energy deposition for tumor phantoms sensitized with HZ radiosensitizers were performed using the Monte Carlo code Geant4. The results showed enhancement in energy deposition to radiosensitized phantoms relative to unsensitized phantoms for low energy X-rays in the keV range. In contrast, minimal enhancement was seen using high energy X-rays in the MeV range. Dose enhancement factors (DEFs) were computed and showed radiosensitization only in the low energy range nitrate, was initially used because it was 7x less toxic that an equivalent amount of carboplatin in vitro studies. This would allow us to separate the radiotoxic and the chemotoxic effects of HZ sensitizers. Results from this study showed a 10-fold dose dependent reduction in surviving fractions (SF) of radiosensitized cells treated with low energy 160 kV X-rays compared to those treated with 6 MV X-rays. This is in agreement with our simulations that show an increase in dose deposition in radiosensitized tumors for low energy X-rays. Due to unforeen in vivo toxicity, however, another in vitro study was performed using the commonly used, Pt-based chemotherapeutic drug carboplatin which confirmed earlier results. This lays the ground work for a planned in vivo study using F98 glioma bearing rats. This study demonstrates that while high energy X-rays are commonly used in cancer radiotherapy, low energy keV X-rays might be much more effective with HZ radiosensitization.

  14. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    Science.gov (United States)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  15. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  16. High spectral resolution X-ray observations of AGN

    NARCIS (Netherlands)

    Kaastra, J.S.

    2008-01-01

    brief overview of some highlights of high spectral resolution X-ray observations of AGN is given, mainly obtained with the RGS of XMM-Newton. Future prospects for such observations with XMM-Newton are given.

  17. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  18. The development of high resolution silicon x-ray microcalorimeters

    Science.gov (United States)

    Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.

    2005-12-01

    Recently we have produced x-ray microcalorimeters with resolving powers approaching 2000 at 5.9 keV using a spare XRS microcalorimeter array. We attached 400 um square, 8 um thick HgTe absorbers using a variety of attachment methods to an XRS array and ran the detector array at temperatures between 40 and 60 mK. The best results were for absorbers attached using the standard XRS absorber-pixel thermal isolation scheme utilizing SU8 polymer tubes. In this scenario we achieved a resolution of 3.2 eV FWHM at 5.9 keV. Substituting a silicon spacer for the SU8 tubes also yielded sub-4eV results. In contrast, absorbers attached directly to the thermistor produced significant position dependence and thus degraded resolution. Finally, we tested standard 640um-square XRS detectors at reduced bias power at 50mK and achieved a resolution of 3.7eV, a 50% improvement over the XRS flight instrument. Implanted silicon microcalorimeters are a mature flight-qualified technology that still has a substantial phase space for future development. We will discuss these new high resolution results, the various absorber attachment schemes, planned future improvements, and, finally, their relevance to future high resolution x-ray spectrometers including Constellation-X.

  19. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  20. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  1. On the limitations and optimisation of high-resolution 3D medical X-ray imaging systems

    International Nuclear Information System (INIS)

    Zhou Shuang; Brahme, Anders

    2011-01-01

    Based on a quantitative analysis of both attenuation and refractive properties of X-ray propagation in human body tissues and the introduction of a mathematical model for image quality analysis, some limitations and optimisation of high-resolution three-dimensional (3D) medical X-ray imaging techniques are studied. A comparison is made of conventional attenuation-based X-ray imaging methods with the phase-contrast X-ray imaging modalities that have been developed recently. The results indicate that it is theoretically possible through optimal design of the X-ray imaging system to achieve high spatial resolution (<100 μm) in 3D medical X-ray imaging of the human body at a clinically acceptable dose level (<10 mGy) by introducing a phase-contrast X-ray imaging technique.

  2. High-intensity, subkilovolt x-ray calibration facility

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    A high-intensity subkilovolt x-ray calibration source utilizing proton-induced inner-shell atomic fluorescence of low-Z elements is described. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide intense, nearly monoenergetic x-ray beams. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. Methods of reducing spectral contamination due to hydrocarbon build-up on the target are discussed. Typical x-ray spectra (Cu-L, C-K and B-K) are shown

  3. Treatment of foods with high-energy X rays

    International Nuclear Information System (INIS)

    Cleland, M.R.; Meissner, J.; Herer, A.S.; Beers, E.W.

    2001-01-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper

  4. Treatment of foods with high-energy X rays

    Science.gov (United States)

    Cleland, M. R.; Meissner, J.; Herer, A. S.; Beers, E. W.

    2001-07-01

    The treatment of foods with ionizing energy in the form of gamma rays, accelerated electrons, and X rays can produce beneficial effects, such as inhibiting the sprouting in potatoes, onions, and garlic, controlling insects in fruits, vegetables, and grains, inhibiting the growth of fungi, pasteurizing fresh meat, poultry, and seafood, and sterilizing spices and food additives. After many years of research, these processes have been approved by regulatory authorities in many countries and commercial applications have been increasing. High-energy X rays are especially useful for treating large packages of food. The most attractive features are product penetration, absorbed dose uniformity, high utilization efficiency and short processing time. The ability to energize the X-ray source only when needed enhances the safety and convenience of this technique. The availability of high-energy, high-power electron accelerators, which can be used as X-ray generators, makes it feasible to process large quantities of food economically. Several industrial accelerator facilities already have X-ray conversion equipment and several more will soon be built with product conveying systems designed to take advantage of the unique characteristics of high-energy X rays. These concepts will be reviewed briefly in this paper.

  5. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, L; Tang, S [University of Oklahoma, Norman, OK (United States); Ahmad, M [Stanford University, Palo Alto, CA (United States); Xing, L [Stanford University School of Medicine, Stanford, CA (United States)

    2016-06-15

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprised of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.

  6. High-intensity laser synchrotron x-ray source

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1995-10-01

    A laser interacting with a relativistic electron beam behaves like a virtual wiggler of an extremely short period equal to half of the laser wavelength. This approach opens a route to relatively compact, high-brightness x-ray sources alternative or complementary to conventional synchrotron light sources. Although not new, the Laser Synchrotron Light Source (LSLS) concept is still waiting for a convincing demonstration. Available at the BNL's Accelerator Test Facility (ATF), a high-brightness electron beam and the high-power C0 2 laser may be used as prototype LSLS brick stones. In a feasible demonstration experiment, 10-GW, 100-ps C0 2 laser beam will be brought to a head-on collision with a 10-ps, 0.5-nC, 70 MeV electron bunch. Flashes of well-collimated, up to 9.36-keV (∼ Angstrom) x-rays of 10-ps pulse duration, with a flux of ∼10 19 photons/sec will be produced via linear Compton backscattering. The x-ray spectrum is tunable proportionally to a variable e-beam energy. A natural short-term extension of the proposed experiment would be further enhancement of the x-ray flux to a 10 21 -10 22 photons/sec level, after the ongoing ATF CO 2 laser upgrade to 1 TW peak power and electron bunch shortening to 3 ps. The ATF LSLS x-ray beamline, exceeding by orders of magnitude the peak fluxes attained at the National Synchrotron Light Source (NSLS) x-ray storage ring, may become attractive for certain users, e.g., for biological x-ray microscopy. In addition, a terawatt CO 2 laser will enable harmonic multiplication of the x-ray spectrum via nonlinear Compton scattering

  7. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  8. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  9. Studies to compare radioactivity of bone cements and their ingredient X-ray contrast media

    International Nuclear Information System (INIS)

    Hopf, C.; Gloebel, B.; Hopf, T.; Universitaet des Saarlandes, Homburg/Saar; Universitaet des Saarlandes, Homburg/Saar

    1990-01-01

    Various PMMA bone cements/containing zirconium oxide (ZrO 2 ) as an X-ray contrast medium and zirconium oxides of several manufacturers were tested for their radioactivity by means of a gamma spectrometer. All the bone cements tested (Implast, Palacos R, and Sulfix-6) showed a certain degree of radioactivity. The radiation source in the bone cement is the added zirconium oxide, which is polluted by radioactive elements. The examination of various zirconium oxides showed some high radioactive emissions. (orig./GDG) [de

  10. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.

    Science.gov (United States)

    Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong

    2014-09-01

    X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.

  11. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    Science.gov (United States)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  12. High-Resolution and Lightweight X-ray Optics for the X-Ray Surveyor

    Science.gov (United States)

    Zhang, William

    Envisioned in "Enduring Quest, Daring Visions" and under study by NASA as a potential major mission for the 2020s, the X-ray Surveyor mission will likely impose three requirements on its optics: (1) high angular resolution: 0.5 PSF, (2) large effective area: e10,000 cm2 or more, and (3) affordable production cost: $500M. We propose a technology that can meet these requirements by 2020. It will help the X-ray Surveyor secure the endorsement of the coming decadal survey and enable its implementation following WFIRST. The technology comprises four elements: (1) fabrication of lightweight single crystal silicon mirrors, (2) coating these mirrors with iridium to maximize effective area without figure degradation, (3) alignment and bonding of these mirrors to form meta-shells that will be integrated to make a mirror assembly, and (4) systems engineering to ensure that the mirror assembly meet all science performance and spaceflight environmental requirements. This approach grows out of our existing approach based on glass slumping. Using glass slumping technology, we have been able to routinely build and test mirror modules of 10half-power diameter (HPD). While comparable in HPD to XMM-Newtons electroformed nickel mirrors, these mirror modules are 10 times lighter. Likewise, while comparable in weight to Suzakus epoxy-replicated aluminum foil mirrors, these modules have 10 times better HPD. These modules represent the current state of the art of lightweight X-ray optics. Although both successful and mature, the glass slumping technology has reached its limit and cannot achieve sub-arc second HPD. Therefore, we are pursuing the new approach based on polishing single crystal silicon. The new approach will enable the building and testing of mirror modules, called meta-shells, capable of 3HPD by 2018 and 1HPD by 2020, and has the potential to reach diffraction limits ( 0.1) in the 2020s.

  13. Hard X-ray Microscopy with Elemental, Chemical and Structural Contrast

    International Nuclear Information System (INIS)

    Schroer, C.G.; Boye, P.; Feldkamp, J.P.

    2010-01-01

    We review hard X-ray microscopy techniques with a focus on scanning microscopy with synchrotron radiation. Its strength compared to other microscopies is the large penetration depth of hard x rays in matter that allows one to investigate the interior of an object without destructive sample preparation. In combination with tomography, local information from inside of a specimen can be obtained, even from inside special non-ambient sample environments. Different X-ray analytical techniques can be used to produce contrast, such as X-ray absorption, fluorescence, and diffraction, to yield chemical, elemental, and structural information about the sample, respectively. This makes X-ray microscopy attractive to many fields of science, ranging from physics and chemistry to materials, geo-, and environmental science, biomedicine, and nanotechnology. Our scanning microscope based on nanofocusing refractive X-ray lenses has a routine spatial resolution of about 100 nm and supports the contrast mechanisms mentioned above. In combination with coherent X-ray diffraction imaging, the spatial resolution can be improved to the 10 nm range. The current state-of-the-art of this technique is illustrated by several examples, and future prospects of the technique are given. (author)

  14. Computer-aided diagnosis for phase-contrast X-ray computed tomography: quantitative characterization of human patellar cartilage with high-dimensional geometric features.

    Science.gov (United States)

    Nagarajan, Mahesh B; Coan, Paola; Huber, Markus B; Diemoz, Paul C; Glaser, Christian; Wismüller, Axel

    2014-02-01

    Phase-contrast computed tomography (PCI-CT) has shown tremendous potential as an imaging modality for visualizing human cartilage with high spatial resolution. Previous studies have demonstrated the ability of PCI-CT to visualize (1) structural details of the human patellar cartilage matrix and (2) changes to chondrocyte organization induced by osteoarthritis. This study investigates the use of high-dimensional geometric features in characterizing such chondrocyte patterns in the presence or absence of osteoarthritic damage. Geometrical features derived from the scaling index method (SIM) and statistical features derived from gray-level co-occurrence matrices were extracted from 842 regions of interest (ROI) annotated on PCI-CT images of ex vivo human patellar cartilage specimens. These features were subsequently used in a machine learning task with support vector regression to classify ROIs as healthy or osteoarthritic; classification performance was evaluated using the area under the receiver-operating characteristic curve (AUC). SIM-derived geometrical features exhibited the best classification performance (AUC, 0.95 ± 0.06) and were most robust to changes in ROI size. These results suggest that such geometrical features can provide a detailed characterization of the chondrocyte organization in the cartilage matrix in an automated and non-subjective manner, while also enabling classification of cartilage as healthy or osteoarthritic with high accuracy. Such features could potentially serve as imaging markers for evaluating osteoarthritis progression and its response to different therapeutic intervention strategies.

  15. Evaluation on correction factor for in-line X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mingli; Huang, Zhifeng; Zhang, Li; Zhang, Ran [Tsinghua Univ., Beijing (China). Dept. of Engineering Physics; Ministry of Education, Beijing (China). Key Laboratory of Particle and Radiation Imaging; Yin, Hongxia; Liu, Yunfu; Wang, Zhenchang [Capital Medical Univ., Beijing (China). Medical Imaging Center; Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2011-07-01

    X-ray in-line phase contrast computed tomography (CT) is an effective nondestructive tool, providing 3D distribution of the refractive index of weakly absorbing low-Z object with high resolution and image contrast, especially with high-brilliance third-generation synchrotron radiation sources. Modified Bronnikov's algorithm (MBA), one of the in-line phase contrast CT reconstruction algorithms, can reconstruct the refractive index distribution of a pure phase object with a single computed tomographic data set. The key idea of the MBA is to use a correction factor in the filter function to stabilize the behavior at low frequencies. In this paper, we evaluate the influences of the correction factor to the final reconstruction results of the absorption-phase-mixed objects with analytical simulation and actual experiments. The limitations of the MBA are discussed finally. (orig.)

  16. Low density contrast agents for x-ray phase contrast imaging: the use of ambient air for x-ray angiography of excised murine liver tissue

    International Nuclear Information System (INIS)

    Laperle, Christopher M; Wintermeyer, Philip; Derdak, Zoltan; Wands, Jack R; Hamilton, Theron J; Walker, Evan J; Diebold, Gerald; Rose-Petruck, Christoph; Shi, Daxin; Anastasio, Mark A

    2008-01-01

    We report a new preparative method for providing contrast through reduction in electron density that is uniquely suited for propagation-based differential x-ray phase contrast imaging. The method, which results in an air or fluid filled vasculature, makes possible visualization of the smallest microvessels, roughly down to 15 μm, in an excised murine liver, while preserving the tissue for subsequent histological workup. We show the utility of spatial frequency filtering for increasing the visibility of minute features characteristic of phase contrast imaging, and the capability of tomographic reconstruction to reveal microvessel structure and three-dimensional visualization of the sample. The effect of water evaporation from livers during x-ray imaging on the visibility of blood vessels is delineated. The deformed vascular tree in a cancerous murine liver is imaged.

  17. X-ray phase contrast with injected gas for tumor microangiography

    International Nuclear Information System (INIS)

    Lundström, U; Larsson, D H; Burvall, A; Hertz, H M; Westermark, U K; Henriksson, M Arsenian

    2014-01-01

    We show that the microvasculature of mouse tumors can be visualized using propagation-based phase-contrast x-ray imaging with gas as the contrast agent. The large density difference over the gas–tissue interface provides high contrast, allowing the imaging of small-diameter blood vessels with relatively short exposure times and low dose using a compact liquid-metal-jet x-ray source. The method investigated is applied to tumors (E1A/Ras-transformed mouse embryonic fibroblasts) grown in mouse ears, demonstrating sub-15-µm-diameter imaging of their blood vessels. The exposure time for a 2D projection image is a few seconds and a full tomographic 3D map takes some minutes. The method relies on the strength of the vasculature to withstand the gas pressure. Given that tumor vessels are known to be more fragile than normal vessels, we investigate the tolerance of the vasculature of 12 tumors to gas injection and find that a majority withstand 200 mbar pressures, enough to fill 12-µm-diameter vessels with gas. A comparison of the elasticity of tumorous and non-tumorous vessels supports the assumption of tumor vessels being more fragile. Finally, we conclude that the method has the potential to be extended to the imaging of 15 µm vessels in thick tissue, including mouse imaging, making it of interest for, e.g., angiogenesis research. (paper)

  18. Active x-ray optics for high resolution space telescopes

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  19. Efficacy and safety of lanthanoids as X-ray contrast agents

    International Nuclear Information System (INIS)

    Pietsch, Hubertus; Jost, Gregor; Frenzel, Thomas; Raschke, Marian; Walter, Jakob; Schirmer, Heiko; Huetter, Joachim; Sieber, Martin A.

    2011-01-01

    Objective: It has been suggested that elements from the lanthanoid (Ln) series may be well suited for use as absorbing elements in X-ray contrast agents (CA). Because gadolinium, an element of the lanthanoid series, has been identified as being possibly associated with nephrogenic systemic fibrosis (NSF), a rare but potentially severe disease, we sought to determine if other lanthanoids might possess a similar potential. Materials and methods: By computed tomography (CT), we compared the X-ray attenuation of all lanthanoids to that of iodine in vitro. In addition, we injected Han-Wistar rats on five consecutive days with 2.5 mmol Ln/kg bodyweight intravenously to test several Ln-DTPA-BMA complexes (praseodymium, europium, gadolinium, and holmium). Saline solution and a Ca-DTPA-BMA group served as controls. Ln concentrations in the skin and organs were determined by inductively coupled plasma mass spectrometry (ICP-MS). This method measures the total Ln content and cannot differentiate between chelated and unchelated Ln. In addition, serum cytokine levels were measured by Luminex technology. The complex stability of the Ln-DTPA-BMA complexes was also assessed in vitro. Results: Lanthanoids showed up to 50% higher X-ray attenuation than iodine in CT. The highest X-ray attenuation was observed with holmium and erbium. Differences in the in vitro complex stability of Pr-, Eu-, Gd-, and Ho-DTPA-BMA complexes were observed. The complex stability differences were also reflected by differences in the concentrations in tissue of the lanthanoids in vivo. Injections of Ln complexes caused NSF-like skin lesions in rats and a rapid upregulation of pro-fibrotic and inflammatory serum cytokines. The Ca-DTPA-BMA complex did not to induce pro-fibrotic cytokines or skin lesions. Pr-DTPA-BMA appeared to be toxic; all Pr-DTPA-BMA treated animals died within the first four days of the experiment and were therefore excluded from further analyses. Conclusion: Lanthanoids are very well

  20. Efficacy and safety of lanthanoids as X-ray contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayerhealthcare.com [Contrast Media Research, Bayer Schering Pharma AG, 13353 Berlin (Germany); Jost, Gregor, E-mail: Gregor.Jost@bayerhealthcare.com [Contrast Media Research, Bayer Schering Pharma AG, 13353 Berlin (Germany); Frenzel, Thomas, E-mail: Thomas.Frenzel@bayerhealthcare.com [Contrast Media Research, Bayer Schering Pharma AG, 13353 Berlin (Germany); Raschke, Marian, E-mail: Marian.Raschke@bayerhealthcare.com [Nonclinical Drug Safety, Bayer Schering Pharma AG, Berlin (Germany); Walter, Jakob, E-mail: Jakob.Walter@bayerhealthcare.com [Nonclinical Drug Safety, Bayer Schering Pharma AG, Berlin (Germany); Schirmer, Heiko, E-mail: Heiko.Schirmer@bayerhealthcare.com [Medical Chemistry VI, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Hutter@bayerhealthcare.com [Contrast Media Research, Bayer Schering Pharma AG, 13353 Berlin (Germany); Sieber, Martin A., E-mail: martin.sieber@bayerhealthcare.com [Contrast Media Research, Bayer Schering Pharma AG, 13353 Berlin (Germany)

    2011-11-15

    Objective: It has been suggested that elements from the lanthanoid (Ln) series may be well suited for use as absorbing elements in X-ray contrast agents (CA). Because gadolinium, an element of the lanthanoid series, has been identified as being possibly associated with nephrogenic systemic fibrosis (NSF), a rare but potentially severe disease, we sought to determine if other lanthanoids might possess a similar potential. Materials and methods: By computed tomography (CT), we compared the X-ray attenuation of all lanthanoids to that of iodine in vitro. In addition, we injected Han-Wistar rats on five consecutive days with 2.5 mmol Ln/kg bodyweight intravenously to test several Ln-DTPA-BMA complexes (praseodymium, europium, gadolinium, and holmium). Saline solution and a Ca-DTPA-BMA group served as controls. Ln concentrations in the skin and organs were determined by inductively coupled plasma mass spectrometry (ICP-MS). This method measures the total Ln content and cannot differentiate between chelated and unchelated Ln. In addition, serum cytokine levels were measured by Luminex technology. The complex stability of the Ln-DTPA-BMA complexes was also assessed in vitro. Results: Lanthanoids showed up to 50% higher X-ray attenuation than iodine in CT. The highest X-ray attenuation was observed with holmium and erbium. Differences in the in vitro complex stability of Pr-, Eu-, Gd-, and Ho-DTPA-BMA complexes were observed. The complex stability differences were also reflected by differences in the concentrations in tissue of the lanthanoids in vivo. Injections of Ln complexes caused NSF-like skin lesions in rats and a rapid upregulation of pro-fibrotic and inflammatory serum cytokines. The Ca-DTPA-BMA complex did not to induce pro-fibrotic cytokines or skin lesions. Pr-DTPA-BMA appeared to be toxic; all Pr-DTPA-BMA treated animals died within the first four days of the experiment and were therefore excluded from further analyses. Conclusion: Lanthanoids are very well

  1. Optimization of X-ray phase-contrast imaging based on in-line holography

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong; Yan Aimin

    2005-01-01

    This paper introduces a newly conceived formalism for clinical in-line phase-contrast X-ray imaging. The new formalism applies not only to ideal 'thin' objects analyzed in previous studies, but also applies to the real-world tissues used in actual clinical practice. Moreover we have identified the four clinically important factors that affect phase-contrast characteristics. These factors are: (1) body part attenuation (2) the spatial coherence of incident X-rays from an X-ray tube (3) the polychromatic nature of the X-ray source and (4) radiation dose to patients for clinical applications. Techniques of phase image-reconstruction based on the new X-ray in-line holography theory are discussed. Numerical simulations are described which were used to validate the theory. The design parameters of an optimal clinical phase-contrast mammographic imaging system which were determined based on the new theory, and validated in the simulations, are presented. The theory, image reconstruction algorithms, and numerical simulation techniques presented in this paper can be applied widely to clinical diagnostic X-ray imaging applications

  2. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won [Wonkwang University School of Medicine, Iksan (Korea, Republic of); Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man [Jeonbuk Technopark, Iksan (Korea, Republic of); Park, Mi-Ran; Cho, Seung-Ryong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Chon, Kwon-Su [Catholic University of Daegu, Gyeongsan (Korea, Republic of)

    2014-12-15

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics.

  3. Differential X-ray phase-contrast imaging with a grating interferometer using a laboratory X-ray micro-focus tube

    International Nuclear Information System (INIS)

    Yoon, Kwon-Ha; Ryu, Jong-Hyun; Jung, Chang-Won; Ryu, Cheol-Woo; Kim, Young-Jo; Kwon, Young-Man; Park, Mi-Ran; Cho, Seung-Ryong; Chon, Kwon-Su

    2014-01-01

    X-ray phase-contrast imaging can provide images with much greater soft-tissue contrast than conventional absorption-based images. In this paper, we describe differential X-ray phase-contrast images of insect specimens that were obtained using a grating-based Talbot interferometer and a laboratory X-ray source with a spot size of a few tens of micrometers. We developed the interferometer on the basis of the wavelength, periods, and height of the gratings; the field of view depends on the size of the grating, considering the refractive index of the specimen. The phase-contrast images were acquired using phase-stepping methods. The phase contrast imaging provided a significantly enhanced soft-tissue contrast compared with the attenuation data. The contour of the sample was clearly visible because the refraction from the edges of the object was strong in the differential phase-contrast image. Our results demonstrate that a grating-based Talbot interferometer with a conventional X-ray tube may be attractive as an X-ray imaging system for generating phase images. X-ray phase imaging obviously has sufficient potential and is expected to soon be a great tool for medical diagnostics

  4. In-line phase-contrast stereoscopic X-ray imaging for radiological purposes: An initial experimental study

    International Nuclear Information System (INIS)

    Siegbahn, E.A.; Coan, P.; Zhou, S.-A.; Bravin, A.; Brahme, A.

    2011-01-01

    We report results from a pilot study in which the in-line propagation-based phase-contrast imaging technique is combined with the stereoscopic method. Two phantoms were imaged at several sample-detector distances using monochromatic, 30 keV, X-rays. High contrast- and spatial-resolution phase-contrast stereoscopic pairs of X-ray images were constructed using the anaglyph approach and a vivid stereoscopic effect was demonstrated. On the other hand, images of the same phantoms obtained with a shorter sample-to-detector distance, but otherwise the same experimental conditions (i.e. the same X-ray energy and absorbed radiation dose), corresponding to the conventional attenuation-based imaging mode, hardly revealed stereoscopic effects because of the lower image contrast produced. These results have confirmed our hypothesis that stereoscopic X-ray images of samples with objects composed of low-atomic-number elements are considerably improved if phase-contrast imaging is used. It is our belief that the high-resolution phase-contrast stereoscopic method will be a valuable new medical imaging tool for radiologists and that it will be of help to enhance the diagnostic capability in the examination of patients in future clinical practice, even though further efforts will be needed to optimize the system performance.

  5. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  6. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  7. In vivo x-ray phase contrast analyzer-based imaging for longitudinal osteoarthritis studies in guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Paola [Faculty of Medicine and Institute of Clinical Radiology, Ludwig-Maximilians University, Munich (Germany); Wagner, Andreas; Mollenhauer, Juergen [Department of Orthopaedics of the University of Jena, Rudolf-Elle-Hospital Eisenberg (Germany); Bravin, Alberto; Diemoz, Paul C; Keyrilaeinen, Jani, E-mail: Paola.Coan@physik.uni-muenchen.d [European Synchrotron Radiation Facility (ESRF), Grenoble (France)

    2010-12-21

    Over the last two decades phase contrast x-ray imaging techniques have been extensively studied for applications in the biomedical field. Published results demonstrate the high capability of these imaging modalities of improving the image contrast of biological samples with respect to standard absorption-based radiography and routinely used clinical imaging techniques. A clear depiction of the anatomic structures and a more accurate disease diagnosis may be provided by using radiation doses comparable to or lower than those used in current clinical methods. In the literature many works show images of phantoms and excised biological samples proving the high sensitivity of the phase contrast imaging methods for in vitro investigations. In this scenario, the applications of the so-called analyzer-based x-ray imaging (ABI) phase contrast technique are particularly noteworthy. The objective of this work is to demonstrate the feasibility of in vivo x-ray ABI phase contrast imaging for biomedical applications and in particular with respect to joint anatomic depiction and osteoarthritis detection. ABI in planar and tomographic modes was performed in vivo on articular joints of guinea pigs in order to investigate the animals with respect to osteoarthritis by using highly monochromatic x-rays of 52 keV and a low noise detector with a pixel size of 47 x 47 {mu}m{sup 2}. Images give strong evidence of the ability of ABI in depicting both anatomic structures in complex systems as living organisms and all known signs of osteoarthritis with high contrast, high spatial resolution and with an acceptable radiation dose. This paper presents the first proof of principle study of in vivo application of ABI. The technical challenges encountered when imaging an animal in vivo are discussed. This experimental study is an important step toward the study of clinical applications of phase contrast x-ray imaging techniques.

  8. Imaging of metastatic lymph nodes by X-ray phase-contrast micro-tomography.

    Directory of Open Access Journals (Sweden)

    Torben Haugaard Jensen

    Full Text Available Invasive cancer causes a change in density in the affected tissue, which can be visualized by x-ray phase-contrast tomography. However, the diagnostic value of this method has so far not been investigated in detail. Therefore, the purpose of this study was, in a blinded manner, to investigate whether malignancy could be revealed by non-invasive x-ray phase-contrast tomography in lymph nodes from breast cancer patients. Seventeen formalin-fixed paraffin-embedded lymph nodes from 10 female patients (age range 37-83 years diagnosed with invasive ductal carcinomas were analyzed by X-ray phase-contrast tomography. Ten lymph nodes had metastatic deposits and 7 were benign. The phase-contrast images were analyzed according to standards for conventional CT images looking for characteristics usually only visible by pathological examinations. Histopathology was used as reference. The result of this study was that the diagnostic sensitivity of the image analysis for detecting malignancy was 100% and the specificity was 87%. The positive predictive value was 91% for detecting malignancy and the negative predictive value was 100%. We conclude that x-ray phase-contrast imaging can accurately detect density variations to obtain information regarding lymph node involvement previously inaccessible with standard absorption x-ray imaging.

  9. Portable X-ray fluorescence analyzer of high sensitivity using X-ray tube excitation

    International Nuclear Information System (INIS)

    Vatai, E.; Ando, L.

    1982-01-01

    A review of the three main methods of X-ray fluorescence analysis and their problems is given. The attainable accuracy and effectiveness of each method are discussed. The main properties of portable X-ray analyzers required by the industry are described. The results and experiences of R and D activities in ATOMKI (Debrecen, Hungary) for developing portable X-ray analyzers are presented. The only way for increasing the accuracy and decreasing the measuring time is the application of X-ray tube excitation instead of radioactive sources. The new ATOMKI equipment presently under construction and patenting uses X-ray tube excitation; it will increase the accuracy of concentration determination by one order of magnitude. (D.Gy.)

  10. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  11. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  12. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    International Nuclear Information System (INIS)

    Chou, Cheng-Ying; Anastasio, Mark A.

    2010-01-01

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  13. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Cheng-Ying; Anastasio, Mark A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan 106, Taiwan (China); Department of Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn Street, E1-116, Chicago, Illinois 60616 (United States)

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  14. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  15. High intensity line source for x-ray spectrometer calibration

    International Nuclear Information System (INIS)

    Thoe, R.S.

    1986-06-01

    A high intensity electron-impact x-ray source using a one-dimensional Pierce lens has been built for the purpose of calibrating a bent crystal x-ray spectrometer. This source focuses up to 100 mA of 20-keV electrons to a line on a liquid-cooled anode. The line (which can serve as a virtual slit for the spectrometer) measures approximately 800 μ x 2 cm. The source is portable and therefore adaptable to numerous types of spectrometer applications. One particular application, the calibration of a high resolution (r = 10 4 ) time-resolved cyrstal spectrometer, will be discussed in detail

  16. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  17. State of the Art of X-ray Speckle-Based Phase-Contrast and Dark-Field Imaging

    Directory of Open Access Journals (Sweden)

    Marie-Christine Zdora

    2018-04-01

    Full Text Available In the past few years, X-ray phase-contrast and dark-field imaging have evolved to be invaluable tools for non-destructive sample visualisation, delivering information inaccessible by conventional absorption imaging. X-ray phase-sensing techniques are furthermore increasingly used for at-wavelength metrology and optics characterisation. One of the latest additions to the group of differential phase-contrast methods is the X-ray speckle-based technique. It has drawn significant attention due to its simple and flexible experimental arrangement, cost-effectiveness and multimodal character, amongst others. Since its first demonstration at highly brilliant synchrotron sources, the method has seen rapid development, including the translation to polychromatic laboratory sources and extension to higher-energy X-rays. Recently, different advanced acquisition schemes have been proposed to tackle some of the main limitations of previous implementations. Current applications of the speckle-based method range from optics characterisation and wavefront measurement to biomedical imaging and materials science. This review provides an overview of the state of the art of the X-ray speckle-based technique. Its basic principles and different experimental implementations as well as the the latest advances and applications are illustrated. In the end, an outlook for anticipated future developments of this promising technique is given.

  18. Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube source

    International Nuclear Information System (INIS)

    Donath, Tilman; Bunk, Oliver; Groot, Waldemar; Bednarzik, Martin; Gruenzweig, Christian; David, Christian; Pfeiffer, Franz; Hempel, Eckhard; Popescu, Stefan; Hoheisel, Martin

    2009-01-01

    Phase-contrast imaging at laboratory-based x-ray sources using grating interferometers has been developed over the last few years for x-ray energies of up to 28 keV. Here, we show first phase-contrast projection and tomographic images recorded at significantly higher x-ray energies, produced by an x-ray tube source operated at 100 kV acceleration voltage. We find our measured tomographic phase images in good agreement with tabulated data. The extension of phase-contrast imaging to this significantly higher x-ray energy opens up many applications of the technique in medicine and industrial nondestructive testing.

