WorldWideScience

Sample records for high contrast ratios

  1. High ambient contrast ratio OLED and QLED without a circular polarizer

    International Nuclear Information System (INIS)

    Tan, Guanjun; Zhu, Ruidong; Luo, Zhenyue; Wu, Shin-Tson; Tsai, Yi-Shou; Lee, Kuo-Chang; Lee, Yuh-Zheng

    2016-01-01

    A high ambient contrast ratio display device using a transparent organic light emitting diode (OLED) or transparent quantum-dot light-emitting diode (QLED) with embedded multilayered structure and absorber is proposed and its performance is simulated. With the help of multilayered structure, the device structure allows almost all ambient light to get through the display device and be absorbed by the absorber. Because the reflected ambient light is greatly reduced, the ambient contrast ratio of the display system is improved significantly. Meanwhile, the multilayered structure helps to lower the effective refractive index, which in turn improves the out-coupling efficiency of the display system. Potential applications for sunlight readable flexible and rollable displays are emphasized. (paper)

  2. Epitaxial growth of quantum rods with high aspect ratio and compositional contrast

    International Nuclear Information System (INIS)

    Li, L. H.; Patriarche, G.; Fiore, A.

    2008-01-01

    The epitaxial growth of quantum rods (QRs) on GaAs was investigated. It was found that GaAs thickness in the GaAs/InAs superlattice used for QR formation plays a key role in improving the QR structural properties. Increasing the GaAs thickness results in both an increased In compositional contrast between the QRs and surrounding layer, and an increased QR length. QRs with an aspect ratio of up to 10 were obtained, representing quasiquantum wires in a GaAs matrix. Due to modified confinement and strain potential, such nanostructure is promising for controlling gain polarization

  3. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  4. Investigation of Pockels Cells Crystal Contrast Ratio Distribution

    Directory of Open Access Journals (Sweden)

    Giedrius Sinkevičius

    2017-07-01

    Full Text Available The BBO Pockel’s cell has been investigated. The investigation results of optimal operating area on the surface of the crystal dependent of intrinsic contrast ratio (ICR and voltage contrast ratio (VCR for Pockel’s cell are presented. The block diagram of Pockel’s cells contrast measurement stand and measurement methodology are introduced and discussed. The graphs of intrinsic contrast ratio distribution on crystal surface, contrast ratio with voltage dependency and voltage contrast ratio distribution on crystal surface with half-wave voltage are presented.

  5. High Contrast CRT.

    Science.gov (United States)

    1980-02-01

    barium dioxide contains about 0.02% iron. For economical reasons, glass manufacturer’s probably use materials of lesser purity than reagent grade...otherwise the same procedure is followed. 2.4 Nonreflecting (NR) Film The NR film is a light abosrbing inhomogeneous film utilized to achieve a high...hour. No surface distortion of the disc occurred, thus ruling out any reaction between the carbon support plate and the glass disc that might have

  6. Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner

    International Nuclear Information System (INIS)

    Müller, Mark; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne; Bech, Martin; Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander; Pfeiffer, Franz

    2015-01-01

    In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed

  7. Advancing High Contrast Adaptive Optics

    Science.gov (United States)

    Ammons, M.; Poyneer, L.; GPI Team

    2014-09-01

    A long-standing challenge has been to directly image faint extrasolar planets adjacent to their host suns, which may be ~1-10 million times brighter than the planet. Several extreme AO systems designed for high-contrast observations have been tested at this point, including SPHERE, Magellan AO, PALM-3000, Project 1640, NICI, and the Gemini Planet Imager (GPI, Macintosh et al. 2014). The GPI is the world's most advanced high-contrast adaptive optics system on an 8-meter telescope for detecting and characterizing planets outside of our solar system. GPI will detect a previously unstudied population of young analogs to the giant planets of our solar system and help determine how planetary systems form. GPI employs a 44x44 woofer-tweeter adaptive optics system with a Shack-Hartmann wavefront sensor operating at 1 kHz. The controller uses Fourier-based reconstruction and modal gains optimized from system telemetry (Poyneer et al. 2005, 2007). GPI has an apodized Lyot coronal graph to suppress diffraction and a near-infrared integral field spectrograph for obtaining planetary spectra. This paper discusses current performance limitations and presents the necessary instrumental modifications and sensitivity calculations for scenarios related to high-contrast observations of non-sidereal targets.

  8. High ratio recirculating gas compressor

    Science.gov (United States)

    Weinbrecht, J.F.

    1989-08-22

    A high ratio positive displacement recirculating rotary compressor is disclosed. The compressor includes an integral heat exchanger and recirculation conduits for returning cooled, high pressure discharge gas to the compressor housing to reducing heating of the compressor and enable higher pressure ratios to be sustained. The compressor features a recirculation system which results in continuous and uninterrupted flow of recirculation gas to the compressor with no direct leakage to either the discharge port or the intake port of the compressor, resulting in a capability of higher sustained pressure ratios without overheating of the compressor. 10 figs.

  9. Contrast to Noise Ratio and Contrast Detail Analysis in Mammography:A Monte Carlo Study

    International Nuclear Information System (INIS)

    Metaxas, V; Delis, H; Panayiotakis, G; Kalogeropoulou, C; Zampakis, P

    2015-01-01

    The mammographic spectrum is one of the major factors affecting image quality in mammography. In this study, a Monte Carlo (MC) simulation model was used to evaluate image quality characteristics of various mammographic spectra. The anode/filter combinations evaluated, were those traditionally used in mammography, for tube voltages between 26 and 30 kVp. The imaging performance was investigated in terms of Contrast to Noise Ratio (CNR) and Contrast Detail (CD) analysis, by involving human observers, utilizing a mathematical CD phantom. Soft spectra provided the best characteristics in terms of both CNR and CD scores, while tube voltage had a limited effect. W-anode spectra filtered with k-edge filters demonstrated an improved performance, that sometimes was better compared to softer x-ray spectra, produced by Mo or Rh anode. Regarding the filter material, k-edge filters showed superior performance compared to Al filters. (paper)

  10. Holes at High Blowing Ratios

    Directory of Open Access Journals (Sweden)

    Phillip M. Ligrani

    1996-01-01

    Full Text Available Experimental results are presented which describe the development and structure of flow downstream of a single row of holes with compound angle orientations producing film cooling at high blowing ratios. This film cooling configuration is important because similar arrangements are frequently employed on the first stage of rotating blades of operating gas turbine engines. With this configuration, holes are spaced 6d apart in the spanwise direction, with inclination angles of 24 degrees, and angles of orientation of 50.5 degrees. Blowing ratios range from 1.5 to 4.0 and the ratio of injectant to freestream density is near 1.0. Results show that spanwise averaged adiabatic effectiveness, spanwise-averaged iso-energetic Stanton number ratios, surveys of streamwise mean velocity, and surveys of injectant distributions change by important amounts as the blowing ratio increases. This is due to injectant lift-off from the test surface just downstream of the holes.

  11. High aspect ratio spheromak experiments

    International Nuclear Information System (INIS)

    Robertson, S.; Schmid, P.

    1987-05-01

    The Reversatron RFP (R/a = 50cm/8cm) has been operated as an ohmically heated spheromak of high aspect ratio. We find that the dynamo can drive the toroidal field upward at rates as high as 10 6 G/sec. Discharges can be initiated and ramped upward from seed fields as low as 50 G. Small toroidal bias fields of either polarity (-0.2 < F < 0.2) do not significantly affect operation. 5 refs., 3 figs

  12. Electron dose dependence of signal-to-noise ratio, atom contrast and resolution in transmission electron microscope images

    International Nuclear Information System (INIS)

    Lee, Z.; Rose, H.; Lehtinen, O.; Biskupek, J.; Kaiser, U.

    2014-01-01

    In order to achieve the highest resolution in aberration-corrected (AC) high-resolution transmission electron microscopy (HRTEM) images, high electron doses are required which only a few samples can withstand. In this paper we perform dose-dependent AC-HRTEM image calculations, and study the dependence of the signal-to-noise ratio, atom contrast and resolution on electron dose and sampling. We introduce dose-dependent contrast, which can be used to evaluate the visibility of objects under different dose conditions. Based on our calculations, we determine optimum samplings for high and low electron dose imaging conditions. - Highlights: • The definition of dose-dependent atom contrast is introduced. • The dependence of the signal-to-noise ratio, atom contrast and specimen resolution on electron dose and sampling is explored. • The optimum sampling can be determined according to different dose conditions

  13. Embedded high-contrast distributed grating structures

    Science.gov (United States)

    Zubrzycki, Walter J.; Vawter, Gregory A.; Allerman, Andrew A.

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  14. Progress in high index contrast integrated optics

    NARCIS (Netherlands)

    Baets, R.G.F.; Bienstman, P.; Bogaerts, W.; Brouckaert, J.; De Backere, P.; Dumon, P.; Roelkens, G.; Scheerlinck, S.; Smit, M.K.; Taillaert, D.; Van Campenhout, J.; Van Laere, F.; Thourhout, Van D.

    2007-01-01

    A large fraction of the recent innovation in integrated optics is enabled by the use of high index contrast structures and devices. The strong confinement achievable in such devices allows for dramatic performance benefits and downscaling. In this paper the progress in this field is reviewed.

  15. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  16. High contrast laser marking of alumina

    International Nuclear Information System (INIS)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; Val, J. del; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-01-01

    Highlights: • Laser marking of alumina using near infrared (NIR) lasers was experimentally analyzed. • Color change produced by NIR lasers is due to thermally induced oxygen vacancies. • Laser marking results obtained using NIR lasers and green laser are compared. • High contrast marks on alumina were achieved. - Abstract: Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks

  17. High contrast computed tomography with synchrotron radiation

    Science.gov (United States)

    Itai, Yuji; Takeda, Tohoru; Akatsuka, Takao; Maeda, Tomokazu; Hyodo, Kazuyuki; Uchida, Akira; Yuasa, Tetsuya; Kazama, Masahiro; Wu, Jin; Ando, Masami

    1995-02-01

    This article describes a new monochromatic x-ray CT system using synchrotron radiation with applications in biomedical diagnosis which is currently under development. The system is designed to provide clear images and to detect contrast materials at low concentration for the quantitative functional evaluation of organs in correspondence with their anatomical structures. In this system, with x-ray energy changing from 30 to 52 keV, images can be obtained to detect various contrast materials (iodine, barium, and gadolinium), and K-edge energy subtraction is applied. Herein, the features of the new system designed to enhance the advantages of SR are reported. With the introduction of a double-crystal monochromator, the high-order x-ray contamination is eliminated. The newly designed CCD detector with a wide dynamic range of 60 000:1 has a spatial resolution of 200 μm. The resulting image quality, which is expected to show improved contrast and spatial resolution, is currently under investigation.

  18. High-speed and high-ratio referential genome compression.

    Science.gov (United States)

    Liu, Yuansheng; Peng, Hui; Wong, Limsoon; Li, Jinyan

    2017-11-01

    The rapidly increasing number of genomes generated by high-throughput sequencing platforms and assembly algorithms is accompanied by problems in data storage, compression and communication. Traditional compression algorithms are unable to meet the demand of high compression ratio due to the intrinsic challenging features of DNA sequences such as small alphabet size, frequent repeats and palindromes. Reference-based lossless compression, by which only the differences between two similar genomes are stored, is a promising approach with high compression ratio. We present a high-performance referential genome compression algorithm named HiRGC. It is based on a 2-bit encoding scheme and an advanced greedy-matching search on a hash table. We compare the performance of HiRGC with four state-of-the-art compression methods on a benchmark dataset of eight human genomes. HiRGC takes compress about 21 gigabytes of each set of the seven target genomes into 96-260 megabytes, achieving compression ratios of 217 to 82 times. This performance is at least 1.9 times better than the best competing algorithm on its best case. Our compression speed is also at least 2.9 times faster. HiRGC is stable and robust to deal with different reference genomes. In contrast, the competing methods' performance varies widely on different reference genomes. More experiments on 100 human genomes from the 1000 Genome Project and on genomes of several other species again demonstrate that HiRGC's performance is consistently excellent. The C ++ and Java source codes of our algorithm are freely available for academic and non-commercial use. They can be downloaded from https://github.com/yuansliu/HiRGC. jinyan.li@uts.edu.au. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. Halftoning for high-contrast imaging

    Directory of Open Access Journals (Sweden)

    Kasper M.

    2011-07-01

    Full Text Available High-contrast instruments, such as SPHERE (upcoming planet finder instrument for the ESO-VLT, or EPICS (planet hunter project for the future E-ELT, will require customized components with spatially varying transmission (e.g. coronagraphs, optical components that reduce the contrast between a companion and its parent star. The goal of these sub-systems is to control the spatial transmission, either in a pupil plane (pupil apodization, or in a focal plane of the instrument (occulting mask, i.e. low-frequency filter. Reliably producing components with spatially varying transmission is not trivial, and different techniques have been already investigated for application to astronomy (e.g. metal deposition with spatially-varying thickness, or high-energy beam sensitive glass using e-beam lithography. We present some results related to the recent development of components with spatially varying transmission using a relatively simple technique analogous to the digital halftoning process used for printing applications.

  20. High contrast laser marking of alumina

    Science.gov (United States)

    Penide, J.; Quintero, F.; Riveiro, A.; Fernández, A.; del Val, J.; Comesaña, R.; Lusquiños, F.; Pou, J.

    2015-05-01

    Alumina serves as raw material for a broad range of advanced ceramic products. These elements should usually be identified by some characters or symbols printed directly on them. In this sense, laser marking is an efficient, reliable and widely implemented process in industry. However, laser marking of alumina still leads to poor results since the process is not able to produce a dark mark, yielding bad contrast. In this paper, we present an experimental study on the process of marking alumina by three different lasers working in two wavelengths: 1064 nm (Near-infrared) and 532 nm (visible, green radiation). A colorimetric analysis has been carried out in order to compare the resulting marks and its contrast. The most suitable laser operating conditions were also defined and are reported here. Moreover, the physical process of marking by NIR lasers is discussed in detail. Field Emission Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy were also employed to analyze the results. Finally, we propose an explanation for the differences of the coloration induced under different atmospheres and laser parameters. We concluded that the atmosphere is the key parameter, being the inert one the best choice to produce the darkest marks.

  1. Contrast-enhanced CT with a High-Affinity Cationic Contrast Agent for Imaging ex Vivo Bovine, Intact ex Vivo Rabbit, and in Vivo Rabbit Cartilage

    OpenAIRE

    Stewart, Rachel C.; Bansal, Prashant N.; Entezari, Vahid; Lusic, Hrvoje; Nazarian, Rosalynn M.; Snyder, Brian D.; Grinstaff, Mark W.

    2013-01-01

    The high affinity of a cationic iodinated contrast agent for cartilage provides better tissue visualization, easier segmentation, higher contrast-to-noise ratios, and longer usable imaging windows and requires a lower dose of injected contrast agent compared with an anionic contrast agent.

  2. Display characterization by eye: contrast ratio and discrimination throughout the grayscale

    Science.gov (United States)

    Gille, Jennifer; Arend, Larry; Larimer, James O.

    2004-06-01

    We have measured the ability of observers to estimate the contrast ratio (maximum white luminance / minimum black or gray) of various displays and to assess luminous discrimination over the tonescale of the display. This was done using only the computer itself and easily-distributed devices such as neutral density filters. The ultimate goal of this work is to see how much of the characterization of a display can be performed by the ordinary user in situ, in a manner that takes advantage of the unique abilities of the human visual system and measures visually important aspects of the display. We discuss the relationship among contrast ratio, tone scale, display transfer function and room lighting. These results may contribute to the development of applications that allow optimization of displays for the situated viewer / display system without instrumentation and without indirect inferences from laboratory to workplace.

  3. Contrast-to-noise ratio in magnification mammography: a Monte Carlo study

    International Nuclear Information System (INIS)

    Koutalonis, M; Delis, H; Spyrou, G; Costaridou, L; Tzanakos, G; Panayiotakis, G

    2007-01-01

    Magnification views are a common way to perform a secondary examination when suspicious abnormalities are found in a screening mammogram. The visibility of microcalcifications and breast lesions is restricted by the compromise between the image quality and the absorbed dose. In this study, image quality characteristics in magnification mammography were evaluated based on Monte Carlo techniques. A breast phantom was utilized, simulating a homogeneous mixture of adipose and glandular tissue in various percentages of glandularity, containing inhomogeneities of various sizes and compositions. The effect of the magnification degree, breast glandularity, tube voltage and anode/filter material combination on image quality characteristics was investigated in terms of a contrast-to-noise ratio (CNR). A performance index PI ν was introduced in order to study the overall performance of various anode/filter combinations under different exposure parameters. Results demonstrate that CNR is improved with the degree of magnification and degraded as the breast glandularity is increased. Degree of magnification 1.3 offers the best overall performance for most of the anode/filter combinations utilized. Under magnification conditions, the role of dose is demoted against the image quality, as magnification views are secondary, diagnostic examinations and not screening procedures oriented to non-symptomatic women. For decreased image quality weighting, some anode/filter combinations different from Mo/0.030mmMo can be utilized as they offer a similar performance index. However, if the desired weighting for the image quality is high, the Mo/0.030mmMo combination has the best overall performance

  4. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  5. High aspect ratio, remote controlled pumping assembly

    Science.gov (United States)

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  6. High-contrast x-ray microtomography in dental research

    Science.gov (United States)

    Davis, Graham; Mills, David

    2017-09-01

    X-ray microtomography (XMT) is a well-established technique in dental research. The technique has been used extensively to explore the complex morphology of the root canal system, and to qualitatively and quantitatively evaluate root canal instrumentation and filling efficacy in extracted teeth; enabling different techniques to be compared. Densitometric information can be used to identify and map demineralized tissue resulting from tooth decay (caries) and, in extracted teeth, the method can be used to evaluate different methods of excavation. More recently, high contrast XMT is being used to investigate the relationship between external insults to teeth and the pulpal reaction. When such insults occur, fluid may flow through dentinal tubules as a result of cracking or porosity in enamel. Over time, there is an increase in mineralization along the paths of the tubules from the pulp to the damaged region in enamel and this can be visualized using high contrast XMT. The scanner used for this employs time-delay integration to minimize the effects of detector inhomogeneity in order to greatly increase the upper limit on signal-to-noise ratio that can be achieved with long exposure times. When enamel cracks are present in extracted teeth, the presence of these pathways indicates that the cracking occurred prior to extraction. At high contrast, growth lines are occasionally seen in deciduous teeth which may have resulted from periods of maternal illness. Various other anomalies in mineralization resulting from trauma or genetic abnormalities can also be investigated using this technique.

  7. Relationship between Contrast Enhancement of the Perivascular Space in the Basal Ganglia and Endolymphatic Volume Ratio.

    Science.gov (United States)

    Ohashi, Toshio; Naganawa, Shinji; Katagiri, Toshio; Kuno, Kayao

    2018-01-10

    We routinely obtain the endolymphatic hydrops (EH) image using heavily T 2 -weighted three dimensional-fluid attenuated inversion recovery (hT 2 w-3D-FLAIR) imaging at 4 hours after intravenous administration of a single-dose of gadolinium-based contrast media (IV-SD-GBCM). While repeating the examination, we speculated that the contrast enhancement of the perivascular space (PVS) in the basal ganglia might be related to the degree of EH. Therefore, the purpose of this study was to investigate the relationship between the endolymphatic volume ratio (%EL volume ) and the signal intensity of the PVS (SI-PVS). In 20 patients with a suspicion of EH, a heavily T 2 -weighted 3D-turbo spin echo sequence for MR cisternography (MRC) and an hT 2 w-3D-FLAIR as a positive perilymph image (PPI) were obtained at 4 hours after IV-SD-GBCM. The %EL volume of the cochlea and the vestibule were measured on the previously reported HYDROPS2-Mi2 image. The PVS in the basal ganglia was segmented on MRC using a region-growing method. The PVS regions were copied and pasted onto the PPI, and the SI-PVS was measured. The larger value of the right and the left ears was employed as the %EL volume , and the weighted average of both sides was employed as the SI-PVS. The correlation between the %EL volume and the SI-PVS was evaluated. There was a strong negative linear correlation between the %EL volume of the cochlea and the SI-PVS (r = -0.743, P < 0.001); however, there was no significant correlation between the %EL volume of the vestibule and the SI-PVS (r = -0.267, P = 0.256). There was a strong negative correlation between the cochlear %EL volume and the SI-PVS. Contrast enhancement of PVS might be a biomarker of EH.

  8. Relationship of signal-to-noise ratio with acquisition parameters in MRI for a given contrast

    International Nuclear Information System (INIS)

    Bittoun, J.; Leroy-Willig, A.; Idy, I.; Halimi, P.; Syrota, A.; Desgrez, A.; Saint-Jalmes, H.

    1987-01-01

    The signal-to-noise ratio (SNR) is certainly the most important characteristic of medical images, since the spatial resolution and the visualization of contrast are dependent on its value. On the other hand, modifying an acquisition variable in magnetic resonance imaging, in order to improve spatial resolution for example, may induce a SNR loss and finally alter the image quality. We have studied a theoretical relation between SNR and 2DFT method acquisition variables with the exception of parameters such as TR, TE and TI; these parameters are determined by the desired contrast in order to confirm a diagnosis. According to this relation SNR is proportional to each dimension of the slice, and to the square root of the number of averaged signals; it is inversely proportional to the number of frequency points and to the square root of the number of phase points. This relation was experimentally verified with phantoms and on an MR system at 1.5 T. It was then plotted as a multiple-entry graph on which operators at the console can read the number of averaged signals necessary to compensate SNR loss induced by a modification of other parameters [fr

  9. 'J-KAREN' - high intensity, high contrast laser

    International Nuclear Information System (INIS)

    Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Okada, Hajime; Sasao, Hajime; Sagisaka, Akito; Ochi, Yoshihiro; Tanaka, Momoko; Kondo, Kiminori; Tateno, Ryo; Sugiyama, Akira; Daido, Hiroyuki; Koike, Masato; Kawanishi, Syunichi; Shimomura, Takuya; Tanoue, Manabu; Wakai, Daisuke; Kondo, Shuji; Kanazawa, Shuhei

    2010-01-01

    We report on the high intensity, high contrast double chirped-pulse amplification (CPA) Ti:sapphire laser system (named J-KAREN). By use of an optical parametric chirped-pulse amplification (OPCPA) preamplifier that is seeded by a cleaned high-energy pulse, a background amplified spontaneous emission (ASE) level of 10 -10 relative to the peak main femtosecond pulse on the picosecond timescales demonstrated with an output energy of 1.7 J and a pulse duration of 30 fs, corresponding to a peak power of 60TW at a 10 Hz repetition rate. This system which uses a cryogenically-cooled Ti:sapphire final amplifier generates focused peak intensity in excess of 10 20 W/cm 2 at a 10 Hz repetition rate. (author)

  10. Digital breast tomosynthesis: studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images

    International Nuclear Information System (INIS)

    Goodsitt, Mitchell M; Chan, Heang-Ping; Telang, Santosh; Hadjiiski, Lubomir; Helvie, Mark A; Paramagul, Chintana; Neal, Colleen; Christodoulou, Emmanuel; Larson, Sandra C; Carson, Paul L; Schmitz, Andrea; Zelakiewicz, Scott; Watcharotone, Kuanwong

    2014-01-01

    The effect of acquisition geometry in digital breast tomosynthesis was evaluated with studies of contrast-to-noise ratios (CNRs) and observer preference. Contrast-detail (CD) test objects in 5 cm thick phantoms with breast-like backgrounds were imaged. Twelve different angular acquisitions (average glandular dose for each ∼1.1 mGy) were performed ranging from narrow angle 16° with 17 projection views (16d17p) to wide angle 64d17p. Focal slices of SART-reconstructed images of the CD arrays were selected for CNR computations and the reader preference study. For the latter, pairs of images obtained with different acquisition geometries were randomized and scored by 7 trained readers. The total scores for all images and readings for each acquisition geometry were compared as were the CNRs. In general, readers preferred images acquired with wide angle as opposed to narrow angle geometries. The mean percent preferred was highly correlated with tomosynthesis angle (R = 0.91). The highest scoring geometries were 60d21p (95%), 64d17p (80%), and 48d17p (72%); the lowest scoring were 16d17p (4%), 24d9p (17%) and 24d13p (33%). The measured CNRs for the various acquisitions showed much overlap but were overall highest for wide-angle acquisitions. Finally, the mean reader scores were well correlated with the mean CNRs (R = 0.83). (paper)

  11. Digital breast tomosynthesis: Studies of the effects of acquisition geometry on contrast-to-noise ratio and observer preference of low-contrast objects in breast phantom images

    Science.gov (United States)

    Goodsitt, Mitchell M.; Chan, Heang-Ping; Schmitz, Andrea; Zelakiewicz, Scott; Telang, Santosh; Hadjiiski, Lubomir; Watcharotone, Kuanwong; Helvie, Mark A.; Paramagul, Chintana; Neal, Colleen; Christodoulou, Emmanuel; Larson, Sandra C.; Carson, Paul L.

    2014-01-01

    The effect of acquisition geometry in digital breast tomosynthesis (DBT) was evaluated with studies of contrast-to-noise ratios (CNRs) and observer preference. Contrast-detail (CD) test objects in 5 cm thick phantoms with breast-like backgrounds were imaged. Twelve different angular acquisitions (average glandular dose for each ~1.1 mGy) were performed ranging from narrow angle 16° with 17 projection views (16d17p) to wide angle 64d17p. Focal slices of SART-reconstructed images of the CD arrays were selected for CNR computations and the reader preference study. For the latter, pairs of images obtained with different acquisition geometries were randomized and scored by 7 trained readers. The total scores for all images and readings for each acquisition geometry were compared as were the CNRs. In general, readers preferred images acquired with wide angle as opposed to narrow angle geometries. The mean percent preferred was highly correlated with tomosynthesis angle (R=0.91). The highest scoring geometries were 60d21p (95%), 64d17p (80%), and 48d17p (72%); the lowest scoring were 16d17p (4%), 24d9p (17%) and 24d13p (33%). The measured CNRs for the various acquisitions showed much overlap but were overall highest for wide-angle acquisitions. Finally, the mean reader scores were well correlated with the mean CNRs (R=0.83). PMID:25211509

  12. Sedimentary Sulphur:Iron Ratio Indicates Vivianite Occurrence: A Study from Two Contrasting Freshwater Systems.

    Directory of Open Access Journals (Sweden)

    Matthias Rothe

    Full Text Available An increasing number of studies constrain the importance of iron for the long-term retention of phosphorus (P under anoxic conditions, i.e. the formation of reduced iron phosphate minerals such as vivianite (Fe3(PO42⋅8H2O. Much remains unknown about vivianite formation, the factors controlling its occurrence, and its relevance for P burial during early sediment diagenesis. To study the occurrence of vivianite and to assess its relevance for P binding, surface sediments of two hydrologically contrasting waters were analysed by heavy-liquid separation and subsequent powder X-ray diffraction. In Lake Arendsee, vivianite was present in deeper sediment horizons and not in the uppermost layers with a sharp transition between vivianite and non-vivianite bearing layers. In contrast, in lowland river Lower Havel vivianite was present in the upper sediment layers and not in deeper horizons with a gradual transition between non-vivianite and vivianite bearing layers. In both waters, vivianite occurrence was accompanied by the presence of pyrite (FeS2. Vivianite formation was favoured by an elevated iron availability through a lower degree of sulphidisation and was present at a molar ratio of total sulphur to reactive iron smaller than 1.1, only. A longer lasting burden of sediments by organic matter, i.e. due to eutrophication, favours the release of sulphides, and the formation of insoluble iron sulphides leading to a lack of available iron and to less or no vivianite formation. This weakening in sedimentary P retention, representing a negative feedback mechanism (P release in terms of water quality, could be partly compensated by harmless Fe amendments.

  13. Reduced-Contrast Approximations for High-Contrast Multiscale Flow Problems

    KAUST Repository

    Chung, Eric T.; Efendiev, Yalchin

    2010-01-01

    In this paper, we study multiscale methods for high-contrast elliptic problems where the media properties change dramatically. The disparity in the media properties (also referred to as high contrast in the paper) introduces an additional scale that needs to be resolved in multiscale simulations. First, we present a construction that uses an integral equation to represent the highcontrast component of the solution. This representation involves solving an integral equation along the interface where the coefficients are discontinuous. The integral representation suggests some multiscale approaches that are discussed in the paper. One of these approaches entails the use of interface functions in addition to multiscale basis functions representing the heterogeneities without high contrast. In this paper, we propose an approximation for the solution of the integral equation using the interface problems in reduced-contrast media. Reduced-contrast media are obtained by lowering the variance of the coefficients. We also propose a similar approach for the solution of the elliptic equation without using an integral representation. This approach is simpler to use in the computations because it does not involve setting up integral equations. The main idea of this approach is to approximate the solution of the high-contrast problem by the solutions of the problems formulated in reduced-contrast media. In this approach, a rapidly converging sequence is proposed where only problems with lower contrast are solved. It was shown that this sequence possesses the convergence rate that is inversely proportional to the reduced contrast. This approximation allows choosing the reduced-contrast problem based on the coarse-mesh size as discussed in this paper. We present a simple application of this approach to homogenization of elliptic equations with high-contrast coefficients. The presented approaches are limited to the cases where there are sharp changes in the contrast (i.e., the high

  14. A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography detectors

    International Nuclear Information System (INIS)

    Baldelli, P.; Phelan, N.; Egan, G.

    2009-01-01

    The purpose of this study was to test a new, simple method of evaluating the contrast-to-noise ratio (CNR) over the entire image field of a digital detector and to compare different mammography systems. Images were taken under clinical exposure conditions for a range of simulated breast thicknesses using poly(methyl methacrylate) (PMMA). At each PMMA thickness, a second image which included an additional 0.2-mm Al sheet was also acquired. Image processing software was used to calculate the CNR in multiple regions of interest (ROI) covering the entire area of the detector in order to obtain a 'CNR image'. Five detector types were evaluated, two CsI-αSi (GE Healthcare) flat panel systems, one αSe (Hologic) flat panel system and a two generations of scanning photon counting digital detectors (Sectra). Flat panel detectors exhibit better CNR uniformity compared with the first-generation scanning photon counting detector in terms of mean pixel value variation. However, significant improvement in CNR uniformity was observed for the next-generation scanning detector. The method proposed produces a map of the CNR and a measurement of uniformity throughout the entire image field of the detector. The application of this method enables quality control measurement of individual detectors and a comparison of detectors using different technologies. (orig.)

  15. Relationship between coronary contrast-flow quantitative flow ratio and myocardial ischemia assessed by SPECT MPI

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Jeff M.; Rosendael, Alexander R. van; Jukema, J.W.; Delgado, Victoria; Bax, Jeroen J.; Scholte, Arthur J. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Koning, Gerhard [Medis Medical Imaging Systems B.V., Leiden (Netherlands); Dibbets-Schneider, Petra [Leiden University Medical Center, Department of Nuclear Medicine, Leiden (Netherlands); Mertens, Bart J. [Leiden University Medical Center, Department of Medical Statistics, Leiden (Netherlands); Reiber, Johan H.C. [Medis Medical Imaging Systems B.V., Leiden (Netherlands); Leiden University Medical Center, Department of Radiology, Leiden (Netherlands)

    2017-10-15

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called ''contrast-flow quantitative flow ratio (cQFR)''. Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters. (orig.)

  16. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    Science.gov (United States)

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  17. Association Between Contrast Media Volume-Glomerular Filtration Rate Ratio and Contrast-Induced Acute Kidney Injury After Primary Percutaneous Coronary Intervention.

    Science.gov (United States)

    Celik, Omer; Ozturk, Derya; Akin, Fatih; Ayca, Burak; Yalcın, Ahmet Arif; Erturk, Mehmet; Bıyık, Ismail; Ayaz, Ahmet; Akturk, Ibrahim Faruk; Enhos, Asım; Aslan, Serkan

    2015-07-01

    We hypothesized that contrast media volume-estimated glomerular filtration rate (CV-e-GFR) ratio may be a predictor of contrast media-induced acute kidney injury (CI-AKI). We investigated the associations between CV-e-GFR ratio and CI-AKI in 597 patients undergoing primary percutaneous coronary intervention (pPCI). An absolute ≥0.3 mg/dL increase in serum creatinine compared with baseline levels within 48 hours after the procedure was considered as CI-AKI; 78 (13.1%) of the 597 patients experienced CI-AKI. The amount of contrast during procedure was higher in the CI-AKI group than in those without CI-AKI (153 vs 135 mL, P = .003). The CV-e-GFR ratio was significantly higher in patients with CI-AKI than without (2.3 vs 1.5, P 2 (P < .001, OR = 5.917). In conclusion, CV-e-GFR ratio is significantly associated with CI-AKI after pPCI. © The Author(s) 2014.

  18. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.; Huepo, Sebastian; Calo, Victor M.; Galvis, Juan

    2015-01-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  19. Asymptotic expansions for high-contrast linear elasticity

    KAUST Repository

    Poveda, Leonardo A.

    2015-03-01

    We study linear elasticity problems with high contrast in the coefficients using asymptotic limits recently introduced. We derive an asymptotic expansion to solve heterogeneous elasticity problems in terms of the contrast in the coefficients. We study the convergence of the expansion in the H1 norm. © 2015 Elsevier B.V.

  20. The predictive value of the product of contrast medium volume and urinary albumin/creatinine ratio in contrast-induced acute kidney injury.

    Science.gov (United States)

    Wang, Chunrui; Ma, Shuai; Deng, Bo; Lu, Jianxin; Shen, Wei; Jin, Bo; Shi, Haiming; Ding, Feng

    2017-11-01

    Preexisting renal impairment and the amount of contrast media are the most important risk factors for contrast-induced acute kidney injury (CI-AKI). We aimed to investigate whether the product of contrast medium volume and urinary albumin/creatinine ratio (CMV × UACR) would be a better predictor of CI-AKI in patients undergoing nonemergency coronary interventions. This was a prospective single-center observational study, and 912 consecutive patients who were exposed to contrast media during coronary interventions were investigated prospectively. CI-AKI is defined as a 44.2 μmol/L rise in serum creatinine or a 25% increase, assessed within 48 h after administration of contrast media in the absence of other causes. Fifty patients (5.48%) developed CI-AKI. The urinary albumin/creatinine ratio (UACR) (OR = 1.002, 95% CI = 1.000-1.003, p = .012) and contrast medium volume (CMV) (OR = 1.008, 95% CI = 1.001-1.014, p = .017) were independent risk factors for the development of CI-AKI. The area under the ROC curve of CMV, UACR and CMV × UACR were 0.662 (95% CI = 0.584-0.741, p < .001), 0.761 (95% CI = 0.674-0.847, p < .001) and 0.808 (95% CI = 0.747-0.896, p < .001), respectively. The cutoff value of CMV × UACR to predict CI-AKI was 1186.2, with 80.0% sensitivity and 62.2% specificity. The product of CMV and UACR (CMV × UACR) might be a predictor of CI-AKI in patients undergoing nonemergency coronary interventions, which was superior to CMV or UACR alone.

  1. High Contrast Vacuum Nuller Testbed (VNT) Contrast, Performance and Null Control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-01-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal planeregion extending from 14 D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. TheVNC is a hybrid interferometriccoronagraphic approach for exoplanet science. It operates with high Lyot stopefficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential futureNASA flight telescopes. NASAGoddard Space Flight Center (GSFC) has a well-established effort to develop the VNCand its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and itsenabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry tounprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a W configurationto accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters.We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, criticaltechnologies and null sensing and control.

  2. High contrast vacuum nuller testbed (VNT) contrast, performance, and null control

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Madison, Timothy; Bolcar, Matthew R.

    2012-09-01

    Herein we report on our Visible Nulling Coronagraph high-contrast result of 109 contrast averaged over a focal plane region extending from 1 - 4 λ/D with the Vacuum Nuller Testbed (VNT) in a vibration isolated vacuum chamber. The VNC is a hybrid interferometric/coronagraphic approach for exoplanet science. It operates with high Lyot stop efficiency for filled, segmented and sparse or diluted-aperture telescopes, thereby spanning the range of potential future NASA flight telescopes. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop the VNC and its technologies, and has developed an incremental sequence of VNC testbeds to advance this approach and its enabling technologies. These testbeds have enabled advancement of high-contrast, visible light, nulling interferometry to unprecedented levels. The VNC is based on a modified Mach-Zehnder nulling interferometer, with a “W” configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. We give an overview of the VNT and discuss the high-contrast laboratory results, the optical configuration, critical technologies and null sensing and control.

  3. The optimal use of contrast agents at high field MRI

    International Nuclear Information System (INIS)

    Trattnig, Siegfried; Pinker, Kathia; Ba-Ssalamah, Ahmed; Noebauer-Huhmann, Iris-Melanie

    2006-01-01

    The intravenous administration of a standard dose of conventional gadolinium-based contrast agents produces higher contrast between the tumor and normal brain at 3.0 Tesla (T) than at 1.5 T, which allows reducing the dose to half of the standard one to produce similar contrast at 3.0 T compared to 1.5 T. The assessment of cumulative triple-dose 3.0 T images obtained the best results in the detection of brain metastases compared to other sequences. The contrast agent dose for dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging at 3.0 T can be reduced to 0.1 mmol compared to 0.2 mmol at 1.5 T due to the increased susceptibility effects at higher magnetic field strengths. Contrast agent application makes susceptibility-weighted imaging (SWI) at 3.0 T clinically attractive, with an increase in spatial resolution within the same scan time. Whereas a double dose of conventional gadolinium-based contrast agents was optimal in SWI with respect to sensitivity and image quality, a standard dose of gadobenate dimeglumine, which has a two-fold higher T1-relaxivity in blood, produced the same effect. For MR-arthrography, optimized concentrations of gadolinium-based contrast agents are similar at 3.0 and 1.5 T. In summary, high field MRI requires the optimization of the contrast agent dose in different clinical applications. (orig.)

  4. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  5. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan

    2014-01-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  6. Asymptotic expansions for high-contrast elliptic equations

    KAUST Repository

    Calo, Victor M.

    2014-03-01

    In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.

  7. High spatial resolution and high contrast visualization of brain arteries and veins. Impact of blood pool contrast agent and water-selective excitation imaging at 3T

    International Nuclear Information System (INIS)

    Spuentrup, E.; Jacobs, J.E.; Kleimann, J.F.

    2010-01-01

    Purpose: To investigate a blood pool contrast agent and water-selective excitation imaging at 3 T for high spatial and high contrast imaging of brain vessels including the veins. Methods and Results: 48 clinical patients (47 ± 18 years old) were included. Based on clinical findings, twenty-four patients received a single dose of standard extracellular Gadoterate-meglumine (Dotarem registered ) and 24 received the blood pool contrast agent Gadofosveset (Vasovist registered ). After finishing routine MR protocols, all patients were investigated with two high spatial resolution (0.15 mm 3 voxel size) gradient echo sequences in random order in the equilibrium phase (steady-state) as approved by the review board: A standard RF-spoiled gradient-echo sequence (HR-SS, TR/TE 5.1 / 2.3 msec, FA 30 ) and a fat-suppressed gradient-echo sequence with water-selective excitation (HR-FS, 1331 binominal-pulse, TR/TE 8.8 / 3.8 msec, FA 30 ). The images were subjectively assessed (image quality with vessel contrast, artifacts, depiction of lesions) by two investigators and contrast-to-noise ratios (CNR) were compared using the Student's t-test. The image quality and CNR in the HR-FS were significantly superior compared to the HR-SS for both contrast agents (p < 0.05). The CNR was also improved when using the blood pool agent but only to a minor extent while the subjective image quality was similar for both contrast agents. Conclusion: The utilized sequence with water-selective excitation improved image quality and CNR properties in high spatial resolution imaging of brain arteries and veins. The used blood pool contrast agent improved the CNR only to a minor extent over the extracellular contrast agent. (orig.)

  8. Optimization of the Contrast Mixture Ratio for Simultaneous Direct MR and CT Arthrography: an in Vitro Study

    International Nuclear Information System (INIS)

    Choi, Ja Young; Hong, Sung Hwan; Kim, Na Ra; Jun, Woo Sun; Moon, Sung Gyu; Kang, Heung Sik; Lee, Joon Woo; Choi, Jung Ah

    2008-01-01

    This study was designed to determine the optimal mixture ratio of gadolinium and iodinated contrast agent for simultaneous direct MR arthrography and CT arthrography. An in vitro study was performed utilizing mixtures of gadolinium at six different concentrations (0.625, 1.25, 2.5, 5.0, 10 and 20 mmol/L) and iodinated contrast agent at seven different concentrations (0, 12.5, 25, 37.5, 50, 75 and 92-99.9%). These mixtures were placed in tissue culture plates, and were then imaged with CT and MR (with T1-weighted sequences, proton-density sequences and T2-weighted sequences). CT numbers and signal intensities were measured. Pearson's correlation coefficients were used to assess the correlations between the gadolinium/iodinated contrast agent mixtures and the CT numbers/MR signal intensities. Scatter diagrams were plotted for all gadolinium/iodinated contrast agent combinations and two radiologists in consensus identified the mixtures that yielded the optimal CT numbers and MR signal intensities. The CT numbers showed significant correlation with iodinated contrast concentrations (r = 0.976, p < 0.001), whereas the signal intensities as measured on MR images showed a significant correlation with both gadolinium and iodinated contrast agent concentrations (r = -484 to -0.719, p < 0.001). A review of the CT and MR images, graphs, and scatter diagram of 42 combinations of the contrast agent showed that a concentration of 1.25 mmol/L gadolinium and 25% iodinated contrast agent was the best combination for simultaneous CT and MR imaging. A mixture of 1.25 mmol/L gadolinium and 25% iodinated contrast agent was found to be optimal for simultaneous direct MR arthrography and CT arthrography

  9. Phase contrast imaging with coherent high energy X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Snigireva, I. [ESRF, Grenoble (France)

    1997-02-01

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known in optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.

  10. Liver imaging with MDCT and high concentration contrast media

    International Nuclear Information System (INIS)

    Spielmann, Audrey L.

    2003-01-01

    Liver imaging has advanced greatly over the last 10 years with helical CT capability and more recently the addition of multidetector-row CT (MDCT). Multidetector CT technology facilitates imaging at faster speeds with improved image quality and less breathing artifact [Abdom. Imaging 25 (2000) 643]. Exquisite three-dimensional data sets can be obtained with thin collimation providing improved lesion detection, multiplanar imaging, and the ability to perform CT angiography of the liver and mesenteric vessels. New challenges arise with this advance in technology including safety considerations. The radiation dose to the patient has increased with MDCT and this is compounded by the ability to perform multi-phase liver imaging. Furthermore, issues of contrast media administration require reconsideration including optimal timing and rate of administration, the total volume of contrast needed and the ideal iodine concentration of the contrast media. Recently, the use of high concentration contrast media (HCCM) has been explored and study results to date will be reviewed

  11. Plant/soil concentration ratios of 226Ra for contrasting sites around an active U mine-mill

    International Nuclear Information System (INIS)

    Ibrahim, S.A.; Whicker, F.W.

    1988-01-01

    Concentrations of 226Ra were determined in native vegetation and underlying substrate (soil and tailings) at various sites around a conventional open-pit, acid leach U production operation in Wyoming. Plant/soil concentration ratios (CRs) for 226Ra were estimated for various sites, including weathered tailings; a tailings impoundment shoreline; downwind from exposed tailings; a mine overburden reclamation area; and several background locations. Radium-226 concentrations for vegetation and substrate and CR values from the perturbed sites were elevated above background. The highest vegetation concentration (1.3 Bq g-1) was found in a grass which had invaded exposed, weathered tailings. Levels of 226Ra in soil and vegetation and CR values decreased with distance from the tailings impoundment edge. CR values varied significantly among sites, but few differences were found between plant species groups. The observed CR values ranged from 0.07 at the background and reclamation areas to 0.4 downwind from the tailings area. Average CR values for plants growing on exposed tailings and within one meter from the impoundment edge were 0.15 and 0.3, respectively. CR values of 226Ra for plants on tailings substrates were comparatively low in contrast to other radionuclides in the U chain. We speculate that in the case of sulfuric acid leached tailings-derived material, 226Ra is sequestered as sulfate, which is highly insoluble relative to the sulfates of the other elements (e.g., U and Th) resulting in reduced availability for plant uptake

  12. 1060-nm Tunable Monolithic High Index Contrast Subwavelength Grating VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We present the first tunable vertical-cavity surface-emitting laser (VCSEL) where the top distributed Bragg reflector has been completely substituted by an air-cladded high-index-contrast subwavelength grating (HCG) mirror. In this way, an extended cavity design can be realized by reducing...

  13. Polarization-Independent Wideband High-Index-Contrast Grating Mirror

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Park, Gyeong Cheol; Malureanu, Radu

    2015-01-01

    Island-type two-dimensional high-index-contrast grating mirror based on a standard silicon-on-insulator wafer have been experimentally demonstrated. The measured spectra shows a bandwidth of ∼192 nm with a reflectivity over 99% as well as polarization independence. Numerical simulations show...

  14. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR asse ) and contrast-to-noise ratio (CNR asse ) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR asse and CNR asse . The results of the study show that the CNR asse (SNR asse ) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study ( asse (SNR asse ) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR asse (SNR asse ) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR asse (SNR asse ) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR asse (SNR asse ) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR asse and the resolution with respect to pitch

  15. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    Science.gov (United States)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  16. Evidence for positive, but not negative, behavioral contrast with wheel-running reinforcement on multiple variable-ratio schedules.

    Science.gov (United States)

    Belke, Terry W; Pierce, W David

    2016-12-01

    Rats responded on a multiple variable-ratio (VR) 10 VR 10 schedule of reinforcement in which lever pressing was reinforced by the opportunity to run in a wheel for 30s in both the changed (manipulated) and unchanged components. To generate positive contrast, the schedule of reinforcement in the changed component was shifted to extinction; to generate negative contrast, the schedule was shifted to VR 3. With the shift to extinction in the changed component, wheel-running and local lever-pressing rates increased in the unchanged component, a result supporting positive contrast; however, the shift to a VR 3 schedule in the changed component showed no evidence of negative contrast in the unaltered setting, only wheel running decreased in the unchanged component. Changes in wheel-running rates across components were consistent in showing a compensation effect, depending on whether the schedule manipulation increased or decreased opportunities for wheel running in the changed component. These findings are the first to demonstrate positive behavioral contrast on a multiple schedule with wheel running as reinforcement in both components. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The V-SHARK high contrast imager at LBT

    Science.gov (United States)

    Pedichini, F.; Ambrosino, F.; Centrone, M.; Farinato, J.; Li Causi, G.; Pinna, E.; Puglisi, A.; Stangalini, M.; Testa, V.

    2016-08-01

    In the framework of the SHARK project the visible channel is a novel instrument synergic to the NIR channel and exploiting the performances of the LBT XAO at visible wavelengths. The status of the project is presented together with the design study of this innovative instrument optimized for high contrast imaging by means of high frame rate. Its expected results will be presented comparing the simulations with the real data of the "Forerunner" experiment taken at 630nm.

  18. Gd-HOPO Based High Relaxivity MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Ankona; Raymond, Kenneth

    2008-11-06

    Tris-bidentate HOPO-based ligands developed in our laboratory were designed to complement the coordination preferences of Gd{sup 3+}, especially its oxophilicity. The HOPO ligands provide a hexadentate coordination environment for Gd{sup 3+} in which all he donor atoms are oxygen. Because Gd{sup 3+} favors eight or nine coordination, this design provides two to three open sites for inner-sphere water molecules. These water molecules rapidly exchange with bulk solution, hence affecting the relaxation rates of bulk water olecules. The parameters affecting the efficiency of these contrast agents have been tuned to improve contrast while still maintaining a high thermodynamic stability for Gd{sup 3+} binding. The Gd- HOPO-based contrast agents surpass current commercially available agents ecause of a higher number of inner-sphere water molecules, rapid exchange of inner-sphere water molecules via an associative mechanism, and a long electronic relaxation time. The contrast enhancement provided by these agents is at least twice that of commercial contrast gents, which are based on polyaminocarboxylate ligands.

  19. The advantage of high relaxivity contrast agents in brain perfusion

    International Nuclear Information System (INIS)

    Cotton, F.; Hermier, M.

    2006-01-01

    Accurate MRI characterization of brain lesions is critical for planning therapeutic strategy, assessing prognosis and monitoring response to therapy. Conventional MRI with gadolinium-based contrast agents is useful for the evaluation of brain lesions, but this approach primarily depicts areas of disruption of the blood-brain barrier (BBB) rather than tissue perfusion. Advanced MR imaging techniques such as dynamic contrast agent-enhanced perfusion MRI provide physiological information that complements the anatomic data available from conventional MRI. We evaluated brain perfusion imaging with gadobenate dimeglumine (Gd-BOPTA, MultiHance; Bracco Imaging, Milan, Italy). The contrast-enhanced perfusion technique was performed on a Philips Intera 1.5-T MR system. The technique used to obtain perfusion images was dynamic susceptibility contrast-enhanced MRI, which is highly sensitive to T2* changes. Combined with PRESTO perfusion imaging, SENSE is applied to double the temporal resolution, thereby improving the signal intensity curve fit and, accordingly, the accuracy of the derived parametric images. MultiHance is the first gadolinium MR contrast agent with significantly higher T1 and T2 relaxivities than conventional MR contrast agents. The higher T1 relaxivity, and therefore better contrast-enhanced T1-weighted imaging, leads to significantly improved detection of BBB breakdown and hence improved brain tumor conspicuity and delineation. The higher T2 relaxivity allows high-quality T2*-weighted perfusion MRI and the derivation of good quality relative cerebral blood volume (rCBV) maps. We determined the value of MultiHance for enhanced T2*-weighted perfusion imaging of histologically proven (by surgery or stereotaxic biopsy) intraaxial brain tumors (n=80), multiple sclerosis lesions (n=10), abscesses (n=4), neurolupus (n=15) and stroke (n=16). All the procedures carried out were safe and no adverse events occurred. The acquired perfusion images were of good quality in

  20. Increasing the darkfield contrast-to-noise ratio using a deconvolution-based information retrieval algorithm in X-ray grating-based phase-contrast imaging.

    Science.gov (United States)

    Weber, Thomas; Pelzer, Georg; Bayer, Florian; Horn, Florian; Rieger, Jens; Ritter, André; Zang, Andrea; Durst, Jürgen; Anton, Gisela; Michel, Thilo

    2013-07-29

    A novel information retrieval algorithm for X-ray grating-based phase-contrast imaging based on the deconvolution of the object and the reference phase stepping curve (PSC) as proposed by Modregger et al. was investigated in this paper. We applied the method for the first time on data obtained with a polychromatic spectrum and compared the results to those, received by applying the commonly used method, based on a Fourier analysis. We confirmed the expectation, that both methods deliver the same results for the absorption and the differential phase image. For the darkfield image, a mean contrast-to-noise ratio (CNR) increase by a factor of 1.17 using the new method was found. Furthermore, the dose saving potential was estimated for the deconvolution method experimentally. It is found, that for the conventional method a dose which is higher by a factor of 1.66 is needed to obtain a similar CNR value compared to the novel method. A further analysis of the data revealed, that the improvement in CNR and dose efficiency is due to the superior background noise properties of the deconvolution method, but at the cost of comparability between measurements at different applied dose values, as the mean value becomes dependent on the photon statistics used.

  1. Achieving high aspect ratio wrinkles by modifying material network stress.

    Science.gov (United States)

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  2. Quality assurance in MRI breast screening: comparing signal-to-noise ratio in dynamic contrast-enhanced imaging protocols

    Science.gov (United States)

    Kousi, Evanthia; Borri, Marco; Dean, Jamie; Panek, Rafal; Scurr, Erica; Leach, Martin O.; Schmidt, Maria A.

    2016-01-01

    MRI has been extensively used in breast cancer staging, management and high risk screening. Detection sensitivity is paramount in breast screening, but variations of signal-to-noise ratio (SNR) as a function of position are often overlooked. We propose and demonstrate practical methods to assess spatial SNR variations in dynamic contrast-enhanced (DCE) breast examinations and apply those methods to different protocols and systems. Four different protocols in three different MRI systems (1.5 and 3.0 T) with receiver coils of different design were employed on oil-filled test objects with and without uniformity filters. Twenty 3D datasets were acquired with each protocol; each dataset was acquired in under 60 s, thus complying with current breast DCE guidelines. In addition to the standard SNR calculated on a pixel-by-pixel basis, we propose other regional indices considering the mean and standard deviation of the signal over a small sub-region centred on each pixel. These regional indices include effects of the spatial variation of coil sensitivity and other structured artefacts. The proposed regional SNR indices demonstrate spatial variations in SNR as well as the presence of artefacts and sensitivity variations, which are otherwise difficult to quantify and might be overlooked in a clinical setting. Spatial variations in SNR depend on protocol choice and hardware characteristics. The use of uniformity filters was shown to lead to a rise of SNR values, altering the noise distribution. Correlation between noise in adjacent pixels was associated with data truncation along the phase encoding direction. Methods to characterise spatial SNR variations using regional information were demonstrated, with implications for quality assurance in breast screening and multi-centre trials.

  3. Deep Reactive Ion Etching for High Aspect Ratio Microelectromechanical Components

    DEFF Research Database (Denmark)

    Jensen, Søren; Yalcinkaya, Arda Deniz; Jacobsen, S.

    2004-01-01

    A deep reactive ion etch (DRIE) process for fabrication of high aspect ratio trenches has been developed. Trenches with aspect ratios exceeding 20 and vertical sidewalls with low roughness have been demonstrated. The process has successfully been used in the fabrication of silicon-on-insulator (SOI...

  4. High and low osmolar contrast media: Who pays?

    International Nuclear Information System (INIS)

    Goethlin, J.H.

    1988-01-01

    To possibly avoid a case of contrast medium-related death in Norway every second or third year will mean a cost of many millions of dollars. It is not feasible without many patients being deprived of diagnostic possibilities. The solution is at present to use LOCM in high risk patients and small children until sufficient data (large, controlled series) can give a reliable answer to if or when LOCM should be used. (orig.)