  19. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  20. X-ray radiography with highly charged ions

    Science.gov (United States)

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  1. Clinical implementation of x-ray phase-contrast imaging: Theoretical foundations and design considerations

    International Nuclear Information System (INIS)

    Wu Xizeng; Liu Hong

    2003-01-01

    Theoretical foundation and design considerations of a clinical feasible x-ray phase contrast imaging technique were presented in this paper. Different from the analysis of imaging phase object with weak absorption in literature, we proposed a new formalism for in-line phase-contrast imaging to analyze the effects of four clinically important factors on the phase contrast. These are the body parts attenuation, the spatial coherence of spherical waves from a finite-size focal spot, and polychromatic x-ray and radiation doses to patients for clinical applications. The theory presented in this paper can be applied widely in diagnostic x-ray imaging procedures. As an example, computer simulations were conducted and optimal design parameters were derived for clinical mammography. The results of phantom experiments were also presented which validated the theoretical analysis and computer simulations

  2. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    Science.gov (United States)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  3. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Liu, Y; Nelson, J; Andrews, J C; Pianetta, P; Holzner, C

    2013-01-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented. (paper)

  4. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...... successfully in terms of the many-body theory of Mahan, Nozières, and De Dominicis. The 4d spectrum agrees well with predictions based on a relativistic-augmented-plane-wave band-structure calculation....

  5. When will Low-Contrast Features be Visible in a STEM X-Ray Spectrum Image?

    Science.gov (United States)

    Parish, Chad M

    2015-06-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y2Ti2O7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis. Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. Future applications, such as spallation proton-neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.

  6. Talbot phase-contrast x-ray imaging for the small joints of the hand

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Dan [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beck, Thomas J [Quantum Medical Metrics, 1450 South Rolling Road, Baltimore, MD 21227 (United States); Carrino, John A [Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287 (United States); Bingham, Clifton O, E-mail: stutman@pha.jhu.edu [Divisions of Rheumatology and Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21224 (United States)

    2011-09-07

    A high-resolution radiographic method for soft tissues in the small joints of the hand would aid in the study and treatment of rheumatoid arthritis (RA) and osteoarthritis (OA), which often attacks these joints. Of particular interest would be imaging with <100 {mu}m resolution the joint cartilage, whose integrity is a main indicator of disease. Differential phase-contrast (DPC) or refraction-based x-ray imaging with Talbot grating interferometers could provide such a method, since it enhances soft tissue contrast and can be implemented with conventional x-ray tubes. A numerical joint phantom was first developed to assess the angular sensitivity and spectrum needed for a hand DPC system. The model predicts that, due to quite similar refraction indexes for joint soft tissues, the refraction effects are very small, requiring high angular resolution. To compare our model to experiment we built a high-resolution bench-top interferometer using 10 {mu}m period gratings, a W anode tube and a CCD-based detector. Imaging experiments on animal cartilage and on a human finger support the model predictions. For instance, the estimated difference between the index of refraction of cartilage and water is of only several percent at {approx}25 keV mean energy, comparable to that between the linear attenuation coefficients. The potential advantage of DPC imaging thus comes mainly from the edge enhancement at the soft tissue interfaces. Experiments using a cadaveric human finger are also qualitatively consistent with the joint model, showing that refraction contrast is dominated by tendon embedded in muscle, with the cartilage layer difficult to observe in our conditions. Nevertheless, the model predicts that a DPC radiographic system for the small hand joints of the hand could be feasible using a low energy quasi-monochromatic source, such as a K-edge filtered Rh or Mo tube, in conjunction with a {approx}2 m long 'symmetric' interferometer operated in a high Talbot order.

  7. 3D contrast-enhanced MR portography and direct X-ray portography: a correlation study

    International Nuclear Information System (INIS)

    Lin Jiang; Zhou Kangrong; Chen Zuang; Wang Jianhua; Yan Ziping; Wang Yixiang, J.

    2003-01-01

    Our objective was to compare 3D contrast-enhanced MR portography (3D CE MRP) on a 1.5-T MR imager with direct X-ray portography. Twenty-six consecutive patients underwent 3D CE MRP with in-plane resolution of 1.4 or 1.8 mm, and direct X-ray portography. The findings of these two methods were evaluated and compared. The main portal vein (PV), right PV with its anterior and posterior segmental branches, and left PV including its sagittal segment were shown clearly without diagnostic problem in all cases on MRP. The main PV appearance was accordant with MRP and X-ray. For intrahepatic PVs, the results agreed in 21 patients but disagreed in 5 patients. In 1 patient with a huge tumor in right liver, the right posterior PV was classified as occluded at MRP, but diffusely narrowed at X-ray. The findings of left intrahepatic PV were discordant in 3 patients with hepatocelluar carcinoma in the left lobe. The MRP demonstrated complete occlusion of the left PVs, whereas X-ray showed proximal narrowing and distal occlusion. In another patient with hepatocelluar carcinoma, a small non-occlusive thrombus involving the sagittal segment of the left PV was seen on MRP but not on X-ray. With demonstration of varices and portosystemic shunts, MRP showed results similar to those of X-ray, except one recanalized para-umbilical vein was excluded from the field of view at MRP due to the patient's limited ability of breathholding. The 3D CE MRP correlated well with direct X-ray portography in most cases, it was limited in distinguishing narrowing of an intrahepatic PV from occlusion, but it showed advantage in demonstrating small thrombus within PV. (orig.)

  8. Investigations on microstructure of Chinese traditional medicine using phase-contrast imaging with microfocus X-ray tube

    International Nuclear Information System (INIS)

    Wei Xun; Chinese Academy of Sciences, Beijing; Xiao Tiqiao; Chen Min; Liu Lixiang; Luo Yuyu; Du Guohao; Xu Hongjie

    2005-01-01

    The microscopic morphology of plant cells and their ergastic substances is an important standard for the identification of Chinese traditional medicine. The authors have developed a new method, X-ray phase-contrast imaging (XPCI) based on the microfocus X-ray tube, to explore microstructures of Chinese herbal medicine. The results indicate that XPCI is capable of distinguishing the structures commonly used in the identification. Non-destructive detection and high sensibility are counted among the major advantages of XPCI. The possibility of future applications of XPCI in the field of medicine identification is discussed. (authors)

  9. X-ray microscopy with high resolution zone plates -- Recent developments

    International Nuclear Information System (INIS)

    Schneider, G.; Wilhein, T.; Niemann, B.; Guttmann, P.

    1995-01-01

    In order to expand the applications of X-ray microscopy, developments in the fields of zone plate technology, specimen preparation and imaging techniques have been made. A new cross-linked polymer chain electron beam resist allows to record zone plate pattern down to 19 nm outermost zone width. High resolution zone plates in germanium with outermost zone widths down to 19 nm have been developed. In addition, phase zone plates in nickel down to 30 nm zone width have been made by electroplating. In order to enhance the image contrast for weak absorbing objects, the phase contrast method for X-ray microscopy was developed and implemented on the Goettingen X-ray microscope at BESSY. The effects of X-ray absorption on the structure of biological specimen limits the maximum applicable radiation dose and therefore the achievable signal to noise ratio for an artifact-free X-ray image. To improve the stability especially of biological specimen, a cryogenic object chamber has been developed and tested. It turns out that at the operating temperature T ≤ 130 K unfixed biological specimen can be exposed to a radiation dose of 10 9 --10 10 Gy without any observable structural changes. A multiple-angle viewing stage allows to take stereoscopic images with the X-ray microscope, giving a 3D-impression of the object

  10. In-line X-ray phase-contrast imaging of murine liver microvasculature ex vivo

    International Nuclear Information System (INIS)

    Li Beilei; Xu Min; Shi Hongcheng; Chen Shaoliang; Wu Weizhong; Peng Guanyun; Zhang Xi; Peng Yifeng

    2012-01-01

    Imaging blood vessels is of importance for determining the vascular distribution of organs and tumors. Phase-contrast X-ray imaging can reveal the vessels in much more detail than conventional X-ray absorption method. Visualizing murine liver microvasculature ex vivo with phase-contrast X-ray imaging was performed at Shanghai Synchrotron Radiation Facility. Barium sulfate and physiological saline were used as contrast agents for the blood vessels. Blood vessels of <Φ20 μm could be detected by replacing resident blood with physiological saline or barium sulfate. An entire branch of the portal vein (from the main axial portal vein to the ninth generation of branching) could be captured in a single phase-contrast image. It is demonstrated that selective angiography based on phase contrast X-ray imaging, with a physiological material of low Z elements (such as saline) being the contrast agent, is a viable imaging strategy. Further efforts will be focused on using the technique to image tumor angiogenesis. (authors)

  11. Differential phase contrast setup for a non coherent beamline at HASYLAB using hard X-ray grating interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia; Beckmann, Felix; Haibel, Astrid; Schreyer, Andreas [GKSS Research Centre, Geesthacht (Germany); Donath, Tilman; David, Christian; Gruenzweig, Christian [Paul Scherrer Institute, Villigen PSI (Switzerland); Pfeiffer, Franz [Paul Scherrer Institute, Villigen PSI (Switzerland); EPF Lausanne, Lausanne (Switzerland)

    2009-07-01

    Phase-contrast imaging is a common technique to visualize soft tissue with much higher contrast than the conventional absorption-contrast imaging. Differential phase contrast (DPC), developed at PSI, Switzerland, makes use of a hard x-ray grating interferometer and allows for phase-contrast imaging with high brilliance synchrotron sources as well as with conventional x-ray tubes. It is recently reported also to provide dark field information that is very sensitive to micro structures like porosity within the materials. Here we present the plans to adopt the DPC technique to the HARWI-II materials science beamline, operated by GKSS Research Centre, in cooperation with DESY, Hamburg. This will offer an amount of new applications especially in the field of materials science like for example characterizing new light weight materials like magnesium and studying its corrosion as implant material.

  12. Editorial: Focus on X-ray Beams with High Coherence

    Science.gov (United States)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  13. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    Energy Technology Data Exchange (ETDEWEB)

    Loo, B.W. Jr. [Univ. of California, San Francisco, CA (United States)]|[Univ. of California, Davis, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States); Rothman, S.S. [Univ. of California, San Francisco, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1997-02-01

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetration depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).

  14. High resolution X-ray diffraction studies on unirradiated

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator combination is used to study the irradiation induced defects in flux grown Sr-hexaferrite crystals irradiated with 50 MeV Li3+ ion beams at room temperature with a fluence value of 1 × 1014 ions/cm2. The diffraction curves of the ...

  15. Refractive x-ray lens for high pressure diffraction

    International Nuclear Information System (INIS)

    Ohishi, Yasuo

    2001-01-01

    A stacked compound refractive x-ray lens was designed to produce a efficiently focused (φ 2 and a peak gain of 12, is well matched to these requirements. It is composed of many plastic chips made by molding, which is allowing many identical chips to be made precisely. Other advantages of this lens include high throughput, simple energy tunability and easy installation. (author)

  16. X-ray speckle contrast variation at a sample-specific absorption edges

    International Nuclear Information System (INIS)

    Retsch, C. C.; Wang, Y.; Frigo, S. P.; Stephenson, G. B.; McNulty, I.

    2000-01-01

    The authors measured static x-ray speckle contrast variation with the incident photon energy across sample-specific absorption edges. They propose that the variation depends strongly on the spectral response function of the monochromator. Speckle techniques have been introduced to the x-ray regime during recent years. Most of these experiments, however, were done at photon energies above 5 keV. They are working on this technique in the 1 to 4 keV range, an energy range that includes many important x-ray absorption edges, e.g., in Al, Si, P, S, the rare-earths, and others. To their knowledge, the effect of absorption edges on speckle contrast has not yet been studied. In this paper, they present their initial measurements and understanding of the observed phenomena

  17. Study on Compression Induced Contrast in X-ray Mammograms Using Breast Mimicking Phantoms

    Directory of Open Access Journals (Sweden)

    A. B. M. Aowlad Hossain

    2015-09-01

    Full Text Available X-ray mammography is commonly used to scan cancer or tumors in breast using low dose x-rays. But mammograms suffer from low contrast problem. The breast is compressed in mammography to reduce x-ray scattering effects. As tumors are stiffer than normal tissues, they undergo smaller deformation under compression. Therefore, image intensity at tumor region may change less than the background tissues. In this study, we try to find out compression induced contrast from multiple mammographic images of tumorous breast phantoms taken with different compressions. This is an extended work of our previous simulation study with experiment and more analysis. We have used FEM models for synthetic phantom and constructed a phantom using agar and n-propanol for simulation and experiment. The x-ray images of deformed phantoms have been obtained under three compression steps and a non-rigid registration technique has been applied to register these images. It is noticeably observed that the image intensity changes at tumor are less than those at surrounding which induce a detectable contrast. Addition of this compression induced contrast to the simulated and experimental images has improved their original contrast by a factor of about 1.4

  18. High temperature GaAs X-ray detectors

    Science.gov (United States)

    Lioliou, G.; Whitaker, M. D. C.; Barnett, A. M.

    2017-12-01

    Two GaAs p+-i-n+ mesa X-ray photodiodes were characterized for their electrical and photon counting X-ray spectroscopic performance over the temperature range of 100 °C to -20 °C. The devices had 10 μm thick i layers with different diameters: 200 μm (D1) and 400 μm (D2). The electrical characterization included dark current and capacitance measurements at internal electric field strengths of up to 50 kV/cm. The determined properties of the two devices were compared with previously reported results that were made with a view to informing the future development of photon counting X-ray spectrometers for harsh environments, e.g., X-ray fluorescence spectroscopy of planetary surfaces in high temperature environments. The best energy resolution obtained (Full Width at Half Maximum at 5.9 keV) decreased from 2.00 keV at 100 °C to 0.66 keV at -20 °C for the spectrometer with D1, and from 2.71 keV at 100 °C to 0.71 keV at -20 °C for the spectrometer with D2. Dielectric noise was found to be the dominant source of noise in the spectra, apart from at high temperatures and long shaping times, where the main source of photopeak broadening was found to be the white parallel noise.

  19. Towards phasing using high X-ray intensity

    Directory of Open Access Journals (Sweden)

    Lorenzo Galli

    2015-11-01

    Full Text Available X-ray free-electron lasers (XFELs show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. A pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  20. Towards phasing using high X-ray intensity

    International Nuclear Information System (INIS)

    Galli, Lorenzo; Son, Sang-Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sebastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-01-01

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential 'bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed

  1. Wavelet processing and digital interferometric contrast to improve reconstructions from X-ray Gabor holograms.

    Science.gov (United States)

    Aguilar, Juan C; Misawa, Masaki; Matsuda, Kiyofumi; Suzuki, Yoshio; Takeuchi, Akihisa; Yasumoto, Masato

    2018-05-01

    In this work, the application of an undecimated wavelet transformation together with digital interferometric contrast to improve the resulting reconstructions in a digital hard X-ray Gabor holographic microscope is shown. Specifically, the starlet transform is used together with digital Zernike contrast. With this contrast, the results show that only a small set of scales from the hologram are, in effect, useful, and it is possible to enhance the details of the reconstruction.

  2. X-ray phase contrast imaging: From synchrotrons to conventional sources

    International Nuclear Information System (INIS)

    Olivo, A.; Castelli, E.

    2014-01-01

    Phase-based approaches can revolutionize X-ray imaging and remove its main limitation: poor image contrast arising from low attenuation differences. They exploit the unit decrement of the real part of the refractive index, typically 1000 times larger than the imaginary part driving attenuation. This increases the contrast of all details, and enables the detection of features classically considered 'X-ray invisible'. Following pioneering experiments dating back to the mid-sixties, X-ray phase contrast imaging 'exploded' in the mid-nineties, when third generation synchrotron sources became more widely available. Applications were proposed in fields as diverse as material science, palaeontology, biology, food science, cultural heritage preservation, and many others. Among these applications, medicine has been constantly considered the most important; among medical applications, mammography is arguably the one that attracted most attention. Applications to mammography were pioneered by the SYRMEP (SYnchrotron Radiation for MEdical Physics) group in Trieste, which was already active in the area through a combination of innovative ways to do imaging at synchrotrons and development of novel X-ray detectors. This pioneering phase led to the only clinical experience of phase contrast mammography on human patients, and spawned a number of ideas as to how these advances could be translated into clinical practice.

  3. Hard X-Ray Phase-Contrast Imaging for Medical Applications - Physicist's Dream or Radiologist's Mainstream?

    International Nuclear Information System (INIS)

    Wilkins, S. W.; Gureyev, T. E.; Mayo, S. C.; Nesterets, Ya. I.; Pogany, A.; Stevenson, A. W.; Paganin, D. M.

    2007-01-01

    We briefly review currently practiced methods of X-ray phase contrast imaging and consider some of their relative features, especially in regard to applicability to clinical medical studies. Various related technological issues and promising future areas of development are also briefly discussed

  4. Delayed allergy-like reactions to X-ray contrast media. Second expert meeting

    International Nuclear Information System (INIS)

    Sviridov, N.K

    1998-01-01

    Materials of the second expert meeting of medical radiologists of USA, Germany, and Japan concerning delayed allergy-like reactions to X-ray contrast media (XRCM) are briefly considered. Attention is paid to the experimental and clinical data on the application of nonionic dimers, pathophysiological and immunological aspects of the reaction to XRCM, certain models and hypotheses, allergy to XRCM

  5. New generation quantitative x-ray microscopy encompassing phase-contrast

    International Nuclear Information System (INIS)

    Wilkins, S.W.; Mayo, S.C.; Gureyev, T.E.; Miller, P.R.; Pogany, A.; Stevenson, A.W.; Gao, D.; Davis, T.J.; Parry, D.J.; Paganin, D.

    2000-01-01

    Full text: We briefly outline a new approach to X-ray ultramicroscopy using projection imaging in a scanning electron microscope (SEM). Compared to earlier approaches, the new approach offers spatial resolution of ≤0.1 micron and includes novel features such as: i) phase contrast to give additional sample information over a wide energy range, rapid phase/amplitude extraction algorithms to enable new real-time modes of microscopic imaging widespread applications are envisaged to fields such as materials science, biomedical research, and microelectronics device inspection. Some illustrative examples are presented. The quantitative methods described here are also very relevant to X-ray projection microscopy using synchrotron sources

  6. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    International Nuclear Information System (INIS)

    Coello, Eduardo; Sperl, Jonathan I.; Bequé, Dirk; Benz, Tobias; Scherer, Kai; Herzen, Julia; Sztrókay-Gaul, Anikó; Hellerhoff, Karin; Pfeiffer, Franz; Cozzini, Cristina; Grandl, Susanne

    2017-01-01

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  7. Fourier domain image fusion for differential X-ray phase-contrast breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Coello, Eduardo, E-mail: eduardo.coello@tum.de [GE Global Research, Garching (Germany); Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Sperl, Jonathan I.; Bequé, Dirk [GE Global Research, Garching (Germany); Benz, Tobias [Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality, Institut für Informatik, Technische Universität München, Garching (Germany); Scherer, Kai; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Sztrókay-Gaul, Anikó; Hellerhoff, Karin [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, Garching (Germany); Cozzini, Cristina [GE Global Research, Garching (Germany); Grandl, Susanne [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich (Germany)

    2017-04-15

    X-Ray Phase-Contrast (XPC) imaging is a novel technology with a great potential for applications in clinical practice, with breast imaging being of special interest. This work introduces an intuitive methodology to combine and visualize relevant diagnostic features, present in the X-ray attenuation, phase shift and scattering information retrieved in XPC imaging, using a Fourier domain fusion algorithm. The method allows to present complementary information from the three acquired signals in one single image, minimizing the noise component and maintaining visual similarity to a conventional X-ray image, but with noticeable enhancement in diagnostic features, details and resolution. Radiologists experienced in mammography applied the image fusion method to XPC measurements of mastectomy samples and evaluated the feature content of each input and the fused image. This assessment validated that the combination of all the relevant diagnostic features, contained in the XPC images, was present in the fused image as well.

  8. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  9. Preliminary research on dual-energy X-ray phase-contrast imaging

    Science.gov (United States)

    Han, Hua-Jie; Wang, Sheng-Hao; Gao, Kun; Wang, Zhi-Li; Zhang, Can; Yang, Meng; Zhang, Kai; Zhu, Pei-Ping

    2016-04-01

    Dual-energy X-ray absorptiometry (DEXA) has been widely applied to measure the bone mineral density (BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for low-Z materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging (XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials. Supported by Major State Basic Research Development Program (2012CB825800), Science Fund for Creative Research Groups (11321503) and National Natural Science Foundation of China (11179004, 10979055, 11205189, 11205157)

  10. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    Science.gov (United States)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  11. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  12. X-ray photoelectron spectroscopy, high-resolution X-ray diffraction ...

    Indian Academy of Sciences (India)

    the crystalline quality through full-width at half-maximum values. .... angular divergence of ∆α = 12 arc sec. X-rays generated from the monochromator were diffracted from (0 0 6) LiNbO3 atomic planes with the (+, −, −, +, +) geometry. [8].

  13. High vacuum high temperature x-ray camera (1961)

    International Nuclear Information System (INIS)

    Baron, J.L.

    1961-01-01

    - This camera makes it possible to carry out X-ray studies on highly oxidisable materials, up to about 900 deg. C. Most of the existing models do not provide sufficient protection against the formation of surface oxide or carbide films on the sample. The present arrangement makes it possible to operate at very low pressures: 5 x 10 -8 to 10 -7 torr, thanks to an entirely metallic apparatus. The radiation heating system consists of an incandescent lamp, outside the evacuated portion, and a reflector which concentrates the energetic flux into the sample through a silica window. The heated parts have thus only a small thermal inertia. With the apparatus it has been possible to determine the phase parameters of uranium-α up to 650 deg. C with a precision of ± 0.0015 A. A similar study has been carried out on a uranium-chromium alloy in the β-phase up to 740 deg. C. (author) [fr

  14. Temporally coherent x-ray laser with the high order harmonic light

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Kawazome, Hayato; Nagashima, Keisuke

    2005-01-01

    We obtained the neon-like manganese x-ray laser with the injection of the high order harmonic light as the seed x-ray at the wavelength of 26.9 nm for the purpose of generation of the temporally coherent x-ray laser. The x-ray amplifier, which has quite narrow spectral width, selected and amplified the temporally coherent mode of the harmonic light. The temporal coherence of the mode selected harmonic light was nearly transform limited pulse, and the obtained x-ray laser with the seed x-ray expected to be nearly temporally coherent x-ray. (author)

  15. Workshop on high heat load x-ray optics

    International Nuclear Information System (INIS)

    1990-01-01

    A workshop on ''High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed ''finite element'' and ''finite difference'' calculations comparing experiment with theory and extending theory to optimize performance

  16. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Science.gov (United States)

    Wathen, Connor A.; Foje, Nathan; van Avermaete, Tony; Miramontes, Bernadette; Chapaman, Sarah E.; Sasser, Todd A.; Kannan, Raghuraman; Gerstler, Steven; Leevy, W. Matthew

    2013-01-01

    X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site. PMID:23711461

  17. Optimal Contrast Agent Staining of Ligaments and Tendons for X-Ray Computed Tomography.

    Science.gov (United States)

    Balint, Richard; Lowe, Tristan; Shearer, Tom

    2016-01-01

    X-ray computed tomography has become an important tool for studying the microstructures of biological soft tissues, such as ligaments and tendons. Due to the low X-ray attenuation of such tissues, chemical contrast agents are often necessary to enhance contrast during scanning. In this article, the effects of using three different contrast agents--iodine potassium iodide solution, phosphotungstic acid and phosphomolybdic acid--are evaluated and compared. Porcine anterior cruciate ligaments, patellar tendons, medial collateral ligaments and lateral collateral ligaments were used as the basis of the study. Three samples of each of the four ligament/tendon types were each assigned a different contrast agent (giving a total of twelve samples), and the progression of that agent through the tissue was monitored by performing a scan every day for a total period of five days (giving a total of sixty scans). Since the samples were unstained on day one, they had been stained for a total of four days by the time of the final scans. The relative contrast enhancement and tissue deformation were measured. It was observed that the iodine potassium iodide solution penetrated the samples fastest and caused the least sample shrinkage on average (although significant deformation was observed by the time of the final scans), whereas the phosphomolybdic acid caused the greatest sample shrinkage. Equations describing the observed behaviour of the contrast agents, which can be used to predict optimal staining times for ligament and tendon X-ray computed tomography, are presented.

  18. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  19. High resolution solar soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Zhang Fei; Wang Huanyu; Peng Wenxi; Liang Xiaohua; Zhang Chunlei; Cao Xuelei; Jiang Weichun; Zhang Jiayu; Cui Xingzhu

    2012-01-01

    A high resolution solar soft X-ray spectrometer (SOX) payload onboard a satellite is developed. A silicon drift detector (SDD) is adopted as the detector of the SOX spectrometer. The spectrometer consists of the detectors and their readout electronics, a data acquisition unit and a payload data handling unit. A ground test system is also developed to test SOX. The test results show that the design goals of the spectrometer system have been achieved. (authors)

  20. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    Science.gov (United States)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  1. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  2. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  3. The high energy X-ray spectra of supernova remnants

    Science.gov (United States)

    Pravdo, S. H.; Nugent, J. J.

    The results of fitting an ionization-nonequilibrium (INE) model to the high-energy (above 5-keV) X-ray spectra of the young supernova remnants Cas A and Tycho are presented. As an additional constraint, the models must simultaneously fit lower-energy, higher-resolution data. For Cas A, a single INE component cannot adequately reproduce the features for the entire X-ray spectrum because the ionization structure of iron ions responsible for the K emission is inconsistent with that of the ions responsible for the lower-energy lines, and the flux of the highest-energy X-rays is underestimated. The iron K line and the high-energy continuum could arise from the same INE component, but the identification of this component with either the blast wave or the ejecta in the standard model is difficult. In Tycho, the high-energy data rule out a class of models for the lower-energy data which have too large a continuum contribution.

  4. Optimisation of a propagation-based x-ray phase-contrast micro-CT system

    Science.gov (United States)

    Nesterets, Yakov I.; Gureyev, Timur E.; Dimmock, Matthew R.

    2018-03-01

    Micro-CT scanners find applications in many areas ranging from biomedical research to material sciences. In order to provide spatial resolution on a micron scale, these scanners are usually equipped with micro-focus, low-power x-ray sources and hence require long scanning times to produce high resolution 3D images of the object with acceptable contrast-to-noise. Propagation-based phase-contrast tomography (PB-PCT) has the potential to significantly improve the contrast-to-noise ratio (CNR) or, alternatively, reduce the image acquisition time while preserving the CNR and the spatial resolution. We propose a general approach for the optimisation of the PB-PCT imaging system. When applied to an imaging system with fixed parameters of the source and detector this approach requires optimisation of only two independent geometrical parameters of the imaging system, i.e. the source-to-object distance R 1 and geometrical magnification M, in order to produce the best spatial resolution and CNR. If, in addition to R 1 and M, the system parameter space also includes the source size and the anode potential this approach allows one to find a unique configuration of the imaging system that produces the required spatial resolution and the best CNR.

  5. Metallic magnetic calorimeters for high resolution X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, M.; Hengstler, D.; Geist, J.; Schoetz, C.; Hassel, K.; Hendricks, S.; Keller, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Enss, C. [Heidelberg Univ. (Germany). KIP

    2015-07-01

    We develop microfabricated, energy dispersive particle detector arrays based on metallic magnetic calorimeters (MMCs) for high resolution X-ray spectroscopy to challenge bound-state QED calculations. Our MMCs are operated at about T=30 mK and use a paramagnetic temperature sensor, read-out by a SQUID, to measure the energy deposited by single X-ray photons. We discuss the physics of MMCs, the detector performance and the cryogenic setups for two different detector arrays. We present their microfabrication layouts with focus on challenges like the heatsinking of each pixel of the detector and the overhanging absorbers. The maXs-20 detector is a linear 1x8-pixel array with excellent linearity in its designated energy range up to 20 keV and unsurpassed energy resolution of 1.6 eV for 6 keV x-rays. MaXs-20 operated in a highly portable pulse tube cooled ADR setup has already been used at the EBIT facilities of the MPI-K for new reference measurements of V-like and Ti-like tungsten. The maXs-30 detector currently in development is a 8x8-pixel 2d-array with an active detection area of 16 mm{sup 2} and is designed to detect X-rays up to 50 keV with a designated energy resolution below 5 eV. MaXs-30 will be operated in a cryogen free 3He/4He-dilution refrigerator at the tip of a 40 cm long cold finger at T=20 mK.

  6. Simulation of single grid-based phase-contrast x-ray imaging (g-PCXI)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, H.W.; Lee, H.W. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Cho, H.S., E-mail: hscho1@yonsei.ac.kr [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Je, U.K.; Park, C.K.; Kim, K.S.; Kim, G.A.; Park, S.Y.; Lee, D.Y.; Park, Y.O.; Woo, T.H. [Department of Radiation Convergence Engineering, iTOMO Group, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 26493 (Korea, Republic of); Lee, S.H.; Chung, W.H.; Kim, J.W.; Kim, J.G. [R& D Center, JPI Healthcare Co., Ltd., Ansan 425-833 (Korea, Republic of)

    2017-04-01

    Single grid-based phase-contrast x-ray imaging (g-PCXI) technique, which was recently proposed by Wen et al. to retrieve absorption, scattering, and phase-gradient images from the raw image of the examined object, seems a practical method for phase-contrast imaging with great simplicity and minimal requirements on the setup alignment. In this work, we developed a useful simulation platform for g-PCXI and performed a simulation to demonstrate its viability. We also established a table-top setup for g-PCXI which consists of a focused-linear grid (200-lines/in strip density), an x-ray tube (100-μm focal spot size), and a flat-panel detector (48-μm pixel size) and performed a preliminary experiment with some samples to show the performance of the simulation platform. We successfully obtained phase-contrast x-ray images of much enhanced contrast from both the simulation and experiment and the simulated contract seemed similar to the experimental contrast, which shows the performance of the developed simulation platform. We expect that the simulation platform will be useful for designing an optimal g-PCXI system. - Highlights: • It is proposed for the single grid-based phase-contrast x-ray imaging (g-PCXI) technique. • We implemented for a numerical simulation code. • The preliminary experiment with several samples to compare is performed. • It is expected to be useful to design an optimal g-PCXI system.

  7. On the origin of highly ionized X-ray absorbers detected in the galactic X-ray binaries

    International Nuclear Information System (INIS)

    Luo, Yang; Fang, Taotao

    2014-01-01

    X-ray observations of the Galactic X-ray binaries (XRBs) revealed numerous highly ionized metal absorption lines. However, it is unclear whether such lines are produced by the hot interstellar medium (ISM) or the circumstellar medium intrinsic to the binaries. Here we present a Chandra X-ray absorption line study of 28 observations of 12 XRBs, with a focus on the Ne IX and Fe XVII lines. We report the first detections of these lines in a significant amount of observations. We do not find a significant dependence of the line equivalent width on the distance of the XRBs, but we do see a weak dependence on the source X-ray luminosity. We also find 2 out of 12 selected targets show strong temporal variation of the Ne IX absorbers. While the line ratio between the two ion species suggests a temperature consistent with the previous predictions of the ISM, comparing with two theoretical models of the ISM shows the observed column densities are significantly higher than predictions. On the other hand, photoionization by the XRBs provides a reasonably good fit to the data. Our findings suggest that a significant fraction of these X-ray absorbers may originate in the hot gas intrinsic to the XRBs, and that the ISM makes small, if not negligible, contribution. We briefly discuss the implications to the study of the Milky Way hot gas content.

  8. Simulations of multi-contrast x-ray imaging using near-field speckles

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London, WC1E 6BT (United Kingdom); Herzen, Julia; Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany)

    2016-01-28

    X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.

  9. Phase contrast X-ray imaging at the bone-cartilage interface

    International Nuclear Information System (INIS)

    Che Ismail, E.; Gundogdu, O.; Bradley, D.A.

    2008-01-01

    Full text: Phase contrast X-ray imaging is a simple technique to investigate various biological samples. At Surrey, the bone-cartilage interface is one of the biological samples which actively been studied. Bone-cartilage interface study gives a particular interest in this research as the degeneration of cartilage is the hallmark of the degenerative joint disease such as osteoarthritis. We have been applying the phase contrast imaging technique in studying the bone-cartilage interface, obtaining information on anatomical features such as the cartilage, blood vessel, tide mark and cement line. Our samples range from dry bone-cartilage to wet bone-cartilage tissue. This work will briefly review the basic supporting physics of the study. It also shows some of the images and other results that we have obtained to-date. Fig. 1 shows examples obtained using the X-ray tube system at the University of Surrey

  10. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi [Fudan University, Synchrotron Radiation Research Center, State Key Laboratory of Surface Physics and Department of Physics, Shanghai (China); Liu, Chenglin [Physics Department of Yancheng Teachers' College, Yancheng (China); Dang, Ruishan [The Second Military Medical University, Shanghai (China); Xiao, Tiqiao [Chinese Academy of Sciences, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Shanghai (China); Zhu, Peiping [Chinese Academy of Sciences, Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Beijing (China)

    2011-08-15

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  11. Synchrotron radiation phase-contrast X-ray CT imaging of acupuncture points

    International Nuclear Information System (INIS)

    Zhang, Dongming; Yan, Xiaohui; Zhang, Xinyi; Liu, Chenglin; Dang, Ruishan; Xiao, Tiqiao; Zhu, Peiping

    2011-01-01

    Three-dimensional (3D) topographic structures of acupuncture points were investigated by using synchrotron radiation in-line X-ray phase contrast computerized tomography. Two acupuncture points, named Zhongji (RN3) and Zusanli (ST36), were studied. We found an accumulation of microvessels at each acupuncture point region. Images of the tissues surrounding the acupuncture points do not show such kinds of structure. This is the first time that 3D images have revealed the specific structures of acupuncture points. (orig.)

  12. Laser-produced Au nanoparticles as X-ray contrast agents for diagnostic imaging

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Restuccia, N.; Cuzzocrea, S.; Paterniti, I.; Ielo, I.; Pergolizzi, S.; Cutroneo, Mariapompea; Kováčik, L.

    2017-01-01

    Roč. 50, č. 1 (2017), s. 51-60 ISSN 0017-1557 R&D Projects: GA MŠk LM2015056; GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:61389005 Keywords : Au nanoparticles * Laser * X-ray diagnostic s * medical imaging * contrast medium Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.638, year: 2016

  13. High resolution X-ray spectroscopy of laser generated plasmas

    International Nuclear Information System (INIS)

    Faenov, A.Ya.; Skobelev, I.Yu.; Rosmej, F.B.

    1999-01-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.)

  14. High resolution X-ray spectroscopy of laser generated plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Rosmej, F.B. [Technische Hochschule Darmstadt (Germany). Inst. fuer Kernphysik

    1999-11-01

    The application of recently developed spectroscopic instruments in laser produced plasmas with simultaneous high spectral and spatial resolution combined with high luminosity discovered new types of X-ray spectra. These new types are characterised by the disappearance of the resonance lines and the strong emission of dielectronic satellite spectra. Several types of transitions of highly charged ions are discovered which are unknown from usual sources employed in atomic physics. New theoretical models are developed and successfully applied for the interpretation and for plasma diagnostics. (orig.) 28 refs.

  15. Cytogenetic analysis in peripheral blood lymphocytes after arteriography (exposure to X-rays and contrast medium)

    International Nuclear Information System (INIS)

    Hadjidekova, V.; Popova, L.; Hristova, R.; Hadjidekov, V.

    2006-01-01

    Full text: The purpose of our study is to investigate the cytogenetic effects in peripheral blood lymphocytes of 29 patients who had undergone diagnostic angiography. Peripheral blood samples were taken from 22 patients submitted to renal arteriography and 7 patients submitted to cerebral arteriography (17 male and 12 female, aged between 13 and 68 years). Cytogenetic analysis was performed in peripheral lymphocytes before the procedure, immediately after and 24 hours later. The entrance skin dose obtained during the whole diagnostic X-ray exposure was measured by thermoluminescent dosimeters and varied between 0.03 - 0.30 Gy. Both low and high osmolarity contrast media were used. Chromosomal aberrations and micronuclei frequency was used as biomarkers of genotoxicity. The estimated frequency of chromosomal aberrations and micronuclei in peripheral blood lymphocytes of patients after arteriography examination is significantly higher than the level before the diagnostic exposure. The mean frequency of cells with chromosomal aberrations nearly double after examination and remained constant at 24h analysis. Radiological diagnostic procedures involving iodinated contrast media as arteriography may cause a significant increase of the cytogenetic injury in peripheral blood lymphocytes

  16. Cytogenetic analysis of peripheral blood lymphocytes after arteriography (exposure to x-rays and contrast medium)

    International Nuclear Information System (INIS)

    Popova, L.; Hadjidekova, V.; Karadjov, G.; Agova, S.; Traskov, D.; Hadjidekov, V.

    2005-01-01

    Backgrounds. The purpose of our study is to investigate the cytogenetic analysis findings in peripheral blood lymphocytes of 29 patients who had undergone diagnostic radiography. Methods. Peripheral blood samples were taken from 22 patients submitted to renal arteriography and 7 patients submitted to cerebral arteriography (17 male and 12 female, aged between 13-68 years). Cytogenetic analyses of peripheral lymphocytes were performed before the procedure, immediately after and 24 hours later. The entrance skin dose obtained during the whole diagnostic X-ray exposure was measured by thermoluminescent dosimeters and varied between 0.03-0.30 Gy. Both low and high osmolarity contrast media were used. Chromosomal aberrations and micronuclei frequency were used as biomarkers of genotoxicity. Results. The estimated frequency of chromosomal aberrations and micronuclei in the peripheral blood lymphocytes of patients after arteriography examination was significantly higher than the level before the diagnostic exposure. The mean frequency of cells with chromosomal aberrations was nearly double after examination and proved to be constant in the analysis after 24 hours. Conclusions. Radiological diagnostic procedures involving iodinated contrast media as arteriography may cause a significant increase in cytogenetic damage in peripheral blood lymphocytes. (author)

  17. Bone histomorphometric quantification by X-ray phase contrast and transmission 3D SR microcomputed tomography

    International Nuclear Information System (INIS)

    Nogueira, L.P.; Pinheiro, C.J.G.; Braz, D.; Oliveira, L.F.; Barroso, R.C.

    2008-01-01

    Full text: Conventional histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed tomography is a noninvasive technique, which can be used to evaluate histomorphometric indices. In this technique, the output 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. Looking for better resolutions and visualization of soft tissues, X-ray phase contrast imaging technique was developed. The objective of this work was to perform histomorphometric quantification of human cancellous bone using 3D synchrotron X ray computed microtomography, using two distinct techniques: transmission and phase contrast, in order to compare the results and evaluate the viability of applying the same methodology of quantification for both technique. All experiments were performed at the ELETTRA Synchrotron Light Laboratory in Trieste (Italy). MicroCT data sets were collected using the CT set-up on the SYRMEP (Synchrotron Radiation for Medical Physics) beamline. Results showed that there is a better correlation between histomorphometric parameters of both techniques when morphological filters had been used. However, using these filters, some important information given by phase contrast are lost and they shall be explored by new techniques of quantification

  18. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  19. High-current Rhodotron for X-ray facility

    International Nuclear Information System (INIS)

    Umezu, Toru; Tsujiura, Yuichiro; Bol, Jean Louis

    2009-01-01

    The Rhodotron is a widely employed high-power industrial accelerator developed and exclusively distributed by IBA. Most early examples of the accelerator were optimized to operate at 10 MeV. A new Rhodotron configuration recently advanced produces a lower-energy higher-current beam dedicated with x-ray to sterilize and enhancement materials. Core elements of this system's evolution include a higher performance RF electron gun (operating range, response control, and cathode lifetime). This operational machine is now producing 100 mA at 7 MeV (700 kW of beam) and treat medical devices, thick cable and pipes with a high efficiency. (author)

  20. Masks for high aspect ratio x-ray lithography

    International Nuclear Information System (INIS)

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-01-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding

  1. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    Science.gov (United States)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  2. Investigation of X-ray permeability of surgical gloves coated with different contrast agents

    Science.gov (United States)

    Kayan, Mustafa; Yaşar, Selçuk; Saygın, Mustafa; Yılmaz, Ömer; Aktaş, Aykut Recep; Kayan, Fatmanur; Türker, Yasin; Çetinkaya, Gürsel

    2016-01-01

    Objective: We aimed to investigate the effectiveness and radiation protection capability of latex gloves coated with various contrast agents as an alternative to lead gloves. Methods: The following six groups were created to evaluate the permeability of X-ray in this experimental study: lead gloves, two different non-ionic contrast media (iopromide 370/100 mg I/mL and iomeprol 400/100 mg I/mL), 10% povidone–iodine (PV–I), 240/240 g/mL barium sulphate and a mixture of equal amounts of all contrast agents. A radiation dose detector was placed in coated latex gloves for each one. The absorption values of radiation from latex gloves coated with various contrast agents were measured and compared with the absorption of radiation from lead gloves. This study was designed as an ‘experimental study’. Results: The mean absorption value of X-ray from lead gloves was 3.0±0.08 µG/s. The mean absorption values of X-ray from latex gloves coated with various contrast agents were 3.7±0.09 µG/s (iopromide 370/100 mg I/mL), 3.6±0.09 µG/s (iomeprol 400/100 mg I/mL), 3.7±0.04 µG/s (PV–I), 3.1±0.07 µG/s (barium sulphate) and 3.8±0.05 µG/s (mixture of all contrast agents). Latex gloves coated with barium sulphate provided the best radiation absorption compared with latex gloves coated with other radiodense contrast agents. Conclusion: Latex gloves coated with barium sulphate may provide protection equivalent to lead gloves. PMID:26680548

  3. Phase retrieval for X-ray in-line phase contrast imaging

    International Nuclear Information System (INIS)

    Scattarella, F.; Bellotti, R.; Tangaro, S.; Gargano, G.; Giannini, C.

    2011-01-01

    A review article about phase retrieval problem in X-ray phase contrast imaging is presented. A simple theoretical framework of Fresnel diffraction imaging by X-rays is introduced. A review of the most important methods for phase retrieval in free-propagation-based X-ray imaging and a new method developed by our collaboration are shown. The proposed algorithm, Combined Mixed Approach (CMA) is based on a mixed transfer function and transport of intensity approach, and it requires at most an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy with which this initial estimate is known determines the convenience speed of algorithm. The new proposed algorithm is based on the retrieval of both the object phase and its complex conjugate. The results obtained by the algorithm on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The algorithm was also tested on noisy experimental phase contrast data, showing a good efficiency in recovering phase information and enhancing the visibility of details inside soft tissues.

  4. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  5. Development of X-ray diode with high performance

    International Nuclear Information System (INIS)

    Hou Lifei; Yang Gouhong; Liu Shenye; Wei Minxi; Yi Tao; Jiang Shao'en; Sun Kexu

    2011-01-01

    A new type of X-ray diode (XRD-II) with ultrafast response time was developed. XRD-II detector was improved on the basis of old XRD (XRD-I), and its performances were studied on the 8 ps laser facility. The results show that XRD-II has excellent high-Jantage tolerance (to 6 kV) and super-fast response time (rise time is about 40 ps, and full width at half maximum (FWHM) is about 80 ps when bias Jantage is 5 kV). The detector calibration was carried out on Beijing synchrotron radiation facility, which shows that the detector's sensitivity has not deteriorated. (authors)

  6. Non-destructive analysis of micro texture and grain boundary character from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    King, A.; Herbig, M.; Ludwig, W.

    2010-01-01

    Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting new possibilities for mapping 3D grain shapes and crystallographic orientations in different classes of polycrystalline materials. X-ray diffraction contrast tomography (DCT) is a monochromatic beam...... imaging technique combining the principles of X-ray micro-tomography and three-dimensional X-ray diffraction microscopy (3DXRD). DCT provides simultaneous access to 3D grain shape, crystallographic orientation and attenuation coefficient distribution at the micrometer length scale. The microtexture...

  7. Photoelectron and x-ray holography by contrast: enhancing image quality and dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S.; Zhao, L. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Hove, M.A. van [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kaduwela, A.; Marchesini, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Omori, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Sony Corporation Semiconductor Network Company, Asahi-cho, Atsugi, Kanagawa (Japan)

    2001-11-26

    Three forms of electron or x-ray holography 'by contrast' are discussed: they all exploit small changes in diffraction conditions to improve image quality and/or extract additional information. Spin-polarized photoelectron holography subtracts spin-down from spin-up holograms so as to image the relative orientations of atomic magnetic moments around an emitter atom. Differential photoelectron holography subtracts holograms taken at slightly different energies so as to overcome the forward-scattering problem that normally degrades the three-dimensional imaging of atoms, particularly for emitter atoms that are part of a bulk substrate environment. Resonant x-ray fluorescence holography also subtracts holograms at slightly different energies, these being chosen above and below an absorption edge of a constituent atom, thus allowing the selective imaging of that type of atom, or what has been referred to as imaging 'in true colour'. (author)

  8. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    Science.gov (United States)

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  9. 21 CFR 892.1700 - Diagnostic x-ray high voltage generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic x-ray high voltage generator. 892.1700... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1700 Diagnostic x-ray high voltage generator. (a) Identification. A diagnostic x-ray high voltage generator is a device that is intended to...

  10. Image fusion in x-ray differential phase-contrast imaging

    Science.gov (United States)

    Haas, W.; Polyanskaya, M.; Bayer, F.; Gödel, K.; Hofmann, H.; Rieger, J.; Ritter, A.; Weber, T.; Wucherer, L.; Durst, J.; Michel, T.; Anton, G.; Hornegger, J.

    2012-02-01

    Phase-contrast imaging is a novel modality in the field of medical X-ray imaging. The pioneer method is the grating-based interferometry which has no special requirements to the X-ray source and object size. Furthermore, it provides three different types of information of an investigated object simultaneously - absorption, differential phase-contrast and dark-field images. Differential phase-contrast and dark-field images represent a completely new information which has not yet been investigated and studied in context of medical imaging. In order to introduce phase-contrast imaging as a new modality into medical environment the resulting information about the object has to be correctly interpreted. The three output images reflect different properties of the same object the main challenge is to combine and visualize these data in such a way that it diminish the information explosion and reduce the complexity of its interpretation. This paper presents an intuitive image fusion approach which allows to operate with grating-based phase-contrast images. It combines information of the three different images and provides a single image. The approach is implemented in a fusion framework which is aimed to support physicians in study and analysis. The framework provides the user with an intuitive graphical user interface allowing to control the fusion process. The example given in this work shows the functionality of the proposed method and the great potential of phase-contrast imaging in medical practice.

  11. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    International Nuclear Information System (INIS)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin; Shibazaki, Yuki; Wang, Yanbin

    2015-01-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10 5 frames/second (fps) in air and up to ∼10 4 fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures

  12. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    Energy Technology Data Exchange (ETDEWEB)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Shen, Guoyin [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Shibazaki, Yuki [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai 980-8578 (Japan); Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  13. Examination of the gastrointestinal tract using the tussian X-ray contrast substance BAR-VIPS based on barium sulfate

    International Nuclear Information System (INIS)

    Ratobyl'skij, G.V.; Kaluzhskij, A.A.

    1997-01-01

    Results of X-ray studies of gastrointestinal tract using domestic X-ray contrast preparation based on barium sulfate BAR-VIPS developed by VIPS-MED company (t. Fryazino, Moscow region). Testing of the preparation has shown that BAR-VIPS permits to diagnose every pathological changes in esophagus, stomach, rectum, small intestine as well as to diagnose successfully large intestine diseases

  14. High efficiency, multiterawatt x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    C. Emma

    2016-02-01

    Full Text Available In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs, a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  15. Stress Free Multilayer Coating for High Resolution X-ray Mirrors

    Data.gov (United States)

    National Aeronautics and Space Administration — Most of X-ray optics research and development in the US is to build a high resolution, large collecting area and light-weight optic, namely an soft X-ray mirror for...

  16. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis

    Science.gov (United States)

    Clifford, Dustin M.; Castano, Carlos E.; Rojas, Jessika V.

    2018-03-01

    Advanced routes for the synthesis of nanomaterials, such as ferromagnetic nanoparticles, are being explored that are easy to perform using cost-effective and non-toxic precursors. Radiolytic syntheses based on the use of X-rays as ionizing radiation are promising towards this effort. X-rays were used to produce highly magnetic cobalt nanoparticles (NPs), stable in air up to 200 °C, from the radiolysis of water. Crystal structure analysis by XRD indicates a mixture of Cofcc, 63%, and Cohcp, 37%, phases. Magnetic analysis by VSM gave a saturation magnetization (Ms) 136 emu/g at 1 T and coercivity (Hc) = 325 Oe when the reaction solution was purged with N2 while an air-purged treatment resulted in Co NPs having 102 emu/g with a coercivity (Hc) 270 Oe. Overall, the reduction of Co2+ occurred in an aqueous reaction environment without addition of chemical reductants resulting in Co NPs with size distribution from 20 to 140 nm. This clean approach at ambient temperature produced highly magnetic Co NPs that may be used for switching devices (i.e. reed switches) or as additives for alloys that require high Curie points.

  17. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography

    Science.gov (United States)

    Dunlop, Jason A.; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S.; Withers, Philip J.; Preziosi, Richard F.

    2012-01-01

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44–49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers. PMID:22072283

  18. A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Dunlop, Jason A; Wirth, Stefan; Penney, David; McNeil, Andrew; Bradley, Robert S; Withers, Philip J; Preziosi, Richard F

    2012-06-23

    High-resolution phase-contrast X-ray computed tomography (CT) reveals the phoretic deutonymph of a fossil astigmatid mite (Acariformes: Astigmata) attached to a spider's carapace (Araneae: Dysderidae) in Eocene (44-49 Myr ago) Baltic amber. Details of appendages and a sucker plate were resolved, and the resulting three-dimensional model demonstrates the potential of tomography to recover morphological characters of systematic significance from even the tiniest amber inclusions without the need for a synchrotron. Astigmatids have an extremely sparse palaeontological record. We confirm one of the few convincing fossils, potentially the oldest record of Histiostomatidae. At 176 µm long, we believe this to be the smallest arthropod in amber to be CT-scanned as a complete body fossil, extending the boundaries for what can be recovered using this technique. We also demonstrate a minimum age for the evolution of phoretic behaviour among their deutonymphs, an ecological trait used by extant species to disperse into favourable environments. The occurrence of the fossil on a spider is noteworthy, as modern histiostomatids tend to favour other arthropods as carriers.

  19. Production of hollow atoms by high brightness x-ray sources and its applications

    International Nuclear Information System (INIS)

    Moribayashi, Kengo

    2004-01-01

    We study x-ray emissions from the (multi-)inner-shell states and hollow atoms of Si ions excited by high intensity x-ray sources. It is found that the x-ray number from multi-inner-shell excited states (1s 2 2s 2 2p k 3s 2 3p 2 , k=1-4) and hollow atoms (1s 2 2s 2 3p 2 ) is affected greatly by the high intensity short-pulse x-rays and little by weak intensity post-long pulse x-rays. The ratio of the x-ray intensities from hollow atoms to those from the multi-inner-shell excited states becomes almost independent of the pulses and dependent on the intensities of x-ray sources. This ratio may be used for the measurement of intensities of high intensity short pulse x-ray sources. (author)

  20. Diamond x-ray optics: Transparent, resilient, high-resolution, and wavefront preserving

    International Nuclear Information System (INIS)

    Shvyd’ko, Yuri; Blank, Vladimir; Terentyev, Sergey

    2017-01-01

    Diamond features a unique combination of outstanding physical properties perfect for numerous x-ray optics applications, where traditional materials such as silicon fail to perform. In the last two decades, impressive progress has been achieved in synthesizing diamond with high crystalline perfection, in manufacturing efficient, resilient, high-resolution, wavefront-preserving diamond optical components, and in implementing them in cutting-edge x-ray instruments. Diamond optics are essential for tailoring x-rays to the most challenging needs of x-ray research. Furthermore, they are becoming vital for the generation of fully coherent hard x-rays by seeded x-ray free-electron lasers. In this article, we review progress in manufacturing flawless diamond crystal components and their applications in diverse x-ray optical devices, such as x-ray monochromators, beam splitters, high-reflectance backscattering mirrors, lenses, phase plates, diffraction gratings, bent-crystal spectrographs, and windows.

  1. High-speed radiography and x-ray cinematography by high-current betatrons

    International Nuclear Information System (INIS)

    Akimochkin, Yu.V.; Akulov, G.V.; Leunov, F.G.; Moskalev, V.A.; Ryabukhin, V.L.

    1979-01-01

    The paper provides a description of an equipment system comprising a pair of 25 MeV high-current betatrons and an X-ray drum-type cinecamera for high-speed radiography and X-ray cinematography for use when studying dynamics of objects moving at a rate of 0.5 - 3.0 km/s as well as in X-ray cinematography of processes at a rate of up to 1 m/s. (author)

  2. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition)

    NARCIS (Netherlands)

    Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J.

    2006-01-01

    We present a new edition of the catalogue of high-mass X-ray binaries in the Galaxy. The catalogue contains source name(s), coordinates, finding chart, X-ray luminosity, system parameters, and stellar parameters of the components and other characteristic properties of 114 high-mass X-ray binaries,

  3. Analysis of x-ray reflectivity data from low-contrast polymer bilayer systems using a Fourier method

    International Nuclear Information System (INIS)

    Seeck, O. H.; Kaendler, I. D.; Tolan, M.; Shin, K.; Rafailovich, M. H.; Sokolov, J.; Kolb, R.

    2000-01-01

    X-ray reflectivity data of polymer bilayer systems have been analyzed using a Fourier method which takes into account different limits of integration in q-space. It is demonstrated that the interfacial parameters can be determined with high accuracy although the difference in the electron density (the contrast) of the two polymers is extremely small. This method is not restricted to soft-matter thin films. It can be applied to any reflectivity data from low-contrast layer systems. (c) 2000 American Institute of Physics

  4. Hard X-ray phase-contrast microscope for observing transparent specimens

    Energy Technology Data Exchange (ETDEWEB)

    Kagoshima, Y.; Yokoyama, Y.; Niimi, T.; Koyama, T.; Tsusaka, Y.; Matsui, J. [Himeji Institute of Technology, Graduate School of Science, Hyogo (Japan); Takai, K. [Japan synchrotron Radiation Research Institute, Mikazuki, Hyogo (Japan)

    2002-08-01

    A hard X-ray transmission imaging microscope has been in use at the beamline BL24XU of Spring-8. It makes use of a phase zone plate made of tantalum as its X-ray lens, and is capable of imaging the structure as fine as 125-nm line-and-space pattern. The Zernike's phase-contrast method has been implemented to the microscope with phase plates made of gold. The photon energy was tuned to 12 keV just above the L{sub 3} absorption edge of gold (11.9 keV) in order to increase the image contrast. Polystyrene micro particles as transparent specimens were imaged clearly in the opposite image contrast with phase plates to shift the phase of the central order spectra in the back focal plane of the objective by one-quarter and three-quarters of a period, while the absorption contrast image showed little image contrast. Performance of the newly developed phase zone plate has been tested and it was confirmed that the structure as fine as 60-mm line-and-space pattern was able to be imaged. (authors)

  5. Characterization of ceramic archaeological by high resolution X ray microtomography

    International Nuclear Information System (INIS)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya; Carvalho, Daniele D.; Gaspar, Maria D.

    2013-01-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  6. Characterization of ceramic archaeological by high resolution X ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Alessandra C.; Freitas, Renato; Calza, Cristiane F.; Lopes, Ricardo T.; Lima, Inaya, E-mail: alecastro@lin.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Instrumentacao Nuclear; Carvalho, Daniele D.; Gaspar, Maria D. [Museu Nacional (MN/UFRJ), RJ (Brazil). Centro de Tecnologia

    2013-07-01

    Characterization of ceramic fragments is a very important area of research in art and archeometry area because it enables a greater understanding of how ancient civilizations behave and what were their traditions and customs. Petrography and chemical analyses are commonly used, but these techniques are destructive, which is not interesting for this type of sample. Through the exchange of multidisciplinary scientific knowledge and new partnerships, high resolution X-ray microtomography has been introduced in archaeological area as a great possibility of 3D inspection in a non-destructive way. The goal of this work is to investigate the internal microstructures of four samples of archeological ceramic, from the Archaeological Site of Macacu - RJ. The X-ray microtomography were performed in a high resolution setup, and can be used to infer the nature of organic temper even with all plant remains completely burnt out during the firing process and also to ensure the homogeneity of samples envisaged for geochemical analyses, especially with respect to the distribution of chemically diverse fabric compounds. In this way this study intends to contribute to our understanding of the archaeological and historical formations of this region. (author)

  7. Workshop on high heat load x-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  8. High resolution X-ray spectromicroscopy of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, A.Ya. [Multi-charged Ions Spectra Data Center of VNIIFTRI (MISDC), Mendeleevo, Moscow region, (Russian Federation)

    2000-01-01

    In recent years new classes of X-ray spectroscopic instruments possessing both dispersive and focusing properties have been manufactured. Their principal advantage over more traditional instruments is that they combine very high luminosity with high spatial resolution, while preserving the highest possible spectral resolution of their dispersive elements. These instruments opened up the registration of plasmas in new regimes and surroundings. The measurements delivered new information about the properties of even previously studied traditional plasma objects (e.g. ns-laser produced plasmas). Also the detailed investigation of relatively new plasma laboratory sources with very small dimensions and low energy content (e.g. mJ fs-laser pulses) became possible. The purpose of this report is to give a short review of the experimental and theoretical results obtained in the past few years by MISDC (Multi-charged Ions Spectra Data Center) research team in the field of X-ray spectroscopy of a laser-produced plasma. Experimental spectra have been obtained at various laser installations with nanosecond, sub-nanosecond, picosecond and sub-picosecond pulses interacting with solid, gaseous or cluster targets in collaborations with research teams from Russia, USA, Germany, France, Poland, Belgium, Italy, China and Israel. Practically all results have been obtained with the help of spectrographs with spherically bent mica crystals operating in FSSR-1D, 2D schemes. (author)

  9. Low-dose phase contrast tomography with conventional x-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, C. K., E-mail: charlotte.hagen.10@ucl.ac.uk; Endrizzi, M.; Diemoz, P. C.; Olivo, A. [Department of Medical Physics and Bioengineering, University College London, Malet Place, Gower Street, London WC1E 6BT (United Kingdom); Munro, P. R. T. [Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia and Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2014-07-15

    Purpose: The edge illumination (EI) x-ray phase contrast imaging (XPCi) method has been recently further developed to perform tomographic and, thus, volumetric imaging. In this paper, the first tomographic EI XPCi images acquired with a conventional x-ray source at dose levels below that used for preclinical small animal imaging are presented. Methods: Two test objects, a biological sample and a custom-built phantom, were imaged with a laboratory-based EI XPCi setup in tomography mode. Tomographic maps that show the phase shift and attenuating properties of the object were reconstructed, and analyzed in terms of signal-to-noise ratio and quantitative accuracy. Dose measurements using thermoluminescence devices were performed. Results: The obtained images demonstrate that phase based imaging methods can provide superior results compared to attenuation based modalities for weakly attenuating samples also in 3D. Moreover, and, most importantly, they demonstrate the feasibility of low-dose imaging. In addition, the experimental results can be considered quantitative within the constraints imposed by polychromaticity. Conclusions: The results, together with the method's dose efficiency and compatibility with conventional x-ray sources, indicate that tomographic EI XPCi can become an important tool for the routine imaging of biomedical samples.

  10. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu; Sakata, Shohei; Zhang, Zhe; Abe, Yuki; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Miyamoto, Shuji; Yamaguchi, Masashi; Takemoto, Akinori [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan)

    2016-04-15

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolution than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.

  11. High-Resolution Detector For X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  12. High-energy X-ray observations of extragalactic objects

    International Nuclear Information System (INIS)

    Pietsch, W.; Reppin, C.; Truemper, J.; Voges, W.; Lewin, W.; Kendziorra, E.; Staubert, R.

    1981-01-01

    During a balloon flight from Alice Springs, Australia, six extragalactic sources which are known as potential X-ray sources have been observed in hard X-rays (E > 20 keV). We present X-ray spectra of 3C 273 and Cen-A as well as upper limits on 3C 120, MKN 509, NGC 5506, and MR 2251-178. (orig.)

  13. X-ray Diffraction Study of Arsenopyrite at High Pressure

    Energy Technology Data Exchange (ETDEWEB)

    D Fan; M Ma; W Zhou; S Wei; Z Chen; H Xie

    2011-12-31

    The high-pressure X-ray diffraction study of a natural arsenopyrite was investigated up to 28.2 GPa using in situ angle-dispersive X-ray diffraction and a diamond anvil cell at National Synchrotron Light Source, Brookhaven National Laboratory. The 16:3:1 methanol-ethanol-water mixture was used as a pressure-transmitting medium. Pressures were measured using the ruby-fluorescence method. No phase change has been observed up to 28.2 GPa. The isothermal equation of state (EOS) was determined. The values of K{sub 0}, and K'{sub 0} refined with a third-order Birch-Murnaghan EOS are K{sub 0} = 123(9) GPa, and K'{sub 0} = 5.2(8). Furthermore, we confirm that the linear compressibilities ({beta}) along a, b and c directions of arsenopyrite is elastically isotropic ({beta}{sub a} = 6.82 x 10{sup -4}, {beta}{sub b} = 6.17 x 10{sup -4} and {beta}{sub c} = 6.57 x 10{sup -4} GPa{sup -1}).

  14. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.; Lee, H.R.; McNulty, I.; Zalensky, A.O.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5 microm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼ 1,000 angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼ 6,000 angstrom, however some features were clearly reconstructed with a depth resolution of ∼ 1,000 angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution, bringing it down to ∼ 1,200 angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  15. Ultra high resolution soft x-ray tomography

    International Nuclear Information System (INIS)

    Haddad, W.S.; Trebes, J.E.; Goodman, D.M.

    1995-01-01

    Ultra high resolution three dimensional images of a microscopic test object were made with soft x-rays using a scanning transmission x-ray microscope. The test object consisted of two different patterns of gold bars on silicon nitride windows that were separated by ∼5μm. A series of nine 2-D images of the object were recorded at angles between -50 to +55 degrees with respect to the beam axis. The projections were then combined tomographically to form a 3-D image by means of an algebraic reconstruction technique (ART) algorithm. A transverse resolution of ∼1000 Angstrom was observed. Artifacts in the reconstruction limited the overall depth resolution to ∼6000 Angstrom, however some features were clearly reconstructed with a depth resolution of ∼1000 Angstrom. A specially modified ART algorithm and a constrained conjugate gradient (CCG) code were also developed as improvements over the standard ART algorithm. Both of these methods made significant improvements in the overall depth resolution bringing it down to ∼1200 Angstrom overall. Preliminary projection data sets were also recorded with both dry and re-hydrated human sperm cells over a similar angular range

  16. Measurement of soft X-ray power from high-power Z-pinch plasma

    International Nuclear Information System (INIS)

    Wang Wensheng; Qiu Aici; Sun Fengrong; Luo Jianhui; Zhou Haisheng; He Duohui

    2003-01-01

    A Ni-film bolometer driven by the pulsed constant-voltage supply was developed for measuring soft X-ray energy under 1 keV generated from the Qiang-Guang-I, while the measuring system of the soft X-ray power was established with an X-ray diode detector. Results of the soft X-ray energy and power measurements were obtained at the experiment of Kr gas-puff high-power Z-pinch plasma

  17. X-ray differential phase-contrast tomographic reconstruction with a phase line integral retrieval filter

    International Nuclear Information System (INIS)

    Fu, Jian; Hu, Xinhua; Li, Chen

    2015-01-01

    We report an alternative reconstruction technique for x-ray differential phase-contrast computed tomography (DPC-CT). This approach is based on a new phase line integral projection retrieval filter, which is rooted in the derivative property of the Fourier transform and counteracts the differential nature of the DPC-CT projections. It first retrieves the phase line integral from the DPC-CT projections. Then the standard filtered back-projection (FBP) algorithms popular in x-ray absorption-contrast CT are directly applied to the retrieved phase line integrals to reconstruct the DPC-CT images. Compared with the conventional DPC-CT reconstruction algorithms, the proposed method removes the Hilbert imaginary filter and allows for the direct use of absorption-contrast FBP algorithms. Consequently, FBP-oriented image processing techniques and reconstruction acceleration softwares that have already been successfully used in absorption-contrast CT can be directly adopted to improve the DPC-CT image quality and speed up the reconstruction

  18. In vivo X-Ray Computed Tomographic Imaging of Soft Tissue with Native, Intravenous, or Oral Contrast

    Directory of Open Access Journals (Sweden)

    W. Matthew Leevy

    2013-05-01

    Full Text Available X-ray Computed Tomography (CT is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.

  19. An alternative approach to contrast-detail testing of X-ray image intensifier systems

    International Nuclear Information System (INIS)

    Kotre, C.J.; Marshall, N.W.; Faulkner, K.