  5. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Bauer, Ralf W. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner [Department of Biophysics, Goethe University, Max von Laue-Str.1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J. [Department of Diagnostic Radiology, Goethe University Hospital, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-11-15

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P {<=} 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 {+-} 12.8 Hounsfield Units (HU), 204.8 {+-} 14.4 HU, 267.5 {+-} 18.6 HU, 311.9 {+-} 22.3 HU, 347.3 {+-} 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the

  6. Image fusion in dual energy computed tomography for detection of various anatomic structures - Effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality

    International Nuclear Information System (INIS)

    Paul, Jijo; Bauer, Ralf W.; Maentele, Werner; Vogl, Thomas J.

    2011-01-01

    Objective: The purpose of this study was to evaluate image fusion in dual energy computed tomography for detecting various anatomic structures based on the effect on contrast enhancement, contrast-to-noise ratio, signal-to-noise ratio and image quality. Material and methods: Forty patients underwent a CT neck with dual energy mode (DECT under a Somatom Definition flash Dual Source CT scanner (Siemens, Forchheim, Germany)). Tube voltage: 80-kV and Sn140-kV; tube current: 110 and 290 mA s; collimation-2 x 32 x 0.6 mm. Raw data were reconstructed using a soft convolution kernel (D30f). Fused images were calculated using a spectrum of weighting factors (0.0, 0.3, 0.6 0.8 and 1.0) generating different ratios between the 80- and Sn140-kV images (e.g. factor 0.6 corresponds to 60% of their information from the 80-kV image, and 40% from the Sn140-kV image). CT values and SNRs measured in the ascending aorta, thyroid gland, fat, muscle, CSF, spinal cord, bone marrow and brain. In addition, CNR values calculated for aorta, thyroid, muscle and brain. Subjective image quality evaluated using a 5-point grading scale. Results compared using paired t-tests and nonparametric-paired Wilcoxon-Wilcox-test. Results: Statistically significant increases in mean CT values noted in anatomic structures when increasing weighting factors used (all P ≤ 0.001). For example, mean CT values derived from the contrast enhanced aorta were 149.2 ± 12.8 Hounsfield Units (HU), 204.8 ± 14.4 HU, 267.5 ± 18.6 HU, 311.9 ± 22.3 HU, 347.3 ± 24.7 HU, when the weighting factors 0.0, 0.3, 0.6, 0.8 and 1.0 were used. The highest SNR and CNR values were found in materials when the weighting factor 0.6 used. The difference CNR between the weighting factors 0.6 and 0.3 was statistically significant in the contrast enhanced aorta and thyroid gland (P = 0.012 and P = 0.016, respectively). Visual image assessment for image quality showed the highest score for the data reconstructed using the weighting factor 0

  7. The Preinterventional Cystatin-Creatinine-Ratio: A Prognostic Marker for Contrast Medium-Induced Acute Kidney Injury and Long-Term All-Cause Mortality.

    Science.gov (United States)

    Lüders, Florian; Meyborg, Matthias; Malyar, Nasser; Reinecke, Holger

    2015-01-01

    Contrast medium-induced acute kidney injury (CI-AKI) is an important iatrogenic complication following the injection of iodinated contrast media. The level of serum creatinine (SCr) is the currently accepted 'gold standard' to diagnose CI-AKI. Cystatin C (CyC) has been detected as a more sensitive marker for renal dysfunction. Both have their limitations. The role of the preinterventional CyC-SCr ratio for evaluating the risk for CI-AKI and long-term all-cause mortality was retrospectively analyzed in the prospective single-center 'Dialysis-versus-Diuresis trial'. CI-AKI was defined and staged according to the Acute Kidney Injury Network classification. Three hundred and seventy-three patients were included (average age 67.4 ± 10.2 years, 16.4% women, 29.2% with diabetes mellitus, mean baseline glomerular filtration rate 56.3 ± 20.2 ml/min/1.73 m(2) [as estimated by Chronic Kidney Disease Epidemiology Collaboration Serum Creatinine Cystatin C equation], 5.1% ejection fraction high significant association between preinterventional CyC-SCr ratio and long-term all-cause mortality (mean follow-up 649 days, hazards ratio 4.096, 95% CI 1.625-10.329, p = 0.003). The preinterventional CyC-SCr ratio is independently associated with CI-AKI and highly significant associated with long-term mortality after heart catheterization. © 2015 S. Karger AG, Basel.

  8. Evaluation and comparison of contrast to noise ratio and signal to noise ratio according to change of reconstruction on breast PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Jae [Dept. of Nuclear Medicine, Seoul National University Hospital, Seoul (Korea, Republic of); Lee, Eul Kyu [Dept. of Radiology, Inje Paik University Hospital Jeo-dong, Seoul (Korea, Republic of); Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, The Baekseok Culture University, Cheonan (Korea, Republic of); Lyu, Kwang Yeul; Park, Hoon Hee; Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, The Shingu University, Sungnam (Korea, Republic of)

    2017-03-15

    The purpose of this study was to measure contrast to noise ratio (CNR) and signal to noise ratio (SNR) according to change of reconstruction from region of interest (ROI) in breast positron emission tomography- computed tomography (PET-CT), and to analyze the CNR and SNR statically. We examined images of breast PET-CT of 100 patients in a University-affiliated hospital, Seoul, Korea. Each patient's image of breast PET-CT were calculated by using Image J. Differences of CNR and SNR among four reconstruction algorithms were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p<0.05). We have analysis socio-demographical variables, CNR and SNR according to reconstruction images, 95% confidence according to CNR and SNR of reconstruction and difference in a mean of CNR and SNR. SNR results, with the quality of distributions in the order of PSF{sub T}OF, Iterative and Iterative-TOF, FBP-TOF. CNR, with the quality of distributions in the order of PSF{sub T}OF, Iterative and Iterative-TOF, FBP-TOF. CNR and SNR of PET-CT reconstruction methods of the breast would be useful to evaluate breast diseases.

  9. System and method for high precision isotope ratio destructive analysis

    Science.gov (United States)

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  10. Moderate Contrast in the Evaluation of Paintings Is Liked More but Remembered Less than High Contrast

    Directory of Open Access Journals (Sweden)

    Katinka Dijkstra

    2017-09-01

    Full Text Available Many visual aspects of paintings, as well as exposure to art and cultural norms, contribute to the aesthetic evaluation of paintings. The current study looked at heightened visual contrast as an important factor in the appreciation of paintings. Participants evaluated abstract digitized paintings that were manipulated in contrast for an appreciation task and were later presented with these paintings in a memory task. The results indicated that for art appreciation, a moderate increase in contrast resulted in the highest appreciation for paintings whereas recognition memory was better for paintings with a higher increase in contrast. These results replicate earlier findings with regard to the role of contrast in aesthetic perception and extend these findings by demonstrating a surprising different effect of contrast manipulation for recognition memory. Confidence with which memory decisions were made was in line with art appreciation decisions not memory performance.

  11. Design Concepts for Low Aspect Ratio High Pressure Turbines for High Bypass Ratio Turbofans, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance gains and weight reductions from using Ceramic Matrix Composite(CMC) turbine blades in both the High Pressure Turbine(HPT) and Low Pressure...

  12. Optimization of Contrast-to-Tissue Ratio by Adaptation of Transmitted Ternary Signal in Ultrasound Pulse Inversion Imaging

    Directory of Open Access Journals (Sweden)

    Sébastien Ménigot

    2013-01-01

    Full Text Available Ultrasound contrast imaging has provided more accurate medical diagnoses thanks to the development of innovating modalities like the pulse inversion imaging. However, this latter modality that improves the contrast-to-tissue ratio (CTR is not optimal, since the frequency is manually chosen jointly with the probe. However, an optimal choice of this command is possible, but it requires precise information about the transducer and the medium which can be experimentally difficult to obtain, even inaccessible. It turns out that the optimization can become more complex by taking into account the kind of generators, since the generators of electrical signals in a conventional ultrasound scanner can be unipolar, bipolar, or tripolar. Our aim was to seek the ternary command which maximized the CTR. By combining a genetic algorithm and a closed loop, the system automatically proposed the optimal ternary command. In simulation, the gain compared with the usual ternary signal could reach about 3.9 dB. Another interesting finding was that, in contrast to what is generally accepted, the optimal command was not a fixed-frequency signal but had harmonic components.

  13. High extinction ratio integrated optical modulator for quantum telecommunication systems

    Science.gov (United States)

    Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.

    2018-01-01

    A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.

  14. Changes in signal-to-noise ratios and contrast-to-noise ratios of hypervascular hepatocellular carcinomas on ferucarbotran-enhanced dynamic MR imaging

    International Nuclear Information System (INIS)

    Park, Yulri; Choi, Dongil; Kim, Seong Hyun; Kim, Seung Hoon; Kim, Min Ju; Lee, Jongmee; Lim, Jae Hoon; Lee, Won Jae; Lim, Hyo K.

    2006-01-01

    Purpose: To verify changes in the signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of hypervascular hepatocellular carcinomas (HCCs) on ferucarbotran-enhanced dynamic T1-weighted MR imaging. Materials and methods: Fifty-two patients with 61 hypervascular HCCs underwent ferucarbotran-enhanced dynamic MR imaging, and then hepatic resection. Hypervascular HCCs were identified when definite enhancement was noted during the arterial dominant phase of three-phase MDCT. Dynamic MR Images with T1-weighted fast multiplanar spoiled gradient-recalled echo sequence (TR200/TE4.2) were obtained before and 20 s, and 1, 3, 5, and 10 min, after bolus injection of ferucarbotran. We estimated the signal intensities of tumors and livers, and calculated the SNRs and CNRs of the tumors. Results: On ferucarbotran-enhanced dynamic MR imaging, SNR measurements showed a fluctuating pattern, namely, an increase in SNR followed by a decrease and a subsequent increase (or a decrease in SNR followed by a increase and a subsequent decrease) in 50 (82.0%) of 61 tumors, a single-peak SNR pattern (highest SNR on 20 s, 1, 3, or 5 min delayed images followed by a decrease) in seven (11.5%), and a decrease in SNR followed by an increase in four (6.6%). Maximum absolute CNRs with positive value were noted on 10 min delayed images in 41 (67.2%) tumors, and maximum absolute CNRs with negative value were observed on 20 s delayed images in 12 (19.7%) and on 1 min delayed images in eight (13.1%). Conclusion: Despite showing various SNR and CNR changes, the majority of hypervascular HCCs demonstrated a fluctuating SNR pattern on ferucarbotran-enhanced dynamic MR imaging and a highest CNR on 10 min delayed image, which differed from the classic enhancement pattern on multiphasic CT

  15. Scattering and extinction from high-aspect-ratio trenches

    DEFF Research Database (Denmark)

    Roberts, Alexander Sylvester; Søndergaard, Thomas; Chirumamilla, Manohar

    2015-01-01

    We construct a semi-analytical model describing the scattering, extinction and absorption properties of a high aspect-ratio trench in a metallic film. We find that these trenches act as highly efficient scatterers of free waves. In the perfect conductor limit, which for many metals is approached...

  16. Electron acceleration via high contrast laser interacting with submicron clusters

    International Nuclear Information System (INIS)

    Zhang Lu; Chen Liming; Wang Weiming; Yan Wenchao; Yuan Dawei; Mao Jingyi; Wang Zhaohua; Liu Cheng; Shen Zhongwei; Li Yutong; Dong Quanli; Lu Xin; Ma Jinglong; Wei Zhiyi; Faenov, Anatoly; Pikuz, Tatiana; Li Dazhang; Sheng Zhengming; Zhang Jie

    2012-01-01

    We experimentally investigated electron acceleration from submicron size argon clusters-gas target irradiated by a 100 fs, 10 TW laser pulses having a high-contrast. Electron beams are observed in the longitudinal and transverse directions to the laser propagation. The measured energy of the longitudinal electron reaches 600 MeV and the charge of the electron beam in the transverse direction is more than 3 nC. A two-dimensional particle-in-cell simulation of the interaction has been performed and it shows an enhancement of electron charge by using the cluster-gas target.

  17. High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST

    Science.gov (United States)

    Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.

    2017-11-01

    JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.

  18. High-dose contrast-enhanced MRI in multiple sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Koudriavtseva, T. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Pozzilli, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Di Biasi, C. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Iannilli, M. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Trasimeni, G. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy); Gasperini, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Argentino, C. [Department of Neurosciences, University of Rome ``La Sapienza`` Rome (Italy); Gualdi, G.F. [MR Unit, Clinica Medica 1, University of Rome ``La Sapienza``, Rome (Italy)

    1996-05-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs.

  19. High-dose contrast-enhanced MRI in multiple sclerosis

    International Nuclear Information System (INIS)

    Koudriavtseva, T.; Pozzilli, C.; Di Biasi, C.; Iannilli, M.; Trasimeni, G.; Gasperini, C.; Argentino, C.; Gualdi, G.F.

    1996-01-01

    Contrast-enhanced MRI is effective for assessing disease activity in multiple sclerosis (MS) and may provide an outcome measure for testing the efficacy of treatment in clinical trials. To compare the sensitivity of high-dose gadolinium-HP-DO3A with that of a standard dose of gadolinium-DTPA, we studied 16 patients with relapsing-remitting MS in the acute phase of the disease. Each underwent two MRI examinations within at most 48 h. The initial MRI study was with a standard dose of gadolinium-DTPA (0.1 mmol/kg), and the second one an experimental dose of gadolinium-HP-DO3A (0.3 mmol/kg). No adverse effects were attributed to the contrast media. The high-dose study revealed more enhancing lesions than the standard-dose study (56 vs 38). This difference was found to be more relevant for infratentorial and small lesions. Furthermore, with the higher dose, there was a marked qualitative improvement in the visibility and delineation of the lesions. (orig.). With 4 figs., 2 tabs

  20. High conversion ratio plutonium recycle in pressurized water reactors

    International Nuclear Information System (INIS)

    Edlund, M.C.

    1975-01-01

    The use of Pu light water reactors in such a way as to minimise the depletion of Pu needed for future use, and therefore to reduce projected demands for U ore and U enrichment is envisaged. Fuel utilisation in PWRs could be improved by tightly-packed fuel rod lattices with conversion ratios of 0.8 to 0.9 compared with ratios of about 0.5 in Pu recycle designs using fuel to water volume ratios of currently operating PWRs. A conceptual design for the Babcock and Wilcox Company reactors now in operation is presented and for illustrative purposes thermalhydraulic design considerations and the reactor physics are described. Principle considerations in the mechanical design of the fuel assemblies are the effect of hydraulic forces, thermal expansion, and fission gas release. The impact of high conversion ratio plutionium recycle in separative work and natural U requirements for PWRs likely to be in operation by 1985 are examined. (U.K.)

  1. Stability of high β large aspect ratio tokamaks

    International Nuclear Information System (INIS)

    Cowley, S.C.

    1991-10-01

    High β(β much-gt ε/q 2 ) large aspect ratio (ε much-gt 1) tokamak equilibria are shown to be always stable to ideal M.H.D. modes that are localized about a flux surface. Both the ballooning and interchange modes are shown to be stable. This work uses the analytic high β large aspect ratio tokamak equilibria developed by Cowley et.al., which are valid for arbitrary pressure and safety factor profiles. The stability results make no assumption about these profiles or the shape of the boundary. 14 refs., 4 figs

  2. Transcriptomic characterization of MRI contrast with focus on the T1-w/T2-w ratio in the cerebral cortex.

    Science.gov (United States)

    Ritchie, Jacob; Pantazatos, Spiro P; French, Leon

    2018-07-01

    Magnetic resonance (MR) images of the brain are of immense clinical and research utility. At the atomic and subatomic levels, the sources of MR signals are well understood. However, we lack a comprehensive understanding of the macromolecular correlates of MR signal contrast. To address this gap, we used genome-wide measurements to correlate gene expression with MR signal intensity across the cerebral cortex in the Allen Human Brain Atlas (AHBA). We focused on the ratio of T1-weighted and T2-weighted intensities (T1-w/T2-w ratio image), which is considered to be a useful proxy for myelin content. As expected, we found enrichment of positive correlations between myelin-associated genes and the ratio image, supporting its use as a myelin marker. Genome-wide, there was an association with protein mass, with genes coding for heavier proteins expressed in regions with high T1-w/T2-w values. Oligodendrocyte gene markers were strongly correlated with the T1-w/T2-w ratio, but this was not driven by myelin-associated genes. Mitochondrial genes exhibit the strongest relationship, showing higher expression in regions with low T1-w/T2-w ratio. This may be due to the pH gradient in mitochondria as genes up-regulated by pH in the brain were also highly correlated with the ratio. While we corroborate associations with myelin and synaptic plasticity, differences in the T1-w/T2-w ratio across the cortex are more strongly linked to molecule size, oligodendrocyte markers, mitochondria, and pH. We evaluate correlations between AHBA transcriptomic measurements and a group averaged T1-w/T2-w ratio image, showing agreement with in-sample results. Expanding our analysis to the whole brain results in strong positive T1-w/T2-w correlations for immune system, inflammatory disease, and microglia marker genes. Genes with negative correlations were enriched for neuron markers and synaptic plasticity genes. Lastly, our findings are similar when performed on T1-w or inverted T2-w intensities alone

  3. The Effects of Cation Ratios on Root Lamella Suberization in Rice (Oryza sativa L. with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    M. R. Momayezi

    2012-01-01

    Full Text Available Rice is an important produced cereal in the world. We evaluated the effect of salt compositions including NaCl and Na2SO4 on suberin lamellae as a major barrier to radial ion and water movements in two rice genotypes representing contrasting salt tolerance levels under salinity stress. Two rice genotypes, Fajr as salt tolerant and Khazar as salt sensitive, were transplanted in sand culture under glasshouse condition. Rice seedlings were treated with five salt compositions including NaCl, Na2SO4, 1 : 1, 1 : 2, and 2 : 1 molar ratios for 40 days. It was proven that suberin lamellae in endodermis of root cell wall were thickened with Na2SO4 treatment. The results demonstrated that the number of passage cells was higher in Fajr genotype than that in Khazar genotype under saline condition. Calcium concentration in root tissue decreased as the SO42- concentration in root media increased. It can be concluded that Fajr genotype is able to keep some passage cells open to maintain Ca2+ uptake. The Ca2+/Na+ ratio in shoot tissue can be also a reliable index for the early recognition of salt stress in these rice genotypes.

  4. Optical spatial differentiator based on subwavelength high-contrast gratings

    Science.gov (United States)

    Dong, Zhewei; Si, Jiangnan; Yu, Xuanyi; Deng, Xiaoxu

    2018-04-01

    An optical spatial differentiator based on subwavelength high-contrast gratings (HCGs) is proposed experimentally. The spatial differentiation property of the subwavelength HCG is analyzed by calculating its spatial spectral transfer function based on the periodic waveguide theory. By employing the FDTD solutions, the performance of the subwavelength HCG spatial differentiator was investigated numerically. The subwavelength HCG differentiator with the thickness at the nanoscale was fabricated on the quartz substrate by electron beam lithography and Bosch deep silicon etching. Observed under an optical microscope with a CCD camera, the spatial differentiation of the incident field profile was obtained by the subwavelength HCG differentiator in transmission without Fourier lens. By projecting the images of slits, letter "X," and a cross on the subwavelength HCG differentiator, edge detections of images were obtained in transmission. With the nanoscale HCG structure and simple optical implementation, the proposed optical spatial differentiator provides the prospects for applications in optical computing systems and parallel data processing.

  5. Moderate contrast in the evaluation of paintings is liked more but remembered less than high contrast

    NARCIS (Netherlands)

    K. Dijkstra (Katinka); van Dongen, N.N.N. (Noah N.N.)

    2017-01-01

    textabstractMany visual aspects of paintings, as well as exposure to art and cultural norms, contribute to the aesthetic evaluation of paintings. The current study looked at heightened visual contrast as an important factor in the appreciation of paintings. Participants evaluated abstract digitized

  6. Fatigue crack closure behavior at high stress ratios

    Science.gov (United States)

    Turner, C. Christopher; Carman, C. Davis; Hillberry, Ben M.

    1988-01-01

    Fatigue crack delay behavior at high stress ratio caused by single peak overloads was investigated in two thicknesses of 7475-T731 aluminum alloy. Closure measurements indicated no closure occurred before or throughout the overload plastic zones following the overload. This was further substantiated by comparing the specimen compliance following the overload with the compliance of a low R ratio test when the crack was fully open. Scanning electron microscope studies revealed that crack tunneling and possibly reinitiation of the crack occurred, most likely a result of crack-tip blunting. The number of delay cycles was greater for the thinner mixed mode stress state specimen than for the thicker plane strain stress state specimen, which is similar to low R ratio test results and may be due to a larger plastic zone for the mixed mode cased.

  7. A high signal-to-noise ratio composite quasar spectrum

    International Nuclear Information System (INIS)

    Francis, P.J.; Hewett, P.C.; Foltz, C.B.; Chaffee, F.H.; Weymann, R.J.

    1991-01-01

    A very high signal-to-noise ratio (S/N of about 400) composite spectrum of the rest-frame ultraviolet and optical region of high luminosity quasars is presented. The spectrum is derived from 718 individual spectra obtained as part of the Large Bright Quasar Survey. The moderate resolution, 4A or less, and high signal-to-noise ratio allow numerous weak emission features to be identified. Of particular note is the large equivalent-width of the Fe II emission in the rest-frame ultraviolet and the blue continuum slope of the composite. The primary aim of this paper is to provide a reference spectrum for use in line identifications, and a series of large-scale representations of the composite spectrum are shown. A measure of the standard deviation of the individual quasar spectra from the composite spectrum is also presented. 12 refs

  8. Characterization of a high-energy in-line phase contrast tomosynthesis prototype.

    Science.gov (United States)

    Wu, Di; Yan, Aimin; Li, Yuhua; Wong, Molly D; Zheng, Bin; Wu, Xizeng; Liu, Hong

    2015-05-01

    In this research, a high-energy in-line phase contrast tomosynthesis prototype was developed and characterized through quantitative investigations and phantom studies. The prototype system consists of an x-ray source, a motorized rotation stage, and a CMOS detector with a pixel pitch of 0.05 mm. The x-ray source was operated at 120 kVp for this study, and the objects were mounted on the rotation stage 76.2 cm (R1) from the source and 114.3 cm (R2) from the detector. The large air gap between the object and detector guarantees sufficient phase-shift effects. The quantitative evaluation of this prototype included modulation transfer function and noise power spectrum measurements conducted under both projection mode and tomosynthesis mode. Phantom studies were performed including three custom designed phantoms with complex structures: a five-layer bubble wrap phantom, a fishbone phantom, and a chicken breast phantom with embedded fibrils and mass structures extracted from an ACR phantom. In-plane images of the phantoms were acquired to investigate their image qualities through observation, intensity profile plots, edge enhancement evaluations, and/or contrast-to-noise ratio calculations. In addition, the robust phase-attenuation duality (PAD)-based phase retrieval method was applied to tomosynthesis for the first time in this research. It was utilized as a preprocessing method to fully exhibit phase contrast on the angular projection before reconstruction. The resolution and noise characteristics of this high-energy in-line phase contrast tomosynthesis prototype were successfully investigated and demonstrated. The phantom studies demonstrated that this imaging prototype can successfully remove the structure overlapping in phantom projections, obtain delineate interfaces, and achieve better contrast-to-noise ratio after applying phase retrieval to the angular projections. This research successfully demonstrated a high-energy in-line phase contrast tomosynthesis

  9. PHASE QUANTIZATION STUDY OF SPATIAL LIGHT MODULATOR FOR EXTREME HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Jiangpei; Ren, Deqing, E-mail: jpdou@niaot.ac.cn, E-mail: jiangpeidou@gmail.com [Physics and Astronomy Department, California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2016-11-20

    Direct imaging of exoplanets by reflected starlight is extremely challenging due to the large luminosity ratio to the primary star. Wave-front control is a critical technique to attenuate the speckle noise in order to achieve an extremely high contrast. We present a phase quantization study of a spatial light modulator (SLM) for wave-front control to meet the contrast requirement of detection of a terrestrial planet in the habitable zone of a solar-type star. We perform the numerical simulation by employing the SLM with different phase accuracy and actuator numbers, which are related to the achievable contrast. We use an optimization algorithm to solve the quantization problems that is matched to the controllable phase step of the SLM. Two optical configurations are discussed with the SLM located before and after the coronagraph focal plane mask. The simulation result has constrained the specification for SLM phase accuracy in the above two optical configurations, which gives us a phase accuracy of 0.4/1000 and 1/1000 waves to achieve a contrast of 10{sup -10}. Finally, we have demonstrated that an SLM with more actuators can deliver a competitive contrast performance on the order of 10{sup -10} in comparison to that by using a deformable mirror.

  10. High aspect ratio titanium nitride trench structures as plasmonic biosensor

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Takayama, Osamu

    2017-01-01

    High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 ◦C on a silicon trench template. Silicon between vertical TiN layers is selectively etched...... to fabricate the high aspect ratio TiN trenches with the pitch of 400 nm and height of around 2.7 µm. Dielectric functions of TiN films with different thicknesses of 18 - 105 nm and post-annealing temperatures of 700 - 900 ◦C are characterized by an ellipsometer. We found that the highest annealing temperature...... of 900 ◦C gives the most pronounced plasmonic behavior with the highest plasma frequency, ωp = 2.53 eV (λp = 490 nm). Such high aspect ratio trench structures function as a plasmonic grating sensor that supports the Rayleigh-Woods anomalies (RWAs), enabling the measurement of changes in the refractive...

  11. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio

    International Nuclear Information System (INIS)

    Hess, R.; Neitzel, U.

    2012-01-01

    Purpose: To investigate the influence of X-ray tube voltage and filtration on image quality in terms of contrast-to-noise ratio (CNR) and dose for digital radiography of distal pediatric extremities and to determine conditions that give the best balance of CNR and patient dose. Materials and Methods: In a phantom study simulating the absorption properties of distal extremities, the CNR and the related patient dose were determined as a function of tube voltage in the range 40 - 66 kV, both with and without additional filtration of 0.1 mm Cu/1 mm Al. The measured CNR was used as an indicator of image quality, while the mean absorbed dose (MAD) - determined by a combination of measurement and simulation - was used as an indicator of the patient dose. Results: The most favorable relation of CNR and dose was found for the lowest tube voltage investigated (40 kV) without additional filtration. Compared to a situation with 50 kV or 60 kV, the mean absorbed dose could be lowered by 24 % and 50 %, respectively, while keeping the image quality (CNR) at the same level. Conclusion: For digital radiography of distal pediatric extremities, further CNR and dose optimization appears to be possible using lower tube voltages. Further clinical investigation of the suggested parameters is necessary. (orig.)

  12. Midinfrared Surface Waves on a High Aspect Ratio Nanotrench Platform

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Bodganov, Andrey

    2017-01-01

    ameliorate surface wave propagation and even generate new types of waves. Here, we demonstrate that high aspect ratio (1:20) grating structures with plasmonic lamellas in deep nanoscale trenches, whose pitch is 1/10 – 1/35 of a wavelength, function as a versatile platform supporting both surface and guided...... bulk infrared waves. The surface waves exhibit a unique combination of properties: directionality, broadband existence (from 4 µm to at least 14 μm and beyond) and high localization, making them an attractive tool for effective control of light in an extended range of infrared frequencies....

  13. Masks for high aspect ratio x-ray lithography

    International Nuclear Information System (INIS)

    Malek, C.K.; Jackson, K.H.; Bonivert, W.D.; Hruby, J.

    1997-01-01

    Fabrication of very high aspect ratio microstructures, as well as ultra-high precision manufacturing is of increasing interest in a multitude of applications. Fields as diverse as micromechanics, robotics, integrated optics, and sensors benefit from this technology. The scale-length of this spatial regime is between what can be achieved using classical machine tool operations and that which is used in microelectronics. This requires new manufacturing techniques, such as the LIGA process, which combines x-ray lithography, electroforming, and plastic molding

  14. Reusable High Aspect Ratio 3-D Nickel Shadow Mask

    Science.gov (United States)

    Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.

    2017-01-01

    Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835

  15. High aspect ratio channels in glass and porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.D. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Dang, Z.Y. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Wu, J.F. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Kan, J.A. van; Qureshi, S. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Ynsa, M.D.; Torres-Costa, V. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Centro de Micro-Análisis de Materiales (CMAM), Universidad Autónoma de Madrid, Campus de Cantoblanco Edif. 22, Faraday 3, E-28049 Madrid (Spain); Maira, A. [Department of Applied Physics, Universidad Autónoma de Madrid, Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Venkatesan, T.V. [Nanoscience and Nanotechnology Initiative (NNI), National University of Singapore, Singapore 117411 (Singapore); Breese, M.B.H., E-mail: phymbhb@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2017-03-01

    We have developed a micromachining process to produce high-aspect-ratio channels and holes in glass and porous silicon. Our process utilizes MeV proton beam irradiation of silicon using direct writing with a focused beam, followed by electrochemical etching. To increase throughput we have also developed another process for large area ion irradiation based on a radiation-resistant gold surface mask, allowing many square inches to be patterned. We present a study of the achievable channel width, depth and period and sidewall verticality for a range of channels which can be over 100 μm deep or 100 nm wide with aspect ratios up to 80. This process overcomes the difficulty of machining glass on a micro- and nanometer scale which has limited many areas of applications in different fields such as microelectronics and microfluidics.

  16. Active optics: off axis aspherics generation for high contrast imaging

    Science.gov (United States)

    Hugot, E.; Laslandes, M.; Ferrari, M.; Vives, S.; Moindrot, S.; El Hadi, K.; Dohlen, K.

    2017-11-01

    Active Optics methods, based on elasticity theory, allow the aspherisation of optical surfaces by stress polishing but also active aspherisation in situ. Researches in this field will impact the final performance and the final cost of any telescope or instrument. The stress polishing method is well suited for the superpolishing of aspheric components for astronomy. Its principle relies on spherical polishing with a full-sized tool of a warped substrate, which becomes aspherical once unwarped. The main advantage of this technique is the very high optical quality obtained either on form or on high spatial frequency errors. Furthermore, the roughness can be decreased down to a few angstroms, thanks the classical polishing with a large pitch tool, providing a substantial gain on the final scientific performance, for instance on the contrast on coronagraphic images, but also on the polishing time and cost. Stress polishing is based on elasticity theory, and requires an optimised deformation system able to provide the right aspherical form on the optical surface during polishing. The optical quality of the deformation is validated using extensive Finite Element Analysis, allowing an estimation of residuals and an optimisation of the warping harness. We describe here the work realised on stress polishing of toric mirrors for VLT-SPHERE and then our actual work on off axis aspherics (OAA) for the ASPIICS-Proba3 mission for solar coronagraphy. The ASPIICS optical design made by Vives et al is a three mirrors anastigmat including a concave off axis hyperboloid and a convex off axis parabola (OAP). We are developing a prototype in order to demonstrate the feasibility of this type of surface, using a multi-mode warping harness (Lemaitre et al). Furthermore, we present our work on variable OAP, meaning the possibility to adjust the shape of a simple OAP in situ with a minimal number of actuators, typically one actuator per optical mode (Focus, Coma and Astigmatism

  17. Efficacy of high iodine concentration contrast medium with saline pushing in hepatic CT in patients with chronic liver disease. Comparison of high doses-standard contrast medium concentration

    International Nuclear Information System (INIS)

    Matoba, Munetaka; Kondo, Tamaki; Nishikawa, Takahiro; Kuginuki, Yasuaki; Yokota, Hajime; Higashi, Kotaro; Tonami, Hisao

    2006-01-01

    The aim of this study was to compare the enhancement of liver parenchyama with high iodine concentration contrast medium with saline pushing to that with high doses standard iodine concentration in hepatic CT in patients with chronic liver disease. There was no statistically significant difference regarding to the enhancement of liver parenchyama between the 370 mgI/ml of contrast medium with saline pushing and high doses standard iodine concentration contrast medium. (author)

  18. Ultralow dose dentomaxillofacial CT imaging and iterative reconstruction techniques: variability of Hounsfield units and contrast-to-noise ratio

    Science.gov (United States)

    Bischel, Alexander; Stratis, Andreas; Kakar, Apoorv; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2016-01-01

    Objective: The aim of this study was to evaluate whether application of ultralow dose protocols and iterative reconstruction technology (IRT) influence quantitative Hounsfield units (HUs) and contrast-to-noise ratio (CNR) in dentomaxillofacial CT imaging. Methods: A phantom with inserts of five types of materials was scanned using protocols for (a) a clinical reference for navigated surgery (CT dose index volume 36.58 mGy), (b) low-dose sinus imaging (18.28 mGy) and (c) four ultralow dose imaging (4.14, 2.63, 0.99 and 0.53 mGy). All images were reconstructed using: (i) filtered back projection (FBP); (ii) IRT: adaptive statistical iterative reconstruction-50 (ASIR-50), ASIR-100 and model-based iterative reconstruction (MBIR); and (iii) standard (std) and bone kernel. Mean HU, CNR and average HU error after recalibration were determined. Each combination of protocols was compared using Friedman analysis of variance, followed by Dunn's multiple comparison test. Results: Pearson's sample correlation coefficients were all >0.99. Ultralow dose protocols using FBP showed errors of up to 273 HU. Std kernels had less HU variability than bone kernels. MBIR reduced the error value for the lowest dose protocol to 138 HU and retained the highest relative CNR. ASIR could not demonstrate significant advantages over FBP. Conclusions: Considering a potential dose reduction as low as 1.5% of a std protocol, ultralow dose protocols and IRT should be further tested for clinical dentomaxillofacial CT imaging. Advances in knowledge: HU as a surrogate for bone density may vary significantly in CT ultralow dose imaging. However, use of std kernels and MBIR technology reduce HU error values and may retain the highest CNR. PMID:26859336

  19. Quantitative susceptibility mapping across two clinical field strengths: Contrast-to-noise ratio enhancement at 1.5T.

    Science.gov (United States)

    Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R

    2018-04-16

    Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Supervised detection of exoplanets in high-contrast imaging sequences

    Science.gov (United States)

    Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.

    2018-06-01

    Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve

  1. Primary response of high-aspect-ratio thermoresistive sensors

    Science.gov (United States)

    Majlesein, H. R.; Mitchell, D. L.; Bhattacharya, Pradeep K.; Singh, A.; Anderson, James A.

    1997-07-01

    There is a growing need for sensors in monitoring performance in modern quality products such as in electronics to monitor heat build up, substrate delaminations, and thermal runaway. In processing instruments, intelligent sensors are needed to measure deposited layer thickness and resistivities for process control, and in environmental electrical enclosures, they are used for climate monitoring and control. A yaw sensor for skid prevention utilizes very fine moveable components, and an automobile engine controller blends a microprocessor and sensor on the same chip. An Active-Pixel Image Sensor is integrated with a digital readout circuit to perform most of the functions in a video camera. Magnetostrictive transducers sense and damp vibrations. Improved acoustic sensors will be used in flow detection of air and other fluids, even at subsonic speeds. Optoelectronic sensor systems are being developed for installation on rocket engines to monitor exhaust gases for signs of wear in the engines. With new freon-free coolants being available the problems of A/C system corrosion have gone up in automobiles and need to be monitored more frequently. Defense cutbacks compel the storage of hardware in safe-custody for an indeterminate period of time, and this makes monitoring more essential. Just-in-time customized manufacturing in modern industries also needs dramatic adjustment in productivity of various selected items, leaving some manufacturing equipment idle for a long time, and therefore, it will be prone to more corrosion, and corrosion sensors are needed. In the medical device industry, development of implantable medical devices using both potentiometric and amperometric determination of parameters has, until now, been used with insufficient micro miniaturization, and thus, requires surgical implantation. In many applications, high-aspect- ratio devices, made possible by the use of synchrotron radiation lithography, allow more useful devices to be produced. High-aspect-ratio

  2. Renal streaky artifact during contrast-enhanced abdominal and pelvic CT: Comparison of high versus low osmolality contrast media

    International Nuclear Information System (INIS)

    Kim, Dae Hong; Kim, Jong Chul; Lee, Chung Keun; Shin, Kyoung Suk

    1994-01-01

    Introduction of low osmolality contrast agent(LOCA) has allowed safer, more comfortable contrast-enhanced CT examination, but there has been significant increase in image degradation when evaluating the kidneys due to streaky artifact. The authors reviewed findings of contrast- enhanced abdominal and pelvic computed tomography(CT) to know the difference of renal streaky artifact between a high osmolality contrast agent (HOCA) and LOCA. This study included two hundred contrast-enhanced CT in 200 patients, 100 performed with HOCA(meglumine ioglicate, 150 ml) and 100 performed with LOCA (iopromide,150 ml). The severity of renal streaky artifact was compared between HOCA and LOCA groups. Of the scans performed with HOCA, 40 had no artifact, 52 had grade I artifact, 6 had grade II artifact, and 2 had grade III artifact. Of the scans preformed with LOCA, 23 had no artifact, 44 had grade I artifact, 29 had grade II artifact, and 4 had grade III artifact. There was significant difference in the degree of the streaky artifact depending upon the osmolality of the contrast media used(by χ 2 -test, P=.0001). The results of this study revealed a statistically significant increased incidence of artifacts and distortions of renal image with LOCA when compared with HOCA

  3. High contrast sensitivity for visually guided flight control in bumblebees.

    Science.gov (United States)

    Chakravarthi, Aravin; Kelber, Almut; Baird, Emily; Dacke, Marie

    2017-12-01

    Many insects rely on vision to find food, to return to their nest and to carefully control their flight between these two locations. The amount of information available to support these tasks is, in part, dictated by the spatial resolution and contrast sensitivity of their visual systems. Here, we investigate the absolute limits of these visual properties for visually guided position and speed control in Bombus terrestris. Our results indicate that the limit of spatial vision in the translational motion detection system of B. terrestris lies at 0.21 cycles deg -1 with a peak contrast sensitivity of at least 33. In the perspective of earlier findings, these results indicate that bumblebees have higher contrast sensitivity in the motion detection system underlying position control than in their object discrimination system. This suggests that bumblebees, and most likely also other insects, have different visual thresholds depending on the behavioral context.

  4. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili, E-mail: wangnsrl@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Zhang, Kai [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Peiping; Wu, Ziyu, E-mail: wuzy@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China and Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2015-02-15

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations.

  5. High sensitivity phase retrieval method in grating-based x-ray phase contrast imaging

    International Nuclear Information System (INIS)

    Wu, Zhao; Gao, Kun; Chen, Jian; Wang, Dajiang; Wang, Shenghao; Chen, Heng; Bao, Yuan; Shao, Qigang; Wang, Zhili; Zhang, Kai; Zhu, Peiping; Wu, Ziyu

    2015-01-01

    Purpose: Grating-based x-ray phase contrast imaging is considered as one of the most promising techniques for future medical imaging. Many different methods have been developed to retrieve phase signal, among which the phase stepping (PS) method is widely used. However, further practical implementations are hindered, due to its complex scanning mode and high radiation dose. In contrast, the reverse projection (RP) method is a novel fast and low dose extraction approach. In this contribution, the authors present a quantitative analysis of the noise properties of the refraction signals retrieved by the two methods and compare their sensitivities. Methods: Using the error propagation formula, the authors analyze theoretically the signal-to-noise ratios (SNRs) of the refraction images retrieved by the two methods. Then, the sensitivities of the two extraction methods are compared under an identical exposure dose. Numerical experiments are performed to validate the theoretical results and provide some quantitative insight. Results: The SNRs of the two methods are both dependent on the system parameters, but in different ways. Comparison between their sensitivities reveals that for the refraction signal, the RP method possesses a higher sensitivity, especially in the case of high visibility and/or at the edge of the object. Conclusions: Compared with the PS method, the RP method has a superior sensitivity and provides refraction images with a higher SNR. Therefore, one can obtain highly sensitive refraction images in grating-based phase contrast imaging. This is very important for future preclinical and clinical implementations

  6. Electrical Capacitance Volume Tomography with High-Contrast Dielectrics

    Science.gov (United States)

    Nurge, Mark

    2010-01-01

    The Electrical Capacitance Volume Tomography (ECVT) system has been designed to complement the tools created to sense the presence of water in nonconductive spacecraft materials, by helping to not only find the approximate location of moisture but also its quantity and depth. The ECVT system has been created for use with a new image reconstruction algorithm capable of imaging high-contrast dielectric distributions. Rather than relying solely on mutual capacitance readings as is done in traditional electrical capacitance tomography applications, this method reconstructs high-resolution images using only the self-capacitance measurements. The image reconstruction method assumes that the material under inspection consists of a binary dielectric distribution, with either a high relative dielectric value representing the water or a low dielectric value for the background material. By constraining the unknown dielectric material to one of two values, the inverse math problem that must be solved to generate the image is no longer ill-determined. The image resolution becomes limited only by the accuracy and resolution of the measurement circuitry. Images were reconstructed using this method with both synthetic and real data acquired using an aluminum structure inserted at different positions within the sensing region. The cuboid geometry of the system has two parallel planes of 16 conductors arranged in a 4 4 pattern. The electrode geometry consists of parallel planes of copper conductors, connected through custom-built switch electronics, to a commercially available capacitance to digital converter. The figure shows two 4 4 arrays of electrodes milled from square sections of copper-clad circuit-board material and mounted on two pieces of glass-filled plastic backing, which were cut to approximately square shapes, 10 cm on a side. Each electrode is placed on 2.0-cm centers. The parallel arrays were mounted with the electrode arrays approximately 3 cm apart. The open ends

  7. Novel Gd nanoparticles enhance vascular contrast for high-resolution magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Tot Bui

    2010-09-01

    Full Text Available Gadolinium (Gd, with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA, or other derivatives (at 0.1 mmole/kg recommended dose, distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF, particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T(1 relaxivity, r(1, constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug

  8. High 36Cl/Cl ratios in Chernobyl groundwater

    International Nuclear Information System (INIS)

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L. Keith; Diez, Olivier; Bassot, Sylvain

    2014-01-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A 90 Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, 36 Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. 36 Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1–5 orders of magnitude higher than the theoretical natural 36 Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of 36 Cl, however other sources have to be involved to explain such contamination. 36 Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of 90 Sr, radionuclide which is impacted by retention and decay processes, 36 Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of 36 Cl from trench soil are better characterized. - Highlights: • High 36 Cl/Cl ratios measured in the Chernobyl Pilot Site groundwater. • Trench T22 acts as a modern source of groundwater contamination by 36 Cl but other sources are involved. • Contamination results from dilution of a contaminated “T22” soil water with rainwater. • Processes involved in the modern release need to be investigated

  9. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    Science.gov (United States)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  10. High aspect ratio catalytic reactor and catalyst inserts therefor

    Science.gov (United States)

    Lin, Jiefeng; Kelly, Sean M.

    2018-04-10

    The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.

  11. The high moderating ratio reactor using 100% MOX reloads

    International Nuclear Information System (INIS)

    Barbrault, P.

    1994-06-01

    This report presents the concept of a High Moderating ratio Reactor, which should accept 100% MOX reloads. This reactor aims to be the plutonium version of the European Pressurized Reactor (EPR), which is developed jointly by French and German companies. A moderating ration of 2.5 (instead of the standard value of 2.0) is obtained by replacing several fuel rods by water holes. The core would contain 241 Fuel Assemblies. We present some advantages of over-moderation for plutonium fuel, a description of the core and assemblies, calculations of fuel reload schemes and Reactivity Shutdown Margins, and the behavior of the core during two occidental transients. (author). 2 refs., 9 figs., 2 tabs

  12. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...... as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual...

  13. Fabrication of high aspect ratio micro electrode by using EDM

    International Nuclear Information System (INIS)

    Elsiti, Nagwa Mejid; Noordin, M.Y.; Alkali, Adam Umar

    2016-01-01

    The electrical discharge machining (EDM) process inherits characteristics that make it a promising micro-machining technique. Micro electrical discharge machining (micro- EDM) is a derived form of EDM, which is commonly used to manufacture micro and miniature parts and components by using the conventional electrical discharge machining fundamentals. Moving block electro discharge grinding (Moving BEDG) is one of the processes that can be used to fabricate micro-electrode. In this study, a conventional die sinker EDM machine was used to fabricate the micro-electrode. Modifications are made to the moving BEDG, which include changing the direction of movements and control gap in one electrode. Consequently current was controlled due to the use of roughing, semi-finishing and finishing parameters. Finally, a high aspect ratio micro-electrode with a diameter of 110.49μm and length of 6000μm was fabricated. (paper)

  14. Development of microbubble contrast agents for high frequency ultrasound microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Se Jung; Kim, Eun A; Park, Sung Hoon; Lee, Hye Jin; Jun, Hong Young; Byun, Seung Jae; Yoon, Kwon Ha [Wonkwang University School of Medicine, Iksan (Korea, Republic of)

    2007-05-15

    To develop optimal microbubble contrast agents (MBCAs) for performing ultrasound microscopy when examining small animals. We prepared three types of MBCAs. First, a mixture of three parts of 40% dextran and one part of 5% human serum albumin were sonicated with perfluorocarbon (PFC) (MB{sub 1}-D40A5P). Second, three parts of 40% dextran and one part of 1% human serum albumin were sonicated with PFC (MB{sub 2}-D40A1P). Third, all parts of 1% bovine serum albumin were sonicated with PFC (MB{sub 3}-A1P). We measured the microbubbles' sizes and concentrations with using image analysis software. The acoustic properties of the microbubbles were assessed both in vitro and in vivo. The majority of the MB{sub 1}-D40A5Ps had a diameter of 2-5 {mu} m, the mean diameter of the MB{sub 2}-D40A1Ps was 2.5 {mu} m, and the mean diameter of the MB{sub 3}-A1Ps was less than 2.0 {mu} m. Among the microbubbles, the MB{sub 1}-D40A5Ps and MB{sub 2}-D40A1Ps showed increased echogenicity in the abdominal vessels, but the duration of their contrast effect was less than 30 sec. On the contrary, the MB3-A1Ps exhibited strong enhancement in the vessels and their duration was greater than 120 sec. A microbubble contrast agent consisting of all parts of 1% serum albumin sonicated with PFC is an effective contrast agent for ultrasound microscopy.

  15. Regional improvement of signal-to-noise and contrast-to-noise ratios in dual-screen CR chest imaging - a phantom study

    International Nuclear Information System (INIS)

    Liu Xinming; Shaw, Chris C.

    2001-01-01

    The improvement of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in dual-screen computed radiography (CR) has been investigated for various regions in images of an anthropomorphic chest phantom. With the dual-screen CR technique, two image plates are placed in a cassette and exposed together during imaging. The exposed plates are separately scanned to form a front image and a back image, which are then registered and superimposed to form a composite image with improved SNRs and CNRs. The improvement can be optimized by applying specifically selected weighting factors during superimposition. In this study, dual-screen CR images of an anthropomorphic chest phantom were acquired and formed with four different combinations of standard resolution (ST) and high-resolution (HR) screens: ST-ST, ST-HR, HR-ST, and HR-HR. SNRs and their improvements were measured and compared over twelve representative regions-of-interest (ROIs) in these images. A 19.1%-45.7% increase of the SNR was observed, depending on the ROI and screen combination used. The optimal weighting factors were found to vary by only 4.5%-12.4%. Largest improvement was found in the lung field for all screen combinations. Improvement of CNRs was investigated over two ROIs in the lung field using the rib bones as the contrast objects and a 29.2%-43.9% improvement of the CNR was observed. Among the four screen combinations, ST-ST resulted in the most SNR and CNR improvement, followed in order by HR-ST, HR-HR, and ST-HR. The HR-ST combination yielded the lowest spatial variation of the optimal weighting factors with improved SNRs and CNRs close to those of the ST-ST combination

  16. Comparison of contrast-to-noise ratios of transmission and dark-field signal in grating-based X-ray imaging for healthy murine lung tissue

    International Nuclear Information System (INIS)

    Schwab, Felix; Schleede, Simone; Hahn, Dieter

    2013-01-01

    Purpose: An experimental comparison of the contrast-to-noise ratio (CNR) between transmission and dark-field signals in grating-based X-ray imaging for ex-vivo murine lung tissue. Materials and Methods: Lungs from three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Background noise of transmission and dark-field signal was quantified by measuring the standard deviation in a region of interest (ROI) placed in a homogeneous area outside the specimen. Image contrast was quantified by measuring the signal range in rectangular ROIs placed in central and peripheral lung parenchyma. The relative contrast gain (RCG) of dark-field over transmission images was calculated as CNRDF / CNRT. Results: In all images, there was a trend for contrast-to-noise ratios of dark-field images (CNRDF) to be higher than for transmission images (CNRT) for all ROIs (median 61 vs. 38, p = 0.10), but the difference was statistically significant only for peripheral ROIs (61 vs. 32, p = 0.03). Median RCG was >1 for all ROIs (1.84). RCG values were significantly smaller for central ROIs than for peripheral ROIs (1.34 vs. 2.43, p = 0.03). Conclusion: The contrast-to-noise ratio of dark-field images compares more favorably to the contrast-to-noise ratio of transmission images for peripheral lung regions as compared to central regions. For any specific specimen, a calculation of the RCG allows comparing which X-ray modality (dark-field or transmission imaging) produces better contrast-to-noise characteristics in a well-defined ROI. (orig.)

  17. Post-processing of high-contrast observations of exoplanets

    Directory of Open Access Journals (Sweden)

    Gladysz S.

    2011-07-01

    Full Text Available Post-processing of images delivered by the eXtreme Adaptive Optics (XAO instrumentation is a crucial step which can increase achievable contrast even by two orders of magnitude. In this communication I present a new class of algorithms for detection of extrasolar planets from a sequence of adaptive-optics-corrected images. In general, the methods discriminate between real sources and stellar PSF features based on statistics of recorded intensity. The methods are particularly useful in dealing with static speckles which are the greatest obstacle in detecting exoplanets.

  18. Design of a compact high-energy setup for x-ray phase-contrast imaging

    Science.gov (United States)

    Schüttler, Markus; Yaroshenko, Andre; Bech, Martin; Potdevin, Guillaume; Malecki, Andreas; Chabior, Michael; Wolf, Johannes; Tapfer, Arne; Meiser, Jan; Kunka, Danays; Amberger, Maximilian; Mohr, Jürgen; Pfeiffer, Franz

    2014-03-01

    The main shortcoming of conventional biomedical x-ray imaging is the weak soft-tissue contrast caused by the small differences in the absorption coefficients between different materials. This issue can be addressed by x-ray phasesensitive imaging approaches, e.g. x-ray Talbot-Lau grating interferometry. The advantage of the three-grating Talbot-Lau approach is that it allows to acquire x-ray phase-contrast and dark-field images with a conventional lab source. However, through the introduction of the grating interferometer some constraints are imposed on the setup geometry. In general, the grating pitch and the mean x-ray energy determine the setup dimensions. The minimal length of the setup increases linearly with energy and is proportional to p2, where p is the grating pitch. Thus, a high-energy (100 keV) compact grating-based setup for x-ray imaging can be realized only if gratings with aspect-ratio of approximately 300 and a pitch of 1-2 μm were available. However, production challenges limit the availability of such gratings. In this study we consider the use of non-binary phase-gratings as means of designing a more compact grating interferometer for phase-contrast imaging. We present simulation and experimental data for both monochromatic and polychromatic case. The results reveal that phase-gratings with triangular-shaped structures yield visibilities that can be used for imaging purposes at significantly shorter distances than binary gratings. This opens the possibility to design a high-energy compact setup for x-ray phase-contrast imaging. Furthermore, we discuss different techniques to achieve triangular-shaped phase-shifting structures.

  19. The repair/repopulation effects ratio in the postirradiation recovery of hexaploid wheat varieties contrast by their radioresistance

    International Nuclear Information System (INIS)

    Selezneva, E.M.; Sarapul'tsev, B.I.

    1988-01-01

    The cytogenic and morphometrical distinctions between hexaploid wheat varieties contrast by their radioresistance during the postirradiation period are attributed to the differential activity of caffeine-dependent repair processes; they are not a reliable function of the rate of aberrant cell elimination

  20. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  1. Improvements in gastric diagnosis by using high density contrast media with low viscosity

    International Nuclear Information System (INIS)

    Toischer, H.P.

    1983-01-01

    In a retrospective clinical study, 150 unselected double contrast examinations of the stomach using conventional contrast media (100 g/100 ml barium sulphate) were compared with a similar number of examinations using a high density contrast medium of flow viscosity (250 g/100 ml barium sulphate). The high density contrast medium was distinctly better for demonstrating detail of the gastric mucosa. The uneveness of coating and instability of the older high density contrast media was observed in 15.5% of cases and, in no instance, did this make it impossible to reach a diagnosis. (orig.) [de

  2. Highly stable silica-coated manganese ferrite nanoparticles as high-efficacy T2 contrast agents for magnetic resonance imaging

    Science.gov (United States)

    Ahmad, Ashfaq; Bae, Hongsub; Rhee, Ilsu

    2018-05-01

    Highly stable silica-coated manganese ferrite nanoparticles were fabricated for application as magnetic resonance imagining (MRI) contrast agents. The manganese ferrite nanoparticles were synthesized using a hydrothermal technique and coated with silica. The particle size was investigated using transmission electron microscopy and was found to be 40-60 nm. The presence of the silica coating on the particle surface was confirmed by Fourier transform infrared spectroscopy. The crystalline structure was investigated by X-ray diffraction, and the particles were revealed to have an inverse spinel structure. Superparamagnetism was confirmed by the magnetic hysteresis curves obtained using a vibrating sample magnetometer. The efficiency of the MRI contrast agents was investigated by using aqueous solutions of the particles in a 4.7 T MRI scanner. The T1 and T2 relaxivities of the particles were 1.42 and 60.65 s-1 mM-1, respectively, in water. The ratio r2/r1 was 48.91, confirming that the silica-coated manganese ferrite nanoparticles were suitable high-efficacy T2 contrast agents.