    1992-01-01

    The difficulties of making the results of threshold contrast-detail diameter tests on X-ray image intensifier systems consistent with published performance standards are discussed. The current approach to contrast-detail testing is described and an alternative method intended to give greater consistency for all image intensifier input field diameters proposed. The current and alternative test conditions are compared on two image intensifier systems. The results obtained show that the contrast-detail curves for image intensifier systems with a wide range of input field diameters can be effectively normalized to be directly comparable to a common reference standard by applying the proposed alternative test conditions. The implications of this result on the interpretation of the contrast-detail test are discussed. (author)

  20. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    Science.gov (United States)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  1. 30-lens interferometer for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Lyubomirskiy, M., E-mail: lyubomir@esrf.fr; Snigireva, I., E-mail: irina@esrf.fr; Vaughan, G. [European Synchrotron Radiation facility (ESRF), CS 40220, 71, av des Martyrs, F-38043, Grenoble (France); Kohn, V. [National Research Centre “Kurchatov Institute”, 123182, Moscow (Russian Federation); Kuznetsov, S.; Yunkin, V. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka (Russian Federation); Snigirev, A. [Baltic Federal University, 236041, Kaliningrad (Russian Federation)

    2016-07-27

    We report a hard X-ray multilens interferometer consisting of 30 parallel compound refractive lenses. Under coherent illumination each CRL creates a diffraction limited focal spot - secondary source. An overlapping of coherent beams from these sources resulting in the interference pattern which has a rich longitudinal structure in accordance with the Talbot imaging formalism. The proposed interferometer was experimentally tested at ID11 ESRF beamline for the photon energies 32 keV and 65 keV. The fundamental and fractional Talbot images were recorded with the high resolution CCD camera. An effective source size in the order of 15 µm was determined from the first Talbot image proving that the multilens interferometer can be used as a high resolution beam diagnostic tool.

  2. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, D.S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Didcot, Oxon OX11 0FA (United Kingdom); Bradley, R.S. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Tariq, F.; Cooper, S.J. [Dept. Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Taiwo, O.O. [Dept. Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Gelb, J.; Merkle, A. [Carl Zeiss X-ray Microscopy Inc., Pleasanton, CA 94588 (United States); Brett, D.J.L. [Dept. Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Brandon, N.P. [Dept. Earth Science and Engineering, Imperial College London, London SW7 2AZ (United Kingdom); Withers, P.J.; Lee, P.D. [Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Research Complex at Harwell, Didcot, Oxon OX11 0FA (United Kingdom); Shearing, P.R., E-mail: p.shearing@ucl.ac.uk [Dept. Chemical Engineering, University College London, London WC1E 7JE (United Kingdom)

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li{sup +} ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  3. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    Science.gov (United States)

    Eastwood, D. S.; Bradley, R. S.; Tariq, F.; Cooper, S. J.; Taiwo, O. O.; Gelb, J.; Merkle, A.; Brett, D. J. L.; Brandon, N. P.; Withers, P. J.; Lee, P. D.; Shearing, P. R.

    2014-04-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li+ ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution.

  4. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes

    International Nuclear Information System (INIS)

    Eastwood, D.S.; Bradley, R.S.; Tariq, F.; Cooper, S.J.; Taiwo, O.O.; Gelb, J.; Merkle, A.; Brett, D.J.L.; Brandon, N.P.; Withers, P.J.; Lee, P.D.; Shearing, P.R.

    2014-01-01

    In order to accelerate the commercialization of fuel cells and batteries across a range of applications, an understanding of the mechanisms by which they age and degrade at the microstructural level is required. Here, the most widely commercialized Li-ion batteries based on porous graphite based electrodes which de/intercalate Li + ions during charge/discharge are studied by two phase contrast enhanced X-ray imaging modes, namely in-line phase contrast and Zernike phase contrast at the micro (synchrotron) and nano (laboratory X-ray microscope) level, respectively. The rate of charge cycling is directly dependent on the nature of the electrode microstructure, which are typically complex multi-scale 3D geometries with significant microstructural heterogeneities. We have been able to characterise the porosity and the tortuosity by micro-CT as well as the morphology of 5 individual graphite particles by nano-tomography finding that while their volume varied significantly their sphericity was surprisingly similar. The volume specific surface areas of the individual grains measured by nano-CT are significantly larger than the total volume specific surface area of the electrode from the micro-CT imaging, which can be attributed to the greater particle surface area visible at higher resolution

  5. The radiation protection optimisation in contrast X-ray diagnostic techniques

    International Nuclear Information System (INIS)

    Markovic, S.; Pavlovic, R.

    1995-01-01

    In the class of artificial sources, X-ray diagnostic techniques irradiate global population with more than 90 % share in total dose. At the same time this is the only area with high possibilities in collective dose reduction without important investments. Exposure of the medical team is mainly related to unnecessary irradiation. Eliminating this unnecessary irradiation quality of diagnostic information remains undisturbed. From the radiation protection point of view the most critical X-ray diagnostic method is angiography. This paper presents the radiation protection optimisation calculation of the protective lead thickness using the Cost - Benefit analysis technique. The obtained numerical results are based on calculated collective dose, the estimated prices of the lead and lead glass thickness and the adopted price for monetary value of the collective dose unit α. (author) 3 figs., 10 refs

  6. The radiation protection optimisation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In the class of artificial sources, X-ray diagnostic techniques irradiate global population with more than 90 % share in total dose. At the same time this is the only area with high possibilities in collective dose reduction without important investments. Exposure of the medical team is mainly related to unnecessary irradiation. Eliminating this unnecessary irradiation quality of diagnostic information remains undisturbed. From the radiation protection point of view the most critical X-ray diagnostic method is angiography. This paper presents the radiation protection optimisation calculation of the protective lead thickness using the Cost - Benefit analysis technique. The obtained numerical results are based on calculated collective dose, the estimated prices of the lead and lead glass thickness and the adopted price for monetary value of the collective dose unit {alpha}. (author) 3 figs., 10 refs.

  7. A new high-speed X-ray beam chopper

    International Nuclear Information System (INIS)

    McPherson, A.; Wang, J.; Lee, P. L.; Mills, D. M.

    1999-01-01

    A new high-speed x-ray beam chopper using laser scanner technology has been developed and tested on the SRI-CAT sector 1 beamline at the Advanced Photon Source (APS) storage ring (1). As illustrated in figure 1, it is compact in size and has two sets of transmission windows: BK-7 glass for visible light transmission and 0.23-mm-thick Be for the transmission of x-rays. The rotor is made of aluminum and has a diameter of 50.8 mm. A 0.5-mm-wide and 2.29-mm-tall slit is cut through the center of the rotor. The circumference of the rotor has a coating of 1-mm-thick Ni, which gives an attenuation of 10 8 at 30 keV. Turning at nearly 80000 RPM, this beam chopper has an opening time window of 2450 ns, corresponding to 67% of the revolution time of the APS storage ring. The primary feature in selecting laser scanner technology to develop into an x-ray beam chopper was the high level of rotational speed control of the rotor that makes up the beam chopper element (2). By using an optical feedback circuit to sample the rotational speed four times each revolution, the jitter in the position of the transmission open time window is only 3 ns at the 3 standard deviation level. The APS storage ring orbital frequency, supplied by the control room, is divided down to provide the appropriate drive frequency for the beam chopper motor controller. By this means, both the storage ring and the beam chopper are operating off the same master clock. After a turn-on time of about 15 to 20 seconds, the rotational precision of the motor results in immediate phase locking to the temporal structure of the APS storage ring. By inserting a Stanford delay generator between the frequency divider and the beam chopper motor controller, the phase between the storage ring temporal structure and the beam chopper rotation can be adjusted to position the transmission time window of the beam chopper on any desired part of the storage ring fill pattern. If an asymmetric fill pattern is used in the APS storage

  8. Development of high resolution x-ray CT technique for irradiated fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ishimi, Akihiro; Katsuyama, Kozo; Maeda, Koji; Asaga, Takeo [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan)

    2012-03-15

    High X-ray CT technique was developed to observe the irradiation performance of FBR fuel assembly and MOX fuel. In this technique, the high energy X-ray pulse (12MeV) was used synchronizing detection system with the X-ray pulse to reduce the effect of the gamma ray emissions from the irradiated fuel assembly. In this study, this technique was upgraded to obtain high resolution X-ray CT image. In this upgrading, the collimator which had slit width of 0.1 mm and X-ray detector of a highly sensitive silicon semiconductor detector (100 channels) was introduced in the X-ray CT system. As a result of these developments, high resolution X-ray CT images could be obtained on the transverse cross section of irradiated fuel assembly. (author)

  9. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P; Miao Jianwei; Mao Yu; Cloetens, Peter

    2010-01-01

    Tomographic reconstruction from undersampled and noisy projections is often desirable in transmission CT modalities for purposes of low-dose tomography and fast acquisition imaging. However under such conditions, due to the violation of the Nyquist sampling criteria and the presence of noise, reconstructions with acceptable accuracy may not be possible. Recent experiments in transmission electron tomography and coherent diffraction microscopy have shown that the technique of equally sloped tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier-based reconstruction, provides more accurate image reconstructions when the number of projections is significantly undersampled relative to filtered back projection and algebraic iterative methods. Here we extend this technique by developing new reconstruction algorithms which allow for the incorporation of advanced mathematical regularization constraints, such as the nonlocal means total variational model, in a manner that is consistent with experimental projections. We then evaluate the resulting image quality of the developed algorithm through simulations and experiments at the European Synchrotron Radiation Facility on image quality phantoms using the x-ray absorption and phase contrast CT modalities. Both our simulation and experimental results have indicated that the method can reduce the number of projections by 60-75% in parallel beam modalities, while achieving comparable or better image quality than the conventional reconstructions. As large-scale and compact synchrotron radiation facilities are currently under rapid development worldwide, the implementation of low-dose x-ray absorption and phase-contrast CT can find broad applications in biology and medicine using these advanced x-ray sources.

  10. High resolution hard x-ray microscope on a second generation synchrotron source

    International Nuclear Information System (INIS)

    Tian Yangchao; Li Wenjie; Chen Jie; Liu Longhua; Liu Gang; Tian Jinping; Xiong Ying; Tkachuk, Andrei; Gelb, Jeff; Hsu, George; Yun Wenbing

    2008-01-01

    A full-field, transmission x-ray microscope (TXM) operating in the energy range of 7-11 keV has been installed at the U7A beamline at the National Synchrotron Radiation Laboratory, a second generation synchrotron source operating at 0.8 GeV. Although the photon flux at sample position in the operating energy range is significantly low due to its relatively large emittance, the TXM can get high quality x-ray images with a spatial resolution down to 50 nm with acceptable exposure time. This TXM operates in either absorption or Zernike phase contrast mode with similar resolution. This TXM is a powerful analytical tool for a wide range of scientific areas, especially studies on nanoscale phenomena and structural imaging in biology, materials science, and environmental science. We present here the property of the x-ray source, beamline design, and the operation and key optical components of the x-ray TXM. Plans to improve the throughput of the TXM will be discussed.

  11. High temperature x-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.; Gludovatz, Bernd [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); Haboub, Abdel [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); current –Lincoln Univ., Jefferson City, Missouri, 65101 (United States); Larson, Natalie; Zok, Frank [University California Santa Barbara, Santa Barbara CA 93106 (United States); Panerai, Francesco; Mansour, Nagi N. [NASA Ames Research Centre, Moffett Field, CA, 94035 (United States); Bale, Hrishikesh [University California Berkeley, Berkeley, CA 94720 (United States); current - Carl Zeiss X-ray Microscopy, 4385 Hopyard Rd #100, Pleasanton, CA 94588 (United States); Acevedo, Claire [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California San Francisco, San Francisco, CA 94143 (United States); Liu, Dong [University of Bristol, Bristol BS8 1TH (United Kingdom); Ritchie, Robert O. [Lawrence Berkeley National Lab., Berkeley, CA 94720 (United States); University California Berkeley, Berkeley, CA 94720 (United States)

    2016-07-27

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrix composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.

  12. High-energy X-ray production in a boundary layer of an accreting neutron star

    International Nuclear Information System (INIS)

    Hanawa, Tomoyuki

    1991-01-01

    It is shown by Monte Carlo simulation that high-energy X-rays are produced through Compton scattering in a boundary layer of an accreting neutron star. The following is the mechanism for the high-energy X-ray production. An accreting neutron star has a boundary layer rotating rapidly on the surface. X-rays radiated from the star's surface are scattered in part in the boundary layer. Since the boundary layer rotates at a semirelativistic speed, the scattered X-ray energy is changed by the Compton effect. Some X-rays are scattered repeatedly between the neutron star and the boundary layer and become high-energy X-rays. This mechanism is a photon analog of the second-order Fermi acceleration of cosmic rays. When the boundary layer is semitransparent, high-energy X-rays are produced efficiently. 17 refs

  13. Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.

    Science.gov (United States)

    Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco

    2015-04-20

    Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

  14. Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography.

    Science.gov (United States)

    Hagen, C K; Diemoz, P C; Endrizzi, M; Rigon, L; Dreossi, D; Arfelli, F; Lopez, F C M; Longo, R; Olivo, A

    2014-04-07

    X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object's phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

  15. X-ray directional dark-field contrast for sub-pixel resolution imaging of bone microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Biernath, Thomas; Malecki, Andreas; Potdevin, Guillaume; Bech, Martin; Pfeiffer, Franz [Department of Physics (E17) and Institute of Medical Engineering (IMETUM), Technische Universitaet Muenchen (Germany); Jensen, Torben [Niels Bohr Institute, University of Copenhagen (Denmark)

    2011-07-01

    The basic principles of X-ray image formation in radiography have remained essentially unchanged since Roentgen first discovered X-rays over a hundred years ago. The conventional approach relies on X-ray absorption as the sole source of contrast and thus gives an information about the density changes in the sample. The recently introduced X-ray dark field imaging technique (DFI) yields a fundamentally different signal: DFI is a measure of the sample small angle scattering signal and thus yields information about the sample microstructure. Such measurements can be effectively performed thanks to a Laue-Talbot grating interferometer. This presentation shows recent experimental directional dark-field imaging results of various samples both from synchrotron and classical X-ray tube sources.

  16. Induction of mitotic micronuclei by X-ray contrast media in human peripheral lymphocytes

    International Nuclear Information System (INIS)

    Parvez, Z.; Moncada, R.; Kormano, M.; Satokari, K.; Eklund, R.

    1987-01-01

    In vitro and in vivo cytogenetic effects of X-ray contrast media (CM) were determined by scoring micronuclei (MN) in 72-h cultures of human peripheral lymphocytes. Both ionic (sodium meglumine diatrizoate, methylglucamine diatrizoate, and sodium meglumine ioxaglate and nonionic CM (iosimide, iopromide, iohexol and iotrolan) were able to induce MN in lymphocytes. Based upon their calculated percent probabilities for MN induction, these agents could be ranked in their decreasing order of probability, as iosimide > sodium meglumine ioxaglate > iohexol > sodium meglumine diatrizoate > iopromide > methylglucamine diatrizoate > iotrolan. Stepwise logistic regression analysis of the data indicated that the frequency of MN in CM-exposed lymphocyte cultures was significantly higher than the frequency of MN in control cultures (P < 0.001). In clinical studies where 14 patients were injected with an ionic CM methylglucamine diatrizoate, lymphocyte cultures from 10 patients showed higher frequencies of MN. The differences between pre- and post-CM counts of MN were significant in a Mann-Whitney U test (P < 0.05). The effect of X-irradiation on MN formation in lymphocytes was separately determined and was found to be insignificant. These results indicate that irrespective of ionic and osmolality differences, X-ray contrast agents are capable of producing chromosomal damage in peripheral lymphocytes. Further studies are required to establish molecular mechanisms in the observed cytogenetic effects of CM in cell cultures. (Auth.)

  17. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Bradley, D.A.

    2010-01-01

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  18. X-ray phase contrast imaging of the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Pfeiffer, F. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: d.a.bradley@surrey.ac.uk

    2010-04-15

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  19. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  20. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  1. High-resolution 3D X-ray imaging of intracranial nitinol stents

    International Nuclear Information System (INIS)

    Snoeren, Rudolph M.; With, Peter H.N. de; Soederman, Michael; Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko

    2012-01-01

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  2. X-ray phase microtomography with a single grating for high-throughput investigations of biological tissue.

    Science.gov (United States)

    Zdora, Marie-Christine; Vila-Comamala, Joan; Schulz, Georg; Khimchenko, Anna; Hipp, Alexander; Cook, Andrew C; Dilg, Daniel; David, Christian; Grünzweig, Christian; Rau, Christoph; Thibault, Pierre; Zanette, Irene

    2017-02-01

    The high-throughput 3D visualisation of biological specimens is essential for studying diseases and developmental disorders. It requires imaging methods that deliver high-contrast, high-resolution volumetric information at short sample preparation and acquisition times. Here we show that X-ray phase-contrast tomography using a single grating can provide a powerful alternative to commonly employed techniques, such as high-resolution episcopic microscopy (HREM). We present the phase tomography of a mouse embryo in paraffin obtained with an X-ray single-grating interferometer at I13-2 Beamline at Diamond Light Source and discuss the results in comparison with HREM measurements. The excellent contrast and quantitative density information achieved non-destructively and without staining using a simple, robust setup make X-ray single-grating interferometry an optimum candidate for high-throughput imaging of biological specimens as an alternative for existing methods like HREM.

  3. Survey of the pharmacology of non-ionic X-ray contrast media

    International Nuclear Information System (INIS)

    Turnheim, K.

    1986-01-01

    The non-ionic X-ray contrast media metrizamide, iopamidol, iohexol, and iopromide do not bind calcium and are less hyperosmolar than the conventional ionic contrast media, for instance amidotrizoate (diatrizoate), iothalamte, or ioglicate. Hence the use of non-ionic contrast media is associated with less undesirable side-effects that are attributable to hypertonicity such as an increase in circulating plasma volume, decreased deformability of red blood cells, damage of vascular endothelium with consequent activation of blood coagulation, the complement system and fibrinolysis, increased release of bradykinin and histamine, cardiac arrhythimas, diuresis, vasodilation and decreased blood pressure, pain and heat sensation. Because of less dilution the quality of imaging is also better. According to the intravenous LD 50 in experimental animals the acute toxicity of non-ionic contrast media is lower than that of ionic media. With respect to contrast quality and the rate of side-effects tha various non-ionic contrast media appear to be equivalent. Despite their higher price and higher viscosity it is probable that the non-ionic contrast media will replace the classical ionic media, especially in angio- and myelography. (Author)

  4. X-ray conversion efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E. L.; Rosen, M.; Glenzer, S. H.; Suter, L. J.; Neumayer, P.; Landen, O. L.; Girard, F.; Jadaud, J. P.; Wagon, F.; Huser, G.; Schein, J.; Constantin, C.

    2008-01-01

    The conversion efficiency of 351 nm laser light to soft x rays (0.1-5 keV) was measured for Au, U, and high Z mixture ''cocktails'' used as hohlraum wall materials in indirect drive fusion experiments. For the spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates are employed to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)]. The absolute time and spectrally resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses are subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. LASNEX simulations [G. B. Zimmerman and W. L. Kruer, Comm. Plasma Phys. Contr. Fusion 2, 51 (1975)] show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux.

  5. X-ray Conversion Efficiency of high-Z hohlraum wall materials for indirect drive ignition

    International Nuclear Information System (INIS)

    Dewald, E.; Rosen, M.; Glenzer, S.H.; Suter, L.J.; Girard, F.; Jadaud, J.P.; Schein, J.; Constantin, C.G.; Neumayer, P.; Landen, O.

    2008-01-01

    We measure the conversion efficiency of 351 nm laser light to soft x-rays (0.1-5 keV) for Au, U and high Z mixtures 'cocktails' used for hohlraum wall materials in indirect drive ICF. We use spherical targets in a direct drive geometry, flattop laser pulses and laser smoothing with phase plates to achieve constant and uniform laser intensities of 10 14 and 10 15 W/cm 2 over the target surface that are relevant for the future ignition experiments on NIF. The absolute time and spectrally-resolved radiation flux is measured with a multichannel soft x-ray power diagnostic. The conversion efficiency is then calculated by dividing the measured x-ray power by the incident laser power from which the measured laser backscattering losses is subtracted. After ∼0.5 ns, the time resolved x-ray conversion efficiency reaches a slowly increasing plateau of 95% at 10 14 W/cm 2 laser intensity and of 80% at 10 15 W/cm 2 . The M-band flux (2-5 keV) is negligible at 10 14 W/cm 2 reaching ∼1% of the total x-ray flux for all target materials. In contrast, the M-band flux is significant and depends on the target material at 10 15 W/cm 2 laser intensity, reaching values between 10% of the total flux for U and 27% for Au. Our LASNEX simulations show good agreement in conversion efficiency and radiated spectra with data when using XSN atomic physics model and a flux limiter of 0.15, but they underestimate the generated M-band flux

  6. Simulation study of spatial resolution in phase-contrast X-ray imaging with Takagi-Taupin equation

    International Nuclear Information System (INIS)

    Koyama, Ichiro; Momose, Atsushi

    2003-01-01

    To evaluate attainable spatial resolution of phase-contrast X-ray imaging using an LLL X-ray interferometer with a thin crystal wafer, a computer simulation study with Takagi-Taupin equation was performed. Modulation transfer function of the wafer for X-ray phase was evaluated. For a polyester film whose thickness is 0.1 mm, it was concluded that the spatial resolution can be improved up to 3 μm by thinning the wafer, under our experimental condition

  7. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination

    International Nuclear Information System (INIS)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume

    2014-01-01

    Purpose: Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. Material and methods: A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Results: Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast

  8. X-ray phase-contrast tomosynthesis for improved breast tissue discrimination.

    Science.gov (United States)

    Schleede, Simone; Bech, Martin; Grandl, Susanne; Sztrókay, Aniko; Herzen, Julia; Mayr, Doris; Stockmar, Marco; Potdevin, Guillaume; Zanette, Irene; Rack, Alexander; Weitkamp, Timm; Pfeiffer, Franz

    2014-03-01

    Attenuation-based tomosynthesis has proven to successfully resolve the glandular tissue overlap present in mammography. However, the ability of tomosynthesis to differentiate tumorous and glandular tissue remains limited, due to the small differences in X-ray attenuation in breast tissue. One possibility to overcome this limitation and to further increase the diagnostic value of tomosynthesis exams, is the application of recently developed grating-based phase-contrast methods, which provide complementary information on the phase shift and the local scattering power of the sample. In this study, we report on first phase-contrast breast tomosynthesis results of a mastectomy sample slice with an invasive ductal carcinoma. A slice of a mastectomy sample with histologically proven invasive ductal cancer was imaged at the synchrotron radiation source ESRF (Grenoble, France). We used a two-grating interferometer setup at the ninth fractional Talbot distance and with an X-ray energy of 23 keV. In grating interferometry absorption, differential phase, and scattering images are recorded simultaneously. The tomosynthesis scan comprises 61 projections. Multimodal tomosynthesis results were reconstructed using a standard filtered back-projection approach. Our findings are supported by a comparison of tomographic views to histopathology. Phase-contrast tomosynthesis combines the advantage of improved soft-tissue discrimination in phase-contrast imaging with the ability of tomosynthesis to provide a third dimension so that improved feature visibility is not hampered by superposition artifacts. Our results indicate superior diagnostic value due to the depth resolution supplied in tomosynthesis imaging; a region of necrotic tissue that is obscured in a projection image can clearly be depicted in one single tomosynthesis slice. Compared to absorption tomosynthesis alone, soft tissue contrast is significantly enhanced in phase-contrast tomosynthesis views, where fibrous structures

  9. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    International Nuclear Information System (INIS)

    Kitchen, Marcus J.; Pavlov, Konstantin M.; Hooper, Stuart B.; Vine, David J.; Siu, Karen K.W.; Wallace, Megan J.; Siew, Melissa L.L.; Yagi, Naoto; Uesugi, Kentaro; Lewis, Rob A.

    2008-01-01

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 μm thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution

  10. Simultaneous acquisition of dual analyser-based phase contrast X-ray images for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kitchen, Marcus J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: Marcus.Kitchen@sci.monash.edu.au; Pavlov, Konstantin M. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia); Physics and Electronics, School of Science and Technology, University of New England, NSW 2351 (Australia)], E-mail: Konstantin.Pavlov@sci.monash.edu.au; Hooper, Stuart B. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Stuart.Hooper@med.monash.edu.au; Vine, David J. [School of Physics, Monash University, Victoria 3800 (Australia)], E-mail: David.Vine@sci.monash.edu.au; Siu, Karen K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sci.monash.edu.au; Wallace, Megan J. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Megan.Wallace@med.monash.edu.au; Siew, Melissa L.L. [Department of Physiology, Monash University, Victoria 3800 (Australia)], E-mail: Melissa.Siew@med.monash.edu.au; Yagi, Naoto [SPring-8/JASRI, Sayo (Japan)], E-mail: yagi@spring8.or.jp; Uesugi, Kentaro [SPring-8/JASRI, Sayo (Japan)], E-mail: ueken@spring8.or.jp; Lewis, Rob A. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Rob.Lewis@sync.monash.edu.au

    2008-12-15

    Analyser-based phase contrast X-ray imaging can provide high-contrast images of biological tissues with exquisite sensitivity to the boundaries between tissues. The phase and absorption information can be extracted by processing multiple images acquired at different analyser orientations. Recording both the transmitted and diffracted beams from a thin Laue analyser crystal can make phase retrieval possible for dynamic systems by allowing full field imaging. This technique was used to image the thorax of a mechanically ventilated newborn rabbit pup using a 25 keV beam from the SPring-8 synchrotron radiation facility. The diffracted image was produced from the (1 1 1) planes of a 50 mm x 40 mm, 100 {mu}m thick Si analyser crystal in the Laue geometry. The beam and analyser were large enough to image the entire chest, making it possible to observe changes in anatomy with high contrast and spatial resolution.

  11. Experimental and theoretical contributions to X-ray phase-contrast techniques for medical imaging

    International Nuclear Information System (INIS)

    Diemoz, P.C.

    2011-01-01

    Several X-ray phase-contrast techniques have recently been developed. Unlike conventional X-ray methods, which measure the absorption properties of the tissues, these techniques derive contrast also from the modulation of the phase produced by the sample. Since the phase shift can be significant even for small details characterized by weak or absent absorption, the achievable image contrast can be greatly increased, notably for the soft biological tissues. These methods are therefore very promising for applications in the medical domain. The aim of this work is to contribute to a deeper understanding of these techniques, in particular propagation-based imaging (PBI), analyzer-based imaging (ABI) and grating interferometry (GIFM), and to study their potential and the best practical implementation for medical imaging applications. An important part of this work is dedicated to the use of mathematical algorithms for the extraction, from the acquired images, of quantitative sample information (the absorption, refraction and scattering sample properties). In particular, five among the most known algorithms based on the geometrical optics approximation have been theoretically analysed and experimentally compared, in planar and tomographic modalities, by using geometrical phantoms and human bone-cartilage and breast samples. A semi-quantitative method for the acquisition and reconstruction of tomographic images in the ABI and GIFM techniques has also been proposed. The validity conditions are analyzed in detail and the method, enabling a considerable simplification of the imaging procedure, has been experimentally checked on phantoms and human samples. Finally, a theoretical and experimental comparison of the PBI, ABI and GIFM techniques is presented. The advantages and drawbacks of each of these techniques are discussed. The results obtained from this analysis can be very useful for determining the most adapted technique for a given application. (author)

  12. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  13. Pollen structure visualization using high-resolution laboratory-based hard X-ray tomography.

    Science.gov (United States)

    Li, Qiong; Gluch, Jürgen; Krüger, Peter; Gall, Martin; Neinhuis, Christoph; Zschech, Ehrenfried

    2016-10-14

    A laboratory-based X-ray microscope is used to investigate the 3D structure of unstained whole pollen grains. For the first time, high-resolution laboratory-based hard X-ray microscopy is applied to study pollen grains. Based on the efficient acquisition of statistically relevant information-rich images using Zernike phase contrast, both surface- and internal structures of pine pollen - including exine, intine and cellular structures - are clearly visualized. The specific volumes of these structures are calculated from the tomographic data. The systematic three-dimensional study of pollen grains provides morphological and structural information about taxonomic characters that are essential in palynology. Such studies have a direct impact on disciplines such as forestry, agriculture, horticulture, plant breeding and biodiversity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  15. Improved X-ray diagnosis of stomach by progress in the development of contrast media and examination techniques

    International Nuclear Information System (INIS)

    Lotz, W.

    1982-01-01

    Three factors have been responsible for the advances during the past few years in X-ray examination of the stomach: Improvement of the contrast media used; introduction of the rare-earth foils; and examination techniques imaging all sections of the stomach and of the duodenal bulb under hypotension in double-contrast technique, in complete filling, and imaging the accessible sections by means of proper compression. An interesting technique employs a combination of two different barium sulphate suspension used at the same time, e.g. Bubbly Barium or some other barium sulphate preparation with a small amount of High-Density Barium yielding excellent image of the gastric mucosa (technique with two contrast media). (orig.) [de

  16. TU-G-207-03: High Spatial Resolution and High Sensitivity X-Ray Fluorescence Imaging

    International Nuclear Information System (INIS)

    Xing, L.

    2015-01-01

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications

  17. 3D printing X-Ray Quality Control Phantoms. A Low Contrast Paradigm

    Science.gov (United States)

    Kapetanakis, I.; Fountos, G.; Michail, C.; Valais, I.; Kalyvas, N.

    2017-11-01

    Current 3D printing technology products may be usable in various biomedical applications. Such an application is the creation of X-ray quality control phantoms. In this work a self-assembled 3D printer (geeetech i3) was used for the design of a simple low contrast phantom. The printing material was Polylactic Acid (PLA) (100% printing density). Low contrast scheme was achieved by creating air-holes with different diameters and thicknesses, ranging from 1mm to 9mm. The phantom was irradiated at a Philips Diagnost 93 fluoroscopic installation at 40kV-70kV with the semi-automatic mode. The images were recorded with an Agfa cr30-x CR system and assessed with ImageJ software. The best contrast value observed was approximately 33%. In low contrast detectability check it was found that the 1mm diameter hole was always visible, for thickness larger or equal to 4mm. A reason for not being able to distinguish 1mm in smaller thicknesses might be the presence of printing patterns on the final image, which increased the structure noise. In conclusion the construction of a contrast resolution phantom with a 3D printer is feasible. The quality of the final product depends upon the printer accuracy and the material characteristics.

  18. High-throughput screening with micro-x-ray fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Miller, Thomasin C.

    2005-01-01

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity

  19. Phase-contrast X-ray CT imaging of the kidney. Differences between ethanol fixation and formalin fixation

    International Nuclear Information System (INIS)

    Shirai, Ryota; Kunii, Takuya; Maruyama, Hiroko; Takeda, Tohoru; Yoneyama, Akio; Lwin, Thet Thet

    2012-01-01

    A phase-contrast X-ray imaging technique using an X-ray interferometer that provides approximately 1000 times higher sensitivity than the conventional X-ray imaging method for low-atomic number elements based on the difference in the mass attenuation coefficient has recently been developed. In the present study, we compared rat kidneys fixed in 100% ethanol and in 10% formalin to evaluate the effects of ethanol in enhancing image contrast in phase-contrast imaging because ethanol causes significant dehydration of tissues and enhances density differences between tissue components. The experiments were conducted at the Photon Factory in Tsukuba, and the X-ray energy was set at 35 keV. Fine anatomical structures in the kidney such as the glomeruli, tubules, and vessels were observed. Particularly clear renal images were obtained with ethanol fixation. The pixel value ratio between the cortex and medulla was about 43% in ethanol-fixed kidneys and 21% in formalin-fixed kidneys. In other words, the contrast in ethanol-fixed kidneys was about two times higher than that in formalin-fixed kidneys. Histological examination showed significantly condensed features in the cortex. The results of this study suggest that the ethanol fixation technique may be useful for enhancing the image contrast of renal structures in the phase-contrast X-ray imaging technique. (author)

  20. High Spectral Resolution, High Cadence, Imaging X-ray Microcalorimeters for Solar Physics - Phase 2 Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcalorimeter x-ray instruments are non-dispersive, high spectral resolution, broad-band, high cadence imaging spectrometers. We have been developing these...

  1. Large-area full field x-ray differential phase-contrast imaging using 2D tiled gratings

    Science.gov (United States)

    Schröter, Tobias J.; Koch, Frieder J.; Kunka, Danays; Meyer, Pascal; Tietze, Sabrina; Engelhardt, Sabine; Zuber, Marcus; Baumbach, Tilo; Willer, Konstantin; Birnbacher, Lorenz; Prade, Friedrich; Pfeiffer, Franz; Reichert, Klaus-Martin; Hofmann, Andreas; Mohr, Jürgen

    2017-06-01

    Grating-based x-ray differential phase-contrast imaging (DPCI) is capable of acquiring information based on phase-shift and dark-field signal, in addition to conventional x-ray absorption-contrast. Thus DPCI gives an advantage to investigate composite materials with component wise similar absorption properties like soft tissues. Due to technological challenges in fabricating high quality gratings over a large extent, the field of view (FoV) of the imaging systems is limited to a grating area of a couple of square centimeters. For many imaging applications (e.g. in medicine), however, a FoV that ranges over several ten centimeters is needed. In this manuscript we propose to create large area gratings of theoretically any extent by assembling a number of individual grating tiles. We discuss the precision needed for alignment of each microstructure tile in order to reduce image artifacts and to preserve minimum 90% of the sensitivity obtainable with a monolithic grating. To achieve a reliable high precision alignment a semiautomatic assembly system consisting of a laser autocollimator, a digital microscope and a force sensor together with positioning devices was built. The setup was used to tile a first four times four analyzer grating with a size of 200 mm  ×  200 mm together with a two times two phase grating. First imaging results prove the applicability and quality of the tiling concept.

  2. Investigation of biomedical inner microstructures with hard X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Graduate University of the Chinese Academy of Sciences, 100864 Beijing (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Chen Bo [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Liu Bo; Yin Hongxia [Capital University of Medical Sciences, 100054 Beijing (China); Li Enrong [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Graduate University of the Chinese Academy of Sciences, 100864 Beijing (China); Liu Yijin [Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Graduate University of the Chinese Academy of Sciences, 100864 Beijing (China); Yuan Qingxi; Huang Wanxia; Fang Shouxian [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, 100049 Beijing (China); National Center for NanoScience and Technology, 100080 Beijing (China)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    Hard X-ray Phase-Contrast Imaging (HX-PCI) is a new and valuable method that may provide information of the inner parts of an opaque object. Previous reports demonstrated its applicability in soft and hard tissue imaging. Here we provide further evidence for improved image quality and the effective capability to distinguish inner microstructures in real biomedical systems such as cochlea. Experiments performed both at the 4W1A beamline of the Beijing Synchrotron Radiation Facility (BSRF) and at the Taiwan National Synchrotron Radiation Research Center (NSRRC) clearly show details of samples' inner microstructure with a resolution of a few microns. The improved spatial resolution is a relevant achievement for future improved understanding and clinical trials.

  3. An algebraic iterative reconstruction technique for differential X-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Schleede, Simone; Tan, Renbo; Chen, Liyuan; Bech, Martin; Achterhold, Klaus; Gifford, Martin; Loewen, Rod; Ruth, Ronald; Pfeiffer, Franz

    2013-09-01

    Iterative reconstruction has a wide spectrum of proven advantages in the field of conventional X-ray absorption-based computed tomography (CT). In this paper, we report on an algebraic iterative reconstruction technique for grating-based differential phase-contrast CT (DPC-CT). Due to the differential nature of DPC-CT projections, a differential operator and a smoothing operator are added to the iterative reconstruction, compared to the one commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured at a two-grating interferometer setup. Since the algorithm is easy to implement and allows for the extension to various regularization possibilities, we expect a significant impact of the method for improving future medical and industrial DPC-CT applications. Copyright © 2012. Published by Elsevier GmbH.

  4. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, E.C.; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bradley, D.A.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.

    2008-01-01

    Full text: Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques in studying the bone-cartilage interface and of changes occurring in this with disease. One technique attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work will briefly review some of the basic supporting physics and then shows some of the images and other results that we have obtained to-date

  5. Feasibility of kilovoltage x-ray energy modulation by gaseous media and its application in contrast-enhanced radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Facundo-Flores, E. L.; Garnica-Garza, H. M. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Monterrey, Vía del Conocimiento 201 Parque PIIT, Apodaca, Nuevo León 66600 (Mexico)

    2013-09-15

    Purpose: To present a method to modulate the energy contents of a kilovoltage x-ray beam that makes use of a gas as the modulating medium. The method is capable of producing arbitrary x-ray spectra by varying the pressure of the modulating gas and the peak kilovoltage (kVp) of the x-ray beams whose energy is being modulated.Methods: An aluminum chamber was machined with a 0.5 cm wall thickness, designed to withstand pressures of more than 80 atm. A pressure sensor and electrovalves were used to monitor and regulate the gas pressure. Argon was used as the modulating gas. A CdTe spectrometer was used to measure x-ray spectra for different combinations of kVp and gas pressure, thus obtaining a set of basis x-ray functions. An arbitrary x-ray spectrum can then be formed by the linear combination of such basis functions. In order to show one possible application of the modulation method, a contrast-enhanced radiotherapy prostate treatment was optimized with respect to the x-ray beam energy, without restrictions on the possible shape of the resultant x-ray spectra.Results: The x-ray spectra basis functions obtained display a smooth and gradual variation of their average energy as a function of the gas pressure for a given kVp, sometimes in the order of 1 or 2 keV. This gradual variation would be difficult to obtain with a conventional aluminum or copper filters, as the change in thickness necessary to reproduce the data presented would be in the order of micrometers, making necessary the use of a large number of such filters. Using the modulation method presented here, the authors were able to reconstruct the optimized x-ray spectra from the measured basis functions, for different optimization objectives.Conclusions: A method has been developed that allows for the controlled modulation of the energy contents of kilovoltage x-ray spectra. The method has been shown to be able to reproduce spectra of arbitrary shape, such as those obtained from the optimization of contrast

  6. The quality of high-energy X-ray beams

    International Nuclear Information System (INIS)

    LaRiviere, P.D.

    1989-01-01

    Supplement 17 of the British Journal of Radiology is a survey of central-axis depth doses for radiotherapy machines, patterned largely on BJR Supplement 11 (1972). Inspection of high-energy X-ray depth doses for a 10 x 10 cm field at an SSD of 100 cm disclosed large differences between the two sets of data, especially for qualities above 8 MV, e.g. a depth dose of 80% at 10 cm is rated at about 19 MV according to BJR Supplement 11, and 23 MV according to BJR Supplement 17. It was found that Supplement 17 depth-dose data above 8 MV were erratic, but Supplement 11 data could be represented by an analytical expression, providing a unique means of assigning MV quality. It was also found that dose-weighted average energy of the filtered beam plotted smoothly against depth dose. For dosimetric purposes, it is suggested that this parameter be used as a true measure of beam quality, removing discrepancies introduced by the use of nominal MV for this purpose. (author)

  7. Combining x-ray diffraction contrast tomography and mesoscale grain growth simulations in strontium titanate: An integrated approach for the investigation of microstructure evolution

    DEFF Research Database (Denmark)

    Syha, Melanie; Baürer, Michael; Rheinheimer, Wolfgang

    2013-01-01

    Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2, and the obs......Motivated by the recently reported a growth anomaly in strontium titatate bulk samples1, the microstructure of bulk strontium titanate has been investigated by an integrated approach comprising conventional metallography, three dimensional X-ray diffraction contrast tomography (DCT)2......, and the observation of pore shapes in combination with mesoscale grain growth simulations. The microstructural evolution in strontium titanate has been characterized alternating ex-situ annealing and high energy X-ray DCT measurements, resulting in three dimensional microstructure reconstructions which...

  8. A study of contrast media on X-rays of upper GI examinations

    International Nuclear Information System (INIS)

    Beck, A.; Rupp, H.G.; Reinhold, W.D.; Grosser, G.

    1989-01-01

    700 gastro intestinal x-ray pictures were controlled by four independent radiologists. Three different baryum applications in patients examination were performed. The three baryum contrast-medium were Top-Contral, Mikropaque, (H-D Barium) and Titanate de Baryum. The examination technique in all patients was the same. In different sessions every radiologist was asked for his opinion about the regularity and thickness of the emulsion of contrast-medium, of the graph of the Areae gastricae, the sharpness of the stomach-contour and the production of bubbles. Finally to every picture it had to be done a qualification concerning to its presentation from 'insignificant' to 'excellent' in four degrees. The results: Excellent pictures could be done in the Esophagus with Titanate de Baryum. Best presentation of the stomach specially in double contrast could be done with Mikropaque, a quiet similar result was the examination with Top-Contral. There is no significant differentiation between contrasts-media in the small intestine. (orig.) [de

  9. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  10. Development and Characterization of Two-Dimensional Gratings for Single-Shot X-ray Phase-Contrast Imaging

    Directory of Open Access Journals (Sweden)

    Margarita Zakharova

    2018-03-01

    Full Text Available Single-shot grating-based phase-contrast imaging techniques offer additional contrast modalities based on the refraction and scattering of X-rays in a robust and versatile configuration. The utilization of a single optical element is possible in such methods, allowing the shortening of the acquisition time and increasing flux efficiency. One of the ways to upgrade single-shot imaging techniques is to utilize customized optical components, such as two-dimensional (2D X-ray gratings. In this contribution, we present the achievements in the development of 2D gratings with UV lithography and gold electroplating. Absorption gratings represented by periodic free-standing gold pillars with lateral structure sizes from 5 µm to 25 µm and heights from 5 µm to 28 µm have shown a high degree of periodicity and defect-free patterns. Grating performance was tested in a radiographic setup using a self-developed quality assessment algorithm based on the intensity distribution histograms. The algorithm allows the final user to estimate the suitability of a specific grating to be used in a particular setup.

  11. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    Science.gov (United States)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; hide

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  12. Differential effects of x-rays and high-energy 56Fe ions on human mesenchymal stem cells.

    Science.gov (United States)

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li, Song; Wang, Daojing

    2009-03-01

    Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) (56)Fe ions on human mesenchymal stem cells (hMSC). A multi-functional comparison was carried out to investigate the differential effects of X-rays and (56)Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. X-rays and (56)Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and (56)Fe ions, with more significant effects from (56)Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy (56)Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. (56)Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation.

  13. Differential Effects of X-Rays and High-Energy 56Fe Ions on Human Mesenchymal Stem Cells

    International Nuclear Information System (INIS)

    Kurpinski, Kyle; Jang, Deok-Jin; Bhattacharya, Sanchita; Rydberg, Bjorn; Chu, Julia; So, Joanna; Wyrobek, Andy; Li Song; Wang Daojing

    2009-01-01

    Purpose: Stem cells hold great potential for regenerative medicine, but they have also been implicated in cancer and aging. How different kinds of ionizing radiation affect stem cell biology remains unexplored. This study was designed to compare the biological effects of X-rays and of high-linear energy transfer (LET) 56 Fe ions on human mesenchymal stem cells (hMSC). Methods and Materials: A multi-functional comparison was carried out to investigate the differential effects of X-rays and 56 Fe ions on hMSC. The end points included modulation of key markers such as p53, cell cycle progression, osteogenic differentiation, and pathway and networks through transcriptomic profiling and bioinformatics analysis. Results: X-rays and 56 Fe ions differentially inhibited the cell cycle progression of hMSC in a p53-dependent manner without impairing their in vitro osteogenic differentiation process. Pathway and network analyses revealed that cytoskeleton and receptor signaling were uniquely enriched for low-dose (0.1 Gy) X-rays. In contrast, DNA/RNA metabolism and cell cycle regulation were enriched for high-dose (1 Gy) X-rays and 56 Fe ions, with more significant effects from 56 Fe ions. Specifically, DNA replication, DNA strand elongation, and DNA binding/transferase activity were perturbed more severely by 1 Gy 56 Fe ions than by 1 Gy X-rays, consistent with the significant G2/M arrest for the former while not for the latter. Conclusions: 56 Fe ions exert more significant effects on hMSC than X-rays. Since hMSC are the progenitors of osteoblasts in vivo, this study provides new mechanistic understandings of the relative health risks associated with low- and high-dose X-rays and high-LET space radiation

  14. Soft-X-Ray Projection Lithography Using a High-Repetition-Rate Laser-Induced X-Ray Source for Sub-100 Nanometer Lithography Processes

    NARCIS (Netherlands)

    E. Louis,; F. Bijkerk,; Shmaenok, L.; Voorma, H. J.; van der Wiel, M. J.; Schlatmann, R.; Verhoeven, J.; van der Drift, E. W. J. M.; Romijn, J.; Rousseeuw, B. A. C.; Voss, F.; Desor, R.; Nikolaus, B.

    1993-01-01

    In this paper we present the status of a joint development programme on soft x-ray projection lithography (SXPL) integrating work on high brightness laser plasma sources. fabrication of multilayer x-ray mirrors. and patterning of reflection masks. We are in the process of optimization of a

  15. The SWARF high energy flash X-ray facility

    International Nuclear Information System (INIS)

    Gilbert, J.F.; Dove, E.W.D.

    1976-06-01

    A description is presented of the SWARF flash radiography facility at AWRE Foulness, which is stated to be the most powerful flash x-ray system available, in the U.K. The machine consists essentially of a Marx generator, a coaxial Blumlein system and an x-ray tube. The voltage output from the Marx generator (about 2.5 MV from an 80 kV input) is applied to a large re-entrant Blumlein pulse-forming line. Near maximum voltage, an adjustable oil switch short-circuits one end of the Blumlein generator and so applies a square voltage pulse of 65 ns duration to the x-ray tube. The x-rays are produced from a tantalum target which forms the anode of a vacuum field emission diode. The facility consists of two field machines positioned so that radiographs can be obtained from different angles. The description is given under the following heads: modus operandi; constructional details; oil installation; electrical details; commissioning, calibration and electrical data; flash radiography in explosives research; operational control of facility, film packs; radiographic results; further developments; overall performance. (U.K.)

  16. High energy X ray tomography. Development of an industrial

    International Nuclear Information System (INIS)

    Huet, J.; Thomas, G.

    1985-01-01

    From its own experience in nondestructive testing and needs of industry, a versatile 420 kV X-ray tomodensitometer was designed by the CEA to study materials an structures. This project and results obtained with a laboratory prototype are presented [fr

  17. High performance X-ray and neutron microfocusing optics

    International Nuclear Information System (INIS)

    Gregory Hirsch

    2000-01-01

    The use of extremely small diameter x-ray beams at synchrotron radiation facilities has become an important experimental technique for investigators in many other scientific disciplines. While there have been several different optical elements developed for producing such microbeams, this SBIR project was concerned with one particular device: the tapered-monocapillary optic

  18. Deposition and characterization of multilayers on thin foil x-ray mirrors for high-throughput x-ray telescopes

    DEFF Research Database (Denmark)

    Hussain, Ahsen M.; Joensen, Karsten D.; Hoeghoej, P.

    1996-01-01

    W/Si and Co/C multilayers have been deposited on epoxy- replicated Au mirrors from the ASTRO-E telescope project, SPectrum Roentgen Gamma (SRG) flight mirrors, DURAN glass substrates and Si witness wafers. A characterization of the multilayers with both hard x-rays and soft x-rays is presented....... This clearly indicates the effectiveness of the epoxy-replication process for the production of smooth substrates for multilayer deposition to be used in future x-ray telescopes....

  19. Quantitative hard x-ray phase contrast imaging of micropipes in SiC

    International Nuclear Information System (INIS)

    Kohn, V. G.; Argunova, T. S.; Je, J. H.

    2013-01-01

    Peculiarities of quantitative hard x-ray phase contrast imaging of micropipes in SiC are discussed. The micropipe is assumed as a hollow cylinder with an elliptical cross section. The major and minor diameters can be restored using the least square fitting procedure by comparing the experimental data, i.e. the profile across the micropipe axis, with those calculated based on phase contrast theory. It is shown that one projection image gives an information which does not allow a complete determination of the elliptical cross section, if an orientation of micropipe is not known. Another problem is a weak accuracy in estimating the diameters, partly because of using pink synchrotron radiation, which is necessary because a monochromatic beam intensity is not sufficient to reveal the weak contrast from a very small object. The general problems of accuracy in estimating the two diameters using the least square procedure are discussed. Two experimental examples are considered to demonstrate small as well as modest accuracies in estimating the diameters

  20. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Velroyen, Astrid; Tan, Renbo; Zhang, Junwei; Chen, Liyuan; Tapfer, Arne; Bech, Martin; Pfeiffer, Franz

    2012-09-10

    Most existing differential phase-contrast computed tomography (DPC-CT) approaches are based on three kinds of scanning geometries, described by parallel-beam, fan-beam and cone-beam. Due to the potential of compact imaging systems with magnified spatial resolution, cone-beam DPC-CT has attracted significant interest. In this paper, we report a reconstruction method based on a back-projection filtration (BPF) algorithm for cone-beam DPC-CT. Due to the differential nature of phase contrast projections, the algorithm restrains from differentiation of the projection data prior to back-projection, unlike BPF algorithms commonly used for absorption-based CT data. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a micro-focus x-ray tube source. Moreover, the numerical simulation and experimental results demonstrate that the proposed method can deal with several classes of truncated cone-beam datasets. We believe that this feature is of particular interest for future medical cone-beam phase-contrast CT imaging applications.

  1. Combined mixed approach algorithm for in-line phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    De Caro, Liberato; Scattarella, Francesco; Giannini, Cinzia; Tangaro, Sabina; Rigon, Luigi; Longo, Renata; Bellotti, Roberto

    2010-01-01

    Purpose: In the past decade, phase-contrast imaging (PCI) has been applied to study different kinds of tissues and human body parts, with an increased improvement of the image quality with respect to simple absorption radiography. A technique closely related to PCI is phase-retrieval imaging (PRI). Indeed, PCI is an imaging modality thought to enhance the total contrast of the images through the phase shift introduced by the object (human body part); PRI is a mathematical technique to extract the quantitative phase-shift map from PCI. A new phase-retrieval algorithm for the in-line phase-contrast x-ray imaging is here proposed. Methods: The proposed algorithm is based on a mixed transfer-function and transport-of-intensity approach (MA) and it requires, at most, an initial approximate estimate of the average phase shift introduced by the object as prior knowledge. The accuracy in the initial estimate determines the convergence speed of the algorithm. The proposed algorithm retrieves both the object phase and its complex conjugate in a combined MA (CMA). Results: Although slightly less computationally effective with respect to other mixed-approach algorithms, as two phases have to be retrieved, the results obtained by the CMA on simulated data have shown that the obtained reconstructed phase maps are characterized by particularly low normalized mean square errors. The authors have also tested the CMA on noisy experimental phase-contrast data obtained by a suitable weakly absorbing sample consisting of a grid of submillimetric nylon fibers as well as on a strongly absorbing object made of a 0.03 mm thick lead x-ray resolution star pattern. The CMA has shown a good efficiency in recovering phase information, also in presence of noisy data, characterized by peak-to-peak signal-to-noise ratios down to a few dBs, showing the possibility to enhance with phase radiography the signal-to-noise ratio for features in the submillimetric scale with respect to the attenuation

  2. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  3. Development of Scanning-Imaging X-Ray Microscope for Quantitative Three-Dimensional Phase Contrast Microimaging

    International Nuclear Information System (INIS)

    Takeuchi, Akihisa; Suzuki, Yoshio; Uesugi, Kentaro

    2013-01-01

    A novel x-ray microscope system has been developed for the purpose of quantitative and sensitive three-dimensional (3D) phase-contrast x-ray microimaging. The optical system is a hybrid that consists of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. These two optics are orthogonally arranged regarding their common optical axis. Each is used for forming each dimension of two-dimensional (2D) image. The same data acquisition process as that of the scanning microscope system enables quantitative and sensitive x-ray imaging such as phase contrast and absorption contrast. Because a 2D image is measured with only 1D translation scan, much shorter measurement time than that of conventional scanning optics has been realized. By combining a computed tomography (CT) technique, some 3D CT application examples are demonstrated

  4. Ultraprecision motion control technique for high-resolution x-ray instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Shu, D.; Toellner, T. S.; Alp, E. E.

    2000-07-17

    With the availability of third-generation hard x-ray synchrotron radiation sources, such as the Advanced Photon Source (APS) at Argonne National Laboratory, x-ray inelastic scattering and x-ray nuclear resonant scattering provide powerful means for investigating the vibrational dynamics of a variety of materials and condensed matter systems. Novel high-resolution hard x-ray optics with meV energy resolution requires a compact positioning mechanism with 20--50-nrad angular resolution and stability. In this paper, the authors technical approach to this design challenge is presented. Sensitivity and stability test results are also discussed.

  5. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  6. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  7. Plasma instability control toward high fluence, high energy x-ray continuum source

    Science.gov (United States)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  8. A versatile, highly-efficient, high-resolution von Hamos Bragg crystal x-ray spectrometer

    International Nuclear Information System (INIS)

    Vane, C.R.; Smith, M.S.; Raman, S.

    1988-01-01

    An efficient, high-resolution, vertical-focusing, Bragg crystal x-ray spectrometer has been specifically designed and constructed for use in measurements of x rays produced in collisions of energetic heavy ions. In this report the design and resulting operational characteristics of the final instrument are fully described. A wide variety of sample data is also included to illustrate the utility of this device in several areas of research. 14 refs., 38 figs

  9. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao [National Synchrotron Radiation Laboratory (China); Liu Yijin [School of Physics (China); Yue Zhengbo; Yu Hanqing [Laboratory of Environmental Engineering, School of Chemistry, University of Science and Technology of China, Hefei Anhui 230029 (China); Wang Chunru, E-mail: ychtian@ustc.edu.c [Institute of Chemistry, Chinese Academy of Sciences, Beijing 10060 (China)

    2009-09-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 {mu}m thickness and 4 {mu}m width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  10. Fresnel zone-plate based X-ray microscopy in Zernike phase contrast with sub-50 nm resolution at NSRL

    International Nuclear Information System (INIS)

    Chen Jie; Li Wenjie; Tian Jinping; Liu Longhua; Xiong Ying; Liu Gang; Wu Ziyu; Tian Yangchao; Liu Yijin; Yue Zhengbo; Yu Hanqing; Wang Chunru

    2009-01-01

    A transmission X-ray microscope using Fresnel zone-plates (FZPs) has been installed at U7A beamline of National Synchrotron Radiation Laboratory (NSRL). The objective FZP with 45 nm outermost zone width delivers a sub-50 nm resolution. A gold phase ring with 2.5 μm thickness and 4 μm width was placed at the focal plane of the objective FZP at 8 keV to produce a negative Zernike phase contrast. A series of samples were used to test the performance of the Zernike phase contrast X-ray microscopy.

  11. Novel X-ray phase-contrast tomography method for quantitative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur

    2014-01-01

    The objective of this study was to evaluate the use of X-ray phase-contrast tomography combined with 3D image segmentation to investigate the heat induced structural changes in meat. The measurements were performed at the Swiss synchrotron radiation light source using a grating interferometric...... and separated into a water phase and a gel phase formed by the sarcoplasmic proteins in the exudate. The results show that X-ray phase contrast tomography offers unique possibilities in studies both the meat structure and the different meat component such as water, fat, connective tissue and myofibrils...

  12. High speed hydraulic scanner for deep x-ray lithography

    International Nuclear Information System (INIS)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline

  13. High speed hydraulic scanner for deep x-ray lithography

    Energy Technology Data Exchange (ETDEWEB)

    Milne, J.C.; Johnson, E.D.

    1997-07-01

    From their research and development in hard x-ray lithography, the authors have found that the conventional leadscrew driven scanner stages do not provide adequate scan speed or travel. These considerations have led the authors to develop a scanning system based on a long stroke hydraulic drive with 635 mm of travel and closed loop feedback to position the stage to better than 100 micrometers. The control of the device is through a PC with a custom LabView interface coupled to simple x-ray beam diagnostics. This configuration allows one to set a variety of scan parameters, including target dose, scan range, scan rates, and dose rate. Results from the prototype system at beamline X-27B are described as well as progress on a production version for the X-14B beamline.

  14. High resolution X-ray spectroscopy from the Einstein Observatory

    International Nuclear Information System (INIS)

    Winkler, P.F.; Canizares, C.R.; Clark, G.W.; Markert, T.H.; Berg, C.; Jernigan, J.G.; Schattenberg, M.L.; Massachusetts Inst. of Tech., Cambridge

    1980-01-01

    This paper is devoted to a discussion of some results which we have recently obtained from the fourth of the principal intruments on board the Einstein Observatory: M.I.T.'s Focal Plane Crystal Spectrometer (FPCS). We shall begin whith a few general remarks about X-ray spectroscopy, followed by a brief description of the FPCS instrument. The results we present here deal primarily with supernova remnants (SNRs): Puppis A and Cas A in the Galaxy, and N132D and N63A in the Large Magellanic Cloud. In addition we shall briefly discuss a member of the other class of thermal X-ray source under discussion at present; namely, to report our detection of oxygen emission from the vicinity of M87 in the Virgo Cluster. (orig.)

  15. High energy X-ray observation of Cyg X-3

    International Nuclear Information System (INIS)

    Kendziorra, E.; Pietsch, W.; Staubert, R.; Truemper, J.

    1975-01-01

    On Feb. 20, 1975 Cyg X-3 was observed in the energy range of 29-70 keV during a 5 hour observation of the Cyg region. An intensity variation consistent with a 4.8 h sinusoidal modulation has been found, in phase with low energy X-ray observations and with a relative amplitude of 0.37 +- 0.19. (orig.) [de

  16. High quality multilayer mirrors for soft X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Grimmer, H.; Boeni, P.; Breitmeier, U.; Clemens, D.; Horisberger, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Mertins, H.C.; Schaefers, F. [BESSY, Berlin (Germany)

    1997-09-01

    In an effort to develop optical components for X-rays with wavelengths in the water window (2.3 -4.4 nm) multilayer structures have been designed for the following applications: in transmission as phase shifters to change linear into circular polarization, in reflection as mirrors close to normal incidence and as linear polarizers at an angle of incidence of 45{sup o}. (author) 1 fig., 1 tab., 1 ref.

  17. High Resolution Adjustable Mirror Control for X-ray Astronomy

    Science.gov (United States)

    Trolier-McKinstry, Susan

    We propose to build and test thin film transistor control circuitry for a new highresolution adjustable X-ray mirror technology. This control circuitry will greatly simplify the wiring scheme to address individual actuator cells. The result will be a transformative improvement for the X-ray Surveyor mission concept: mathematical models, which fit the experimental data quite well, indicate that 0.5 arcsecond imaging is feasible through this technique utilizing thin slumped glass substrates with uncorrected angular resolution of order 5-10 arcseconds. In order to correct for figures errors in a telescope with several square meters of collecting area, millions of actuator cells must be set and held at specific voltages. It is clearly not feasible to do this via millions of wires, each one connected to an actuator. Instead, we propose to develop and test thin-film technology that operates on the same principle as megapixel computer screens. We will develop the technologies needed to build thin film piezoelectric actuators, controlled by thin film ZnO transistors, on flexible polyimide films, and to connect those films to the back surfaces of X-ray mirrors on thin glass substrates without deforming the surface. These technologies represent a promising avenue of the development of mirrors for the X-Ray Surveyor mission concept. Such a telescope will make possible detailed studies of a wide variety of astrophysical sources. One example is the Warm-Hot Intergalactic Medium (WHIM), which is thought to account for a large fraction of the normal matter in the universe but which has not been detected unambiguously to date. Another is the growth of supermassive black holes in the early universe. This proposal supports NASA's goals of technical advancement of technologies suitable for future missions, and training of graduate students.

  18. Soft X ray spectrometry at high count rates

    International Nuclear Information System (INIS)

    Blanc, P.; Brouquet, P.; Uhre, N.

    1978-06-01

    Two modifications of the classical method of X-ray spectrometry by a semi-conductor diode permit a count rate of 10 5 c/s with an energy resolution of 350 eV. With a specially constructed pulse height analyzer, this detector can measure four spectra of 5 ms each, in the range of 1-30 keV, during a plasma shot

  19. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Madsen, Kristin K.; Harrison, Fiona A.; Hongjun An

    2014-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers...

  20. Contrast optimization in X-ray radiography with single photon counting imagers of Medipix type

    Czech Academy of Sciences Publication Activity Database

    Jandejsek, Ivan; Dammer, J.; Jakůbek, J.; Vavřík, Daniel; Žemlička, J.

    2012-01-01

    Roč. 7, C12011 (2012), s. 1-5 ISSN 1748-0221. [International Workshop on Radiation Imaging Detectors /14./. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] R&D Projects: GA ČR GAP105/11/1551 Grant - others:GA MKO(CZ) DF12P01OVV048 Institutional support: RVO:68378297 Keywords : X-ray detectors * X-ray radiography and digital radiography * inspection with x-rays Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.869, year: 2011 http://iopscience.iop.org/1748-0221/7/12/C12011/

  1. High power X-ray welding of metal-matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  2. Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function

    Directory of Open Access Journals (Sweden)

    Waters James S

    2007-03-01

    Full Text Available Abstract Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns.

  3. Noise propagation in x-ray phase-contrast imaging and computed tomography

    International Nuclear Information System (INIS)

    Nesterets, Yakov I; Gureyev, Timur E

    2014-01-01

    Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)

  4. Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation

    Science.gov (United States)

    Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele

    2018-05-01

    A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.

  5. Delayed allergy-like reactions to X-ray contrast media administration focusing on clinical aspects. First expert meeting

    International Nuclear Information System (INIS)

    Sviridov, N.K.

    1998-01-01

    Materials presented at the first expert meeting of leading specialists in medical radiology are briefly described. The include 14 reports of the scientists of Germany, England, Japan, USA, Finland, Austria. The reports concert delayed allergy-like response to X-ray contrast media accepting on clinical aspects and analysis of nonionic dimeric isotonic media application

  6. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    Science.gov (United States)

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup.

  7. Three-dimensional grain structure of sintered bulk strontium titanate from X-ray diffraction contrast tomography

    DEFF Research Database (Denmark)

    Syha, M.; Rheinheimer, W.; Bäurer, M.

    2012-01-01

    The three-dimensional grain boundary network of sintered bulk strontium titanate is reconstructed using X-ray diffraction contrast tomography, a non-destructive technique for determining the grain shape and crystallographic orientation in polycrystals that is ideally suited for detailed studies...

  8. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    Science.gov (United States)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  9. Phase-contrast microtomography using an X-ray interferometer having a 40-μm analyzer

    Science.gov (United States)

    Momose, A.; Koyama, I.; Hamaishi, Y.; Yoshikawa, H.; Takeda, T.; Wu, J.; Itai, Y.; Takai, , K.; Uesugi, K.; Suzuki, Y.

    2003-03-01

    Phase-contrast X-ray tomographic experiment using a triple Laue-case (LLL) interferometer having a 40-μm lamella which was fabricated to improve spatial resolution, was carried out using undulator X-rays at SPring-8, Japan. Three-dimensional images mapping the refractive index were measured for various animal tissues. Comparing the images with those obtained in previous experiments using conventional LLL interferometers having a 1-mm lamella, improvement in the spatial resolution was demonstrated in that histological structures, such as hepatic lobules in liver and tubules in kidney, were revealed.

  10. Penumbral measurements in water for high-energy x rays

    International Nuclear Information System (INIS)

    Dawson, D.J.; Schroeder, N.J.; Hoya, J.D.

    1986-01-01

    Ionization chambers of varying inside diameter have been used to investigate the penumbral region of 60 Co, 6-MV, and 31-MV x-ray beams. Measurements were made in water at varying depths up to 25 cm for a square field of side length 10 cm. The dependence of the penumbral widths on both the inside diameter of the ionization chamber and the depth in water is established along with the asymmetry of the penumbral distributions about the 50% level. A standard correction is indicated to eliminate the dependence of the measured penumbral widths on the inside diameter of the ionization chamber

  11. Scintillator Evaluation for High-Energy X-Ray Diagnostics

    International Nuclear Information System (INIS)

    Lutz, S. S.; Baker, S. A.

    2001-01-01

    This report presents results derived from a digital radiography study performed using x-rays from a 2.3 MeV, rod-pinch diode. Detailed is a parameter study of cerium-doped lutetium ortho-silicate (LSO) scintillator thickness, as it relates to system resolution and detection quantum efficiency (DQE). Additionally, the detection statistics of LSO were compared with that of CsI(Tl). As a result of this study we found the LSO scintillator with a thickness of 3 mm to yield the highest system DQE over the range of spatial frequencies from 0.75 to 2.5 mm -1

  12. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  13. Simulations of x-ray speckle-based dark-field and phase-contrast imaging with a polychromatic beam

    Energy Technology Data Exchange (ETDEWEB)

    Zdora, Marie-Christine, E-mail: marie-christine.zdora@diamond.ac.uk [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Thibault, Pierre [Department of Physics & Astronomy, University College London, London WC1E 6BT (United Kingdom); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2015-09-21

    Following the first experimental demonstration of x-ray speckle-based multimodal imaging using a polychromatic beam [I. Zanette et al., Phys. Rev. Lett. 112(25), 253903 (2014)], we present a simulation study on the effects of a polychromatic x-ray spectrum on the performance of this technique. We observe that the contrast of the near-field speckles is only mildly influenced by the bandwidth of the energy spectrum. Moreover, using a homogeneous object with simple geometry, we characterize the beam hardening artifacts in the reconstructed transmission and refraction angle images, and we describe how the beam hardening also affects the dark-field signal provided by speckle tracking. This study is particularly important for further implementations and developments of coherent speckle-based techniques at laboratory x-ray sources.

  14. X-ray phase contrast imaging of objects with subpixel-size inhomogeneities: a geometrical optics model.

    Science.gov (United States)

    Gasilov, Sergei V; Coan, Paola

    2012-09-01

    Several x-ray phase contrast extraction algorithms use a set of images acquired along the rocking curve of a perfect flat analyzer crystal to study the internal structure of objects. By measuring the angular shift of the rocking curve peak, one can determine the local deflections of the x-ray beam propagated through a sample. Additionally, some objects determine a broadening of the crystal rocking curve, which can be explained in terms of multiple refraction of x rays by many subpixel-size inhomogeneities contained in the sample. This fact may allow us to differentiate between materials and features characterized by different refraction properties. In the present work we derive an expression for the beam broadening in the form of a linear integral of the quantity related to statistical properties of the dielectric susceptibility distribution function of the object.