  3. Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio

    International Nuclear Information System (INIS)

    Kojo, Gen; Shono, Yohei; Ushiyama, Hiroshi; Oshima, Yoshito; Otomo, Junichiro

    2017-01-01

    The proton-conducting properties of lanthanum tungstates (LWOs) with high La/W ratios were investigated using electrochemical measurements and quantum chemical calculations. Single phases of LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized by high-temperature sintering at around 1700 °C. The electrical conductivity of LWO increased with increasing La/W ratio in the single-phase region. The LWO synthesized at the optimum sintering temperature and time, and with the optimum La/W ratio gave the maximum conductivity, i.e., 2.7×10 −3 S cm −1 with La/W=6.7 at 500 °C. Density functional theory calculations, using the nudged elastic band method, were performed to investigate the proton diffusion barrier. The results suggest that the proton diffusion paths around La sites have the lowest proton diffusion barrier. These findings improve our understanding of LWO synthesis and the proton-conducting mechanism and provide a strategy for improving proton conduction in LWOs. - Graphical abstract: The LWOs with high La/W ratios were synthesized for the first time. The optimum La/W ratio gave the maximum conductivity with La/W=6.7 at 500 °C. The proton diffusion paths were also considered with density functional theory calculations. - Highlights: • The proton-conducting properties of lanthanum tungstates (LWOs) were investigated. • Single phase LWOs with high La/W ratios (6.3≤La/W≤6.7) were synthesized successfully. • LWOs with the high La/W ratios showed high proton conductivity. • The DFT calculation suggested the lowest proton diffusion barrier in the path around La sites.

  4. Fat suppression techniques for obtaining high resolution dynamic contrast enhanced bilateral breast MR images at 7 tesla

    DEFF Research Database (Denmark)

    van der Velden, Tijl A; Schmitz, Alexander M Th; Gilhuijs, Kenneth G A

    2016-01-01

    contained 3D T1-weighted gradient echo images obtained with both WSE fat suppression, multi echo Dixon fat suppression, and without fat suppression. Images were acquired at a (0.8mm)(3) or (0.7mm)(3) isotropic resolution with equal field of view and optimized such to obtain a maximal SNR. Image quality...... was scored qualitatively on overall image quality, sharpness of anatomical details, presence of artefacts, inhomogeneous fat suppression and the presence of water-fat shift. A quantitative scoring was obtained from the signal to noise ratio and contrast to noise ratio. RESULTS: WSE scored significantly...... better in terms of overall image quality and the absence of artefacts. No significant difference in contrast to noise ratio was found between the two fat suppression methods. CONCLUSION: When maximizing temporal and spatial resolution of high resolution DCE MRI of the breast, water selective excitation...

  5. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging.

    Directory of Open Access Journals (Sweden)

    Shailesh B Raval

    Full Text Available The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity].A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization].High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]-images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The

  6. High Energy Resolution Hyperspectral X-Ray Imaging for Low-Dose Contrast-Enhanced Digital Mammography.

    Science.gov (United States)

    Pani, Silvia; Saifuddin, Sarene C; Ferreira, Filipa I M; Henthorn, Nicholas; Seller, Paul; Sellin, Paul J; Stratmann, Philipp; Veale, Matthew C; Wilson, Matthew D; Cernik, Robert J

    2017-09-01

    Contrast-enhanced digital mammography (CEDM) is an alternative to conventional X-ray mammography for imaging dense breasts. However, conventional approaches to CEDM require a double exposure of the patient, implying higher dose, and risk of incorrect image registration due to motion artifacts. A novel approach is presented, based on hyperspectral imaging, where a detector combining positional and high-resolution spectral information (in this case based on Cadmium Telluride) is used. This allows simultaneous acquisition of the two images required for CEDM. The approach was tested on a custom breast-equivalent phantom containing iodinated contrast agent (Niopam 150®). Two algorithms were used to obtain images of the contrast agent distribution: K-edge subtraction (KES), providing images of the distribution of the contrast agent with the background structures removed, and a dual-energy (DE) algorithm, providing an iodine-equivalent image and a water-equivalent image. The high energy resolution of the detector allowed the selection of two close-by energies, maximising the signal in KES images, and enhancing the visibility of details with the low surface concentration of contrast agent. DE performed consistently better than KES in terms of contrast-to-noise ratio of the details; moreover, it allowed a correct reconstruction of the surface concentration of the contrast agent in the iodine image. Comparison with CEDM with a conventional detector proved the superior performance of hyperspectral CEDM in terms of the image quality/dose tradeoff.

  7. High contrast two-photon imaging of fingermarks

    Science.gov (United States)

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-04-01

    Optically-acquired fingermarks are widely used as evidence across law enforcement agencies as well as in the courts of law. A common technique for visualizing latent fingermarks on nonporous surfaces consists of cyanoacrylate fuming of the fingerprint material, followed by impregnation with a fluorescent dye, which under ultra violet (UV) illumination makes the fingermarks visible and thus accessible for digital recording. However, there exist critical circumstances, when the image quality is compromised due to high background scattering, high auto-fluorescence of the substrate material, or other detrimental photo-physical and photo-chemical effects such as light-induced damage to the sample. Here we present a novel near-infrared (NIR), two-photon induced fluorescence imaging modality, which significantly enhances the quality of the fingermark images, especially when obtained from highly reflective and/or scattering surfaces, while at the same time reducing photo-damage to sensitive forensic samples.

  8. The High Aspect Ratio Design (HARD): A candidate ITER concept with improved technology phase performance

    International Nuclear Information System (INIS)

    Nevins, W.M.; Perkins, L.J.; Wesley, J.C.

    1992-10-01

    The High Aspect Ratio Design (HARD) International Thermonuclear Experimental Reactor (ITER) concept developed by the US ITER team is an alternate to the low-aspect-ratio ITER design developed by the ITER participants during the Conceptual Design Activity (CDA). The CDA design, referred to hereafter as ITER CDA, has an aspect ratio, A, of 2.79, a toroidal magnetic field, B T , of 4.85 T, and a plasma current, I p , of 22 MA for operation with an ignited plasma. In contrast, HARD employs higher aspect ratio, A = 4.0, higher toroidal field, B T = 7.11 T, and lower plasma current, I p = 14.8 MA for ignition operation. The cross sections of the two designs are compared in. The parameters and performance of HARD and ITER CDA for inductively driven ignition operation are compared in. The HARD parameters provide the same ignition performance (ignition margin evaluated against ITER-89P confinement scaling) as ITER CDA in a device with comparable size and cost. However, the reason for advancing HARD rather than ITER CDA as the ITER design concept is not inductively driven ignition performance but HARD's significantly enhanced potential to achieve the technology testing and steady-state operation goals of the ITER objectives with non-inductive current drive

  9. The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study.

    Science.gov (United States)

    Leone, Antonio Maria; Martin-Reyes, Roberto; Baptista, Sergio B; Amabile, Nicolas; Raposo, Luis; Franco Pelaez, Juan Antonio; Trani, Carlo; Cialdella, Pio; Basile, Eloisa; Zimbardo, Giuseppe; Burzotta, Francesco; Porto, Italo; Aurigemma, Cristina; Rebuzzi, Antonio G; Faustino, Mariana; Niccoli, Giampaolo; Abreu, Pedro F; Slama, Michel S; Spagnoli, Vincent; Telleria Arrieta, Miren; Amat Santos, Ignacio J; de la Torre Hernandez, Jose M; Lopez Palop, Ramon; Crea, Filippo

    2016-08-20

    Adenosine administration is needed for the achievement of maximal hyperaemia fractional flow reserve (FFR) assessment. The objective was to test the accuracy of Pd/Pa ratio registered during submaximal hyperaemia induced by non-ionic contrast medium (contrast FFR [cFFR]) in predicting FFR and comparing it to the performance of resting Pd/Pa in a collaborative registry of 926 patients enrolled in 10 hospitals from four European countries (Italy, Spain, France and Portugal). Resting Pd/Pa, cFFR and FFR were measured in 1,026 coronary stenoses functionally evaluated using commercially available pressure wires. cFFR was obtained after intracoronary injection of contrast medium, while FFR was measured after administration of adenosine. Resting Pd/Pa and cFFR were significantly higher than FFR (0.93±0.05 vs. 0.87±0.08 vs. 0.84±0.08, ptime and costs.

  10. Inverse metal-assisted chemical etching produces smooth high aspect ratio InP nanostructures.

    Science.gov (United States)

    Kim, Seung Hyun; Mohseni, Parsian K; Song, Yi; Ishihara, Tatsumi; Li, Xiuling

    2015-01-14

    Creating high aspect ratio (AR) nanostructures by top-down fabrication without surface damage remains challenging for III-V semiconductors. Here, we demonstrate uniform, array-based InP nanostructures with lateral dimensions as small as sub-20 nm and AR > 35 using inverse metal-assisted chemical etching (I-MacEtch) in hydrogen peroxide (H2O2) and sulfuric acid (H2SO4), a purely solution-based yet anisotropic etching method. The mechanism of I-MacEtch, in contrast to regular MacEtch, is explored through surface characterization. Unique to I-MacEtch, the sidewall etching profile is remarkably smooth, independent of metal pattern edge roughness. The capability of this simple method to create various InP nanostructures, including high AR fins, can potentially enable the aggressive scaling of InP based transistors and optoelectronic devices with better performance and at lower cost than conventional etching methods.

  11. Improvements on Fresnel arrays for high contrast imaging

    Science.gov (United States)

    Wilhem, Roux; Laurent, Koechlin

    2018-03-01

    The Fresnel Diffractive Array Imager (FDAI) is based on a new optical concept for space telescopes, developed at Institut de Recherche en Astrophysique et Planétologie (IRAP), Toulouse, France. For the visible and near-infrared it has already proven its performances in resolution and dynamic range. We propose it now for astrophysical applications in the ultraviolet with apertures from 6 to 30 meters, aimed at imaging in UV faint astrophysical sources close to bright ones, as well as other applications requiring high dynamic range. Of course the project needs first a probatory mission at small aperture to validate the concept in space. In collaboration with institutes in Spain and Russia, we will propose to board a small prototype of Fresnel imager on the International Space Station (ISS), with a program combining technical tests and astrophysical targets. The spectral domain should contain the Lyman- α line ( λ = 121 nm). As part of its preparation, we improve the Fresnel array design for a better Point Spread Function in UV, presently on a small laboratory prototype working at 260 nm. Moreover, we plan to validate a new optical design and chromatic correction adapted to UV. In this article we present the results of numerical propagations showing the improvement in dynamic range obtained by combining and adapting three methods : central obturation, optimization of the bars mesh holding the Fresnel rings, and orthogonal apodization. We briefly present the proposed astrophysical program of a probatory mission with such UV optics.

  12. High (36)Cl/Cl ratios in Chernobyl groundwater.

    Science.gov (United States)

    Roux, Céline; Le Gal La Salle, Corinne; Simonucci, Caroline; Van Meir, Nathalie; Fifield, L Keith; Diez, Olivier; Bassot, Sylvain; Simler, Roland; Bugai, Dmitri; Kashparov, Valery; Lancelot, Joël

    2014-12-01

    After the explosion of the Chernobyl Nuclear Power Plant in April 1986, contaminated material was buried in shallow trenches within the exclusion zone. A (90)Sr plume was evidenced downgradient of one of these trenches, trench T22. Due to its conservative properties, (36)Cl is investigated here as a potential tracer to determine the maximal extent of the contamination plume from the trench in groundwater. (36)Cl/Cl ratios measured in groundwater, trench soil water and leaf leachates are 1-5 orders of magnitude higher than the theoretical natural (36)Cl/Cl ratio. This contamination occurred after the Chernobyl explosion and currently persists. Trench T22 acts as an obvious modern point source of (36)Cl, however other sources have to be involved to explain such contamination. (36)Cl contamination of groundwater can be explained by dilution of trench soil water by uncontaminated water (rainwater or deep groundwater). With a plume extending further than that of (90)Sr, radionuclide which is impacted by retention and decay processes, (36)Cl can be considered as a suitable tracer of contamination from the trench in groundwater provided that modern release processes of (36)Cl from trench soil are better characterized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Numerical Analysis of Film Cooling at High Blowing Ratio

    Science.gov (United States)

    El-Gabry, Lamyaa; Heidmann, James; Ameri, Ali

    2009-01-01

    Computational Fluid Dynamics is used in the analysis of a film cooling jet in crossflow. Predictions of film effectiveness are compared with experimental results for a circular jet at blowing ratios ranging from 0.5 to 2.0. Film effectiveness is a surface quantity which alone is insufficient in understanding the source and finding a remedy for shortcomings of the numerical model. Therefore, in addition, comparisons are made to flow field measurements of temperature along the jet centerline. These comparisons show that the CFD model is accurately predicting the extent and trajectory of the film cooling jet; however, there is a lack of agreement in the near-wall region downstream of the film hole. The effects of main stream turbulence conditions, boundary layer thickness, turbulence modeling, and numerical artificial dissipation are evaluated and found to have an insufficient impact in the wake region of separated films (i.e. cannot account for the discrepancy between measured and predicted centerline fluid temperatures). Analyses of low and moderate blowing ratio cases are carried out and results are in good agreement with data.

  14. Metallization of high aspect ratio, out of plane structures

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    This work is dedicated to developing a novel three dimensional structure for electrochemical measurements in neuronal studies. The final prototype will allow not only for the study and culture on chip of neuronal cells, but also of brain tissue. The use of out-of-plane electrodes instead of planar...... ones increases the sensitivity of the system and increases the signal-to-noise ratio in the recorded signals, due to the higher availability of surface area. The main bottleneck of the out-of-plane electrode fabrication lies in the metallization process for transforming them into active electrodes......, since the coverage of the side walls of almost vertical pillars is not trivial by standard processes in a clean room facility. This paper will discuss the different steps taken towards this goal and present the results that we have obtained so far....

  15. A hardware architecture for real-time shadow removal in high-contrast video

    Science.gov (United States)

    Verdugo, Pablo; Pezoa, Jorge E.; Figueroa, Miguel

    2017-09-01

    Broadcasting an outdoor sports event at daytime is a challenging task due to the high contrast that exists between areas in the shadow and light conditions within the same scene. Commercial cameras typically do not handle the high dynamic range of such scenes in a proper manner, resulting in broadcast streams with very little shadow detail. We propose a hardware architecture for real-time shadow removal in high-resolution video, which reduces the shadow effect and simultaneously improves shadow details. The algorithm operates only on the shadow portions of each video frame, thus improving the results and producing more realistic images than algorithms that operate on the entire frame, such as simplified Retinex and histogram shifting. The architecture receives an input in the RGB color space, transforms it into the YIQ space, and uses color information from both spaces to produce a mask of the shadow areas present in the image. The mask is then filtered using a connected components algorithm to eliminate false positives and negatives. The hardware uses pixel information at the edges of the mask to estimate the illumination ratio between light and shadow in the image, which is then used to correct the shadow area. Our prototype implementation simultaneously processes up to 7 video streams of 1920×1080 pixels at 60 frames per second on a Xilinx Kintex-7 XC7K325T FPGA.

  16. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  17. High aspect ratio MEMS capacitor for high frequency impedance matching applications

    DEFF Research Database (Denmark)

    Yalcinkaya, Arda Deniz; Jensen, Søren; Hansen, Ole

    2003-01-01

    We present a microelectromechanical tunable capacitor with a low control voltage, a wide tuning range and adequate electrical quality factor. The device is fabricated in a single-crystalline silicon layer using deep reactive ion etching (DRIE) for obtaining high-aspect ratio (> 20) parallel comb...

  18. Laser-matter interaction at high intensity and high temporal contrast

    International Nuclear Information System (INIS)

    Doumy, G.

    2006-01-01

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10 18 W/cm 2 ). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  19. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  20. SHAPE: Shape Memory for a High Turn-Down Ratio

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft designed for missions beyond low earth orbit (LEO) face a difficult thermal control challenge: they are required to reject a high heat load to warm...

  1. High-contrast MacNeille-PBS-based LCOS projection systems

    Science.gov (United States)

    Chen, Jianmin; Robinson, Michael G.; Sharp, Gary D.

    2005-04-01

    Contrast limits are investigated for MacNeille PBS based LCOS projection systems that use retarder stack filters (RSF). The two contributing factors are considered separately; namely the color management system and the panel port. To enhance performance of the former, skew ray compensated RSFs are introduced. For the latter, a general methodology is presented to optimize contrast by compensating the LCOS panel. It is shown that the orientation of the LCOS panel and compensator, relative to the MacNeille PBS, is critical. The significant impact of AR coating performance on system contrast is also revealed. A high contrast architecture will be presented by way of example.

  2. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative.

    Science.gov (United States)

    Eckstein, Felix; Kunz, Manuela; Hudelmaier, Martin; Jackson, Rebecca; Yu, Joseph; Eaton, Charles B; Schneider, Erika

    2007-02-01

    Phased-array (PA) coils generally provide higher signal-to-noise ratios (SNRs) than quadrature knee coils. In this pilot study for the Osteoarthritis Initiative (OAI) we compared these two types of coils in terms of contrast-to-noise ratio (CNR), precision, and consistency of quantitative femorotibial cartilage measurements. Test-retest measurements were acquired using coronal fast low-angle shot with water excitation (FLASHwe) and coronal multiplanar reconstruction (MPR) of sagittal double-echo steady state with water excitation (DESSwe) at 3T. The precision errors for cartilage volume and thickness were coil and coil with FLASHwe, and coil and sequence. The PA coil measurements did not always fully agree with the quadrature coil measurements, and some differences were significant. The higher CNR of the PA coil did not translate directly into improved precision of cartilage measurement; however, summing up cartilage plates within the medial and lateral compartment reduced precision errors. Copyright (c) 2007 Wiley-Liss, Inc.

  3. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  4. High-contrast coronagraph performance in the presence of DM actuator defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-09-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfilment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  5. High-Contrast Coronagraph Performance in the Presence of DM Actuator Defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Cady, Eric

    2015-01-01

    Deformable Mirrors (DMs) are critical elements in high contrast coronagraphs, requiring precision and stability measured in picometers to enable detection of Earth-like exoplanets. Occasionally DM actuators or their associated cables or electronics fail, requiring a wavefront control algorithm to compensate for actuators that may be displaced from their neighbors by hundreds of nanometers. We have carried out experiments on our High-Contrast Imaging Testbed (HCIT) to study the impact of failed actuators in partial fulfillment of the Terrestrial Planet Finder Coronagraph optical model validation milestone. We show that the wavefront control algorithm adapts to several broken actuators and maintains dark-hole contrast in broadband light.

  6. High rectification ratios of Fe-porphyrin molecules on Au facets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Wang, Gwo-Ching [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States); Lewis, Kim M., E-mail: lewisk2@rpi.edu [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110, 8th Street, Troy, NY 12180 (United States)

    2012-09-14

    We report room temperature measurements of current vs. voltage (I-V) from self-assembled Fe porphyrin [Fe(III) 5,15-di[4-(s-acetylthio)phenyl]-10,20-diphenyl porphine] molecular layers formed on annealed gold crystal facets on glass substrates. I-V curves were measured using an atomic force microscope with a conductive platinum tip. We observed a rectifier effect that shows asymmetric I-V curves from a monolayer of molecules. The majority rectification ratios at {+-}1 V obtained from hundreds of I-V lie in between 20 and 200, with the highest up to 9000. This is in contrast to the symmetric I-V curves measured from a few nm thick multilayer molecular islands. We contribute the observed rectification in ultrathin FeP molecular layers from asymmetric Schottky barriers that result from molecules in different bonding strengths to electrodes of gold and platinum. -- Highlights: Black-Right-Pointing-Pointer FeP molecular layers or islands of different thickness were self-assembled on Au. Black-Right-Pointing-Pointer High rectification ratios up to 9000 observed in sub-nm thick FeP molecular layers. Black-Right-Pointing-Pointer Measured current vs. voltage using a conductive AFM tip as one electrode. Black-Right-Pointing-Pointer Observed rectification of symmetric molecules using two different electrodes.

  7. MAX to MYCN intracellular ratio drives the aggressive phenotype and clinical outcome of high risk neuroblastoma.

    Science.gov (United States)

    Ferrucci, Francesca; Ciaccio, Roberto; Monticelli, Sara; Pigini, Paolo; di Giacomo, Simone; Purgato, Stefania; Erriquez, Daniela; Bernardoni, Roberto; Norris, Murray; Haber, Michelle; Milazzo, Giorgio; Perini, Giovanni

    2018-03-01

    Childhood neuroblastoma, a disease of the sympathetic nervous system, is the most common solid tumour of infancy, remarkably refractory to therapeutic treatments. One of the most powerful independent prognostic indicators for this disease is the amplification of the MYCN oncogene, which occurs at high levels in approximately 25% of neuroblastomas. Interestingly, amplification and not just expression of MYCN has a strong prognostic value, although this fact appears quite surprising as MYCN is a transcription factor that requires dimerising with its partner MAX, to exert its function. This observation greatly suggests that the role of MYCN in neuroblastoma should be examined in the context of MAX expression. In this report, we show that, in contrast to what is found in normal cells, MAX expression is significantly different among primary NBs, and that its level appears to correlate with the clinical outcome of the disease. Importantly, controlled modulation of MAX expression in neuroblastoma cells with different extents of MYCN amplification, demonstrates that MAX can instruct gene transcription programs that either reinforce or weaken the oncogenic process enacted by MYCN. In general, our work illustrates that it is the MAX to MYCN ratio that can account for tumour progression and clinical outcome in neuroblastoma and proposes that such a ratio should be considered as an important criterion to the design and development of anti-MYCN therapies. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Taylor bubbles at high viscosity ratios: experiments and numerical simulations

    Science.gov (United States)

    Hewakandamby, Buddhika; Hasan, Abbas; Azzopardi, Barry; Xie, Zhihua; Pain, Chris; Matar, Omar

    2015-11-01

    The Taylor bubble is a single long bubble which nearly fills the entire cross section of a liquid-filled circular tube, often occurring in gas-liquid slug flows in many industrial applications, particularly oil and gas production. The objective of this study is to investigate the fluid dynamics of three-dimensional Taylor bubble rising in highly viscous silicone oil in a vertical pipe. An adaptive unstructured mesh modelling framework is adopted here which can modify and adapt anisotropic unstructured meshes to better represent the underlying physics of bubble rising and reduce computational effort without sacrificing accuracy. The numerical framework consists of a mixed control volume and finite element formulation, a `volume of fluid'-type method for the interface-capturing based on a compressive control volume advection method, and a force-balanced algorithm for the surface tension implementation. Experimental results for the Taylor bubble shape and rise velocity are presented, together with numerical results for the dynamics of the bubbles. A comparison of the simulation predictions with experimental data available in the literature is also presented to demonstrate the capabilities of our numerical method. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  9. High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio

    Energy Technology Data Exchange (ETDEWEB)

    Nekahi, A.; Marashi, S.P.H., E-mail: pmarashi@aut.ac.ir; Fatmesari, D. Haghshenas

    2016-12-01

    Long silver nanowires (average length of 28 μm, average aspect ratio of 130) with uniform diameter along their length were produced by polyol synthesis of AgNO{sub 3} in ethylene glycol in the presence of PVP as preferential growth agent. Nanowires were produced with no addition of chloride salts such as NaCl or CuCl{sub 2} (or other additives such as Na{sub 2}S) which are usually used for lowering reduction rate of Ag ions by additional etchant of O{sub 2}/Cl{sup −}. Lower reduction rate was obtained by increasing the injection time of PVP and AgNO{sub 3} solutions, which was the significant factor in the formation of nanowires. Therefore, there was enough time for reduced Ag atoms to be deposited preferentially in the direction of PVP chains, resulting in high yield (the fraction of nanowires in the products) of nanowires (more than 95%) with high aspect ratio. The produced nanowires had both round- and sharp-ends with pentagonal cross section. Higher energy level of Ag atoms in borders of MTPs, which increases the dissolution rate of precipitated atoms, in addition to partial melting of MTPs at high synthesis temperatures, leads to the curving of the surfaces of exposed (111) crystalline planes in some MTPs and the formation of round-end silver nanowires. - Highlights: • Long silver nanowires with high aspect ratio of 130 were produced. • More than 95% nanowires were produced in products. • The produced nanowires had round- and sharp-ends with pentagonal cross section. • Additives were needed neither for high yield synthesis nor for round-end nanowires. • Melting and etching of MTPs in high energy borders resulted to round-end nanowires.

  10. Use of high concentration contrast media: principles and rationale--vascular district

    International Nuclear Information System (INIS)

    Fleischmann, Dominik.

    2003-01-01

    Optimal contrast medium delivery remains a crucial issue in CT angiography and it will become even more critical with continuously evolving, faster CT scanner technology. This review article first explains the fundamentals of arterial enhancement using mathematical models of early contrast medium dynamics. The relationship of contrast medium volume, injection flow rates and injection duration are explicitly illustrated. Next, current techniques of contrast medium application are reviewed, with particular attention to methods of accurate timing of the scanning delay (test-bolus and automated bolus triggering), tools for automated saline-flushing of the veins (double-syringe power injectors) and the use of high-concentration contrast medium. From there, rational CT angiographic injection protocols for a wide range of selectable acquisition times for 4-, 8- and 16-channel MDCT are proposed

  11. Neutrophil–lymphocyte ratio is associated with low high-density lipoprotein cholesterol in healthy young men

    Directory of Open Access Journals (Sweden)

    Duran Tok

    2014-04-01

    Full Text Available Objective: It has been reported that the neutrophil–lymphocyte ratio is significantly elevated in patients with low high-density lipoprotein cholesterol (<35 mg/dL. But in this study, some patients had hypertension that may have affected the neutrophil–lymphocyte ratio. This study consisted of 1274 asymptomatic healthy young men. In contrast with the previous study, we investigated the neutrophil–lymphocyte ratio in healthy young men with low high-density lipoprotein cholesterol compared with controls. Methods: We studied 1274 asymptomatic young males (military personnel screening who underwent routine health check-up. Of them, 102 subjects had low high-density lipoprotein cholesterol. Results: The neutrophil–lymphocyte ratio was significantly higher among the men with low high-density lipoprotein cholesterol than that of the control group (P < 0.001. Conclusion: We conclude that the neutrophil–lymphocyte ratio is significantly elevated in asymptomatic healthy young men with low high-density lipoprotein cholesterol compared with control participants.

  12. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    ratio mass spectrometer (IRMS). A continuous flow of He carrier gas completely degasses the sample, and passes through the preparation and purification system before entering the IRMS for analysis. The use of this continuous He carrier permits short analysis times (less than 8 min per sample......) as compared with current high-precision methods. In addition to reference gases, calibration is achieved using air-equilibrated water standards of known temperature and salinity. Assessment of reference gas injections, air equilibrated standards, as well as samples collected in the field shows the accuracy...

  13. High contrast high intensity petawatt J-KAREN-P laser facility at QST

    Science.gov (United States)

    Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Sakaki, Hironao; Dover, Nicholas P.; Kondo, Kotaro; Pirozhkov, Alexander S.; Sagisaka, Akito; Fukuda, Yuji; Nishitani, Keita; Miyahara, Takumi; Ogura, Koichi; Alkhimova, Mariya A.; Pikuz, Tatiana A.; Faenov, Anatoly Y.; Watanabe, Yukinobu; Koga, James; Bulanov, Sergei V.; Kando, Masaki; Kondo, Kiminori

    2017-05-01

    We report on the J-KAREN-P laser facility at QST, which can provide PW peak power at 0.1 Hz on target. The system can deliver short pulses with an energy of 30 J and pulse duration of 30 fs after compression with a contrast level of better than 1012. Such performance in high field science will give rise to the birth of new applications and breakthroughs, which include relativistic particle acceleration, bright x-ray source generation, and nuclear activation. The current achieved laser intensity on target is up to > 9x1021 Wcm-2 with an energy of 9 J on target. The interaction with a 3 to 5- μm stainless steel tape target provides us electrons with a typical temperature of more than 10 MeV and energetic proton beams with typical maximum energies of > 40 MeV with good reproducibility. The protons are accelerated in the Target Normal Sheath Acceleration regime, which is suitable for many applications including as an injector into a beamline for medical use, which is one of our objectives.

  14. High-Fidelity Contrast Reaction Simulation Training: Performance Comparison of Faculty, Fellows, and Residents.

    Science.gov (United States)

    Pfeifer, Kyle; Staib, Lawrence; Arango, Jennifer; Kirsch, John; Arici, Mel; Kappus, Liana; Pahade, Jay

    2016-01-01

    Reactions to contrast material are uncommon in diagnostic radiology, and vary in clinical presentation from urticaria to life-threatening anaphylaxis. Prior studies have demonstrated a high error rate in contrast reaction management, with smaller studies using simulation demonstrating variable data on effectiveness. We sought to assess the effectiveness of high-fidelity simulation in teaching contrast reaction management for residents, fellows, and attendings. A 20-question multiple-choice test assessing contrast reaction knowledge, with Likert-scale questions assessing subjective comfort levels of management of contrast reactions, was created. Three simulation scenarios that represented a moderate reaction, a severe reaction, and a contrast reaction mimic were completed in a one-hour period in a simulation laboratory. All participants completed a pretest and a posttest at one month. A six-month delayed posttest was given, but was optional for all participants. A total of 150 radiologists participated (residents = 52; fellows = 24; faculty = 74) in the pretest and posttest; and 105 participants completed the delayed posttest (residents = 31; fellows = 17; faculty = 57). A statistically significant increase was found in the one-month posttest (P < .00001) and the six-month posttest scores (P < .00001) and Likert scores (P < .001) assessing comfort level in managing all contrast reactions, compared with the pretest. Test scores and comfort level for moderate and severe reactions significantly decreased at six months, compared with the one-month posttest (P < .05). High-fidelity simulation is an effective learning tool, allowing practice of "high-acuity" situation management in a nonthreatening environment; the simulation training resulted in significant improvement in test scores, as well as an increase in subjective comfort in management of reactions, across all levels of training. A six-month refresher course is suggested, to maintain knowledge and comfort level in

  15. Use of high concentration contrast media (HCCM): principles and rationale--body CT

    International Nuclear Information System (INIS)

    Brink, James A.

    2003-01-01

    Numerous complex pharmacokinetic interrelationships affect the use of contrast media for computed tomography (CT) imaging. The volume, concentration, and rate of injection, all affect the degree of enhancement that is achieved with an injection of contrast material. In addition, the injection technique, whether the contrast is infused with a constant injection rate (uniphasic injection) or whether the rate is altered during the injection (multiphasic injection) also affect the magnitude and duration of contrast enhancement. In body CT imaging, the liver poses unique challenges in managing the use of intravenous contrast material because of its dual blood supply and the need to complete imaging before equilibrium occurs between the intravascular and extravascular compartments. The magnitude of hepatic enhancement that is ultimately achieved is related primarily to the amount of iodinated contrast material that accumulates in the extravascular space within the target organ, independent of the speed of the CT scanner. The key determinant of the onset of the equilibrium phase is the injection duration. Given that a high injection flow rate (4-5 ml/s) is desirable for arterial phase imaging, the injection duration is maintained with use of an appropriate contrast volume. Thus, modifications of total iodine dose are best done with alterations in contrast concentration. The magnitude of arterial enhancement that is achieved is related to both the concentration and rate of contrast administration. The speed of the scanner determines its ability to record image data during the most advantageous time period, the peak of arterial enhancement. Thus, rapid imaging is particularly advantageous for optimal contrast use in CT angiography as well as in multiphasic imaging of the parenchymal organs

  16. PCA-based approach for subtracting thermal background emission in high-contrast imaging data

    Science.gov (United States)

    Hunziker, S.; Quanz, S. P.; Amara, A.; Meyer, M. R.

    2018-03-01

    Aims.Ground-based observations at thermal infrared wavelengths suffer from large background radiation due to the sky, telescope and warm surfaces in the instrument. This significantly limits the sensitivity of ground-based observations at wavelengths longer than 3 μm. The main purpose of this work is to analyse this background emission in infrared high-contrast imaging data as illustrative of the problem, show how it can be modelled and subtracted and demonstrate that it can improve the detection of faint sources, such as exoplanets. Methods: We used principal component analysis (PCA) to model and subtract the thermal background emission in three archival high-contrast angular differential imaging datasets in the M' and L' filter. We used an M' dataset of β Pic to describe in detail how the algorithm works and explain how it can be applied. The results of the background subtraction are compared to the results from a conventional mean background subtraction scheme applied to the same dataset. Finally, both methods for background subtraction are compared by performing complete data reductions. We analysed the results from the M' dataset of HD 100546 only qualitatively. For the M' band dataset of β Pic and the L' band dataset of HD 169142, which was obtained with an angular groove phase mask vortex vector coronagraph, we also calculated and analysed the achieved signal-to-noise ratio (S/N). Results: We show that applying PCA is an effective way to remove spatially and temporarily varying thermal background emission down to close to the background limit. The procedure also proves to be very successful at reconstructing the background that is hidden behind the point spread function. In the complete data reductions, we find at least qualitative improvements for HD 100546 and HD 169142, however, we fail to find a significant increase in S/N of β Pic b. We discuss these findings and argue that in particular datasets with strongly varying observing conditions or

  17. Carcinoma of the uterine cervix. High-resolution turbo spin-echo MR imaging with contrast-enhanced dynamic scanning and T2-weighting

    International Nuclear Information System (INIS)

    Abe, Y.; Yamashita, Y.; Namimoto, T.; Takahashi, M.; Katabuchi, H.; Tanaka, N.; Okamura, H.

    1998-01-01

    Purpose: To compare high-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging with T2-weighted turbo spin-echo (TSE) imaging in the evaluation of uterine cervical carcinoma. Material and Methods: Thirty-two patients with cervical carcinoma underwent MR imaging on a 1.5 T superconductive unit to have the extension of the disease assessed before treatment. A phased-array coil was used in all patients. In 25 patients, surgical confirmation of the diagnosis was obtained after imaging. Radiation therapy was selected for the remaining 7 patients with advanced carcinoma. Qualitative and quantitative image analyses were also performed. Results: The cervical carcinomas showed maximum contrast in the cervical stroma and myometrium in the early dynamic phase. The tumor/cervical-stroma contrast in the early dynamic phase obtained with the T1-weighted TSE technique (contrast-to-noise ratio 22.6) was significantly higher than that obtained in T2-weighted TSE imaging (contrast-to-noise ratio 4.3). In the evaluation of parametrial invasion, the accuracy of T2-weighted imaging was 71.8% and contrast-enhanced dynamic imaging 81.2%. Conclusion: High-resolution contrast-enhanced (Gd-DTPA) dynamic MR imaging in cervical cancer offers improved tumor/cervical-stroma contrast and provides useful information on parametrial invasion. (orig.)

  18. Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating

    International Nuclear Information System (INIS)

    Gu, Changdong; Zhang, Tong-Yi; Xu, Hui

    2009-01-01

    This study aims to fabricate high aspect ratio through-wafer copper interconnects by a simple reverse pulse electroplating technique. High aspect-ratio (∼18) through-wafer holes obtained by a two-step deep reactive ion etching (DRIE) process exhibit a taper profile, which might automatically optimize the local current density distribution during the electroplating process, thereby achieving void-free high aspect-ratio copper vias

  19. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    Science.gov (United States)

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  20. Characterization of low-mass deformable mirrors and ASIC drivers for high-contrast imaging

    Science.gov (United States)

    Mejia Prada, Camilo; Yao, Li; Wu, Yuqian; Roberts, Lewis C.; Shelton, Chris; Wu, Xingtao

    2017-09-01

    The development of compact, high performance Deformable Mirrors (DMs) is one of the most important technological challenges for high-contrast imaging on space missions. Microscale Inc. has fabricated and characterized piezoelectric stack actuator deformable mirrors (PZT-DMs) and Application-Specific Integrated Circuit (ASIC) drivers for direct integration. The DM-ASIC system is designed to eliminate almost all cables, enabling a very compact optical system with low mass and low power consumption. We report on the optical tests used to evaluate the performance of the DM and ASIC units. We also compare the results to the requirements for space-based high-contrast imaging of exoplanets.

  1. Fabrication of a novel aluminum surface covered by numerous high-aspect-ratio anodic alumina nanofibers

    Science.gov (United States)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2015-11-01

    The formation behavior of anodic alumina nanofibers via anodizing in a concentrated pyrophosphoric acid under various conditions was investigated using electrochemical measurements and SEM/TEM observations. Pyrophosphoric acid anodizing at 293 K resulted in the formation of numerous anodic alumina nanofibers on an aluminum substrate through a thin barrier oxide and honeycomb oxide with narrow walls. However, long-term anodizing led to the chemical dissolution of the alumina nanofibers. The density of the anodic alumina nanofibers decreased as the applied voltage increased in the 10-75 V range. However, active electrochemical dissolution of the aluminum substrate occurred at a higher voltage of 90 V. Low temperature anodizing at 273 K resulted in the formation of long alumina nanofibers measuring several micrometers in length, even though a long processing time was required due to the low current density during the low temperature anodizing. In contrast, high temperature anodizing easily resulted in the formation and chemical dissolution of alumina nanofibers. The structural nanofeatures of the anodic alumina nanofibers were controlled by choosing of the appropriate electrochemical conditions, and numerous high-aspect-ratio alumina nanofibers (>100) can be successfully fabricated. The anodic alumina nanofibers consisted of a pure amorphous aluminum oxide without anions from the employed electrolyte.

  2. Renal clearance of an ionic high-osmolar and a nonionic low-osmolar contrast medium

    International Nuclear Information System (INIS)

    Thomsen, H.S.; Vestergaard, A.; Nielsen, S.L.; Fogh-Andersen, N.; Golman, K.; Dorph, S.

    1991-01-01

    One hundred patients with normal serum creatinine concentration underwent intravenous urography with either an ionic high-osmolar (diatrizoate) or a nonionic low-osmolar (iopamidol) contrast medium after randomization. Before injection of the contrast medium, a blood sample was drawn for determinating serum creatinine concentration, and a urine sample for measurement of urine osmolality. Using x-ray fluorescence, the plasma concentration of iodine (contrast medium) was determined on blood samples drawn approximately 3 and 4 hours after injection of the contrast medium. The glomerular filtration rate was calculated by two different formulas: one requiring only a single sample and one requiring at least two samples (standard). There were poor correlations between the standard contrast medium clearance and the serum creatinine concentration, the estimated creatinine clearance (calculated from a nomogram), as well as the urine osmolality. The 3-hour and the 4-hour single-sample values correlated well with the two-sample values for both contrast media. In patients with normal serum creatinine, the glomerular filtration rate determined by measuring the contrast medium concentration in a single plasma sample obtained at 3 hours, is almost identical to the value determined from two samples. Consequently, two samples are unnecessary

  3. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent

    International Nuclear Information System (INIS)

    Spuentrup, E.; Wiethoff, A.J.; Parsons, E.C.; Spangenberg, P.; Stracke, C.P.

    2010-01-01

    Purpose: The purpose of this study was to investigate the feasibility of clot visualization in small sinus and cortical veins with contrast enhanced MRA in a cerebral venous thrombosis animal model using a blood pool contrast agent, Gadofosveset, and high spatial resolution imaging. Material and methods: For induction of cerebral venous thrombosis a recently developed combined interventional and microsurgical model was used. Cerebral sinus and cortical vein thrombosis was induced in six pigs. Two further pigs died during the procedure. Standard structural, time-of-flight- and phase contrast-angiograms were followed by fast time resolved high resolution 3D MRA (4D MRA) and subsequent high spatial resolution 3D MRA in the equilibrium phase with and without addition of parallel imaging. Visualization of the clots using the different sequences was subjectively compared and contrast-to-noise ratio (CNR) was assessed. Results: In the remaining six animals the procedure and MR-imaging protocol including administration of Gadofosveset was successfully completed. The 3D high resolution MRA in the equilibrium phase without the addition of parallel imaging was superior to all the other applied MR measurement techniques in terms of visualization of the clots. Only applying this sequence bridging vein thromboses were also seen as a small filling defect with a high CNR of >18. Conclusion: Only the non-accelerated high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset allows for high-contrast visualization of very small clots in the cerebral sinus and cortical veins. Statement clinical impact: Detection of cortical vein thrombosis is of high clinical impact. Conventional MRI sequences often fail to visualize the clot. We could demonstrate that, in contrast to conventional sequences, with high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset very small clots in the cerebral sinus and

  4. Differentiating between Central Nervous System Lymphoma and High-grade Glioma Using Dynamic Susceptibility Contrast and Dynamic Contrast-enhanced MR Imaging with Histogram Analysis.

    Science.gov (United States)

    Murayama, Kazuhiro; Nishiyama, Yuya; Hirose, Yuichi; Abe, Masato; Ohyu, Shigeharu; Ninomiya, Ayako; Fukuba, Takashi; Katada, Kazuhiro; Toyama, Hiroshi

    2018-01-10

    We evaluated the diagnostic performance of histogram analysis of data from a combination of dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI for quantitative differentiation between central nervous system lymphoma (CNSL) and high-grade glioma (HGG), with the aim of identifying useful perfusion parameters as objective radiological markers for differentiating between them. Eight lesions with CNSLs and 15 with HGGs who underwent MRI examination, including DCE and DSC-MRI, were enrolled in our retrospective study. DSC-MRI provides a corrected cerebral blood volume (cCBV), and DCE-MRI provides a volume transfer coefficient (K trans ) for transfer from plasma to the extravascular extracellular space. K trans and cCBV were measured from a round region-of-interest in the slice of maximum size on the contrast-enhanced lesion. The differences in t values between CNSL and HGG for determining the most appropriate percentile of K trans and cCBV were investigated. The differences in K trans , cCBV, and K trans /cCBV between CNSL and HGG were investigated using histogram analysis. Receiver operating characteristic (ROC) analysis of K trans , cCBV, and K trans /cCBV ratio was performed. The 30 th percentile (C30) in K trans and 80 th percentile (C80) in cCBV were the most appropriate percentiles for distinguishing between CNSL and HGG from the differences in t values. CNSL showed significantly lower C80 cCBV, significantly higher C30 K trans , and significantly higher C30 K trans /C80 cCBV than those of HGG. In ROC analysis, C30 K trans /C80 cCBV had the best discriminative value for differentiating between CNSL and HGG as compared to C30 K trans or C80 cCBV. The combination of K trans by DCE-MRI and cCBV by DSC-MRI was found to reveal the characteristics of vascularity and permeability of a lesion more precisely than either K trans or cCBV alone. Histogram analysis of these vascular microenvironments enabled quantitative differentiation between

  5. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  6. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  7. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility...

  8. Contrast nephropathy in high-risk patients undergoing coronary angiography and intervention

    International Nuclear Information System (INIS)

    Uddin, M.A.; Rabbani, M.A.; Jafary, F.H.; Bhatti, M.A.; Islam, M.

    2005-01-01

    Objective: To determine the incidence of contrast nephropathy in high-risk patients undergoing coronary angiography and percutaneous coronary intervention (PCI), and to define the characteristics of this cohort. Design: Descriptive study. Place and Duration of Study: The Aga Khan University Hospital, Karachi from January to December 2002. Patients and Methods: One hundred and fifteen patients with serum creatinine greater than 1.4mg/dl who underwent coronary angiography or PCI were included. All patients received non-ionic contrast dye. Acute contrast nephropathy was defined as rise in serum creatinine of >0.5mg/dl within 48 hours following the index procedure. Means and standard deviations were calculated for continuous variables and frequencies for categorical variables. Results: Mean age of patients was 62.3 year + 8.83. Mean pre-contrast creatinine was 1.9+0.9mg/dl. Eleven (9.65%) patients developed contrast nephropathy. 4.4% of patients with serum creatinine 4.0(p-value 0.001). 11.9% diabetic patients developed nephropathy compared to 6.3% of non-diabetics (p-value 0.355). 11.4% of hypertensive and 3.7% of non-hypertensive patients developed contrast-nephropathy (p-value 0.454). 12.9% of low dose group ( 100ml) developed nephropathy (p-value 0.188). Mean serum creatinine in low dose group was higher (3.0mg/dl vs. 1.7 mg/dl). Conclusion: The incidence of contrast nephropathy in this study was similar to that reported in literature. Risk of CIN was found to be significantly proportional to the severity of baseline renal disease. Trends towards higher risk of CIN were seen in patients with diabetes and hypertension. Higher incidence of CIN in patients receiving low-dose contrast was confounded by higher baseline serum creatinine in that group. (author)

  9. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  10. Domain Decomposition Preconditioners for Multiscale Flows in High-Contrast Media

    KAUST Repository

    Galvis, Juan; Efendiev, Yalchin

    2010-01-01

    In this paper, we study domain decomposition preconditioners for multiscale flows in high-contrast media. We consider flow equations governed by elliptic equations in heterogeneous media with a large contrast in the coefficients. Our main goal is to develop domain decomposition preconditioners with the condition number that is independent of the contrast when there are variations within coarse regions. This is accomplished by designing coarse-scale spaces and interpolators that represent important features of the solution within each coarse region. The important features are characterized by the connectivities of high-conductivity regions. To detect these connectivities, we introduce an eigenvalue problem that automatically detects high-conductivity regions via a large gap in the spectrum. A main observation is that this eigenvalue problem has a few small, asymptotically vanishing eigenvalues. The number of these small eigenvalues is the same as the number of connected high-conductivity regions. The coarse spaces are constructed such that they span eigenfunctions corresponding to these small eigenvalues. These spaces are used within two-level additive Schwarz preconditioners as well as overlapping methods for the Schur complement to design preconditioners. We show that the condition number of the preconditioned systems is independent of the contrast. More detailed studies are performed for the case when the high-conductivity region is connected within coarse block neighborhoods. Our numerical experiments confirm the theoretical results presented in this paper. © 2010 Society for Industrial and Applied Mathematics.

  11. Peripheral Vasculature: High-Temporal- and High-Spatial-Resolution Three-dimensional Contrast-enhanced MR Angiography1

    Science.gov (United States)

    Haider, Clifton R.; Glockner, James F.; Stanson, Anthony W.; Riederer, Stephen J.

    2009-01-01

    Purpose: To prospectively evaluate the feasibility of performing high-spatial-resolution (1-mm isotropic) time-resolved three-dimensional (3D) contrast material–enhanced magnetic resonance (MR) angiography of the peripheral vasculature with Cartesian acquisition with projection-reconstruction–like sampling (CAPR) and eightfold accelerated two-dimensional (2D) sensitivity encoding (SENSE). Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written informed consent was obtained from all participants. There were 13 volunteers (mean age, 41.9; range, 27–53 years). The CAPR sequence was adapted to provide 1-mm isotropic spatial resolution and a 5-second frame time. Use of different receiver coil element sizes for those placed on the anterior-to-posterior versus left-to-right sides of the field of view reduced signal-to-noise ratio loss due to acceleration. Results from eight volunteers were rated independently by two radiologists according to prominence of artifact, arterial to venous separation, vessel sharpness, continuity of arterial signal intensity in major arteries (anterior and posterior tibial, peroneal), demarcation of origin of major arteries, and overall diagnostic image quality. MR angiographic results in two patients with peripheral vascular disease were compared with their results at computed tomographic angiography. Results: The sequence exhibited no image artifact adversely affecting diagnostic image quality. Temporal resolution was evaluated to be sufficient in all cases, even with known rapid arterial to venous transit. The vessels were graded to have excellent sharpness, continuity, and demarcation of the origins of the major arteries. Distal muscular branches and the communicating and perforating arteries were routinely seen. Excellent diagnostic quality rating was given for 15 (94%) of 16 evaluations. Conclusion: The feasibility of performing high-diagnostic-quality time-resolved 3D

  12. Imaging properties of high aspect ratio absorption gratings for use in preclinical x-ray grating interferometry.

    Science.gov (United States)

    Trimborn, Barbara; Meyer, Pascal; Kunka, Danays; Zuber, Marcus; Albrecht, Frederic; Kreuer, Sascha; Volk, Thomas; Baumbach, Tilo; Koenig, Thomas

    2016-01-21

    X-ray grating interferometry is one among various methods that allow extracting the so-called phase and visibility contrasts in addition to the well-known transmission images. Crucial to achieving a high image quality are the absorption gratings employed. Here, we present an in-depth analysis of how the grating type and lamella heights influence the final images. Benchmarking gratings of two different designs, we show that a frequently used proxy for image quality, a grating's so-called visibility, is insufficient to predict contrast-to-noise ratios (CNRs). Presenting scans from an excised rat lung, we demonstrate that the CNRs obtained for transmission and visibility images anti-correlate. This is explained by the stronger attenuation implied by gratings that are engineered to provide high visibilities by means of an increased lamella height. We show that even the visibility contrast can suffer from this effect when the associated reduced photon flux on the detector is not outweighed by a corresponding gain in visibility. Resulting in an inevitable trade-off between the quality of the two contrasts, the question of how an optimal grating should be designed can hence only be answered in terms of Pareto optimality.

  13. Laser-matter interaction at high intensity and high temporal contrast; Interaction laser matiere a haut flux et fort contraste temporel

    Energy Technology Data Exchange (ETDEWEB)

    Doumy, G

    2006-01-15

    The continuous progress in the development of laser installations has already lead to ultra-short pulses capable of achieving very high focalized intensities (I > 10{sup 18} W/cm{sup 2}). At these intensities, matter presents new non-linear behaviours, due to the fact that the electrons are accelerated to relativistic speeds. The experimental access to this interaction regime on solid targets has long been forbidden because of the presence, alongside the femtosecond pulse, of a pedestal (mainly due to the amplified spontaneous emission (ASE) which occurs in the laser chain) intense enough to modify the state of the target. In this thesis, we first characterized, both experimentally and theoretically, a device which allows an improvement of the temporal contrast of the pulse: the Plasma Mirror. It consists in adjusting the focusing of the pulse on a dielectric target, so that the pedestal is mainly transmitted, while the main pulse is reflected by the overcritical plasma that it forms at the surface. The implementation of such a device on the UHI 10 laser facility (CEA Saclay - 10 TW - 60 fs) then allowed us to study the interaction between ultra-intense, high contrast pulses with solid targets. In a first part, we managed to generate and characterize dense plasmas resulting directly from the interaction between the main pulse and very thin foils (100 nm). This characterization was realized by using an XUV source obtained by high order harmonics generation in a rare gas jet. In a second part, we studied experimentally the phenomenon of high order harmonics generation on solid targets, which is still badly understood, but could potentially lead to a new kind of energetic ultra-short XUV sources. (author)

  14. The Nonlinear Statistics of High-contrast Patches in Natural Images

    DEFF Research Database (Denmark)

    Lee, Ann; Pedersen, Kim Steenstrup; Mumford, David

    2003-01-01

    described. In this study, we explore the space of data points representing the values of 3 × 3 high-contrast patches from optical and 3D range images. We find that the distribution of data is extremely sparse with the majority of the data points concentrated in clusters and non-linear low...

  15. Experiencing More Mathematics Anxiety than Expected? Contrasting Trait and State Anxiety in High Achieving Students

    Science.gov (United States)

    Roos, A.-L.; Bieg, M.; Goetz, T.; Frenzel, A. C.; Taxer, J.; Zeidner, M.

    2015-01-01

    This study examined mathematics anxiety among high and low achieving students (N = 237, grades 9 and 10) by contrasting trait (habitual) and state (momentary) assessments of anxiety. Previous studies have found that trait anxiety measures are typically rated higher than state measures. Furthermore, the academic self-concept has been identified to…

  16. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    Science.gov (United States)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  17. High-resolution observation of phase contrast at 1MeV. Amorphous or crystalline objects

    International Nuclear Information System (INIS)

    Bourret, A.; Desseaux, J.

    1975-01-01

    Many authors have stressed the possibilities of high voltage to improve resolution, but owing to numerous experimental difficulties the resolution limit at 1MeV, which lies around 1A for conventional lenses, has so far been unattainable. Thus the phase contrast at 1MeV has not been studied on evaporated objects. On the other hand the fringes of crystal planes have been observed at 1MeV. the CEN-G microscope having been considerably modified it has been possible to observe the phase contrast of amorphous or crystalline objects [fr

  18. CT Image Contrast of High-Z Elements: Phantom Imaging Studies and Clinical Implications.

    Science.gov (United States)

    FitzGerald, Paul F; Colborn, Robert E; Edic, Peter M; Lambert, Jack W; Torres, Andrew S; Bonitatibus, Peter J; Yeh, Benjamin M

    2016-03-01

    To quantify the computed tomographic (CT) image contrast produced by potentially useful contrast material elements in clinically relevant imaging conditions. Equal mass concentrations (grams of active element per milliliter of solution) of seven radiodense elements, including iodine, barium, gadolinium, tantalum, ytterbium, gold, and bismuth, were formulated as compounds in aqueous solutions. The compounds were chosen such that the active element dominated the x-ray attenuation of the solution. The solutions were imaged within a modified 32-cm CT dose index phantom at 80, 100, 120, and 140 kVp at CT. To simulate larger body sizes, 0.2-, 0.5-, and 1.0-mm-thick copper filters were applied. CT image contrast was measured and corrected for measured concentrations and presence of chlorine in some compounds. Each element tested provided higher image contrast than iodine at some tube potential levels. Over the range of tube potentials that are clinically practical for average-sized and larger adults-that is, 100 kVp and higher-barium, gadolinium, ytterbium, and tantalum provided consistently increased image contrast compared with iodine, respectively demonstrating 39%, 56%, 34%, and 24% increases at 100 kVp; 39%, 66%, 53%, and 46% increases at 120 kVp; and 40%, 72%, 65%, and 60% increases at 140 kVp, with no added x-ray filter. The consistently high image contrast produced with 100-140 kVp by tantalum compared with bismuth and iodine at equal mass concentration suggests that tantalum could potentially be favorable for use as a clinical CT contrast agent.