  15. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  16. Project Title: Radiochemical Analysis by High Sensitivity Dual-Optic Micro X-ray Fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Gao, Ning

    2002-01-01

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and double bent crystals, which focus X-rays. The polycapillary optic can be used to focus X-rays emitted by the X-ray tube thereby increasing the X-ray flux on the sample over 1000 times. Polycapillaries will also be used to collect the X-rays from the excitation site and screen the radiation background from the radioactive species in the specimen. This dual-optic approach significantly reduces the background and increases the analyte signal thereby increasing the sensitivity of the analysis. A doubly bent crystal used as the focusing optic produces focused monochromatic X-ray excitation, which eliminates the bremsstrahlung background from the X-ray source. The coupling of the doubly bent crystal for monochromatic excitation with a polycapillary for signal collection can effectively eliminate the noise background and radiation background from the specimen. The integration of these X-ray optics increases the signal-to-noise and thereby increases the sensitivity of the analysis for low-level analytes. This work will address a key need for radiochemical analysis of high-level waste using a non-destructive, multi-element, and rapid method in a radiation environment. There is significant potential that this instrumentation could be capable of on-line analysis for process waste stream characterization at DOE sites

  17. A phantom test of proton-induced dual-energy X-ray angiography using iodinated contrast media

    International Nuclear Information System (INIS)

    Oguri, Y.; Hasegawa, J.; Ogawa, M.; Kaneko, J.; Sasa, K.

    2007-01-01

    Characteristic-line radiation from heavy metal targets bombarded by MeV proton beams has been tested as an X-ray source for dual-energy K-edge subtraction imaging for human angiography (blood vessel imaging) based on iodinated contrast media. To utilize the strong absorption by iodine (Z=53) at its K-absorption edge (33.2 keV), we used K α -line of La (lanthanum, Z=57) at 33.4 keV. As a reference, also K α X emission of Sn (tin, Z=50) at 25.2 keV was employed. Metallic plates of La and Sn were irradiated by 7-MeV protons to produce these characteristic X-rays. Energy-subtraction method was tested using Lucite phantoms which contain aqueous solutions of KI (potassium iodide) with different concentrations. Also Ca(H 2 PO 4 ) 2 powder was stuffed in these phantoms to simulate bones. The transmission images of the phantoms were recorded on imaging plates. During the exposure, the energy spectra of the X-rays were monitored by a CdTe detector. We found that the contrast of images of iodide solutions taken with La X-rays was higher than that with Sn X-rays. Also the energy subtraction procedure was successfully applied to reduce the graphical noise due to the bones and inhomogeneity of the soft tissue. However, to apply the present method to actual clinical use, the X-ray intensity must be increased by several orders of magnitude. Also the transmission of the 'lower-energy' photons has to be a few orders higher for imaging of objects as thick as human chest. (author)

  18. Inelastic X-ray scattering experiments at extreme conditions: high temperatures and high pressures

    Directory of Open Access Journals (Sweden)

    S.Hosokawa

    2008-03-01

    Full Text Available In this article, we review the present status of experimental techniques under extreme conditions of high temperature and high pressure used for inelastic X-ray scattering (IXS experiments of liquid metals, semiconductors, molten salts, molecular liquids, and supercritical water and methanol. For high temperature experiments, some types of single-crystal sapphire cells were designed depending on the temperature of interest and the sample thickness for the X-ray transmission. Single-crystal diamond X-ray windows attached to the externally heated high-pressure vessel were used for the IXS experiment of supercritical water and methanol. Some typical experimental results are also given, and the perspective of IXS technique under extreme conditions is discussed.

  19. High resolution x-ray stereomicroscopy: True three-dimensional imaging of biological samples

    International Nuclear Information System (INIS)

    Loo, B.W.Jr.; Williams, S.; Meizel, S.; Rothman, S.S.; Univ. of California, Berkeley/San Francisco, CA; Univ. of California, San Francisco, CA

    1993-01-01

    X-ray microscopy has the potential to become a powerful tool for the study of biological samples, allowing the imaging of intact cells and subcellular organelles in an aqueous environment at resolutions previously achievable only by electron microscopy. The ability to examine a relatively thick sample raises the issue of superposition of objects from multiple planes within the sample, making difficult the interpretation of conventional, orthogonally projected images. This paper describes early attempts at developing three-dimensional methods for x-ray microimaging: the first to use x-ray optics, and to the authors' knowledge, the first demonstrating sub-visible resolutions and natural contrast. These studies were performed using the scanning transmission x-ray microscope (STXM) at the National Synchrotron Light Source, Brookhaven National Laboratory

  20. Synthesis and characterization of Bi2S3 composite nanoparticles with high X-ray absorption

    International Nuclear Information System (INIS)

    Huang, Huan-Huan; Chen, Jun; Meng, Yuan-Zheng; Yang, Xiao-Quan; Zhang, Ming-Zhen; Yu, Yong; Ma, Zhi-Ya; Zhao, Yuan-Di

    2013-01-01

    Graphical abstract: - Highlights: • Uniform Bi 2 S 3 nanorods were prepared via a hot injection method. • Bi 2 S 3 nanorods were coated with TEOS and PEG for surface modification. • CT images of Bi 2 S 3 @SiO 2 -PEG are much higher than clinical iobitridol when they have the same concentration. • Cellular toxicity of Bi 2 S 3 @SiO 2 -PEG is low when the probes were directly in contact with tissue fluid. - Abstract: Owing to the high X-ray absorption, Bi 2 S 3 nanocrystals are widely used as CT contrast agents. Here, we prepared uniform Bi 2 S 3 nanorods via a hot injection method using bismuth (III) chloride, sulfur and oleyl amine. The resulting nanocrystals were coated with tetraethylorthosilicate (TEOS) and 2-[methoxy(polyethyleneoxy)propyl]yrimethoxysilane (PEG-silane) for the biological utility. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the Bi 2 S 3 nanorods had an orthorhombic structure with the length of 14 nm and the diameter of 7 nm, respectively. Composite nanoparticles (0.0226 M) gave a CT number at 550 (HU), which was higher than that of the commercial available iobitridol CT contrast agent. Furthermore, cell experiments revealed that Bi 2 S 3 composite nanoparticles had a low cytotoxicity with a concentration up to 0.01 M of Bi for 24 h

  1. Low temperature X-ray imaging of magnetic flux patterns in high temperature superconductors

    Science.gov (United States)

    Stahl, Claudia; Ruoß, Stephen; Weigand, Markus; Bechtel, Michael; Schütz, Gisela; Albrecht, Joachim

    2015-05-01

    We present X-ray magnetic circular dichroism (XMCD) microscopy results obtained at liquid nitrogen temperatures on the high-Tc superconductor YBCO (YBa2Cu3O7-δ). The magnetic flux distribution arising from electric currents in the superconductor is detected and visualized using soft-magnetic Co40Fe40B20 (CoFeB) as sensor layer and XMCD as contrast mechanism. It has been shown that the XMCD contrast in the sensor layer directly corresponds to magnetic flux distribution of the superconductor and hence can be used to image magnetic structures in superconductors [Stahl et al., Phys. Rev. B 90, 104515 (2014)]. The existing scanning UHV X-ray microscopy setup MAXYMUS at the synchrotron BESSY II in Berlin has been upgraded for that purpose: we use a nitrogen based MMR Micro Miniature Joule-Thompson Cryostat with temperature range from 75 K to 580 K. The capability of the method is demonstrated on two different superconducting samples, an optimally doped thin film and a melt-textured block.

  2. Effect of X-ray contrast agents on hemostasis and its role in the genesis of adverse reactions

    International Nuclear Information System (INIS)

    Sviridov, N.K.; Napolov, Yu.K.

    2001-01-01

    Based on available data, the effect of X-ray contrast agents (XCA) on homeostasis and its role in side reactions genesis are discussed. It is shown that the contrast agent type used can essentially affect the thrombocytes. Nonionic XCA are able to increase the thrombocytes degranulation in case of coronarography and percutaneous transluminal coronary angioplastics with release of procoagulants in vessel gap. This effect can to lead to acute thromboses and be the start of restenosis [ru

  3. Trial fabrication of a secondary x-ray spectrometer with high energy resolution for use in x-ray resonant inelastic scattering experiments

    International Nuclear Information System (INIS)

    Iwazumi, Toshiaki

    2004-01-01

    An instrument was fabricated for use of x-ray resonant inelastic scattering with high-energy resolution in expectation of finding new physical phenomena in strongly correlated electron systems. In the scattering x-ray spectrometer, an asymmetric Johanson crystal spectrometer, which was deployed in an asymmetric Rowland configuration, was designed, fabricated and assessed. The performance expected theoretically for the Johanson spectrometer was recognized from experiments by use of synchrotron radiation. (Y. Kazumata)

  4. Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison

    International Nuclear Information System (INIS)

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2011-01-01

    Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these

  5. High resolution, monochromatic x-ray topography capability at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Finkelstein, K. D., E-mail: kdf1@cornell.edu; Pauling, A.; Brown, Z. [CHESS, Cornell University, Ithaca, NY (United States); Jones, R. [Department of Physics, University of Connecticut, Storrs, CT (United States); Tarun, A.; Misra, D. S. [IIa Technologies (Singapore); Jupitz, S. [St. Mary’s College of Maryland, St. Mary’s City, MD (United States); Sagan, D. C. [CLASSE, Cornell University, Ithaca, NY (United States)

    2016-07-27

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  6. High resolution, monochromatic x-ray topography capability at CHESS

    International Nuclear Information System (INIS)

    Finkelstein, K. D.; Pauling, A.; Brown, Z.; Jones, R.; Tarun, A.; Misra, D. S.; Jupitz, S.; Sagan, D. C.

    2016-01-01

    CHESS has a monochromatic x-ray topography capability serving continually expanding user interest. The setup consists of a beam expanding monochromator, 6-circle diffactometer, and CHESS designed CMOS camera with real time sample-alignment capability. This provides rocking curve mapping with angle resolution as small as 2 µradians, spatial resolution to 3 microns, and field of view up to 7mm. Thus far the capability has been applied for: improving CVD-diamond growth, evaluating perfection of ultra-thin diamond membranes, correlating performance of diamond-based electronics with crystal defect structure, and defect analysis of single crystal silicon carbide. This paper describes our topography system, explains its capabilities, and presents experimental results from several applications.

  7. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    Science.gov (United States)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  8. An improved ring removal procedure for in-line x-ray phase contrast tomography

    Science.gov (United States)

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-01

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  9. Exploratory X-ray monitoring of luminous radio-quiet quasars at high redshift: Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Shemmer, Ohad; Stein, Matthew S. [Department of Physics, University of North Texas, Denton, TX 76203 (United States); Brandt, W. N.; Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Paolillo, Maurizio [Dipartimento di Scienze Fisiche, Università Federico II di Napoli, via Cinthia 6, I-80126 Napoli (Italy); Kaspi, Shai [School of Physics and Astronomy and the Wise Observatory, Tel Aviv University, Tel Aviv 69978 (Israel); Vignali, Cristian [Dipartimento di Astronomia, Università degli studi di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Lira, Paulina [Departamento de Astronomia, Universidad de Chile, Camino del Observatorio 1515, Santiago (Chile); Gibson, Robert R., E-mail: ohad@unt.edu [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States)

    2014-03-10

    We present initial results from an exploratory X-ray monitoring project of two groups of comparably luminous radio-quiet quasars (RQQs). The first consists of four sources at 4.10 ≤ z ≤ 4.35, monitored by Chandra, and the second is a comparison sample of three sources at 1.33 ≤ z ≤ 2.74, monitored by Swift. Together with archival X-ray data, the total rest-frame temporal baseline spans ∼2-4 yr and ∼5-13 yr for the first and second group, respectively. Six of these sources show significant X-ray variability over rest-frame timescales of ∼10{sup 2}-10{sup 3} days; three of these also show significant X-ray variability on rest-frame timescales of ∼1-10 days. The X-ray variability properties of our variable sources are similar to those exhibited by nearby and far less luminous active galactic nuclei (AGNs). While we do not directly detect a trend of increasing X-ray variability with redshift, we do confirm previous reports of luminous AGNs exhibiting X-ray variability above that expected from their luminosities, based on simplistic extrapolation from lower luminosity sources. This result may be attributed to luminous sources at the highest redshifts having relatively high accretion rates. Complementary UV-optical monitoring of our sources shows that variations in their optical-X-ray spectral energy distribution are dominated by the X-ray variations. We confirm previous reports of X-ray spectral variations in one of our sources, HS 1700+6416, but do not detect such variations in any of our other sources in spite of X-ray flux variations of up to a factor of ∼4. This project is designed to provide a basic assessment of the X-ray variability properties of RQQs at the highest accessible redshifts that will serve as a benchmark for more systematic monitoring of such sources with future X-ray missions.

  10. X-Rays from NGC 3256: High-Energy Emission in Starburst Galaxies and Their Contribution to the Cosmic X-Ray Background

    International Nuclear Information System (INIS)

    Moran, Edward C.; Lehnert, Matthew D.; Helfand, David J.

    1999-01-01

    The infrared-luminous galaxy NGC 3256 is a classic example of a merger-induced nuclear starburst system. We find here that it is the most X-ray-luminous star-forming galaxy yet detected (L 0.5-10keV =1.6x10 42 ergs s-1). Long-slit optical spectroscopy and a deep, high-resolution ROSAT X-ray image show that the starburst is driving a ''superwind'' which accounts for ∼20% of the observed soft X-ray emission. Analysis of X-ray spectral data from ASCA indicates this gas has a characteristic temperature of kT≅0.3 keV. Our model for the broadband X-ray emission of NGC 3256 contains two additional components: a warm thermal plasma (kT≅0.8 keV) associated with the central starburst, and a hard power-law component with an energy index of α X ≅0.7. We discuss the energy budget for the two thermal plasmas and find that the input of mechanical energy from the starburst is more than sufficient to sustain the observed level of emission. We also examine possible origins for the power-law component, concluding that neither a buried AGN nor the expected population of high-mass X-ray binaries can account for this emission. Inverse Compton scattering, involving the galaxy's copious flux of infrared photons and the relativistic electrons produced by supernovae, is likely to make a substantial contribution to the hard X-ray flux. Such a model is consistent with the observed radio and IR fluxes and the radio and X-ray spectral indices. We explore the role of X-ray-luminous starbursts in the production of the cosmic X-ray background radiation. The number counts and spectral index distribution of the faint radio source population, thought to be dominated by star-forming galaxies, suggest that a significant fraction of the hard X-ray background could arise from starbursts at moderate redshift. (c) (c) 1999. The American Astronomical Society

  11. High-energy X-ray diffraction studies of disordered materials

    International Nuclear Information System (INIS)

    Kohara, Shinji; Suzuya, Kentaro

    2003-01-01

    With the arrival of the latest generation of synchrotron sources and the introduction of advanced insertion devices (wigglers and undulators), the high-energy (E≥50 keV) X-ray diffraction technique has become feasible, leading to new approaches in the quantitative study of the structure of disordered materials. High-energy X-ray diffraction has several advantages: higher resolution in real space due to a wide range of scattering vector Q, smaller correction terms (especially the absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including high-temperatures and high-pressures, and the ability to make direct comparisons between X-ray and neutron diffraction data. Recently, high-energy X-ray diffraction data have been combined with neutron diffraction data from a pulsed source to provide more detailed and reliable structural information than that hitherto available

  12. Synthesis and characterization of polystyrene embolization particles doped with tantalum oxide nanoparticles for X-ray contrast.

    Science.gov (United States)

    Morrison, Rachel; Thompson, James; Bird, Luke; Hill, Mark A; Townley, Helen

    2015-08-01

    Radiopaque and fluorescent embolic particles have been synthesized and characterised to match the size of vasculature found in tumours to ensure effective occlusion of the vessels. A literature search showed that the majority of vessels surrounding a tumour were less than 50 µm and therefore polydispersed polystyrene particles with a peak size of 50 µm have been synthesised. The embolic particles contain 5-8 nm amorphous tantalum oxide nanoparticles which provide X-ray contrast. Embolic particles containing up to 9.4 wt% tantalum oxide were prepared and showed significant contrast compared to the undoped polystyrene particles. The X-ray contrast of the embolic particles was shown to be linear (R(2) = 0.9) with respect to the concentration of incorporated tantalum nanoparticles. A model was developed which showed that seventy-five 50 µm embolic particles containing 10% tantalum oxide could provide the same contrast as 5 cm of bone. Therefore, the synthesized particles would provide sufficient X-ray contrast to enable visualisation within a tumour.

  13. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  14. High-speed videography combined with an x-ray image intensifier for dynamic radiography

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1983-01-01

    The Spin Physics SP-2000 high-speed video system can be combined with an x-ray source, a dynamic event having internal (not directly visible) movement and an x-ray image intensifier to perform dynamic radiography. The cesium iodide input fluor and P-20 output fluor of the image intensifier have rapid decay to allow x-ray imaging up to 12,000 pictures per second. Applications of this technique include internal functioning of a compressor, turbulent-water action, and other mechanical actions

  15. Device for high-temperature X-ray diffraction analysis. Ustrojstvo dlya vysokotemperaturnogo rentgenostrukturnogo analiza

    Energy Technology Data Exchange (ETDEWEB)

    Epifanov, V G; Zavilinskij, A V; Pet' kov, V V; Polenur, A V

    1975-01-07

    Device for high-temperature X-ray diffraction analysis, containing a vacuum chamber with a window for X-ray transit, in which sample- and standard-holders, heater, thermal shields and means for standard and sample temperature measurement are located, is proposed. In order to increase the working temperature level and the structural change detection accuracy the heater is located between the sample- and standard-holders. The standard-holder is linked with the mechanism of control of its position in relation to the heater. The device is intended for investigating phase transformations by differential thermal analysis method with the simultaneous diffraction pattern detection using X-ray diffractometry method.

  16. Micro controller application as x-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    The micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive the stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-B051 compiler. The test results show that the stepper motor could rotate according to an input value. (author)

  17. A microcontroller application as X-ray machine's high voltage controller

    International Nuclear Information System (INIS)

    Wiranto Budi Santoso; Beny Syawaludin

    2010-01-01

    A micro controller application as x-ray machine's high voltage controller has been carried out. The purpose of this micro controller application is to give an accurate high voltage supply to the x-ray tube so that the x-ray machine could produce the result as expected. The micro controller based X-ray machine's high voltage controller receives an input voltage from the keypad. This input value is displayed in the LCD (Liquid Crystal Display) screen. Then micro controller uses this input data to drive a stepper motor. The stepper motor adjusts the high voltage auto transformer's output according to the input value. The micro controller is programmed using BASCOM-8051 compiler. The test results show that the stepper motor could rotate according to an input value (author)

  18. Characteristics of high-energy X-rays using computed radiography systems

    International Nuclear Information System (INIS)

    Matsumoto, Mitsuhiro; Mori, Yoshinobu

    1993-01-01

    A computed radiography (CR) with storage phosphor technology has advanced remarkably. Its application has been also discussed regarding the field of radiotherapy and studies have been made to shift from the film/screen system to the portal film using the CR system. The authors started to research CR portal imaging with high energy X-ray (10MV) on a regular scale in 1989. This paper deals with characteristics of high energy X-rays using the CR system. The digital characteristic curve corresponded with calculated value for dynamic range (L-value). The monitor unit (MU) counts at pixel (digital) value saturation point were L-value 0.5:28 MU, L-value 1.0:50 MU, L-value 2.0:167 MU, L-value 3.0:450 MU, L-value 4.0:1614 MU. The image contrast with the Mix-Dp phantom was L-value 0.5: about a 300 pixel value and L-value 4.0: about a 30 pixel value by a phantom 10 to 18 cm in thickness. Optimum L-value was 0.5, and tone-scale was the straight type of CR portal imaging using the graphy count mode. Optimum L-value was 4.0, and tone-scale was a rectangular wave type of CR portal imaging using therapeutic doses, and those were also described by the histogram analysis. (author)

  19. Dual-energy X-ray radiography for automatic high-Z material detection

    International Nuclear Information System (INIS)

    Chen Gongyin; Bennett, Gordon; Perticone, David

    2007-01-01

    There is an urgent need for high-Z material detection in cargo. Materials with Z > 74 can indicate the presence of fissile materials or radiation shielding. Dual (high) energy X-ray material discrimination is based on the fact that different materials have different energy dependence in X-ray attenuation coefficients. This paper introduces the basic physics and analyzes the factors that affect dual-energy material discrimination performance. A detection algorithm is also discussed

  20. Apparatus with a cooled X-ray source and a high voltage generator

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    Apparatus, especially for a dental application, with an X-ray source and a high voltage generator, whereby the X-ray source and a high voltage generator are contained in a housing, which is filled with a coolant medium, characterised by the housing being divided into two chambers, whereby the X-ray source is in the first chamber and the high voltage generator is in the second chamber and between the chambers a dividing wall is placed for the screening of the X-ray irradiation from the first chamber from the second, whereby at least one of the walls of the second chamber is elastic to accommodate the expansion of the coolant medium.

  1. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  2. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  3. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  4. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  5. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  6. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  7. Nitridation and contrast of B4C/La interfaces and X-ray multilayer optics

    NARCIS (Netherlands)

    Tsarfati, T.; van de Kruijs, Robbert Wilhelmus Elisabeth; Zoethout, E.; Bijkerk, Frederik

    2010-01-01

    Chemical diffusion and interlayer formation in thin layers and at interfaces is of increasing influence in nanoscopic devices such as nano-electronics, magneto-optical storage and multilayer X-ray optics. We show that with the nitridation of reactive B4C/La interfaces, both the chemical and optical

  8. Contrast Media for X-ray and Magnetic Resonance Imaging: Development, Current Status and Future Perspectives.

    Science.gov (United States)

    Frenzel, Thomas; Lawaczeck, Rüdiger; Taupitz, Matthias; Jost, Gregor; Lohrke, Jessica; Sieber, Martin A; Pietsch, Hubertus

    2015-09-01

    Over the last 120 years, the extensive advances in medical imaging allowed enhanced diagnosis and therapy of many diseases and thereby improved the quality of life of many patient generations. From the beginning, all technical solutions and imaging procedures were combined with dedicated pharmaceutical developments of contrast media, to further enhance the visualization of morphology and physiology. This symbiosis of imaging hardware and contrast media development was of high importance for the development of modern clinical radiology. Today, all available clinically approved contrast media fulfill the highest requirements for clinical safety and efficacy. All new concepts to increase the efficacy of contrast media have also to consider the high clinical safety standards and cost of goods of current marketed contrast media. Nevertheless, diagnostic imaging will contribute significantly to the progresses in medicine, and new contrast media developments are mandatory to address the medical needs of the future.

  9. The second-order differential phase contrast and its retrieval for imaging with x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Yang Yi; Tang Xiangyang

    2012-01-01

    Purpose: The x-ray differential phase contrast imaging implemented with the Talbot interferometry has recently been reported to be capable of providing tomographic images corresponding to attenuation-contrast, phase-contrast, and dark-field contrast, simultaneously, from a single set of projection data. The authors believe that, along with small-angle x-ray scattering, the second-order phase derivative Φ ″ s (x) plays a role in the generation of dark-field contrast. In this paper, the authors derive the analytic formulae to characterize the contribution made by the second-order phase derivative to the dark-field contrast (namely, second-order differential phase contrast) and validate them via computer simulation study. By proposing a practical retrieval method, the authors investigate the potential of second-order differential phase contrast imaging for extensive applications. Methods: The theoretical derivation starts at assuming that the refractive index decrement of an object can be decomposed into δ=δ s +δ f , where δ f corresponds to the object's fine structures and manifests itself in the dark-field contrast via small-angle scattering. Based on the paraxial Fresnel-Kirchhoff theory, the analytic formulae to characterize the contribution made by δ s , which corresponds to the object's smooth structures, to the dark-field contrast are derived. Through computer simulation with specially designed numerical phantoms, an x-ray differential phase contrast imaging system implemented with the Talbot interferometry is utilized to evaluate and validate the derived formulae. The same imaging system is also utilized to evaluate and verify the capability of the proposed method to retrieve the second-order differential phase contrast for imaging, as well as its robustness over the dimension of detector cell and the number of steps in grating shifting. Results: Both analytic formulae and computer simulations show that, in addition to small-angle scattering, the

  10. The effects of X-ray energy and an iodine-based contrast agent on chromosome aberrations

    International Nuclear Information System (INIS)

    Matsubara, Sho; Kubota, Nobuo; Katoh, Tsuguhisa; Yoshino, Norio; Sasaki, Takehito; Sasaki, Masao S.

    1994-01-01

    A study was undertaken to evaluate the effect of combining irradiation with X rays of various energies and an iodine-based contrast agent on the induction of chromosome aberrations in the peripheral lymphocytes of blood samples taken from healthy young donors. Although no enhancement of the effect of radiation was induced when blood samples with the iodine-based contrast agent were given 35 kV X irradiation, an 80 kV X-ray exposure induced an enhanced level of chromosome aberrations, and a 250 kV X irradiation, an enhancement of the frequencies of chromosome aberrations was seen in blood samples with the iodine-based contrast agent, especially when a Lucite phantom was employed in studies to increase the scattered rays. It was thus shown by microdosimetric analysis that X irradiation combined with an iodine-based contrast agent causes an enhancement of the absorbed radiation dose, which is dependent on the X-ray energies employed. This phenomenon may have clinical use in the radiotherapeutic management of tumors, although further extensive studies of tumor vascularity must be pursued before this can be applied clinically. 21 refs., 8 figs., 3 tabs

  11. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chubar, Oleg [Brookhaven National Laboratory, Upton, NY 11973 (United States); Geloni, Gianluca [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Kocharyan, Vitali [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Madsen, Anders [European X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Saldin, Evgeni; Serkez, Svitozar [Deutsches Elektronen-Synchrotron, 22761 Hamburg (Germany); Shvyd’ko, Yuri, E-mail: shvydko@aps.anl.gov [Argonne National Laboratory, Argonne, IL 60439 (United States); Sutter, John [Diamond Light Source Ltd, Didcot OX11 0DE (United Kingdom)

    2016-02-12

    This article explores novel opportunities for ultra-high-resolution inelastic X-ray scattering (IXS) at high-repetition-rate self-seeded XFELs. These next-generation light sources are promising a more than three orders of magnitude increase in average spectral flux compared with what is possible with storage-ring-based radiation sources. In combination with the advanced IXS spectrometer described here, this may become a real game-changer for ultra-high-resolution X-ray spectroscopies, and hence for the studies of dynamics in condensed matter systems. Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm{sup −1} spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm{sup −1} are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10{sup 12} photons s{sup −1} in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS.

  12. High-resolution measurements of x rays from ion-atom collisions

    International Nuclear Information System (INIS)

    Knudson, A.R.

    1974-01-01

    High resolution measurements of K x-ray spectra produced by ion-atom collisions at MeV energies are presented. These measurements indicate that a distribution of L-shell vacancies accompanies K-shell excitation. The variation of these spectra as a function of incident ion energy and atomic number is discussed. Difficulties in the analysis of these spectra due to rearrangement of vacancies between the time of the collision and the time of x-ray emission are considered. The use of high resolution x-ray measurements to obtain information on projectile ion vacancy configurations is demonstrated by data for Ar ions in KCl. X-ray spectra from Al projectiles in a variety of targets were measured and the effect of target composition on these spectra is discussed

  13. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    Majidi, Keivan; Wernick, Miles N; Brankov, Jovan G; Li, Jun; Muehleman, Carol

    2014-01-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  14. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  15. Noise analysis of grating-based x-ray differential phase-contrast imaging with angular signal radiography

    International Nuclear Information System (INIS)

    Faiz, Wali; Gao Kun; Wu Zhao; Wei Chen-Xi; Zan Gui-Bin; Tian Yang-Chao; Bao Yuan; Zhu Pei-Ping

    2017-01-01

    X-ray phase-contrast imaging is one of the novel techniques, and has potential to enhance image quality and provide the details of inner structures nondestructively. In this work, we investigate quantitatively signal-to-noise ratio (SNR) of grating-based x-ray phase contrast imaging (GBPCI) system by employing angular signal radiography (ASR). Moreover, photon statistics and mechanical error that is a major source of noise are investigated in detail. Results show the dependence of SNR on the system parameters and the effects on the extracted absorption, refraction and scattering images. Our conclusions can be used to optimize the system design for upcoming practical applications in the areas such as material science and biomedical imaging. (paper)

  16. Preliminary results for X-ray phase contrast micro-tomography on the biomedical imaging beamline at SSRF

    International Nuclear Information System (INIS)

    Chen Rongchang; Du Guohao; Xie Honglan; Deng Biao; Tong Yajun; Hu Wen; Xue Yanling; Chen Can; Ren Yuqi; Zhou Guangzhao; Wang Yudan; Xiao Tiqiao; Xu Hongjie; Zhu Peiping

    2009-01-01

    With X-ray phase contrast micro-tomography(CT), one is able to obtain edge-enhanced image of internal structure of the samples. This allows visualization of the fine internal features for biology tissues, which is not able to resolve by conventional absorption CT. After preliminary modulation, monochromatic X-rays (8-72.5 keV) are available for experiments on the experimental station of the biomedical imaging beamline at Shanghai Synchrotron Radiation Facility(SSRF). In this paper, we report the in line phase contrast micro-tomography(IL-XPCT) of biology sample (locust) on the beamline. The reconstruct slice images and three dimensional rendering images of the locust were obtained, with clearly visible images of locus's wing, surface texture and internal tissue distribution. (authors)

  17. Study of a macrodefect in a silicon carbid single crystal by means of X-ray phase contrast

    Energy Technology Data Exchange (ETDEWEB)

    Argunova, T. S., E-mail: argunova2002@mail.ru [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Kohn, V. G. [National Research Centre “Kurchatov Institute” (Russian Federation); Lim, J. H. [Pohang Accelerator Laboratory (Korea, Republic of); Je, J. H. [Pohang University of Science and Technology, Department of Materials Science and Engineering (Korea, Republic of)

    2016-11-15

    The morphology of a macrodefect in a single-crystal silicon carbide wafer has been investigated by the computer simulation of an experimental X-ray phase-contrast image. A micropipe, i.e., a long cavity with a small (elliptical in the general case) cross section, in a single crystal has been considered as a macrodefect. A far-field image of micropipe has been measured with the aid of synchrotron radiation without a monochromator. The parameters of micropipe elliptical cross section are determined based on one projection in two directions: parallel and perpendicular to the X-ray beam propagation direction, when scanning along the pipe axis. The results demonstrate the efficiency of the phase contrast method supplemented with computer simulation for studying such macrodefects when the defect position in the sample volume is unknown beforehand.

  18. 3D map of theranostic nanoparticles distribution in mice brain and liver by means of X-ray Phase Contrast Tomography

    Science.gov (United States)

    Longo, E.; Bravin, A.; Brun, F.; Bukreeva, I.; Cedola, A.; Fratini, M.; Le Guevel, X.; Massimi, L.; Sancey, L.; Tillement, O.; Zeitoun, P.; de La Rochefoucauld, O.

    2018-01-01

    The word "theranostic" derives from the fusion of two terms: therapeutic and diagnostic. It is a promising research field that aims to develop innovative therapies with high target specificity by exploiting the therapeutic and diagnostic properties, in particular for metal-based nanoparticles (NPs) developed to erase cancer. In the framework of a combined research program on low dose X-ray imaging and theranostic nanoparticles (NPs), high resolution Phase-Contrast Tomography images of mice organs injected with gadolinium and gold-NPs were acquired at the European Synchrotron Radiation Facility (ESRF). Both compounds are good X-ray contrast agents due to their high attenuation coefficient with respect to biological tissues, especially immediately above K-edge energy. X-ray tomography is a powerful non-invasive technique to image the 3D vasculature network in order to detect abnormalities. Phase contrast methods provide more detailed anatomical information with higher discrimination among soft tissues. We present the images of mice liver and brain injected with gold and gadolinium NPs, respectively. We discuss different image processing methods used aiming at enhancing the accuracy on localizing nanoparticles.

  19. Experimental demonstration of high resolution three-dimensional x-ray holography

    International Nuclear Information System (INIS)

    McNulty, I.; Trebes, J.E.; Brase, J.M.; Yorkey, T.J.; Levesque, R.; Szoke, H.; Anderson, E.H.; Jacobsen, C.

    1992-01-01

    Tomographic x-ray holography may make possible the imaging of biological objects at high resolution in three dimensions. We performed a demonstration experiment with soft x-rays to explore the feasibility of this technique. Coherent 3.2-nm undulator radiation was used to record Fourier transform holograms of a microfabricated test object from various illumination angles. The holograms were numerically reconstructed according to the principles of diffraction tomography, yielding images of the object that are well resolved in three dimensions

  20. Novel X-ray imaging diagnostics of high energy nanosecond pulse accelerators

    International Nuclear Information System (INIS)

    Smith, Graham W.; Gallegos, Roque Rosauro; Hohlfelder, Robert James; Beutler, David Eric; Dudley, John; Seymour, Calvin L.G.; Bell, John D.