  19. High contrast enhancement aspect of dynamic computed tomography with arterial infusion - DCT-AI

    International Nuclear Information System (INIS)

    Kato, Seishi; Iwasaki, Naoya; Matsumura, Yoshimitsu; Kuramae, Shigeru; Mishiro, Tadashi

    1983-01-01

    Dynamic computed tomography was performed on 112 cases possibly having hepatic tumors with intraarterial infusion of undiluted contrast into a selectively placed catheter following angiographies. Our dynamic program could evaluate not only early phase of enhancement but also late phase up to 120 sec. Reconstructed views from early scans and magnified views were very useful to evaluate minute sequential changes. Hepatic masses less than 5 cm in size were found in thirty-one cases. Patterns of tumor enhancement and time-density curves have been analysed to correlate them with histology. Four types of tumor enhancement were noted: (1) homogeneous (2) patchy (3) mottled (4) ringed. Characteristic changes were observed in hepatocellular carcinoma - HCC - (mostly mottled) and haemangioma (mostly patchy). The former was divided in two groups reflecting the cellular maturity. The metastatic tumor could be enhanced in a ringed form with dendritic pattern of supplying vascularities in some cases. To support the use of undiluted contrast and to investigate the diagnostic efficacy of high contrast enhancement, experiments were performed by taking transaxial views of an acrylic phantom immersed in different concentrations of contrast. Analysis of CT images taken at different HU values ranging from 0 to 450 demonstrated that the higher the concentration of contrast, the better the spatial resolution was. Also larger magnification could be expected by using higher concentration of contrast. Although our Dynamic Computed Tomography with Arterial Infusion of Contrast still has drawbacks and limited indications, we advocate it as a better way of enhancement to detect and evaluate the hepatic masses, which sometimes elude the examiner's grasp with conventional way of enhancement. (author)

  20. High-contrast imaging in the cloud with klipReduce and Findr

    Science.gov (United States)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  1. Generation of 25-TW Femtosecond Laser Pulses at 515 nm with Extremely High Temporal Contrast

    Directory of Open Access Journals (Sweden)

    Marco Hornung

    2015-12-01

    Full Text Available We report on the frequency doubling of femtosecond laser pulses at 1030 nm center wavelength generated from the fully diode-pumped laser system POLARIS. The newly generated pulses at a center wavelength of 515 nm have a pulse energy of 3 J with a pulse duration of 120 fs. On the basis of initially ultra-high contrast seed pulses we expect a temporal intensity contrast better 10 17 200 ps before the peak of the main pulse. We analyzed the temporal intensity contrast from milliseconds to femtoseconds with a dynamic range covering more than 20 orders of magnitude. The pulses were focussed with a f/2-focussing parabola resulting in a peak intensity exceeding 10 20 W / cm 2 . The peak power and intensity are to the best of our knowledge the highest values for 515 nm-laser-pulses achieved so far.

  2. Bounds and Estimates for Transport Coefficients of Random and Porous Media with High Contrasts

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Bounds on transport coefficients of random polycrystals of laminates are presented, including the well-known Hashin-Shtrikman bounds and some newly formulated bounds involving two formation factors for a two-component porous medium. Some new types of self-consistent estimates are then formulated based on the observed analytical structure both of these bounds and also of earlier self-consistent estimates (of the CPA or coherent potential approximation type). A numerical study is made, assuming first that the internal structure (i.e., the laminated grain structure) is not known, and then that it is known. The purpose of this aspect of the study is to attempt to quantify the differences in the predictions of properties of a system being modeled when such organized internal structure is present in the medium but detailed spatial correlation information may or (more commonly) may not be available. Some methods of estimating formation factors from data are also presented and then applied to a high-contrast fluid-permeability data set. Hashin-Shtrikman bounds are found to be very accurate estimates for low contrast heterogeneous media. But formation factor lower bounds are superior estimates for high contrast situations. The new self-consistent estimators also tend to agree better with data than either the bounds or the CPA estimates, which themselves tend to overestimate values for high contrast conducting composites

  3. Possibilities and limits of digital industrial radiology: the new high contrast sensitivity technique - Examples and system theoretical analysis

    International Nuclear Information System (INIS)

    Zscherpel, U.; Ewert, U.; Bavendiek, K.

    2007-01-01

    During the last years more and more reports about film replacement techniques are published using different ways to prove the required and obtained image quality. The motivation is usually cost reduction due to shorter exposure times and lower storage costs, smaller space requirements and elimination of chemical processing inclusive associated waste handling and disposal. There are no other publications known, which explore the upper limits of image quality achievable by the new digital techniques. This is important for inspection of safety relevant and high risk parts, as e.g. in nuclear or aerospace industries. A new calibration and measurement procedure for digital detector arrays (DDA) was explored to obtain the maximum signal/noise ratio achievable with DDAs. This procedure yields a contrast sensitivity which allows distinguishing wall thickness changes of up to 1/1000 of the penetrated material thickness. Standard film radiography using NDT film systems (with and without lead screens) achieves a wall thickness contrast which is not better than 1/100 even with the best film system class (class 'C1' according to EN 584-1 or 'special' according to ASTM E 1815). Computed Radiography (CR) using phosphor imaging plates is a true film replacement technique without enhancement of the image quality compared to NDT film systems. The comparison is based on parameter studies which measure signal/noise ratios and determine the basic spatial resolution as well as a comparison of radiological images with fine flaws. (authors)

  4. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2017-01-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible

  5. Contrasting effects of age on the plasma/whole blood lead ratio in men and women with a history of lead exposure

    International Nuclear Information System (INIS)

    Barbosa, Fernando; Ramires, Irene; Rodrigues, Maria Heloisa C.; Saint' Pierre, Tatiana D.; Curtius, Adilson J.; Buzalaf, Marilia R.; Gerlach, Raquel F.; Tanus-Santos, Jose E.

    2006-01-01

    We examined the effect of age and sex on the relationship between the concentrations of Pb in blood (Pb-B) and in plasma (Pb-P) in an adult population with a history of lead exposure. Pb-P was determined by inductively coupled plasma mass spectrometry (ICP-MS) and Pb-B by graphite furnace atomic absorption spectrometry (GF AAS). We studied 154 adults (56 men and 98 women) from 18 to 60-year old. Pb-B levels varied from 10.0 to 428.0 μg/L, with a mean of 76 μg/L. Blood lead levels varied from 10.0 to 428.0 μg/L in men (mean, 98.3 μg/L) and from 10.0 to 263.0 μg/L (mean, 62.8 μg/L) in women. Corresponding Pb-Ps were 0.02-2.9 μg/L (mean, 0.66 μg/L) and 0.02-1.5 μg/L (mean, 0.42 μg/L) in men and women, respectively. The relationship between Pb-B and Pb-P was found to be curvilinear (r=0.757, P 1492 (y=Pb-P, and x=Pb-B). The %Pb-P/Pb-B ratio ranged from 0.03% to 1.85%. A positive association was found between %Pb-P/Pb-B ratio and Pb-B levels. When data were separated by sex, this association was also relevant for men (y=0.0184x 0.702 ) and women (y=0.0534x 0.5209 ) (y=%Pb-P/Pb-B and x=Pb-B). Moreover, we found an interesting positive correlation between Log (Pb-P/Pb-B) and age for women (r=0.31, P<0.0001) and a negative correlation for men (r=-0.164, P=0.07). Taken together, these results suggest contrasting effects of age on the plasma/whole blood lead ratio in men and women with a history of lead exposure. Moreover, sex might play an important role in the metabolism of lead, implying further consideration on the kinetic models constructed of lead toxicity

  6. Mode decomposition methods for flows in high-contrast porous media. A global approach

    KAUST Repository

    Ghommem, Mehdi; Calo, Victor M.; Efendiev, Yalchin R.

    2014-01-01

    We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.

  7. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  8. High-contrast imaging with an arbitrary aperture: Active compensation of aperture discontinuities

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Norman, Colin

    2013-01-01

    We present a new method to achieve high-contrast images using segmented and/or on-axis telescopes. Our approach relies on using two sequential deformable mirrors (DMs) to compensate for the large amplitude excursions in the telescope aperture due to secondary support structures and/or segment gaps. In this configuration the parameter landscape of DM surfaces that yield high-contrast point-spread functions is not linear, and nonlinear methods are needed to find the true minimum in the optimization topology. We solve the highly nonlinear Monge-Ampere equation that is the fundamental equation describing the physics of phase-induced amplitude modulation. We determine the optimum configuration for our two sequential DM system and show that high-throughput and high-contrast solutions can be achieved using realistic surface deformations that are accessible using existing technologies. We name this process Active Compensation of Aperture Discontinuities (ACAD). We show that for geometries similar to the James Webb Space Telescope, ACAD can attain at least 10 –7 in contrast and an order of magnitude higher for both the future extremely large telescopes and on-axis architectures reminiscent of the Hubble Space Telescope. We show that the converging nonlinear mappings resulting from our DM shapes actually damp near-field diffraction artifacts in the vicinity of the discontinuities. Thus, ACAD actually lowers the chromatic ringing due to diffraction by segment gaps and struts while not amplifying the diffraction at the aperture edges beyond the Fresnel regime. This outer Fresnel ringing can be mitigated by properly designing the optical system. Consequently, ACAD is a true broadband solution to the problem of high-contrast imaging with segmented and/or on-axis apertures. We finally show that once the nonlinear solution is found, fine tuning with linear methods used in wavefront control can be applied to further contrast by another order of magnitude. Generally speaking, the

  9. Aspect Ratio Scaling of Ideal No-wall Stability Limits in High Bootstrap Fraction Tokamak Plasmas

    International Nuclear Information System (INIS)

    Menard, J.E.; Bell, M.G.; Bell, R.E.; Gates, D.A.; Kaye, S.M.; LeBlanc, B.P.; Maingi, R.; Sabbagh, S.A.; Soukhanovskii, V.; Stutman, D.

    2003-01-01

    Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40 (2000) 557] have achieved normalized beta values twice the conventional tokamak limit at low internal inductance and with significant bootstrap current. These experimental results have motivated a computational re-examination of the plasma aspect ratio dependence of ideal no-wall magnetohydrodynamic stability limits. These calculations find that the profile-optimized no-wall stability limit in high bootstrap fraction regimes is well described by a nearly aspect ratio invariant normalized beta parameter utilizing the total magnetic field energy density inside the plasma. However, the scaling of normalized beta with internal inductance is found to be strongly aspect ratio dependent at sufficiently low aspect ratio. These calculations and detailed stability analyses of experimental equilibria indicate that the nonrotating plasma no-wall stability limit has been exceeded by as much as 30% in NSTX in a high bootstrap fraction regime

  10. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  11. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, S A; Marone, F; Hintermueller, C; Stampanoni, M [Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Bensadoun, J-C; Aebischer, P, E-mail: samuel.mcdonald@psi.c [EPFL, School of Life Sciences, Station 15, 1015 Lausanne (Switzerland)

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  12. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  13. CT of multiple sclerosis: reassessment of delayed scanning with high doses of contrast material

    International Nuclear Information System (INIS)

    Spiegel, S.M.; Vinuela, F.; Fox, A.J.; Pelz, D.M.

    1985-01-01

    A prospective study involving 87 patients was carried out to evaluate the necessity for a high dose of contrast material in addition to delayed computed tomographic (CT) scanning for optimal detection of the lesions of multiple sclerosis in the brain. In patients with either clinically definite multiple sclerosis or laboratory-supported definite multiple sclerosis, CT scans were obtained with a uniform protocol. Lesions consistent with multiple sclerosis were demonstrated on the second scan in 54 patients. In 36 of these 54 patients, the high-dose delayed scan added information. These results are quite similar to those of a previous study from this institution using different patients, in whom the second scan was obtained immediately after the bolus injection of contrast material containing 40 g of organically bound iodine. The lack of real difference in the results of the two studies indicate that the increased dose, not just the delay in scanning, is necessary for a proper study

  14. Multiscale modeling of high contrast brinkman equations with applications to deformable porous media

    KAUST Repository

    Brown, Donald

    2013-06-18

    Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.

  15. Photoacoustic contrast imaging of biological tissues with nanodiamonds fabricated for high near-infrared absorbance.

    Science.gov (United States)

    Zhang, Ti; Cui, Huizhong; Fang, Chia-Yi; Su, Long-Jyun; Ren, Shenqiang; Chang, Huan-Cheng; Yang, Xinmai; Forrest, M Laird

    2013-02-01

    Radiation-damaged nanodiamonds (DNDs) are potentially ideal optical contrast agents for photoacoustic (PA) imaging in biological tissues due to their low toxicity and high optical absorbance. PA imaging contrast agents have been limited to quantum dots and gold particles, since most existing carbon-based nanoparticles, including fluorescent nanodiamonds, do not have sufficient optical absorption in the near-infrared (NIR) range. A new DND by He+ ion beam irradiation with very high NIR absorption was synthesized. These DNDs produced a 71-fold higher PA signal on a molar basis than similarly dimensioned gold nanorods, and 7.1 fmol of DNDs injected into rodents could be clearly imaged 3 mm below the skin surface with PA signal enhancement of 567% using an 820-nm laser wavelength.

  16. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    International Nuclear Information System (INIS)

    Sztrókay, A; Schlossbauer, T; Bamberg, F; Reiser, M F; Coan, P; Diemoz, P C; Brun, E; Bravin, A; Mayr, D

    2012-01-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm 2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation. (paper)

  17. High-resolution breast tomography at high energy: a feasibility study of phase contrast imaging on a whole breast

    Science.gov (United States)

    Sztrókay, A.; Diemoz, P. C.; Schlossbauer, T.; Brun, E.; Bamberg, F.; Mayr, D.; Reiser, M. F.; Bravin, A.; Coan, P.

    2012-05-01

    Previous studies on phase contrast imaging (PCI) mammography have demonstrated an enhancement of breast morphology and cancerous tissue visualization compared to conventional imaging. We show here the first results of the PCI analyser-based imaging (ABI) in computed tomography (CT) mode on whole and large (>12 cm) tumour-bearing breast tissues. We demonstrate in this work the capability of the technique of working at high x-ray energies and producing high-contrast images of large and complex specimens. One entire breast of an 80-year-old woman with invasive ductal cancer was imaged using ABI-CT with monochromatic 70 keV x-rays and an area detector of 92×92 µm2 pixel size. Sagittal slices were reconstructed from the acquired data, and compared to corresponding histological sections. Comparison with conventional absorption-based CT was also performed. Five blinded radiologists quantitatively evaluated the visual aspects of the ABI-CT images with respect to sharpness, soft tissue contrast, tissue boundaries and the discrimination of different structures/tissues. ABI-CT excellently depicted the entire 3D architecture of the breast volume by providing high-resolution and high-contrast images of the normal and cancerous breast tissues. These results are an important step in the evolution of PCI-CT towards its clinical implementation.

  18. A Switched-Capacitor Based High Conversion Ratio Converter for Renewable Energy Applications

    DEFF Research Database (Denmark)

    Li, Kerui; Yin, Zhijian; Yang, Yongheng

    2017-01-01

    A high step-up switched-capacitor based converter is proposed in this paper. The proposed converter features high conversion ratio, low voltage stress and continuous input current, which makes it very suitable for renewable energy applications like photovoltaic systems. More importantly...... voltage gain, low voltage stress on the switches, continuous input current, and relatively high efficiency....

  19. Efficient quality-eactor estimation of a vertical cavity employing a high-contrast grating

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2017-01-01

    Hybrid vertical cavity lasers employing high-contrast grating reflectors are attractive for Si-integrated light source applications. Here, a method for reducing a three-dimensional (3D) optical simulation of this laser structure to lower-dimensional simulations is suggested, which allows for very...... fast and approximate analysis of the quality-factor of the 3D cavity. This approach enables us to efficiently optimize the laser cavity design without performing cumbersome 3D simulations....

  20. High-contrast coronagraph performance in the presence of focal plane mask defects

    Science.gov (United States)

    Sidick, Erkin; Shaklan, Stuart; Balasubramanian, Kunjithapatham; Cady, Eric

    2014-08-01

    We have carried out a study of the performance of high-contrast coronagraphs in the presence of mask defects. We have considered the effects of opaque and dielectric particles of various dimensions, as well as systematic mask fabrication errors and the limitations of material properties in creating dark holes. We employ sequential deformable mirrors to compensate for phase and amplitude errors, and show the limitations of this approach in the presence of coronagraph image-mask defects.

  1. High-contrast imaging of mycobacterium tuberculosis using third-harmonic generation microscopy

    Science.gov (United States)

    Kim, Bo Ram; Lee, Eungjang; Park, Seung-Han

    2015-07-01

    Nonlinear optical microcopy has become an important tool in investigating biomaterials due to its various advantages such as label-free imaging capabilities. In particular, it has been shown that third-harmonic generation (THG) signals can be produced at interfaces between an aqueous medium (e.g. cytoplasm, interstitial fluid) and a mineralized lipidic surface. In this work, we have demonstrated that label-free high-contrast THG images of the mycobacterium tuberculosis can be obtained using THG microscopy.

  2. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    Energy Technology Data Exchange (ETDEWEB)

    Zhuo, S M [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, J X [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Luo, T S [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Chen, H L [Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, Fuzhou 350007 (China); Zhao, J J [Department of Skin, Affiliated Xiehe Hospital, Fujian Medical University, Fuzhou 350001 (China)

    2007-07-15

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue.

  3. High-contrast multimodel nonlinear optical imaging of collagen and elastin

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Luo, T S; Chen, H L; Zhao, J J

    2007-01-01

    Collagen and elastin, as the major components in the extracellular matrix (ECM), are intrinsic indicators of physiological and pathological states. Here, we have developed a high-contrast multimodel nonlinear optical imaging technique to imaging collagen and elastin by detecting simultaneously two photon-excited fluorescence (TPEF) from elastin and second-harmonic generation (SHG) from collagen. Our results show that this technique can obtain a high-contrast TPEF/SHG image in human dermis and permit direct visualization of collagen and elastin. It was shown that the technique can provide collagen and elastin structural information to determine collagen and elastin fibril orientation and distribution and acquire some morphometric properties. It was found that the in-depth TPEF/SHG imaging and 3-D reconstruction of TPEF/SHG images can extract more collagen and elastin structural and biochemical information. The study results suggest that the high-contrast multimodel nonlinear imaging provides a powerful tool to study ECM intrinsic components and has the potential to provide more important information for the diagnosis of tissue

  4. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi; Presho, Michael; Calo, Victor M.; Efendiev, Yalchin R.

    2013-01-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  5. Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates.

    Science.gov (United States)

    Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel

    2002-10-21

    Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.

  6. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    KAUST Repository

    Ghommem, Mehdi

    2013-11-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  7. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Directory of Open Access Journals (Sweden)

    R. Seco

    2011-12-01

    Full Text Available Atmospheric volatile organic compounds (VOCs are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce.

    We conducted seasonal (winter and summer measurements of VOC mixing ratios in an elevated (720 m a.s.l. holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula. Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air.

    The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these

  8. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Science.gov (United States)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  9. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir [Nuclear Science and Technology Institute (Iran, Islamic Republic of); Saramad, Shahyar; Setayeshi, Saeed [Amirkabir University of Technology, Faculty of Energy Engineering and Physics (Iran, Islamic Republic of)

    2016-12-15

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.

  10. A design study of high breeding ratio sodium cooled metal fuel core without blanket fuels

    International Nuclear Information System (INIS)

    Kobayashi, Noboru; Ogawa, Takashi; Ohki, Shigeo; Mizuno, Tomoyasu; Ogata, Takanari

    2009-01-01

    The metal fuel core is superior to the mixed oxide fuel core because of its high breeding ratio and compact core size resulting from hard neutron spectrum and high heavy metal densities. Utilizing these characteristics, a conceptual design for a high breeding ratio was performed without blanket fuels. The design conditions were set so a sodium void worth of less than 8 $, a core height of less than 150 cm, the maximum cladding temperature of 650degC, and the maximum fuel pin bundle pressure drop of 0.4 MPa. The breeding ratio of the resultant core was 1.34 with 6wt% zirconium content fuel. Applying 3wt% zirconium content fuel enhanced the breeding ratio up to 1.40. (author)

  11. Fabrication of high aspect ratio nanocell lattices by ion beam irradiation

    International Nuclear Information System (INIS)

    Ishikawa, Osamu; Nitta, Noriko; Taniwaki, Masafumi

    2016-01-01

    Highlights: • Nanocell lattice with a high aspect ratio on InSb semiconductor surface was fabricated by ion beam irradiation. • The fabrication technique consisting of top-down and bottom-up processes was performed in FIB. • High aspect ratio of 2 was achieved in nanocell lattice with a 100 nm interval. • The intermediate-flux irradiation is favorable for fabrication of nanocell with a high aspect ratio. - Abstract: A high aspect ratio nanocell lattice was fabricated on the InSb semiconductor surface using the migration of point defects induced by ion beam irradiation. The fabrication technique consisting of the top-down (formation of voids and holes) and bottom-up (growth of voids and holes into nanocells) processes was performed using a focused ion beam (FIB) system. A cell aspect ratio of 2 (cell height/cell diameter) was achieved for the nanocell lattice with a 100 nm dot interval The intermediate-flux ion irradiation during the bottom-up process was found to be optimal for the fabrication of a high aspect ratio nanocell.

  12. Contrasting female-male mortality ratios after routine vaccinations with pentavalent vaccine versus measles and yellow fever vaccine. A cohort study from urban Guinea-Bissau.

    Science.gov (United States)

    Fisker, Ane B; Biering-Sørensen, Sofie; Lund, Najaaraq; Djana, Queba; Rodrigues, Amabelia; Martins, Cesario L; Benn, Christine S

    2016-08-31

    In addition to protection against the target diseases, vaccines may have non-specific effects (NSEs). Measles vaccine (MV) has beneficial NSEs, providing protection against non-measles deaths, most so for girls. By contrast, though protecting against diphtheria, tetanus and pertussis, DTP vaccine is associated with increased female mortality relative to male mortality. In 2008, Guinea-Bissau replaced DTP with the DTP-containing pentavalent vaccine (Penta; DTP-H. influenza type B-Hepatitis B) at 6, 10 and 14weeks and yellow fever vaccine (YF) was to be given with MV. We investigated possible sex-differential mortality rates following Penta and MV+YF vaccination. Bandim Health Project (BHP) registers vaccines given by the three government health centres in the study area and vital status through demographic surveillance. We assessed the association between sex and mortality by vaccination status in Cox proportional hazards models with age as underlying timescale. Follow-up was censored at a subsequent vaccination contact or after 6months of follow-up. Between September 2008 and April 2011, we registered 23,448 vaccination contacts for children aged 42-365days; 17,313 were for Penta and 3028 for MV (2907 co-administered with YF). During follow-up 112 children died. The female/male mortality rate ratio was 1.73 (1.11-2.70) following Penta and 0.38 (0.12-1.19) after MV (p=0.02 for same effect). Adjusting for maternal education or weight-for-age at the time of vaccination did not change the estimates. Penta appears to have the same negative effects on mortality as those seen for DTP. Assessing post-vaccination mortality for boys and girls is necessary to improve the vaccination programme. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. [Study of CT Automatic Exposure Control System (CT-AEC) Optimization in CT Angiography of Lower Extremity Artery by Considering Contrast-to-Noise Ratio].

    Science.gov (United States)

    Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki

    2016-01-01

    To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.

  14. High aspect ratio silver grid transparent electrodes using UV embossing process

    Directory of Open Access Journals (Sweden)

    Dong Jin Kim

    2017-10-01

    Full Text Available This study presents a UV embossing process to fabricate high aspect ratio silver grid transparent electrodes on a polymer film. Transparent electrodes with a high optical transmittance (93 % and low sheet resistance (4.6 Ω/sq were fabricated without any high temperature or vacuum processes. The strong adhesion force between the UV resin and the silver ink enables the fabrication of silver microstructures with an aspect ratio higher than 3. The high aspect ratio results in a low sheet resistance while maintaining a high optical transmittance. Multi-layer transparent electrodes were fabricated by repeating the proposed UV process. Additionally, a large-area of 8-inch touch panel was fabricated with the proposed UV process. The proposed UV process is a relatively simple and low cost process making it suitable for large-area production as well as mass production.

  15. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  16. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast

    International Nuclear Information System (INIS)

    Julien, A.

    2006-03-01

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  17. Low index contrast heterostructure photonic crystal cavities with high quality factors and vertical radiation coupling

    Science.gov (United States)

    Ge, Xiaochen; Minkov, Momchil; Fan, Shanhui; Li, Xiuling; Zhou, Weidong

    2018-04-01

    We report here design and experimental demonstration of heterostructure photonic crystal cavities resonating near the Γ point with simultaneous strong lateral confinement and highly directional vertical radiation patterns. The lateral confinement is provided by a mode gap originating from a gradual modulation of the hole radii. High quality factor resonance is realized with a low index contrast between silicon nitride and quartz. The near surface-normal directional emission is preserved when the size of the core region is scaled down. The influence of the cavity size parameters on the resonant modes is also investigated theoretically and experimentally.

  18. Highly stabilized gadolinium chelates functionalized on metal nanoparticles as magnetic resonance imaging contrast agent

    Science.gov (United States)

    Siddiqui, Talha S.

    Magnetic resonance imaging (MRI) is a non-invasive method for imaging and diagnosing tissue damage, organ function and the vascular system. Magnevist(TM) a complex of diethylenetriaminepentaacetic acid (DTPA) and Gd3+ is a clinically approved contrast agent for MRI. A derivative of DTPA was formed by the addition of two cysteine groups (DTPA-L-Cys) through amide linkage. The Gd complex of this ligand bonds with the silver surfaces through the cysteine thiols. GdDTPA-L-Cys was bound to ˜10nm diameter Ag nanoparticles for use as a multifunctional MRI contrast agent. The ligand and complex were characterized by 1H and 13C NMR, ESI-MS and IR spectroscopy. The silver construct was characterized by TEM, TGA and UV-Vis absorption spectra. The per metal complex r1 relaxivity of GdDTPA-L-Cys{Ag} greater than that of Magnavist(TM) with the same molarity for both compounds. The synthesis of a DTPA derivative is described that allows it to bind to silver or gold nanoparticles through a single thiol linkage (DTPASH). The resulting Gd complex, GdDTPASH, was bound to Ag nanoparticles to create a single monolayer on the surface. The construct was further stabilized in buffered solution with the addition of a thiolated PEG chain. The highly stabilized nanoparticle construct delivers a high payload of Gd compelex and is an effective T1 brightening agent. The production of this type of construct opens the way for engineered multimodal MRI contrast agents.

  19. Semiconducting polymer dot as a highly effective contrast agent for photoacoustic imaging

    Science.gov (United States)

    Yuan, Zhen; Zhang, Jian

    2018-02-01

    In this study, we developed a novel PIID-DTBT based semiconducting polymer dots (Pdots) that have broad and strong optical absorption in the visible-light region (500 nm - 700 nm). Gold nanoparticles (GNPs) and gold nanorods (GNRs) that have been verified as an excellent photoacoustic contrast agent were compared with Pdots based on photoacoustic imaging method. Both ex vivo and in vivo experiment demonstrated Pdots have a better photoacoustic conversion efficiency at 532 nm than GNPs and similar photoacoustic performance with GNRs at 700 nm at the same mass concentration. Our work demonstrates the great potential of Pdots as a highly effective contrast agent for precise localization of lesions relative to the blood vessels based on photoacoustic tomography imaging.

  20. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    Science.gov (United States)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  1. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, Drew Pitney [Univ. of California, San Diego, CA (United States)

    2013-01-01

    The cone-guided fast ignition approach to Inertial Con nement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the rst time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of K x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an e ective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser at Los

  2. MR angiography of the carotid arteries and intracranial circulation: advantage of a high relaxivity contrast agent

    International Nuclear Information System (INIS)

    Anzalone, N.; Scotti, R.; Iadanza, A.

    2006-01-01

    Several studies have shown the usefulness of contrast-enhanced MR angiography (CE-MRA) for imaging the supraortic vessels, and, as a consequence, it has rapidly become a routine imaging modality. The main advantage over unenhanced techniques is the possibility to acquire larger volumes, allowing demonstration of the carotid artery from its origin to the intracranial portion. Most published studies on CE-MRA of the carotid arteries have been performed with standard Gd-based chelates whose T1 relaxivity values are similar. Recently new gadolinium chelates such as gadobenate dimeglumine (Gd-BOP-TA, MultiHance; Bracco Imaging, Milan, Italy) have been developed which have markedly higher intravascular T1 relaxivity values. When administered at an equivalent dose to that of a standard agent, these newer contrast agents produce significantly greater intravascular signal enhancement. The availability of an appropriate high-relaxivity contrast agent might also help to overcome some of the intrinsic technical problems (e. g. those related to flow) that affect time-of-flight (TOF) and phase contrast (PC) MR angiography of the intracranial vasculature. To avoid the problem of superimposition of veins, ultrafast gradient echo MRA techniques with very short TR and TE have been developed. Although the precise sequence parameters vary between manufacturers, they are basically similar. The choice between performing a time-resolved or high spatial resolution CE-MRA examination depends upon the precise clinical application. The most common applications include the study of cerebral aneurysms, arteriovenous malformations, dural arteriovenous fistulas and dural venous diseases

  3. Parametric analysis of diffuser requirements for high expansion ratio space engine

    Science.gov (United States)

    Wojciechowski, C. J.; Anderson, P. G.

    1981-01-01

    A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated.

  4. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  5. A Four-Phase High Voltage Conversion Ratio Bidirectional DC-DC Converter for Battery Applications

    Directory of Open Access Journals (Sweden)

    Li-Kun Xue

    2015-06-01

    Full Text Available This study presents a four-phase interleaved high voltage conversion ratio bidirectional DC-DC converter circuit based on coupled inductors and switched capacitors, which can eliminate the defects of conventional high voltage conversion ratio bidirectional DC-DC converters in terms of high-voltage/current stress, less efficiency and low-power limitation. Parallel channels are used to reduce current stress at the low-voltage side and series connected switched capacitors are used to enlarge voltage conversion ratio, reduce voltage stress and achieve auto current sharing. This paper proposes the operation principle, feature analysis and optimization design considerations. On this basis the objectives of high voltage conversion ratio, low voltage/current stress, high power density, high efficiency and high-power applications can be achieved. Some experimental results based on a 500 W prototype converter (24 V to 48 V at low-voltage side, 400 V at high-voltage side are given to verify the theoretical analysis and the effectiveness of the proposed converter.

  6. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  7. Ultra-High-Contrast Laser Acceleration of Relativistic Electrons in Solid Targets

    Science.gov (United States)

    Higginson, Drew Pitney

    The cone-guided fast ignition approach to Inertial Confinement Fusion requires laser-accelerated relativistic electrons to deposit kilojoules of energy within an imploded fuel core to initiate fusion burn. One obstacle to coupling electron energy into the core is the ablation of material, known as preplasma, by laser energy proceeding nanoseconds prior to the main pulse. This causes the laser-absorption surface to be pushed back hundreds of microns from the initial target surface; thus increasing the distance that electrons must travel to reach the imploded core. Previous experiments have shown an order of magnitude decrease in coupling into surrogate targets when intentionally increasing the amount of preplasma. Additionally, for electrons to deposit energy within the core, they should have kinetic energies on the order of a few MeV, as less energetic electrons will be stopped prior to the core and more energetic electrons will pass through the core without depositing much energy. Thus a quantitative understanding of the electron energy spectrum and how it responds to varied laser parameters is paramount for fast ignition. For the first time, this dissertation quantitatively investigates the acceleration of electrons using an ultra-high-contrast laser. Ultra-high-contrast lasers reduce the laser energy that reaches the target prior to the main pulse; drastically reducing the amount of preplasma. Experiments were performed in a cone-wire geometry relevant to fast ignition. These experiments irradiated the inner-tip of a Au cone with the laser and observed electrons that passed through a Cu wire attached to the outer-tip of the cone. The total emission of Kalpha x-rays is used as a diagnostic to infer the electron energy coupled into the wire. Imaging the x-ray emission allowed an effective path-length of electrons within the wire to be determined, which constrained the electron energy spectrum. Experiments were carried out on the ultra-high-contrast Trident laser

  8. Clinical Value of Dual-energy CT in Detection of Pancreatic Adenocarcinoma: Investigation of the Best Pancreatic Tumor Contrast to Noise Ratio.

    Science.gov (United States)

    He, Yong-Lan; Zhang, Da-Ming; Xue, Hua-Dan; Jin, Zheng-Yu

    2013-01-01

    Objective To quantitatively compare and determine the best pancreatic tumor contrast to noise ratio (CNR) in different dual-energy derived datasets. Methods In this retrospective, single center study, 16 patients (9 male, 7 female, average age 59.4±13.2 years) with pathologically diagnosed pancreatic cancer were enrolled. All patients received an abdominal scan using a dual source CT scanner 7 to 31 days before biopsy or surgery. After injection of iodine contrast agent, arterial and pancreatic parenchyma phase were scanned consequently, using a dual-energy scan mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs) in the pancreatic parenchyma phase. A series of derived dual-energy datasets were evaluated including non-liner blending (non-linear blending width 0-500 HU; blending center -500 to 500 HU), mono-energetic (40-190 keV), 100 kVp and 140 kVp. On each datasets, mean CT values of the pancreatic parenchyma and tumor, as well as standard deviation CT values of subcutaneous fat and psoas muscle were measured. Regions of interest of cutaneous fat and major psoas muscle of 100 kVp and 140 kVp images were calculated. Best CNR of subcutaneous fat (CNRF) and CNR of the major psoas muscle (CNRM) of non-liner blending and mono-energetic datasets were calculated with the optimal mono-energetic keV setting and the optimal blending center/width setting for the best CNR. One Way ANOVA test was used for comparison of best CNR between different dual-energy derived datasets. Results The best CNRF (4.48±1.29) was obtained from the non-liner blending datasets at blending center -16.6±103.9 HU and blending width 12.3±10.6 HU. The best CNRF (3.28±0.97) was obtained from the mono-energetic datasets at 73.3±4.3 keV. CNRF in the 100 kVp and 140 kVp were 3.02±0.91 and 1.56±0.56 respectively. Using fat as the noise background, all of these images series showed significant differences (Pbest CNRF of mono-energetic image sets vs. CNRF of 100 kVp image (P=0.460). Similar results were

  9. Optimization of Broadband Wavefront Correction at the Princeton High Contrast Imaging Laboratory

    Science.gov (United States)

    Groff, Tyler Dean; Kasdin, N.; Carlotti, A.

    2011-01-01

    Wavefront control for imaging of terrestrial planets using coronagraphic techniques requires improving the performance of the wavefront control techniques to expand the correction bandwidth and the size of the dark hole over which it is effective. At the Princeton High Contrast Imaging Laboratory we have focused on increasing the search area using two deformable mirrors (DMs) in series to achieve symmetric correction by correcting both amplitude and phase aberrations. Here we are concerned with increasing the bandwidth of light over which this correction is effective so we include a finite bandwidth into the optimization problem to generate a new stroke minimization algorithm. This allows us to minimize the actuator stroke on the DMs given contrast constraints at multiple wavelengths which define a window over which the dark hole will persist. This windowed stroke minimization algorithm is written in such a way that a weight may be applied to dictate the relative importance of the outer wavelengths to the central wavelength. In order to supply the estimates at multiple wavelengths a functional relationship to a central estimation wavelength is formed. Computational overhead and new experimental results of this windowed stroke minimization algorithm are discussed. The tradeoff between symmetric correction and achievable bandwidth is compared to the observed contrast degradation with wavelength in the experimental results. This work is supported by NASA APRA Grant #NNX09AB96G. The author is also supported under an NESSF Fellowship.

  10. ARTIFICIAL INCOHERENT SPECKLES ENABLE PRECISION ASTROMETRY AND PHOTOMETRY IN HIGH-CONTRAST IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, N.; Guyon, O.; Pathak, P.; Kudo, T. [National Astronomical Observatory of Japan, Subaru Telescope, 650 North A’Ohoku Place, Hilo, HI, 96720 (United States); Martinache, F. [Observatoire de la Cote d’Azur, Boulevard de l’Observatoire, F-06304 Nice (France); Hagelberg, J., E-mail: jovanovic.nem@gmail.com [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2015-11-10

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  11. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  12. TU-H-BRA-09: Relationship Between B0 and the Contrast-To-Noise Ratio (CNR) of Tumour to Background for MRI/Radiotherapy Hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Wachowicz, K; DeZanche, N; Fallone, B [Cross Cancer Institute, Edmonton, Alberta (Canada); University of Alberta, Edmonton, Alberta (Canada); Yip, E [University of Alberta, Edmonton, Alberta (Canada); Volotovskyy, V [Cross Cancer Institute, Edmonton, Alberta (Canada)

    2016-06-15

    Purpose: To investigate the relationship in MRI between B{sub 0} and the contrast-to-noise ratio (CNR) of various tumour/normal tissue pairs. This study is motivated by the current interest in MRI/radiotherapy hybrids, for which multiple magnetic field strengths have been proposed. CNR is the single most important parameter governing the ability of a system to identify a tumour in real time for treatment guidance. The MRI community has long since recognized that the SNR of a well-designed MR system is roughly proportional to B{sub 0}, the polarizing magnetic field. However, the CNR between two tissues is much more complicated - dependent not only on this signal behavior, but also on the different relaxation properties of the tissues. Methods: Experimentally-based models of B{sub 0}-dependant relaxation for various tumour and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid realtime imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumours for spoiled-gradient echo (SGE) and balanced steady-state free precession (bSSFP) sequences. Results: In all cases there was an improved CNR at lower fields compared to linear dependency. Further, in some tumour sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e. bSSFP CNR for glioma, kidney and liver tumours). Conclusion: Due to the variation of tissue relaxation parameters with field, lower B{sub 0} fields have been shown to perform as well or better (in terms of CNR) than higher fields for some tumour sites. In other sites this effect was less pronounced. It is the complex relationship between CNR and B{sub 0} that leads to greater CNR at 0.5 T for certain tumour types studied here for fast imaging. B. Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi

  13. A high voltage ratio and low ripple interleaved DC-DC converter for fuel cell applications.

    Science.gov (United States)

    Chang, Long-Yi; Chao, Kuei-Hsiang; Chang, Tsang-Chih

    2012-01-01

    This paper proposes a high voltage ratio and low ripple interleaved boost DC-DC converter, which can be used to reduce the output voltage ripple. This converter transfers the low DC voltage of fuel cell to high DC voltage in DC link. The structure of the converter is parallel with two voltage-doubler boost converters by interleaving their output voltages to reduce the voltage ripple ratio. Besides, it can lower the current stress for the switches and inductors in the system. First, the PSIM software was used to establish a proton exchange membrane fuel cell and a converter circuit model. The simulated and measured results of the fuel cell output characteristic curve are made to verify the correctness of the established simulation model. In addition, some experimental results are made to validate the effectiveness in improving output voltage ripple of the proposed high voltage ratio interleaved boost DC-DC converters.

  14. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  15. Influence of Coke Ratio on the Sintering Behavior of High-Chromium Vanadium-Titanium Magnetite

    Directory of Open Access Journals (Sweden)

    Songtao Yang

    2017-06-01

    Full Text Available High-chromium vanadium and titanium magnetite (HCVTM sinter has poor properties. The coke ratio has an important effect on the behavior of HCVTM sintering as it affects the mineral phases in the high-chromium vanadium and titanium sinter (HCVTS via changing the sintering temperature and atmosphere. In this work, the sintering behavior of HCVTM mixed with varying coke ratios was investigated through sintering pot tests, X-ray diffraction (XRD, gas chromatographic analysis, and mineral phase analysis. The results show that, with the increase of the coke ratio from 4.0% to 6.0%, leading to the increase of the combustion ratio of the flue gas, the vertical sintering rate and sinter productivity decrease. Meanwhile, with the change of the coke ratio, the content of magnetite, silicate, and perovskite increase, while the hematite and calcium ferrite decrease. In addition, the tumble strength and reduction ability of HCVTS decrease, and its degradation strength increase. It was found that the appropriate coke ratio for the sintering process was 5.0 wt %.

  16. Numerical Investigation of Vertical Cavity Lasers With High-Contrast Gratings Using the Fourier Modal Method

    DEFF Research Database (Denmark)

    Taghizadeh, Alireza; Mørk, Jesper; Chung, Il-Sug

    2016-01-01

    We explore the use of a modal expansion technique, Fourier modal method (FMM), for investigating the optical properties of vertical cavities employing high-contrast gratings (HCGs). Three techniques for determining the resonance frequency and quality factor (Q-factor) of a cavity mode are compared......, the scattering losses of several HCG-based vertical cavities with inplane heterostructures which have promising prospects for fundamental physics studies and on-chip laser applications, are investigated. This type of parametric study of 3D structures would be numerically very demanding using spatial...

  17. High-contrast grating hollow-core waveguide splitter applied to optical phased array

    Science.gov (United States)

    Zhao, Che; Xue, Ping; Zhang, Hanxing; Chen, Te; Peng, Chao; Hu, Weiwei

    2014-11-01

    A novel hollow-core (HW) Y-branch waveguide splitter based on high-contrast grating (HCG) is presented. We calculated and designed the HCG-HW splitter using Rigorous Coupled Wave Analysis (RCWA). Finite-different timedomain (FDTD) simulation shows that the splitter has a broad bandwidth and the branching loss is as low as 0.23 dB. Fabrication is accomplished with standard Silicon-On-Insulator (SOI) process. The experimental measurement results indicate its good performance on beam splitting near the central wavelength λ = 1550 nm with a total insertion loss of 7.0 dB.

  18. High-Relaxivity MRI Contrast Agents: Where Coordination Chemistry Meets Medical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Eric J.; Datta, Ankona; Jocher, Christoph J.; Raymond, Kenneth N.

    2008-01-15

    The desire to improve and expand the scope of clinical magnetic resonance imaging (MRI) has prompted the search for contrast agents of higher efficiency. The development of better agents requires consideration of the fundamental coordination chemistry of the gadolinium(III) ion and the parameters that affect its efficacy as a proton relaxation agent. In optimizing each parameter, other practical issues such as solubility and in vivo toxicity must also be addressed, making the attainment of safe, high-relaxivity agents a challenging goal. Here we present recent advances in the field, with an emphasis on the hydroxypyridinone family of Gd{sup III} chelates.

  19. Polarization-independent high-index contrast grating and its fabrication tolerances

    DEFF Research Database (Denmark)

    Ikeda, Kazuhiro; Takeuchi, Kazuma; Takayose, Kentaro

    2013-01-01

    also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.......A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented...

  20. In vitro experiments for the development of a high density (HD) barium sulfate contrast medium

    International Nuclear Information System (INIS)

    Klein, J.

    1986-01-01

    In vitro experiments with the high-density (HD) barium meal Falibaryt HD are described. Several charges of BaSO 4 were tested together with certain additives influencing dispersion, stability of the suspension, flowability, surface tension etc. Particle size spectra were measured by the manufacturer, VEB Fahlberg-List. With a simple PVC test plate containing several grooves simulating small details (areae gastricae) the diagnostic capabilities of the HD contrast medium were evaluated in an in vitro test. The developed barium meal Falibaryt HD is in its physical and chemical parameters comparable with Prontobario-HD, one of the best HD barium meals. (author)

  1. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching.

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-21

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  2. Study of x-ray emission enhancement via high contrast femtosecond laser interacting with solid foil

    International Nuclear Information System (INIS)

    Chen, Liming; Kando, Masaki; Bulanov, S.V.; Koga, James K.; Tajima, Toshiki; Xu M.H.; Yuan X.H.; Li Y.T.; Dong Q.L.; Zhang J.

    2007-01-01

    We studied the hard x-ray emission and the Kα x-ray conversion efficiency (η K ) produced by 60 fs high contrast frequency doubled Ti: sapphire laser pulse focused on Cu foil target. Cu Kα photon emission obtained with second harmonic laser pulse is more intense than the case of fundamental laser pulse. The Cu η K shows strong dependence on laser nonlinearly skewed pulse shape and reaches the maximum value 4x10 -4 with 100 fs negatively skewed pulse. It shows the electron spectrum shaping contribute to the increase of η K . (author)

  3. Computer-controlled detection system for high-precision isotope ratio measurements

    International Nuclear Information System (INIS)

    McCord, B.R.; Taylor, J.W.

    1986-01-01

    In this paper the authors describe a detection system for high-precision isotope ratio measurements. In this new system, the requirement for a ratioing digital voltmeter has been eliminated, and a standard digital voltmeter interfaced to a computer is employed. Instead of measuring the ratio of the two steadily increasing output voltages simultaneously, the digital voltmeter alternately samples the outputs at a precise rate over a certain period of time. The data are sent to the computer which calculates the rate of charge of each amplifier and divides the two rates to obtain the isotopic ratio. These results simulate a coincident measurement of the output of both integrators. The charge rate is calculated by using a linear regression method, and the standard error of the slope gives a measure of the stability of the system at the time the measurement was taken

  4. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  5. Tunable Resonant-Cavity-Enhanced Photodetector with Double High-Index-Contrast Grating Mirrors

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Yvind, Kresten; Chung, Il-Sug

    2013-01-01

    In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists....... Furthermore, the fact that it can be fabricated on a silicon platform offers us a possibility of integration with electronics.......In this paper, we propose a broadband-tunable resonant-cavity-enhanced photodetector (RCE-PD) structure with double high-index-contrast grating (HCG) mirrors and numerically investigate its characteristics. The detector is designed to operate at 1550-nm wavelength. The detector structure consists...... of a top InP HCG mirror, a p-i-n photodiode embedding multiple quantum wells, and a Si HCG mirror formed in the Si layer of a silicon-on-insulator wafer. The detection wavelength can be changed by moving the top InP HCG mirror suspended in the air. High reflectivity and small penetration length of HCGs...

  6. Improving surface acousto-optical interaction by high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    The acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes that are stro......The acousto-optical interaction of an optical wave confined inside a waveguide and a surface acoustic wave launched by an interdigital transducer (IDT) at the surface of a piezoelectric material is considered. The IDT with high aspect ratio electrodes supports several acoustic modes...

  7. New tubes and techniques for flash X-ray diffraction and high contrast radiography

    International Nuclear Information System (INIS)

    Charbonnier, F.M.; Barbour, J.P.; Brewster, J.L.

    High energy electrons are particularly efficient in producing characteristic X-rays and soft polychromatic. A line of wide spectrum beryllium window flash X-ray tubes, ranging from 150 to 600kV, has been developed to exploit this property. Laue and Debye Scherrer flash X-ray diffraction patterns have been obtained using a single 30 ns pulse exposure. X-ray diffraction tests obtained are shown. Extremely high contrast flash radiography of small, low density objects has been obtained using industrial film without screen. Alternatively, particularly at high voltages and for subjects which include a broad range of materials and thicknesses, special film techniques can be used to produce extremely wide latitudes. Equipment, techniques and results are discussed

  8. Comparative study of low and high aspect ratio devices for ITER design options

    International Nuclear Information System (INIS)

    Sugihara, Masayoshi; Tada, Eisuke; Shimomura, Yasuo; Tsunematsu, Toshihide; Nishio, Satoshi; Nakazato, Toshiko; Murakami, Yoshiki; Koizumi, Koichi

    1992-09-01

    Comparative study on the plasma performance and the engineering characteristics of low and high aspect ratio devices for ITER (International Thermonuclear Experimental Reactor) design option is done to examine quantitatively the expected merit and demerit of high aspect ratio device on steady state operation. Device parameters of aspect ratio A=3 and 4 are chosen based on ITER-power scaling law. Improvement of steady state operation with A=4 is found only moderate. Reduction of stability margin in vertical instability is about 20% and plasma elongation must be decreased from 2 down to about 1.8 to recover this reduction of stability margin with A=4. If such lower elongation is employed, single null divertor configuration should be employed to reduce the capacity of poloidal field system. Detailed 2D divertor code calculation shows that peak heat load per unit area of A=4 device with SN configuration increases compared with A=3 device with DN configuration, contrary to the predictions so far made. Preliminary engineering studies indicate that A=4 device would have less space for handling the in-vessel components and doubled toroidal field magnet weight and winding length, and hence is less desirable when compared with the present ITER design (A=3). Based on these examinations, it is concluded that high aspect ratio device does not have remarkable advantage than low aspect ratio device, and the latter device has similar capability for the prospect of future commercial reactor to the former device. (J.P.N.)

  9. Effect of Coriolis and centrifugal forces on flow and heat transfer at high rotation number and high density ratio in non orthogonally internal cooling channel

    Directory of Open Access Journals (Sweden)

    Brahim Berrabah

    2017-02-01

    Full Text Available Numerical predictions of three-dimensional flow and heat transfer are performed for a two-pass square channel with 45° staggered ribs in non-orthogonally mode-rotation using the second moment closure model. At Reynolds number of 25,000, the rotation numbers studied were 0, 0.24, 0.35 and 1.00. The density ratios were 0.13, 0.23 and 0.50. The results show that at high buoyancy parameter and high rotation number with a low density ratio, the flow in the first passage is governed by the secondary flow induced by the rotation whereas the secondary flow induced by the skewed ribs was almost distorted. As a result the heat transfer rate is enhanced on both co-trailing and co-leading sides compared to low and medium rotation number. In contrast, for the second passage, the rotation slightly reduces the heat transfer rate on co-leading side at high rotation number with a low density ratio and degrades it significantly on both co-trailing and co-leading sides at high buoyancy parameter compared to the stationary, low and medium rotation numbers. The numerical results are in fair agreement with available experimental data in the bend region and the second passage, while in the first passage were overestimated at low and medium rotation numbers.

  10. High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch

    International Nuclear Information System (INIS)

    Hayase, K.; Sugimoto, H.; Ashida, H.

    2003-01-01

    The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)

  11. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    Science.gov (United States)

    Zhamu, Aruna; Guo, Jiusheng; Jang, Bor Z.

    2010-09-07

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  12. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    Science.gov (United States)

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  13. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    International Nuclear Information System (INIS)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth; Bøggild, Peter; Bartenwerfer, Malte; Krohs, Florian; Oliva, Maria; Harzendorf, Torsten

    2013-01-01

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown. (paper)

  14. High-contrast imager for Complex Aperture Telescopes (HiCAT): testbed design and coronagraph developments

    Science.gov (United States)

    N'Diaye, Mamadou; Choquet, E.; Pueyo, L.; Elliot, E.; Perrin, M. D.; Wallace, J.; Anderson, R. E.; Carlotti, A.; Groff, T. D.; Hartig, G. F.; Kasdin, J.; Lajoie, C.; Levecq, O.; Long, C.; Macintosh, B.; Mawet, D.; Norman, C. A.; Shaklan, S.; Sheckells, M.; Sivaramakrishnan, A.; Soummer, R.

    2014-01-01

    We present a new high-contrast imaging testbed designed to provide complete solutions for wavefront sensing and control and starlight suppression with complex aperture telescopes (NASA APRA; Soummer PI). This includes geometries with central obstruction, support structures, and/or primary mirror segmentation. Complex aperture telescopes are often associated with large telescope designs, which are considered for future space missions. However, these designs makes high-contrast imaging challenging because of additional diffraction features in the point spread function. We present a novel optimization approach for the testbed optical and opto-mechanical design that minimizes the impact of both phase and amplitude errors from the wave propagation of testbed optics surface errors. This design approach allows us to define the specification for the bench optics, which we then compare to the manufactured parts. We discuss the testbed alignment and first results. We also present our coronagraph design for different testbed pupil shapes (AFTA or ATLAST), which involves a new method for the optimization of Apodized Pupil Lyot Coronagraphs (APLC).

  15. An eigenfunction method for reconstruction of large-scale and high-contrast objects.

    Science.gov (United States)

    Waag, Robert C; Lin, Feng; Varslot, Trond K; Astheimer, Jeffrey P

    2007-07-01

    A multiple-frequency inverse scattering method that uses eigenfunctions of a scattering operator is extended to image large-scale and high-contrast objects. The extension uses an estimate of the scattering object to form the difference between the scattering by the object and the scattering by the estimate of the object. The scattering potential defined by this difference is expanded in a basis of products of acoustic fields. These fields are defined by eigenfunctions of the scattering operator associated with the estimate. In the case of scattering objects for which the estimate is radial, symmetries in the expressions used to reconstruct the scattering potential greatly reduce the amount of computation. The range of parameters over which the reconstruction method works well is illustrated using calculated scattering by different objects. The method is applied to experimental data from a 48-mm diameter scattering object with tissue-like properties. The image reconstructed from measurements has, relative to a conventional B-scan formed using a low f-number at the same center frequency, significantly higher resolution and less speckle, implying that small, high-contrast structures can be demonstrated clearly using the extended method.

  16. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  17. Teachable, high-content analytics for live-cell, phase contrast movies.

    Science.gov (United States)

    Alworth, Samuel V; Watanabe, Hirotada; Lee, James S J

    2010-09-01

    CL-Quant is a new solution platform for broad, high-content, live-cell image analysis. Powered by novel machine learning technologies and teach-by-example interfaces, CL-Quant provides a platform for the rapid development and application of scalable, high-performance, and fully automated analytics for a broad range of live-cell microscopy imaging applications, including label-free phase contrast imaging. The authors used CL-Quant to teach off-the-shelf universal analytics, called standard recipes, for cell proliferation, wound healing, cell counting, and cell motility assays using phase contrast movies collected on the BioStation CT and BioStation IM platforms. Similar to application modules, standard recipes are intended to work robustly across a wide range of imaging conditions without requiring customization by the end user. The authors validated the performance of the standard recipes by comparing their performance with truth created manually, or by custom analytics optimized for each individual movie (and therefore yielding the best possible result for the image), and validated by independent review. The validation data show that the standard recipes' performance is comparable with the validated truth with low variation. The data validate that the CL-Quant standard recipes can provide robust results without customization for live-cell assays in broad cell types and laboratory settings.

  18. High-contrast laser acceleration of relativistic electrons in solid cone-wire targets

    Energy Technology Data Exchange (ETDEWEB)

    Higginson, D. P. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Link, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sawada, H. [Univ. of California-San Diego, La Jolla, CA (United States); Wilks, S. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chawla, S. R. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chen, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jarrott, L. C. [Univ. of California-San Diego, La Jolla, CA (United States); Flippo, K. A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McLean, H. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Patel, P. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perez, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Beg, F. N. [Univ. of California-San Diego, La Jolla, CA (United States); Bartal, T. [Univ. of California-San Diego, La Jolla, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wei, M. S. [General Atomics, San Diego, CA (United States)

    2015-12-31

    Optimization of electron coupling into small solid angles is of extreme importance to applications, such as Fast Ignition, that require maximum electron energy deposition within a small volume. To optimize this coupling, we use the ultra-high-contrast Trident laser, which remains below intensity of 1011 W/cm2 until < 0.1 ns before the main pulse, while still attaining high-energy, 75 J, and peak intensity of 5 x 1019 W/cm2. Using a cone-wire target, we find that the coupling into the 40 μm diameter wire is increased by a factor of 2.7x over the low-contrast Titan laser at similar peak intensity. Full-scale simulations are used to model the laser interaction and quantitatively reproduce the experimental results. These show that increase in coupling is due to both a closer interaction, as well as the reduction of laser filamentation and self-focusing.

  19. 3.0 Tesla high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) of the pulmonary circulation: initial experience with a 32-channel phased array coil using a high relaxivity contrast agent.

    Science.gov (United States)

    Nael, Kambiz; Fenchel, Michael; Krishnam, Mayil; Finn, J Paul; Laub, Gerhard; Ruehm, Stefan G

    2007-06-01

    To evaluate the technical feasibility of high spatial resolution contrast-enhanced magnetic resonance angiography (CE-MRA) with highly accelerated parallel acquisition at 3.0 T using a 32-channel phased array coil, and a high relaxivity contrast agent. Ten adult healthy volunteers (5 men, 5 women, aged 21-66 years) underwent high spatial resolution CE-MRA of the pulmonary circulation. Imaging was performed at 3 T using a 32-channel phase array coil. After intravenous injection of 1 mL of gadobenate dimeglumine (Gd-BOPTA) at 1.5 mL/s, a timing bolus was used to measure the transit time from the arm vein to the main pulmonary artery. Subsequently following intravenous injection of 0.1 mmol/kg of Gd-BOPTA at the same rate, isotropic high spatial resolution data sets (1 x 1 x 1 mm3) CE-MRA of the entire pulmonary circulation were acquired using a fast gradient-recalled echo sequence (TR/TE 3/1.2 milliseconds, FA 18 degrees) and highly accelerated parallel acquisition (GRAPPA x 6) during a 20-second breath hold. The presence of artifact, noise, and image quality of the pulmonary arterial segments were evaluated independently by 2 radiologists. Phantom measurements were performed to assess the signal-to-noise ratio (SNR). Statistical analysis of data was performed by using Wilcoxon rank sum test and 2-sample Student t test. The interobserver variability was tested by kappa coefficient. All studies were of diagnostic quality as determined by both observers. The pulmonary arteries were routinely identified up to fifth-order branches, with definition in the diagnostic range and excellent interobserver agreement (kappa = 0.84, 95% confidence interval 0.77-0.90). Phantom measurements showed significantly lower SNR (P < 0.01) using GRAPPA (17.3 +/- 18.8) compared with measurements without parallel acquisition (58 +/- 49.4). The described 3 T CE-MRA protocol in addition to high T1 relaxivity of Gd-BOPTA provides sufficient SNR to support highly accelerated parallel acquisition

  20. Different methods to alter surface morphology of high aspect ratio structures

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M., E-mail: moritz.leber@utah.edu [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Shandhi, M.M.H. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Hogan, A. [Blackrock Microsystems, Salt Lake City, UT (United States); Solzbacher, F. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Bhandari, R.; Negi, S. [Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT (United States); Blackrock Microsystems, Salt Lake City, UT (United States)

    2016-03-01

    Graphical abstract: Surface engineering of high aspect ratio silicon structures. - Highlights: • Multiple roughening techniques for high aspect ratio devices were investigated. • Modification of surface morphology of high aspect ratio silicon devices (1:15). • Decrease of 76% in impedance proves significant increase in surface area. - Abstract: In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several

  1. The Relationship between the Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Metabolic Syndrome.

    Science.gov (United States)

    Shin, Hyun-Gyu; Kim, Young-Kwang; Kim, Yong-Hwan; Jung, Yo-Han; Kang, Hee-Cheol

    2017-11-01

    Metabolic syndrome is associated with cardiovascular diseases and is characterized by insulin resistance. Recent studies suggest that the triglyceride/high-density lipoprotein cholesterol (TG/HDLC) ratio predicts insulin resistance better than individual lipid levels, including TG, total cholesterol, low-density lipoprotein cholesterol (LDLC), or HDLC. We aimed to elucidate the relationship between the TG/HDLC ratio and metabolic syndrome in the general Korean population. We evaluated the data of adults ≥20 years old who were enrolled in the Korean National Health and Nutrition Examination Survey in 2013 and 2014. Subjects with angina pectoris, myocardial infarction, stroke, or cancer were excluded. Metabolic syndrome was defined by the harmonized definition. We examined the odds ratios (ORs) of metabolic syndrome according to TG/HDLC ratio quartiles using logistic regression analysis (SAS ver. 9.4; SAS Institute Inc., Cary, NC, USA). Weighted complex sample analysis was also conducted. We found a significant association between the TG/HDLC ratio and metabolic syndrome. The cutoff value of the TG/HDLC ratio for the fourth quartile was ≥3.52. After adjustment, the OR for metabolic syndrome in the fourth quartile compared with that of the first quartile was 29.65 in men and 20.60 in women (Pmetabolic syndrome.

  2. Experimental study of proton acceleration with ultra-high intensity, high contrast laser beam

    International Nuclear Information System (INIS)

    Flacco, A.

    2008-07-01

    This thesis reports experimental work in the domain of laser-matter interaction to study the production of energetic proton beams. The ion beams accelerated by laser have been increasing in quality, in energy and in repeatability as laser technology keeps improving. The presence of the pedestal before the high peak laser pulse introduces many unknowns in the accelerating conditions that are created on the front and on the rear surface of the target. The first part of the experimental activities is focused to a better comprehension and the experimental validation of the interaction of a 'pedestal-like', moderate intensity, laser pulse on Aluminum targets. The developed interferometric technique proved to be reliable and produced a complete set of maps of the early stages of the plasma expansion. The reflectometry experiment stresses the importance of the quality of the metallic targets and underlines some obscure points on the behaviour of the rear surface of the illuminated foil. For instance the reflectometry measurements on the thicker targets are significantly different from what is foreseen by the simulations about the timescale of the shock break out. In the second part, the XPW laser pulse is used in ion acceleration from thin metal foils. The laser and target parameters are varied to put in evidence the dependence of the ion beam to the experimental condition. In conclusion I can say that first, during the variation of the target thickness, an optimum is put in evidence. Secondly, the correlation between the laser pulse duration and the proton cutoff energy is qualitatively different between thicker (15 μm) and thinner (1.5 μm, 3 μm) targets. For the first, an optimal pulse duration exists while for the seconds, no variation is found - in the searched space - from the monotonic decreasing of the cutoff energy with the peak intensity. The experimental results put however in evidence some points that are not completely understood. (A.C.)

  3. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    Science.gov (United States)

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-02-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems.

  5. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    Science.gov (United States)

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  6. High sex ratios in rural China: declining well-being with age in never-married men.

    Science.gov (United States)

    Zhou, Xudong; Hesketh, Therese

    2017-09-19

    In parts of rural China male-biased sex ratios at birth, combined with out-migration of women, have led to highly male-biased adult sex ratios, resulting in large numbers of men being unable to marry, in a culture where marriage and reproduction are an expectation. The aim of this study was to test the hypotheses that older unmarried men are more predisposed to depression, low self-esteem and aggression than both those who are married, and those who are younger and unmarried. Self-completion questionnaires were administered among men aged 20-40 in 48 villages in rural Guizhou province, southwestern China. Tools used included the Beck Depression Inventory, the Rosenberg's Self-esteem Scale and the Bryant-Smith Aggression Questionnaire. Regression models assessed psychological wellbeing while adjusting for socio-demographic variables. Completed questionnaires were obtained from 957 never-married men, 535 married men aged 30-40, 394 partnered men and 382 unpartnered men aged 20-29. After adjusting for socio-demographic variables, never-married men were more predisposed to depression ( p self-esteem ( p < 0.05) and suicidal tendencies ( p < 0.001). All the psychological measures deteriorated with age in never-married men. In contrast, married men remained stable on these dimensions with age. Never-married men are a psychologically highly vulnerable group in a society where marriage is an expectation. Since the highest birth sex-ratio cohorts have not yet reached reproductive age, the social tragedy of these men will last for at least another generation.This article is part of the themed issue 'Adult sex ratios and reproductive decisions: a critical re-examination of sex differences in human and animal societies'. © 2017 The Authors.

  7. Finite element analysis of surface acoustic waves in high aspect ratio electrodes

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2008-01-01

    This paper elaborates on how the finite element method is employed to model surface acoustic waves generated by high aspect ratio electrodes and their interaction with optical waves in a waveguide. With a periodic model it is shown that these electrodes act as a mechanical resonator which slows...

  8. The Application of Advanced Technique of Fan Frame Unit on High Bypass Ratio Aero Engine

    Directory of Open Access Journals (Sweden)

    Hou Peng

    2017-01-01

    Full Text Available High bypass ratio aero-engine was widely used on military and civil aviation domain, as the power of larger aircraft. Fan frame unit was the main bearing frame of high bypass ratio aero-engine, which composed of strut, HUB MID BOX and external bypass parts. Resin/composite was used on external bypass parts(acoustic liner, containment ring, fan outlet guide vane and fan case skin fillets, which not only reduced the weight and manufacturing cost, but also improved the noise absorption, containment and anti-fatigue ability of engine. The design of composite was becoming a key technique for high bypass ratio aero-engine. In special test of the core engine, nitrogen cooling system was designed to cool the cavity of spool. The nitrogen pipeline passed through the inner cavity of fan frame, then inserted into NO. 3 bearing seal, so nitrogen gas was sent into the cavity of core engine spool. On high bypass ratio aero-engine, the external bypass and fan frame inner cavity were the design platform for advanced technique, such as composite and pipeline system, and also provided guarantee for reliable operation of engine.

  9. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, E.; Pospíšková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, February (2017), s. 1342-1346 ISSN 0928-4931 Institutional support: RVO:60077344 Keywords : Leptothrix * magnetic modification * iron oxide * high aspect ratio material Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Materials engineering Impact factor: 4.164, year: 2016

  10. The role and function of chlorine in the preparation of high-ratio cake flour.

    Science.gov (United States)

    Gough, B M; Whitehouse, M E; Greenwood, C T

    1978-01-01

    The literature on the role of chlorine treatment of flour for use in high-ratio cake production is discussed in relation to current knowledge of cereal chemistry and cake technology. A brief perspective of the present use of chlorine in high-ratio cake flours is included. Investigations of the uptake of gaseous chlorine by flour and its distribution among and chemical action upon the major flour components (water, protein, lipid, and carbohydrate) are assessed. The physical effects of chlorination as demonstrated by experiments with batters and cakes and by physicochemical observations of flour and its fractions are also considered. The characteristics of the starch in flour appear to be critical in high-ratio cakes. Chlorine treatment modifies the gelatinization behavior of the starch granules yet does not change their gelatinization temperature not is there evidence of chemical attack upon the starch molecules. Therefore, it is suggested that chlorine effects the necessary changes in starch behavior by reacting with the noncarbohydrate surface contaminants on the granules. Alternative methods of improving high-ratio cake flours are mentioned, particularly heat-treatment processes.

  11. Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios

    DEFF Research Database (Denmark)

    Shayesteh, M.; O'Connell, D.; Gity, F.

    2014-01-01

    The authors compared the influence of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical performance of phosphorus and arsenic doped n+/p junction. High carrier concentration above 1020 cm-3 as well as an ION/IOFF ratio of approximately 105 and ide...

  12. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  13. Detection of admittivity anomaly on high-contrast heterogeneous backgrounds using frequency difference EIT.

    Science.gov (United States)

    Jang, J; Seo, J K

    2015-06-01

    This paper describes a multiple background subtraction method in frequency difference electrical impedance tomography (fdEIT) to detect an admittivity anomaly from a high-contrast background conductivity distribution. The proposed method expands the use of the conventional weighted frequency difference EIT method, which has been used limitedly to detect admittivity anomalies in a roughly homogeneous background. The proposed method can be viewed as multiple weighted difference imaging in fdEIT. Although the spatial resolutions of the output images by fdEIT are very low due to the inherent ill-posedness, numerical simulations and phantom experiments of the proposed method demonstrate its feasibility to detect anomalies. It has potential application in stroke detection in a head model, which is highly heterogeneous due to the skull.

  14. High-contrast gratings for long-wavelength laser integration on silicon

    Science.gov (United States)

    Sciancalepore, Corrado; Descos, Antoine; Bordel, Damien; Duprez, Hélène; Letartre, Xavier; Menezo, Sylvie; Ben Bakir, Badhise

    2014-02-01

    Silicon photonics is increasingly considered as the most promising way-out to the relentless growth of data traffic in today's telecommunications infrastructures, driving an increase in transmission rates and computing capabilities. This is in fact challenging the intrinsic limit of copper-based, short-reach interconnects and microelectronic circuits in data centers and server architectures to offer enough modulation bandwidth at reasonable power dissipation. In the context of the heterogeneous integration of III-V direct-bandgap materials on silicon, optics with high-contrast metastructures enables the efficient implementation of optical functions such as laser feedback, input/output (I/O) to active/passive components, and optical filtering, while heterogeneous integration of III-V layers provides sufficient optical gain, resulting in silicon-integrated laser sources. The latest ensure reduced packaging costs and reduced footprint for the optical transceivers, a key point for the short reach communications. The invited talk will introduce the audience to the latest breakthroughs concerning the use of high-contrast gratings (HCGs) for the integration of III-V-on-Si verticalcavity surface-emitting lasers (VCSELs) as well as Fabry-Perot edge-emitters (EELs) in the main telecom band around 1.55 μm. The strong near-field mode overlap within HCG mirrors can be exploited to implement unique optical functions such as dense wavelength division multiplexing (DWDM): a 16-λ100-GHz-spaced channels VCSEL array is demonstrated. On the other hand, high fabrication yields obtained via molecular wafer bonding of III-V alloys on silicon-on-insulator (SOI) conjugate excellent device performances with cost-effective high-throughput production, supporting industrial needs for a rapid research-to-market transfer.

  15. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hoo Min; Yoon, Joon [Dept. of Radiological technology, Dongnam Health University, Suwon (Korea, Republic of); Kim, Hyun Ju [Dept. of Radiology, Soonchunhyang University Hospital Buchen, Bucheon (Korea, Republic of)

    2014-09-15

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier.

  16. Effects of contrast improvement on high voltage rectification type of x-ray diagnostic apparatus

    International Nuclear Information System (INIS)

    Lee, Hoo Min; Yoon, Joon; Kim, Hyun Ju

    2014-01-01

    The purpose of this study was to analyze the effect on the selectivity on of high-voltage rectification device that measured the performance of the grid, and the contrast improvement ability (K factor) by measuring the scattered radiation content of the transmitted X-rays. The scattered radiation generated when the X-ray flux comes from the diagnostic X-ray generator that passes through an object. Targeting four different rectifications of X-ray generators, the mean value of the tube voltage and the tube current was measured in order to maximize the accuracy of the generating power dose within the same exposure condition. Using fluorescence meter, the content of the scattered rays that are transmitted through the acrylic was measured depending on the grid usage. When grid is not used, the content of the scattered rays was the lowest (34.158%) with the single-phase rectifier, was increased with the inverter rectifier (37.043%) and the three-phase 24-peak rectification method (37.447%). The difference of the scattered radiation content of each device was significant from the lowest 0.404% to the highest 3.289% while using 8:1 grid, the content of the scattered ray was the lowest with the single content of the scattered ray was the lowest with the single-phase rectifier (18.258%), was increased with the rectifier (25.502%) and the 24-peaks rectification (24.217%). Furthermore, there was difference up to content 7.244% to the lowest content 1.285% within three-phase 24-peaks rectification, inverter rectifications, and single-phase rectifier depending on the selectivity of the grid. Drawn from the statistical analysis, there was a similar relationship between the contrast improvement factor and the K factor. As a result, the grid selectivity and the contrast were increased within the single-phase rectifier rather than the constant voltage rectifier

  17. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    Science.gov (United States)

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  18. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    Directory of Open Access Journals (Sweden)

    Hurt Robert H

    2011-05-01

    Full Text Available Abstract Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90 and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs. Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2 of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1 as well as profibrotic (M2 phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model

  19. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    Science.gov (United States)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  20. Enumeration of an extremely high particle-to-PFU ratio for Varicella-zoster virus.

    Science.gov (United States)

    Carpenter, John E; Henderson, Ernesto P; Grose, Charles

    2009-07-01

    Varicella-zoster virus (VZV) is renowned for its low titers. Yet investigations to explore the low infectivity are hampered by the fact that the VZV particle-to-PFU ratio has never been determined with precision. Herein, we accomplish that task by applying newer imaging technology. More than 300 images were taken of VZV-infected cells on 4 different samples at high magnification. We enumerated the total number of viral particles within 25 cm(2) of the infected monolayer at 415 million. Based on these numbers, the VZV particle:PFU ratio was approximately 40,000:1 for a cell-free inoculum.

  1. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    Science.gov (United States)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  2. Signal-to-noise ratios of multiplexing spectrometers in high backgrounds

    Science.gov (United States)

    Knacke, R. F.

    1978-01-01

    Signal-to-noise ratios and the amount of multiplexing gain achieved with a Michelson spectrometer during detector and background noise are studied. Noise caused by the warm background is found in 10 and 20-micron atmospheric windows in high resolution Fourier spectroscopy. An equation is derived for the signal-to-noise ratio based on the number of channels, total time to obtain the complete spectrum, the signal power in one spectral element, and the detector noise equivalent power in the presence of negligible background. Similar expressions are derived for backgrounds yielding a noise equivalent power to a spectral element, and backgrounds having flat spectra in the frequency range under investigation.

  3. High-precision branching-ratio measurement for the superallowed β+ emitter 26Alm

    Science.gov (United States)

    Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Cross, D. S.; Demand, G.; Djongolov, M.; Ettenauer, S.; Garrett, P. E.; Green, K. L.; Grinyer, G. F.; Hackman, G.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Sumithrarachchi, C. S.; Triambak, S.; Williams, S. J.

    2012-05-01

    A high-precision branching-ratio measurement for the superallowed β+ emitter 26Alm was performed at the TRIUMF-ISAC radioactive ion beam facility. An upper limit of ⩽12 ppm at 90% confidence level was found for the second forbidden β+ decay of 26Alm to the 21+ state at 1809 keV in 26Mg. An inclusive upper limit of ⩽15 ppm at 90% confidence level was found when considering all possible nonanalog β+/EC decay branches of 26Alm, resulting in a superallowed branching ratio of 100.0000-0.0015+0%.

  4. Design and implementation of a high dimming ratio LED drive controller

    International Nuclear Information System (INIS)

    Xu Xiaoru; Wu Xiaobo; Zhao Menglian; Yan Xiaolang

    2009-01-01

    This paper presents a high dimming ratio light emitting diode (LED) drive controller chip with digital mode dimming (DMD). The chip is composed of a boost power converter and a dimming control block. A novel constant on time (COT) control strategy is proposed for boost converter to achieve high dimming ratio. In addition, a fast enough load transient response of the converter power stage ensures its high dimming ratio. The COT control circuit operates mainly based on two current-capacitor timers and a finite state machine (FSM). The LED drive controller chip is designed and fabricated in 1.5 μm bipolar CMOS-DMOS (BCD) process with a die area of 1.31 x 1.43 mm 2 . Experimental results show that the proposed LED drive system works well. And, as expected, the minimum LED dimming on time of 1.0 μs and the corresponding dimming ratio of 1000:1 at 1 kHz dimming frequency are successfully achieved.

  5. Low osmolar (non-ionic) contrast media versus high osmolar (ionic) contrast media in intravenous urography and enhanced computerized tomography: a cost-effectiveness analysis.

    Science.gov (United States)

    Wangsuphachart, S

    1991-12-01

    The cost-effectiveness of three alternative policies for the use of intravenous contrast media for urography and enhanced computerized tomography (CT) are analyzed. Alternative #1 is to use high osmolar contrast media (HOCM) in all patients, the historical policy. Alternative #2 is to replace it with low osmolar contrast media (LOCM) in all patients. Alternative #3 is to use LOCM only in the high risk patients. Data on the 6,242 patients who underwent intravenous urography and enhanced CT at the Department of Radiology, Chulalongkorn Hospital in 1989 were used. Both societal and hospital viewpoints were analyzed. The incremental cost-effectiveness (ICE) between #2 and #1 was 26,739 Baht (US$1,070) per healthy day saved (HDS), while the ICE between #3 and #1 was 12,057 Baht (US$482) per HDS. For fatal cases only, ICE between #2 and #1 was 35,111 Baht (US$1,404) per HDS, while the ICE between #3 and #1 was 18,266 Baht (US$731) per HDS. The incremental cost (IC) per patient was 2,341 Baht (US$94) and 681 Baht (US$27) respectively. For the hospital viewpoint the ICE between #2 and #1 was 13,744 (US$550) and between #3 and #1 was 6,127 Baht (US$245) per HDS. The IC per patient was 1,203 Baht (US$48) and 346 Baht (US$14), respectively. From the sensitivity analysis, #3 should be used if the LOCM price is reduced more than 75% (equal to 626 Baht or less) and more than 80% of the patients are able to pay for the contrast media.

  6. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D N; Breese, M B.H.; Prawer, S; Dooley, S P; Allen, M G; Bettiol, A A; Saint, A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C G [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1994-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  7. Applications of focused MeV light ion beams for high resolution channeling contrast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, D.N.; Breese, M.B.H.; Prawer, S.; Dooley, S.P.; Allen, M.G.; Bettiol, A.A.; Saint, A. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Ryan, C.G. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience

    1993-12-31

    The technique of Nuclear Microscopy, utilizing a focused ion probe of typically MeV H{sup +} or He{sup +} ions, can produce images where the contrast depends on typical Ion Beam Analysis (lBA) processes. The probe forming lens system usually utilizes strong focusing, precision magnetic quadrupole lenses and the probe is scanned over the target to produce images. Originally, this imaging technique was developed to utilize backscattered particles with incident beam currents typically of a few nA, and the technique became known as Channeling Contrast Microscopy (CCM). Recently, the technique has been developed further to utilize the forward scattering of ions incident along a major crystal axis in thin crystals. This technique is known as Channeling Scanning Transmission Ion Microscopy (CSTIM). Since nearly all incident ions are detected, CSTIM is highly efficient and very low beam currents are sufficient for imaging, typically as low as a few fA. This allows probes as small as 50 nm to be used. In this paper we briefly review the recent applications of these emerging techniques to a variety of single crystal materials (authors). 13 refs., 5 figs.

  8. Anomalously high intercombination line ratios in symbiotic stars; extreme Bowen pumping?

    International Nuclear Information System (INIS)

    Kastner, S.O.; Bhatia, A.K.; Feibelman, W.A.

    1989-01-01

    We assemble International Ultraviolet Explorer observations of the ratio of the O III intercombination lines near 1660 A, showing that the observed ratios in symbiotic stars are significantly higher than the theoretically predicted optically thin limit of 2.5. The presence of an enhancing physical process is thereby indicated. It is suggested that Bowen pumping of the lower level of the 1666.2 A line in an 'external saturation' limit, coupled with appreciable optical depth, could logically explain the high ratios. Some tentative evidence for this is presented and the relevance of far-infrared observations of the O III 51.8 and 88.3 μm lines in symbiotic sources is emphasized. (author)

  9. Short term reproducibility of a high contrast 3-D isotropic optic nerve imaging sequence in healthy controls

    Science.gov (United States)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2016-03-01

    The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.

  10. Pharmacokinetic and in vivo evaluation of a self-assembled gadolinium(III)-iron(II) contrast agent with high relaxivity.

    Science.gov (United States)

    Parac-Vogt, Tatjana N; Vander Elst, Luce; Kimpe, Kristof; Laurent, Sophie; Burtéa, Carmen; Chen, Feng; Van Deun, Rik; Ni, Yicheng; Muller, Robert N; Binnemans, Koen

    2006-01-01

    A high-molecular weight tetrametallic supramolecular complex [(Ln-DTPA-phen)3Fe]- (Ln = Gd, Eu, La) has been obtained upon self-assembly around one iron(II) ion of three 1,10-phenantroline-based molecules substituted in 5'-position with the polyaminocarboxylate diethylenetriamine-N,N,N',N',N'-pentaacetate, DTPA-phen(4-). The ICP-MS measurements indicated that the lanthanide:iron ratio is 3:1. Photoluminescence spectra of [Eu-DTPA-phen](-) and of [(Eu-DTPA-phen)3Fe]- are nearly identical, implying that the first coordination sphere of the lanthanide(III) ion has not been changed upon coordination of phenantroline unit to iron(II) ion. NMRD measurements revealed that at 20 MHz and 310 K the relaxivity of the [(Gd-DTPA-phen)3Fe]- is equal to 9.5 +/- 0.3 s(-1) mM(-1) of Gd (28.5 s(-1) per millimole per liter of complex) which is significantly higher than that for Gd-DTPA (3.9 s(-1) mM(-1)). The pharmacokinetic parameters of [(Gd-DTPA-phen)3Fe]- in rats indicate that the elimination of [(Gd-DTPA-phen)3Fe]- is significantly slower than that of Gd-DTPA and is correlated with a reduced volume of distribution. The low volume of distribution and the longer elimination time (T(e1/2)) suggest that the agent is confined to the blood compartment, so it could have an important potential as a blood pool contrast agent. The biodistribution profile of [(Gd-DTPA-phen)3Fe]- 2 h after injection indicates significantly higher concentrations of [(Gd-DTPA-phen)3Fe]- as compared with Gd-DTPA in kidney, liver, lungs, heart and spleen. The images obtained on rats by MR angiography show the enhancement of the abdominal blood vessels. The signal intensity reaches a maximum of 55% at 7 min post-contrast and remains around 25% after 90 min. MRI-histomorphological correlation studies of [Gd-DTPA-phen]- and [(Gd-DTPA-phen)3Fe]- showed that both agents displayed potent contrast enhancement in organs including the liver. The necrosis avidity tests indicated that, in contrast to the [Gd

  11. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    Science.gov (United States)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  12. A soft-switching coupled inductor bidirectional DC-DC converter with high-conversion ratio

    Science.gov (United States)

    Chao, Kuei-Hsiang; Jheng, Yi-Cing

    2018-01-01

    A soft-switching bidirectional DC-DC converter is presented herein as a way to improve the conversion efficiency of a photovoltaic (PV) system. Adoption of coupled inductors enables the presented converter not only to provide a high-conversion ratio but also to suppress the transient surge voltage via the release of the energy stored in leakage flux of the coupled inductors, and the cost can kept down consequently. A combined use of a switching mechanism and an auxiliary resonant branch enables the converter to successfully perform zero-voltage switching operations on the main switches and improves the efficiency accordingly. It was testified by experiments that our proposed converter works relatively efficiently in full-load working range. Additionally, the framework of the converter intended for testifying has high-conversion ratio. The results of a test, where a generating system using PV module array coupled with batteries as energy storage device was used as the low-voltage input side, and DC link was used as high-voltage side, demonstrated our proposed converter framework with high-conversion ratio on both high-voltage and low-voltage sides.

  13. Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines

    International Nuclear Information System (INIS)

    Pizzarelli, Marco; Nasuti, Francesco; Onofri, Marcello

    2013-01-01

    Highlights: • Aspect ratio has a significant effect on cooling efficiency and hydraulic losses. • Minimizing power loss is of paramount importance in liquid rocket engine cooling. • A suitable quasi-2D model is used to get fast cooling system analysis. • Trade-off with assigned weight, temperature, and channel height or wall thickness. • Aspect ratio is found that minimizes power loss in the cooling circuit. -- Abstract: High performance liquid rocket engines are often characterized by rectangular cooling channels with high aspect ratio (channel height-to-width ratio) because of their proven superior cooling efficiency with respect to a conventional design. However, the identification of the optimum aspect ratio is not a trivial task. In the present study a trade-off analysis is performed on a cooling channel system that can be of interest for rocket engines. This analysis requires multiple cooling channel flow calculations and thus cannot be efficiently performed by CFD solvers. Therefore, a proper numerical approach, referred to as quasi-2D model, is used to have fast and accurate predictions of cooling system properties. This approach relies on its capability of describing the thermal stratification that occurs in the coolant and in the wall structure, as well as the coolant warming and pressure drop along the channel length. Validation of the model is carried out by comparison with solutions obtained with a validated CFD solver. Results of the analysis show the existence of an optimum channel aspect ratio that minimizes the requested pump power needed to overcome losses in the cooling circuit

  14. High Turndown Ratio, High Delta-Emittance, Variable Emissivity Electrochromics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Variable-emittance materials are in high demand for applications ranging from manned and unmanned space platforms (e.g. in radiators at the Moon's poles where damage...

  15. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  16. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging : In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A.C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, A.F.W.; de Jong, N.; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially

  17. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation

    NARCIS (Netherlands)

    Daeichin, Verya; van Rooij, Tom; Skachkov, Ilya; Ergin, Bulent; Specht, Patricia A. C.; Lima, Alexandre; Ince, Can; Bosch, Johan G.; van der Steen, Antonius F. W.; de Jong, Nico; Kooiman, Klazina

    2017-01-01

    Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available

  18. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and in Vivo Evaluation

    NARCIS (Netherlands)

    V. Daeichin (Verya); T. van Rooij (Tom); I. Skachkov (Ilya); B. Ergin (Bulent); P. Specht (Patricia); A.A.P. Lima (Alexandre ); C. Ince (Can); J.G. Bosch (Hans); A.F.W. van der Steen (Ton); N. de Jong (Nico); K. Kooiman (Klazina)

    2017-01-01

    textabstractAlthough high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited

  19. Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging.

    Science.gov (United States)

    Bao, Zhouzhou; Zhang, Yuqing; Tan, Ziyang; Yin, Xia; Di, Wen; Ye, Jian

    2018-05-01

    The sentinel lymph node (SLN) biopsy is gaining in popularity as a procedure to investigate the lymphatic metastasis of malignant tumors. The commonly used techniques to identify the SLNs in clinical practice are blue dyes-guided visualization, radioisotope-based detection and near-infrared fluorescence imaging. However, all these methods have not been found to perfectly fit the clinical criteria with issues such as short retention time in SLN, poor spatial resolution, autofluorescence, low photostability and high cost. In this study, we have reported a new type of nanoprobes, named, gap-enhanced Raman tags (GERTs) for the SLN Raman imaging. With the advantageous features including unique "fingerprint" Raman signal, strong Raman enhancement, high photostability, good biocompatibility and extra-long retention time, we have demonstrated that GERTs are greatly favorable for high-contrast and deep SLN Raman imaging, which meanwhile reveals the dynamic migration behavior of the probes entering the SLN. In addition, a quantitative volumetric Raman imaging (qVRI) data-processing method is employed to acquire a high-resolution 3-dimensional (3D) margin of SLN as well as the content variation of GERTs in the SLN. Moreover, SLN detection could be realized via a cost-effective commercial portable Raman scanner. Therefore, GERTs hold the great potential to be translated in clinical application for accurate and intraoperative location of the SLN. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. High Contrast Internal and External Coronagraph Masks Produced by Various Techniques

    Science.gov (United States)

    Balasubramanian, Kunjithapatha; Wilson, Daniel; White, Victor; Muller, Richard; Dickie, Matthew; Yee, Karl; Ruiz, Ronald; Shaklan, Stuart; Cady, Eric; Kern, Brian; hide

    2013-01-01

    Masks for high contrast internal and external coronagraphic imaging require a variety of masks depending on different architectures to suppress star light. Various fabrication technologies are required to address a wide range of needs including gradient amplitude transmission, tunable phase profiles, ultra-low reflectivity, precise small scale features, and low-chromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks, and lab-scale external occulter type masks by various techniques including electron beam, ion beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each. Further development is in progress to produce circular masks of various kinds for obscured aperture telescopes.

  1. Modeling the Subjective Quality of Highly Contrasted Videos Displayed on LCD With Local Backlight Dimming

    DEFF Research Database (Denmark)

    Mantel, Claire; Bech, Søren; Korhonen, Jari

    2015-01-01

    Local backlight dimming is a technology aiming at both saving energy and improving visual quality on television sets. As the rendition of the image is specified locally, the numerical signal corresponding to the displayed image needs to be computed through a model of the display. This simulated...... signal can then be used as input to objective quality metrics. The focus of this paper is on determining which characteristics of locally backlit displays influence quality assessment. A subjective experiment assessing the quality of highly contrasted videos displayed with various local backlight......-dimming algorithms is set up. Subjective results are then compared with both objective measures and objective quality metrics using different display models. The first analysis indicates that the most significant objective features are temporal variations, power consumption (probably representing leakage...

  2. Scaling Limit of Symmetric Random Walk in High-Contrast Periodic Environment

    Science.gov (United States)

    Piatnitski, A.; Zhizhina, E.

    2017-11-01

    The paper deals with the asymptotic properties of a symmetric random walk in a high contrast periodic medium in Z^d, d≥1. From the existing homogenization results it follows that under diffusive scaling the limit behaviour of this random walk need not be Markovian. The goal of this work is to show that if in addition to the coordinate of the random walk in Z^d we introduce an extra variable that characterizes the position of the random walk inside the period then the limit dynamics of this two-component process is Markov. We describe the limit process and observe that the components of the limit process are coupled. We also prove the convergence in the path space for the said random walk.

  3. Experience of slowly infused high-iodine-dose contrast computed tomography (SHD) of intracranial tumors

    International Nuclear Information System (INIS)

    Muraoka, Kiyoaki; Numata, Hideharu; Hokama, Yasuo

    1983-01-01

    A study was done on 20 patients with intracranial tumors by means of the slowly infused high-iodine-dose (SHD) contrast-enhancement technique. An intravenous drip infusion of 300 ml of Angiografin was given for three hours. Computerized tomograms were taken 1 hour, (2 hours), and 3 hours after the beginning of the drip infusion. The authors divided the lesions into four groups by analyzing the sequential changes in CT numbers using a histograms or profile of the region of interest. In group I, additional lesions were visible on the SHD scan (one case of metastatic brain tumors from lung cancer). In group 2, lesions were better displayed on the SHD scan due to increased enhancement (17 cases). In group 3, SHD scans showed no change (2 cases of fibrous astrocytoma). In group 4, the enhancement was diminished, but the lesion per se was still clealy identifiable (no case). Finally, in 18 cases out of 20 (90%), an additional or better display of the lesion was detected on SHD enhanced CT. The rational for doing the SHD enhancement is to detect a lesion with a minimally impaired blood-brain barrier by exposing a prolonged high blood-iodine level, and so the scanning is delayed until detectable levels of the contrast medium have accumulated within the vascular-channel pool or extravascular space of the lesion. SHD enhancement is useful: I) for revealing any additional lesion in a metastatic brain tumor; 2) for better displaying an obscure lesion on a usual scan; 3) for differentiating the quality of the lesion (for example, malignancy or cyst formation), and 4) for predicting the prognosis of the lesion. (J.P.N.)

  4. Verification of the high density after contrast enhancement in the 2nd week in cerebroischemic lesion

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, T; Kanno, T; Sano, H; Katada, Kazuhiro; Futimoto, K [Fujita Gakuen Univ., Toyoake, Aichi (Japan). School of Medicine

    1978-12-01

    To determine the indication, it is necessary to make clear the relation among the Stage (time and course), the Strength, the Pathogenesis, and the Effects of the operation in these diseases (SSPE relation). In this report, we focused on the High Density of CT after the contrast enhancement in the cases of ischemic lesions (the High Density was named ''Ribbon H. D.''). Seventeen cases of Ribbon H. D. in fresh infarctions were verified concerning the time of the appearance of the H. D., the features of its location and nature, and the histological findings. The results were as follows: The Ribbon H. D. appeared in the early stage of infarctions, and had its peak density at the end of the 2nd week after the onset. The Ribbon H. D. was mostly located along the cortical line, showing a ribbon-like band. The Ribbon H. D. did not appear in the sharply demarcated coagulation necrosis in the early stage or in the defined Low Density (L. D.) in the late stage of infarctions. Although the Ribbon H. D. shows the extravasation of contrast media, it does not necessarily show the existence of the hemorrhagic infarction. Some part of the Ribbon H. D. changes to a well-defined L. D. and the rest of the part becomes relative isodensity in the late stage. This change corresponds to the change in the incomplete necrosis which is afterwards divided into a resolution with a cystic cavity and the glial replacement in the late stage. In conclusion, it is possible to understand that the Ribbon H. D. corresponds to the lesion of an incomplete necrosis, with neovascularization, in the early stage of infarctions. Therefore, in addition to the present indication of a by-pass operation (TIA, RIND), this incomplete necrosis (Ribbon H. D.), its surrounding area and just before the appearance of the Ribbon H. D. might be another indication of the operation.

  5. A novel fabrication method for suspended high-aspect-ratio microstructures

    Science.gov (United States)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  6. Flight Loads Prediction of High Aspect Ratio Wing Aircraft Using Multibody Dynamics

    Directory of Open Access Journals (Sweden)

    Michele Castellani

    2016-01-01

    Full Text Available A framework based on multibody dynamics has been developed for the static and dynamic aeroelastic analyses of flexible high aspect ratio wing aircraft subject to structural geometric nonlinearities. Multibody dynamics allows kinematic nonlinearities and nonlinear relationships in the forces definition and is an efficient and promising methodology to model high aspect ratio wings, which are known to be prone to structural nonlinear effects because of the high deflections in flight. The multibody dynamics framework developed employs quasi-steady aerodynamics strip theory and discretizes the wing as a series of rigid bodies interconnected by beam elements, representative of the stiffness distribution, which can undergo arbitrarily large displacements and rotations. The method is applied to a flexible high aspect ratio wing commercial aircraft and both trim and gust response analyses are performed in order to calculate flight loads. These results are then compared to those obtained with the standard linear aeroelastic approach provided by the Finite Element Solver Nastran. Nonlinear effects come into play mainly because of the need of taking into account the large deflections of the wing for flight loads computation and of considering the aerodynamic forces as follower forces.

  7. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  8. Optimal design and installation of ultra high bypass ratio turbofan nacelle

    Science.gov (United States)

    Savelyev, Andrey; Zlenko, Nikolay; Matyash, Evgeniy; Mikhaylov, Sergey; Shenkin, Andrey

    2016-10-01

    The paper is devoted to the problem of designing and optimizing the nacelle of turbojet bypass engine with high bypass ratio and high thrust. An optimization algorithm EGO based on development of surrogate models and the method for maximizing the probability of improving the objective function has been used. The designing methodology has been based on the numerical solution of the Reynolds equations system. Spalart-Allmaras turbulence model has been chosen for RANS closure. The effective thrust losses has been uses as an objective function in optimizing the engine nacelle. As a result of optimization, effective thrust has been increased by 1.5 %. The Blended wing body aircraft configuration has been studied as a possible application. Two variants of the engine layout arrangement have been considered. It has been shown that the power plant changes the pressure distribution on the aircraft surface. It results in essential diminishing the configuration lift-drag ratio.

  9. Few-layer SnSe{sub 2} transistors with high on/off ratios

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Tengfei; Bao, Lihong, E-mail: lhbao@iphy.ac.cn; Wang, Guocai; Ma, Ruisong; Yang, Haifang; Li, Junjie; Gu, Changzhi; Du, Shixuan; Gao, Hong-jun [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Pantelides, Sokrates [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381 (United States)

    2016-02-01

    We report few-layer SnSe{sub 2} field effect transistors (FETs) with high current on/off ratios. By trying different gate configurations, 300 nm SiO{sub 2} and 70 nm HfO{sub 2} as back gate only and 70 nm HfO{sub 2} as back gate combined with a top capping layer of polymer electrolyte, few-layer SnSe{sub 2} FET with a current on/off ratio of 10{sup 4} can be obtained. This provides a reliable solution for electrically modulating quasi-two-dimensional materials with high electron density (over 10{sup 13} cm{sup −2}) for field-effect transistor applications.

  10. Fabrication of high-aspect-ratio microgrooves using an electrochemical discharge micromilling process

    International Nuclear Information System (INIS)

    Han, Min-Seop; Chae, Ki Woon; Min, Byung-Kwon

    2017-01-01

    In this study, we created high-aspect-ratio microgrooves in hard, brittle materials using an electrochemical discharge machining (ECDM) process by introducing microtextured machining tool. To enhance the electrical discharge activity, the morphology of the tool side surface was treated via micro-electrical discharge machining to produce fine microprotrusive patterns. The resulting microtextured surface morphology enhanced the electric field and played a key role in improving the step milling depth in the ECDM process. Using the FEM analysis, the evaluation of the field enhancement factor is also addressed. Our experimental investigation revealed microgrooves having an aspect ratio of 1:4, with high geometric accuracy and crack-free surfaces, using one-step ECDM. (paper)

  11. Microactuator production via high aspect ratio, high edge acuity metal fabrication technology

    Science.gov (United States)

    Guckel, H.; Christenson, T. R.

    1993-01-01

    LIGA is a procession sequence which uses x-ray lithography on photoresist layers of several hundred micrometers to produce very high edge acuity photopolymer molds. These plastic molds can be converted to metal molds via electroplating of many different metals and alloys. The end results are high edge acuity metal parts with large structural heights. The LIGA process as originally described by W. Ehrfeld can be extended by adding a surface micromachining phase to produce precision metal parts which can be assembled to form three-dimensional micromechanisms. This process, SLIGA, has been used to fabricate a dynamometer on a chip. The instrument has been fully implemented and will be applied to tribology issues, speed-torque characterization of planar magnetic micromotors and a new family of sensors.

  12. Dense high-aspect ratio 3D carbon pillars on interdigitated microelectrode arrays

    DEFF Research Database (Denmark)

    Amato, Letizia; Heiskanen, Arto; Hansen, Rasmus

    2015-01-01

    In this work we present high-aspect ratio carbon pillars (1.4 μm in diameter and ∼11 μm in height) on top of interdigitated electrode arrays to be used for electrochemical applications. For this purpose, different types of 2D and 3D pyrolysed carbon structures were fabricated and characterised...... of pyrolysed carbon films with increased film resistance due to oxidation during storage....

  13. Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching

    Science.gov (United States)

    Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki

    2018-06-01

    A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.

  14. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Science.gov (United States)

    Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang

    2016-02-01

    We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  15. Leptothrix sp sheaths modified with iron oxide particles: Magnetically responsive, high aspect ratio functional material

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Angelova, R.; Baldíková, Eva; Pospišková, K.; Šafaříková, Miroslava

    2017-01-01

    Roč. 71, FEB (2017), s. 1342-1346 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GA14-11516S; GA MŠk(CZ) LD14075 Institutional support: RVO:67179843 Keywords : removal * Leptothrix * Magnetic modification * Iron oxide * High aspect ratio material Subject RIV: EI - Biotechnology ; Bionics OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 4.164, year: 2016

  16. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    International Nuclear Information System (INIS)

    Law, M.; Bowie, G.

    2007-01-01

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted

  17. Prediction of failure strain and burst pressure in high yield-to-tensile strength ratio linepipe

    Energy Technology Data Exchange (ETDEWEB)

    Law, M. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia)]. E-mail: mlx@ansto.gov.au; Bowie, G. [BlueScope Steel Ltd., Level 11, 120 Collins St, Melbourne, Victoria 3000 (Australia)

    2007-08-15

    Failure pressures and strains were predicted for a number of burst tests as part of a project to explore failure strain in high yield-to-tensile strength ratio linepipe. Twenty-three methods for predicting the burst pressure and six methods of predicting the failure strain are compared with test results. Several methods were identified which gave accurate and reliable estimates of burst pressure. No method of accurately predicting the failure strain was found, though the best was noted.

  18. Experimental characterization of the concrete behaviour under high confinement: influence of the saturation ratio and of the water/cement ratio

    International Nuclear Information System (INIS)

    Vu, X.H.

    2007-08-01

    The objective of this thesis is to experimentally characterize the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour under high confinement. This thesis lies within a more general scope of the understanding of concrete behaviour under severe loading situations (near field detonation or ballistic impacts). A near field detonation or an impact on a concrete structure generate very high levels of stress associated with complex loading paths in the concrete material. To validate concrete behaviour models, experimental results are required. The work presented in this thesis concerns tests conducted using a static triaxial press that allows to obtain stress levels of the order of the giga Pascal. The porous character of concrete and the high confinement required on the one hand, a development of a specimen protection device, and on the other hand, a development of an instrumentation with strain gauges, which is unprecedented for such high confinements. Hydrostatic and triaxial tests, conducted on the one hand on model materials and on the other hand on concrete, allowed to validate the developed experimental procedures as well as the technique of strain and stress measurements. The studies concerning the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour required the formulation of a plain baseline concrete and of two modified concretes with different water/cement ratios. The analysis of triaxial tests performed on the baseline concrete shows that the saturation ratio of concrete has a major influence on its static behaviour under high confinement. This influence is particularly marked for the concrete loading capacity and for the shape of limit state curves for saturation ratios greater than 50%. The concrete loading capacity increases with the confinement pressure for tests on dry concrete whereas beyond a given confinement pressure, it remains limited for wet or saturated concrete

  19. Angle resolved mass spectrometry of positive ions transmitted through high aspect ratio channels in a radio frequency discharge

    NARCIS (Netherlands)

    Stoffels - Adamowicz, E.; Stoffels, W.W.; Tachibana, K.; Imai, S.

    1997-01-01

    The behavior of positive ions in high aspect ratio structures, relevant to the reactive ion etching of deep trenches, has been studied by means of energy resolved mass spectrometry. High aspect ratio trenches are simulated by capillary plates with various aspect ratios. Angle resolved measurements

  20. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    Science.gov (United States)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  1. High-precision branching ratio measurement for the superallowed β+ emitter Ga62

    Science.gov (United States)

    Finlay, P.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Austin, R. A. E.; Bandyopadhyay, D.; Chaffey, A.; Chakrawarthy, R. S.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Kanungo, R.; Leach, K. G.; Mattoon, C. M.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Sarazin, F.; Savajols, H.; Schumaker, M. A.; Wong, J.

    2008-08-01

    A high-precision branching ratio measurement for the superallowed β+ decay of Ga62 was performed at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. The 8π spectrometer, an array of 20 high-purity germanium detectors, was employed to detect the γ rays emitted following Gamow-Teller and nonanalog Fermi β+ decays of Ga62, and the SCEPTAR plastic scintillator array was used to detect the emitted β particles. Thirty γ rays were identified following Ga62 decay, establishing the superallowed branching ratio to be 99.858(8)%. Combined with the world-average half-life and a recent high-precision Q-value measurement for Ga62, this branching ratio yields an ft value of 3074.3±1.1 s, making Ga62 among the most precisely determined superallowed ft values. Comparison between the superallowed ft value determined in this work and the world-average corrected F tmacr value allows the large nuclear-structure-dependent correction for Ga62 decay to be experimentally determined from the CVC hypothesis to better than 7% of its own value, the most precise experimental determination for any superallowed emitter. These results provide a benchmark for the refinement of the theoretical description of isospin-symmetry breaking in A⩾62 superallowed decays.

  2. Fabrication process for tall, sharp, hollow, high aspect ratio polymer microneedles on a platform

    International Nuclear Information System (INIS)

    Ceyssens, Frederik; Chaudhri, Buddhadev Paul; Van Hoof, Chris; Puers, Robert

    2013-01-01

    This paper reports on a new lithographic process for fabricating arrays of tall, high aspect ratio (defined as height/wall thickness), hollow, polymer microneedles on a platform. The microneedles feature a high sharpness (down to 3 µm tip radius) and aspect ratio (>65) which is a factor 2 and 4 better than the state of the art, respectively. The maximum achievable needle shaft length is over 1 mm. The improved performance was obtained by using an anisotropically patterned silicon substrate covered with an antireflective layer as mold for the needle tip and an optimized SU-8 lithographic process. Furthermore, a platform containing liquid feedthroughs holding an arbitrary number of needles out of plane can be manufactured with only one additional process step. The high aspect ratio microneedles undergo failure at the critical load of around 230 mN in the case of 1 mm long hollow needles with triangular cross section and a base of 175 µm. Penetration into human skin is demonstrated as well. (paper)

  3. Simulation and Measurement of Neuroelectrodes' Characteristics with Integrated High Aspect Ratio Nano Structures

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2015-07-01

    Full Text Available Improving the interface between electrodes and neurons has been the focus of research for the last decade. Neuroelectrodes should show small geometrical surface area and low impedance for measuring and high charge injection capacities for stimulation. Increasing the electrochemically active surface area by using nanoporous electrode material or by integrating nanostructures onto planar electrodes is a common approach to improve this interface. In this paper a simulation approach for neuro electrodes' characteristics with integrated high aspect ratio nano structures based on a point-contact-model is presented. The results are compared with experimental findings conducted with real nanostructured microelectrodes. In particular, effects of carbon nanotubes and gold nanowires integrated onto microelectrodes are described. Simulated and measured impedance properties are presented and its effects onto the transfer function between the neural membrane potential and the amplifier output signal are studied based on the point-contact-model. Simulations show, in good agreement with experimental results, that electrode impedances can be dramatically reduced by the integration of high aspect ratio nanostructures such as gold nanowires and carbon nanotubes. This lowers thermal noise and improves the signal-to-noise ratio for measuring electrodes. It also may increase the adhesion of cells to the substrate and thus increase measurable signal amplitudes.

  4. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. III. A FAINT WHITE DWARF COMPANION ORBITING HD 114174

    International Nuclear Information System (INIS)

    Crepp, Justin R.; Johnson, John Asher; Howard, Andrew W.; Marcy, Geoffrey W.; Gianninas, Alexandros; Kilic, Mukremin; Wright, Jason T.

    2013-01-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the ''trend''. HD 114174 B has a projected separation of 692 ± 9 mas (18.1 AU) and is 10.75 ± 0.12 mag (contrast of 5 × 10 –5 ) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 yr demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M J = 13.97 ± 0.11, and colors, J – K = 0.12 ± 0.16 mag. These characteristics are consistent with an ≈T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of 0.260 ± 0.010 M ☉ . We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature T eff = 8200 ± 4000 K, surface gravity log g = 8.90 ± 0.02, and cooling age of t c ≈ 3.4 Gyr, which is consistent with the 4.7 +2.3 -2.6 Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only 26.14 ± 0.37 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors

  5. Examination of hepatic dynamic CT images following infusion of high-concentration contrast media

    International Nuclear Information System (INIS)

    Takeyama, Nobuyuki; Hayashi, Takaki; Kinebuchi, Yuko; Kitahara, Tadashi; Ohbuchi, Masao; Shinjyo, Hidenori; Ohgiya, Yoshimitsu

    2008-01-01

    There are scarce examinations on the integrated effects of given iodine weight (mgI) and its rate (mgI/sec) on the quality and diagnostic accuracy in the hepatic contrast CT imaging while the former is known to affect the image of parenchyma and the latter, of arterial systems. The purpose of this study is to analyze and evaluate the effects qualitatively and quantitatively in hepatic dynamic CT images of patients with moderate body weight in whom different concentrations of I are given at the same flux rate and total weight. Patients having chronic hepatitis suspicious of carcinoma, or cirrhosis were 52-84 years old (M 50/F 55, b. wt. 50-65 kg) and were randomly divided in A and B group. A group received infusion of 25 sec in the right elbow vein of iopamidol, 300 mgI/100 mL, and B group, 370 mgI/80 mL: the I flux of ca. 1.2 gI/sec and total I of ca. 30 gI. Before and at 25 (early arterial phase), 40 (late art. phase), 70 (portal vein) and 180 (equilibrium) sec after infusion, CT images were obtained with the machine Light Speed select (GE Healthcare), Housfield Units before and after enhancing were used for quantitative evaluation, three experts qualitatively read images, and PACS system in Synapse 3.1.0 (Fuji Film Med.) was used for observation of tumor nodules if present. Neither qualitative nor quantitative differences were found in these CT images of the 4 phases and use of high-concentration contrast media was confirmed to be possible for lowered infusion rate. Authors also pointed out the importance of care for radiation exposure in this CT technique. (R.T.)

  6. Local contrast-enhanced MR images via high dynamic range processing.

    Science.gov (United States)

    Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart

    2018-09-01

    To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Searching for Hα emitting sources around MWC 758. SPHERE/ZIMPOL high-contrast imaging

    Science.gov (United States)

    Huélamo, N.; Chauvin, G.; Schmid, H. M.; Quanz, S. P.; Whelan, E.; Lillo-Box, J.; Barrado, D.; Montesinos, B.; Alcalá, J. M.; Benisty, M.; Gregorio-Monsalvo, I. de; Mendigutía, I.; Bouy, H.; Merín, B.; de Boer, J.; Garufi, A.; Pantin, E.

    2018-05-01

    Context. MWC 758 is a young star surrounded by a transitional disk. The disk shows an inner cavity and spiral arms that could be caused by the presence of protoplanets. Recently, a protoplanet candidate has been detected around MWC 758 through high-resolution L'-band observations. The candidate is located inside the disk cavity at a separation of 111 mas from the central star, and at an average position angle of 165.5°. Aims: We aim at detecting accreting protoplanet candidates within the disk of MWC 758 through angular spectral differential imaging (ASDI) observations in the optical regime. In particular, we explore the emission at the position of the detected planet candidate. Methods: We have performed simultaneous adaptive optics observations in the Hα line and the adjacent continuum using SPHERE/ZIMPOL at the Very Large Telescope (VLT). Results: The data analysis does not reveal any Hα signal around the target. The derived contrast curve in the B_Ha filter allows us to derive a 5σ upper limit of 7.6 mag at 111 mas, the separation of the previously detected planet candidate. This contrast translates into a Hα line luminosity of LHα ≲ 5×10-5 L⊙ at 111 mas. Assuming that LHα scales with Lacc as in classical T Tauri stars (CTTSs) as a first approximation, we can estimate an accretion luminosity of Lacc http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/L5Based on observations obtained at Paranal Observatory under program 096.C-0267(A) and 96.C-0248(A).

  8. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  9. High-precision branching-ratio measurement for the superallowed β+ emitter 74Rb

    Science.gov (United States)

    Dunlop, R.; Ball, G. C.; Leslie, J. R.; Svensson, C. E.; Towner, I. S.; Andreoiu, C.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Finlay, P.; Garnsworthy, A. B.; Garrett, P. E.; Glister, J.; Hackman, G.; Hadinia, B.; Leach, K. G.; Rand, E. T.; Starosta, K.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A high-precision branching-ratio measurement for the superallowed β+ decay of 74Rb was performed at the TRIUMF Isotope Separator and Accelerator (ISAC) radioactive ion-beam facility. The scintillating electron-positron tagging array (SCEPTAR), composed of 10 thin plastic scintillators, was used to detect the emitted β particles; the 8π spectrometer, an array of 20 Compton-suppressed HPGe detectors, was used for detecting γ rays that were emitted following Gamow-Teller and nonanalog Fermi β+ decays of 74Rb; and the Pentagonal Array of Conversion Electron Spectrometers (PACES), an array of 5 Si(Li) detectors, was employed for measuring β-delayed conversion electrons. Twenty-three excited states were identified in 74Kr following 8.241(4)×108 detected 74Rb β decays. A total of 58 γ-ray and electron transitions were placed in the decay scheme, allowing the superallowed branching ratio to be determined as B0=99.545(31)%. Combined with previous half-life and Q-value measurements, the superallowed branching ratio measured in this work leads to a superallowed ft value of 3082.8(65) s. Comparisons between this superallowed ft value and the world-average-corrected Ft¯ value, as well as the nonanalog Fermi branching ratios determined in this work, provide guidance for theoretical models of the isospin-symmetry-breaking corrections in this mass region.

  10. [Comparison of diagnostic quality in hysterosalpingography between iodinated non-ionic contrast media with low and high osmolarity].

    Science.gov (United States)

    Piccotti, K; Guida, D; Carbonetti, F; Stefanetti, L; Macioce, A; Cremona, A; David, V

    Comparison of diagnostic quality in hysterosalpingography between low and high-osmolality contrast media. We performed a retrospective evaluation of two cohorts of patients who underwent HSG using contrast media with different osmolarity: the first group ,47 patients, underwent hysterosalpingography in the period September 2011-December 2012 using Iopromide 370 mg/ml; the second group, 50 patients, underwent HSG from January 2013 to October 2013 using Iomeprol 400 mg/ml. Three radiologists, in consensus reading,, reviewed the radiographs by assessing the following four parameters: opacification of the uterine cavity, uterine profiles definition, Fallopian tubes visualization, contrast media spillage into peritoneum. A score-scale from 0 to 3 was assigned for each of the mentioned parameter (0 = minimum non-diagnostic exam, 1 = sufficient examination; 2 = good quality examination; maximum 3 = high quality images). We documented a statistically significant higher quality in displaying Fallopian tubes among patients studied through high osmolarity contrast medium (Iopromide 370 mg/ml) than what obtained through lower osmolarity contrast medium (Iomeprol 400 mg/ml). The use of high osmolarity contrast medium enabled better visualization of the tubes and a greater number of diagnoses of chronic aspecific salpigintis due to the increased osmolality and viscosity of Iomeprol 400 mg/ml. There were no significant differences between the two contrast agents in the evaluation of intra-uterine pathology and in the evaluation of the tubal patency.

  11. When selection ratios are high: predicting the expatriation willingness of prospective domestic entry-level job applicants

    NARCIS (Netherlands)

    Mol, S.T.; Born, M.P.; Willemsen, M.E.; van der Molen, H.T.; Derous, E.

    2009-01-01

    High expatriate selection ratios thwart the ability of multinational organizations to select expatriates. Reducing the selection ratio may be accomplished by selecting those applicants for entry level domestic positions who have expatriate aspirations. Regression analyses conducted on data from a

  12. Novel LY Converter Topologies for High Gain Transfer Ratio - A New Breed of XY Family

    DEFF Research Database (Denmark)

    Bhaskar, M.S.; Padmanaban, S.; Kulkarni, R.

    2016-01-01

    gain and minimum internal resistance; such as a photovoltaic MLI system, high voltage applications and electrical drives. The conspicuous features of proposed LY converter topologies are i) Single power control switch ii) Single Input source iii) Inverting output voltage iv) Transformer-less converter...... topologies v) High inverting voltage gain with moderate duty ratio vi) Less number of power devices and components. The proposed topologies have minimum internal resistance and its effect on voltage gain of LY converter is also discussed in detail. The simulation results are presented and the result...

  13. Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator

    DEFF Research Database (Denmark)

    Ding, Yunhong; Zhu, Xiaolong; Xiao, Sanshui

    2015-01-01

    Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro-optical modula......Graphene opens up for novel optoelectronic applications thanks to its high carrier mobility, ultra-large absorption bandwidth, and extremely fast material response. In particular, the opportunity to control optoelectronic properties through tuning of the Fermi level enables electro...... with an extinction ratio of 3.8 dB is successfully demonstrated by applying a square-waveform with a 4 V peak-to-peak voltage....

  14. Correction of nonlinear distortion in high-transverse-emittance ratio-beam production with linear accelerator

    Directory of Open Access Journals (Sweden)

    Shaoheng Wang

    2008-05-01

    Full Text Available Derbenev proposed producing a high quality flat beam of high-transverse-emittance ratio (HTER with a linear accelerator. Kim also discussed the round-to-flat transformation of angular-momentum-dominated beam. Fermilab/NICADD Photoinjector Laboratory has performed many experiments on HTER beam production. Experiments and simulations, collectively, showed an S-shaped transverse distribution in the flat beam. In this paper, the source of this emittance deterioration in the transformation is identified as the nonlinear rf cavity focusing force; and a solution is proposed.

  15. A Simplified Method for Upscaling Composite Materials with High Contrast of the Conductivity

    KAUST Repository

    Ewing, R.; Iliev, O.; Lazarov, R.; Rybak, I.; Willems, J.

    2009-01-01

    A large class of industrial composite materials, such as metal foams, fibrous glass materials, mineral wools, and the like, are widely used in insulation and advanced heat exchangers. These materials are characterized by a substantial difference between the thermal properties of the highly conductive materials (glass or metal) and the insulator (air) as well as low volume fractions and complex network-like structures of the highly conductive components. In this paper we address the important issue for the engineering practice of developing fast, reliable, and accurate methods for computing the macroscopic (upscaled) thermal conductivities of such materials. We assume that the materials have constant macroscopic thermal conductivity tensors, which can be obtained by upscaling techniques based on the postprocessing of a number of linearly independent solutions of the steady-state heat equation on representative elementary volumes (REVs). We propose, theoretically justify, and computationally study a numerical method for computing the effective conductivities of materials for which the ratio δ of low and high conductivities satisfies δ ≪ 1. We show that in this case one needs to solve the heat equation in the region occupied by the highly conductive media only. Further, we prove that under certain conditions on the microscale geometry the proposed method gives an approximation that is O(δ)-close to the upscaled conductivity. Finally, we illustrate the accuracy and the limitations of the method on a number of numerical examples. © 2009 Society for Industrial and Applied Mathematics.

  16. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  17. High contrast imaging and flexible photomanipulation for quantitative in vivo multiphoton imaging with polygon scanning microscope.

    Science.gov (United States)

    Li, Yongxiao; Montague, Samantha J; Brüstle, Anne; He, Xuefei; Gillespie, Cathy; Gaus, Katharina; Gardiner, Elizabeth E; Lee, Woei Ming

    2018-02-28

    In this study, we introduce two key improvements that overcome limitations of existing polygon scanning microscopes while maintaining high spatial and temporal imaging resolution over large field of view (FOV). First, we proposed a simple and straightforward means to control the scanning angle of the polygon mirror to carry out photomanipulation without resorting to high speed optical modulators. Second, we devised a flexible data sampling method directly leading to higher image contrast by over 2-fold and digital images with 100 megapixels (10 240 × 10 240) per frame at 0.25 Hz. This generates sub-diffraction limited pixels (60 nm per pixels over the FOV of 512 μm) which increases the degrees of freedom to extract signals computationally. The unique combined optical and digital control recorded fine fluorescence recovery after localized photobleaching (r ~10 μm) within fluorescent giant unilamellar vesicles and micro-vascular dynamics after laser-induced injury during thrombus formation in vivo. These new improvements expand the quantitative biological-imaging capacity of any polygon scanning microscope system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays.

    Science.gov (United States)

    Hager, Roland; Burns, Jonathan R; Grydlik, Martyna J; Halilovic, Alma; Haselgrübler, Thomas; Schäffler, Friedrich; Howorka, Stefan

    2016-06-01

    The biofunctionalization of nanopatterned surfaces with DNA origami nanostructures is an important topic in nanobiotechnology. An unexplored challenge is, however, to co-immobilize proteins with DNA origami at pre-determined substrate sites in high contrast relative to the nontarget areas. The immobilization should, in addition, preferably be achieved on a transparent substrate to allow ultrasensitive optical detection. If successful, specific co-binding would be a step towards stoichiometrically defined arrays with few to individual protein molecules per site. Here, we successfully immobilize with high specificity positively charged avidin proteins and negatively charged DNA origami nanoplates on 100 nm-wide carbon nanoislands while suppressing undesired adsorption to surrounding nontarget areas. The arrays on glass slides achieve unprecedented selectivity factors of up to 4000 and allow ultrasensitive fluorescence read-out. The co-immobilization onto the nanoislands leads to layered biomolecular architectures, which are functional because bound DNA origami influences the number of capturing sites on the nanopatches for other proteins. The novel hybrid DNA origami-protein nanoarrays allow the fabrication of versatile research platforms for applications in biosensing, biophysics, and cell biology, and, in addition, represent an important step towards single-molecule protein arrays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High contrast stellar observations within the diffraction limit at the Palomar Hale telescope

    Science.gov (United States)

    Mennesson, B.; Hanot, C.; Serabyn, E.; Martin, S. R.; Liewer, K.; Loya, F.; Mawet, D.

    2010-07-01

    We report on high-accuracy, high-resolution (statistical method, baptized "Null Self-Calibration" (NSC), which provides astrophysical null measurements at the 0.001 level, with 1 σ uncertainties as low as 0.0003. Such accuracy translates into a dynamic range greater than 1000:1 within the diffraction limit, demonstrating that the approach effectively bridges the traditional gap between regular coronagraphs, limited in angular resolution, and long baseline visibility interferometers, whose dynamic range is restricted to 100:1. As our measurements are extremely sensitive to the brightness distribution very close to the optical axis, we were able to constrain the stellar diameters and amounts of circumstellar emission for a sample of very bright stars. With the improvement expected when the PALM-3000 extreme AO system comes on-line at Palomar, the same instrument now equipped with a state of the art low noise fast read-out near IR camera, will yield 10-4 to 10-3 contrast as close as 30 mas for stars with K magnitude brighter than 6. Such a system will provide a unique and ideal tool for the detection of young (AUs) of nearby (< 50pc) stars.

  20. High-pitch dual-source CT coronary angiography with low volumes of contrast medium

    International Nuclear Information System (INIS)

    Lembcke, Alexander; Hein, Patrick A.; Knobloch, Gesine; Durmus, Tahir; Hamm, Bernd; Schwenke, Carsten; Huppertz, Alexander

    2014-01-01

    To assess the effect of lower volumes of contrast medium (CM) on image quality in high-pitch dual-source computed tomography coronary angiography (CTCA). One-hundred consecutive patients (body weight 65-85 kg, stable heart rate ≤65 bpm, cardiac index ≥2.5 L/min/m 2 ) referred for CTCA were prospectively enrolled. Patients were randomly assigned to one of five groups of different CM volumes (G 30 , 30 mL; G 40 , 40 mL; G 50 , 50 mL; G 60 , 60 mL; G 70 , 70 mL; flow rate 5 mL/s each, iodine content 370 mg/mL). Attenuation within the proximal and distal coronary artery segments was analysed. Mean attenuation for men and women ranged from 345.0 and 399.1 HU in G 30 to 478.2 and 571.8 HU in G 70 . Mean attenuation values were higher in groups with higher CM volumes (P 30 , G 40 , G 50 , G 60 and G 70 were 89 %, 95 %, 98 %, 98 % and 99 %. CM volume of 30 mL in women and 40 mL in men proved to be sufficient to guarantee attenuation of at least 300 HU. In selected patients high-pitch dual-source CTCA can be performed with CM volumes of 40 mL in men or 30 mL in women. (orig.)

  1. Reactive Burn Model Calibration for PETN Using Ultra-High-Speed Phase Contrast Imaging

    Science.gov (United States)

    Johnson, Carl; Ramos, Kyle; Bolme, Cindy; Sanchez, Nathaniel; Barber, John; Montgomery, David

    2017-06-01

    A 1D reactive burn model (RBM) calibration for a plastic bonded high explosive (HE) requires run-to-detonation data. In PETN (pentaerythritol tetranitrate, 1.65 g/cc) the shock to detonation transition (SDT) is on the order of a few millimeters. This rapid SDT imposes experimental length scales that preclude application of traditional calibration methods such as embedded electromagnetic gauge methods (EEGM) which are very effective when used to study 10 - 20 mm thick HE specimens. In recent work at Argonne National Laboratory's Advanced Photon Source we have obtained run-to-detonation data in PETN using ultra-high-speed dynamic phase contrast imaging (PCI). A reactive burn model calibration valid for 1D shock waves is obtained using density profiles spanning the transition to detonation as opposed to particle velocity profiles from EEGM. Particle swarm optimization (PSO) methods were used to operate the LANL hydrocode FLAG iteratively to refine SURF RBM parameters until a suitable parameter set attained. These methods will be presented along with model validation simulations. The novel method described is generally applicable to `sensitive' energetic materials particularly those with areal densities amenable to radiography.

  2. High contrast tumor imaging with radio-labeled antibody Fab fragments tailored for optimized pharmacokinetics via PASylation.

    Science.gov (United States)

    Mendler, Claudia T; Friedrich, Lars; Laitinen, Iina; Schlapschy, Martin; Schwaiger, Markus; Wester, Hans-Jürgen; Skerra, Arne

    2015-01-01

    Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.

  3. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    International Nuclear Information System (INIS)

    Velichko, A V; Coombs, T A

    2006-01-01

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10 -3 -10 3 of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%

  4. High-precision branching ratio measurement for the superallowed β+ emitter 62Ga

    International Nuclear Information System (INIS)

    Finlay, P.E.J.

    2007-01-01

    A high-precision branching ratio measurement for the superallowed β + decay of 62 Ga was performed at the Isotope Separator and Accelerator radioactive ion beam facility. An array of 20 high-purity germanium detectors known as the 8π spectrometer was employed to detect the rays emitted following the Gamow-Teller and non-analog Fermi decays of 62 Ga, while the plastic scintillator array known as SCEPTAR was used to detect the emitted particles. A total of 32 γ rays were identified, establishing the superallowed branching ratio to be 99:859(8)%. Combined with the most recent half-life and Q-value measurements for 62 Ga, this branching ratio yields an ft-value of 3074.3 ± 1.1 s. Comparisons between the superallowed ft-value determined in this work and the world average Ft-bar are made, providing a benchmark for the refinement of theoretical models used to describe isospin-symmetry breaking in A ≥ 62 nuclei. (author)

  5. High aspect ratio problem in simulation of a fault current limiter based on superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Velichko, A V; Coombs, T A [Electrical Engineering Division, University of Cambridge (United Kingdom)

    2006-06-15

    We are offering a solution for the high-aspect-ratio problem relevant to the numerical simulation of AC loss in superconductors and metals with high aspect (width-to-thickness) ratio. This is particularly relevant to simulation of fault current limiters (FCLs) based on second generation YBCO tapes on RABiTS. By assuming a linear scaling of the electric and thermal properties with the size of the structure, we can replace the real sample with an effective sample of a reduced aspect ratio by introducing size multipliers into the equations that govern the physics of the system. The simulation is performed using both a proprietary equivalent circuit software and a commercial FEM software. The correctness of the procedure is verified by simulating temperature and current distributions for samples with all three dimensions varying within 10{sup -3}-10{sup 3} of the original size. Qualitatively the distributions for the original and scaled samples are indistinguishable, whereas quantitative differences in the worst case do not exceed 10%.

  6. An impedance bridge measuring the capacitance ratio in the high frequency range up to 1 MHz

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Lee, Hyung Kew; Kim, Wan-Seop

    2017-01-01

    This paper describes a 2-terminal-pair impedance bridge, measuring the capacitance ratio in the high frequency range up to 1 MHz. The bridge was configured with two voltage sources and a phase control unit which enabled the bridge balance by synchronizing the voltage sources with an enhanced phase resolution. Without employing the transformers such as inductive voltage divider, injection and detection transformers, etc, the bridge system is quite simple to set up, and the balance procedure is quick and easy. Using this dual-source coaxial bridge, the 1:1 and 10:1 capacitance ratios were measured with 1 pF–1 nF capacitors in the frequency range from 1 kHz to 1 MHz. The measurement values obtained by the dual-source bridge were then compared with reference values measured using a commercial precision capacitance bridge of AH2700A, the Z -matrix method developed by ourselves, and the 4-terminal-pair coaxial bridge by the Czech Metrological Institute. All the measurements agreed within the reference uncertainty range of an order of 10 −6 –10 −5 , proving the bridge ability as a trustworthy tool for measuring the capacitance ratio in the high frequency range. (paper)

  7. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    Science.gov (United States)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  8. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  9. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ, Incheon (Korea, Republic of)

    2016-08-15

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

  10. High Precision Measurement of the Proton Elastic Form Factor Ratio at Low Q2

    Energy Technology Data Exchange (ETDEWEB)

    Xiaohui Zhan

    2009-12-01

    A high precision measurement of the proton elastic form factor ratio µpGEp/GMp in the range Q2 = 0.3–0.7 GeV2/c2 was performed using recoil polarimetry in Jefferson Lab Hall A. In this low Q2 range, previous data from LEDEX [5] along with many fits and calculations [2, 3, 4] indicate substantial deviations of the ratio from unity. In this new measurement, with 80% polarized electron beam for 24 days, we are able to achieve <1% statistical uncertainty. Preliminary results are a few percent lower than expected from previous world data and fits, indicating a smaller GEp at this region. Beyond the intrinsic interest in nucleon structure, the improved form factor measurements also have implications for DVCS, determinations of the proton Zemach radius and strangeness form factors through parity violation experiments.

  11. Vasoconstrictor effect of high FFA/albumin ratios in adipose tissue in vivo

    DEFF Research Database (Denmark)

    Bülow, J; Madsen, J; Astrup, A

    1985-01-01

    Subcutaneous or perirenal adipose tissue blood flow was measured with the 133Xe-washout technique before and after intravenous injection or infusion of Intralipid in six anesthetized, otherwise intact mongrel dogs. In four anesthetized mongrel puppies adipose tissue blood flow was measured...... as well as in young dogs after this treatment. The administration of Intralipid did not per se induce the vasoconstriction. The vasoconstriction took place simultaneously with increasing FFA/albumin molar ratios. The results support our previous findings in perfused fat pads that high molar FFA....../albumin ratios increase vascular resistance in adipose tissue and they give further support to our suggestion that this vasoconstriction may be a link in a negative-feedback mechanism regulating FFA-mobilization in relation to FFA utilization....

  12. Large Eddy simulation of flat plate film cooling at high blowing ratio using open FOAM

    Science.gov (United States)

    Baagherzadeh Hushmandi, Narmin

    2018-06-01

    In this work, numerical analysis was performed to predict the behaviour of high Reynolds number turbulent cross-flows used in film cooling applications. The geometry included one row of three discrete coolant holes inclined at 30 degrees to the main flow. In the computational model, the width of the channel was cut into one sixth and symmetry boundaries were applied in the centreline of the coolant hole and along the line of symmetry between two adjacent holes. One of the main factors that affect the performance of film cooling is the blowing ratio of coolant to the main flow. A blowing ratio equal to two was chosen in this study. Analysis showed that the common practice CFD models that employ RANS equations together with turbulence modelling under predict the film cooling effectiveness up to a factor of four. However, LES method showed better agreement of film cooling effectiveness both in tendency and absolute values compared with experimental results.

  13. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    International Nuclear Information System (INIS)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee

    2016-01-01

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed

  14. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang; Tong, Tiejun; Genton, Marc G.

    2017-01-01

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling's tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  15. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation

    International Nuclear Information System (INIS)

    Patch, S K; Hull, D; Thomas, M; Jacobsohn, K; See, WA; Griep, SK

    2015-01-01

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology. (paper)

  16. Maintaining high precision of isotope ratio analysis over extended periods of time.

    Science.gov (United States)

    Brand, Willi A

    2009-06-01

    Stable isotope ratios are reliable and long lasting process tracers. In order to compare data from different locations or different sampling times at a high level of precision, a measurement strategy must include reliable traceability to an international stable isotope scale via a reference material (RM). Since these international RMs are available in low quantities only, we have developed our own analysis schemes involving laboratory working RM. In addition, quality assurance RMs are used to control the long-term performance of the delta-value assignments. The analysis schemes allow the construction of quality assurance performance charts over years of operation. In this contribution, the performance of three typical techniques established in IsoLab at the MPI-BGC in Jena is discussed. The techniques are (1) isotope ratio mass spectrometry with an elemental analyser for delta(15)N and delta(13)C analysis of bulk (organic) material, (2) high precision delta(13)C and delta(18)O analysis of CO(2) in clean-air samples, and (3) stable isotope analysis of water samples using a high-temperature reaction with carbon. In addition, reference strategies on a laser ablation system for high spatial resolution delta(13)C analysis in tree rings is exemplified briefly.

  17. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    Science.gov (United States)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  18. VizieR Online Data Catalog: MSX high-contrast IRDCs with NH3 (Chira+,

    Science.gov (United States)

    Chira, R.-A.; Beuther, H.; Linz, H.; Walmsley, C. M.; Menten, K. M.; Bonfman, L.

    2013-02-01

    Based on MSX data, a catalogue of more than 10,000 candidate IRDCs was compiled. From this catalogue we selected a complete sample of northern hemisphere high-contrast IRDCs with Galactic longitudes >=19.27° (and nine exceptions with Galactic longitudes <19°). The sample was observed in ammonia (1,1) and (2,2) inversion transitions with the Effelsberg 100-m telescope. NH3 parameters are derived for 109 sample sources. For each source galactic coordinates, brightness temperatures, line width FWHMs and optical depths of (1,1) and (2,2) inversion lines and LSR velocity of (1,1) inversion line are given. Furthermore, we derived the rotation and kinetic temperatures, ammonia column densities, kinematic distances and virial masses using the NH3 data. In addition, notes about whether the sources being associated with Spitzer sources or not are given. Using ATLASGAL data, the 870 micron flux densities gas masses, virial parameters, H2 column densities and NH3 abundances are given. In addition, we listed the sample sources where no ammonia which did not fulfil our selection criteria. (4 data files).

  19. Estimation of chromatic errors from broadband images for high contrast imaging

    Science.gov (United States)

    Sirbu, Dan; Belikov, Ruslan

    2015-09-01

    Usage of an internal coronagraph with an adaptive optical system for wavefront correction for direct imaging of exoplanets is currently being considered for many mission concepts, including as an instrument addition to the WFIRST-AFTA mission to follow the James Web Space Telescope. The main technical challenge associated with direct imaging of exoplanets with an internal coronagraph is to effectively control both the diffraction and scattered light from the star so that the dim planetary companion can be seen. For the deformable mirror (DM) to recover a dark hole region with sufficiently high contrast in the image plane, wavefront errors are usually estimated using probes on the DM. To date, most broadband lab demonstrations use narrowband filters to estimate the chromaticity of the wavefront error, but this reduces the photon flux per filter and requires a filter system. Here, we propose a method to estimate the chromaticity of wavefront errors using only a broadband image. This is achieved by using special DM probes that have sufficient chromatic diversity. As a case example, we simulate the retrieval of the spectrum of the central wavelength from broadband images for a simple shaped- pupil coronagraph with a conjugate DM and compute the resulting estimation error.

  20. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  1. Integrative Analysis of High-throughput Cancer Studies with Contrasted Penalization

    Science.gov (United States)

    Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Shia, BenChang; Ma, Shuangge

    2015-01-01

    In cancer studies with high-throughput genetic and genomic measurements, integrative analysis provides a way to effectively pool and analyze heterogeneous raw data from multiple independent studies and outperforms “classic” meta-analysis and single-dataset analysis. When marker selection is of interest, the genetic basis of multiple datasets can be described using the homogeneity model or the heterogeneity model. In this study, we consider marker selection under the heterogeneity model, which includes the homogeneity model as a special case and can be more flexible. Penalization methods have been developed in the literature for marker selection. This study advances from the published ones by introducing the contrast penalties, which can accommodate the within- and across-dataset structures of covariates/regression coefficients and, by doing so, further improve marker selection performance. Specifically, we develop a penalization method that accommodates the across-dataset structures by smoothing over regression coefficients. An effective iterative algorithm, which calls an inner coordinate descent iteration, is developed. Simulation shows that the proposed method outperforms the benchmark with more accurate marker identification. The analysis of breast cancer and lung cancer prognosis studies with gene expression measurements shows that the proposed method identifies genes different from those using the benchmark and has better prediction performance. PMID:24395534

  2. High-resolution patterning of silver conductive lines by adhesion contrast planography

    International Nuclear Information System (INIS)

    Kusaka, Yasuyuki; Ushijima, Hirobumi; Koutake, Masayoshi

    2015-01-01

    We developed printed electronics compatible planographic printing methods that enable single-micrometer-order patterning with high rectangularity and thickness uniformity. Instead of conventional planographic printing methods where selective wetting is used for pattern generation, an adhesive latent image produced on a silicone surface is exploited for patterning in the proposed printing methodologies. We further investigated the fundamental mechanisms of the proposed methods by focusing on adhesion contrasts between the blanket, printing area, and non-printing area of a printing plate (PP) and determined that printing is feasible when a simple magnitude relation of adhesions is satisfied for thin layers of size ranging from approximately 50 nm to 100 nm. Latent image formation can be carried out via a simple ultraviolet exposure of the silicone surface, thereby enabling the rapid prototyping of printed device fabrications. The easily preparable, single material-based flat PPs developed in this study have the advantages of flexibility in pattern designs, washing process, fabrication cost, and pattern-rewriting capability compared with the conventional printing methods in which raised surfaces such as stamps or clichés are required for patterning. (paper)

  3. Multiscale finite element methods for high-contrast problems using local spectral basis functions

    KAUST Repository

    Efendiev, Yalchin

    2011-02-01

    In this paper we study multiscale finite element methods (MsFEMs) using spectral multiscale basis functions that are designed for high-contrast problems. Multiscale basis functions are constructed using eigenvectors of a carefully selected local spectral problem. This local spectral problem strongly depends on the choice of initial partition of unity functions. The resulting space enriches the initial multiscale space using eigenvectors of local spectral problem. The eigenvectors corresponding to small, asymptotically vanishing, eigenvalues detect important features of the solutions that are not captured by initial multiscale basis functions. Multiscale basis functions are constructed such that they span these eigenfunctions that correspond to small, asymptotically vanishing, eigenvalues. We present a convergence study that shows that the convergence rate (in energy norm) is proportional to (H/Λ*)1/2, where Λ* is proportional to the minimum of the eigenvalues that the corresponding eigenvectors are not included in the coarse space. Thus, we would like to reach to a larger eigenvalue with a smaller coarse space. This is accomplished with a careful choice of initial multiscale basis functions and the setup of the eigenvalue problems. Numerical results are presented to back-up our theoretical results and to show higher accuracy of MsFEMs with spectral multiscale basis functions. We also present a hierarchical construction of the eigenvectors that provides CPU savings. © 2010.

  4. High contrast laser beam collimation testing using two proximately placed holographic optical elements

    Science.gov (United States)

    Rajkumar; Dubey, Rajiv; Debnath, Sanjit K.; Chhachhia, D. P.

    2018-05-01

    Accuracy in laser beam collimation is very important in systems used for precision measurements. The present work reports a technique for collimation testing of laser beams using two proximately placed holographic optical elements (HOEs). The required HOEs are designed and fabricated such that upon illumination with the test beam, they release two laterally sheared wavefronts, at desired angles from the directly transmitted beam, that superimpose each other to generate straight interference fringes. Deviation from the collimation of the test beam results in orientation of these otherwise horizontal fringes. The novelty of this setup comes from the fact that HOEs are lightweight, as well as easy to fabricate as compared to conventional wedge plates used for collimation testing, and generate high contrast fringes compared to other interferometry, holography, Talbot and Moiré based techniques in a compact manner. The proposed technique is experimentally validated by measuring the orientation of fringes by an angle of 16.4° when a collimating lens of focal length 200 mm is defocused by 600 μm. The accuracy in the setting of this collimation position is obtained to be 10 μm.

  5. High-contrast resolution of film-screen systems in oral and maxillofacial radiology

    International Nuclear Information System (INIS)

    Kaeppler, G.; Reinert, S.

    2007-01-01

    Purpose: The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same X-ray units as those used for patient radiographs. Materials and methods: The MTF was determined using a lead grid and according to DIN 6867 - 2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. Results: With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). (orig.)

  6. High seed dispersal ability of Pinus canariensis in stands of contrasting density inferred from genotypic data

    Directory of Open Access Journals (Sweden)

    Unai López de Heredia

    2015-04-01

    Full Text Available Aim of the study: Models that combine parentage analysis from molecular data with spatial information of seeds and seedlings provide a framework to describe and identify the factors involved in seed dispersal and recruitment of forest species. In the present study we used a spatially explicit method (the gene shadow model in order to assess primary and effective dispersal in Pinus canariensis. Area of study: Pinus canariensis is endemic to the Canary Islands (Spain. Sampling sites were a high density forest in southern slopes of Tenerife and a low density stand in South Gran Canaria. Materials and methods: We fitted models based on parentage analysis from seeds and seedlings collected in two sites with contrasting stand density, and then compared the resulting dispersal distributions. Main results: The results showed that: 1 P. canariensis has a remarkable dispersal ability compared to other pine species; 2 there is no discordance between primary and effective dispersals, suggesting limited secondary dispersal by animals and lack of Janzen-Connell effect; and 3 low stand densities enhance the extent of seed dispersal, which was higher in the low density stand. Research highlights: The efficient dispersal mechanism of P. canariensis by wind inferred by the gene shadow model is congruent with indirect measures of gene flow, and has utility in reconstructing past demographic events and in predicting future distribution ranges for the species.

  7. Contrasting female-male mortality ratios after routine vaccinations with pentavalent vaccine versus measles and yellow fever vaccine. A cohort study from urban Guinea-Bissau

    DEFF Research Database (Denmark)

    Fisker, Ane B; Biering-Sørensen, Sofie; Lund, Najaaraq

    2016-01-01

    , DTP vaccine is associated with increased female mortality relative to male mortality. In 2008, Guinea-Bissau replaced DTP with the DTP-containing pentavalent vaccine (Penta; DTP-H. influenza type B-Hepatitis B) at 6, 10 and 14weeks and yellow fever vaccine (YF) was to be given with MV. We investigated......BACKGROUND: In addition to protection against the target diseases, vaccines may have non-specific effects (NSEs). Measles vaccine (MV) has beneficial NSEs, providing protection against non-measles deaths, most so for girls. By contrast, though protecting against diphtheria, tetanus and pertussis...... possible sex-differential mortality rates following Penta and MV+YF vaccination. METHODS: Bandim Health Project (BHP) registers vaccines given by the three government health centres in the study area and vital status through demographic surveillance. We assessed the association between sex and mortality...

  8. THE TRENDS HIGH-CONTRAST IMAGING SURVEY. III. A FAINT WHITE DWARF COMPANION ORBITING HD 114174

    Energy Technology Data Exchange (ETDEWEB)

    Crepp, Justin R. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Johnson, John Asher [Department of Planetary Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Howard, Andrew W. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Marcy, Geoffrey W. [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Gianninas, Alexandros; Kilic, Mukremin [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Wright, Jason T., E-mail: jcrepp@nd.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2013-09-01

    The nearby Sun-like star HD 114174 exhibits a strong and persistent Doppler acceleration indicating the presence of an unseen distant companion. We have acquired high-contrast imaging observations of this star using NIRC2 at Keck and report the direct detection of the body responsible for causing the ''trend''. HD 114174 B has a projected separation of 692 {+-} 9 mas (18.1 AU) and is 10.75 {+-} 0.12 mag (contrast of 5 Multiplication-Sign 10{sup -5}) fainter than its host in the K-band, requiring aggressive point-spread function subtraction to identify. Our astrometric time baseline of 1.4 yr demonstrates physical association through common proper motion. We find that the companion has absolute magnitude, M{sub J} = 13.97 {+-} 0.11, and colors, J - K = 0.12 {+-} 0.16 mag. These characteristics are consistent with an Almost-Equal-To T3 dwarf, initially leading us to believe that HD 114174 B was a substellar object. However, a dynamical analysis that combines radial velocity measurements with available imaging data indicates a minimum mass of 0.260 {+-} 0.010 M{sub Sun }. We conclude that HD 114174 B must be a white dwarf. Assuming a hydrogen-rich composition, atmospheric and evolutionary model fits yield an effective temperature T{sub eff} = 8200 {+-} 4000 K, surface gravity log g = 8.90 {+-} 0.02, and cooling age of t{sub c} Almost-Equal-To 3.4 Gyr, which is consistent with the 4.7{sup +2.3}{sub -2.6} Gyr host star isochronal age estimate. HD 114174 B is a benchmark object located only 26.14 {+-} 0.37 pc from the Sun. It may be studied at a level of detail comparable to Sirius and Procyon, and used to understand the link between the mass of white dwarf remnants with that of their progenitors.

  9. Prospective randomized comparison of standard didactic lecture versus high-fidelity simulation for radiology resident contrast reaction management training.

    Science.gov (United States)

    Wang, Carolyn L; Schopp, Jennifer G; Petscavage, Jonelle M; Paladin, Angelisa M; Richardson, Michael L; Bush, William H

    2011-06-01

    The objective of our study was to assess whether high-fidelity simulation-based training is more effective than traditional didactic lecture to train radiology residents in the management of contrast reactions. This was a prospective study of 44 radiology residents randomized into a simulation group versus a lecture group. All residents attended a contrast reaction didactic lecture. Four months later, baseline knowledge was assessed with a written test, which we refer to as the "pretest." After the pretest, the 21 residents in the lecture group attended a repeat didactic lecture and the 23 residents in the simulation group underwent high-fidelity simulation-based training with five contrast reaction scenarios. Next, all residents took a second written test, which we refer to as the "posttest." Two months after the posttest, both groups took a third written test, which we refer to as the "delayed posttest," and underwent performance testing with a high-fidelity severe contrast reaction scenario graded on predefined critical actions. There was no statistically significant difference between the simulation and lecture group pretest, immediate posttest, or delayed posttest scores. The simulation group performed better than the lecture group on the severe contrast reaction simulation scenario (p = 0.001). The simulation group reported improved comfort in identifying and managing contrast reactions and administering medications after the simulation training (p ≤ 0.04) and was more comfortable than the control group (p = 0.03), which reported no change in comfort level after the repeat didactic lecture. When compared with didactic lecture, high-fidelity simulation-based training of contrast reaction management shows equal results on written test scores but improved performance during a high-fidelity severe contrast reaction simulation scenario.

  10. Analytical Expressions of the Efficiency of Standard and High Contact Ratio Involute Spur Gears

    Directory of Open Access Journals (Sweden)

    Miguel Pleguezuelos

    2013-01-01

    Full Text Available Simple, traditional methods for computation of the efficiency of spur gears are based on the hypotheses of constant friction coefficient and uniform load sharing along the path of contact. However, none of them is accurate. The friction coefficient is variable along the path of contact, though average values can be often considered for preliminary calculations. Nevertheless, the nonuniform load sharing produced by the changing rigidity of the pair of teeth has significant influence on the friction losses, due to the different relative sliding at any contact point. In previous works, the authors obtained a nonuniform model of load distribution based on the minimum elastic potential criterion, which was applied to compute the efficiency of standard gears. In this work, this model of load sharing is applied to study the efficiency of both standard and high contact ratio involute spur gears (with contact ratio between 1 and 2 and greater than 2, resp.. Approximate expressions for the friction power losses and for the efficiency are presented assuming the friction coefficient to be constant along the path of contact. A study of the influence of some transmission parameters (as the gear ratio, pressure angle, etc. on the efficiency is also presented.

  11. A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio

    Science.gov (United States)

    Heidmann, James D.

    2008-01-01

    A concept for mitigating the adverse effects of jet vorticity and liftoff at high blowing ratios for turbine film cooling flows has been developed and studied at NASA Glenn Research Center. This "anti-vortex" film cooling concept proposes the addition of two branched holes from each primary hole in order to produce a vorticity counter to the detrimental kidney vortices from the main jet. These vortices typically entrain hot freestream gas and are associated with jet separation from the turbine blade surface. The anti-vortex design is unique in that it requires only easily machinable round holes, unlike shaped film cooling holes and other advanced concepts. The anti-vortex film cooling hole concept has been modeled computationally for a single row of 30deg angled holes on a flat surface using the 3D Navier-Stokes solver Glenn-HT. A modification of the anti-vortex concept whereby the branched holes exit adjacent to the main hole has been studied computationally for blowing ratios of 1.0 and 2.0 and at density ratios of 1.0 and 2.0. This modified concept was selected because it has shown the most promise in recent experimental studies. The computational results show that the modified design improves the film cooling effectiveness relative to the round hole baseline and previous anti-vortex cases, in confirmation of the experimental studies.

  12. Optimization of HNA etching parameters to produce high aspect ratio solid silicon microneedles

    International Nuclear Information System (INIS)

    Hamzah, A A; Yeop Majlis, B; Yunas, J; Dee, C F; Abd Aziz, N; Bais, B

    2012-01-01

    High aspect ratio solid silicon microneedles with a concave conic shape were fabricated. Hydrofluoric acid–nitric acid–acetic acid (HNA) etching parameters were characterized and optimized to produce microneedles that have long and narrow bodies with smooth surfaces, suitable for transdermal drug delivery applications. The etching parameters were characterized by varying the HNA composition, the optical mask's window size, the etching temperature and bath agitation. An L9 orthogonal Taguchi experiment with three factors, each having three levels, was utilized to determine the optimal fabrication parameters. Isoetch contours for HNA composition with 0% and 10% acetic acid concentrations were presented and a high nitric acid region was identified to produce microneedles with smooth surfaces. It is observed that an increase in window size indiscriminately increases the etch rate in both the vertical and lateral directions, while an increase in etching temperature beyond 35 °C causes the etching to become rapid and uncontrollable. Bath agitation and sample placement could be manipulated to achieve a higher vertical etch rate compared to its lateral counterpart in order to construct high aspect ratio microneedles. The Taguchi experiment performed suggests that a HNA composition of 2:7:1 (HF:HNO 3 :CH 3 COOH), window size of 500 µm and agitation rate of 450 RPM are optimal. Solid silicon microneedles with an average height of 159.4 µm, an average base width of 110.9 µm, an aspect ratio of 1.44, and a tip angle and diameter of 19.2° and 0.38 µm respectively were successfully fabricated. (paper)

  13. Development of a virtual probe tip with an application to high aspect ratio microscale features

    International Nuclear Information System (INIS)

    Bauza, Marcin B.; Hocken, Robert J.; Smith, Stuart T.; Woody, Shane C.

    2005-01-01

    Nondestructive measurement of microscale features remains a challenging metrology problem. For example, to assess a high aspect ratio small hole it is currently common to cut a cross section and measure the features of interest using an atomic force microscope, scanning probe microscope, or scanning electron microscope. Typically, these metrology tools may be suitable for surface finish measurement but often lack the capability for dimensional metrology. The aim of this article is to discuss the development of a high aspect-ratio microscale probe for measurement of microscale features. A 700:1 high aspect ratio probe shank is fabricated with a 7 μm diameter, and attached at one end to an oscillator. The oscillator produces a standing wave in the oscillating probe shank as opposed to conventional probes that use a microscale sphere on the end of a comparatively rigid shank. As a result of the standing wave formed in steady state vibration, the free end of the shank generates an amplitude of oscillation greater than the probe shank diameter. Thus, the probe does not require a spherical ball to serve as the contact point and simply uses the contact diameter of the free end of the vibrating shank. This methodology is referred to as a virtual probe tip. The virtual probe tip in conjunction with a nanopositioning scanner is used to measure surface profile measurements over traverse lengths of 130 μm. In this article, results from profiles of a 500 nm step height and a ruby sphere of diameter 1 mm are presented. Experiments in this article indicate the ability to repeatedly resolve surface features of less than 5 nm while maintaining bandwidths greater than 1 kHz. Furthermore, adhesion problems often encountered with micrometer scaled probes were not observed during profile measurements with this virtual probe

  14. Multilevel markov chain monte carlo method for high-contrast single-phase flow problems

    KAUST Repository

    Efendiev, Yalchin R.

    2014-12-19

    In this paper we propose a general framework for the uncertainty quantification of quantities of interest for high-contrast single-phase flow problems. It is based on the generalized multiscale finite element method (GMsFEM) and multilevel Monte Carlo (MLMC) methods. The former provides a hierarchy of approximations of different resolution, whereas the latter gives an efficient way to estimate quantities of interest using samples on different levels. The number of basis functions in the online GMsFEM stage can be varied to determine the solution resolution and the computational cost, and to efficiently generate samples at different levels. In particular, it is cheap to generate samples on coarse grids but with low resolution, and it is expensive to generate samples on fine grids with high accuracy. By suitably choosing the number of samples at different levels, one can leverage the expensive computation in larger fine-grid spaces toward smaller coarse-grid spaces, while retaining the accuracy of the final Monte Carlo estimate. Further, we describe a multilevel Markov chain Monte Carlo method, which sequentially screens the proposal with different levels of approximations and reduces the number of evaluations required on fine grids, while combining the samples at different levels to arrive at an accurate estimate. The framework seamlessly integrates the multiscale features of the GMsFEM with the multilevel feature of the MLMC methods following the work in [26], and our numerical experiments illustrate its efficiency and accuracy in comparison with standard Monte Carlo estimates. © Global Science Press Limited 2015.

  15. High-pitch dual-source CT coronary angiography with low volumes of contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Lembcke, Alexander; Hein, Patrick A.; Knobloch, Gesine; Durmus, Tahir; Hamm, Bernd [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); Schwenke, Carsten [SCO:SSiS - Schwenke Consulting, Berlin (Germany); Huppertz, Alexander [Charite - University Medicine Berlin, Department of Radiology, Berlin (Germany); ISI - Imaging Science Institute Charite, Berlin (Germany)

    2014-01-15

    To assess the effect of lower volumes of contrast medium (CM) on image quality in high-pitch dual-source computed tomography coronary angiography (CTCA). One-hundred consecutive patients (body weight 65-85 kg, stable heart rate ≤65 bpm, cardiac index ≥2.5 L/min/m{sup 2}) referred for CTCA were prospectively enrolled. Patients were randomly assigned to one of five groups of different CM volumes (G{sub 30}, 30 mL; G{sub 40}, 40 mL; G{sub 50}, 50 mL; G{sub 60}, 60 mL; G{sub 70}, 70 mL; flow rate 5 mL/s each, iodine content 370 mg/mL). Attenuation within the proximal and distal coronary artery segments was analysed. Mean attenuation for men and women ranged from 345.0 and 399.1 HU in G{sub 30} to 478.2 and 571.8 HU in G{sub 70}. Mean attenuation values were higher in groups with higher CM volumes (P < 0.0001) and higher in women than in men (P < 0.0001). The proportions of segments with attenuation of at least 300 HU in G{sub 30}, G{sub 40}, G{sub 50}, G{sub 60} and G{sub 70} were 89 %, 95 %, 98 %, 98 % and 99 %. CM volume of 30 mL in women and 40 mL in men proved to be sufficient to guarantee attenuation of at least 300 HU. In selected patients high-pitch dual-source CTCA can be performed with CM volumes of 40 mL in men or 30 mL in women. (orig.)

  16. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  17. Measurement of circumsolar ratio in high dust loading regions using a photographic method

    Science.gov (United States)

    Al-Ansary, Hany; Shafiq, Talha; Rizvi, Arslan; El-Leathy, Abdelrahman

    2017-06-01

    Performance of concentrating solar power (CSP) plants is highly affected by direct normal irradiance (DNI). However, it is also important to consider circumsolar radiation in any simulation of a CSP plant, especially in desert regions where dust loading in the atmosphere is expected. There are a number of methods to measure circumsolar radiation. However, most of them require expensive instrumentation. This work introduces a simple method to estimate circumsolar radiation. It involves taking high-resolution photographs of the sun and processing them using a computer code that identifies the sun's disk. The code then uses pixel intensities to obtain the solar intensity distribution across the sun's disk and in the aureole region. The solar intensity distribution is then used to obtain the circumsolar ratio (CSR) which represents the shape of the sun. To test this method, numerous photos of the sun were taken during the month of April and September 2016 at King Saud University in Riyadh, Saudi Arabia. Riyadh is a region that is well known for high dust-loading, especially during the summer. Two days of different atmospheric conditions were selected in September for comparative analysis. Results show that this method produces repeatable results, and that the CSR can increase significantly due to high dust loading and passing clouds. The CSR is found to be a strong function of DNI, ranging from about 4.5% at DNI values above 800 W/m2 and increasing to as much as 8.5% when DNI drops to about 400 W/m2, due to passing clouds. Furthermore, the results show that circumsolar ratio tends to be high in the early morning and late afternoon due to the high air mass, while its values tend to be lowest around solar noon when the air mass is lowest.

  18. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure

    Directory of Open Access Journals (Sweden)

    Bin Lu

    2016-02-01

    Full Text Available We designed a new style of broadband terahertz (THz polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.

  19. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    Science.gov (United States)

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  20. MEMS microphone innovations towards high signal to noise ratios (Conference Presentation) (Plenary Presentation)

    Science.gov (United States)

    Dehé, Alfons

    2017-06-01

    After decades of research and more than ten years of successful production in very high volumes Silicon MEMS microphones are mature and unbeatable in form factor and robustness. Audio applications such as video, noise cancellation and speech recognition are key differentiators in smart phones. Microphones with low self-noise enable those functions. Backplate-free microphones enter the signal to noise ratios above 70dB(A). This talk will describe state of the art MEMS technology of Infineon Technologies. An outlook on future technologies such as the comb sensor microphone will be given.

  1. Analytic free-form lens design for imaging applications with high aspect ratio

    Science.gov (United States)

    Duerr, Fabian; Benítez, Pablo; Miñano, Juan Carlos; Meuret, Youri; Thienpont, Hugo

    2012-10-01

    A new three-dimensional analytic optics design method is presented that enables the coupling of three ray sets with only two free-form lens surfaces. Closely related to the Simultaneous Multiple Surface method in three dimensions (SMS3D), it is derived directly from Fermat's principle, leading to multiple sets of functional differential equations. The general solution of these equations makes it possible to calculate more than 80 coefficients for each implicit surface function. Ray tracing simulations of these free-form lenses demonstrate superior imaging performance for applications with high aspect ratio, compared to conventional rotational symmetric systems.

  2. Multiphase contrast-enhanced CT with highly concentrated contrast agent can be used for PET attenuation correction in integrated PET/CT imaging

    International Nuclear Information System (INIS)

    Aschoff, Philip; Plathow, Christian; Lichy, Matthias P.; Claussen, Claus D.; Pfannenberg, Christina; Beyer, Thomas; Erb, Gunter; Oeksuez, Mehmet Oe.

    2012-01-01

    State-of-the-art positron emission tomography/computed tomography (PET/CT) systems incorporate multislice CT technology, thus facilitating the acquisition of multiphase, contrast-enhanced CT data as part of integrated PET/CT imaging protocols. We assess the influence of a highly concentrated iodinated contrast medium (CM) on quantification and image quality following CT-based attenuation correction (CT-AC) in PET/CT. Twenty-eight patients with suspected malignant liver lesions were enrolled prospectively. PET/CT was performed 60 min after injection of 400 MBq of 18 F-fluorodeoxyglucose (FDG) and following the biphasic administration of an intravenous CM (400 mg iodine/ml, Iomeron 400). PET images were reconstructed with CT-AC using any of four acquired CT image sets: non-enhanced, pre-contrast (n-PET), arterial phase (art-PET), portal venous phase (pv-PET) and late phase (late-PET). Normal tissue activity and liver lesions were assessed visually and quantitatively on each PET/CT image set. Visual assessment of PET following CT-AC revealed no noticeable difference in image appearance or quality when using any of the four CT data sets for CT-AC. A total of 44 PET-positive liver lesions was identified in 21 of 28 patients. There were no false-negative or false-positive lesions on PET. Mean standardized uptake values (SUV) in 36 evaluable lesions were: 5.5 (n-PET), 5.8 (art-PET), 5.8 (pv-PET) and 5.8 (late-PET), with the highest mean increase in mean SUV of 6%. Mean SUV changes in liver background increased by up to 10% from n-PET to pv-PET. Multiphase CT data acquired with the use of highly concentrated CM can be used for qualitative assessment of liver lesions in torso FDG PET/CT. The influence on quantification of FDG uptake is small and negligible for most clinical applications. (orig.)

  3. Edge Contrast of the FLAIR Hyperintense Region Predicts Survival in Patients with High-Grade Gliomas following Treatment with Bevacizumab.

    Science.gov (United States)

    Bahrami, N; Piccioni, D; Karunamuni, R; Chang, Y-H; White, N; Delfanti, R; Seibert, T M; Hattangadi-Gluth, J A; Dale, A; Farid, N; McDonald, C R

    2018-04-05

    Treatment with bevacizumab is standard of care for recurrent high-grade gliomas; however, monitoring response to treatment following bevacizumab remains a challenge. The purpose of this study was to determine whether quantifying the sharpness of the fluid-attenuated inversion recovery hyperintense border using a measure derived from texture analysis-edge contrast-improves the evaluation of response to bevacizumab in patients with high-grade gliomas. MRIs were evaluated in 33 patients with high-grade gliomas before and after the initiation of bevacizumab. Volumes of interest within the FLAIR hyperintense region were segmented. Edge contrast magnitude for each VOI was extracted using gradients of the 3D FLAIR images. Cox proportional hazards models were generated to determine the relationship between edge contrast and progression-free survival/overall survival using age and the extent of surgical resection as covariates. After bevacizumab, lower edge contrast of the FLAIR hyperintense region was associated with poorer progression-free survival ( P = .009) and overall survival ( P = .022) among patients with high-grade gliomas. Kaplan-Meier curves revealed that edge contrast cutoff significantly stratified patients for both progression-free survival (log-rank χ 2 = 8.3, P = .003) and overall survival (log-rank χ 2 = 5.5, P = .019). Texture analysis using edge contrast of the FLAIR hyperintense region may be an important predictive indicator in patients with high-grade gliomas following treatment with bevacizumab. Specifically, low FLAIR edge contrast may partially reflect areas of early tumor infiltration. This study adds to a growing body of literature proposing that quantifying features may be important for determining outcomes in patients with high-grade gliomas. © 2018 by American Journal of Neuroradiology.

  4. Evaluation of fast highly undersampled contrast-enhanced MR angiography (sparse CE-MRA) in intracranial applications - initial study

    International Nuclear Information System (INIS)

    Gratz, Marcel; Quick, Harald H.; Schlamann, Marc; Goericke, Sophia; Maderwald, Stefan

    2017-01-01

    To assess the image quality of sparsely sampled contrast-enhanced MR angiography (sparse CE-MRA) providing high spatial resolution and whole-head coverage. Twenty-three patients scheduled for contrast-enhanced MR imaging of the head, (N = 19 with intracranial pathologies, N = 9 with vascular diseases), were included. Sparse CE-MRA at 3 Tesla was conducted using a single dose of contrast agent. Two neuroradiologists independently evaluated the data regarding vascular visibility and diagnostic value of overall 24 parameters and vascular segments on a 5-point ordinary scale (5 = very good, 1 = insufficient vascular visibility). Contrast bolus timing and the resulting arterio-venous overlap was also evaluated. Where available (N = 9), sparse CE-MRA was compared to intracranial Time-of-Flight MRA. The overall rating across all patients for sparse CE-MRA was 3.50 ± 1.07. Direct influence of the contrast bolus timing on the resulting image quality was observed. Overall mean vascular visibility and image quality across different features was rated good to intermediate (3.56 ± 0.95). The average performance of intracranial Time-of-Flight was rated 3.84 ± 0.87 across all patients and 3.54 ± 0.62 across all features. Sparse CE-MRA provides high-quality 3D MRA with high spatial resolution and whole-head coverage within short acquisition time. Accurate contrast bolus timing is mandatory. (orig.)

  5. Evaluation of fast highly undersampled contrast-enhanced MR angiography (sparse CE-MRA) in intracranial applications - initial study

    Energy Technology Data Exchange (ETDEWEB)

    Gratz, Marcel; Quick, Harald H. [University of Duisburg-Essen, Erwin L. Hahn Institute for MR Imaging, Essen (Germany); University Hospital Essen, High Field and Hybrid MR Imaging, Essen (Germany); Schlamann, Marc [University Hospital Giessen and Marburg GmbH, Neuroradiology, Giessen (Germany); University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Goericke, Sophia [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Maderwald, Stefan [University of Duisburg-Essen, Erwin L. Hahn Institute for MR Imaging, Essen (Germany)

    2017-03-15

    To assess the image quality of sparsely sampled contrast-enhanced MR angiography (sparse CE-MRA) providing high spatial resolution and whole-head coverage. Twenty-three patients scheduled for contrast-enhanced MR imaging of the head, (N = 19 with intracranial pathologies, N = 9 with vascular diseases), were included. Sparse CE-MRA at 3 Tesla was conducted using a single dose of contrast agent. Two neuroradiologists independently evaluated the data regarding vascular visibility and diagnostic value of overall 24 parameters and vascular segments on a 5-point ordinary scale (5 = very good, 1 = insufficient vascular visibility). Contrast bolus timing and the resulting arterio-venous overlap was also evaluated. Where available (N = 9), sparse CE-MRA was compared to intracranial Time-of-Flight MRA. The overall rating across all patients for sparse CE-MRA was 3.50 ± 1.07. Direct influence of the contrast bolus timing on the resulting image quality was observed. Overall mean vascular visibility and image quality across different features was rated good to intermediate (3.56 ± 0.95). The average performance of intracranial Time-of-Flight was rated 3.84 ± 0.87 across all patients and 3.54 ± 0.62 across all features. Sparse CE-MRA provides high-quality 3D MRA with high spatial resolution and whole-head coverage within short acquisition time. Accurate contrast bolus timing is mandatory. (orig.)

  6. Nucleus accumbens opioid, GABaergic, and dopaminergic modulation of palatable food motivation: contrasting effects revealed by a progressive ratio study in the rat.

    Science.gov (United States)

    Zhang, Min; Balmadrid, Christian; Kelley, Ann E

    2003-04-01

    The current studies were designed to evaluate whether incentive motivation for palatable food is altered after manipulations of opioid, GABAergic, and dopaminergic transmission within the nucleus accumbens. A progressive ratio schedule was used to measure lever-pressing for sugar pellets after microinfusion of drugs into the nucleus accumbens in non-food-deprived rats. The mu opioid agonist D-Ala2, NMe-Phe4, Glyo15-enkephalin and the indirect dopamine agonist amphetamine induced a marked increase in break point and correct lever-presses; the GABA(A) agonist muscimol did not affect breakpoint or lever-presses. The data suggest that opioid, dopaminergic, and GABAergic systems within the accumbens differentially modulate food-seeking behavior through mechanisms related to hedonic evaluation of food, incentive salience, and control of motor feeding circuits, respectively.

  7. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    Science.gov (United States)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-12-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  8. A hypothetical model for predicting the toxicity of high aspect ratio nanoparticles (HARN)

    International Nuclear Information System (INIS)

    Tran, C. L.; Tantra, R.; Donaldson, K.; Stone, V.; Hankin, S. M.; Ross, B.; Aitken, R. J.; Jones, A. D.

    2011-01-01

    The ability to predict nanoparticle (dimensional structures which are less than 100 nm in size) toxicity through the use of a suitable model is an important goal if nanoparticles are to be regulated in terms of exposures and toxicological effects. Recently, a model to predict toxicity of nanoparticles with high aspect ratio has been put forward by a consortium of scientists. The High aspect ratio nanoparticles (HARN) model is a platform that relates the physical dimensions of HARN (specifically length and diameter ratio) and biopersistence to their toxicity in biological environments. Potentially, this model is of great public health and economic importance, as it can be used as a tool to not only predict toxicological activity but can be used to classify the toxicity of various fibrous nanoparticles, without the need to carry out time-consuming and expensive toxicology studies. However, this model of toxicity is currently hypothetical in nature and is based solely on drawing similarities in its dimensional geometry with that of asbestos and synthetic vitreous fibres. The aim of this review is two-fold: (a) to present findings from past literature, on the physicochemical property and pathogenicity bioassay testing of HARN (b) to identify some of the challenges and future research steps crucial before the HARN model can be accepted as a predictive model. By presenting what has been done, we are able to identify scientific challenges and research directions that are needed for the HARN model to gain public acceptance. Our recommendations for future research includes the need to: (a) accurately link physicochemical data with corresponding pathogenicity assay data, through the use of suitable reference standards and standardised protocols, (b) develop better tools/techniques for physicochemical characterisation, (c) to develop better ways of monitoring HARN in the workplace, (d) to reliably measure dose exposure levels, in order to support future epidemiological

  9. Documentation of normal and leukemic myelopoietic progenitor cells with high-resolution phase-contrast time-lapse cinematography.

    Science.gov (United States)

    Boll, I T

    2001-08-01

    The high-resolution phase-contrast, time-lapse cinematography using oil immersion lenses and 16-mm film demonstrates the kinetic cell events as maturation, locomotion, mitosis, and apoptosis of cells cultivated at 37 degrees C for up to 10 days. 0.5 v/v frozen-thawed sera with presumably high cytokine concentrations were added to the plasma or agar clot. Vital progenitor cells from human bone marrow and blood have a large, bright, unstructured nucleus with a large nucleolus and a narrow rim of cytoplasm (nuclear/cytoplasmic volume ratio = 0.7). Their nuclei are 6-14 micrometer in diameter and double their volume within 8 h. Many (70%) move at a mean speed of 2 micrometer/min, and many (30%) multiply with alpha-2alpha mitoses, generating progenitor cell families. Various disturbances during the course of mitosis lead to the formation of polyploid cells, thereby yielding the megakaryocytic cell line. Some of the progenitor cells undergo asymmetric alpha-alphan mitoses: One of the two initially identical daughter cells remains a progenitor cell in the morphological sense, whereas the other daughter cell - depending on the size of its mother cell - matures in the same culture medium to form a granulocytopoietic, monocytopoietic or erythrocytopoietic cell line. - In acute myeloid leukemias (AML), the blasts and their nuclei are slightly larger than the corresponding progenitor cells and move faster (5 micrometer/min). Symmetric alpha-2alpha mitoses permit unlimited multiplication of the leukemic blasts if contact with cytotoxic lymphocytes does not render them apoptotic. This results in more stromal cells than normal. Granulocytopenia, monocytopenia, and anemia occur due to the genetic impairment of signaling control for asymmetric alpha-alphan mitoses, and thrombocytopenia occurs due to the reduction in polyploidization. Copyright 2001 S. Karger GmbH, Freiburg

  10. A high ratio of apoptosis to proliferation correlates with improved survival after radiotherapy for cervical adenocarcinoma

    International Nuclear Information System (INIS)

    Sheridan, Mary T.; Cooper, Rachel A.; West, Catharine M.L.

    1999-01-01

    Purpose: A retrospective study was made of the role of apoptosis in determining radiotherapy outcome in 39 adenocarcinoma of the cervix. A comparison was also made of the detection of apoptosis by morphology and the TdT dUtp nick end-labeling (TUNEL) assay. Methods and Materials: The level of apoptosis was assessed in paraffin-embedded sections by cell morphology, the TUNEL assay, and a combination of the two. A total of 2,000 cells were counted per section, to obtain apoptotic (AI) and mitotic (MI) indices. Results: Patients with a high AI had a higher survival rate than those with a low AI, however, the difference was not significant. Using a ratio of apoptosis to proliferation indices, patients with an AI:MI > median had significantly better survival than those with AI:MI < median. This was true where the AI was quantified by morphology alone (p = 0.030) or in combination with the TUNEL assay (p = 0.008). Where the AI was quantified by a combination of morphology and TUNEL, the 5-year survival rates for women with AI:MI greater or less than the median were 81% and 25%, respectively. Conclusion: A high ratio of AI:MI in adenocarcinoma of the cervix indicates a good prognosis. A combination of the TUNEL assay and morphology provided the best discrimination between outcome groups

  11. Fabrication of High-Aspect-Ratio 3D Hydrogel Microstructures Using Optically Induced Electrokinetics

    Directory of Open Access Journals (Sweden)

    Yi Li

    2016-04-01

    Full Text Available We present a rapid hydrogel polymerization and prototyping microfabrication technique using an optically induced electrokinetics (OEK chip, which is based on a non-UV hydrogel curing principle. Using this technique, micro-scale high-aspect-ratio three-dimensional polymer features with different geometric sizes can be fabricated within 1–10 min by projecting pre-defined visible light image patterns onto the OEK chip. This method eliminates the need for traditional photolithography masks used for patterning and fabricating polymer microstructures and simplifies the fabrication processes. This technique uses cross-link hydrogels, such as poly(ethylene glycol (PEG-diacrylate (PEGDA, as fabrication materials. We demonstrated that hydrogel micropillar arrays rapidly fabricated using this technique can be used as molds to create micron-scale cavities in PDMS (polydimethylsiloxane substrates. Furthermore, hollow, circular tubes with controllable wall thicknesses and high-aspect ratios can also be fabricated. These results show the potential of this technique to become a rapid prototyping technology for producing microfluidic devices. In addition, we show that rapid prototyping of three-dimensional suspended polymer structures is possible without any sacrificial etching process.

  12. Diffusion of dilute gas in arrays of randomly distributed, vertically aligned, high-aspect-ratio cylinders

    Directory of Open Access Journals (Sweden)

    Wojciech Szmyt

    2017-01-01

    Full Text Available In this work we modelled the diffusive transport of a dilute gas along arrays of randomly distributed, vertically aligned nanocylinders (nanotubes or nanowires as opposed to gas diffusion in long pores, which is described by the well-known Knudsen theory. Analytical expressions for (i the gas diffusion coefficient inside such arrays, (ii the time between collisions of molecules with the nanocylinder walls (mean time of flight, (iii the surface impingement rate, and (iv the Knudsen number of such a system were rigidly derived based on a random-walk model of a molecule that undergoes memoryless, diffusive reflections from nanocylinder walls assuming the molecular regime of gas transport. It can be specifically shown that the gas diffusion coefficient inside such arrays is inversely proportional to the areal density of cylinders and their mean diameter. An example calculation of a diffusion coefficient is delivered for a system of titanium isopropoxide molecules diffusing between vertically aligned carbon nanotubes. Our findings are important for the correct modelling and optimisation of gas-based deposition techniques, such as atomic layer deposition or chemical vapour deposition, frequently used for surface functionalisation of high-aspect-ratio nanocylinder arrays in solar cells and energy storage applications. Furthermore, gas sensing devices with high-aspect-ratio nanocylinder arrays and the growth of vertically aligned carbon nanotubes need the fundamental understanding and precise modelling of gas transport to optimise such processes.

  13. Podiatry impact on high-low amputation ratio characteristics: A 16-year retrospective study.

    Science.gov (United States)

    Schmidt, Brian M; Wrobel, James S; Munson, Michael; Rothenberg, Gary; Holmes, Crystal M

    2017-04-01

    Complications from diabetes mellitus including major lower extremity amputation may have significant impact on a patient's mortality. This study determined what impact the addition of a limb salvage and diabetic foot program involving podiatry had at an academic institution over 16years by analyzing high-low amputation ratio data. The high-low amputation ratio in the diabetic population who underwent non-traumatic amputation of the lower extremity was retrospectively evaluated at an academic institution via cohort discovery of the electronic medical record and analysis of billing over 16years. We directly compared two eras, one without podiatry and one with a podiatry presence. It was found that with the addition of a podiatry program, limb salvage rates significantly increased (R 2 (without podiatry)=0.45, R 2 (with podiatry)=0.26), with a significant change in both the rate of limb salvage per year (-0.11% per year versus -0.36% per year; ppodiatry to 0.60 with podiatry). Of note, approximately 40 major lower extremity amputations were avoided per year with the addition of a podiatry program (ppodiatry program present at an academic institution, major lower extremity amputations can be avoided and more limbs can be salvaged, thus preventing some of the moribund complications from this condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biomimetic Ant-Nest Electrode Structures for High Sulfur Ratio Lithium-Sulfur Batteries.

    Science.gov (United States)

    Ai, Guo; Dai, Yiling; Mao, Wenfeng; Zhao, Hui; Fu, Yanbao; Song, Xiangyun; En, Yunfei; Battaglia, Vincent S; Srinivasan, Venkat; Liu, Gao

    2016-09-14

    The lithium-sulfur (Li-S) rechargeable battery has the benefit of high gravimetric energy density and low cost. Significant research currently focuses on increasing the sulfur loading and sulfur/inactive-materials ratio, to improve life and capacity. Inspired by nature's ant-nest structure, this research results in a novel Li-S electrode that is designed to meet both goals. With only three simple manufacturing-friendly steps, which include slurry ball-milling, doctor-blade-based laminate casting, and the use of the sacrificial method with water to dissolve away table salt, the ant-nest design has been successfully recreated in an Li-S electrode. The efficient capabilities of the ant-nest structure are adopted to facilitate fast ion transportation, sustain polysulfide dissolution, and assist efficient precipitation. High cycling stability in the Li-S batteries, for practical applications, has been achieved with up to 3 mg·cm(-2) sulfur loading. Li-S electrodes with up to a 85% sulfur ratio have also been achieved for the efficient design of this novel ant-nest structure.

  15. High fat diet prevents over-crowding induced decrease of sex ratio in mice.

    Directory of Open Access Journals (Sweden)

    Madhukar Shivajirao Dama

    Full Text Available Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. In the present study, we tested the effect of housing mice under crowded condition on the sex ratio and whether the fat content of the diet has any influence on the outcome of pregnancies. Three-week-old mice were placed on the control diet (NFD for 3 weeks. Thereafter the mice were allotted randomly to two groups of 7 cages each with 4, 6, 8, 10, 12, 14, and 16 mice in every cage to create increasing crowding gradient and fed either NFD or high fat diet (HFD. After 4 weeks, dams were bred and outcomes of pregnancy were analyzed. The average dam body weight (DBW at conception, litter size (LS and SR were significantly higher in HFD fed dams. Further, male biased litters declined with increasing crowding in NFD group but not in HFD. The LS and SR in NFD declined significantly with increasing crowding, whereas only LS was reduced in HFD group. We conclude that female mice housed under overcrowding conditions shift offspring SR in favor of daughters in consistent with the TW hypothesis and high fat diet reduces this influence of overcrowding.

  16. [High-contrast resolution of film-screen systems in oral and maxillofacial radiology].

    Science.gov (United States)

    Kaeppler, G; Reinert, S

    2007-11-01

    The aim was to determine differences in high-contrast resolution of film-screen systems used in dental panoramic and cephalometric radiography by calculating the modulation transfer function (MTF). The radiographs used to determine the MTF should be taken by the same x-ray units as those used for patient radiographs. The MTF was determined using a lead grid and according to DIN 6867-2 for 11 film-screen systems (speed 250, speed class 200 and 400) used in dental radiographic diagnostics. The optical density was measured using a microdensitometer developed by PTB. With 10% of the modulation transfer factor, newly developed film-screen systems (speed class 200 and 400) demonstrated a resolution of 4.9 to 6 line pairs per mm (panoramic radiography). In cephalometric radiography a film-screen system (speed class 400 and green-sensitive film) had a resolution of 4.2 line pairs per mm and surpassed two film-screen systems (speed class 400, resolution of 3 line pairs per mm, blue-sensitive films). The relevance of this study is underlined by the diagnostic reference doses defined in the German X-ray Ordinance (RöV) which are also intended for dentistry. Film-screen systems (speed 250, speed class 200) previously used in dental panoramic and cephalometric radiography can be replaced by newly developed film-screen systems (speed class 400). In dental radiography dose reductions are possible with film-screen systems (speed class 400) without impairing diagnostic accuracy. The introduction of newly developed film-screen systems (speed class 400) requires lower milliampere-seconds and therefore an adjustment of the x-ray units to lower milliampere settings.

  17. One-step patterning of double tone high contrast and high refractive index inorganic spin-on resist

    Energy Technology Data Exchange (ETDEWEB)

    Zanchetta, E.; Della Giustina, G.; Brusatin, G. [Industrial Engineering Department and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2014-09-14

    A direct one-step and low temperature micro-fabrication process, enabling to realize large area totally inorganic TiO₂ micro-patterns from a spin-on resist, is presented. High refractive index structures (up to 2 at 632 nm) without the need for transfer processes have been obtained by mask assisted UV lithography, exploiting photocatalytic titania properties. A distinctive feature not shared by any of the known available resists and boosting the material versatility, is that the system behaves either as a positive or as negative tone resist, depending on the process parameters and on the development chemistry. In order to explain the resist double tone behavior, deep comprehension of the lithographic process parameters optimization and of the resist chemistry and structure evolution during the lithographic process, generally uncommon in literature, is reported. Another striking property of the presented resist is that the negative tone shows a high contrast up to 19, allowing to obtain structures resolution down to 2 μm wide. The presented process and material permit to directly fabricate different titania geometries of great importance for solar cells, photo-catalysis, and photonic crystals applications.

  18. Dose Tc-99m MIBI scintimammography provide more information additive to contrast enhanced MRI in highly suspected breast cancer patients?

    International Nuclear Information System (INIS)

    Kim, Seong Jang; Kim, In Ju; Kim, Yong Ki; Bae, Young Tae

    2000-01-01

    The aim of this study was to investigate whether Tc-99m MIBI scintimammography (SMM) provide more information than contrast enhanced MRI in highly suspected breast cancer patients. This study included 32 breast lesions of 29 highly suspected patients having breast cancer. All patients were performed SMM and contrast enhanced MRI. The SMMs and contrast enhanced MRI were correlated with histopathologic results. Thirty breast lesions were diagnosed malignant diseases and 2 were diagnosed benign diseases. SMM showed 29 true positives (TP), 1 true negative (TN), 1 false positive (FP), and 1 false negative (FN). The sensitivity was 96.6%. Contrast enhanced MRI revealed 24 TP, 0 TN, 1 FP, 3 FN and 4 indeterminate cases. The sensitivity was 88.8%. In the assessment of axillary lymph node metastasis, SMM showed 9 TP, 10 TN, 0 FP, and 3 FN. The sensitivity and specificity were 75% and 100%. Contrast enhanced MRI revealed 6 TP, 9 TN, 1 FP, and 6 FN. The sensitivity and specificity were 50% and 90%. Among 4 indeterminate cases with MRI findings, SMM correctly diagnosed malignant breast diseases in 3 lesions. However, SMM showed false positive in 1 lesion. SMM could correctly diagnosed malignant breast diseases more 5 lesions than contrast enhanced MRI. SMM revealed higher sensitivity in detection of primary breast cancer and axillary LN metastasis than contrast enhanced MRI. SMMs could correctly diagnosed malignant breast diseases even if the MRI showed indeterminate findings. In highly suspected patients having breast cancer, SMM may provide additive information in detection of breast cancer if contrast enhanced MRI showed indeterminate findings but this is to be determined later by large population based study

  19. Broadband measurements of high-frequency electric field levels and exposure ratios determination

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2017-01-01

    Full Text Available The exposure of people to high-frequency electromagnetic fields (over 100 kHz that emanate from modern wireless information transmission systems is inevitable in modern times. Due to the rapid development of new technologies, measuring devices and their connection to measuring systems, the first fifteen years of the 21st century are characterized by the appearance of different approaches to measurements. This prompts the need for the assessment of the exposure of people to these fields. The main purpose of this paper is to show how to determine the exposure ratios based on the results of broadband measurements of the high-frequency electric field in the range of 3 MHz to 18 GHz in the environment.

  20. Constructing binary black hole initial data with high mass ratios and spins

    Science.gov (United States)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  1. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio

    Science.gov (United States)

    Pan, Xinjian; Cai, Yi; Zeng, Xuanke; Zheng, Shuiqin; Li, Jingzhen; Xu, Shixiang

    2017-05-01

    The paper presents a novel design for terahertz (THz) free-space time domain electro-optic (EO) detection where the static birefringent phases of the two balanced arms are set close to zero but opposite to each other. Our theoretical and numerical analyses show this design has much stronger ability to cancel the optical background noise than both THz ellipsometer and traditional crossed polarizer geometry (CPG). Its optical modulation depth is about twice as high as that of traditional CPG, but about ten times as high as that of THz ellipsometer. As for the dynamical range, our improved design is comparable to the THz ellipsometer but obviously larger than the traditional CPG. Some experiments for comparing our improved CPG with traditional CPG agree well with the corresponding theoretical predictions. Our experiments also show that the splitting ratio of the used non-polarization beam splitter is critical for the performance of our design.

  2. Stability of highly shifted equilibria in a large aspect ratio low-field tokamak

    International Nuclear Information System (INIS)

    Gourdain, P.-A.; Leboeuf, J.-N.; Neches, R. Y.

    2007-01-01

    In the long run, the economics of fusion will dictate that reactors confine large plasma pressure rather efficiently. A possible route manifests itself as equilibria with large shift of the plasma magnetic axis. This shift compresses the flux surfaces on the outer part of the plasma, hereby increasing the allowable plasma pressure a machine can confine for a given toroidal magnetic field, which is the main cost of the device. As a first step toward a reactor, we propose investigating the stability of such configurations in a low magnetic field high aspect ratio machine. By focusing our arguments solely on the shape of the toroidal plasma current density profile we discuss the stability of highly shifted equilibria and their robustness to current profile variations that could occur in actual experiments. The evolution of the plasma parameters, as the beta poloidal is increased, is also examined to give a better understanding of the difference in performance between the various regimes

  3. Contrast-enhanced ultra-high-field liver MRI: A feasibility trial

    Energy Technology Data Exchange (ETDEWEB)

    Umutlu, Lale, E-mail: Lale.Umutlu@uk-essen.de [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Bitz, Andreas K.; Maderwald, Stefan; Orzada, Stephan; Kinner, Sonja; Kraff, Oliver; Brote, Irina; Ladd, Susanne C.; Schroeder, Tobias; Forsting, Michael; Antoch, Gerald; Ladd, Mark E. [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Quick, Harald H. [Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany); Institute of Medical Physics, University Nuernberg-Erlangen (Germany); Lauenstein, Thomas C. [Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen (Germany); Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen (Germany)

    2013-05-15

    The aim of this study was to investigate the feasibility of dynamic contrast-enhanced 7 T MRI of the liver using an eight-channel radiofrequency (RF) transmit/receive body-coil. 16 healthy subjects were examined on a 7 T MR system utilizing a custom-built eight-channel RF body-coil suitable for RF-shimming. The following data were acquired: (1) steady state free precession imaging, (2) T2w turbo spin echo imaging, (3) T1w in and opposed-phase imaging, (4) T1w 3D FLASH images pre-contrast and in arterial, portal-venous and venous phase and (5) a fat-saturated pre- and post-contrast 2D FLASH sequence. Visual evaluation of (1) the delineation of liver vasculature, (2) the overall image quality, and (3) artifact presence and consequent image impairment was performed. SNR of the liver parenchyma was measured for the contrast-enhanced 2D and 3D FLASH sequences. For statistical analysis, a Wilcoxon-Rank Test was used. Best delineation of non-enhanced liver vasculature and overall image quality was found for 2D FLASH MRI, with only slight improvement in vessel conspicuity after the application of contrast media. T2-weighted TSE imaging remained strongly impaired, falling short of diagnostic relevance and precluding a clinical application. Our results demonstrate the feasibility and diagnostic potential of dedicated contrast-enhanced 7 T liver MRI as well as the potential for non-contrast-enhanced angiographic application.

  4. Depiction of normal gastrointestinal anatomy with MDCT: Comparison of low- and high-attenuation oral contrast media

    International Nuclear Information System (INIS)

    Erturk, Sukru Mehmet; Mortele, Koenraad J.; Oliva, Maria-Raquel; Ichikawa, Tomoaki; Silverman, Stuart G.; Cantisani, Vito; Pagliara, Elisa; Ros, Pablo R.

    2008-01-01

    Purpose: To compare low- and high-attenuation oral contrast media for depiction of normal gastrointestinal anatomy with multidetector-row computed tomography (MDCT). Materials and methods: A prospective, randomized study of 90 consecutive patients without known or suspected gastrointestinal disease was conducted after the approval of our Institutional Review Board. All patients underwent IV contrast-enhanced abdominal and pelvic CT scans after oral administration of 900 ml of either low- or high-attenuation barium sulphate suspension. Using a five-point scale, two radiologists independently graded distention and wall visualization of stomach, duodenum, jejunum, and ileum. The degree of distention and wall visualization was compared using Mann-Whitney U-test. Results: Duodenal, jejunal and ileal distention (p < 0.05, <0.001, <0.001, respectively) and wall visualization (p < 0.05, <0.01, <0.05, respectively) scores with low-attenuation contrast medium were significantly higher than those with high-attenuation barium sulphate preparation, for reader 1. Duodenal and jejunal wall visualization scores with low-attenuation contrast medium (p < 0.05, <0.01, respectively) were significantly higher than those with high-attenuation contrast medium, for reader 2. Interobserver agreement was fair to good for both distention (κ-range: 0.41-0.74) and wall visualization (κ-range: 0.48-0.71). Conclusion: MDCT with low-attenuation contrast medium provides distention and wall visualization of the GI tract that is equal or better than high-attenuation contrast medium

  5. The Role of Viscosity Contrast on the Plume Structure and Dynamics in High Rayleigh Number Convection

    Science.gov (United States)

    Kr, Sreenivas; Prakash, Vivek N.; Arakeri, Jaywant H.

    2010-11-01

    We study the plume structure in high Rayleigh number convection in the limit of large Prandtl numbers. This regime is relevant in Mantle convection, where the plume dynamics is not well understood due to complex rheology and chemical composition. We use analogue laboratory experiments to mimic mantle convection. Our focus in this paper is to understand the role of viscosity ratio, U, between the plume fluid and the ambient fluid on the structure and dynamics of the plumes. The PLIF technique has been used to visualize the structures of plumes rising from a planar source of compositional buoyancy at different regimes of U (1/300 to 2500). In the near-wall planform when U is one, a well-known dendritic line plume structure is observed. As U increases (U > 1; mantle hot spots), there is a morphological transition from line plumes to discrete spherical blobs, accompanied by an increase in the plume spacing and thickness. In vertical sections, as U increases (U > 1), the plume head shape changes from a mushroom-like structure to a "spherical-blob." When the U is decreased below one, (U<1; subduction regime), the formation of cellular patterns is favoured with sheet plumes. Both velocity and mixing efficiency are maximum when U is one, and decreases for extreme values of U. We quantify the morphological changes, dynamics and mixing variations of the plumes from experiments at different regimes.

  6. Guideline adherence for identification and hydration of high-risk hospital patients for contrast-induced nephropathy.

    NARCIS (Netherlands)

    Schilp, J.; Blok, C. de; Langelaan, M.; Spreeuwenberg, P.; Wagner, C.

    2014-01-01

    Background: Contrast-induced nephropathy (CIN) is a common cause of acute renal failure in hospital patients. To prevent CIN, identification and hydration of high-risk patients is important. Prevention of CIN by hydration of high-risk patients was one of the themes to be implemented in the Dutch

  7. Guideline adherence for identification and hydration of high-risk hospital patients for contrast-induced nephropathy

    NARCIS (Netherlands)

    Schilp, J.; de Blok, C.; Langelaan, M.; Spreeuwenberg, P.; Wagner, C.

    2014-01-01

    Background: Contrast-induced nephropathy (CIN) is a common cause of acute renal failure in hospital patients. To prevent CIN, identification and hydration of high-risk patients is important. Prevention of CIN by hydration of high-risk patients was one of the themes to be implemented in the Dutch

  8. Depiction of normal gastrointestinal anatomy with MDCT: comparison of low- and high-attenuation oral contrast media.

    Science.gov (United States)

    Erturk, Sukru Mehmet; Mortelé, Koenraad J; Oliva, Maria-Raquel; Ichikawa, Tomoaki; Silverman, Stuart G; Cantisani, Vito; Pagliara, Elisa; Ros, Pablo R

    2008-04-01

    To compare low- and high-attenuation oral contrast media for depiction of normal gastrointestinal anatomy with multidetector-row computed tomography (MDCT). A prospective, randomized study of 90 consecutive patients without known or suspected gastrointestinal disease was conducted after the approval of our Institutional Review Board. All patients underwent IV contrast-enhanced abdominal and pelvic CT scans after oral administration of 900 ml of either low- or high-attenuation barium sulphate suspension. Using a five-point scale, two radiologists independently graded distention and wall visualization of stomach, duodenum, jejunum, and ileum. The degree of distention and wall visualization was compared using Mann-Whitney U-test. Duodenal, jejunal and ileal distention (pcontrast medium were significantly higher than those with high-attenuation barium sulphate preparation, for reader 1. Duodenal and jejunal wall visualization scores with low-attenuation contrast medium (pcontrast medium, for reader 2. Interobserver agreement was fair to good for both distention (kappa-range: 0.41-0.74) and wall visualization (kappa-range: 0.48-0.71). MDCT with low-attenuation contrast medium provides distention and wall visualization of the GI tract that is equal or better than high-attenuation contrast medium.

  9. Stochastic parallel gradient descent based adaptive optics used for a high contrast imaging coronagraph

    International Nuclear Information System (INIS)

    Dong Bing; Ren Deqing; Zhang Xi

    2011-01-01

    An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10 -3 to 10 -4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.

  10. High-precision comparison of the antiproton-to-proton charge-to-mass ratio.

    Science.gov (United States)

    Ulmer, S; Smorra, C; Mooser, A; Franke, K; Nagahama, H; Schneider, G; Higuchi, T; Van Gorp, S; Blaum, K; Matsuda, Y; Quint, W; Walz, J; Yamazaki, Y

    2015-08-13

    Invariance under the charge, parity, time-reversal (CPT) transformation is one of the fundamental symmetries of the standard model of particle physics. This CPT invariance implies that the fundamental properties of antiparticles and their matter-conjugates are identical, apart from signs. There is a deep link between CPT invariance and Lorentz symmetry--that is, the laws of nature seem to be invariant under the symmetry transformation of spacetime--although it is model dependent. A number of high-precision CPT and Lorentz invariance tests--using a co-magnetometer, a torsion pendulum and a maser, among others--have been performed, but only a few direct high-precision CPT tests that compare the fundamental properties of matter and antimatter are available. Here we report high-precision cyclotron frequency comparisons of a single antiproton and a negatively charged hydrogen ion (H(-)) carried out in a Penning trap system. From 13,000 frequency measurements we compare the charge-to-mass ratio for the antiproton (q/m)p- to that for the proton (q/m)p and obtain (q/m)p-/(q/m)p − 1 =1(69) × 10(-12). The measurements were performed at cyclotron frequencies of 29.6 megahertz, so our result shows that the CPT theorem holds at the atto-electronvolt scale. Our precision of 69 parts per trillion exceeds the energy resolution of previous antiproton-to-proton mass comparisons as well as the respective figure of merit of the standard model extension by a factor of four. In addition, we give a limit on sidereal variations in the measured ratio of baryonic antimatter, and it sets a new limit on the gravitational anomaly parameter of |α − 1| < 8.7 × 10(-7).

  11. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  12. Iodinated contrast media and patients with high-risk kidneys. Aiming at rational prevention

    International Nuclear Information System (INIS)

    Fontaine, B.; Frouge, C.; Gagey, N.

    1994-01-01

    Acute renal failure induced by iodinated contrast media (CM) accounts for about 10% of all hospital cases of renal failure, especially in azotemic patients. The specific anatomy and physiology of the inner medulla renalis render it particularly sensitive to even a moderate reduction in blood supply. Renal function will be estimated by measuring serum creatinine levels, before and within 72 hours after administration of the iodinated contrast medium. Hypovolaemia, diabetes mellitus-induced microangiopathy, nephrotoxic drugs and especially dehydratation may provoke renal accidents. Proper hydration, choosing a low osmolality medium and adequately spacing exposures to CM are elementary measures to be adopted to prevent renal failure. (authors)

  13. Fundamental research of two-phase flows with high liquid/gas density ratios

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi; Saito, Yasushi; Tobita, Yoshiharu; Konishi, Kensuke; Suzuki, Tohru

    2000-07-01

    In order to analyze the boiling of a fuel-steel mixture pool formed during the core disruptive accident in a fast breeder reactor, it is important to understand the flow characteristics of gas-liquid two-phase pools containing molten reactor materials. Since the liquid/gas density ratio is high, the characteristics of such two-phase flows may differ from those of ordinary flows such as water/air flow. In this study, as a fundamental research of two-phase flows with a high liquid/gas density ratio, the experiments were performed to visualize and measure molten metal (lead-bismuth)/nitrogen gas two-phase flows using a neutron radiography technique. From these experiments, fundamental data such as bubble shapes, void fractions and liquid velocity fields were obtained. In addition, the momentum exchange model of SIMMER-III, which has been developed by JNC, was assessed and improved using the experimental data. In the visualization by neutron radiography, it was found that deformed ellipsoidal bubbles could be seen with smaller gas flux or lower void fractions, and spherical cap bubbles could be seen with larger gas flux or higher void fractions. In addition, a correlation applicable to SIMMER-III was proposed through a comparison between the experimental data and traditional empirical correlations. Furthermore, a visualization experiment using gold-cadmium tracer particles showed that the image processing technique used in the quantification of void fractions is applicable to the measurement of the liquid velocity fields. On the other hand, in the analysis by SIMMER-III, it was confirmed that the original momentum exchange model was appropriate for ellipsoidal bobby flows and that the accuracy of SIMMER-III for cap bubbly flows was much improved with the proposed correlation. Moreover, a new procedure, in which the appropriate drag coefficient could be automatically selected according to bubble shape, was developed. The SIMMER-III code improved through this study can

  14. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  15. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    Science.gov (United States)

    Santavicca, Daniel F.; Adams, Jesse K.; Grant, Lierd E.; McCaughan, Adam N.; Berggren, Karl K.

    2016-06-01

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires as inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.

  16. Acropora interbranch skeleton Sr/Ca ratios: Evaluation of a potential new high-resolution paleothermometer

    Science.gov (United States)

    Sadler, James; Nguyen, Ai D.; Leonard, Nicole D.; Webb, Gregory E.; Nothdurft, Luke D.

    2016-04-01

    The majority of coral geochemistry-based paleoclimate reconstructions in the Indo-Pacific are conducted on selectively cored colonies of massive Porites. This restriction to a single genus may make it difficult to amass the required paleoclimate data for studies that require deep reef coring techniques. Acropora, however, is a highly abundant coral genus in both modern and fossil reef systems and displays potential as a novel climate archive. Here we present a calibration study for Sr/Ca ratios recovered from interbranch skeleton in corymbose Acropora colonies from Heron Reef, southern Great Barrier Reef. Significant intercolony differences in absolute Sr/Ca ratios were normalized by producing anomaly plots of both coral geochemistry and instrumental water temperature records. Weighted linear regression of these anomalies from the lagoon and fore-reef slope provide a sensitivity of -0.05 mmol/mol °C-1, with a correlation coefficient (r2 = 0.65) comparable to those of genera currently used in paleoclimate reconstructions. Reconstructions of lagoon and reef slope mean seasonality in water temperature accurately identify the greater seasonal amplitude observed in the lagoon of Heron Reef. A longer calibration period is, however, required for reliable reconstructions of annual mean water temperatures.

  17. Diagonal Likelihood Ratio Test for Equality of Mean Vectors in High-Dimensional Data

    KAUST Repository

    Hu, Zongliang

    2017-10-27

    We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assumption that the covariance matrices follow a diagonal matrix structure. In comparison with the diagonal Hotelling\\'s tests, our proposed test statistics display some interesting characteristics. In particular, they are a summation of the log-transformed squared t-statistics rather than a direct summation of those components. More importantly, to derive the asymptotic normality of our test statistics under the null and local alternative hypotheses, we do not require the assumption that the covariance matrix follows a diagonal matrix structure. As a consequence, our proposed test methods are very flexible and can be widely applied in practice. Finally, simulation studies and a real data analysis are also conducted to demonstrate the advantages of our likelihood ratio test method.

  18. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    International Nuclear Information System (INIS)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-01

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al 2 O 3 and TiO 2 processes from Me 3 Al/H 2 O and TiCl 4 /H 2 O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes

  19. High aspect ratio 10-nm-scale nanoaperture arrays with template-guided metal dewetting.

    Science.gov (United States)

    Wang, Ying Min; Lu, Liangxing; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Zhang, Yong Wei; Yang, Joel K W

    2015-04-10

    We introduce an approach to fabricate ordered arrays of 10-nm-scale silica-filled apertures in a metal film without etching or liftoff. Using low temperature (dewetting of metal films guided by nano-patterned templates, apertures with aspect ratios up to 5:1 are demonstrated. Apertures form spontaneously during the thermal process without need for further processing. Although the phenomenon of dewetting has been well studied, this is the first demonstration of its use in the fabrication of nanoapertures in a spatially controllable manner. In particular, the achievement of 10-nm length-scale patterning at high aspect ratio with thermal dewetting is unprecedented. By varying the nanotemplate design, we show its strong influence over the positions and sizes of the nanoapertures. In addition, we construct a three-dimensional phase field model of metal dewetting on nano-patterned substrates. The simulation data obtained closely corroborates our experimental results and reveals new insights to template dewetting at the nanoscale. Taken together, this fabrication method and simulation model form a complete toolbox for 10-nm-scale patterning using template-guided dewetting that could be extended to a wide range of material systems and geometries.

  20. The vortex structure and flux creep within superconducting permanent-magnet high aspect-ratio discs

    International Nuclear Information System (INIS)

    Watson, J.H.P.; Younas, I.

    1997-01-01

    Inhomogeneous type II superconducting discs magnetized by an applied field will retain some magnetization when field is switched off so the superconducting disc will behave as a permanent magnet after flux creep has reduced to a low value.This paper examines the superconducting vortex structure within superconducting permanent-magnet high aspect-ratio discs which is consistent with the calculated magnetic field distribution.The discs, with radius R, have the axis along the z-direction and the mid-plane of the disc corresponds to z = 0. These discs with large aspect ratios in the remnant state have a region between radius r l and R where the magnetic field is reversed. Surrounding the line r = r l and z = 0 there is a region where H cl which is in the Meissner state. Near r l the vortex lines are strongly curved. For radii r l vortex lines creep to larger values of r. For radii r > r l vortex lines creep to smaller values of r, meet at r l with vortex lines of opposite sign and form a continuous loop which decreases in size and is finally annihilated in the Meissner region. Flux creep induces lossless currents in the Meissner region. (author)

  1. High precision measurements of carbon isotopic ratio of atmospheric methane using a continuous flow mass spectrometer

    Directory of Open Access Journals (Sweden)

    Shinji Morimoto

    2009-03-01

    Full Text Available A high-precision measurement system for the carbon isotope ratio of atmospheric CH4 (δ^(13CH_4 was developed using a pre-concentration device for CH4 and a gas chromatograph-combustion-isotope ratio mass spectrometer (GC-C-IRMS. The measurement system required 100 mlSTP of an atmospheric air sample, corresponding to approximately 0.18μlSTP of CH_4, to determine the δ^(13CH_4 value with a reproducibility of 0.07‰. Replicated analyses of a CH_4-in-air standard gas during the period from 2002 to 2008 indicated that the value of δ^(13CH_4 measured by this system was consistent within the measurement reproducibility. To evaluate the δ^(13CH_4 measurement system, thus developed, diurnal variations of the atmospheric CH_4 concentration and δ^(13CH_4 were observed in the northern part of the Tokyo metropolitan area. From the relationship between the CH_4 concentration and δ^(13CH_4, dominant sources of the observed CH4 fluctuations were identified.

  2. Fabrication of silicon-embedded low resistance high-aspect ratio planar copper microcoils

    Science.gov (United States)

    Syed Mohammed, Zishan Ali; Puiu, Poenar Daniel; Aditya, Sheel

    2018-01-01

    Low resistance is an important requirement for microcoils which act as a signal receiver to ensure low thermal noise during signal detection. High-aspect ratio (HAR) planar microcoils entrenched in blind silicon trenches have features that make them more attractive than their traditional counterparts employing electroplating through a patterned thick polymer or achieved through silicon vias. However, challenges met in fabrication of such coils have not been discussed in detail until now. This paper reports the realization of such HAR microcoils embedded in Si blind trenches, fabricated with a single lithography step by first etching blind trenches in the silicon substrate with an aspect ratio of almost 3∶1 and then filling them up using copper electroplating. The electroplating was followed by chemical wet etching as a faster way of removing excess copper than traditional chemical mechanical polishing. Electrical resistance was further reduced by annealing the microcoils. The process steps and challenges faced in the realization of such structures are reported here followed by their electrical characterization. The obtained electrical resistances are then compared with those of other similar microcoils embedded in blind vias.

  3. Dual-Frequency Impedance Transformer Using Coupled-Line For Ultra-High Transforming Ratio

    Directory of Open Access Journals (Sweden)

    R. K. Barik

    2017-12-01

    Full Text Available In this paper, a new type of dual-frequency impedance transformer is presented for ultra-high transforming ratio. The proposed configuration consists of parallel coupled-line, series transmission lines and short-ended stubs. The even and odd-mode analysis is applied to obtain the design equations and hence to provide an accurate solution. Three examples of the dual-frequency transformer with load impedance of 500, 1000 and 1500 Ω are designed to study the matching capability and bandwidth property. To prove the frequency agility of the proposed network, three prototypes of dual-frequency impedance transformer with transforming ratio of 10, 20 and 30 are fabricated and tested. The measured return loss is greater than 15 dB at two operating frequencies for all the prototypes. Also, the bandwidth is more than 60 MHz at each frequency band for all the prototypes. The measured return loss is found in good agreement with the circuit and full-wave simulations.

  4. Electrochemical Deposition of Conformal and Functional Layers on High Aspect Ratio Silicon Micro/Nanowires.

    Science.gov (United States)

    Ozel, Tuncay; Zhang, Benjamin A; Gao, Ruixuan; Day, Robert W; Lieber, Charles M; Nocera, Daniel G

    2017-07-12

    Development of new synthetic methods for the modification of nanostructures has accelerated materials design advances to furnish complex architectures. Structures based on one-dimensional (1D) silicon (Si) structures synthesized using top-down and bottom-up methods are especially prominent for diverse applications in chemistry, physics, and medicine. Yet further elaboration of these structures with distinct metal-based and polymeric materials, which could open up new opportunities, has been difficult. We present a general electrochemical method for the deposition of conformal layers of various materials onto high aspect ratio Si micro- and nanowire arrays. The electrochemical deposition of a library of coaxial layers comprising metals, metal oxides, and organic/inorganic semiconductors demonstrate the materials generality of the synthesis technique. Depositions may be performed on wire arrays with varying diameter (70 nm to 4 μm), pitch (5 μ to 15 μ), aspect ratio (4:1 to 75:1), shape (cylindrical, conical, hourglass), resistivity (0.001-0.01 to 1-10 ohm/cm 2 ), and substrate orientation. Anisotropic physical etching of wires with one or more coaxial shells yields 1D structures with exposed tips that can be further site-specifically modified by an electrochemical deposition approach. The electrochemical deposition methodology described herein features a wafer-scale synthesis platform for the preparation of multifunctional nanoscale devices based on a 1D Si substrate.

  5. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes.

    Directory of Open Access Journals (Sweden)

    Octavio M Palacios-Gimenez

    Full Text Available A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂ = 29,X0 (Gryllus assimilis and 2n = 9, neo-X1X2Y (Eneoptera surinamensis. The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the

  6. Tandem-pulsed acousto-optics: an analytical framework of modulated high-contrast speckle patterns

    NARCIS (Netherlands)

    Resink, Steffen; Steenbergen, Wiendelt

    2015-01-01

    Recently we presented acousto-optic (AO) probing of scattering media using addition or subtraction of speckle patterns due to tandem nanosecond pulses. Here we present a theoretical framework for ideal (polarized, noise-free) speckle patterns with unity contrast that links ultrasound-induced optical

  7. Contrasting above- and belowground organic matter decomposition and carbon and nitrogen dynamics in response to warming in High Arctic tundra.

    Science.gov (United States)

    Blok, Daan; Faucherre, Samuel; Banyasz, Imre; Rinnan, Riikka; Michelsen, Anders; Elberling, Bo

    2017-12-13

    Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability. © 2017 John

  8. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    Science.gov (United States)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  9. a High-Precision Branching-Ratio Measurement for the Superallowed β+ Emitter 74Rb

    Science.gov (United States)

    Dunlop, R.; Chagnon-Lessard, S.; Finlay, P.; Garrett, P. E.; Hadinia, B.; Leach, K. G.; Svensson, C. E.; Wong, J.; Ball, G.; Garnsworthy, A. B.; Glister, J.; Hackman, G.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Leslie, J. R.; Andreoiu, C.; Chester, A.; Cross, D.; Starosta, K.; Yates, S. W.; Zganjar, E. F.

    2013-03-01

    Precision measurements of superallowed Fermi beta decay allow for tests of the Cabibbo-Kobayashi-Maskawa matrix (CKM) unitarity, the conserved vector current hypothesis, and the magnitude of isospin-symmetry-breaking effects in nuclei. A high-precision measurement of the branching ratio for the β+ decay of 74Rb has been performed at the Isotope Separator and ACcelerator (ISAC) facility at TRIUMF. The 8π spectrometer, an array of 20 close-packed HPGe detectors, was used to detect gamma rays emitted following the decay of 74Rb. PACES, an array of 5 Si(Li) detectors, was used to detect emitted conversion electrons, while SCEPTAR, an array of plastic scintillators, was used to detect emitted beta particles. A total of 51γ rays have been identified following the decay of 21 excited states in the daughter nucleus 74Kr.

  10. Scaling model for high-aspect-ratio microballoon direct-drive implosions at short laser wavelengths

    International Nuclear Information System (INIS)

    Schirmann, D.; Juraszek, D.; Lane, S.M.; Campbell, E.M.

    1992-01-01

    A scaling model for hot spherical ablative implosions in direct-drive mode is presented. The model results have been compared with experiments from LLE, ILE, and LLNL. Reduction of the neutron yield due to illumination nonuniformities is taken into account by the assumption that the neutron emission is cut off when the gas shock wave reflected off the center meets the incoming pusher, i.e., at a time when the probability of shell breakup is greatly enhanced. The main advantage of this semiempirical scaling model is that it elucidates the principal features of these simple implosions and permits one to estimate very quickly the performance of a high-aspect-ratio direct-drive target illuminated by short-wavelength laser light. (Author)

  11. Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing

    Science.gov (United States)

    Perry, B., III

    1978-01-01

    The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.

  12. Propagation of Elastic Waves in a One-Dimensional High Aspect Ratio Nanoridge Phononic Crystal

    Directory of Open Access Journals (Sweden)

    Abdellatif Gueddida

    2018-05-01

    Full Text Available We investigate the propagation of elastic waves in a one-dimensional (1D phononic crystal constituted by high aspect ratio epoxy nanoridges that have been deposited at the surface of a glass substrate. With the help of the finite element method (FEM, we calculate the dispersion curves of the modes localized at the surface for propagation both parallel and perpendicular to the nanoridges. When the direction of the wave is parallel to the nanoridges, we find that the vibrational states coincide with the Lamb modes of an infinite plate that correspond to one nanoridge. When the direction of wave propagation is perpendicular to the 1D nanoridges, the localized modes inside the nanoridges give rise to flat branches in the band structure that interact with the surface Rayleigh mode, and possibly open narrow band gaps. Filling the nanoridge structure with a viscous liquid produces new modes that propagate along the 1D finite height multilayer array.

  13. Facile Route to Vertically Aligned High-Aspect Ratio Block Copolymer Films via Dynamic Zone Annealing

    Science.gov (United States)

    Singh, Gurpreet; Kulkarni, Manish; Yager, Kevin; Smilgies, Detlef; Bucknall, David; Karim, Alamgir

    2012-02-01

    Directed assembly of block copolymers (BCP) can be used to fabricate a diversity of nanostructures useful for nanotech applications. The ability to vertically orient etchable high aspect ratio (˜30) ordered BCP domains on flexible substrates via continuous processing methods are particularly attractive for nanomanufacturing. We apply sharp dynamic cold zone annealing (CZA-S) to create etchable, and predominantly vertically oriented 30nm cylindrical domains in 1 μm thick poly(styrene-b-methylmethacrylate) films on low thermal conductivity rigid (quartz) and flexible (PDMS & Kapton) substrates. Under similar static conditions, temporally stable vertical cylinders form within a narrow zone above a critical temperature gradient. Primary ordering mechanism of CZA-S involves sweeping this vertically orienting zone created at maximum thermal gradient. An optimal speed is needed since the process competes with preferential surface wetting dynamics that favors parallel orientation. GISAXS of etched BCP films confirms internal morphology.

  14. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei

    2013-04-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  15. Surface tension-induced high aspect-ratio PDMS micropillars with concave and convex lens tips

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Yi, Ying; Foulds, Ian G.

    2013-01-01

    This paper reports a novel method for the fabrication of 3-dimensional (3D) Polydimethylsiloxane (PDMS) micropillars with concave and convex lens tips in a one-step molding process, using a CO2 laser-machined Poly(methyl methacrylate) (PMMA) mold with through holes. The PDMS micropillars are 4 mm high and have an aspect ratio of 251. The micropillars are formed by capillary force drawing up PDMS into the through hole mold. The concave and convex lens tips of the PDMS cylindrical micropillars are induced by surface tension and are controllable by changing the surface wetting properties of the through holes in the PMMA mold. This technique eliminates the requirements of expensive and complicated facilities to prepare a 3D mold, and it provides a simple and rapid method to fabricate 3D PDMS micropillars with controllable dimensions and tip shapes. © 2013 IEEE.

  16. On beam quality and stopping power ratios for high-energy x-rays

    International Nuclear Information System (INIS)

    Johnsson, S.A.; Ceberg, C.P.; Knoeoes, T.; Nilsson, P.

    2000-01-01

    The aim of this work is to quantitatively compare two commonly used beam quality indices, TPR(20/10) and %dd(10) x , with respect to their ability to predict stopping power ratios (water to air), s w,air , for high-energy x-rays. In particular, effects due to a varied amount of filtration of the photon beam will be studied. A new method for characterizing beam quality is also presented, where the information we strive to obtain is the moments of the spectral distribution. We will show how the moments enter into a general description of the transmission curve and that it is possible to correlate the moments to s w,air with a unique and simple relationship. Comparisons with TPR(20/10) and %dd(10) x show that the moments are well suited for beam quality specification in terms of choosing the correct s w,air . (author)

  17. Stratified premedication strategy for the prevention of contrast media hypersensitivity in high-risk patients.

    Science.gov (United States)

    Lee, Suh-Young; Yang, Min Suk; Choi, Young-Hoon; Park, Chang Min; Park, Heung-Woo; Cho, Sang Heon; Kang, Hye-Ryun

    2017-03-01

    Although the severity of hypersensitivity reactions to iodinated contrast media varies, it is well correlated with the severity of recurrent reactions; however, prophylaxis protocols are not severity-stratified. To assess the outcomes of tailored prophylaxis according to the severity of hypersensitivity reactions to iodinated contrast media. Our premedication protocols were stratified based on the severity of previous reactions: (1) 4 mg of chlorpheniramine for mild reactions, (2) adding 40 mg of methylprednisolone for moderate reactions, and (3) adding multiple doses of 40 mg of methylprednisolone for severe index reactions. Cases of reexposure in patients with a history of hypersensitivity reactions were routinely monitored and mandatorily recorded. Among a total of 850 patients who underwent enhanced computed tomography after severity-tailored prophylaxis, breakthrough reactions occurred in 17.1%, but most breakthrough reactions (89.0%) were mild and did not require medical treatment. Additional corticosteroid use did not reduce the breakthrough reaction rate in cases with a mild index reaction (16.8% vs 17.2%, P = .70). However, underpremedication with a single dose of corticosteroid revealed significantly higher rates of breakthrough reaction than did double doses of corticosteroid in cases with a severe index reaction (55.6% vs 17.4%, P = .02). Changing the iodinated contrast media resulted in an additional reduction of the breakthrough reaction rate overall (14.9% vs 32.1%, P = .001). In a total severity-based stratified prophylaxis regimens and changing iodinated contrast media can be considered in patients with a history of previous hypersensitivity reaction to iodinated contrast media to reduce the risk of breakthrough reactions. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Effect of microbubble contrast agent during high intensity focused ultrasound ablation on rabbit liver in vivo

    International Nuclear Information System (INIS)

    Chung, Dong Jin; Cho, Se Hyun; Lee, Jae Mun; Hahn, Seong-Tae

    2012-01-01

    Objective: To evaluate the effect of a microbubble contrast agent (SonoVue) during HIFU ablation of a rabbit liver. Materials and methods: HIFU ablations (intensity of 400 W/cm 2 for 4 s, six times, with a 5 s interval between exposures) were performed upon 16 in vivo rabbit livers before and after intravenous injection of a microbubble contrast agent (0.8 ml). A Wilcoxon signed rank test was used to compare mean ablation volume and time required to tissue ablation on real-time US. Shape of ablation and pattern of coagulative necrosis were analyzed by Fisher's exact test. Results: The volume of coagulative necrosis was significantly larger in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). Also, time to reach ablation was shorter in the combination microbubble and HIFU group than in the HIFU alone group (P < 0.05). When analyzing the shape of tissue ablation, a pyramidal shape was more prevalently in the HIFU alone group compared to the combination microbubble and HIFU group (P < 0.05). Following an analysis of the pattern of coagulative necrosis, non-cavitary necrosis was found in ten and cavitary necrosis in six of the samples in the combination microbubble and HIFU group. Conversely, non-cavitary necrosis occurred in all 16 samples in the HIFU alone group (P < 0.05). Conclusion: HIFU of in vivo rabbit livers with a microbubble contrast agent produced larger zones of ablation and more cavitary tissue necrosis than without the use of a microbubble contrast agent. Microbubble contrast agents may be useful in tissue ablation by enhancing the treatment effect of HIFU.

  19. Bacterial nitrogen fixation in sand bioreactors treating winery wastewater with a high carbon to nitrogen ratio.

    Science.gov (United States)

    Welz, Pamela J; Ramond, Jean-Baptiste; Braun, Lorenz; Vikram, Surendra; Le Roes-Hill, Marilize

    2018-02-01

    Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Second-to-fourth digit ratio predicts success among high-frequency financial traders.

    Science.gov (United States)

    Coates, John M; Gurnell, Mark; Rustichini, Aldo

    2009-01-13

    Prenatal androgens have important organizing effects on brain development and future behavior. The second-to-fourth digit length ratio (2D:4D) has been proposed as a marker of these prenatal androgen effects, a relatively longer fourth finger indicating higher prenatal androgen exposure. 2D:4D has been shown to predict success in highly competitive sports. Yet, little is known about the effects of prenatal androgens on an economically influential class of competitive risk taking-trading in the financial world. Here, we report the findings of a study conducted in the City of London in which we sampled 2D:4D from a group of male traders engaged in what is variously called "noise" or "high-frequency" trading. We found that 2D:4D predicted the traders' long-term profitability as well as the number of years they remained in the business. 2D:4D also predicted the sensitivity of their profitability to increases both in circulating testosterone and in market volatility. Our results suggest that prenatal androgens increase risk preferences and promote more rapid visuomotor scanning and physical reflexes. The success and longevity of traders exposed to high levels of prenatal androgens further suggests that financial markets may select for biological traits rather than rational expectations.

  1. Numerical study on increasing mass flow ratio by energy deposition of high frequency pulsed laser

    International Nuclear Information System (INIS)

    Wang Diankai; Hong Yanji; Li Qian

    2013-01-01

    The mass flow ratio (MFR) of air breathing ramjet inlet would be decreased, when the Mach number is lower than the designed value. High frequency pulsed laser energy was deposited upstream of the cowl lip to reflect the stream so as to increase the MFR. When the Mach number of the flow was 5.0, and the static pressure and temperature of the flow were 2 551.6 Pa and 116.7 K, respectively, two-dimensional non-stationary compressible RANS equations were solved with upwind format to study the mechanisms of increasing MFR by high frequency pulsed laser energy deposition. The laser deposition frequency was 100 kHz and the average power was 500 W. The crossing point of the first forebody oblique shock and extension line of cowl lip was selected as the expected point. Then the deposition position was optimized by searching near the expected point. The results indicate that with the optimization of laser energy deposition position, the MFR would be increased from 63% to 97%. The potential value of increasing MFR by high frequency pulsed laser energy deposition was proved. The method for selection of the energy deposition position was also presented. (authors)

  2. Short term high dose atorvastatin for the prevention of contrast-induced nephropathy in patients undergoing computed tomography angiography

    Directory of Open Access Journals (Sweden)

    Hamid Sanei

    2014-09-01

    Full Text Available BACKGROUND: Statins are shown effective by some studies in preventing contrast-induced nephropathy (CIN. We evaluated the effectiveness of atorvastatin in the prevention of CIN in computed tomography angiography (CTA candidates. METHODS: This study was conducted on patients referring for elective CTA with normal renal function. Patients received atorvastatin (80 mg/day or placebo from 24 h before to 48 h after administration of the contrast material. Serum creatinine was measured before and 48 h after contrast material injection. CIN was defined as an increase in serum creatinine level of ≥ 0.5 mg/dl or ≥ 25% of the baseline creatinine. RESULTS: A total of 236 patients completed the study; 115 atorvastatin, 121 placebo, mean age = 58.40 ± 9.80 year, 68.6% male. Serum creatinine increased after contrast material injection in both the atorvastatin (1.00 ± 0.16-1.02 ± 0.15 mg/dl, P = 0.017 and placebo groups (1.03 ± 0.17-1.08 ± 0.18 mg/dl, P < 0.001. Controlling for age, gender, comorbidities, drug history, and baseline serum creatinine level, patients who received atorvastatin experienced less increase in serum creatinine after contrast material injection (beta = 0.127, P = 0.034. However, there was no difference between the atorvastatin and placebo groups in the incidence of CIN (4.3 vs. 5.0%, P = 0.535. CONCLUSION: In patients undergoing CTA, a short-term treatment with high dose atorvastatin is effective in preventing contrast-induced renal dysfunction, in terms of less increase in serum creatinine level after contrast material injection. Further trials including larger sample of patients and longer follow-ups are warranted.   Keywords: Kidney Diseases, Multidetector Computed Tomography, Contrast Media, Hydroxymethylglutaryl-CoA Reductase Inhibitors, Atorvastatin 

  3. High-resolution short-exposure small-animal laboratory x-ray phase-contrast tomography

    Science.gov (United States)

    Larsson, Daniel H.; Vågberg, William; Yaroshenko, Andre; Yildirim, Ali Önder; Hertz, Hans M.

    2016-12-01

    X-ray computed tomography of small animals and their organs is an essential tool in basic and preclinical biomedical research. In both phase-contrast and absorption tomography high spatial resolution and short exposure times are of key importance. However, the observable spatial resolutions and achievable exposure times are presently limited by system parameters rather than more fundamental constraints like, e.g., dose. Here we demonstrate laboratory tomography with few-ten μm spatial resolution and few-minute exposure time at an acceptable dose for small-animal imaging, both with absorption contrast and phase contrast. The method relies on a magnifying imaging scheme in combination with a high-power small-spot liquid-metal-jet electron-impact source. The tomographic imaging is demonstrated on intact mouse, phantoms and excised lungs, both healthy and with pulmonary emphysema.

  4. Evaluation of the acute adverse reaction of contrast medium with high and moderate iodine concentration in patients undergoing computed tomography

    International Nuclear Information System (INIS)

    Nagamoto, Masashi; Gomi, Tatsuya; Terada, Hitoshi; Terada, Shigehiko; Kohda, Eiichi

    2006-01-01

    The aim of this prospective study was to evaluate and compare acute adverse reactions between contrast medium containing moderate and high concentrations of iodine in patients undergoing computed tomography (CT). A total of 945 patients undergoing enhanced CT were randomly assigned to receive one of two doses of contrast medium. We then prospectively investigated the incidence of adverse reactions. Iopamidol was used as the contrast medium, with a high concentration of 370 mgI/ml and a moderate concentration of 300 mgI/ml. The frequency of adverse reactions, such as pain at the injection site and heat sensation, were determined. Acute adverse reactions were observed in 2.4% (11/458) of the moderate-concentration group compared to 3.11% (15/482) of the high-concentration group; there was no significant difference in incidence between the two groups. Most adverse reactions were mild, and there was no significant difference in severity. One patient in the high-concentration group was seen to have a moderate adverse reaction. No correlation existed between the incidence of adverse reactions and patient characteristics such as sex, age, weight, flow amount, and flow rate. The incidence of pain was not significantly different between the two groups. In contrast, the incidence of heat sensation was significantly higher in the high-concentration group. The incidence and severity of acute adverse reactions were not significantly different between the two groups, and there were no severe adverse reactions in either group. (author)

  5. High-resolution blood-pool-contrast-enhanced MR angiography in glioblastoma: tumor-associated neovascularization as a biomarker for patient survival. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Puig, Josep; Blasco, Gerard; Remollo, Sebastian; Hernandez, David; Pedraza, Salvador [Hospital Universitari Dr Josep Trueta, Research Unit of Diagnostic Imaging Institute (IDI), Department of Radiology [Girona Biomedical Research Institute] IDIBGI, Girona (Spain); Daunis-i-Estadella, Josep; Mateu, Gloria [University of Girona, Department of Computer Science, Applied Mathematics and Statistics, Girona (Spain); Alberich-Bayarri, Angel [La Fe Polytechnics and University Hospital, Biomedical Imaging Research Group (GIBI230), La Fe Health Research Institute, Valencia (Spain); Essig, Marco [University of Manitoba, Department of Radiology, Winnipeg (Canada); Jain, Rajan [NYU School of Medicine, Division of Neuroradiology, Department of Radiology, New York, NY (United States); Puigdemont, Montserrat [Hospital Universitari Dr Josep Trueta, Catalan Institute of Oncology (ICO), Hospital Cancer Registry, Girona (Spain); Sanchez-Gonzalez, Javier [Philips Healthcare Iberica, Madrid (Spain); Wintermark, Max [Stanford University, Department of Radiology, Neuroradiology Division, Palo Alto, CA (United States)

    2016-01-15

    The objective of the study was to determine whether tumor-associated neovascularization on high-resolution gadofosveset-enhanced magnetic resonance angiography (MRA) is a useful biomarker for predicting survival in patients with newly diagnosed glioblastomas. Before treatment, 35 patients (25 men; mean age, 64 ± 14 years) with glioblastoma underwent MRI including first-pass dynamic susceptibility contrast (DSC) perfusion and post-contrast T1WI sequences with gadobutrol (0.1 mmol/kg) and, 48 h later, high-resolution MRA with gadofosveset (0.03 mmol/kg). Volumes of interest for contrast-enhancing lesion (CEL), non-CEL, and contralateral normal-appearing white matter were obtained, and DSC perfusion and DWI parameters were evaluated. Prognostic factors were assessed by Kaplan-Meier survival and Cox proportional hazards model. Eighteen (51.42 %) glioblastomas were hypervascular on high-resolution MRA. Hypervascular glioblastomas were associated with higher CEL volume and lower Karnofsky score. Median survival rates for patients with hypovascular and hypervascular glioblastomas treated with surgery, radiotherapy, and chemotherapy were 15 and 9.75 months, respectively (P < 0.001). Tumor-associated neovascularization was the best predictor of survival at 5.25 months (AUC = 0.794, 81.2 % sensitivity, 77.8 % specificity, 76.5 % positive predictive value, 82.4 % negative predictive value) and yielded the highest hazard ratio (P < 0.001). Tumor-associated neovascularization detected on high-resolution blood-pool-contrast-enhanced MRA of newly diagnosed glioblastoma seems to be a useful biomarker that correlates with worse survival. (orig.)

  6. High ratio of triglycerides to hdl-cholesterol predicts extensive coronary disease

    Directory of Open Access Journals (Sweden)

    Protasio Lemos da Luz

    2008-01-01

    Full Text Available An abnormal ratio of triglycerides to HDL-cholesterol (TG/HDL-c indicates an atherogenic lipid profile and a risk for the development of coronary disease. OBJECTIVE: To investigate the association between lipid levels, specifically TG/HDL-c, and the extent of coronary disease. METHODS: High-risk patients (n = 374 submitted for coronary angiography had their lipid variables measured and coronary disease extent scored by the Friesinger index. RESULTS: The subjects consisted of 220 males and 154 females, age 57.2 ± 11.1 years, with total cholesterol of 210± 50.3 mg/dL, triglycerides of 173.8 ± 169.8 mg/dL, HDL-cholesterol (HDL-c of 40.1 ± 12.8 mg/dL, LDL-cholesterol (LDL-c of 137.3 ± 46.2 mg/dL, TG/HDL-c of 5.1 ± 5.3, and a Friesinger index of 6.6 ± 4.7. The relationship between the extent of coronary disease (dichotomized by a Friesenger index of 5 and lipid levels (normal vs. abnormal was statistically significant for the following: triglycerides, odds ratio of 2.02 (1.31-3.1; p = 0.0018; HDL-c, odds ratio of 2.21 (1.42-3.43; p = 0.0005; and TG/HDL-c, odds ratio of 2.01(1.30-3.09; p = 0.0018. However, the relationship was not significant between extent of coronary disease and total cholesterol [1.25 (0.82-1.91; p = 0.33] or LDL-c [1.47 (0.96-2.25; p = 0.0842]. The chi-square for linear trends for Friesinger > 4 and lipid quartiles was statistically significant for triglycerides (p = 0.0017, HDL-c (p = 0.0001, and TG/HDL-c (p = 0.0018, but not for total cholesterol (p = 0.393 or LDL-c (p = 0.0568. The multivariate analysis by logistic regression OR gave 1.3 ± 0.79 (p = .0001 for TG/HDL-c, 0.779 ± 0.074 (p = .0001 for HDL-c, and 1.234 ± 0.097 (p = 0.03 for LDL. Analysis of receiver operating characteristic curves showed that only TG/HDL-c and HDL-c were useful for detecting extensive coronary disease, with the former more strongly associated with disease. CONCLUSIONS: Although some lipid variables were associated with the extent of

  7. Shadow Detection from Very High Resoluton Satellite Image Using Grabcut Segmentation and Ratio-Band Algorithms

    Science.gov (United States)

    Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.

    2015-03-01

    Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of

  8. SHADOW DETECTION FROM VERY HIGH RESOLUTON SATELLITE IMAGE USING GRABCUT SEGMENTATION AND RATIO-BAND ALGORITHMS

    Directory of Open Access Journals (Sweden)

    N. M. S. M. Kadhim

    2015-03-01

    Full Text Available Very-High-Resolution (VHR satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour, the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates

  9. A small perturbation based optimization approach for the frequency placement of high aspect ratio wings

    Science.gov (United States)

    Goltsch, Mandy

    Design denotes the transformation of an identified need to its physical embodiment in a traditionally iterative approach of trial and error. Conceptual design plays a prominent role but an almost infinite number of possible solutions at the outset of design necessitates fast evaluations. The corresponding practice of empirical equations and low fidelity analyses becomes obsolete in the light of novel concepts. Ever increasing system complexity and resource scarcity mandate new approaches to adequately capture system characteristics. Contemporary concerns in atmospheric science and homeland security created an operational need for unconventional configurations. Unmanned long endurance flight at high altitudes offers a unique showcase for the exploration of new design spaces and the incidental deficit of conceptual modeling and simulation capabilities. Structural and aerodynamic performance requirements necessitate light weight materials and high aspect ratio wings resulting in distinct structural and aeroelastic response characteristics that stand in close correlation with natural vibration modes. The present research effort evolves around the development of an efficient and accurate optimization algorithm for high aspect ratio wings subject to natural frequency constraints. Foundational corner stones are beam dimensional reduction and modal perturbation redesign. Local and global analyses inherent to the former suggest corresponding levels of local and global optimization. The present approach departs from this suggestion. It introduces local level surrogate models to capacitate a methodology that consists of multi level analyses feeding into a single level optimization. The innovative heart of the new algorithm originates in small perturbation theory. A sequence of small perturbation solutions allows the optimizer to make incremental movements within the design space. It enables a directed search that is free of costly gradients. System matrices are decomposed

  10. High-resolution quantification of atmospheric CO2 mixing ratios in the Greater Toronto Area, Canada

    Science.gov (United States)

    Pugliese, Stephanie C.; Murphy, Jennifer G.; Vogel, Felix R.; Moran, Michael D.; Zhang, Junhua; Zheng, Qiong; Stroud, Craig A.; Ren, Shuzhan; Worthy, Douglas; Broquet, Gregoire

    2018-03-01

    Many stakeholders are seeking methods to reduce carbon dioxide (CO2) emissions in urban areas, but reliable, high-resolution inventories are required to guide these efforts. We present the development of a high-resolution CO2 inventory available for the Greater Toronto Area and surrounding region in Southern Ontario, Canada (area of ˜ 2.8 × 105 km2, 26 % of the province of Ontario). The new SOCE (Southern Ontario CO2 Emissions) inventory is available at the 2.5 × 2.5 km spatial and hourly temporal resolution and characterizes emissions from seven sectors: area, residential natural-gas combustion, commercial natural-gas combustion, point, marine, on-road, and off-road. To assess the accuracy of the SOCE inventory, we developed an observation-model framework using the GEM-MACH chemistry-transport model run on a high-resolution grid with 2.5 km grid spacing coupled to the Fossil Fuel Data Assimilation System (FFDAS) v2 inventories for anthropogenic CO2 emissions and the European Centre for Medium-Range Weather Forecasts (ECMWF) land carbon model C-TESSEL for biogenic fluxes. A run using FFDAS for the Southern Ontario region was compared to a run in which its emissions were replaced by the SOCE inventory. Simulated CO2 mixing ratios were compared against in situ measurements made at four sites in Southern Ontario - Downsview, Hanlan's Point, Egbert and Turkey Point - in 3 winter months, January-March 2016. Model simulations had better agreement with measurements when using the SOCE inventory emissions versus other inventories, quantified using a variety of statistics such as correlation coefficient, root-mean-square error, and mean bias. Furthermore, when run with the SOCE inventory, the model had improved ability to capture the typical diurnal pattern of CO2 mixing ratios, particularly at the Downsview, Hanlan's Point, and Egbert sites. In addition to improved model-measurement agreement, the SOCE inventory offers a sectoral breakdown of emissions

  11. High-resolution quantification of atmospheric CO2 mixing ratios in the Greater Toronto Area, Canada

    Directory of Open Access Journals (Sweden)

    S. C. Pugliese

    2018-03-01

    Full Text Available Many stakeholders are seeking methods to reduce carbon dioxide (CO2 emissions in urban areas, but reliable, high-resolution inventories are required to guide these efforts. We present the development of a high-resolution CO2 inventory available for the Greater Toronto Area and surrounding region in Southern Ontario, Canada (area of  ∼ 2.8 × 105 km2, 26 % of the province of Ontario. The new SOCE (Southern Ontario CO2 Emissions inventory is available at the 2.5 × 2.5 km spatial and hourly temporal resolution and characterizes emissions from seven sectors: area, residential natural-gas combustion, commercial natural-gas combustion, point, marine, on-road, and off-road. To assess the accuracy of the SOCE inventory, we developed an observation–model framework using the GEM-MACH chemistry–transport model run on a high-resolution grid with 2.5 km grid spacing coupled to the Fossil Fuel Data Assimilation System (FFDAS v2 inventories for anthropogenic CO2 emissions and the European Centre for Medium-Range Weather Forecasts (ECMWF land carbon model C-TESSEL for biogenic fluxes. A run using FFDAS for the Southern Ontario region was compared to a run in which its emissions were replaced by the SOCE inventory. Simulated CO2 mixing ratios were compared against in situ measurements made at four sites in Southern Ontario – Downsview, Hanlan's Point, Egbert and Turkey Point – in 3 winter months, January–March 2016. Model simulations had better agreement with measurements when using the SOCE inventory emissions versus other inventories, quantified using a variety of statistics such as correlation coefficient, root-mean-square error, and mean bias. Furthermore, when run with the SOCE inventory, the model had improved ability to capture the typical diurnal pattern of CO2 mixing ratios, particularly at the Downsview, Hanlan's Point, and Egbert sites. In addition to improved model–measurement agreement, the SOCE inventory offers a

  12. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using

  13. Enhancement tuning and control for high dynamic range images in multi-scale locally adaptive contrast enhancement algorithms

    NARCIS (Netherlands)

    Cvetkovic, S.D.; Schirris, J.; With, de P.H.N.

    2009-01-01

    For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are

  14. Anisotropic photoconductivity and current deflection induced in Bi12SiO20 by high contrast interference pattern

    DEFF Research Database (Denmark)

    Kukhtarev, N.V.; Lyuksyutov, S; Buchhave, Preben

    1996-01-01

    We have predicted and observed an anisotropic photocurrent induced in the cubic crystal Bi/sub 12/SiO/sub 20/ by a high-contrast interference pattern. The transverse current detected when the interference pattern is tilted is caused by deflection of the direct current generated by an external...

  15. 80-nm-tunable high-index-contrast subwavelength grating long-wavelength VCSEL: Proposal and numerical simulations

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper; Sirbu, Alexei

    2010-01-01

    A widely-tunable single-mode long wavelength vertical-cavity surface-emitting laser structure employing a MEMStunable high-index-contrast subwavelength grating (HCG) is suggested and numerically investigated. A very large 80- nm linear tuning range was obtained as the HCG was actuated by -220 to ...

  16. Dimensional measurement of micro parts with high aspect ratio in HIT-UOI

    Science.gov (United States)

    Dang, Hong; Cui, Jiwen; Feng, Kunpeng; Li, Junying; Zhao, Shiyuan; Zhang, Haoran; Tan, Jiubin

    2016-11-01

    Micro parts with high aspect ratios have been widely used in different fields including aerospace and defense industries, while the dimensional measurement of these micro parts becomes a challenge in the field of precision measurement and instrument. To deal with this contradiction, several probes for the micro parts precision measurement have been proposed by researchers in Center of Ultra-precision Optoelectronic Instrument (UOI), Harbin Institute of Technology (HIT). In this paper, optical fiber probes with structures of spherical coupling(SC) with double optical fibers, micro focal-length collimation (MFL-collimation) and fiber Bragg grating (FBG) are described in detail. After introducing the sensing principles, both advantages and disadvantages of these probes are analyzed respectively. In order to improve the performances of these probes, several approaches are proposed. A two-dimensional orthogonal path arrangement is propounded to enhance the dimensional measurement ability of MFL-collimation probes, while a high resolution and response speed interrogation method based on differential method is used to improve the accuracy and dynamic characteristics of the FBG probes. The experiments for these special structural fiber probes are given with a focus on the characteristics of these probes, and engineering applications will also be presented to prove the availability of them. In order to improve the accuracy and the instantaneity of the engineering applications, several techniques are used in probe integration. The effectiveness of these fiber probes were therefore verified through both the analysis and experiments.

  17. Progress in the fabrication of high aspect ratio zone plates by soft x-ray lithography

    International Nuclear Information System (INIS)

    Divan, R.; Mancini, D. C.; Moldovan, N. A.; Lai, B.; Assoufid, L.; Leondard, Q.; Cerrina, F.

    2002-01-01

    Fabrication of Fresnel zone plates for the hard x-ray spectral region combines the challenge of high lateral resolution (∼100 nm) with a large thickness requirement for the phase-shifting material (0.5-3 (micro)m). For achieving a high resolution, the initial mask was fabricated by e-beam lithography and gold electroforming. To prevent the collapse of the structures between the developing and electroforming processes, drying was completely eliminated. Fabrication errors, such as nonuniform gold electroplating and collapse of structures, were systematically analyzed and largely eliminated. We optimized the exposure and developing processes for 950k and 2200k polymethylmethacrylate of different thicknesses and various adhesion promoters. We discuss the effects of these fabrication steps on the zone plate's resolution and aspect ratio. Fresnel zone plates with 110 nm outermost zone width, 150 (micro)m diameter, and 1.3 (micro)m gold thickness were fabricated. Preliminary evaluation of the FZPs was done by scanning electron microscopy and atomic force microscopy. The FZP focusing performance was characterized at the Advanced Photon Source at Argonne National Laboratory

  18. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  19. High-capacity transport, floor area ratio and its relationship with urbanization of metropolitan areas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho da Costa, B.L. de; Carvalho da Costa, F.B. de

    2016-07-01

    Most of the world’s population lives in urban areas (54%). Near 42% of the global urban population live in cities with more than 1 million inhabitants, where problems associated with urban sprawl such as informal settlement, social-economic changes, environmental degradation and deficient high-capacity transport (HCT) systems are common. Meanwhile, urbanization and its associated transportation infrastructure define the relationship between city and countryside, between the city’s inner core and the periphery, between the citizen and his right to move. This article discusses and presents an overview about the relationship between the planning and extension of HCT systems and urban planning, (in the figure of the floor-area ratio - FAR- prescribed in regulations). The methodological approach consists of drawing a conceptual framework and studying 33 different cities of metropolitan areas on five continents. It’s noticed that areas in cities with a high construction potential but with an insufficient HCT negatively influence in urban mobility and hence the right to the city. We consider right to the city the various social and fundamental rights that, among others, includes the right to public transportation. Therefore there’s a real need of an integrated approach of community participation, FAR distribution, urban planning and transportation planning and so that urbanization, inevitable these days, takes place in a fair and harmonious way. (Author)

  20. High Aspect Ratio Sub-15 nm Silicon Trenches From Block Copolymer Templates

    Science.gov (United States)

    Gu, Xiaodan; Liu, Zuwei; Gunkel, Ilja; Olynick, Deirdre; Russell, Thomas; University of Massachusetts Amherst Collaboration; Oxford Instrument Collaboration; Lawrence Berkeley National Lab Collaboration

    2013-03-01

    High-aspect-ratio sub-15 nm silicon trenches are fabricated directly from plasma etching of a block copolymer (BCP) mask. Polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) 40k-b-18k was spin coated and solvent annealed to form cylindrical structures parallel to the silicon substrate. The BCP thin film was reconstructed by immersion in ethanol and then subjected to an oxygen and argon reactive ion etching to fabricate the polymer mask. A low temperature ion coupled plasma with sulfur hexafluoride and oxygen was used to pattern transfer block copolymer structure to silicon with high selectivity (8:1) and fidelity. The silicon pattern was characterized by scanning electron microscopy and grazing incidence x-ray scattering. We also demonstrated fabrication of silicon nano-holes using polystyrene-b-polyethylene oxide (PS-b-PEO) using same methodology described above for PS-b-P2VP. Finally, we show such silicon nano-strucutre serves as excellent nano-imprint master template to pattern various functional materials like poly 3-hexylthiophene (P3HT).

  1. A high plasma: red blood cell transfusion ratio during liver transplantation is associated with decreased blood utilization.

    Science.gov (United States)

    Pagano, M B; Metcalf, R A; Hess, J R; Reyes, J; Perkins, J D; Montenovo, M I

    2018-04-01

    During massive transfusion, the volume ratio of administered plasma (PL Vol) to red blood cell (RBC Vol) appears to be associated with reduced blood utilization and improved survival. The aim of this study was to evaluate the optimal component ratio in the setting of liver transplantation. This is a retrospective chart review of patients who underwent liver transplantation and received at least 500 ml of red blood cells from January 2013 through December 2015. Kernel smoothing analysis determined the proper component ratios to evaluate were a ≥0·85:1 ratio (high) to a ≤0·85:1 ratio (low). Two groups, plasma volume to RBC volume (PL Vol/RBC Vol) and plasma contained in the platelet units added to the plasma calculation [PL + PLT (platelet)] Vol/RBC Vol, were used to evaluate the component ratios. A total of 188 patients were included in the analysis. In the PL Vol/RBC Vol evaluation, a low ratio revealed that 1238 ml (977-1653 ml) (P ratio, in the univariable and multivariable analysis, respectively. In the PL +PLT Vol/RBC Vol evaluation, a low ratio used 734 ml (193-1275) (P = 0·008) and 886 ml (431-1340) (P ratio in the univariable and multivariable analysis, respectively. In patients undergoing liver transplantation, the transfusion of plasma to RBC ratio ≥0·85 was associated with decreased need of RBC transfusions. © 2018 International Society of Blood Transfusion.

  2. Semi-analytical approach for guided mode resonance in high-index-contrast photonic crystal slab: TE polarization.

    Science.gov (United States)

    Yang, Yi; Peng, Chao; Li, Zhengbin

    2013-09-09

    In high-contrast (HC) photonic crystals (PC) slabs, the high-order coupling is so intense that it is indispensable for analyzing the guided mode resonance (GMR) effect. In this paper, a semi-analytical approach is proposed for analyzing GMR in HC PC slabs with TE-like polarization. The intense high-order coupling is included by using a convergent recursive procedure. The reflection of radiative waves at high-index-contrast interfaces is also considered by adopting a strict Green's function for multi-layer structures. Modal properties of interest like band structure, radiation constant, field profile are calculated, agreeing well with numerical finite-difference time-domain simulations. This analysis is promising for the design and optimization of various HC PC devices.

  3. Measurements of incoherent light and background structure at exo-Earth detection levels in the High Contrast Imaging Testbed

    Science.gov (United States)

    Cady, Eric; Shaklan, Stuart

    2014-08-01

    A major component of the estimation and correction of starlight at very high contrasts is the creation of a dark hole: a region in the vicinity of the core of the stellar point spread function (PSF) where speckles in the PSF wings have been greatly attenuated, up to a factor of 1010 for the imaging of terrestrial exoplanets. At these very high contrasts, removing these speckles requires distinguishing between light from the stellar PSF scattered by instrument imperfections, which may be partially corrected across a broad band using deformable mirrors in the system, from light from other sources which generally may not. These other sources may be external or internal to the instrument (e.g. planets, exozodiacal light), but in either case, their distinguishing characteristic is their inability to interfere coherently with the PSF. In the following we discuss the estimation, structure, and expected origin of this incoherent" signal, primarily in the context of a series of experiments made with a linear band-limited mask in Jan-Mar 2013. We find that the incoherent" signal at moderate contrasts is largely estimation error of the coherent signal, while at very high contrasts it represents a true floor which is stable over week-timescales.

  4. Low-Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    low- cost and high-throughput was a key element proposed for this project, which we believe will be of significant benefit to the patients suffering...Award Number: W81XWH-15-1-0272 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author(s

  5. Low Cost, High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI

    Science.gov (United States)

    2017-10-01

    greater gas polarizations and production amounts/ throughputs- benefiting in particular from the advent of com- pact, high-power, relatively low- cost ...Award Number: W81XWH-15-1-0271 TITLE: Low- Cost , High-Throughput 3-D Pulmonary Imager Using Hyperpolarized Contrast Agents and Low-Field MRI...DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the

  6. Highly stable polymer coated nano-clustered silver plates: a multimodal optical contrast agent for biomedical imaging

    International Nuclear Information System (INIS)

    Ray, Aniruddha; Mukundan, Ananya; Karamchand, Leshern; Kopelman, Raoul; Xie, Zhixing; Wang, Xueding

    2014-01-01

    Here, we present a new optical contrast agent based on silver nanoplate clusters embedded inside of a polymer nano matrix. Unlike nanosphere clusters, which have been well studied, nanoplate clusters have unique properties due to the different possible orientations of interaction between the individual plates, resulting in a significant broadening of the absorption spectra. These nanoclusters were immobilized inside of a polymer cladding so as to maintain their stability and optical properties under in vivo conditions. The polymer-coated silver nanoplate clusters show a lower toxicity compared to the uncoated nanoparticles. At high nanoparticle concentrations, cell death occurs mostly due to apoptosis. These nanoparticles were used for targeted fluorescence imaging in a rat glioma cell line by incorporating a fluorescent dye into the matrix, followed by conjugation of a tumor targeting an F3 peptide. We further used these nanoparticles as photoacoustic contrast agents in vivo to enhance the contrast of the vasculature structures in a rat ear model. We observed a contrast enhancement of over 90% following the nanoparticle injection. It is also shown that these NPs can serve as efficient contrast agents, with specific targeting abilities for broadband multimodal imaging that are usable for diagnostic applications and that extend into use as therapeutic agents as well. (paper)

  7. Interaction of a high-order Bessel beam with a submerged spherical ultrasound contrast agent shell - Scattering theory.

    Science.gov (United States)

    Mitri, F G

    2010-03-01

    Acoustic scattering properties of ultrasound contrast agents are useful in extending existing or developing new techniques for biomedical imaging applications. A useful first step in this direction is to investigate the acoustic scattering of a new class of acoustic beams, known as helicoidal high-order Bessel beams, to improve the understanding of their scattering characteristics by an ultrasound contrast agent, which at present is very limited. The transverse acoustic scattering of a commercially available albuminoidal ultrasound contrast agent shell filled with air or a denser gas such as perfluoropropane and placed in a helicoidal Bessel beam of any order is examined numerically. The shell is assumed to possess an outer radius a=3.5 microns and a thickness of approximately 105 nm. Moduli of the total and resonance transverse acoustic scattering form functions are numerically evaluated in the bandwidth 0scattering of a helicoidal Bessel beam of order m1 so that the dynamics of contrast agents would be significantly altered. The main finding of the present theory is the suppression or enhancement for a particular resonance that may be used to advantage in imaging with ultrasound contrast agents for clinical applications. 2009 Elsevier B.V. All rights reserved.

  8. Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow

    Science.gov (United States)

    Wong, Terence T. W.; Lau, Andy K. S.; Ho, Kenneth K. Y.; Tang, Matthew Y. H.; Robles, Joseph D. F.; Wei, Xiaoming; Chan, Antony C. S.; Tang, Anson H. L.; Lam, Edmund Y.; Wong, Kenneth K. Y.; Chan, Godfrey C. F.; Shum, Ho Cheung; Tsia, Kevin K.

    2014-01-01

    Accelerating imaging speed in optical microscopy is often realized at the expense of image contrast, image resolution, and detection sensitivity – a common predicament for advancing high-speed and high-throughput cellular imaging. We here demonstrate a new imaging approach, called asymmetric-detection time-stretch optical microscopy (ATOM), which can deliver ultrafast label-free high-contrast flow imaging with well delineated cellular morphological resolution and in-line optical image amplification to overcome the compromised imaging sensitivity at high speed. We show that ATOM can separately reveal the enhanced phase-gradient and absorption contrast in microfluidic live-cell imaging at a flow speed as high as ~10 m/s, corresponding to an imaging throughput of ~100,000 cells/sec. ATOM could thus be the enabling platform to meet the pressing need for intercalating optical microscopy in cellular assay, e.g. imaging flow cytometry – permitting high-throughput access to the morphological information of the individual cells simultaneously with a multitude of parameters obtained in the standard assay. PMID:24413677

  9. High-pitch coronary CT angiography at 70 kVp adopting a protocol of low injection speed and low volume of contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ruiqi; Liu, Xiao Fei; Zhao, Yu; Zhang, Liang [Dept. of Radiology, The First Affiliated Hospital of China Medical University, Shenyang (China); Tong, Jia Jie [Dept. of Radiology, Hebei General Hospital, Shijiazhuang(China)

    2017-09-15

    To evaluate the feasibility and image quality (IQ) of prospectively high-pitch coronary CT angiography (CCTA) with low contrast medium injection rate at 70 kVp. One hundred and four patients with suspected coronary artery disease (body mass index < 26 kg/m{sup 2}, sinus rhythm and heart rate < 70 beats/min) were prospectively enrolled and randomly divided into two groups. In group A and group B, 28 mL and 40 mL of 370 mgI/mL iodinated contrast media was administrated at a flow rate of 3.5 and 5 mL/s, respectively. CT values, noise, signal-to-noise ratio, contrast-to-noise ratio (CNR) of the proximal segments of coronary arteries and subjective IQ were evaluated. The CT values and noise in group A were significantly lower than those in group B (434–485 Hounsfield units [HU] vs. 772–851 HU, all p < 0.001; 17.8–22.3 vs. 23.3–26.4, all p < 0.005). The CNRs of the right coronary artery and left main artery showed no statistical difference between the two groups (42.1 ± 13.8 vs. 36.8 ± 16.0, p = 0.074; 38.7 ± 10.6 vs. 38.1 ± 17.0, p = 0.819). No statistical difference was observed between the two groups in IQ scores (3.04 ± 0.75 vs. 3.0 ± 0.79, p = 0.526) and diagnostic ratio (96.1% [50/52] vs. 94.2% [49/52], p = 0.647). Prospective high-pitch CCTA at 70 kVp with 28 mL of contrast media and injection rate of 3.5 mL/s could provide diagnostic IQ for normal-weight patients with heart rate of < 70 beats/min.

  10. Patients at high risk of adverse events from intravenous contrast media after computed tomography examination

    Energy Technology Data Exchange (ETDEWEB)

    Reddan, Donal [University College Galway Hospitals, Unit 7, Merlin Park Hospital, Galway (Ireland)]. E-mail: donal.reddan@mailn.hse.ie

    2007-05-15

    Adverse reactions to iodinated contrast media (CM) may occur and require prompt recognition and treatment. Although adverse reactions to radiocontrast agents cannot be eliminated, an important first step toward reducing their incidence is to identify patients at greatest risk. Prior to examinations using CM, patients should be adequately assessed by obtaining thorough medical histories and using simple screening tests. Studies have demonstrated that patients with a history of asthma, allergy, hyperthyroidism, and previous reaction to CM are at risk for severe reactions to iodinated CM. Renal adverse reactions reportedly occur more frequently in patients with pre-existing chronic kidney disease, especially those with diabetic nephropathy. Patients with congestive heart failure, dehydration, older age, and those who use nephrotoxic medications are also at risk for developing contrast-associated nephropathy. The occurrence of adverse events may be further increased in patients with multiple risk factors. As the number of patients undergoing computed tomography procedures continues to increase, it is essential for physicians to be able to identify patients at risk for adverse events of CM. Patient-related risk factors are discussed and simple tools for risk stratification presented.

  11. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinzhen; Li, Gang; Lin, Ling, E-mail: linling@tju.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, People' s Republic of China, and Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin (China); Qiao, Xiaoyan [College of Physics and Electronic Engineering, Shanxi University, Shanxi (China); Wang, Mengjun [School of Information Engineering, Hebei University of Technology, Tianjin (China); Zhang, Weibo [Institute of Acupuncture and Moxibustion China Academy of Chinese Medical Sciences, Beijing (China)

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  12. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  13. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    Science.gov (United States)

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  14. Evaluation of dry heat treatment of soft wheat flour for the production of high ratio cakes.

    Science.gov (United States)

    Keppler, S; Bakalis, S; Leadley, C E; Sahi, S S; Fryer, P J

    2018-05-01

    An accurate method to heat treat flour samples has been used to quantify the effects of heat treatment on flour functionality. A variety of analytical methods has been used such as oscillatory rheology, rheomixer, solvent retention capacity tests, and Rapid Visco Analysis (RVA) in water and in aqueous solutions of sucrose, lactic acid, and sodium carbonate. This work supports the hypothesis that heat treatment facilitates the swelling of starch granules at elevated temperature. Results furthermore indicated improved swelling ability and increased interactions of flour polymers (in particular arabinoxylans) of heat treated flour at ambient conditions. The significant denaturation of the proteins was indicated by a lack of gluten network formation after severe heat treatments as shown by rheomixer traces. Results of these analyses were used to develop a possible cake flour specification. A method was developed using response surfaces of heat treated flour samples in the RVA using i) water and ii) 50% sucrose solution. This can uniquely characterise the heat treatment a flour sample has received and to establish a cake flour specification. This approach might be useful for the characterisation of processed samples, rather than by baking cakes. Hence, it may no longer be needed to bake a cake after flour heat treatment to assess the suitability of the flour for high ratio cake production, but 2 types of RVA tests suffice. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios

    Science.gov (United States)

    Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.

    2018-05-01

    We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.

  16. A multiscale method for modeling high-aspect-ratio micro/nano flows

    Science.gov (United States)

    Lockerby, Duncan; Borg, Matthew; Reese, Jason

    2012-11-01

    In this paper we present a new multiscale scheme for simulating micro/nano flows of high aspect ratio in the flow direction, e.g. within long ducts, tubes, or channels, of varying section. The scheme consists of applying a simple hydrodynamic description over the entire domain, and allocating micro sub-domains in very small ``slices'' of the channel. Every micro element is a molecular dynamics simulation (or other appropriate model, e.g., a direct simulation Monte Carlo method for micro-channel gas flows) over the local height of the channel/tube. The number of micro elements as well as their streamwise position is chosen to resolve the geometrical features of the macro channel. While there is no direct communication between individual micro elements, coupling occurs via an iterative imposition of mass and momentum-flux conservation on the macro scale. The greater the streamwise scale of the geometry, the more significant is the computational speed-up when compared to a full MD simulation. We test our new multiscale method on the case of a converging/diverging nanochannel conveying a simple Lennard-Jones liquid. We validate the results from our simulations by comparing them to a full MD simulation of the same test case. Supported by EPSRC Programme Grant, EP/I011927/1.

  17. Bosch-like method for creating high aspect ratio poly(methyl methacrylate) (PMMA) structures

    KAUST Repository

    Haiducu, Marius

    2012-02-02

    This paper presents a method for etching millimetre-deep trenches in commercial grade PMMA using deep-UV at 254 nm. The method is based on consecutive cycles of irradiation and development of the exposed areas, respectively. The exposure segment is performed using an inexpensive, in-house built irradiation box while the development part is accomplished using an isopropyl alcohol (IPA):H2O developer. The method was tested and characterized by etching various dimension square test structures in commercial grade, mirrored acrylic. The undercut of the sidewalls due to the uncollimated nature of the irradiation light was dramatically alleviated by using a honeycomb metallic grid in between the irradiation source and the acrylic substrate and by rotating the latter using a direct current (DC) motor-driven stage. By using an extremely affordable set-up and non-toxic, environmentally friendly materials and substances, this process represents an excellent alternative to microfabricating microfluidic devices in particular and high aspect ratio structures in general using PMMA as substrate. © 2012 SPIE.

  18. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    International Nuclear Information System (INIS)

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-01-01

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit

  19. High aspect ratio lead zirconate titanate tube structures: I. Template assisted fabrication - vacuum infiltration method

    Directory of Open Access Journals (Sweden)

    Vladimír Kovaľ

    2012-03-01

    Full Text Available Polycrystalline Pb(Zr0.52Ti0.48O3 (PZT microtubes are fabricated by a vacuum infiltration method. The method is based on repeated infiltration of precursor solution into macroporous silicon (Si templates at a sub-atmospheric pressure. The pyrolyzed PZT tubes of a 2-µm outer diameter, extending to over 30 µm in length were released from the template using a selective isotropic-pulsed XeF2 reactive ion etching of silicon. Free-standing microtubes, partially anchored at the bottom of the Si template, were then crystallized in pure oxygen atmosphere at 750 °C for 2 min using a rapid thermal annealer. The perovskite phase of the final PZT tubes was confirmed by X-ray diffraction (XRD analysis. The XRD spectrum also revealed a small amount of the pyrochlore phase in the structure and signs of possible fluoride contamination caused most likely by the XeF2 etching process. The surface morphology was examined using scanning electron microscopy. It was demonstrated that the whole surface of the pore walls was conformally coated during the repeated infiltration of templates, resulting in straight tubes with closed tips formed on the opposite ends as replicas of the pore bottoms. These high aspect ratio ferroelectric structures are suggested as building units for developing miniaturized electronic devices, such as memory storage (DRAM trenched capacitors, piezoelectric scanners and actuators, and are of fundamental value for the theory of ferroelectricity in systems with low dimensionality.

  20. Robust extremum seeking and speed ratio control for high-performance CVT operation

    NARCIS (Netherlands)

    Meulen, van der S.H.; Jager, de A.G.; Veldpaus, F.E.; Steinbuch, M.

    2010-01-01

    The variator in a pushbelt continuously variable transmission (CVT) enables a stepless variation of the transmission ratio within a finite range. Nowadays, the variator is electronically controlled and the variator control objectives are twofold: 1) tracking a transmission ratio reference; 2)

  1. Case with high cervical intramedullary hemangioblastoma associated with arteriovenous fistula. CT with simultaneous intravenous and intrathecal injection of contrast medium

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Takao; Shoji, Shin-ichi; Yanagisawa, Nobuo; Tada, Tsuyoshi; Kobayashi, Naoki

    1988-02-01

    A 34-year-old woman complained of right hemiparesis and pain in the right hand. Routine X-ray of the cervical portion failed to reveal abnormal findings. CT with intravenous contrast medium showed a large high-density mass in the spinal canal at the level of C2. Right vertebral angiography showed a hypervascular mass. With simultaneous intravenous and intrathecal injections of contrast medium, the tumor was shown as a moderately high-density area and the parenchyma of cord as a thin low-density area surrounding the tumor stain on CT. These CT appearances led to the final diagnosis of high cervical intramedullary hemangioblastoma associated with arteriovenous fistulae. Pathological findings are typical of hemangioblastoma. The usefulness of CT in detecting the localization of hypervascular spinal cord lesions is stressed. (Namekawa, K.).

  2. Interpretation of genetic association studies: markers with replicated highly significant odds ratios may be poor classifiers.

    Directory of Open Access Journals (Sweden)

    Johanna Jakobsdottir

    2009-02-01

    Full Text Available Recent successful discoveries of potentially causal single nucleotide polymorphisms (SNPs for complex diseases hold great promise, and commercialization of genomics in personalized medicine has already begun. The hope is that genetic testing will benefit patients and their families, and encourage positive lifestyle changes and guide clinical decisions. However, for many complex diseases, it is arguable whether the era of genomics in personalized medicine is here yet. We focus on the clinical validity of genetic testing with an emphasis on two popular statistical methods for evaluating markers. The two methods, logistic regression and receiver operating characteristic (ROC curve analysis, are applied to our age-related macular degeneration dataset. By using an additive model of the CFH, LOC387715, and C2 variants, the odds ratios are 2.9, 3.4, and 0.4, with p-values of 10(-13, 10(-13, and 10(-3, respectively. The area under the ROC curve (AUC is 0.79, but assuming prevalences of 15%, 5.5%, and 1.5% (which are realistic for age groups 80 y, 65 y, and 40 y and older, respectively, only 30%, 12%, and 3% of the group classified as high risk are cases. Additionally, we present examples for four other diseases for which strongly associated variants have been discovered. In type 2 diabetes, our classification model of 12 SNPs has an AUC of only 0.64, and two SNPs achieve an AUC of only 0.56 for prostate cancer. Nine SNPs were not sufficient to improve the discrimination power over that of nongenetic predictors for risk of cardiovascular events. Finally, in Crohn's disease, a model of five SNPs, one with a quite low odds ratio of 0.26, has an AUC of only 0.66. Our analyses and examples show that strong association, although very valuable for establishing etiological hypotheses, does not guarantee effective discrimination between cases and controls. The scientific community should be cautious to avoid overstating the value of association findings in terms

  3. High Contrast Coherent Population Trapping Resonances in Cs Vapour Cells with a Simple-Architecture Laser System

    International Nuclear Information System (INIS)

    Liu, Xiaochi

    2013-01-01

    This thesis reports the development of a simple-architecture laser system resonant at 895 nm used for the detection of high-contrast coherent population trapping (CPT) resonances in Cs vapor cells. The laser system combines a distributed feedback-diode (DFB) laser, a pigtailed Mach-Zehnder intensity electro-optic modulator (EOM) driven at 4.596 GHz for the generation of optical sidebands frequency-split by 9.192 GHz and a Michelson delay-line system to produce a bi-chromatic optical field that alternates between right and left circular polarization. This polarization pumping scheme, first proposed by Happer's group in Princeton on K atoms, allows to optically pump a maximum number of Cs atoms into the 0-0 magnetic field insensitive clock transition. Advanced noise reduction techniques were implemented in order to stabilize the laser power, the optical carrier suppression at the output of the EOM and the DFB laser frequency. Using this system, we demonstrated the detection of CPT resonances with a contrast of 80% in cm-scale Cs vapor cells. This contrast was measured to be increased until a saturation effect with the laser power at the expense of the CPT line broadening. To circumvent this issue, we proposed with a simple setup Ramsey spectroscopy of CPT resonances in vapor cells to combine high-contrast and narrow line width of the CPT resonances. In this setup, the EOM is used both for optical sidebands generation and light switch to produce Ramsey interaction. Ramsey fringes of 166 Hz line width with a contrast better than 30% were detected with this setup. This laser system will be in a near future devoted to be used for the development of a high-performance CPT-based atomic clock. (author)

  4. Quantitative differential phase contrast imaging at high resolution with radially asymmetric illumination.

    Science.gov (United States)

    Lin, Yu-Zi; Huang, Kuang-Yuh; Luo, Yuan

    2018-06-15

    Half-circle illumination-based differential phase contrast (DPC) microscopy has been utilized to recover phase images through a pair of images along multiple axes. Recently, the half-circle based DPC using 12-axis measurements significantly provides a circularly symmetric phase transfer function to improve accuracy for more stable phase recovery. Instead of using half-circle-based DPC, we propose a new scheme of DPC under radially asymmetric illumination to achieve circularly symmetric phase transfer function and enhance the accuracy of phase recovery in a more stable and efficient fashion. We present the design, implementation, and experimental image data demonstrating the ability of our method to obtain quantitative phase images of microspheres, as well as live fibroblast cell samples.

  5. Numerical modeling of frozen wave instability in fluids with high viscosity contrast

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, D V; Ivantsov, A O; Lyubimova, T P [Theoretical Physics Department, Perm State University, Perm (Russian Federation); Khilko, G L, E-mail: lyubimovat@mail.ru [Institute of Continuous Media Mechanics UB RAS, Perm (Russian Federation)

    2016-12-15

    This paper deals with the direct numerical simulation of quasi-stationary (frozen) wave formation at the interface of two immiscible fluids with large viscosity contrast, in a rectangular container subjected to the horizontal vibrations of finite frequency and amplitude. The critical conditions for the origination of a frozen wave as well as the dependences of the frozen wave height and wavelength on the vibration intensity are obtained. The time-evolution of the interface shape during the vibration period is analyzed. Numerical results are found to be in a good agreement with known experimental and linear stability results. The average deformation of the interface and the structure of average flows are calculated for different vibration intensities. It is shown that a change in the dependencies of the frozen wave characteristics on the vibration intensity follows a change in average flow structure. (paper)

  6. High-contrast mammography with a moving grid: assessment of clinical utility

    International Nuclear Information System (INIS)

    Sickles, E.A.; Weber, W.N.

    1986-01-01

    Mammography techniques using moving grids produce superior breast images in many patients but result in increased radiation dose. This prospective controlled study of 1000 unselected screen-film mammography patients identifies a subset of women who are most likely to benefit from higher-dose grid-assisted techniques. In approximately 60% of the patients, the increased contrast of grid films produced a noticeable improvement in overall image quality. In only 20% of cases did this translate into clinically useful information, however, usually resulting in an increased level of confidence in interpretation. In virtually all the cases in which grid images aided mammographic diagnosis, the patients were women having more than 50% dense fibroglandular tissue or compressed breast thickness greater than 6 cm (only 37% of the study population). We suggest that the use of grid techniques be restricted to patients with such dense or thick breasts, because only in these women can the increase in radiation dose be justified

  7. Acute cerebral stroke imaging and brain perfusion with the use of high-concentration contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Miles, K.A. [Wesley Research Inst., The Wesley Hospital, Brisbane (Australia); Brighton and Sussex Medical School, Univ. of Sussex, Falmer, Brighton (United Kingdom)

    2003-12-01

    Acute cerebral stroke remains a major cause of death among adults and the emergence of new therapies has created a need for early and rapid imaging at a time when conventional CT is either normal or demonstrates subtle abnormalities that are easy to misinterpret. Perfusion CT uses the temporal changes in cerebral and blood attenuation during a rapid series of images acquired without table movement following an intravenous bolus of contrast medium to generate images of mean transit time (MTT) cerebral blood volume (CBV) and perfusion. Reduced perfusion with preserved CBV is indicative of reversible ischaemia, whereas a matched reduction in perfusion and CBV implies infarction. The CT perfusion imaging can positively identify patients with non-haemorrhagic stroke in the presence of a normal conventional CT, provide an indication as to prognosis and potentially select those patients for whom thrombolysis is appropriate. Perfusion CT offers a powerful adjunct to MDCT based imaging of cerebrovascular disease, but further clinical validation is required. (orig.)

  8. Contrasting Hydrodynamic and Environmental Effects of Hurricanes Harvey and Ike in a Highly Industrialized Estuary

    Science.gov (United States)

    Kiaghadi, A.; Rifai, H. S.

    2017-12-01

    It is commonly believed that storm surge is the most destructive aspect of hurricanes. However, massive rainfall with a return period of 100 years or more induced by hurricanes can cause more catastrophic damage than losses caused by storm surge as demonstrated recently by hurricanes Harvey, Irma and Maria. In this study the hydrodynamics and environmental effects of hurricanes Ike and Harvey were compared and contrasted by linking hydrodynamic flow models with water quality models to simulate spills from storage tanks located in the Houston Ship Channel (HSC). Hurricane Ike with a maximum surge of 5.3 meters in Galveston Bay and Harvey with a maximum rainfall of 1.25 meters both struck the HSC region in Texas in 2008 and 2017, respectively. Both events resulted in numerous spills from municipal and industrial facilities, hazardous waste sites, superfund sites, and landfills. The Environmental Fluid Dynamic Code (EFDC) was coupled with the SWAN+ADCIRC hurricane simulation model to simulate Hurricane Ike and EFDC was coupled with USGS flow boundary conditions to model Hurricane Harvey. A conservative dye release was used to simulate a chemical release during each event. The results showed Hurricane Harvey caused higher water surface elevations within the HSC accompanied by longer and wider-spread land inundation. In contrast, higher water surface elevations were observed within the shallow side bays during Hurricane Ike that caused sediment resuspension and repartitioning of pollutants. Rapid spill mass transportation was observed for both hurricanes; 50% of total spill mass reached Galveston Bay in 20 and 22 hours after a spill event for Hurricane Harvey and Ike, respectively, and more than 90% of the spill mass reached the bay in 36 and 48 hours, respectively. Unlike Hurricane Harvey, the conservative tracer was spread almost 2.5 km upstream of the releasing point for Hurricane Ike due to surge. However, during Harvey, 35% more land was affected by the spilled

  9. Waist-to-Height Ratio as an Indicator of High Blood Pressure in Urban Indian School Children.

    Science.gov (United States)

    Mishra, P E; Shastri, L; Thomas, T; Duggan, C; Bosch, R; McDonald, C M; Kurpad, A V; Kuriyan, R

    2015-09-01

    To examine the utility of waist-to-height ratio to identify risk of high blood pressure when compared to body mass index and waist circumference in South Indian urban school children. Secondary data analysis from a cross-sectional study. Urban schools around Bangalore, India. 1913 children (58.1% males) aged 6-16 years with no prior history of chronic illness (PEACH study). Height, weight, waist circumference and of blood pressure were measured. Children with blood pressure ?90th percentile of age-, sex-, and height-adjusted standards were labelled as having high blood pressure. 13.9% had a high waist-to-height ratio, 15.1% were overweight /obese and 21.7% had high waist circumference. High obesity indicators were associated with an increased risk of high blood pressure. The adjusted risk ratios (95% CI) of high systolic blood pressure with waist-to-height ratio, body mass index and waist circumference were 2.48 (1.76, 3.47), 2.59 (1.66, 4.04) and 2.38 (1.74, 3.26), respectively. Similar results were seen with high diastolic blood pressure. Obesity indicators, especially waist-to-height ratio due to its ease of measurement, can be useful initial screening tools for risk of high blood pressure in urban Indian school children.

  10. Novel T-Z source inverter with high voltage gain and reduced transformer turn ratio

    DEFF Research Database (Denmark)

    Mostaan, Ali; Sharifi Malfejani, Saeed; Soltani, Mohsen

    2015-01-01

    Novel voltage source inverter based on the Z source inverter structure is introduced in this paper. In this new inverter, two inductors of the impedance network in conventional Z source inverter are replaced with two transformers or coupled inductors, but unlike the T-Z source inverter that it......'s voltage gain is raised with increasing the transformers turn ratio, the voltage gain in the proposed inverter is raised with lowering the transformer turn ratio. Therefore, transformers with lower turn ratio are required in the proposed inverter in compare with T- Z source inverter that can lead to lower...

  11. Continuously tunable photonic fractional Hilbert transformer using a high-contrast germanium-doped silica-on-silicon microring resonator.

    Science.gov (United States)

    Shahoei, Hiva; Dumais, Patrick; Yao, Jianping

    2014-05-01

    We propose and experimentally demonstrate a continuously tunable fractional Hilbert transformer (FHT) based on a high-contrast germanium-doped silica-on-silicon (SOS) microring resonator (MRR). The propagation loss of a high-contrast germanium-doped SOS waveguide can be very small (0.02 dB/cm) while the lossless bend radius can be less than 1 mm. These characteristics lead to the fabrication of an MRR with a high Q-factor and a large free-spectral range (FSR), which is needed to implement a Hilbert transformer (HT). The SOS MRR is strongly polarization dependent. By changing the polarization direction of the input signal, the phase shift introduced at the center of the resonance spectrum is changed. The tunable phase shift at the resonance wavelength can be used to implement a tunable FHT. A germanium-doped SOS MRR with a high-index