    2004-01-01

    Pioneering x-ray imaging has been undertaken on a number of AWE's and Sandia National Laboratories radiation effects x-ray simulators. These simulators typically yield a single very short (<50ns) pulse of high-energy (MeV endpoint energy bremsstrahlung) x-ray radiation with doses in the kilorad (krad(Si)) region. X-ray source targets vary in size from 2 to 25cm diameter, dependent upon the particular simulator. Electronic imaging of the source x-ray emission under dynamic conditions yields valuable information upon how the simulator is performing. The resultant images are of interest to the simulator designer who may configure new x-ray source converter targets and diode designs. The images can provide quantitative information about machine performance during radiation effects testing of components under active conditions. The effects testing program is a valuable interface for validation of high performance computer codes and models for the radiation effects community. A novel high-energy x-ray imaging spectrometer is described whereby the spectral energy (0.1 to 2.5MeV) profile may be discerned from the digitally recorded and viewable images via a pinhole/scintillator/CCD imaging system and knowledge of the filtration parameters. Unique images, analysis and a preliminary evaluation of the capability of the spectrometer are presented. Further, a novel time resolved imaging system is described that captures a sequence of high spatial resolution temporal images, with zero interframe time, in the nanosecond timeframe, of our source x-rays.

  1. Asymmetrically cut crystal pair as x-ray magnifier for imaging at high intensity laser facilities

    Energy Technology Data Exchange (ETDEWEB)

    Szabo, C. I.; Feldman, U. [Artep Inc., 2922 Excelsior Spring Circle, Ellicott City, Maryland 21042 (United States); Seely, J. F. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Curry, J. J.; Hudson, L. T.; Henins, A. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2010-10-15

    The potential of an x-ray magnifier prepared from a pair of asymmetrically cut crystals is studied to explore high energy x-ray imaging capabilities at high intensity laser facilities. OMEGA-EP and NIF when irradiating mid and high Z targets can be a source of high-energy x-rays whose production mechanisms and use as backlighters are a subject of active research. This paper studies the properties and potential of existing asymmetric cut crystal pairs from the National Institute of Standards and Technology (NIST) built in a new enclosure for imaging x-ray sources. The technique of the x-ray magnifier has been described previously. This new approach is aimed to find a design that could be used at laser facilities by magnifying the x-ray source into a screen far away from the target chamber center, with fixed magnification defined by the crystals' lattice spacing and the asymmetry angles. The magnified image is monochromatic and the imaging wavelength is set by crystal asymmetry and incidence angles. First laboratory results are presented and discussed.

  2. Application of X-ray phase-contrast tomography in quantative studies of heat induced structural changes in meat

    DEFF Research Database (Denmark)

    Miklos, R.; Nielsen, M. S.; Einarsdottir, Hildur

    2013-01-01

    X-ray computed tomography is increasingly used in the studies of food structure. This paper describes the perspectives of use of phase contrast computed tomography in studies of heat induced structural changes in meat. From the data it was possible to obtain reconstructed images of the sample...... structure for visualization and qualitative studies of the sample structure. Further data segmentation allowed structural changes to be quantified....

  3. Microbeam high-resolution diffraction and x-ray standing wave methods applied to semiconductor structures

    International Nuclear Information System (INIS)

    Kazimirov, A; Bilderback, D H; Huang, R; Sirenko, A; Ougazzaden, A

    2004-01-01

    A new approach to conditioning x-ray microbeams for high angular resolution x-ray diffraction and scattering techniques is introduced. We combined focusing optics (one-bounce imaging capillary) and post-focusing collimating optics (miniature Si(004) channel-cut crystal) to generate an x-ray microbeam with a size of 10 μm and ultimate angular resolution of 14 μrad. The microbeam was used to analyse the strain in sub-micron thick InGaAsP epitaxial layers grown on an InP(100) substrate by the selective area growth technique in narrow openings between the oxide stripes. For the structures for which the diffraction peaks from the substrate and the film overlap, the x-ray standing wave technique was applied for precise measurements of the strain with a Δd/d resolution of better than 10 -4 . (rapid communication)

  4. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  5. A planar parabolic refractive nickel lens for high-energy X-rays

    International Nuclear Information System (INIS)

    Andrejczuk, Andrzej; Nagamine, Masaru; Sakurai, Yoshiharu; Itou, Masayoshi

    2013-01-01

    A compound refractive nickel lens focusing 174 keV X-rays to 5 µm with a gain of 4 is presented. A compound refractive lens made of nickel and designed for focusing high-energy synchrotron X-rays is presented. The lens consists of 600 parabolic grooves and focuses X-rays in one plane only (planar lens). The lenses made and investigated by us earlier exhibited low transmission and irregularities in the focused beam profile. Since then, improvements in lens manufacturing technology have been made. The present lens gives an almost Gaussian profile and produces four times higher intensity at its maximum compared with the intensity of primary X-ray beams of 174 keV

  6. High-resolution X-ray imaging - a powerful nondestructive technique for applications in semiconductor industry

    International Nuclear Information System (INIS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-01-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy). (orig.)

  7. DETECTING RELATIVISTIC X-RAY JETS IN HIGH-REDSHIFT QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    McKeough, Kathryn [Department of Statistics, Harvard University, Cambridge, MA 02138 (United States); Siemiginowska, Aneta; Kashyap, Vinay L.; Lee, N. P.; Harris, D. E.; Schwartz, D. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Stawarz, Łukasz [Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków (Poland); Stein, Nathan [Department of Statistics, The Wharton School, University of Pennsylvania, 400 Jon M. Huntsman Hall, 3730 Walnut Street, Philadelphia, PA 19104-6340 (United States); Stampoulis, Vasileios; Dyk, David A. van [Statistics Section, Imperial College London, Huxley Building, South Kensington Campus, London SW7 (United Kingdom); Wardle, J. F. C. [Department of Physics, MS 057, Brandeis University, Waltham, MA 02454 (United States); Donato, Davide [CRESST and Astroparticle Physics Laboratory NASA/GSFC, Greenbelt, MD 20771 (United States); Maraschi, Laura; Tavecchio, Fabrizio, E-mail: kathrynmckeough@g.harvard.edu [INAF Osservatorio Astronomico di Brera, via Brera 28, I-20124, Milano (Italy)

    2016-12-10

    We analyze Chandra X-ray images of a sample of 11 quasars that are known to contain kiloparsec scale radio jets. The sample consists of five high-redshift ( z  ≥ 3.6) flat-spectrum radio quasars, and six intermediate redshift (2.1 <  z  < 2.9) quasars. The data set includes four sources with integrated steep radio spectra and seven with flat radio spectra. A total of 25 radio jet features are present in this sample. We apply a Bayesian multi-scale image reconstruction method to detect and measure the X-ray emission from the jets. We compute deviations from a baseline model that does not include the jet, and compare observed X-ray images with those computed with simulated images where no jet features exist. This allows us to compute p -value upper bounds on the significance that an X-ray jet is detected in a pre-determined region of interest. We detected 12 of the features unambiguously, and an additional six marginally. We also find residual emission in the cores of three quasars and in the background of one quasar that suggest the existence of unresolved X-ray jets. The dependence of the X-ray to radio luminosity ratio on redshift is a potential diagnostic of the emission mechanism, since the inverse Compton scattering of cosmic microwave background photons (IC/CMB) is thought to be redshift dependent, whereas in synchrotron models no clear redshift dependence is expected. We find that the high-redshift jets have X-ray to radio flux ratios that are marginally inconsistent with those from lower redshifts, suggesting that either the X-ray emissions are due to the IC/CMB rather than the synchrotron process, or that high-redshift jets are qualitatively different.

  8. High precision instrumentation for measuring the true exposure time in diagnostic X-ray examinations

    International Nuclear Information System (INIS)

    Silva, Danubia B.; Santos, Marcus A.P.; Barros, Fabio R.; Santos, Luiz A.P.

    2013-01-01

    One of the most important physical quantities to be evaluated in diagnostic radiology is the radiation exposure time experimented by the patient during the X-ray examination. IAEA and WHO organizations have suggested that any country must create a quality surveillance program to verify if each type of ionizing radiation equipment used in the hospitals and medical clinics are in conformity with the accepted uncertainties following the international standards. The purpose of this work is to present a new high precision methodology for measuring true exposure time in diagnostic X-ray examinations: pulsed, continuous or digital one. An electronic system named CronoX, which will be soon registered at the Brazilian Patent Office (INPI), is the equipment that provides such a high precision measurement. The principle of measurement is based on the electrical signal captured by a sensor that enters in a regeneration amplifier to transform it in a digital signal, which is treated by a microprocessor (uP). The signal treatment results in a two measured times: 1) T rx , the true X-ray exposure time; 2) T nx , the time in which the X-ray machine is repeatedly cut off during the pulsed irradiation and there is no delivery dose to the patient. Conventional Polymat X-ray equipment and dental X-ray machines were used to generate X-ray photons and take the measurements with the electronic systems. The results show that such a high precision instrumentation displays the true exposure time in diagnostic X-ray examinations and indicates a new method to be purposed for the quality surveillance programs in radiology. (author)

  9. Investigation of the gastrointestinal tract by means of the first dimerous nonionic x-ray contrast medium (Iotrolan)

    International Nuclear Information System (INIS)

    Troger, J.; Wenzel-Hora, B.I.

    1987-01-01

    The risks with an ionic, water solvent highly osmotic contrast medium (CM) have now led to a monomerous, nonionic CM being used, particularly in the field of gastrointestinal investigation in newborn babies and infants. Thus side effects could be reduced and the quality of the x-rays improved. However, since the monomerous nonionic CM is still hyperosmotic with respect to blood, there is a water shift into the intestinal lumen. This can upset hydration and impair the quality of radiographs. Iotrolan is the first CM isoosmotic to the blood to be used clinically. It has proved to be superior to a monomerous nonionic CM as far as radiographic quality (density and sharpness) is concerned. Fifty-one children, aged 2 days to 19 years, were give Iotrolan. Some of these patients were compared in a double-blind study with a group of children who had been given monomerous nonionic CM. If Iotrolan was given, the good quality of the radiographs remained constant throughout the gastrointestinal tract and details were clearly discernible, even in the rectum. In addition, Iotrolan in the aboral intestinal sections leads to double-contrast pictures and thereby further increases the identifiability of details. The monomerous nonionic CM, however, showed a loss in density and above all in sharpness during its passage. Since Iotrolan is isotonic to blood, its is superior to all other water-solvent CM as far as possible side effects and radiographic quality are concerned

  10. Revising the lower statistical limit of x-ray grating-based phase-contrast computed tomography.

    Science.gov (United States)

    Marschner, Mathias; Birnbacher, Lorenz; Willner, Marian; Chabior, Michael; Herzen, Julia; Noël, Peter B; Pfeiffer, Franz

    2017-01-01

    Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.

  11. High-intensity, subkolovolt x-ray calibration facility using a Cockroft--Walton proton accelerator

    International Nuclear Information System (INIS)

    Kuckuck, R.W.; Gaines, J.L.; Ernst, R.D.

    1976-01-01

    Considerable need has arisen for the development of well-calibrated x-ray detectors capable of detecting photons with energies between 100 and 1000 electron-volts. This energy region is of significant interest since the x-ray emission from high-temperature (kT approximately 1.0 keV), laser-produced plasmas is predominantly in this range. A high-intensity, subkilovolt x-ray calibration source was developed which utilizes proton-induced inner-shell atomic fluorescence of low-Z elements. The high photon yields and low bremsstrahlung background associated with this phenomenon are ideally suited to provide an intense, nearly monoenergetic x-ray calibration source for detector development applications. The proton accelerator is a 3 mA, 300 kV Cockroft-Walton using a conventional rf hydrogen ion source. Seven remotely-selectable liquid-cooled targets capable of heat dissipation of 5 kW/cm 2 are used to provide characteristic x-rays with energies between 100 and 1000 eV. Source strengths are of the order of 10 13 to 10 14 photons/sec. A description of the facility is presented. Typical x-ray spectra (B-K, C-K, Ti-L, Fe-L and Cu-L) and flux values will be shown. Problems such as spectral contamination due to carbon buildup on the target and to backscattered particles are discussed

  12. A POPULATION OF X-RAY WEAK QUASARS: PHL 1811 ANALOGS AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Wu Jianfeng; Brandt, W. N.; Schneider, Donald P.; Hall, Patrick B.; Gibson, Robert R.; Schmidt, Sarah J.; Richards, Gordon T.; Shemmer, Ohad; Just, Dennis W.

    2011-01-01

    We report the results from Chandra and XMM-Newton observations of a sample of 10 type 1 quasars selected to have unusual UV emission-line properties (weak and blueshifted high-ionization lines; strong UV Fe emission) similar to those of PHL 1811, a confirmed intrinsically X-ray weak quasar. These quasars were identified by the Sloan Digital Sky Survey at high redshift (z ∼ 2.2); eight are radio quiet while two are radio intermediate. All of the radio-quiet PHL 1811 analogs, without exception, are notably X-ray weak by a mean factor of ∼13. These sources lack broad absorption lines and have blue UV/optical continua, supporting the hypothesis that they are intrinsically X-ray weak like PHL 1811 itself. However, their average X-ray spectrum appears to be harder than those of typical quasars, which may indicate the presence of heavy intrinsic X-ray absorption. Our sample of radio-quiet PHL 1811 analogs supports a connection between an X-ray weak spectral energy distribution and PHL 1811-like UV emission lines; this connection provides an economical way to identify X-ray weak type 1 quasars. The fraction of radio-quiet PHL 1811 analogs in the radio-quiet quasar population is estimated to be ∼< 1.2%. We have investigated correlations between relative X-ray brightness and UV emission-line properties (e.g., C IV equivalent width and blueshift) for a sample combining our radio-quiet PHL 1811 analogs, PHL 1811 itself, and typical type 1 quasars. These correlation analyses suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions. Observationally, the radio-quiet PHL 1811 analogs appear to be a subset (∼30%) of radio-quiet weak-line quasars (WLQs). The existence of a subset of quasars in which high-ionization 'shielding gas' covers most of the broad emission-line region (BELR), but little more than the BELR, could potentially unify the PHL 1811 analogs and WLQs. The two radio-intermediate PHL 1811 analogs are X-ray bright. X-ray

  13. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    Energy Technology Data Exchange (ETDEWEB)

    Loveland, J.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Morton, E. [Rapiscan Systems, Units 2,3,4, Radnor Park Trading Estate, Congleton, Cheshire CW12 4XJ (United Kingdom); Wells, K. [CVSSP, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Bradley, D.A., E-mail: d.a.bradley@surrey.ac.uk [Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2011-10-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52{+-}0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  14. Phase contrast imaging: Effect of increased object-detector distances at X-ray diagnostic and megavoltage energies

    International Nuclear Information System (INIS)

    Loveland, J.; Gundogdu, O.; Morton, E.; Wells, K.; Bradley, D.A.

    2011-01-01

    The effect of varying object to detector separation at constant and varying magnification has been investigated at an accelerating potential of 30 kVp. Edge-contrast enhancement provided by phase effects was investigated for a drinking straw and found to provide up to 2.52±0.02x the contrast for a PVC Heaviside step function. An optimum magnification of 1.5x was found to apply for the microfocus X-ray tube setup used. Imaging at nominal megavoltage energies was investigated using a Rapiscan Systems Eagle M4500 series scanner. For a fixed source-detector separation, increased magnification improved edge contrast and spatial resolution.

  15. Optimizing contrast agents with respect to reducing beam hardening in nonmedical X-ray computed tomography experiments.

    Science.gov (United States)

    Nakashima, Yoshito; Nakano, Tsukasa

    2014-01-01

    Iodine is commonly used as a contrast agent in nonmedical science and engineering, for example, to visualize Darcy flow in porous geological media using X-ray computed tomography (CT). Undesirable beam hardening artifacts occur when a polychromatic X-ray source is used, which makes the quantitative analysis of CT images difficult. To optimize the chemistry of a contrast agent in terms of the beam hardening reduction, we performed computer simulations and generated synthetic CT images of a homogeneous cylindrical sand-pack (diameter, 28 or 56 mm; porosity, 39 vol.% saturated with aqueous suspensions of heavy elements assuming the use of a polychromatic medical CT scanner. The degree of cupping derived from the beam hardening was assessed using the reconstructed CT images to find the chemistry of the suspension that induced the least cupping. The results showed that (i) the degree of cupping depended on the position of the K absorption edge of the heavy element relative to peak of the polychromatic incident X-ray spectrum, (ii) (53)I was not an ideal contrast agent because it causes marked cupping, and (iii) a single element much heavier than (53)I ((64)Gd to (79)Au) reduced the cupping artifact significantly, and a four-heavy-element mixture of elements from (64)Gd to (79)Au reduced the artifact most significantly.

  16. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  17. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  18. Penetration Depth and Defect Image Contrast Formation in Grazing-Incidence X-ray Topography of 4H-SiC Wafers

    Science.gov (United States)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian

    2018-02-01

    Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.

  19. 3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation

    International Nuclear Information System (INIS)

    Antoine, Christine; Nygaard, Per; Gregersen, O.W.; Holmstad, Rune; Weitkamp, Timm; Rau, Christoph

    2002-01-01

    A series of paper samples was investigated using high-resolution phase-contrast microtomography at the beamline ID 22 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. It was shown that X-ray microtomography is a non-destructive method suitable for high resolution depicting real 3D-paper structures. The method detects highly localised changes in the refractive index of the sample, such as fibre-pore interfaces. The resulting tomograms represented an outlined image of the fibre structure with an image resolution of 1 μm. Analyses were performed in dry state, but in addition some were done in wet state. The raw data obtained were transformed into 3D images. The reconstructed slices were in general of rather good quality, even if both noise and ring-like artifacts were observed. These required special filtering efforts before a segmented binary volume could be obtained for further use of the data. This approach was made up of semi-automatic routines to convert the structure into a binary format. The resulting binary volumes can be used for further characterisation of the 3D-paper structure

  20. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald [Innsbruck Medical University, Department of Radiology, Innsbruck (Austria); Ulmer, Hanno [Innsbruck Medical University, Department of Medical Statistics, Informatics, and Health Economics, Innsbruck (Austria); Hartig, Frank; Klotz, Werner; Herold, Manfred [Innsbruck Medical University, Department of Internal Medicine, Innsbruck (Austria)

    2008-03-15

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  1. Diagnostic imaging of gout: comparison of high-resolution US versus conventional X-ray

    International Nuclear Information System (INIS)

    Rettenbacher, Thomas; Ennemoser, Sybille; Weirich, Harald; Ulmer, Hanno; Hartig, Frank; Klotz, Werner; Herold, Manfred

    2008-01-01

    The aim was to compare X-ray and ultrasound (US) in diagnosing gout. In a prospective study, 105 consecutive patients with clinical suspicion of gout underwent conventional X-ray und high-resolution US in order to help in arriving at a definite diagnosis. X-ray findings suggestive of gout included soft-tissue opacifications with densities between soft tissue and bone, articular and periarticular bone erosions, and osteophytes at the margins of opacifications or erosions. US findings suggestive of gout included bright stippled foci and hyperechoic soft-tissue areas. Fifty-five patients had a definite diagnosis of gout (102 involved sites), 31 patients were diagnosed as having another disease (59 involved sites), and 19 patients were excluded from the study because a definite diagnosis could not be established. X-ray suggested gout with a sensitivity of 31% (32/102) and a specificity of 93% (55/59), whereas US suggested gout with a sensitivity of 96% (98/102) and a specificity of 73% (43/59). US was much more sensitive than conventional X-ray but less specific. Our data show that US often provided additional diagnostic information in patients with clinical suspicion of gout when laboratory findings and X-ray results were negative or inconclusive and should therefore be used in these cases. (orig.)

  2. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  3. Biofilm imaging in porous media by laboratory X-Ray tomography: Combining a non-destructive contrast agent with propagation-based phase-contrast imaging tools.

    Science.gov (United States)

    Carrel, Maxence; Beltran, Mario A; Morales, Verónica L; Derlon, Nicolas; Morgenroth, Eberhard; Kaufmann, Rolf; Holzner, Markus

    2017-01-01

    X-ray tomography is a powerful tool giving access to the morphology of biofilms, in 3D porous media, at the mesoscale. Due to the high water content of biofilms, the attenuation coefficient of biofilms and water are very close, hindering the distinction between biofilms and water without the use of contrast agents. Until now, the use of contrast agents such as barium sulfate, silver-coated micro-particles or 1-chloronaphtalene added to the liquid phase allowed imaging the biofilm 3D morphology. However, these contrast agents are not passive and potentially interact with the biofilm when injected into the sample. Here, we use a natural inorganic compound, namely iron sulfate, as a contrast agent progressively bounded in dilute or colloidal form into the EPS matrix during biofilm growth. By combining a very long source-to-detector distance on a X-ray laboratory source with a Lorentzian filter implemented prior to tomographic reconstruction, we substantially increase the contrast between the biofilm and the surrounding liquid, which allows revealing the 3D biofilm morphology. A comparison of this new method with the method proposed by Davit et al (Davit et al., 2011), which uses barium sulfate as a contrast agent to mark the liquid phase was performed. Quantitative evaluations between the methods revealed substantial differences for the volumetric fractions obtained from both methods. Namely, contrast agent-biofilm interactions (e.g. biofilm detachment) occurring during barium sulfate injection caused a reduction of the biofilm volumetric fraction of more than 50% and displacement of biofilm patches elsewhere in the column. Two key advantages of the newly proposed method are that passive addition of iron sulfate maintains the integrity of the biofilm prior to imaging, and that the biofilm itself is marked by the contrast agent, rather than the liquid phase as in other available methods. The iron sulfate method presented can be applied to understand biofilm development

  4. Cone-beam X-ray phase-contrast tomography for the observation of single cells in whole organs

    International Nuclear Information System (INIS)

    Krenkel, Martin

    2015-01-01

    X-ray imaging enables the nondestructive investigation of interior structures in otherwise opaque samples. In particular the use of computed tomography (CT) allows for arbitrary virtual slices through the object and 3D information about intricate structures can be obtained. However, when it comes to image very small structures like single cells, the classical CT approach is limited by the weak absorption of soft-tissue. The use of phase information, encoded in measureable intensity images by free-space propagation of coherent X-rays, allows a huge increase in contrast, which enables 3D reconstructions at higher resolutions. In this work the application of propagation-based phase-contrast tomography to lung tissue samples is demonstrated in close to in vivo conditions. Reconstructions of the lung structure of whole mice at down to 5 µm resolution are obtained at a selfbuilt CT setup, which is based on a liquid-metal jet X-ray source. To reach even higher resolutions, synchrotron radiation in combination with suitable holographic phase-retrieval algorithms is employed. Due to optimized cone-beam geometry, field of view and resolution can be varied over a wide range of parameters, so that information on different length scales can be achieved, covering several millimeters field of view down to a 3D resolution of 50 nm. Thus, the sub-cellular 3D imaging of single cells embedded in large pieces of tissue is enabled, which paves the way for future biomedical research.

  5. Approximated transport-of-intensity equation for coded-aperture x-ray phase-contrast imaging.

    Science.gov (United States)

    Das, Mini; Liang, Zhihua

    2014-09-15

    Transport-of-intensity equations (TIEs) allow better understanding of image formation and assist in simplifying the "phase problem" associated with phase-sensitive x-ray measurements. In this Letter, we present for the first time to our knowledge a simplified form of TIE that models x-ray differential phase-contrast (DPC) imaging with coded-aperture (CA) geometry. The validity of our approximation is demonstrated through comparison with an exact TIE in numerical simulations. The relative contributions of absorption, phase, and differential phase to the acquired phase-sensitive intensity images are made readily apparent with the approximate TIE, which may prove useful for solving the inverse phase-retrieval problem associated with these CA geometry based DPC.

  6. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  7. High-Performance X-ray Detection in a New Analytical Electron Microscope

    Science.gov (United States)

    Lyman, C. E.; Goldstein, J. I.; Williams, D. B.; Ackland, D. W.; vonHarrach, S.; Nicholls, A. W.; Statham, P. J.

    1994-01-01

    X-ray detection by energy-dispersive spectrometry in the analytical electron microscope (AEM) is often limited by low collected X-ray intensity (P), modest peak-to-background (P/B) ratios, and limitations on total counting time (tau) due to specimen drift and contamination. A new AFM has been designed with maximization of P. P/B, and tau as the primary considerations. Maximization of P has been accomplished by employing a field-emission electron gun, X-ray detectors with high collection angles, high-speed beam blanking to allow only one photon into the detector at a time, and simultaneous collection from two detectors. P/B has been maximized by reducing extraneous background signals generated at the specimen holder, the polepieces and the detector collimator. The maximum practical tau has been increased by reducing specimen contamination and employing electronic drift correction. Performance improvments have been measured using the NIST standard Cr thin film. The 0-3 steradian solid angle of X-ray collection is the highest value available. The beam blanking scheme for X-ray detection provides 3-4 times greater throughput of X-rays at high count rates into a recorded spectrum than normal systems employing pulse-pileup rejection circuits. Simultaneous X-ray collection from two detectors allows the highest X-ray intensity yet recorded to be collected from the NIST Cr thin film. The measured P/B of 6300 is the highest level recorded for an AEM. In addition to collected X-ray intensity (cps/nA) and P/B measured on the standard Cr film, the product of these can be used as a figure-of-merit to evaluate instruments. Estimated minimum mass fraction (MMF) for Cr measured on the standard NIST Cr thin film is also proposed as a figure-of-merit for comparing X-ray detection in AEMs. Determinations here of the MMF of Cr detectable show at least a threefold improvement over previous instruments.

  8. Characterization of an Yb:LuVO{sub 4} single crystal using X-ray topography, high-resolution X-ray diffraction, and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Paszkowicz, W., E-mail: paszk@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Romanowski, P.; Bak-Misiuk, J. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Wierzchowski, W. [Institute of Electronic Materials Technology, Wolczynska 133, PL-01919 Warsaw (Poland); Wieteska, K. [Institute of Atomic Energy POLATOM, PL-05400 Otwock-Swierk (Poland); Graeff, W. [HASYLAB at DESY, Notkestr. 85, D-22603 Hamburg (Germany); Iwanowski, R.J. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Heinonen, M.H. [Laboratory of Materials Science, Department of Physics, University of Turku, Vesilinnantie 5, FI-20014, Turku (Finland); Ermakova, O. [Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw (Poland); Dabkowska, H. [Department of Physics, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2011-10-15

    Knowledge on the defect and electronic structure allows for improved modeling of material properties. A short literature review has shown that the information on defect structure of rare earth orthovanadate single crystals is limited. In this paper, defect and electronic structure of a needle-shaped Yb:LuVO{sub 4} single crystal grown by the slow cooling method have been studied by means of X-ray diffraction topography employing white synchrotron beam, high-resolution diffraction (HRD) and photoelectron spectroscopy (XPS) techniques. Topographic investigations show that the crystal is composed of two blocks disoriented by about 1.5{sup o} and separated by a narrow deformed region. Some contrasts observed within the crystal volume may be attributed to glide bands and sector boundaries. The contrasts appearing in the vicinity of the surface may be interpreted as due to the presence of small inclusions. The HRD study indicates, in particular, that among point defects, the vacancy type defects dominate and that the density of other defects is small in comparison. The XPS measurements enabled, despite highly insulating properties of the studied crystal, an analysis of its bulk electronic structure, including the main core-levels (O 1s, V 2p, Lu 4f) as well as the valence band range.

  9. Z-pinches as intense x-ray sources for high energy density physics application

    International Nuclear Information System (INIS)

    Matzen, M.K.

    1997-01-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/μs and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75±10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory

  10. Ultra-High Field Magnets for X-Ray and Neutron Scattering using High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Winn, Barry L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Broholm, C. [Johns Hopkins Univ., Baltimore, MD (United States); Bird, M. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Breneman, Bruce C. [General Atomics, San Diego, CA (United States); Coffey, Michael [Cryomagnetics, Oak Ridge, TN (United States); Cutler, Roy I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duckworth, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erwin, R. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Hahn, Seungyong [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Hernandez, Yamali [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Herwig, Kenneth W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holland, Leo D. [General Atomics, San Diego, CA (United States); Lonergan, Kevin M. [Oxford Instruments, Abingdon (United Kingdom); Melhem, Ziad [Oxford Instruments, Abingdon (United Kingdom); Minter, Stephen J. [Cryomagnetics, Oak Ridge, TN (United States); Nelson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Paranthaman, M. Parans [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruff, Jacob [Cornell Univ., Ithaca, NY (United States); Shen, Tengming [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherline, Todd E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smeibidl, Peter G. [Helmholtz-Zentrum Berlin (HZB), (Germany); Tennant, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); van der Laan, Danko [Advanced Conductor Technologies, LLC, Boulder, CO (United States); Wahle, Robert J. [Helmholtz-Zentrum Berlin (HZB), (Germany); Zhang, Yifei [SuperPower, Inc., Schenectady, NY (United States)

    2017-01-01

    X-ray and neutron scattering techniques are capable of acquiring information about the structure and dynamics of quantum matter. However, the high-field magnet systems currently available at x-ray and neutron scattering facilities in the United States are limited to fields of 16 tesla (T) at maximum, which precludes applications that require and/or study ultra-high field states of matter. This gap in capability—and the need to address it—is a central conclusion of the 2005 National Academy of Sciences report by the Committee on Opportunities in High Magnetic Field Science. To address this gap, we propose a magnet development program that would more than double the field range accessible to scattering experiments. With the development and use of new ultra-high field–magnets, the program would bring into view new worlds of quantum matter with profound impacts on our understanding of advanced electronic materials.

  11. X-ray emission in collisions of highly charged I, Pr, Ho, and Bi ions with a W surface

    International Nuclear Information System (INIS)

    Watanabe, H.; Tona, M.; Ohtani, S.; Sun, J.; Nakamura, N.; Yamada, C.; Yoshiyasu, N.; Sakurai, M.

    2007-01-01

    X-ray emission yields, which are defined as the total number of emitted x-ray photons per incident ion, and dissipated fractions of potential energies through x-ray emission have been measured for slow highly charged ions of I, Pr, Ho, and Bi colliding with a W surface. A larger amount of potential energy was consumed for the x-ray emission with increasing the atomic number and the charge state. The present measurements show that x-ray emission is one of the main decay channels of hollow atoms produced in collisions of very highly charged ions of heavy elements

  12. TH-AB-209-01: Making Benchtop X-Ray Fluorescence Computed Tomography (XFCT) Practical for in Vivo Imaging by Integration of a Dedicated High-Performance X-Ray Source in Conjunction with Micro-CT Functionality

    International Nuclear Information System (INIS)

    Manohar, N; Cho, S; Reynoso, F

    2016-01-01

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-target x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT

  13. TH-AB-209-01: Making Benchtop X-Ray Fluorescence Computed Tomography (XFCT) Practical for in Vivo Imaging by Integration of a Dedicated High-Performance X-Ray Source in Conjunction with Micro-CT Functionality

    Energy Technology Data Exchange (ETDEWEB)

    Manohar, N; Cho, S [UT MD Anderson Cancer Center, Houston, TX (United States); Reynoso, F [UT MD Anderson Cancer Center, Houston, TX (United States); Washington University School of Medicine, St. Louis, MO (United States)

    2016-06-15

    Purpose: To make benchtop x-ray fluorescence computed tomography (XFCT) practical for routine preclinical imaging tasks with gold nanoparticles (GNPs) by deploying, integrating, and characterizing a dedicated high-performance x-ray source and addition of simultaneous micro-CT functionality. Methods: Considerable research effort is currently under way to develop a polychromatic benchtop cone-beam XFCT system capable of imaging GNPs by stimulation and detection of gold K-shell x-ray fluorescence (XRF) photons. Recently, an ad hoc high-power x-ray source was incorporated and used to image the biodistribution of GNPs within a mouse, postmortem. In the current work, a dedicated x-ray source system featuring a liquid-cooled tungsten-target x-ray tube (max 160 kVp, ∼3 kW power) was deployed. The source was operated at 125 kVp, 24 mA. The tube’s compact dimensions allowed greater flexibility for optimizing both the irradiation and detection geometries. Incident x-rays were shaped by a conical collimator and filtered by 2 mm of tin. A compact “OEM” cadmium-telluride x-ray detector was implemented for detecting XRF/scatter spectra. Additionally, a flat panel detector was installed to allow simultaneous transmission CT imaging. The performance of the system was characterized by determining the detection limit (10-second acquisition time) for inserts filled with water/GNPs at various concentrations (0 and 0.010–1.0 wt%) and embedded in a small-animal-sized phantom. The phantom was loaded with 0.5, 0.3, and 0.1 wt% inserts and imaged using XFCT and simultaneous micro-CT. Results: An unprecedented detection limit of 0.030 wt% was experimentally demonstrated, with a 33% reduction in acquisition time. The reconstructed XFCT image accurately localized the imaging inserts. Micro-CT imaging did not provide enough contrast to distinguish imaging inserts from the phantom under the current conditions. Conclusion: The system is immediately capable of in vivo preclinical XFCT

  14. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    Science.gov (United States)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  15. High-Resolution X-Ray Spectroscopy of Galactic Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Satoru Katsuda

    2014-12-01

    Full Text Available High-resolution X-ray spectroscopy of Galactic supernova remnants (SNRs, based on grating spectrometers onboard XMM-Newton and Chandra, has been revealing a variety of new astrophysical phenomena. Broadened oxygen lines for a northwestern compact knot in SN 1006 clearly show a high oxygen temperature of ~300 keV. The high temperature together with a lower electron temperature (kTe ~ 1 keV can be reasonably interpreted as temperature non-equilibration between electrons and oxygen behind a collisionless shock. An ejecta knot in the Puppis A SNR shows blueshifted line emission by ~ 1500kms-1. The line widths are fairly narrow in contrast to the SN 1006's knot; an upper limit of 0.9 eV is obtained for O VIII Lyα, which translates to an oxygen temperature of kTO < 30 keV. The low temperature suggests that the knot was heated by a reverse shock whose velocity is 4 times slower than that of a forward shock. Anomalous intensity ratios in O VII Heα lines, i.e., a stronger forbidden line than a resonance line, is found in a cloud-shock interaction region in Puppis A. The line ratio can be best explained by the charge-exchange emission that should arise at interfaces between the cold/warm clouds and the hot plasma. There are several other targets for which we plan to analyze high-quality grating data prior to the operation of the soft X-ray spectrometer onboard Astro-H.

  16. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  17. Survey of effective doses to patients undergoing contrast-based X-ray fluoroscopy procedures in Tanzania

    International Nuclear Information System (INIS)

    Ngaile, J.E.; Msaki, P.K.; Kazema, R.R.

    2017-01-01

    The aim of this study was to assess the radiation burden imparted to patients from contrast-based X-ray fluoroscopy procedures in Tanzania. The effective doses (EDs) to patients from five contrast-based fluoroscopy procedures were obtained from four hospitals. The ED was estimated using the knowledge of the patient characteristics, patient-related exposure parameters, measurements of air kerma area product and PCXCM software. The median EDs for the barium swallow (BS), barium meal (BM), barium enema (BE), hysterosalpingography (HSG) and retrograde urethrography (RUG) were 0.50, 1.43, 2.83, 0.65 and 0.59 mSv, respectively. The median ED per hospital for the BS and BM procedures varied by factors of up to 9.9 and 4.2, respectively, while for the BE, HSG and RUG varied by factors of up to 2.3, 2.4 and 4.3, respectively. The overall differences between individual EDs across the four hospitals varied by factors of up to 53, 58.9 and 11.4 for the BS, BM and BE, respectively, while for the HSG and RUG differed by factors of up to 22 and 46.7, respectively. The mean EDs in this study were mostly lower than reported values from Spain, the UK, Ghana and Greece, while slightly higher than those reported from India. The observed wide variations of procedural protocols and patient doses within and across the hospitals; and the observed high patient doses in this study relative to those from the literature call for the need to standardize procedural protocols and optimize contrast-based fluoroscopy procedures. (authors)

  18. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  19. High thermal efficiency x-ray energy conversion scheme for advanced fusion reactors

    International Nuclear Information System (INIS)

    Quimby, D.C.; Taussig, R.T.; Hertzberg, A.

    1977-01-01

    This paper reports on a new radiation energy conversion scheme which appears to be capable of producing electricity from the high quality x-ray energy with efficiencies of 60 to 70 percent. This new reactor concept incorporates a novel x-ray radiation boiler and a new thermal conversion device known as an energy exchanger. The low-Z first walls of the radiation boiler are semi-transparent to x-rays, and are kept cool by incoming working fluid, which is subsequently heated to temperatures of 2000 to 3000 0 K in the interior of the boiler by volumetric x-ray absorption. The radiation boiler may be a compact part of the reactor shell since x-rays are readily absorbed in high-Z materials. The energy exchanger transfers the high-temperature working fluid energy to a lower temperature gas which drives a conventional turbine. The overall efficiency of the cycle is characterized by the high temperature of the working fluid. The high thermal efficiencies which appear achievable with this cycle would make an otherwise marginal advanced fusion reactor into an attractive net power producer. The operating principles, initial conceptual design, and engineering problems of the radiation boiler and thermal cycle are presented

  20. ICF ignition capsule neutron, gamma ray, and high energy x-ray images

    Science.gov (United States)

    Bradley, P. A.; Wilson, D. C.; Swenson, F. J.; Morgan, G. L.

    2003-03-01

    Post-processed total neutron, RIF neutron, gamma-ray, and x-ray images from 2D LASNEX calculations of burning ignition capsules are presented. The capsules have yields ranging from tens of kilojoules (failures) to over 16 MJ (ignition), and their implosion symmetry ranges from prolate (flattest at the hohlraum equator) to oblate (flattest towards the laser entrance hole). The simulated total neutron images emphasize regions of high DT density and temperature; the reaction-in-flight neutrons emphasize regions of high DT density; the gamma rays emphasize regions of high shell density; and the high energy x rays (>10 keV) emphasize regions of high temperature.

  1. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T., E-mail: thomas.weber@physik.uni-erlangen.de [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Bartl, P.; Durst, J. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Haas, W. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); University of Erlangen-Nuremberg, Pattern Recognition Lab, Martensstr. 3, 91058 Erlangen (Germany); Michel, T.; Ritter, A.; Anton, G. [University of Erlangen-Nuremberg, ECAP - Erlangen Center for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany)

    2011-08-21

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary. With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases. These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool 'SPHINX', combining both wave and particle contributions of the simulated photons. The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant. Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements. This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  2. In Vitro Validation of an Artefact Suppression Algorithm in X-Ray Phase-Contrast Computed Tomography.

    Science.gov (United States)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hirano, Shin-Ichi; Gupta, Rajiv; Ando, Masami

    2015-01-01

    X-ray phase-contrast tomography can significantly increase the contrast-resolution of conventional attenuation-contrast imaging, especially for soft-tissue structures that have very similar attenuation. Just as in attenuation-based tomography, phase contrast tomography requires a linear dependence of aggregate beam direction on the incremental direction alteration caused by individual voxels along the path of the X-ray beam. Dense objects such as calcifications in biological specimens violate this condition. There are extensive beam deflection artefacts in the vicinity of such structures because they result in large distortion of wave front due to the large difference of refractive index; for such large changes in beam direction, the transmittance of the silicon analyzer crystal saturates and is no longer linearly dependent on the angle of refraction. This paper describes a method by which these effects can be overcome and excellent soft-tissue contrast of phase tomography can be preserved in the vicinity of such artefact-producing structures.

  3. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    Science.gov (United States)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  4. Tantalum X-ray contrast media, by M.G. Zuev and L.P. Larionov (Ekaterinburg: UrO RAN, 2002. 155 p.)

    International Nuclear Information System (INIS)

    Zhuravleva, E.Yu.

    2004-01-01

    The monograph of M.G. Zuev and L.P. Larionov Tantalum X-ray contrast media (Solid state chemistry for medicine series) is discussed. The monograph includes information on physical and chemical properties of tantalum, rare earths, and their oxides, phase compositions and phase diagrams of M 2 O 3 -Ta 2 O 5 (M - rare earths) systems is performed. Data on preclinical tests of yttrium orthotantalate and lanthanum orthotantalate as X-ray contrast media are given. Procedures for the production of X-ray contrast media involving tantalum oxide, rare earth tantalate and tantalum powder are described [ru

  5. Distribution of unresolvable anisotropic microstructures revealed in visibility-contrast images using x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Yashiro, Wataru; Harasse, Sebastien; Kawabata, Katsuyuki; Kuwabara, Hiroaki; Yamazaki, Takashi; Momose, Atsushi

    2011-01-01

    X-ray Talbot interferometry has been widely used as a technique for x-ray phase imaging and tomography. We propose a method using this interferometry for mapping distribution of parameters characterizing anisotropic microstructures, which are typically of the order of μm in size and cannot be resolved by the imaging system, in a sample. The method uses reduction in fringe visibility, which is caused by such unresolvable microstructures, in moire images obtained using an interferometer. We applied the method to a chloroprene rubber sponge sample, which exhibited uniaxial anisotropy of reduced visibility. We measured the dependencies of reduced visibility on both the Talbot order and the orientation of the sample and obtained maps of three parameters and their anisotropies that characterize the unresolvable anisotropic microstructures in the sample. The maps indicated that the anisotropy of the sample's visibility contrast mainly originated from the anisotropy of the microstructure elements' average size. Our method directly provides structural information on unresolvable microstructures in real space, which is only accessible through the ultra-small-angle x-ray scattering measurements in reciprocal space, and is expected to be broadly applied to material, biological, and medical sciences.

  6. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    Science.gov (United States)

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  7. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    Science.gov (United States)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  8. A high time resolution x-ray diagnostic on the Madison Symmetric Torus

    Science.gov (United States)

    DuBois, Ami M.; Lee, John David; Almagri, Abdulgadar F.

    2015-07-01

    A new high time resolution x-ray detector has been installed on the Madison Symmetric Torus (MST) to make measurements around sawtooth events. The detector system is comprised of a silicon avalanche photodiode, a 20 ns Gaussian shaping amplifier, and a 500 MHz digitizer with 14-bit sampling resolution. The fast shaping time diminishes the need to restrict the amount of x-ray flux reaching the detector, limiting the system dead-time. With a much higher time resolution than systems currently in use in high temperature plasma physics experiments, this new detector has the versatility to be used in a variety of discharges with varying flux and the ability to study dynamics on both slow and fast time scales. This paper discusses the new fast x-ray detector recently installed on MST and the improved time resolution capabilities compared to the existing soft and hard x-ray diagnostics. In addition to the detector hardware, improvements to the detector calibration and x-ray pulse identification software, such as additional fitting parameters and a more sophisticated fitting routine are discussed. Finally, initial data taken in both high confinement and standard reversed-field pinch plasma discharges are compared.

  9. Influence of barium sulfate X-ray imaging contrast material on properties of floating drug delivery tablets.

    Science.gov (United States)

    Diós, Péter; Szigeti, Krisztián; Budán, Ferenc; Pócsik, Márta; Veres, Dániel S; Máthé, Domokos; Pál, Szilárd; Dévay, Attila; Nagy, Sándor

    2016-12-01

    The objective of the study was to reveal the influence of necessarily added barium sulfate (BaSO 4 ) X-ray contrast material on floating drug delivery tablets. Based on literature survey, a chosen floating tablet composition was determined containing HPMC and carbopol 943P as matrix polymers. One-factor factorial design with five levels was created for evaluation of BaSO 4 (X 1 ) effects on experimental parameters of tablets including: floating lag time, total floating time, swelling-, erosion-, dissolution-, release kinetics parameters and X-ray detected volume changes of tablets. Applied concentrations of BaSO 4 were between 0 and 20.0% resulting in remarkable alteration of experimental parameters related especially to flotation. Drastic deterioration of floating lag time and total floating time could be observed above 15.0% BaSO 4 . Furthermore, BaSO 4 showed to increase the integrity of tablet matrix by reducing eroding properties. A novel evaluation of dissolutions from floating drug delivery systems was introduced, which could assess the quantity of drug dissolved from dosage form in floating state. In the cases of tablets containing 20.0% BaSO 4 , only the 40% of total API amount could be dissolved in floating state. In vitro fine resolution X-ray CT imagings were performed to study the volume change and the voxel distributions as a function of HU attenuations by histogram analysis of the images. X-ray detected relative volume change results did not show significant difference between samples. After 24h, all tablets containing BaSO 4 could be segmented, which highlighted the fact that enough BaSO 4 remained in the tablets for their identification. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    International Nuclear Information System (INIS)

    Tremaine, A M; Anderson, S G; Betts, S; Crane, J; Gibson, D J; Hartemann, F V; Jacob, J S; Frigola, P; Lim, J; Rosenzweig, J; Travish, G

    2005-01-01

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10 7 photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 (micro)m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verified the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials

  11. Surface slope metrology of highly curved x-ray optics with an interferometric microscope

    Science.gov (United States)

    Gevorkyan, Gevork S.; Centers, Gary; Polonska, Kateryna S.; Nikitin, Sergey M.; Lacey, Ian; Yashchuk, Valeriy V.

    2017-09-01

    The development of deterministic polishing techniques has given rise to vendors that manufacture high quality threedimensional x-ray optics. The surface metrology on these optics remains a difficult task. For the fabrication, vendors usually use unique surface metrology tools, generally developed on site, that are not available in the optical metrology labs at x-ray facilities. At the Advanced Light Source X-Ray Optics Laboratory, we have developed a rather straightforward interferometric-microscopy-based procedure capable of sub microradian characterization of sagittal slope variation of x-ray optics for two-dimensionally focusing and collimating (such as ellipsoids, paraboloids, etc.). In the paper, we provide the mathematical foundation of the procedure and describe the related instrument calibration. We also present analytical expression describing the ideal surface shape in the sagittal direction of a spheroid specified by the conjugate parameters of the optic's beamline application. The expression is useful when analyzing data obtained with such optics. The high efficiency of the developed measurement and data analysis procedures is demonstrated in results of measurements with a number of x-ray optics with sagittal radius of curvature between 56 mm and 480 mm. We also discuss potential areas of further improvement.

  12. High-energy synchrotron X-ray radiography of shock-compressed materials

    Science.gov (United States)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  13. High-resolution X-ray spectra from low-temperature, highly charged ions

    International Nuclear Information System (INIS)

    Beiersdorfer, P.

    1996-09-01

    The electron beam ion traps (EBIT) at Livermore were designed for studying the x-ray emission of highly charged ions produced and excited by a monoenergetic electron beam. The precision with which the x-ray emission can be analyzed has recently been increased markedly when it became possible to decouple the temperature of the ions from the energy of the electron beam by several orders of magnitude. By adjusting the trap parameters, ion temperatures as low as 15.8±4.4 eV for Ti 20+ and 59.4±9.9 eV for Cs 45+ were achieved. These temperatures were more than two orders of magnitude lower than the energy of the multi-keV electron beam used for the production and excitation of the ions. A discussion of the techniques used to produce and study low-temperature highly charged ions is presented in this progress report. The low ion temperatures enabled measurements heretofore impossible. As an example, a direct observation of the natural line width of fast electric dipole allowed x-ray transitions is described. From the observed natural line width and b making use of the time-energy relations of the uncertainty principle we were able to determine a radiative transition rate of 1.65 fs for the 2p-3d resonance transition in neonlike Cs 45+ . A brief discussion of other high-precision measurements enabled by our new technique is also given

  14. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  15. Innovation of High Voltage Supply Adjustment Device on Diagnostic X-Ray Machine

    International Nuclear Information System (INIS)

    Sujatno; Wiranto Budi Santoso

    2010-01-01

    Innovation of high voltage supply adjustment device on diagnostic x-ray machine has been carried out. The innovation is conducted by utilizing an electronic circuit as a high voltage adjustment device. Usually a diagnostic x-ray machine utilizes a transformer or an auto-transformer as a high voltage supply adjustment device. A high power diagnostic x-ray machine needs a high power transformer which has big physical dimension. Therefore a box control where the transformer is located has to have big physical dimension. Besides, the price of the transformer is expensive and hardly found in local markets. In this innovation, the transformer is replaced by an electronic circuit. The main component of the electronic circuit is Triac BTA-40. As adjustment device, the triac is controlled by a variable resistor which is coupled by a stepper motor. A step movement of stepper motor varies a value of resistor. The resistor value determines the triac gate voltage. Furthermore the triac will open according to the value of electrical current flowing to the gate. When the gate is open, electrical voltage and current will flow from cathode to anode of the triac. The value of these electrical voltage and current depend on gate open condition. Then this triac output voltage is feed to diagnostic x-ray machine high voltage supply. Therefore the high voltage value of diagnostic x-ray machine is adjusted by the output voltage of the electronic circuit. By using this electronic circuit, the physical dimension of diagnostic x-ray machine box control and the price of the equipment can be reduced. (author)

  16. A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wang Zhi-Li; Gao Kun; Chen Jian; Ge Xin; Tian Yang-Chao; Wu Zi-Yu; Zhu Pei-Ping

    2012-01-01

    Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently with one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method

  17. Sub-Hour X-Ray Variability of High-Energy Peaked BL Lacertae Objects

    Directory of Open Access Journals (Sweden)

    Bidzina Kapanadze

    2018-03-01

    Full Text Available The study of multi-wavelength flux variability in BL Lacertae objects is very important to discern unstable processes and emission mechanisms underlying their extreme observational features. While the innermost regions of these objects are not accessible from direct observations, we may draw conclusions about their internal structure via the detection of flux variations on various timescales, based on the light-travel argument. In this paper, we review the sub-hour X-ray variability in high-energy peaked BL Lacertae sources (HBLs that are bright at X-rays and provide us with an effective tool to study the details related to the physics of the emitting particles. The X-ray emission of these sources is widely accepted to be a synchrotron radiation from the highest-energy electrons, and the complex spectral variability observed in this band reflects the injection and radiative evolution of freshly-accelerated particles. The detection of sub-hour X-ray flux variability is very important since it can be related to the small-scale jet turbulent structures or triggered by unstable processes occurring in the vicinity of a central supermassive black hole. We summarize the fastest X-ray variability instances detected in bright HBLs and discuss their physical implications.

  18. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  19. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  20. New techniques provide low-cost X-ray inspection of highly attenuating materials

    International Nuclear Information System (INIS)

    Stupin, D.M.; Mueller, K.H.; Viskoe, D.A.; Howard, B.; Poland, R.W.; Schneberk, D.; Dolan, K.; Thompson, K.; Stoker, G.

    1995-01-01

    As a result of an arms reduction treaty between the United States and the Russian Federation, both countries will each be storing over 40,000 containers of plutonium. To help detect any deterioration of the containers and prevent leakage, the authors are designing a digital radiography and computed tomography system capable of handling this volume reliably, efficiently, and at a lower cost. The materials to be stored have very high x-ray attenuations, and, in the past, were inspected using 1- to 24-MV x-ray sources. This inspection system, however, uses a new scintillating (Lockheed) glass and an integrating CCD camera. Preliminary experiments show that this will permit the use of a 450-kV x-ray source. This low-energy system will cost much less than others designed to use a higher-energy x-ray source because it will require a less expensive source, less shielding, and less floor space. Furthermore, they can achieve a tenfold improvement in spatial resolution by using their knowledge of the point-spread function of the x-ray imaging system and a least-squares fitting technique

  1. The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1984-01-01

    Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.

  2. X-ray Spectroscopy of High-Z Elements on Nike

    Science.gov (United States)

    Aglitskiy, Y.; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.

    2013-10-01

    Survey X-ray spectrometer covering a spectral range from 0.5 to 19.5 angstroms has been added to the spectroscopic suite of Nike diagnostics. That allows simultaneous observation of both M- and N- spectra of W, Ta and Au with high spectral resolution. Low energy test shots confirmed strong presence of 3-4 transitions of Ni-like W, Ta and Au with X-ray energies as high as 3.5 keV when above mentioned elements were used as the targets. In our continuous effort to support DOE-NNSA's inertial fusion program, the future campaign will cover a wide range of plasma conditions that result in relatively energetic X-ray production. Eventually, absolutely calibrated spectrometers of similar geometry will be fielded at NIF in cooperation with NIF diagnostic group. Work supported by US DOE, Defense Programs.

  3. Diamond monochromator for high heat flux synchrotron x-ray beams

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means

  4. High resolution krypton M/sub 4,5/ x-ray emission spectra

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Hettrick, M.C.; Lindle, D.W.

    1987-10-01

    High resolution M/sub 4,5/ (3d → 4p) x-ray emission spectra from a krypton plasma were measured using a recently developed grazing-incidence reflection-grating monochromator/spectrometer with very high flux rates at extreme ultraviolet and soft x-ray wave lengths. The nominal resolving power of the instrument, E/ΔE, is about 300 in this energy range (∼80 eV). Three dipole-allowed 3d → 4p emission lines were observed at 80.98 eV, 80.35 eV and 79.73 eV. A broad peak at about 82.3 eV is tentatively assigned to transitions resulting from Kr 2+ , and effects of excitation energy on M/sub 4,5/ x-ray emission were observed. 9 refs., 3 figs., 1 tab

  5. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  6. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  7. Thermal, structural, and fabrication aspects of diamond windows for high power synchrotron x-ray beamlines

    International Nuclear Information System (INIS)

    Khounsary, A.M.; Phillips, W.

    1992-01-01

    Recent advances in chemical vapor deposition (CVD) technology have made it possible to produce thin free-standing diamond foils that can be used as the window material in high heat load, synchrotron beamlines. Numerical simulations suggest that these windows can offer an attractive and at times the only altemative to beryllium windows for use in third generation x-ray synchrotron radiation beamlines. Utilization, design, and fabrication aspects of diamond windows for high heat load x-ray beamlines are discussed, as are the microstructure characteristics bearing on diamond's performance in this role. Analytic and numerical results are also presented to provide a basis for the design and testing of such windows

  8. X-ray emission in slow highly charged ion-surface collisions

    International Nuclear Information System (INIS)

    Watanabe, H; Abe, T; Fujita, Y; Sun, J; Takahashi, S; Tona, M; Yoshiyasu, N; Nakamura, N; Sakurai, M; Yamada, C; Ohtani, S

    2007-01-01

    X-rays emitted in the collisions of highly charged ions with a surface have been measured to investigate dissipation schemes of their potential energies. While 8.1% of the potential energy was dissipated in the collisions of He-like I ions with a W surface, 29.1% has been dissipated in the case of He-like Bi ions. The x-ray emissions play significant roles in the dissipation of the potential energies in the interaction of highly charged heavy ions with the surface

  9. High efficiency spectro graphs for the EUV and soft x-rays

    International Nuclear Information System (INIS)

    Cash, W.

    1983-01-01

    A basic need of modern UV and x-ray astronomy is the capability to perform high resolution spectroscopy of faint stars. The use of modern grazing incidence optics can be coupled to high blaze angle reflection gratings used in the conical diffraction mount to offer a versatile, efficient approach to the design problem. The authors discuss two designs of interest: an echelle spectrograph for use longward of 100 A, and an Objective Reflection Grating Spectrograph for use in the soft x-rays. General design considerations and measurements of grating efficiencies are also presented

  10. Digital signal processors for cryogenic high-resolution x-ray detector readout

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Drury, Owen B.; Bechstein, Sylke; Hennig, Wolfgang; Momayezi, Michael

    2003-01-01

    We are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer online filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. We discuss DSP performance with our 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy. (author)

  11. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  12. X-ray outbursts and high-state episodes of HETE J1900.1-2455

    Science.gov (United States)

    Šimon, Vojtěch

    2018-06-01

    HETE J1900.1-2455 is an ultra-compact low-mass X-ray binary that underwent a long-lasting (about 10 yr) active state. The analysis presented here of its activity uses the observations of RXTE/ASM, Swift/BAT, and ISS/MAXI for investigating this active state and the relation of time evolution of fluxes in the hard and medium X-ray bands. We show that the variations of the flux of HETE J1900.1-2455 on the time-scales of days and weeks have the form both of the outbursts and occasional high-state episodes. These outbursts are accompanied by the large changes of the hardness of the spectrum in the surroundings of the peaks of their soft X-ray flux. The very strong peaks of these outbursts occur in the soft X-ray band (2-4 keV) and are accompanied by a large depression in the 15-50 keV band flux. We interpret these events as an occasional occurrence of a thermal-viscous instability of the accretion disc that gives rise to the outbursts similar to those in the soft X-ray transients. On the other hand, the 2-4 and the 15-50 keV band fluxes are mutually correlated in the high-state episodes, much longer than the outbursts. In the interpretation, the episodes of the X-ray high states of HETE J1900.1-2455 during the active state bear some analogy with the standstills in the Z Cam type of cataclysmic variables.

  13. Differential dose albedo for high-energy X-rays on concrete slab

    International Nuclear Information System (INIS)

    Kato, Hideki

    2006-01-01

    We computed the differential dose albedo (α D ) for high-energy X-rays on a concrete slab when the incident angle, reflection angle, and azimuth angle were changed, by means of Monte Carlo simulation. We found that α D changed with incident, reflection, and azimuth angles to the concrete slab. On the whole, the larger the incident angle, the larger α D tended to become. If the incident angle and reflection angle were the same, the larger the azimuth angle, the smaller α D tended to become. When the incident, reflection, and azimuth angles were the same, the smaller the X-ray energy was, the larger α D became, in the order of 10 MV, 6 MV, and 4 MV X-rays. (author)

  14. A sounding rocket payload for X-ray astronomy employing high-resolution microcalorimeters

    International Nuclear Information System (INIS)

    McCammon, D.; Almy, R.; Deiker, S.; Morgenthaler, J.; Kelley, R.L.; Marshall, F.J.; Moseley, S.H.; Stahle, C.K.; Szymkowiak, A.E.

    1996-01-01

    We have completed a sounding rocket payload that will use a 36 element array of microcalorimeters to obtain a high-resolution spectrum of the diffuse X-ray background between 0.1 and 1 keV. This experiment uses only mechanical collimation of the incoming X-rays, but the cryostat and detector assembly have been designed to be placed at the focus of a conical foil imaging mirror which will be employed on subsequent flights to do spatially resolved spectroscopy of supernova remnants and other extended objects. The detector system is a monolithic array of silicon calorimeters with ion-implanted thermometers and HgTe X-ray absorbers. The 1 mm 2 pixels achieve a resolution of about 8 eV FWHM operating at 60 mK. (orig.)

  15. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  16. X-ray spectroscopy of highly-charged ions in a storage ring. Invited lecture

    International Nuclear Information System (INIS)

    Beyer, H.F.

    1994-11-01

    The purpose of the present lectures is to carry through the methods and procedures necessary for a meaningful spectroscopy of the heaviest few-electron ions in relation to present theories. Results achieved so far in accelerator-based X-ray experiments are highlighted with emphasis on recent developments on heavy-ion storage rings. Starting with a brief account of the basics of one-electron ions, the motivation for doing X-ray spectroscopy of the simplest atomic systems with a high nuclear charge is given. In section 2 X-ray instrumentation and techniques are discussed including the precautions necessary when dealing with fast-beam sources. Peculiarities of heavy-ion storage rings are investigated in section 3 with regard to their use for spectroscopy. In section 4 are discussed results obtained so far on the measurement of the Lamb shift in very heavy ions. Section 5 gives some perspectives for the near future. (orig.)

  17. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  18. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    International Nuclear Information System (INIS)

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm 2 in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs

  19. X-ray diffraction patterns of single crystals implanted with high-energy light ions

    International Nuclear Information System (INIS)

    Wieteska, K.

    1998-01-01

    X-ray diffraction patterns of silicon and gallium arsenide single crystals implanted with high-energy protons and α-particles were studied. A various models of lattice parameter changes were analysed. The agreement between the simulation and experiment proves that the lattice parameter depth-distribution can be assumed to be proportional to vacancy distribution obtained by Monte-Carlo method and from the Biersack-Ziegler theory. Most of the X-ray experiments were performed using synchrotron source of X-ray radiation in particular in the case of back-reflection and transmission section topographic methods. The new method of direct determination of the implanted ion ranges was proposed using synchrotron radiation back-reflection section topography. A number of new interference phenomena was revealed and explained. These interferences are important in the applications of diffraction theory in studying of the real structure of implanted layers. (author)

  20. Study of optimal X-ray exposure conditions in consideration of bone mineral density. Relation between bone mineral density and image contrast

    International Nuclear Information System (INIS)

    Kondo, Yuji

    2003-01-01

    Bone mineral density (BMD) increases through infancy and adolescence, reaching a maximum at 20-30 years of age. Thereafter, BMD gradually decreases with age in both sexes. The image contrast of radiographs of bones varies with the change in BMD owing to the changes in the X-ray absorption of bone. The image contrast of bone generally is higher in the young adult than in the older adult. To examine the relation between BMD and image visibility, we carried out the following experiments. We measured the image contrast of radiographs of a lumbar vertebra phantom in which BMD was equivalent to the average BMD for each developmental period. We examined image visibility at various levels of imaging contrast using the Howlett chart. The results indicated that differences in BMD affect the image contrast of radiographs, and, consequently, image visibility. It was also found that image visibility in the young adult was higher than that in the older adult. The findings showed that, in digital radiography of young adults with high BMD, X-ray exposure can be decreased according the ratio of improvement in image visibility. (author)

  1. High Pressure X-Ray Diffraction Studies on Nanocrystalline Materials

    Science.gov (United States)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Pielaszek, R.; Bismayer, U.; Werner, S.; Palosz, W.

    2003-01-01

    Application of in situ high pressure powder diffraction technique for examination of specific structural properties of nanocrystals based on the experimental data of SiC nanocrystalline powders of 2 to 30 nrn diameter in diameter is presented. Limitations and capabilities of the experimental techniques themselves and methods of diffraction data elaboration applied to nanocrystals with very small dimensions (nanoparticles of different grain size.

  2. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio E-mail: a-yoneya@rd.hitachi.co.jp; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  3. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    International Nuclear Information System (INIS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-01-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples

  4. A phase-contrast X-ray imaging system—with a 60×30 mm field of view—based on a skew-symmetric two-crystal X-ray interferometer

    Science.gov (United States)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu, Jin; Thet-Thet-Lwin; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system—with a 60×30 mm field of view—for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60×30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  5. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    DEFF Research Database (Denmark)

    Harrison, Fiona A.; Craig, William W.; Christensen, Finn Erland

    2013-01-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X...

  6. High pressure X-ray preionized TEMA-CO2 laser

    NARCIS (Netherlands)

    Bonnie, R.J.M.; Witteman, W.J.

    1987-01-01

    The construction of a high-pressure (up to 20 atm) transversely excited CO2 laser using transverse X-ray preionization is described. High pressure operation was found to be greatly improved in comparison to UV-preionized systems. Homogeneous discharges have been achieved in the pressure range 5–20

  7. Plastic nuclear track detectors as high x-ray and gamma dosimeters

    International Nuclear Information System (INIS)

    Chong Chon Sing

    1995-01-01

    A brief review of recent studies on the effects of high doses of x-ray and gamma ray on the track registration properties of several plastic track detectors is presented. The bulk etching rates and the etched track sizes have been found to increase with the dose in the range up to 100 Mrad. These results suggest that the changes in track registration characteristics can be employed as an index of the radiation dose in the megarad region. In particular, recent results on the effect of X-ray irradiation on two types of cellulose nitrate track detectors obtained in our laboratory are reported in this paper. (author)

  8. X-Ray diffraction studies of silicon implanted with high energy ions

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Graeff, W.

    1998-01-01

    The character of lattice deformation in silicon implanted with high energy alpha-particles and protons was studied using a number of X-ray methods. The experiments included double-crystal spectrometer method as well as single crystal section and projection topography realised both with conventional and synchrotron X-ray sources. All observed diffraction patterns were reasonably explainable assuming the lattice parameter distribution proportional to the vacancy-interstitial distribution coming from the Biersack-ziegler theory. The theoretical rocking curves and distribution in back-reflection double-crystal and section topographs well corresponding to the experimental results were calculated using numerical integration of the takagi-taupin equations

  9. Development of the super high angular resolution principle for X-ray imaging

    International Nuclear Information System (INIS)

    Zhang Chen; Zhang Shuangnan

    2011-01-01

    Development of the Super High Angular Resolution Principle (SHARP) for coded-mask X-ray imaging is presented. We prove that SHARP can be considered as a generalized coded mask imaging method with a coding pattern comprised of diffraction-interference fringes in the mask pattern. The angular resolution of SHARP can be improved by detecting the fringes more precisely than the mask's element size, i.e. by using a detector with a pixel size smaller than the mask's element size. The proposed mission SHARP-X for solar X-ray observations is also briefly discussed. (research papers)

  10. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  11. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  12. High energy X-ray CT system using a linear accelerator for automobile parts inspection

    International Nuclear Information System (INIS)

    Kanamori, T.; Sukita, T.

    1995-01-01

    A high energy X-ray CT system (maximum photon energy: 0.95 MeV) has been developed for industrial use. This system employs a linear accelerator as an X-ray source. It is able to image the cross section of automobile parts and can be applied to a solidification analysis study of the cylinder head in an automobile. This paper describes the features of the system and application results which can be related to solidification analysis of the cylinder head when fabricated from an aluminum casting. Some cross-sectional images are also presented as evidence for nondestructive inspection of automobile parts. (orig.)

  13. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXA