WorldWideScience

Sample records for high confining pressures

  1. Confinement of hydrogen at high pressure in carbon nanotubes

    Science.gov (United States)

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  2. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  3. Confined high-pressure chemical deposition of hydrogenated amorphous silicon.

    Science.gov (United States)

    Baril, Neil F; He, Rongrui; Day, Todd D; Sparks, Justin R; Keshavarzi, Banafsheh; Krishnamurthi, Mahesh; Borhan, Ali; Gopalan, Venkatraman; Peacock, Anna C; Healy, Noel; Sazio, Pier J A; Badding, John V

    2012-01-11

    Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells. © 2011 American Chemical Society

  4. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  5. Improving hot-spot pressure for ignition in high-adiabat Inertial Confinement Fusion implosion

    OpenAIRE

    Kang, Dongguo; Zhu, Shaoping; Pei, Wenbing; Zou, Shiyang; Zheng, Wudi; Gu, Jianfa; Dai, Zhensheng

    2017-01-01

    A novel capsule target design to improve the hot-spot pressure in the high-adiabat implosion for inertial confinement fusion is proposed, where a layer of comparatively high-density material is used as a pusher between the fuel and the ablator. This design is based on our theoretical finding of the stagnation scaling laws, which indicates that the hot spot pressure can be improved by increasing the kinetic energy density $\\rho_d V_{imp}^2/2$ ($\\rho_d$ is the shell density when the maximum she...

  6. Shearing of saturated clays in rock joints at high confining pressures

    International Nuclear Information System (INIS)

    Wang, C.; Mao, N.

    1979-01-01

    Saturated clays are sheared between rock joints at various pore water pressures and at confining pressures up to 3 kb (300 Mpa). Sliding on these joints is stable. For a given clay, the shear stress required to initiate sliding increases linearly with the effective normal stress across the sliding surface, with a slope of 0.08 +- 0.01 for joints filled with saturated montmorillonite, 0.12 +- 0.01 with saturated chlorite, 0.15 +- 0.01 with saturated kaolinite, and 0.22 +- 0.02 with saturated silty illite. Thus at high confining pressures the shear stress required to initiate sliding on joints filled with saturated clays are very much smaller than that required to initiate sliding on clean rock joints or on joints filled with dry gouge materials. In the crust, saturation of gouge materials along active faults would greatly lower the frictional resistance to faulting and would stabilize fault movement. Different fault behaviors such as stable creep along some faults and intermittent but sudden slip along others may reflect in part different degrees of saturation of fault zones at depth

  7. Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure

    Directory of Open Access Journals (Sweden)

    Yueyuan Xia

    2012-06-01

    Full Text Available Extensive ab initio molecular dynamics simulations indicate that hydrogen can be confined in single walled carbon nanotubes to form high density and high pressure H2 molecular lattice, which has peculiar shell and axial structures depending on the density or pressure. The band gap of the confined H2 lattice is sensitive to the pressure. Heating the system at 2000K, the H2 lattice is firstly melted to form H2 molecular liquid, and then some of the H2 molecules dissociate accompanied by drastic molecular and atomic reactions, which have essential effect on the electronic structure of the hydrogen system. The liquid hydrogen system at 2000K is found to be a particular mixed liquid, which consists of H2 molecules, H atoms, and H-H-H trimers. The dissociated H atoms and the trimers in the liquid contribute resonance electron states at the Fermi energy to change the material properties substantially. Rapidly cooling the system from 2000K to 0.01 K, the mixed liquid is frozen to form a mixed solid melt with a clear trend of band gap closure. It indicates that this solid melt may become a superconducting nanowire when it is further compressed.

  8. Thermostating highly confined fluids.

    Science.gov (United States)

    Bernardi, Stefano; Todd, B D; Searles, Debra J

    2010-06-28

    In this work we show how different use of thermostating devices and modeling of walls influence the mechanical and dynamical properties of confined nanofluids. We consider a two dimensional fluid undergoing Couette flow using nonequilibrium molecular dynamics simulations. Because the system is highly inhomogeneous, the density shows strong fluctuations across the channel. We compare the dynamics produced by applying a thermostating device directly to the fluid with that obtained when the wall is thermostated, considering also the effects of using rigid walls. This comparison involves an analysis of the chaoticity of the fluid and evaluation of mechanical properties across the channel. We look at two thermostating devices with either rigid or vibrating atomic walls and compare them with a system only thermostated by conduction through vibrating atomic walls. Sensitive changes are observed in the xy component of the pressure tensor, streaming velocity, and density across the pore and the Lyapunov localization of the fluid. We also find that the fluid slip can be significantly reduced by rigid walls. Our results suggest caution in interpreting the results of systems in which fluid atoms are thermostated and/or wall atoms are constrained to be rigid, such as, for example, water inside carbon nanotubes.

  9. Development of dispersion interferometer for magnetic confinement plasmas and high-pressure plasmas

    Science.gov (United States)

    Akiyama, T.; Yasuhara, R.; Kawahata, K.; Nakayama, K.; Okajima, S.; Urabe, K.; Terashima, K.; Shirai, N.

    2015-09-01

    A CO2 laser dispersion interferometer (DI) has been developed for both magnetically fusion plasmas and high pressure industrial plasmas. The DI measures the phase shift caused by dispersion in a medium. Therefore, it is insensitive to the mechanical vibrations and changes in the neutral gas density, which degrade the resolution of the electron density measurement. We installed the DI on the Large Helical Device (LHD) and demonstrated a high density resolution of 2× 1017 m-3 without any vibration-free bench. The measured electron density with the DI shows good agreement with results of the existing far infrared laser (a wavelength of 119 μ m) interferometer. The DI system is also applied to the electron density measurement of high-pressure small-scale plasmas. The significant suppression of the phase shift caused by the neutral gas is proven. The achieved density resolution was 1.5× 1019 m-3 with a response time of 100 μ s. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  10. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement.

    Science.gov (United States)

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-04-04

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO 2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, n rel , it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in n rel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO 2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO 2 , the effective reduction of the T g was estimated to be ∼200 °C going from 128 to 7 nm films.

  11. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement

    KAUST Repository

    Ogieglo, Wojciech

    2018-03-12

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, nrel, it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in nrel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO2, the effective reduction of the Tg was estimated to be ∼200 °C going from 128 to 7 nm films.

  12. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement

    KAUST Repository

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Wessling, Matthias; Pinnau, Ingo

    2018-01-01

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, nrel, it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in nrel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO2, the effective reduction of the Tg was estimated to be ∼200 °C going from 128 to 7 nm films.

  13. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  14. Effect of confining pressure on permeability behavior of Beishan granite

    International Nuclear Information System (INIS)

    Ma Like; Li Yunfeng; Zhao Xingguang; Tan Guohuan

    2012-01-01

    By using of the Electro-Hydraulic Servo-controlled Rock Mechanics Testing System (MTS 815.04) in the University of Hong Kong, a series of permeability tests were performed on specimens of Beishan granite at different confining pressures. The result indicates that: (1) there is a decrease of permeability due to progressive closure of initial microcracks and the corresponding volumetric strain is compressive when the confining pressures increase from 2.5 MPa to 15 MPa, (2) when the confining pressures decrease from 15 MPa to 2.5 MPa, there is an increase of permeability in this stage in relation with the volumetric dilation. (authors)

  15. Strength curves for shales and sandstones under hydrostatic confining pressures

    International Nuclear Information System (INIS)

    Gupta, S.C.; Sikka, S.K.

    1978-01-01

    The experimental data for the effect of confining pressures on the fracture stress have been analysed for shales and sandstones. The normalized compressive strengths are found to lie in a narrow region so that Ohnaka's equation for crystalline rocks, can be fitted to the data. The fitted parameters are physically reasonable and indicate that the functional dependence of strength on porosity, strain rate and temperature is independent of the confining pressures. (author)

  16. High-Energy Electron Confinement in a Magnetic Cusp Configuration

    Directory of Open Access Journals (Sweden)

    Jaeyoung Park

    2015-06-01

    Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.

  17. Energy confinement of high-density tokamaks

    NARCIS (Netherlands)

    Schüller, F.C.; Schram, D.C.; Coppi, B.; Sadowski, W.

    1977-01-01

    Neoclassical ion heat conduction is the major energy loss mechanism in the center of an ohmically heated high-d. tokamak discharge (n>3 * 1020 m-3). This fixes the mutual dependence of plasma quantities on the axis and leads to scaling laws for the poloidal b and energy confinement time, given the

  18. The impact law of confining pressure and plastic parameter on Dilatancy of rock

    Science.gov (United States)

    Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing

    2017-08-01

    Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.

  19. The pressure exerted by a confined ideal gas

    International Nuclear Information System (INIS)

    Pang Hai; Dai Wusheng; Xie Mi

    2011-01-01

    In this paper, we study the pressure exerted by a confined ideal gas on the container boundary and we introduce a surface force in gases. First, the general expression for the local surface pressure tensor is obtained. We find, by examples, that the pressure vanishes at the edges of a box, peaks at the middle of the surface and its magnitude for different statistics satisfies p Fermi > p classical > p Bose on every boundary point. Then, the relation between the surface pressure tensor and generalized forces is studied. Based on the relation, we find that a confined ideal gas can exert forces whose effect is to reduce the total surface area of the boundary of an incompressible object. The force provides mechanisms for several mechanical effects. (1) The force contributes to the adhesion of two thin films in contact with each other. We derive an expression for the adhesion force between two square sheets, estimate its magnitude, and also give a method for distinguishing it from other adhesion forces. (2) The force can lead to the recoiling of a DNA-like column. We study the recoiling process using a simple model and find a deviation from the result given in the thermodynamic limit, which is in accordance with experiments. (3) An open container immersed in a gas can be compressed by this force like the Casimir effect. We discuss the effect for various geometries. (paper)

  20. Effects of strain rate and confining pressure on the deformation and failure of shale

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.M. (Schlumberger Cambridge Research (GB)); Sheppard, M.C. (Anadrill/Schlumberger (US)); Houwen, O.H. (Sedco Forex (FR))

    1991-06-01

    Previous work on shale mechanical properties has focused on the slow deformation rates appropriate to wellbore deformation. Deformation of shale under a drill bit occurs at a very high rate, and the failure properties of the rock under these conditions are crucial in determining bit performance and in extracting lithology and pore-pressure information from drilling parameters. Triaxial tests were performed on two nonswelling shales under a wide range of strain rates and confining and pore pressures. At low strain rates, when fluid is relatively free to move within the shale, shale deformation and failure are governed by effective stress or pressure (i.e., total confining pressure minus pore pressure), as is the case for ordinary rock. If the pore pressure in the shale is high, increasing the strain rate beyond about 0.1%/sec causes large increases in the strength and ductility of the shale. Total pressure begins to influence the strength. At high stain rates, the influence of effective pressure decreases, except when it is very low (i.e., when pore pressure is very high); ductility then rises rapidly. This behavior is opposite that expected in ordinary rocks. This paper briefly discusses the reasons for these phenomena and their impact on wellbore and drilling problems.

  1. Progress in high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Sun Jingwen

    2001-01-01

    The author reviews the progress in laboratory high gain inertial confinement fusion (ICF), including ICF capsule physics, high-energy-density science, inertial fusion energy, the National Ignition Facility (NIF) and its design of ignition targets and the peta watt laser breakthrough. High power laser, particle beam, and pulsed power facilities around the world have established the new laboratory field of high-energy- density plasma physics and have furthered development of inertial fusion. New capabilities such as those provided by high-brightness peta watt lasers have enabled the study of matter feasible in conditions previously unachievable on earth. Science and technology developed in inertial fusion research have found near-term commercial use and have enabled steady progress toward the goal of fusion ignition and high gain in the laboratory, and have opened up new fields of study for the 21 st century

  2. Investigation of stress–strain models for confined high strength ...

    Indian Academy of Sciences (India)

    High strength concrete; confined concrete; stress–strain models; ... One of its advantages is the lessening column cross-sectional areas. It was ..... Ahmad S H, Shah S P 1982 Stress–strain curves of concrete confined by spiral reinforcement.

  3. High Blood Pressure

    Science.gov (United States)

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  4. High Blood Pressure Facts

    Science.gov (United States)

    ... Stroke Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN High Blood Pressure Facts Recommend on Facebook Tweet Share Compartir On ... Top of Page CDC Fact Sheets Related to High Blood Pressure High Blood Pressure Pulmonary Hypertension Heart Disease Signs ...

  5. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... Print Page Text Size: A A A Listen High Blood Pressure (Hypertension) Nearly 1 in 3 American adults has ... weight. How Will I Know if I Have High Blood Pressure? High blood pressure is a silent problem — you ...

  6. High beta and confinement studies on TFTR

    International Nuclear Information System (INIS)

    Navratil, G.A.; Bhattacharjee, A.; Iacono, R.; Mauel, M.E.; Sabbagh, S.A.; Kesner, J.

    1992-01-01

    A new regime of high poloidal beta operation in TFTR was developed in the course of the first two years of this project (9/25/89 to 9/24/91). Our proposal to continue this successful collaboration between Columbia University and the Massachusetts Institute of Technology with the Princeton Plasma Physics Laboratory for a three year period (9/25/91 to 9/24/94) to continue to investigate improved confinement and tokamak performance in high poloidal beta plasmas in TFTR through the DT phase of operation was approved by the DOE and this is a report of our progress during the first 9 month budget period of the three year grant (9/25/91 to 6/24/92). During the approved three year project period we plan to (1) extend and apply the low current, high QDD discharges to the operation of TFTR using Deuterium and Tritium plasma; (2) continue the analysis and plan experiments on high poloidal beta phenomena in TFTR including: stability properties, enhanced global confinement, local transport, bootstrap current, and divertor formation; (3) plan and carry out experiments on TFTR which attempt to elevate the central q to values > 2 where entry to the second stability regime is predicted to occur; and (4) collaborate on high beta experiments using bean-shaped plasmas with a stabilizing conducting shell in PBX-M. In the seven month period covered by this report we have made progress in each of these four areas through the submission of 4 TFTR Experimental Proposals and the partial execution of 3 of these using a total of 4.5 run days during the August 1991 to February 1992 run

  7. Impact of high temperature superconductors on the possibility of radio-frequency confinement

    International Nuclear Information System (INIS)

    Dean, S.O.

    1989-01-01

    Recent discoveries of superconducting materials that operate at high temperatures may have both technical and economic consequences for magnetic confinement fusion. In addition, they could also open up the possibility of plasma confinement by radio-frequency fields. The new, high temperature superconductors may impact the feasibility of rf confinement in two important ways: (1) higher temperature superconductors should have higher critical B fields and consequently may allow higher critical electric fields to be sustained in the cavity, thus allowing the necessary confining pressure to be achieved; and (2) the higher temperature superconductors lower the refrigeration power necessary to maintain the superconducting cavity, thus allowing a favorable energy balance

  8. ON THE COAGULATION AND SIZE DISTRIBUTION OF PRESSURE CONFINED CORES

    International Nuclear Information System (INIS)

    Huang Xu; Zhou Tingtao; Lin, D. N. C.

    2013-01-01

    Observations of the Pipe Nebula have led to the discovery of dense starless cores. The mass of most cores is too small for their self-gravity to hold them together. Instead, they are thought to be pressure confined. The observed dense cores' mass function (CMF) matches well with the initial mass function of stars in young clusters. Similar CMFs are observed in other star forming regions such as the Aquila Nebula, albeit with some dispersion. The shape of these CMF provides important clues to the competing physical processes which lead to star formation and its feedback on the interstellar media. In this paper, we investigate the dynamical origin of the mass function of starless cores which are confined by a warm, less dense medium. In order to follow the evolution of the CMF, we construct a numerical method to consider the coagulation between the cold cores and their ablation due to Kelvin-Helmholtz instability induced by their relative motion through the warm medium. We are able to reproduce the observed CMF among the starless cores in the Pipe Nebula. Our results indicate that in environment similar to the Pipe Nebula: (1) before the onset of their gravitational collapse, the mass distribution of the progenitor cores is similar to that of the young stars, (2) the observed CMF is a robust consequence of dynamical equilibrium between the coagulation and ablation of cores, and (3) a break in the slope of the CMF is due to the enhancement of collisional cross section and suppression of ablation for cores with masses larger than the cores' Bonnor-Ebert mass.

  9. Triaxial behaviour of a micro-concrete complete stress-strain curves for confining pressures ranging from 0 to 100 MPa

    International Nuclear Information System (INIS)

    Jamet, P.; Millard, A.; Nahas, G.

    1984-05-01

    A series of triaxial tests has been performed on micro-concrete cylinders. The specimens have been strained with a constant displacement rate, up to a deformation of about 10%. Two different domains were distinguihed. For low confining pressures strain softening is observed, the behaviour of the material becomes ductile for high confining pressures. Continuous measurement of the volume of fluid which had to be injected or withdrawn from the cell, to keep the confining pressure constant during the test, allowed to obtain data, concerning the overall lateral deformations of the specimens. Some specimens were also subjected to successive loadings with different confining pressures, in order to study the influence of stress path

  10. Hypertension (High Blood Pressure)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Teens / Hypertension (High Blood Pressure) What's ... rest temperature diet emotions posture medicines Why Is High Blood Pressure Bad? High blood pressure means a person's heart ...

  11. Experimental Studies on Permeability of Intact and Singly Jointed Meta-Sedimentary Rocks Under Confining Pressure

    Science.gov (United States)

    Wong, Louis Ngai Yuen; Li, Diyuan; Liu, Gang

    2013-01-01

    Three different types of permeability tests were conducted on 23 intact and singly jointed rock specimens, which were cored from rock blocks collected from a rock cavern under construction in Singapore. The studied rock types belong to inter-bedded meta-sandstone and meta-siltstone with very low porosity and high uniaxial compressive strength. The transient pulse water flow method was employed to measure the permeability of intact meta-sandstone under a confining pressure up to 30 MPa. It showed that the magnitude order of meta-sandstone's intrinsic permeability is about 10-18 m2. The steady-state gas flow method was used to measure the permeability of both intact meta-siltstone and meta-sandstone in a triaxial cell under different confining pressures spanning from 2.5 to 10 MPa. The measured permeability of both rock types ranged from 10-21 to 10-20 m2. The influence of a single natural joint on the permeability of both rock types was studied by using the steady-state water flow method under different confining pressures spanning from 1.25 to 5.0 MPa, including loading and unloading phases. The measured permeability of both jointed rocks ranged from 10-13 to 10-11 m2, where the permeability of jointed meta-siltstone was usually slightly lower than that of jointed meta-sandstone. The permeability of jointed rocks decreases with increasing confining pressure, which can be well fitted by an empirical power law relationship between the permeability and confining pressure or effective pressure. The permeability of partly open cracked specimens is lower than that of open cracked specimens, but it is higher than that of the specimen with a dominant vein for the meta-sandstone under the same confining pressure. The permeability of open cracked rock specimens will partially recover during the unloading confining pressure process. The equivalent crack (joint) aperture is as narrow as a magnitude order of 10-6 m (1 μm) in the rock specimens under confining pressures

  12. High blood pressure - children

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  13. Preventing High Blood Pressure

    Science.gov (United States)

    ... Heart Disease Cholesterol Salt Million Hearts® WISEWOMAN Preventing High Blood Pressure: Healthy Living Habits Recommend on Facebook Tweet Share ... meal and snack options can help you avoid high blood pressure and its complications. Be sure to eat plenty ...

  14. High blood pressure - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007329.htm High blood pressure - infants To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  15. High blood pressure medications

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007484.htm High blood pressure medicines To use the sharing features on this page, please enable JavaScript. Treating high blood pressure will help prevent problems such as heart disease, ...

  16. Fault gouge rheology under confined, high-velocity conditions

    Science.gov (United States)

    Reches, Z.; Madden, A. S.; Chen, X.

    2012-12-01

    We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was

  17. High-pressure microbiology

    National Research Council Canada - National Science Library

    Michiels, Chris; Bartlett, Douglas Hoyt; Aertsen, Abram

    2008-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1. High Hydrostatic Pressure Effects in the Biosphere: from Molecules to Microbiology * Filip Meersman and Karel Heremans . . . . . . . . . . . . 2. Effects...

  18. High temperature L- and H-mode confinement in JET

    International Nuclear Information System (INIS)

    Balet, B.; Boyd, D.A.; Campbell, D.J.

    1990-01-01

    The energy confinement properties of low density, high ion temperature L- and H-mode plasmas are investigated. For L-mode plasmas it is shown that, although the global confinement is independent of density, the energy confinement in the central region is significantly better at low densities than at higher densities. The improved confinement appears to be associated with the steepness of the density gradient. For the H-mode phase, although the confinement at the edge is dramatically improved, which is once again associated with the steep density gradient in the edge region, the central confinement properties are essentially the same as for the standard L-mode. The results are compared in a qualitative manner with the predictions of the ion temperature gradient instability theory and appear to be in disagreement with some aspects of this theory. (author). 13 refs, 15 figs

  19. Pressure Enhancement in Confined Fluids: Effect of Molecular Shape and Fluid-Wall Interactions.

    Science.gov (United States)

    Srivastava, Deepti; Santiso, Erik E; Gubbins, Keith E

    2017-10-24

    Recently, several experimental and simulation studies have found that phenomena that normally occur at extremely high pressures in a bulk phase can occur in nanophases confined within porous materials at much lower bulk phase pressures, thus providing an alternative route to study high-pressure phenomena. In this work, we examine the effect on the tangential pressure of varying the molecular shape, strength of the fluid-wall interactions, and pore width, for carbon slit-shaped pores. We find that, for multisite molecules, the presence of additional rotational degrees of freedom leads to unique changes in the shape of the tangential pressure profile, especially in larger pores. We show that, due to the direct relationship between the molecular density and the fluid-wall interactions, the latter have a large impact on the pressure tensor. The molecular shape and pore size have a notable impact on the layering of molecules in the pore, greatly influencing both the shape and scale of the tangential pressure profile.

  20. Breakdown pressures and characteristic flaw sizes during fluid injection experiments in shale at elevated confining pressures.

    Science.gov (United States)

    Chandler, M.; Mecklenburgh, J.; Rutter, E. H.; Taylor, R.; Fauchille, A. L.; Ma, L.; Lee, P. D.

    2017-12-01

    Fracture propagation trajectories in gas-bearing shales depend on the interaction between the anisotropic mechanical properties of the shale and the anisotropic in-situ stress field. However, there is a general paucity of available experimental data on their anisotropic mechanical, physical and fluid-flow properties, especially at elevated confining pressures. A suite of mechanical, flow and elastic measurements have been made on two shale materials, the Whitby mudrock and the Mancos shale (an interbedded silt and mudstone), as well as Pennant sandstone, an isotropic baseline and tight-gas sandstone analogue. Mechanical characterization includes standard triaxial experiments, pressure-dependent permeability, brazilian disk tensile strength, and fracture toughness determined using double-torsion experiments. Elastic characterisation was performed through ultrasonic velocities determined using a cross-correlation method. Additionally, we report the results of laboratory-scale fluid injection experiments for the same materials. Injection experiments involved the pressurisation of a blind-ending central hole in a dry cylindrical sample. Pressurisation is conducted under constant volume-rate control, using silicon oils of varying viscosities. Breakdown pressure is not seen to exhibit a strong dependence on rock type or orientation, and increases linearly with confining pressure. In most experiments, a small drop in the injection pressure record is observed at what is taken to be fracture initiation, and in the Pennant sandstone this is accompanied by a small burst of acoustic energy. The shale materials were acoustically quiet. Breakdown is found to be rapid and uncontrollable after initiation if injection is continued. A simplified 2-dimensional model for explaining this is presented in terms of the stress intensities at the tip of a pressurised crack, and is used alongside the triaxial data to derive a characteristic flaw size from which the fractures have initiated

  1. High-pressure apparatus

    NARCIS (Netherlands)

    Schepdael, van L.J.M.; Bartels, P.V.; Berg, van den R.W.

    1999-01-01

    The invention relates to a high-pressure device (1) having a cylindrical high-pressure vessel (3) and prestressing means in order to exert an axial pressure on the vessel. The vessel (3) can have been formed from a number of layers of composite material, such as glass, carbon or aramide fibers which

  2. Pressure profiles of plasmas confined in the field of a magnetic dipole

    International Nuclear Information System (INIS)

    Davis, Matthew S; Mauel, M E; Garnier, Darren T; Kesner, Jay

    2014-01-01

    Equilibrium pressure profiles of plasmas confined in the field of a dipole magnet are reconstructed using magnetic and x-ray measurements on the levitated dipole experiment (LDX). LDX operates in two distinct modes: with the dipole mechanically supported and with the dipole magnetically levitated. When the dipole is mechanically supported, thermal particles are lost along the field to the supports, and the plasma pressure is highly peaked and consists of energetic, mirror-trapped electrons that are created by electron cyclotron resonance heating. By contrast, when the dipole is magnetically levitated losses to the supports are eliminated and particles are lost via slower cross-field transport that results in broader, but still peaked, plasma pressure profiles. (paper)

  3. High-pressure mechanical instability in rocks.

    Science.gov (United States)

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  4. High blood pressure - adults

    Science.gov (United States)

    ... pressure is found. This is called essential hypertension. High blood pressure that is caused by another medical condition or medicine you are taking is called secondary hypertension. Secondary hypertension may be due to: Chronic ...

  5. Simulation of transition dynamics to high confinement in fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Xu, G. S.; Madsen, Jens

    2015-01-01

    The transition dynamics from the low (L) to the high (H) confinement mode in magnetically confined plasmas is investigated using a first-principles four-field fluid model. Numerical results are in agreement with measurements from the Experimental Advanced Superconducting Tokamak - EAST...

  6. Confinement of NORMAL- AND HIGH-STRENGTH CONCRETE by Shape Memory Alloy (SMA) Spirals

    Science.gov (United States)

    Gholampour, A.; Ozbakkaloglu, T.

    2018-01-01

    This paper presents the results of an experimental study on the axial compressive behaviour of normal- and high-strength concrete (NSC and HSC) confined by shape memory alloy (SMA) spirals. A spiral pitch space of 36 and 20 mm was used for SMA confinement of NSC and HSC columns, respectively. The confining pressure was applied on the concrete cylinders by SMA spirals that were prestrained at 0, 5.5, and 9.5%. The compression test results on the SMA-confined specimens indicate that the prestrain level of SMA significantly affects the axial compressive behaviour of both NSC and HSC. An increase in the level of prestrain leads to an increase in the peak axial stress and corresponding strain of SMA-confined concrete.

  7. High-confinement NBI discharges in the W7-AS stellarator

    International Nuclear Information System (INIS)

    Stroth, U.; Baldzuhn, J.; Geiger, J.; Geist, T.; Giannone, L.; Hartfuss, H.-J.; Hirsch, M.; Jaenicke, R.; Kick, M.; Koponen, J.P.; Kuehner, G.; Penningsfeld, F.-P.; Wagner, F.

    1998-01-01

    In W7-AS, the longest energy confinement times were achieved in neutral beam injection heated (NBI-heated) discharges under low wall-recycling conditions. Low recycling is needed to control the density at line-averaged values of n-bar e approx. 10 20 m -3 . Under these conditions, confinement was improved by a factor of two above the common scaling estimate. The reduction of radial transport is concentrated into a layer at about two-thirds of the plasma radius. In this region steep pressure gradients and a strong gradient in the radial electric field develop. Specific for the discharges is the slow transition to improved confinement, lasting up to three energy confinement times. Since the measured electric field is consistent with the neoclassical ambipolar field, this high-confinement mode could be an example where sheared plasma flow as created by the neoclassical radial electric field leads to a suppression of anomalous transport. (author)

  8. High-confinement NBI discharges in the W7-AS stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Stroth, U; Baldzuhn, J; Geiger, J; Geist, T; Giannone, L.; Hartfuss, H -J; Hirsch, M; Jaenicke, R; Kick, M; Koponen, J P; Kuehner, G; Penningsfeld, F -P; Wagner, F [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)

    1998-08-01

    In W7-AS, the longest energy confinement times were achieved in neutral beam injection heated (NBI-heated) discharges under low wall-recycling conditions. Low recycling is needed to control the density at line-averaged values of n-bar{sub e} approx. 10{sup 20}m{sup -3}. Under these conditions, confinement was improved by a factor of two above the common scaling estimate. The reduction of radial transport is concentrated into a layer at about two-thirds of the plasma radius. In this region steep pressure gradients and a strong gradient in the radial electric field develop. Specific for the discharges is the slow transition to improved confinement, lasting up to three energy confinement times. Since the measured electric field is consistent with the neoclassical ambipolar field, this high-confinement mode could be an example where sheared plasma flow as created by the neoclassical radial electric field leads to a suppression of anomalous transport. (author)

  9. Confining pressure effects on stress intensity factors: A 3D finite ...

    African Journals Online (AJOL)

    . MRM Aliha, MR Ayatollahi, MMS Mousavi. Abstract. At great depths of earth, fracture in rock masses occurs under the influence of confining pressure. However, most of the previous rock fracture studies deal only with ambient conditions and ...

  10. Improved GAMMA 10 tandem mirror confinement in high density plasma

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Higaki, H.; Hirata, M.; Hojo, H.; Ichimura, M.; Ishii, K.; Ishimoto, Y.; Itakura, A.; Katanuma, I.; Kohagura, J.; Minami, R.; Nakashima, Y.; Numakura, T.; Saito, T.; Saosaki, S.; Takemura, Y.; Tatematsu, Y.; Yoshida, M.; Yoshikawa, M.

    2003-01-01

    GAMMA 10 experiments have advanced in high density experiments after the last IAEA fusion energy conference in 2000 where we reported the production of the high density plasma through use of ion cyclotron range of frequency heating at a high harmonic frequency and neutral beam injection in the anchor cells. However, the diamagnetic signal of the plasma decreased when electron cyclotron resonance heating was applied for the potential formation. Recently a high density plasma has been obtained without degradation of the diamagnetic signal and with much improved reproducibility than before. The high density plasma was attained through adjustment of the spacing of the conducting plates installed in the anchor transition regions. The potential confinement of the plasma has been extensively studied. Dependences of the ion confinement time, ion-energy confinement time and plasma confining potential on plasma density were obtained for the first time in the high density region up to a density of 4x10 18 m -3 . (author)

  11. High Blood Pressure (Hypertension)

    Science.gov (United States)

    ... other risk factors, like diabetes, you may need treatment. How does high blood pressure affect pregnant women? A few women will get ... HIV, Birth Control Heart Health for Women Pregnancy Menopause More Women's Health ... High Blood Pressure--Medicines to Help You Women and Diabetes Heart ...

  12. High-pressure crystallography

    Science.gov (United States)

    Katrusiak, A.

    2008-01-01

    The history and development of high-pressure crystallography are briefly described and examples of structural transformations in compressed compounds are given. The review is focused on the diamond-anvil cell, celebrating its 50th anniversary this year, the principles of its operation and the impact it has had on high-pressure X-ray diffraction.

  13. Estimation of adsorption-induced pore pressure and confinement in a nanoscopic slit pore by a density functional theory

    Science.gov (United States)

    Grégoire, David; Malheiro, Carine; Miqueu, Christelle

    2018-03-01

    This study aims at characterising the adsorption-induced pore pressure and confinement in nanoscopic pores by molecular non-local density functional theory (DFT). Considering its important potential industrial applications, the adsorption of methane in graphitic slit pores has been selected as the test case. While retaining the accuracy of molecular simulations at pore scale, DFT has a very low computational cost that allows obtaining highly resolved pore pressure maps as a function of both pore width and thermodynamic conditions. The dependency of pore pressure on these parameters (pore width, pressure and temperature) is carefully analysed in order to highlight the effect of each parameter on the confined fluid properties that impact the solid matrix.

  14. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    International Nuclear Information System (INIS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo

    2012-01-01

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c eff of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c eff and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  15. High Blood Pressure

    Science.gov (United States)

    ... kidney disease, diabetes, or metabolic syndrome Read less Unhealthy lifestyle habits Unhealthy lifestyle habits can increase the risk of high blood pressure. These habits include: Unhealthy eating patterns, such as eating too much sodium ...

  16. High Blood Pressure

    Science.gov (United States)

    ... factors Diabetes High blood pressure Family history Obesity Race/ethnicity Full list of causes and risk factors ... give Give monthly Memorials and tributes Donate a car Donate gently used items Stock donation Workplace giving ...

  17. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  18. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  19. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  20. Impurity confinement and transport in high confinement regimes without edge localized modes on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Grierson, B. A., E-mail: bgriers@pppl.gov; Nazikian, R. M.; Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Burrell, K. H.; Garofalo, A. M.; Belli, E. A.; Staebler, G. M.; Evans, T. E.; Smith, S. P.; Chrobak, C. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Fenstermacher, M. E. [Lawerence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); McKee, G. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53796 (United States); Orlov, D. M. [Center for Energy Research, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States)

    2015-05-15

    Impurity transport in the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] is investigated in stationary high confinement (H-mode) regimes without edge localized modes (ELMs). In plasmas maintained by resonant magnetic perturbation (RMP), ELM-suppression, and QH-mode, the confinement time of fluorine (Z = 9) is equivalent to that in ELMing discharges with 40 Hz ELMs. For selected discharges with impurity injection, the impurity particle confinement time compared to the energy confinement time is in the range of τ{sub p}/τ{sub e}≈2−3. In QH-mode operation, the impurity confinement time is shown to be smaller for intense, coherent magnetic, and density fluctuations of the edge harmonic oscillation than weaker fluctuations. Transport coefficients are derived from the time evolution of the impurity density profile and compared to neoclassical and turbulent transport models NEO and TGLF. Neoclassical transport of fluorine is found to be small compared to the experimental values. In the ELMing and RMP ELM-suppressed plasma, the impurity transport is affected by the presence of tearing modes. For radii larger than the mode radius, the TGLF diffusion coefficient is smaller than the experimental value by a factor of 2–3, while the convective velocity is within error estimates. Low levels of diffusion are observed for radii smaller than the tearing mode radius. In the QH-mode plasma investigated, the TGLF diffusion coefficient is higher inside of ρ=0.4 and lower outside of 0.4 than the experiment, and the TGLF convective velocity is more negative by a factor of approximately 1.7.

  1. High-pressure tritium

    International Nuclear Information System (INIS)

    Coffin, D.O.

    1976-01-01

    Some solutions to problems of compressing and containing tritium gas to 200 MPa at 700 0 K are discussed. The principal emphasis is on commercial compressors and high-pressure equipment that can be easily modified by the researcher for safe use with tritium. Experience with metal bellows and diaphragm compressors has been favorable. Selection of materials, fittings, and gauges for high-pressure tritium work is also reviewed briefly

  2. Design of experimental system for supercritical CO2 fracturing under confining pressure conditions

    Science.gov (United States)

    Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.

    2018-03-01

    Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.

  3. High efficiency confinement mode by electron cyclotron heating

    International Nuclear Information System (INIS)

    Funahashi, Akimasa

    1987-01-01

    In the medium size nuclear fusion experiment facility JFT-2M in the Japan Atomic Energy Research Institute, the research on the high efficiency plasma confinement mode has been advanced, and in the experiment in June, 1987, the formation of a high efficiency confinement mode was successfully controlled by electron cyclotron heating, for the first time in the world. This result further advanced the control of the formation of a high efficiency plasma confinement mode and the elucidation of the physical mechanism of that mode, and promoted the research and development of the plasma heating by electron cyclotron heating. In this paper, the recent results of the research on a high efficiency confinement mode at the JFT-2M are reported, and the role of the JFT-2M and the experiment on the improvement of core plasma performance are outlined. Now the plasma temperature exceeding 100 million deg C has been attained in large tokamaks, and in medium size facilities, the various measures for improving confinement performance are to be brought forth and their scientific basis is elucidated to assist large facilities. The JFT-2M started the operation in April, 1983, and has accumulated the results smoothly since then. (Kako, I.)

  4. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  5. Deuterium high pressure target

    International Nuclear Information System (INIS)

    Perevozchikov, V.V.; Yukhimchuk, A.A.; Vinogradov, Yu.I.

    2001-01-01

    The design of the deuterium high-pressure target is presented. The target having volume of 76 cm 3 serves to provide the experimental research of muon catalyzed fusion reactions in ultra-pure deuterium in the temperature range 80-800 K under pressures of up to 150 MPa. The operation of the main systems of the target is described: generation and purification of deuterium gas, refrigeration, heating, evacuation, automated control system and data collection system

  6. Effects of low-Z and high-Z impurities on divertor detachment and plasma confinement

    Directory of Open Access Journals (Sweden)

    H.Q. Wang

    2017-08-01

    Full Text Available The impurity-seeded detached divertor is essential for heat exhaust in ITER and other reactor-relevant devices. Dedicated experiments with injection of N2, Ne and Ar have been performed in DIII-D to assess the impact of the different impurities on divertor detachment and confinement. Seeding with N2, Ne and Ar all promote divertor detachment, greatly reducing heat flux near the strike point. The upstream plasma density at the onset of detachment decreases with increasing impurity-puffing flow rates. For all injected impurity species, the confinement and pedestal pressure are correlated with the impurity content and the ratio of separatrix loss power to the l-H transition threshold power. As the divertor plasma approaches detachment, the high-Z impurity seeding tends to degrade the core confinement owing to the increased core radiation. In particular, Ar injection with up to 50% of the injected power radiating in the core cools the pedestal and core plasmas, thus significantly degrading the confinement. As for Ne seeding, medium confinement with H98∼0.8 can be maintained during the detachment phase with the pedestal temperature being reduced by about 50%. In contrast, in the N2 seeded plasmas, radiation is predominately confined in the boundary plasma, which leads to less effect on the confinement and pedestal. In the case of strong N2 gas puffing, the confinement recovers during the detachment, from ∼20% reduction at the onset of the detachment to greater than unity comparable to that before the seeding. The core and pedestal temperatures feature a reduction of 30% from the initial attached phase and remain nearly constant during the detachment phase. The improvement in confinement appears to arise from the increase in pedestal and core density despite the temperature reduction.

  7. High beta and confinement studies on TFTR

    International Nuclear Information System (INIS)

    1990-01-01

    In the first 8 months of this project we have made substantial progress toward the goals set out in our original proposal. Our plan to access new regimes of operation at high values of var-epsilon β p using low current discharges in TFTR has worked extremely well and a new regime of operation has indeed been found in the course of our execution of TFTR Experimental Proposal 146 which involved our operation of TFTR on 9 November 1989, 19--20 January 1990 and 1--2 February 1990. The status of our high var-epsilon β p work on TFTR is given and is extracted from our paper submitted for presentation to the 1990 EPS meeting in Amsterdam. We have also performed an analysis of the energetic particle stabilization requirements for TFTR Supershots, and developed methods for analysis and a theory of perturbative transport measurements in TFTR

  8. Thermal properties of Avery Island salt to 5730K and 50-MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-01-01

    Thermal conductivity, thermal diffusivity, and thermal linear expansion were measured on two samples of Avery Island rock salt up to simultaneous temperatures and pressures of 573 0 K and 50 MPa. Thermal conductivity at room temperature measured 6.3 +- 0.6 W/mK and decreased monotonically to 3.3 +- 0.4 W/mK at 573 0 K. Thermal diffusivity decreased from 3.0 +- 0.8 x 10 -6 m 2 /s at room temperature to 1.4 +- 0.5 x 10 -6 m 2 /s at 573 0 K. Thermal linear expansivity increased from 4.8 +- 0.3 x 10 -5 K -1 at room temperature to 5.6 +- 0.3 x 10 -5 K -1 at 573 0 K. The thermal properties showed no measurable (+-5%) dependence on confining pressure from 0 to 50 MPa for any temperature tested. The thermal conductivity values were not distinguishable (+-5%) from intrinsic (single crystal) values measured by others. Diffusivity fell about 20% below intrinsic values, and linear expansivity about 20% above intrinsic values. Thermal conductivity values for Avery Island salt measured recently by Morgan are as much as 50% lower than values measured here and were probably strongly affected by sample handling prior to measurement. The pressure independence of the thermal properties measured in our study suggests that thermally-induced microfracturing is nearly nonexistent. This lack of thermal cracking is consistent with the high (cubic) symmetry of halite

  9. Thermal properties of Permian Basin evaporites to 493 K temperature and 30 MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Heard, H.C.; Boro, C.O.; Keller, K.T.; Ralph, W.E.; Trimmer, D.A.

    1987-03-01

    Laboratory measurements of the thermal conductivity and diffusivity of four rock salts, two anhydrites, and two dolomites bordering Cycle 4 and Cycle 5 bedded salt formations in the Permian Basin in Deaf Smith County, Texas, were made in conditions ranging from 303 to 473 K in temperature and 0.1 to 31.0 MPa in hydrostatic confining pressure. Within the +-5% measurement resolution neither conductivity nor diffusivity showed a dependence upon pressure in any of the rocks. Conductivity and diffusivity in all rocks had a negative temperature dependence. For the Cycle 4 salt samples, conductivity fell from 5.5 to 3.75 W/m . K, and diffusivity fell from about 2.7 to 1.7 x 10 -6 m 2 /s. One Cycle 5 salt was a single crystal with anomalous results, but the other had a low conductivity with very weak temperature dependence and a high diffusivity. In the nonsalts, conductivity and diffusivity decreased 10 to 20% over the temperature range explored. In measurements of the coefficient of thermal linear expansion for Cycle 5 salt and nonsalts, the coefficient typically varied from about 12 x 10 -6 K -1 at P = 3.0 MPa to 4 x 10 -6 K -1 at P = 30 MPa for both nonsalt rocks. In anhydrite, it decreased with increasing temperature. In dolomite, the coefficient increased at roughly the same rate. Expansion of the salt ranged from 33 to 38 x 10 -6 K -1 and was independent of pressure and temperature

  10. Highly Confined Electronic and Ionic Conduction in Oxide Heterostructures

    DEFF Research Database (Denmark)

    Pryds, Nini

    2015-01-01

    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. In this talk I will present our recent results both on ionic and electronic conductivity at different heterostructures systems. In the first...... unattainable for Bi2O3-based materials, is achieved[1]. These confined heterostructures provide a playground not only for new high ionic conductivity phenomena that are sufficiently stable but also uncover a large variety of possible technological perspectives. At the second part, I will discuss and show our...

  11. High Pressure Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Pradeep K [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDO hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However

  12. The effects of confining pressure and stress difference on static fatigue of granite

    Science.gov (United States)

    Kranz, R. L.

    1980-01-01

    Samples of Barre granite have been creep tested at room temperature at confining pressures up to 2 kbar. Experimental procedures are described and the results of observations and analysis are presented. It is noted that the effect of pressure is to increase the amount of inelastic deformation the rock can sustain before becoming unstable. It is also shown that this increased deformation is due to longer and more numerous microcracks.

  13. Low-confinement high-power semiconductor lasers

    NARCIS (Netherlands)

    Buda, M.

    1999-01-01

    This thesis presents the results of studies related to optimisation of high power semiconductor laser diodes using the low confinement concept. This implies a different approach in designing the transversal layer structure before growth and in processing the wafer after growth, for providing the

  14. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  15. Fascination at high pressures

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Research at high pressures has developed into an interdisciplinary area which has important implications for and applications in the areas of physics, chemistry, materials sciences, planetary sciences, biology, engineering sciences and technology. The state of-the-art in this field is reviewed and future directions are indicated. (M.G.B.)

  16. Thermal properties of Permian Basin evaporites to 493 K and 30 MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Heard, H.C.; Boro, C.O.; Keller, K.T.; Ralph, W.E.; Trimmer, D.A.

    1987-01-01

    Laboratory measurements have been made of the thermal conductivity and diffusivity of four rock salts, two anhydrites, and two dolomites bordering the Cycle 4 and Cycle 5 bedded salt formations in the Permian Basin in Deaf Smith County, Texas. Measurement conditions ranged from 303 to 473 K in temperature, and 0.1 to 31.0 MPa in hydrostatic confining pressure. Within the +-5% measurement resolution neither conductivity nor diffusivity showed a dependence upon pressure in any of the rocks. Conductivity and diffusivity in all rocks had a negative temperature dependence. For the two Cycle 4 salt samples, conductivity over the temperature range explored fell from 5.5 to 3.75 W/m.K, and diffusivity fell from about 2.7 to 1.7 x 10 -6 m 2 /s. One of the Cycle 5 salts was a single crystal which had anomalous results, but the other had a low conductivity, about 3.4 W/m.K, with very weak temperature dependence, and a high diffusivity, 3.8 to 2.5 x 10 -6 m 2 /s over the temperature range. In the nonsalts, conductivity and diffusivity decreased 10 to 20% over the temperature range explored, which was 308 -6 m 2 /s for the anhydrites and 1.4 x 10 -6 m 2 /s for both the dolomites. The coefficient of thermal linear expansion was measured for the Cycle 5 salt and nonsalts over 308 -6 K -1 at P = 3.0 MPa to 4 x 10 -6 K -1 at P = 30 MPa for both nonsalt rocks. In anhydrite, it decreased with increasing temperature at a rate of roughly 5 x 10 -8 K -2 at all pressures. In dolomite, the coefficient increased at roughly the same rate. Expansion of the salt ranged from 33 to 38 x 10 -6 K -1 and was independent of pressure and temperature

  17. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    Science.gov (United States)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  18. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-01-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic

  19. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Nielsen, Anders Henry; Madsen, Jens

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak......–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null...... including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L...

  20. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    International Nuclear Information System (INIS)

    Rasmussen, J Juul; Nielsen, A H; Madsen, J; Naulin, V; Xu, G S

    2016-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak including both open and closed field lines. The results reveal different types of L–H-like transitions in response to ramping up the input power by increasing the ion temperature in the edge region. For a fast rising input power we obtain an abrupt transition, and for a slow rising power we obtain a L–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null configuration. The results hold promises for developing full predictive modeling of the L–H transition, which is an essential step in understanding and optimizing fusion devices. (paper)

  1. Cryogenic, Absolute, High Pressure Sensor

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  2. Cryogenic High Pressure Sensor Module

    Science.gov (United States)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  3. Pressure Dome for High-Pressure Electrolyzer

    Science.gov (United States)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  4. Dynamic behaviour of the high confinement mode of fusion plasmas

    International Nuclear Information System (INIS)

    Zohm, H.

    1995-05-01

    This paper describes the dynamic behaviour of the High Confinement mode (H-mode) of fusion plasmas, which is one of the most promising regimes of enhanced energy confinement in magnetic fusion research. The physics of the H-mode is not yet fully understood, and the detailed behaviour is complex. However, we establish a simple physics picture of the phenomenon. Although a first principles theory of the anomalous transport processes in a fusion plasma has not yet been given, we show that within the picture developed here, it is possible to describe the dynamic behaviour of the H-mode, namely the dynamics of the L-H transition and the occurrence of edge localized modes (ELMs). (orig.)

  5. Edge operational space for high density/high confinement ELMY H-modes in JET

    International Nuclear Information System (INIS)

    Sartori, R.; Saibene, G.; Loarte, A.

    2002-01-01

    This paper discusses how the proximity to the L-H threshold affects the confinement of ELMy H-modes at high density. The largest reduction in confinement at high density is observed at the transition from the Type I to the Type III ELMy regime. At medium plasma triangularity, δ≅0.3 (where δ is the average triangularity at the separatrix), JET experiments show that by increasing the margin above the L-H threshold power and maintaining the edge temperature above the critical temperature for the transition to Type III ELMs, it is possible to avoid the degradation of the pedestal pressure with density, normally observed at lower power. As a result, the range of achievable densities (both in the core and in the pedestal) is increased. At high power above the L-H threshold power the core density was equal to the Greenwald limit with H97≅0.9. There is evidence that a mixed regime of Type I and Type II ELMs has been obtained at this intermediate triangularity, possibly as a result of this increase in density. At higher triangularity, δ≅0.5, the power required to achieve similar results is lower. (author)

  6. Pressure-driven occlusive flow of a confined red blood cell.

    Science.gov (United States)

    Savin, Thierry; Bandi, M M; Mahadevan, L

    2016-01-14

    When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.

  7. Influence of loading and unloading velocity of confining pressure on strength and permeability characteristics of crystalline sandstone

    Science.gov (United States)

    Zhang, Dong-ming; Yang, Yu-shun; Chu, Ya-pei; Zhang, Xiang; Xue, Yan-guang

    2018-06-01

    The triaxial compression test of crystalline sandstone under different loading and unloading velocity of confining pressure is carried out by using the self-made "THM coupled with servo-controlled seepage apparatus for containing-gas coal", analyzed the strength, deformation and permeability characteristics of the sample, the results show that: with the increase of confining pressures loading-unloading velocity, Mohr's stress circle center of the specimen shift to the right, and the ultimate intensity, peak strain and residual stress of the specimens increase gradually. With the decrease of unloading velocity of confining pressure, the axial strain, the radial strain and the volumetric strain of the sample decrease first and then increases, but the radial strain decreases more greatly. The loading and unloading of confining pressure has greater influence on axial strain of specimens. The deformation modulus decreases rapidly with the increase of axial strain and the Poisson's ratio decreases gradually at the initial stage of loading. When the confining pressure is loaded, the deformation modulus decrease gradually, and the Poisson's ratio increases gradually. When the confining pressure is unloaded, the deformation modulus increase gradually, and the Poisson's ratio decreases gradually. When the specimen reaches the ultimate intensity, the deformation modulus decreases rapidly, while the Poisson's ratio increases rapidly. The fitting curve of the confining pressure and the deformation modulus and the Poisson's ratio in accordance with the distribution of quadratic polynomial function in the loading-unloading confining pressure. There is a corresponding relationship between the evolution of rock permeability and damage deformation during the process of loading and unloading. In the late stage of yielding, the permeability increases slowly, and the permeability increases sharply after the rock sample is destroyed. Fitting the permeability and confining pressure

  8. Energy confinement in a high-current reversed field pinch

    International Nuclear Information System (INIS)

    An, Z.G.; Lee, G.S.; Diamond, P.H.

    1985-07-01

    The ion temperature gradient driven (eta/sub i/) mode is proposed as a candidate for the cause of anomalous transport in high current reversed field pinches. A 'four-field' fluid model is derived to describe the coupled nonlinear evolution of resistive interchange and eta/sub i/ modes. A renormalized theory is discussed, and the saturation level of the fluctuations is analytically estimated. Transport scalings are obtained, and their implications discussed. In particular, these results indicate that pellet injection is a potentially viable mechanism for improving energy confinement in a high temperature RFP

  9. Modelling of HTR Confinement Behaviour during Accidents Involving Breach of the Helium Pressure Boundary

    Directory of Open Access Journals (Sweden)

    Joan Fontanet

    2009-01-01

    Full Text Available Development of HTRs requires the performance of a thorough safety study, which includes accident analyses. Confinement building performance is a key element of the system since the behaviour of aerosol and attached fission products within the building is of an utmost relevance in terms of the potential source term to the environment. This paper explores the available simulation capabilities (ASTEC and CONTAIN codes and illustrates the performance of a postulated HTR vented confinement under prototypical accident conditions by a scoping study based on two accident sequences characterized by Helium Pressure Boundary breaches, a small and a large break. The results obtained indicate that both codes predict very similar thermal-hydraulic responses of the confinement both in magnitude and timing. As for the aerosol behaviour, both codes predict that most of the inventory coming into the confinement is eventually depleted on the walls and only about 1% of the aerosol dust is released to the environment. The crosscomparison of codes states that largest differences are in the intercompartmental flows and the in-compartment gas composition.

  10. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  11. High pressure mechanical seal

    Science.gov (United States)

    Babel, Henry W. (Inventor); Anderson, Raymond H. (Inventor)

    1996-01-01

    A relatively impervious mechanical seal is formed between the outer surface of a tube and the inside surface of a mechanical fitting of a high pressure fluid or hydraulic system by applying a very thin soft metal layer onto the outer surface of the hard metal tube and/or inner surface of the hard metal fitting. The thickness of such thin metal layer is independent of the size of the tube and/or fittings. Many metals and alloys of those metals exhibit the requisite softness, including silver, gold, tin, platinum, indium, rhodium and cadmium. Suitably, the coating is about 0.0025 millimeters (0.10 mils) in thickness. After compression, the tube and fitting combination exhibits very low leak rates on the order or 10.sup.-8 cubic centimeters per second or less as measured using the Helium leak test.

  12. Common High Blood Pressure Myths

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More Common High Blood Pressure Myths Updated:May 4,2018 Knowing the facts ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  13. Medications for High Blood Pressure

    Science.gov (United States)

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options ... age and you cannot tell if you have high blood pressure by the way you feel, so have your ...

  14. High blood pressure and diet

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007483.htm High blood pressure and diet To use the sharing features on ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ...

  15. Production and study of high-beta plasma confined by a superconducting dipole magnet

    International Nuclear Information System (INIS)

    Garnier, D.T.; Hansen, A.; Mauel, M.E.; Ortiz, E.; Boxer, A.C.; Ellsworth, J.; Karim, I.; Kesner, J.; Mahar, S.; Roach, A.

    2006-01-01

    The Levitated Dipole Experiment (LDX) [J. Kesner et al., in Fusion Energy 1998, 1165 (1999)] is a new research facility that is exploring the confinement and stability of plasma created within the dipole field produced by a strong superconducting magnet. Unlike other configurations in which stability depends on curvature and magnetic shear, magnetohydrodynamic stability of a dipole derives from plasma compressibility. Theoretically, the dipole magnetic geometry can stabilize a centrally peaked plasma pressure that exceeds the local magnetic pressure (β>1), and the absence of magnetic shear allows particle and energy confinement to decouple. In initial experiments, long-pulse, quasi-steady-state microwave discharges lasting more than 10 s have been produced that are consistent with equilibria having peak beta values of 20%. Detailed measurements have been made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. In these initial experiments, the high-field superconducting floating coil was supported by three thin supports. The plasma is created by multifrequency electron cyclotron resonance heating at 2.45 and 6.4 GHz, and a population of energetic electrons, with mean energies above 50 keV, dominates the plasma pressure. Creation of high-pressure, high-beta plasma is possible only when intense hot electron interchange instabilities are stabilized by sufficiently high background plasma density. A dramatic transition from a low-density, low-beta regime to a more quiescent, high-beta regime is observed when the plasma fueling rate and confinement time become sufficiently large

  16. Thermal properties of rock salt and quartz monzonite to 5730K and 50-MPa confining pressure

    International Nuclear Information System (INIS)

    Durham, W.B.; Abey, A.E.

    1981-01-01

    Measurements of thermal conductivity, thermal diffusivity, and thermal linear expansion have been made on two rock types, a rock salt and a quartz monzonite, at temperatures from 300 to 573 0 K and confining pressures from 10 to 50 MPa. The samples were taken from deep rock formations under consideration as possible sites for a nuclear waste repository - the rock salt from a domal salt formation at Avery Island, Louisiana, and the quartz monzonite from the Climax Stock, Nevada Test Site, Nevada. The testing temperature and pressures are meant to bracket conditions expected in the repository. In both rock types, the thermal properties show a strong dependence upon temperature and a weak or non-dependence upon confining pressure. Thermal conductivity and diffusivity both decrease with increasing temperature in approximately linear fashion for samples which have not been previously heated. At 50 MPa in both rocks this decrease closely matches the measured or expected intrinsic (crack-free) behavior of the material. Preliminary indications from the quartz monzonite suggest that conductivity and diffusivity at low pressure and temperature may decrease as a result of heat treatment above 400 0 K

  17. Controlling your high blood pressure

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000101.htm Controlling your high blood pressure To use the sharing features on this page, ... JavaScript. Hypertension is another term used to describe high blood pressure. High blood pressure can lead to: Stroke Heart ...

  18. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  19. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  20. High-β, improved confinement reversed-field pinch plasmas at high density

    International Nuclear Information System (INIS)

    Wyman, M. D.; Chapman, B. E.; Ahn, J. W.; Almagri, A. F.; Anderson, J. K.; Den Hartog, D. J.; Ebrahimi, F.; Ennis, D. A.; Fiksel, G.; Gangadhara, S.; Goetz, J. A.; O'Connell, R.; Oliva, S. P.; Prager, S. C.; Reusch, J. A.; Sarff, J. S.; Stephens, H. D.; Bonomo, F.; Franz, P.; Brower, D. L.

    2008-01-01

    In Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] discharges where improved confinement is brought about by modification of the current profile, pellet injection has quadrupled the density, reaching n e =4x10 19 m -3 . Without pellet injection, the achievable density in improved confinement discharges had been limited by edge-resonant tearing instability. With pellet injection, the total beta has been increased to 26%, and the energy confinement time is comparable to that at low density. Pressure-driven local interchange and global tearing are predicted to be linearly unstable. Interchange has not yet been observed experimentally, but there is possible evidence of pressure-driven tearing, an instability usually driven by the current gradient in the reversed-field pinch

  1. High Blood Pressure in Pregnancy

    Science.gov (United States)

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  2. Visual inspection technology of the narrow and small confined area for monitoring feederpipe support of pressure tube in calandria reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Wan; Lee, Nam Ho; Choi, Young Soo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    There are 760 feederpipes, which they are connected to inlet/outlet of the 380 pressure tube channels on the front of the calandria, in CANDU-type Reactor of Wolsung Nuclear Power Plant. As an ISI(In-Service Inspection) and PSI (Post-Service Inspection) requirements, maintenance activities of measuring the thickness of curvilinear part of feederpipe and inspecting the feederpipe support area within calandria are needed to ensure continued reliable operation of nuclear power plant. And ultrasonic probe is used to measure the thickness of curvilinear part of feederpipe, however workers are exposed to radioactivity irradiation during the measurement period. But, it is exposed to radioactivity irradiation during the measurement period. But, it is impossible to inspect feederpipe support area thoroughly because of narrow and confined accessibility, that is , an inspection space between the pressure tube channels is less than 100 mm and pipes in feederpipe support area are congested. And also, workers involved in inspecting feederpipe support area are under the jeopardy of high-level radiation exposure. Concerns about sliding home, which make the move of feederpipe connected to pressure tube channel smooth as pressure tube expands and contracts in its axial direction, stuck to feedeerpipe support and some of the structural components have made necessary the development of video inspection probe system with narrow and confined accessibility to observe and inspect feederpipe support area more close. Using video inspection probe system, it is possible to inspect and repair abnormality of feederpipe support connected to pressure tube channels of the calandria more accurate and quantative than naked eye. Therefore, that will do much for ensuring safety of CANDU-type nuclear power plant. 45 figs.,31 tabs. (Author)

  3. Laboratory Investigation to Assess the Impact of Pore Pressure Decline and Confining Stress on Shale Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    khalil Rehman Memon

    2018-01-01

    Full Text Available Four core samples of outcrop type shale from Mancos, Marcellus, Eagle Ford, and Barnett shale formations were studied to evaluate the productivity performance and reservoir connectivity at elevated temperature and pressure. These laboratory experiments were conducted using hydrostatic permeability system with helium as test gas primarily to avoid potential significant effects of adsorption and/or associated swelling that might affect permeability. It was found that the permeability reduction was observed due to increasing confining stress and permeability improvement was observed related to Knudsen flow and molecular slippage related to Klinkenberg effect. Through the effective permeability of rock is improved at lower pore pressures, as 1000 psi. The effective stress with relatively high flow path was identified, as 100-200 nm, in Eagle Ford core sample. However other three samples showed low marginal flow paths in low connectivity.

  4. Energy confinement in Doublet III with high-Z limiters

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.; Adcock, S.J.; Baker, D.R.; Blau, F.P.; Brooks, N.H.; Chase, R.P.; DeBoo, J.C.; Ejima, S.; Fairbanks, E.S.; Fisher, R.K.

    1980-02-01

    This report describes the experimental measurements and data analysis techniques used to evaluate the energy confinement in noncircular plasmas produced in Doublet III. Major aspects of the confinement measurements and analysis techniques are summarized. Machine parameters, diagnostic systems and discharge parameters relavent to the confinement measurements are given. Magnetic analysis techniques used to determine the plasma shape are reviewed. Scaling of the on-axis values of electron temperature, confinement time and Z/sub eff/ with plasma density is presented. Comparison with scaling results from other circular tokamaks is discussed. Numerical and analytic techniques developed for calculating the plasma energy confinement time and self-consistent profiles of density, temperature, current, and flux in non-circular geometries are described. These techniques are applied to the data and used to determine the central and global electron energy confinement time for a typical doublet plasma. Additional aspects of the confinement such as the radial dependence of the electron thermal conductivity and the estimated ion temperature are explored with the aid of a non-circular transport simulation code. The results of the confinement measurements are summarized and discussed. A brief summary of the theoretically expected effects of noncircularity on plasma confinement is included for reference as Appendix I.

  5. What Is High Blood Pressure?

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  6. Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines

    Directory of Open Access Journals (Sweden)

    Jingxuan Yang

    2017-11-01

    Full Text Available In extra-thick coal seams, mining operations can lead to large-scale disturbances, complex overburden structures, and frequent and strong strata behavior in the stope, which are serious threats to mine safety. This study analyzed the overburden structure and strata behavior and proposed the technique of confined blasting in water-filled deep holes as a measure to prevent strong rock pressure. It found that there are two primary reasons for the high effectiveness of the proposed technique in presplitting hard coal and rock. First, the fracture water enables much more efficient transfer of dynamic load due to its incompressibility. Second, the subsequent expansion of water can further split the rock by compression. A mechanical model was used to reveal how the process of confined blasting in water-filled deep holes presplit roof. Moreover, practical implementation of this technique was found to improve the structure of hard, thick roof and prevent strong rock pressure, demonstrating its effectiveness in roof control.

  7. High pressure shaft seal

    International Nuclear Information System (INIS)

    Martinson, A.R.; Rogers, V.D.

    1980-01-01

    In relation to reactor primary coolant pumps, mechanical seal assembly for a pump shaft is disclosed which features a rotating seal ring mounting system which utilizes a rigid support ring loaded through narrow annular projections in combination with centering non-sealing O-rings which effectively isolate the rotating seal ring from temperature and pressure transients while securely positioning the ring to adjacent parts. A stationary seal ring mounting configuration allows the stationary seal ring freedom of motion to follow shaft axial movement up to 3/4 of an inch and shaft tilt about the pump axis without any change in the hydraulic or pressure loading on the stationary seal ring or its carrier. (author)

  8. Plasma confinement of Nagoya high-beta toroidal-pinch experiments

    International Nuclear Information System (INIS)

    Hirano, K.; Kitagawa, S.; Wakatani, M.; Kita, Y.; Yamada, S.; Yamaguchi, S.; Sato, K.; Aizawa, T.; Osanai, Y.; Noda, N.

    1977-01-01

    Two different types of high-β toroidal pinch experiments, STP [1] and CCT [2,3], have been done to study the confinement of the plasma produced by a theta-pinch. The STP is an axisymmetric toroidal pinch of high-β tokamak type, while the CCT consists of multiply connected periodic toroidal traps. Internal current-carrying copper rings are essential to the CCT. Since both apparatuses use the same fast capacitor bank system, they produce rather similar plasma temperatures and densities. The observed laser scattering temperature and density is about 50 eV and 4x10 15 cm -3 , respectively, when the filling pressure is 5 mtorr. In the STP experiment, strong correlations are found between the βsub(p) value and the amplitude of m=2 mode. It has a minimum around the value of βsub(p) of 0.8. The disruptive instability is observed to expand the pinched plasma column without lowering the plasma temperature. Just before the disruption begins, the q value around the magnetic axis becomes far less than 1 and an increase of the amplitude of m=2 mode is seen. The CCT also shows rapid plasma expansion just before the magnetic field reaches its maximum. Then the trap is filled up with the plasma by this irreversible expansion and stable plasma confinement is achieved. The energy confinement time of the CCT is found to be about 35 μs. (author)

  9. High efficiency targets for high gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the Induced Spatial Incoherence (ISI) technique which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh-Taylor growth rate is considerably reduced at the short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh-Taylor instability, pellets using 1/4 micron laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150 to 200) may produce energy gains as high as 200 to 250

  10. High Blood Pressure - Multiple Languages

    Science.gov (United States)

    ... Being 8 - High Blood Pressure - Amarɨñña / አማርኛ (Amharic) MP3 Siloam Family Health Center Arabic (العربية) Expand Section ... Being 8 - High Blood Pressure - myanma bhasa (Burmese) MP3 Siloam Family Health Center Chinese, Simplified (Mandarin dialect) ( ...

  11. Fundamentals of high pressure adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

    2009-12-15

    High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

  12. High pressure phase transformations revisited.

    Science.gov (United States)

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  13. High pressure phase transformations revisited

    Science.gov (United States)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  14. Confinement Can Violate Momentum Sum Rule in QCD at High Energy Colliders

    OpenAIRE

    Nayak, Gouranga C

    2018-01-01

    Momentum sum rule in QCD is widely used at high energy colliders. Although the exact form of the confinement potential energy is not known but the confinement potential energy at large distance $r$ can not rise slower than ${\\rm ln}(r)$. In this paper we find that if the confinement potential energy at large distance $r$ rises linearly with $r$ (or faster) then the momentum sum rule in QCD is violated at the high energy colliders.

  15. High pressure experimental water loop

    International Nuclear Information System (INIS)

    Grenon, M.

    1958-01-01

    A high pressure experimental water loop has been made for studying the detection and evolution of cladding failure in a pressurized reactor. The loop has been designed for a maximum temperature of 360 deg. C, a maximum of 160 kg/cm 2 and flow rates up to 5 m 3 /h. The entire loop consists of several parts: a main circuit with a canned rotor circulation pump, steam pressurizer, heating tubes, two hydro-cyclones (one de-gasser and one decanter) and one tubular heat exchanger; a continuous purification loop, connected in parallel, comprising pressure reducing valves and resin pots which also allow studies of the stability of resins under pressure, temperature and radiation; following the gas separator is a gas loop for studying the recombination of the radiolytic gases in the steam phase. The preceding circuits, as well as others, return to a low pressure storage circuit. The cold water of the low pressure storage flask is continuously reintroduced into the high pressure main circuit by means of a return pump at a maximum head of 160 kg /cm 2 , and adjusted to the pressurizer level. This loop is also a testing bench for the tight high pressure apparatus. The circulating pump and the connecting flanges (Oak Ridge type) are water-tight. The feed pump and the pressure reducing valves are not; the un-tight ones have a system of leak recovery. To permanently check the tightness the circuit has been fitted with a leak detection system (similar to the HRT one). (author) [fr

  16. High density plasmas formation in Inertial Confinement Fusion and Astrophysics

    International Nuclear Information System (INIS)

    Martinez-Val, J. M.; Minguez, E.; Velarde, P.; Perlado, J. M.; Velarde, G.; Bravo, E.; Eliezer, S.; Florido, R.; Garcia Rubiano, J.; Garcia-Senz, D.; Gil de la Fe, J. M.; Leon, P. T.; Martel, P.; Ogando, F.; Piera, M.; Relano, A.; Rodriguez, R.; Garcia, C.; Gonzalez, E.; Lachaise, M.; Oliva, E.

    2005-01-01

    In inertially confined fusion (ICF), high densities are required to obtain high gains. In Fast Ignition, a high density, low temperature plasma can be obtained during the compression. If the final temperature reached is low enough, the electrons of the plasma can be degenerate. In degenerate plasmas. Bremsstrahlung emission is strongly suppressed an ignition temperature becomes lower than in classical plasmas, which offers a new design window for ICF. The main difficulty of degenerate plasmas in the compression energy needed for high densities. Besides that, the low specific heat of degenerate electrons (as compared to classical values) is also a problem because of the rapid heating of the plasma. Fluid dynamic evolution of supernovae remnants is a very interesting problem in order to predict the thermodynamical conditions achieved in their collision regions. Those conditions have a strong influence in the emission of light and therefore the detection of such events. A laboratory scale system has been designed reproducing the fluid dynamic field in high energy experiments. The evolution of the laboratory system has been calculated with ARWEN code, 2D Radiation CFD that works with Adaptive Mesh Refinement. Results are compared with simulations on the original system obtained with a 3D SPH astrophysical code. New phenomena at the collision plane and scaling of the laboratory magnitudes will be described. Atomic physics for high density plasmas has been studied with participation in experiments to obtain laser produced high density plasmas under NLTE conditions, carried out at LULI. A code, ATOM3R, has been developed which solves rate equations for optically thin plasmas as well as for homogeneous optically thick plasmas making use of escape factors. New improvements in ATOM3R are been done to calculate level populations and opacities for non homogeneous thick plasmas in NLTE, with emphasis in He and H lines for high density plasma diagnosis. Analytical expression

  17. Psoriasis and high blood pressure.

    Science.gov (United States)

    Salihbegovic, Eldina Malkic; Hadzigrahic, Nermina; Suljagic, Edin; Kurtalic, Nermina; Sadic, Sena; Zejcirovic, Alema; Mujacic, Almina

    2015-02-01

    Psoriasis is a chronic skin ailment which can be connected with an increased occurrence of other illnesses, including high blood pressure. A prospective study has been conducted which included 70 patients affected by psoriasis, both genders, older than 18 years. Average age being 47,14 (SD= ±15,41) years, from that there were 36 men or 51,43 and 34 women or 48,57%. Average duration of psoriasis was 15,52 (SD=±12,54) years. Frequency of high blood pressure in those affected by psoriasis was 54,28%. Average age of the patients with psoriasis and high blood pressure was 53,79 year (SD=±14,15) and average duration of psoriasis was 17,19 years (SD=±13,51). Average values of PASI score were 16,65. Increase in values of PASI score and high blood pressure were statistically highly related (r=0,36, p=0,0001). Psoriasis was related to high blood pressure and there was a correlation between the severity of psoriasis and high blood pressure.

  18. High Blood Pressure and Women

    Science.gov (United States)

    ... is known as gestational hypertension, a form of secondary hypertension caused by the pregnancy that usually disappears after delivery. If the mother is not treated, high blood pressure can be dangerous to both the mother ...

  19. High Pressure Industrial Water Facility

    Science.gov (United States)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  20. High Pressure Research on Materials

    Indian Academy of Sciences (India)

    example, represents the stress on the x plane in the y direction. There are three .... optical studies and studying compressibility of fluids. 3.2 Opposed ..... [4] G N Peggs, High Pressure Measurement Techniques, Applied Science. Publishers ...

  1. High-confinement-mode edge stability of Alcator C-mod plasmas

    International Nuclear Information System (INIS)

    Mossessian, D.A.; Snyder, P.; Hubbard, A.; Hughes, J.W.; Greenwald, M.; La Bombard, B.; Snipes, J.A.; Wolfe, S.; Wilson, H.

    2003-01-01

    For steady state high-confinement-mode (H-mode) operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity content. Alcator C-Mod [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] sees two such mechanisms--EDA (enhanced D-alpha H mode) and grassy ELMs (edge localized modes), but not large type I ELMs. In EDA the edge relaxation is provided by an edge localized quasicoherent (QC) electromagnetic mode that exists at moderate pedestal temperature T 95 >3.5, and does not limit the buildup of the edge pressure gradient. The q boundary of the operational space of the mode depends on plasma shape, with the q 95 limit moving down with increasing plasma triangularity. At high edge pressure gradients and temperatures the mode is replaced by broadband fluctuations ( f<50 kHz) and small irregular ELMs are observed. Ideal MHD (magnetohydrodynamic) stability analysis that includes both pressure and current driven edge modes shows that the discharges where the QC mode is observed are stable. The ELMs are identified as medium n (10< n<50) coupled peeling/ballooning modes. The predicted stability boundary of the modes as a function of pedestal current and pressure gradient is reproduced in experimental observations. The measured dependence of the ELMs' threshold and amplitude on plasma triangularity is consistent with the results of ideal MHD analysis performed with the linear stability code ELITE [Wilson et al., Phys. Plasmas 9, 1277 (2002)

  2. High Blood Pressure (Hypertension) (For Parents)

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Hypertension (High Blood Pressure) KidsHealth / For Parents / Hypertension (High Blood Pressure) What's ... High Blood Pressure) Treated? Print What Is Hypertension (High Blood Pressure)? Blood pressure is the pressure of blood against ...

  3. Terbium oxide at high pressures

    International Nuclear Information System (INIS)

    Dogra, Sugandha; Sharma, Nita Dilawar; Singh, Jasveer; Bandhyopadhyay, A.K.

    2011-01-01

    In this work we report the behaviour of terbium oxide at high pressures. The as received sample was characterized at ambient by X-ray diffraction and Raman spectroscopy. The X-ray diffraction showed the sample to be predominantly cubic Tb 4 O 7 , although a few peaks also match closely with Tb 2 O 3 . In fact in a recent study done on the same sample, the sample has been shown to be a mixture of Tb 4 O 7 and Tb 2 O 3 . The sample was subjected to high pressures using a Mao-Bell type diamond anvil cell upto a pressure of about 42 GPa with ruby as pressure monitor

  4. High Pressure Treatment in Foods

    OpenAIRE

    Edwin Fabian Torres Bello; Gerardo González Martínez; Bernadette F. Klotz Ceberio; Dolores Rodrigo; Antonio Martínez López

    2014-01-01

    Abstract: High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non...

  5. Stationary high confinement plasmas with large bootstrap current fraction in JT-60U

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Fujita, T.; Ide, S.; Isayama, A.; Takechi, M.; Suzuki, T.; Takenaga, H.; Oyama, N.; Kamada, Y.

    2005-01-01

    This paper reports the results of the progress in stationary discharges with a large bootstrap current fraction in JT-60U towards steady-state tokamak operation. In the weak shear plasma regime, high-β p ELMy H-mode discharges have been optimized under nearly full non-inductive current drive conditions by the large bootstrap current fraction (f BS ∼ 45%) and the beam driven current fraction (f BD ∼ 50%), which was sustained for 5.8 s in the stationary condition. This duration corresponds to ∼26τ E and ∼2.8τ R , which was limited by the pulse length of negative-ion-based neutral beams. The high confinement enhancement factor H 89 ∼ 2.2 (HH 98y2 ∼ 1.0) was obtained and the profiles of current and pressure reached the stationary condition. In the reversed shear plasma regime, a large bootstrap current fraction (f BS ∼ 75%) has been sustained for 7.4 s under nearly full non-inductive current drive conditions. This duration corresponds to ∼16τ E and ∼2.7τ R . The high confinement enhancement factor H 89 ∼ 3.0 (HH 98y2 ∼ 1.7) was also sustained, and the profiles of current and pressure reached the stationary condition. The large bootstrap current and the off-axis beam driven current sustained this reversed q profile. This duration was limited only by the duration of the neutral beam injection

  6. Highly confined ions store charge more efficiently in supercapacitors

    Science.gov (United States)

    Merlet, C.; Péan, C.; Rotenberg, B.; Madden, P. A.; Daffos, B.; Taberna, P.-L.; Simon, P.; Salanne, M.

    2013-10-01

    Liquids exhibit specific properties when they are adsorbed in nanoporous structures. This is particularly true in the context of supercapacitors, for which an anomalous increase in performance has been observed for nanoporous electrodes. This enhancement has been traditionally attributed in experimental studies to the effect of confinement of the ions from the electrolyte inside sub-nanometre pores, which is accompanied by their partial desolvation. Here we perform molecular dynamics simulations of realistic supercapacitors and show that this picture is correct at the microscopic scale. We provide a detailed analysis of the various environments experienced by the ions. We pick out four different adsorption types, and we, respectively, label them as edge, planar, hollow and pocket sites upon increase of the coordination of the molecular species by carbon atoms from the electrode. We show that both the desolvation and the local charge stored on the electrode increase with the degree of confinement.

  7. Numerical Investigation of Acoustic Emission Events of Argillaceous Sandstones under Confining Pressure

    Directory of Open Access Journals (Sweden)

    Zhaohui Chong

    2017-01-01

    Full Text Available At the laboratory scale, locating acoustic emission (AE events is a comparatively mature method for evaluating cracks in rock materials, and the method plays an important role in numerical simulations. This study is aimed at developing a quantitative method for the measurement of acoustic emission (AE events in numerical simulations. Furthermore, this method was applied to estimate the crack initiation, propagation, and coalescence in rock materials. The discrete element method-acoustic emission model (DEM-AE model was developed using an independent subprogram. This model was designed to calculate the scalar seismic tensor of particles in the process of movement and further to determine the magnitude of AE events. An algorithm for identifying the same spatiotemporal AE event is being presented. To validate the model, a systematic physical experiment and numerical simulation for argillaceous sandstones were performed to present a quantitative comparison of the results with confining pressure. The results showed good agreement in terms of magnitude and spatiotemporal evolution between the simulation and the physical experiment. Finally, the magnitude of AE events was analyzed, and the relationship between AE events and microcracks was discussed. This model can provide the research basis for preventing seismic hazards caused by underground coal mining.

  8. Transport in the high temperature core of toroidal confinement systems

    International Nuclear Information System (INIS)

    Weiland, J.

    1994-01-01

    Recent theoretical and experimental results on confinement of hot plasmas in toroidal devices, particularly tokamaks, are discussed from general principal points of view and related to predictions from a toroidal drift wave model using a full transport matrix including off diagonal terms. A reactive fluid model corresponding to a two pole approximation of the kinetic response is used. This model has the ability to reproduce both adiabatic and isothermal limits of the perpendicular dynamics. 106 refs, 8 figs, 1 tab

  9. Pressure vessel failure at high internal pressure

    International Nuclear Information System (INIS)

    Laemmer, H.; Ritter, B.

    1995-01-01

    A RPV failure due to plastic instability was investigated using the ABAQUS finite element code together with a material model of thermal plasticity for large deformations. Not only rotational symmetric temperature distributions were studied, but also 'hot spots'. Calculations show that merely by the depletion of strength of the material - even at internal wall temperatures well below the melting point of the fuel elements of about 2000/2400 C - the critical internal pressure can decrease to values smaller than the operational pressure of 16 Mpa. (orig.)

  10. High pressure synthesis of zeolite/polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Julien; Thibaud, Jean-Marc; Rouquette, Jerome; Cambon, Olivier; Di Renzo, Francesco, E-mail: julien.haines@univ-montp2.fr [Institut Charles Gerhardt Montpellier (France); Lee, Arie van der [Institut Europeen des Membranes, Montpellier (France); Scelta, Demetrio; Ceppatelli, Matteo; Dziubek, Kamil; Gorelli, Federico; Bini, Roberto; Santoro, Mario [European Laboratory for Non Linear Spectroscopy, Firenze (Italy)

    2016-07-01

    Full text: Polymerization of simple organic molecules under high pressure in the subnanometric pores of pure SiO{sub 2} zeolites can be used to produce novel nanocomposite materials, which can be recovered at ambient P and have remarkable mechanical, electrical or optical properties. Polymerization of ethylene in silicalite was studied in situ at high pressure by IR and results in a nanocomposite with isolated chains of non-conducting polyethylene strongly confined in the pores based on single crystal x-ray diffraction data. The nanocomposite is much less compressible than silicalite and has a positive rather than a negative thermal expansion coefficient. In order to target novel electrical and optical properties, isolated chains of conducting polymers can also be prepared in the pores of zeolite hosts at high pressure, such as polyacetylene, which was polymerized under pressure in the pores of the 1-D zeolite TON. The structure of this nanocomposite was determined by synchrotron x-ray powder diffraction data with complete pore filling corresponding to one planar polymer chain confined in each pore with a zig-zag configuration in the yz plane. This very strong confinement can be expected to strongly modify the electrical properties of polyacetylene. In this nanocomposite, our theoretical calculations indicate that the electronic density of states of polyacetylene exhibit van Hove singularities related to quantum 1D confinement, which could lead to future technological applications. This new material is susceptible to have applications in nanoelectronics, nanophotonics and energy and light harvesting. Completely novel nanocomposites were prepared by the polymerization of carbon monoxide CO in silicalite and TON. In these materials, isolated, ideal polycarbonyl chains are obtained in contrast to the non-stoichiometric, branched bulk polymers obtained by high pressure polymerization of this simple system. These poly CO/zeolite composites could be interesting energetic

  11. Low–intermediate–high confinement transition in HL-2A tokamak plasmas

    International Nuclear Information System (INIS)

    Cheng, J.; Dong, J.Q.; Yan, L.W.; Hong, W.Y.; Zhao, K.J.; Huang, Z.H.; Ji, X.Q.; Zhong, W.L.; Yu, D.L.; Nie, L.; Song, X.M.; Yang, Q.W.; Ding, X.T.; Duan, X.R.; Liu, Yong; Itoh, K.; Itoh, S.-I.; Zou, X.L.

    2014-01-01

    The dynamics of low–intermediate–high confinement transitions was studied using a four-step Langmuir probe in the HL-2A edge plasma. Two types (dubbed type-Y and type-J) of limit cycle oscillations (LCOs) with opposite temporal ordering between the radial electric field and turbulence were first observed. In type-Y, the turbulence grows first, followed by the localized electric field. In contrast, the electric field leads turbulence in type-J. In addition, the Reynolds stress gradient is found not enough to drive the LCO flow and the three-wave nonlinear coupling is weak there. The continuously increasing amplitude of magnetic fluctuations and the significant correlation between the magnetic fluctuation and the electron pressure gradient indicate an important role of diamagnetic drifts in the L–H transition. Mode numbers of magnetic fluctuations in the LCO frequency are identified to be m/n = 1/0. (paper)

  12. Computer simulation at high pressure

    International Nuclear Information System (INIS)

    Alder, B.J.

    1977-11-01

    The use of either the Monte Carlo or molecular dynamics method to generate equations-of-state data for various materials at high pressure is discussed. Particular emphasis is given to phase diagrams, such as the generation of various types of critical lines for mixtures, melting, structural and electronic transitions in solids, two-phase ionic fluid systems of astrophysical interest, as well as a brief aside of possible eutectic behavior in the interior of the earth. Then the application of the molecular dynamics method to predict transport coefficients and the neutron scattering function is discussed with a view as to what special features high pressure brings out. Lastly, an analysis by these computational methods of the measured intensity and frequency spectrum of depolarized light and also of the deviation of the dielectric measurements from the constancy of the Clausius--Mosotti function is given that leads to predictions of how the electronic structure of an atom distorts with pressure

  13. Anxiety: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  14. African Americans and High Blood Pressure

    Science.gov (United States)

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) than ...

  15. High Blood Pressure: Medicines to Help You

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  16. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  17. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st...

  18. High-pressure water facility

    Science.gov (United States)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  19. Vital Signs - High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-10-02

    In the U.S., nearly one third of the adult population have high blood pressure, the leading risk factor for heart disease and stroke - two of the nation's leading causes of death.  Created: 10/2/2012 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 10/17/2012.

  20. Micro X-ray CT imaging of pore-scale changes in unconsolidated sediment under confining pressure

    Science.gov (United States)

    Schindler, M.; Prasad, M.

    2017-12-01

    Micro X-ray computed tomography was used to image confining-pressure induced changes in a dry, unconsolidated quartz sand pack while simultaneously recording ultrasonic P-wave velocities. The experiments were performed under in-situ pressure of up to 4000 psi. The majority of digital rock physics studies rely on micro CT images obtained under ambient pressure and temperature conditions although effective rock properties strongly depend on in situ conditions. Goal of this work is to be able to obtain micro CT images of rock samples while pore and confining pressure is applied. Simultaneously we recorded ultrasonic P-wave velocities. The combination of imaging and velocity measurements provides insight in pore-scale changes in the rock and their influence on elastic properties. We visually observed a reduction in porosity by more than a third of the initial value as well as extensive grain damage, changes in pore and grain size distribution and an increase in contact number and contact radius with increasing confining pressure. An increase in measured ultrasonic P-wave velocities with increasing pressure was observed. We used porosity, contact number and contact radius obtained from micro CT images to model P-wave velocity with the contact-radius model by Bachrach et al. (1998). Our observations showed that the frame of unconsolidated sediments is significantly altered starting at pressures of only 1000 psi. This finding indicates that common assumptions in rock physics models (the solid frame remains unchanged) are violated for unconsolidated sediments. The effects on the solid frame should be taken into account when modeling the pressure dependence of elastic rock properties.

  1. High Pressure Treatment in Foods

    Science.gov (United States)

    Torres Bello, Edwin Fabian; González Martínez, Gerardo; Klotz Ceberio, Bernadette F.; Rodrigo, Dolores; Martínez López, Antonio

    2014-01-01

    High hydrostatic pressure (HHP), a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional). Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance. PMID:28234332

  2. High Pressure Treatment in Foods

    Directory of Open Access Journals (Sweden)

    Edwin Fabian Torres Bello

    2014-08-01

    Full Text Available High hydrostatic pressure (HHP, a non-thermal technology, which typically uses water as a pressure transfer medium, is characterized by a minimal impact on food characteristics (sensory, nutritional, and functional. Today, this technology, present in many food companies, can effectively inactivate bacterial cells and many enzymes. All this makes HHP very attractive, with very good acceptance by consumers, who value the organoleptic characteristics of products processed by this non-thermal food preservation technology because they associate these products with fresh-like. On the other hand, this technology reduces the need for non-natural synthetic additives of low consumer acceptance.

  3. Phase transitions in solids under high pressure

    CERN Document Server

    Blank, Vladimir Davydovich

    2013-01-01

    Phase equilibria and kinetics of phase transformations under high pressureEquipment and methods for the study of phase transformations in solids at high pressuresPhase transformations of carbon and boron nitride at high pressure and deformation under pressurePhase transitions in Si and Ge at high pressure and deformation under pressurePolymorphic α-ω transformation in titanium, zirconium and zirconium-titanium alloys Phase transformations in iron and its alloys at high pressure Phase transformations in gallium and ceriumOn the possible polymorphic transformations in transition metals under pressurePressure-induced polymorphic transformations in АIBVII compoundsPhase transformations in AIIBVI and AIIIBV semiconductor compoundsEffect of pressure on the kinetics of phase transformations in iron alloysTransformations during deformation at high pressure Effects due to phase transformations at high pressureKinetics and hysteresis in high-temperature polymorphic transformations under pressureHysteresis and kineti...

  4. Remarks on saturation of energy confinement in high density regime on LHD

    International Nuclear Information System (INIS)

    Yamada, Hiroshi; Morita, Shigeru; Murakami, Sadayoshi

    2003-01-01

    A study on energy confinement times in currentless helical plasmas has indicated a preferable density dependence like τ E ∝ n-bar e 0.5-0.6 . However, saturation of energy confinement time has been often observed during the density ramping-up phase by gas puffing in NBI heated plasmas in LHD. The power balance analysis indicates that the thermal diffusivity is improved by the increase in local density while the global energy confinement time loses the dependence on the density. The flat or hollow density profile, which is distinguished in the density-ramping phase, promotes a broad heat power deposition. This change explains the apparent contradiction between the density dependence of the thermal diffusivity and the global energy confinement time. This result suggests that central heating can maintain a favorable density dependence of the energy confinement time in the high density regime. (author)

  5. Simulation of microdamage in ceramics deformed under high confinement

    International Nuclear Information System (INIS)

    Zhang Dongmei; Feng Ruqiang

    2004-01-01

    A polycrystalline ceramic may display high strength under dynamic compression but fails catastrophically during load reversal to tension. One plausible mechanism is that heterogeneous plasticity in some of the crystals under compression induces microdamage during load reversal. To examine this possibility quantitatively, we developed a computational method, in which the polycrystalline microstructure is realistically simulated using Voronoi crystals having grain boundary layer. Both anisotropic elasticity and plastic slip in limited crystallographic planes are considered in crystal modeling. The grain boundary material is treated as an isotropic glassy solid, which has pressure-dependent shear strength under compression and fractures in Mode I when the threshold is reached. The structural and material models have been implemented into ABAQUS/Explicit code. Model simulations have been performed to analyze the intragranular microplasticity, intergranular microdamage, and their interactions in polycrystalline α-6H silicon carbide subjected to dynamic unaxial-strain compression and then load reversal to tension. It is found that microplasticity is more favorable than intergranular shear damage during compression. However, both the microplasticity-induced heterogeneity and the grain boundary damage affect strongly microcracking during load reversal, which leads to fragmentation or spallation depending on the level of compression. The significance of these findings is discussed

  6. High Blood Pressure: Unique to Older Adults

    Science.gov (United States)

    ... our e-newsletter! Aging & Health A to Z High Blood Pressure Hypertension Unique to Older Adults This section provides ... Pressure Targets are Different for Very Old Adults High blood pressure (also called hypertension) increases your chance of having ...

  7. High pressure effects on fruits and vegetables

    OpenAIRE

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure treatment can be used for product modification through pressure gelatinization of starch and pressure denaturation of proteins. Key pressure–thermal treatment effects on vitamin, enzymes, flavor, co...

  8. Brillouin scattering at high pressures

    International Nuclear Information System (INIS)

    Grimsditch, M.; Polian, A.

    1988-02-01

    Technical advances which have made Brillouin scattering a useful tool in high pressure diamond anvil cell (DAC) studies, viz. multipassing and tandem operation of Fabry-Perot interferometers, are reviewed. Experimental aspects, such as allowed scattering geometries, are outlined and the data analysis required to transform Brillouin spectra into sound velocities and elastic constants is presented. Experimental results on H 2 , N 2 , Ar, and He are presented, and the close relationship between the Brillouin scattering results and equations of state is highlighted

  9. High pressure effects on fruits and vegetables

    NARCIS (Netherlands)

    Timmermans, R.A.H.; Matser, A.M.

    2016-01-01

    The chapter provides an overview on different high pressure based treatments (high pressure pasteurization, blanching, pressure-assisted thermal processing, pressure-shift freezing and thawing) available for the preservation of fruits and vegetable products and extending their shelf life. Pressure

  10. Behaviour of concrete under high confinement: study in triaxial compression and in triaxial extension at the mesoscopic scale

    International Nuclear Information System (INIS)

    Dupray, F.

    2008-12-01

    This Ph.D. thesis aims at characterising and modeling the mechanical behaviour of concrete under high confinement at the mesoscopic scale. This scale corresponds to that of the large aggregates and the cementitious matrix. The more general scope of this study is the understanding of concrete behaviour under dynamic loading. A dynamic impact can generate mean pressures around 1 GPa. But the characterisation of a material response, in an homogeneous state of stress, can only be achieved through quasi-static tests. The experimentations led in 3S-R Laboratory have underlined the importance of the aggregates in the triaxial response of concrete. Modeling concrete at the mesoscopic level, as a composite of an aggregates phase and a mortar phase, permits a representation of the aggregates effect. An experimental study of the behaviour of mortar phase is performed. Usual tests and hydrostatic and triaxial high confinement tests are realised. The parameters of a constitutive model that couples plasticity with a damage law are identified from these tests. This model is able to reproduce the nonlinear compaction of mortar, the damage behaviour under uniaxial tension or compression, and plasticity under high confinement. The biphasic model uses the finite element method with a cubic and regular mesh. A Monte-Carlo method is used to place quasi-spherical aggregates that respect the given particle size of a reference concrete. Each element is identified by belonging either to the mortar or to the aggregate phase. Numerical simulations are compared with the experimental tests on this concrete. The parameters for these simulations are only identified on the mortar. The simulations reproduce the different phases observed in hydrostatic compression. The evolution of axial moduli under growing confinement is shown, as is the good reproduction of the limit-states experimentally observed under high confinement. The fracture aspect of numerical simulations is comparable with that of

  11. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    Science.gov (United States)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be volume diffusivity.

  12. Progress in long sustainment and high density experiments with potential confinement on GAMMA 10

    International Nuclear Information System (INIS)

    Yatsu, K.; Cho, T.; Hirata, M.

    2001-01-01

    The improvement of potential confinement reported in the last IAEA meeting was attained by axisymmetrization of heating pattern of electron cyclotron resonance heating (ECRH). It was experimentally shown that the axisymmetrization of ECRH really produced axisymmetric potential profile. GAMMA 10 experiments have advanced in longer sustainment and high density operation of potential confinement. Experiments for long sustainment of potential confinement were carried out in order to study problems of steady state operation of a tandem mirror reactor. A confining potential was sustained for 150 ms by sequentially injecting two (ECRH) powers in the plug region. It was difficult before to increase the central cell density higher than about 2.5x10 12 cm -3 with and/or without potential confinement due to some density limiting mechanism. In order to overcome this problem, a new higher frequency ion cyclotron range of frequency (ICRF) system (RF3: 36-76 MHz) has been installed. A higher density plasma has been produced with RF3. In addition to RF3, neutral beam injection (NBI) in the anchor cell became effective by reducing neutral gas from beam injectors. Potential confinement experiments have advanced to higher central cell densities up to 4x10 12 cm -3 with RF3 and NBI. A 20% density increase due to the potential confinement was obtained in the high density experiments. (author)

  13. Generation of highly confined photonic nanojet using crescent-shape refractive index profile in microsphere

    Science.gov (United States)

    Patel, H. S.; Kushwaha, P. K.; Swami, M. K.

    2018-05-01

    Photonic nanojets (PNJs) owing to their sub-wavelength near-field features have found many interesting applications like nanoscopy, nano photolithography, high density optical storage, enhancement of Raman signal and single molecule spectroscopy etc. More recently, the focus of research has been on tailoring of PNJs either for better confinement and thus higher peak intensity or for elongation of nanojet for high resolution far field applications. In this paper, we show that crescent-shape refractive index profile (CSRP) of microspheres can be used to generate highly confined PNJ. By optimizing the refractive index of different layers in CSRP microsphere, we show a free space confinement down to ∼ λ / 4 . 5 (FWHM ∼ 110 nm for excitation with 500 nm wavelength). Further, it was observed that the optical properties of substrates also modulate the PNJ characteristics and lead to a further improvement in the transverse confinement to ∼ λ / 6 . 7.

  14. High energy behaviour of the scattering amplitude in the presence of confined channels

    International Nuclear Information System (INIS)

    Gehlen, G.; Rittenberg, V.

    1977-09-01

    The two-channel potential scattering problem in three space-dimensions is considered in the case when one channel is permanently confined. Two examples of confining potentials are considered: the harmonic oscillator and the infinite well. The two cases give radically different results: for the infinite well there is no high energy limit; in the case of the harmonic oscillator the amplitude has properties similar to that of dual absorptive models. (orig.) [de

  15. High Pressure Electrolyzer System Evaluation

    Science.gov (United States)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  16. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    Science.gov (United States)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  17. Potential formation and confinement in high density plasma on the GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Yatsu, K.

    2002-01-01

    After the attainment of doubling of the density due to the potential confinement, GAMMA 10 experiments have been directed to realization of a high density plasma and also to study dependence of the confining potential and confinement time on the plasma density. These problems are important to understand the physics of potential formation in tandem mirrors and also for the development of a tandem mirror reactor. We reported high density plasma production by using an ion cyclotron range of frequency heating at a high harmonic frequency in the last IAEA Conference. However, the diamagnetic signal of the high density plasma decreased when electron cyclotron resonance heating (ECRH) was applied due to some instabilities. Recently, the high density plasma production was much improved by adjusting the spacing of the conducting plates installed in the anchor transition regions, which enabled us to produce a high density plasma without degradation of the diamagnetic signal with ECRH and also to study the density dependence. In this paper we report production of a high density plasma and dependence of the confining potential and the confinement time on the density. (author)

  18. From simple to complex and backwards. Chemical reactions under very high pressure

    International Nuclear Information System (INIS)

    Bini, Roberto; Ceppatelli, Matteo; Citroni, Margherita; Schettino, Vincenzo

    2012-01-01

    Highlights: ► High pressure reactivity of several molecular systems. ► Reaction kinetics and dynamics in high density conditions. ► Key role of optical pumping and electronic excitation. ► Perspectives for the synthesis of hydrogen. - Abstract: High pressure chemical reactions of molecular systems are discussed considering the various factors that can affect the reactivity. These include steric hindrance and geometrical constraints in the confined environment of crystals at high pressure, changes of the free energy landscape with pressure, photoactivation by two-photon absorption, local and collective effects. A classification of the chemical reactions at high pressure is attempted on the basis of the prevailing factors.

  19. High pressure research at CHESS

    International Nuclear Information System (INIS)

    Brister, K.

    1992-01-01

    Since February 1990 there has been a dedicated high pressure line at the Cornell High Energy Synchrotron Source (CHESS). This facility provides X-ray instrumentation for energy dispersive X-ray diffraction and Laue diffraction using diamond anvil cells. Both hard-bend magnet and wiggler radiation are available as well as focused monochromatic radiation. In addition, support instrumentation is also available; a ruby system, laser heating, sample loading, and data analysis software. Experienced users need only to bring their diamond anvil cells and samples and can leave with the initial data analysis finished. Research using diamond anvil cells will be introduced and the facility will be described. Some of the diamond anvil cell research done at CHESS will be reviewed, including crystalline to amorphous transitions (R.R. Winters et al., Chem. Phys, in press), properties of C 6 0 under stress (S.J. Duclos et al., Nature 351 (1991) 380), deep earthquakes (T.C. Wu et al., submitted to J. Geophys. Res.)l, and reaching pressures of the center of Earth (A.L. Ruoff et al., Rev. Sci. Instr. 61 (1990) 3830). (orig.)

  20. Is Osmotic Pressure Relevant in the Mechanical Confinement of a Polymer Brush?

    NARCIS (Netherlands)

    Abbott, Stephen B.; de Vos, Wiebe Matthijs; Mears, Laura L.E.; Cattoz, Beatrice; Skoda, Maximilian W.A.; Barker, Robert; Richardson, Robert M.; Prescott, Stuart W.

    2015-01-01

    The structures of polymer brushes under confinement were measured using a combination of neutron reflectivity and a surface force type apparatus. The samples were either poly(ethylene oxide), PEO, used to investigate the effect of the grafting density or poly(acrylic acid), PAA, used to determine

  1. Generation, insulated confinement, and heating of ultra-high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.

    1986-01-01

    This invention relates to the production and maintenance in steady state of ultra-high temperature confined plasmas, particularly those created by full ionization of a volume of some hydrogenic gas such as deuterium. The target mass is surrounded with an ambient fluid medium at a predetermined pressure. Pulsed energy is projected upon the target mass to bring it to a predetermined temperature and to fully ionize it; this energy may be pulsed photon energy or pulsed particle-beam kinetic energy. An electrostatic double layer is formed spontaneously between the ionized mass and the ambient medium, providing thermal insulation and leaving the dominant energy loss to be bremmstrahlung losses. The bremmstrahlung losses are compensated for completely by supplying additional radiant energy to the ionized mass to maintain its temperature. The frequency range of the additional radiant energy is selected so as to be absorbable by the ionized mass, and its power level is adjusted to maintain the ionized mass in a substantially steady state. The static pressure of the ambient medium is increased, thereby equally increasing the static pressure of the ionized mass so as to enable the mass to absorb more of the radiant energy and increasing its temperature but also increasing its power losses. Simultaneously the radius and temperature of the mass are monitored and the power level of the radiant energy supply is increased to as to compensate for the power losses. The minimum feasible size of the plasma is less than a centimeter in diameter, while there is no constraint on maximum feasible size. This invention may be practiced with commercially-available lasers and microwave beam generators

  2. Bonding pathways of high-pressure chemical transformations

    International Nuclear Information System (INIS)

    Hu Anguang; Zhang Fan

    2013-01-01

    A three-stage bonding pathway towards high-pressure chemical transformations from molecular precursors or intermediate states has been identified by first-principles simulations. With the evolution of principal stress tensor components in the response of chemical bonding to compressive loading, the three stages can be defined as the van der Waals bonding destruction, a bond breaking and forming reaction, and equilibrium of new bonds. The three-stage bonding pathway leads to the establishment of a fundamental principle of chemical bonding under compression. It reveals that during high-pressure chemical transformation, electrons moving away from functional groups follow anti-addition, collision-free paths to form new bonds in counteracting the local stress confinement. In applying this principle, a large number of molecular precursors were identified for high-pressure chemical transformations, resulting in new materials. (fast track communication)

  3. Tokamak-like confinement at high beta and low field in the reversed field pinch

    International Nuclear Information System (INIS)

    Sarff, J S; Anderson, J K; Biewer, T M; Brower, D L; Chapman, B E; Chattopadhyay, P K; Craig, D; Deng, B; Hartog, D J Den; Ding, W X; Fiksel, G; Forest, C B; Goetz, J A; O'Connell, R; Prager, S C; Thomas, M A

    2003-01-01

    For several reasons, improved-confinement achieved in the reversed field pinch (RFP) during the last few years can be characterized as 'tokamak-like'. Historically, RFP plasmas have had relatively poor confinement due to tearing instability which causes magnetic stochasticity and enhanced transport. Tearing reduction is achieved through modification of the inductive current drive, which dramatically improves confinement. The electron temperature increases to >1 keV and the electron heat diffusivity decreases to approx. 5 m 2 s -1 , comparable with the transport level expected in a tokamak plasma of the same size and current. This corresponds to a 10-fold increase in global energy confinement. Runaway electrons are confined, and Fokker-Planck modelling of the electron distribution reveals that the diffusion at high energy is independent of the parallel velocity, uncharacteristic of stochastic transport. Improved-confinement occurs simultaneously with increased beta approx. 15%, while maintaining a magnetic field strength ten times weaker than a comparable tokamak. Measurements of the current, magnetic, and electric field profiles show that a simple Ohm's Law applies to this RFP sustained without dynamo relaxation

  4. High-pressure microhydraulic actuator

    Science.gov (United States)

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  5. Nuclear magnetic resonance studies at high pressures

    International Nuclear Information System (INIS)

    Jonas, J.

    1980-01-01

    Recent advances in the field of NMR spectroscopy at high pressure are reviewed. After a brief discussion of two novel experimental techniques, the main focus of this review is on several specific studies which illustrate the versatility and power of this high pressure field. Experimental aspects of NMR measurements at high pressure and high temperature and the techniques for the high resolution NMR spectroscopy at high pressure are discussed. An overview of NMR studies of the dynamic structure of simple polyatomic liquids and hydrogen bonded liquids is followed by a discussion of high resolution spectroscopy at high pressure. Examples of NMR studies of disordered organic solids and polymers conclude the review. (author)

  6. DASH diet to lower high blood pressure

    Science.gov (United States)

    ... patientinstructions/000770.htm DASH diet to lower high blood pressure To use the sharing features on this page, ... Hypertension. The DASH diet can help lower high blood pressure and cholesterol and other fats in your blood. ...

  7. What Is High Blood Pressure Medicine?

    Science.gov (United States)

    ... a medicine calendar. • Set a reminder on your smartphone. What types of medicine may be prescribed? One ... High Blood Pressure Medicine? What are their side effects? For many people, high blood pressure medicine can ...

  8. High blood pressure - medicine-related

    Science.gov (United States)

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  9. High blood pressure and eye disease

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  10. Effects of particle size and confining pressure on breakage factor of rockfill materials using medium triaxial test

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Gupta

    2016-06-01

    Full Text Available Rockfill dams are mostly constructed using blasted rockfill materials obtained by blasting rocks or alluvial rockfill materials collected from the riverbeds. Behaviors of rockfill materials and their characterization significantly depend on breakage factor observed during triaxial loading. In this paper, two modeled rockfill materials are investigated by using medium triaxial cell. Drained triaxial tests are conducted on various sizes of modeled rockfill materials used in the two dams, and test data are analyzed accordingly. Breakage factor of rockfill material is studied and the effects of particle size and confining pressure on breakage factor are investigated using medium triaxial cell as many researchers have already conducted investigation using large triaxial cell.

  11. Use of the confinement molecular model in the study of hydrogen under pressure. Comparison with the jellium model

    International Nuclear Information System (INIS)

    Castelluccio, G; Gervasoni, J; Cruz-Jimenez, S; Abriata, J

    2005-01-01

    The aim of this work is to present and compare the results of the model of molecular hydrogen in a dense system confinement by a penetrable barrier.It is used a simple localized orbital model which is represented by a floating spherical gaussian function with two parameters and an orbital center.The energy of the ground state of the molecule and its associated pressure are obtained for different barrier heights and nuclear radius.The values are compared with those obtained using the jellium model

  12. Long-Pulse Operation and High-Energy Particle Confinement Study in ICRF Heating of LHD

    International Nuclear Information System (INIS)

    Mutoh, Takashi; Kumazawa, Ryuhei; Seki, Tetsuo

    2004-01-01

    Long-pulse operation and high-energy particle confinement properties were studied using ion cyclotron range of frequency (ICRF) heating for the Large Helical Device. For the minority-ion mode, ions with energies up to 500 keV were observed by concentrating the ICRF heating power near the plasma axis. The confinement of high-energy particles was studied using the power-modulation technique. This confirmed that the confinement of high-energy particles was better with the inward-shifted configuration than with the normal configuration. This behavior was the same for bulk plasma confinement. Long-pulse operation for more than 2 min was achieved during the experimental program in 2002. This was mainly due to better confinement of the helically trapped particles and accumulation of fewer impurities in the region of the plasma core, in conjunction with substantial hardware improvements. Currently, the plasma operation time is limited by an unexpected density rise due to outgassing from the chamber materials. The temperature of the local carbon plates of the divertor exceeded 400 deg, C, and a charge-coupled device camera observed the hot spots. The hot spot pattern was well explained by a calculation of the accelerated-particle orbits, and those accelerated particles came from outside the plasma near the ICRF antenna

  13. High pressure metrology for industrial applications

    Science.gov (United States)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  14. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    Science.gov (United States)

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  15. High ionic conductivity in confined bismuth oxide-based heterostructures

    Directory of Open Access Journals (Sweden)

    Simone Sanna

    2016-12-01

    Full Text Available Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3 exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure δ-Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ, deposited by pulsed laser deposition. The resulting [δ-Bi2O3/YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C and exhibits stable high ionic conductivity over a long time comparable to the value of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk.

  16. High ionic conductivity in confined bismuth oxide-based heterostructures

    DEFF Research Database (Denmark)

    Sanna, Simone; Esposito, Vincenzo; Christensen, Mogens

    2016-01-01

    Bismuth trioxide in the cubic fluorite phase (δ-Bi2O3) exhibits the highest oxygen ionic conductivity. In this study, we were able to stabilize the pure -Bi2O3 at low temperature with no addition of stabilizer but only by engineering the interface, using highly coherent heterostructures made...... of alternative layers of δ-Bi2O3 and Yttria Stabilized Zirconia (YSZ), deposited by pulsed laser deposition. The resulting [δ-Bi2O3=YSZ] heterostructures are found to be stable over a wide temperature range (500-750 °C) and exhibits stable high ionic conductivity over a long time comparable to the value...... of the pure δ-Bi2O3, which is approximately two orders of magnitude higher than the conductivity of YSZ bulk....

  17. Advances in high pressure research in condensed matter: proceedings of the international conference on condensed matter under high pressures

    International Nuclear Information System (INIS)

    Sikka, S.K.; Gupta, Satish C.; Godwal, B.K.

    1997-01-01

    The use of pressure as a thermodynamic variable for studying condensed matter has become very important in recent years. Its main effect is to reduce the volume of a substance. Thus, in some sense, it mimics the phenomena taking place during the cohesion of solids like pressure ionization, modifications in electronic properties and phase changes etc. Some of the phase changes under pressure lead to synthesis of new materials. The recent discovery of high T c superconductivity in YBa 2 Cu 3 O 7 may be indirectly attributed to the pressure effect. In applied fields like simulation of reactor accident, design of inertial confinement fusion schemes and for understanding the rock mechanical effects of shock propagation in earth due to underground nuclear explosions, the pressure versus volume relations of condensed matter are a vital input. This volume containing the proceedings of the International Conference on Condensed Matter Under High Pressure covers various aspects of high pressure pertaining to equations of state, phase transitions, electronic, optical and transport properties of solids, atomic and molecular studies, shock induced reactions, energetic materials, materials synthesis, mineral physics, geophysical and planetary sciences, biological applications and food processing and advances in experimental techniques and numerical simulations. Papers relevant to INIS are indexed separately

  18. High-Pressure Lightweight Thrusters

    Science.gov (United States)

    Holmes, Richard; McKechnie, Timothy; Shchetkovskiy, Anatoliy; Smirnov, Alexander

    2013-01-01

    Returning samples of Martian soil and rock to Earth is of great interest to scientists. There were numerous studies to evaluate Mars Sample Return (MSR) mission architectures, technology needs, development plans, and requirements. The largest propulsion risk element of the MSR mission is the Mars Ascent Vehicle (MAV). Along with the baseline solid-propellant vehicle, liquid propellants have been considered. Similar requirements apply to other lander ascent engines and reaction control systems. The performance of current state-ofthe- art liquid propellant engines can be significantly improved by increasing both combustion temperature and pressure. Pump-fed propulsion is suggested for a single-stage bipropellant MAV. Achieving a 90-percent stage propellant fraction is thought to be possible on a 100-kg scale, including sufficient thrust for lifting off Mars. To increase the performance of storable bipropellant rocket engines, a high-pressure, lightweight combustion chamber was designed. Iridium liner electrodeposition was investigated on complex-shaped thrust chamber mandrels. Dense, uniform iridium liners were produced on chamber and cylindrical mandrels. Carbon/carbon composite (C/C) structures were braided over iridium-lined mandrels and densified by chemical vapor infiltration. Niobium deposition was evaluated for forming a metallic attachment flange on the carbon/ carbon structure. The new thrust chamber was designed to exceed state-of-the-art performance, and was manufactured with an 83-percent weight savings. High-performance C/Cs possess a unique set of properties that make them desirable materials for high-temperature structures used in rocket propulsion components, hypersonic vehicles, and aircraft brakes. In particular, more attention is focused on 3D braided C/Cs due to their mesh-work structure. Research on the properties of C/Cs has shown that the strength of composites is strongly affected by the fiber-matrix interfacial bonding, and that weakening

  19. Indirectly driven, high convergence inertial confinement fusion implosions

    International Nuclear Information System (INIS)

    Cable, M.D.; Hatchett, S.P.; Caird, J.A.; Kilkenny, J.D.; Kornblum, H.N.; Lane, S.M.; Laumann, C.; Lerche, R.A.; Murphy, T.J.; Murray, J.; Nelson, M.B.; Phillion, D.W.; Powell, H.; Ress, D.B.

    1994-01-01

    A series of high convergence indirectly driven implosions has been done with the Nova Laser Fusion facility. These implosions were well characterized by a variety of measurements; computer models are in good agreement. The imploded fuel areal density was measured using a technique based on secondary neutron spectroscopy. At capsule convergences of 24:1, comparable to what is required for the hot spot of ignition scale capsules, these capsules achieved fuel densities of 19 g/cm 3 . Independent measurements of density, burn duration, and ion temperature gave nτθ=1.7±0.9x10 14 keV s/cm 3

  20. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  1. Toward highly stable electrocatalysts via nanoparticle pore confinement.

    Science.gov (United States)

    Galeano, Carolina; Meier, Josef C; Peinecke, Volker; Bongard, Hans; Katsounaros, Ioannis; Topalov, Angel A; Lu, Anhui; Mayrhofer, Karl J J; Schüth, Ferdi

    2012-12-19

    The durability of electrode materials is a limiting parameter for many electrochemical energy conversion systems. In particular, electrocatalysts for the essential oxygen reduction reaction (ORR) present some of the most challenging instability issues shortening their practical lifetime. Here, we report a mesostructured graphitic carbon support, Hollow Graphitic Spheres (HGS) with a specific surface area exceeding 1000 m(2) g(-1) and precisely controlled pore structure, that was specifically developed to overcome the long-term catalyst degradation, while still sustaining high activity. The synthetic pathway leads to platinum nanoparticles of approximately 3 to 4 nm size encapsulated in the HGS pore structure that are stable at 850 °C and, more importantly, during simulated accelerated electrochemical aging. Moreover, the high stability of the cathode electrocatalyst is also retained in a fully assembled polymer electrolyte membrane fuel cell (PEMFC). Identical location scanning and scanning transmission electron microscopy (IL-SEM and IL-STEM) conclusively proved that during electrochemical cycling the encapsulation significantly suppresses detachment and agglomeration of Pt nanoparticles, two of the major degradation mechanisms in fuel cell catalysts of this particle size. Thus, beyond providing an improved electrocatalyst, this study describes the blueprint for targeted improvement of fuel cell catalysts by design of the carbon support.

  2. The Effects of NaCl Concentration and Confining Pressure on Mechanical and Acoustic Behaviors of Brine-Saturated Sandstone

    Directory of Open Access Journals (Sweden)

    Yan-Hua Huang

    2018-02-01

    Full Text Available To better understand the mechanical behavior of rock with brine saturation, conventional triaxial experiments were carried out on sandstone for a range of confining pressures (0–60 MPa and NaCl concentrations (0–30%. As the confining pressure and NaCl concentration increased, the triaxial compressive strength, crack damage threshold, Young’s modulus, cohesion, and internal friction angle all increased. Real-time ultrasonic wave and acoustic emission (AE techniques were used to obtain the relationship between acoustic behavior and stress level during the whole triaxial compression process. During the whole deformation process, the evolution of P-wave velocity and accumulated AE count could be divided into four phases. The microstructural characteristics of brine-saturated sandstone, before and after loading, indicated that the strength enhancement mechanism may be attributed to an increase in inter-particle friction resulting from salt crystallisation around the points of contact. The angle of friction increased by more than 86% at maximum NaCl concentration compared to that for distilled water. The NaCl deposition in the pore space resulted in nonlinear strength increases for the brine-saturated sandstone specimens with increasing salinity. The present study is expected to improve the knowledge of the strength and failure mechanisms of sedimentary rock in deep saline aquifers.

  3. High convergence, indirect drive inertial confinement fusion experiments at Nova

    International Nuclear Information System (INIS)

    Lerche, R.A.; Cable, M.D.; Hatchett, S.P.; Caird, J.A.; Kilkenny, J.D.; Kornblum, H.N.; Lane, S.M.; Laumann, C.; Murphy, T.J.; Murray, J.; Nelson, M.B.; Phillion, D.W.; Powell, H.; Ress, D.

    1996-01-01

    High convergence, indirect drive implosion experiments have been done at the Nova Laser Facility. The targets were deuterium and deuterium/tritium filled, glass microballoons driven symmetrically by x rays produced in a surrounding uranium hohlraum. Implosions achieved convergence ratios of 24:1 with fuel densities of 19 g/cm 3 ; this is equivalent to the range required for the hot spot of ignition scale capsules. The implosions used a shaped drive and were well characterized by a variety of laser and target measurements. The primary measurement was the fuel density using the secondary neutron technique (neutrons from the reaction 2 H( 3 H,n) 4 He in initially pure deuterium fuel). Laser measurements include power, energy and pointing. Simultaneous measurement of neutron yield, fusion reaction rate, and x-ray images provide additional information about the implosion process. Computer models are in good agreement with measurement results. copyright 1996 American Institute of Physics

  4. Proceedings of JSPS-CAS Core University Program seminar on production and steady state confinement of high performance plasmas in magnetic confinement systems

    International Nuclear Information System (INIS)

    Wan Baonian; Toi, Kazuo

    2005-09-01

    The JSPS-CAS Core University Program (CUP) seminar on 'Production and steady-state confinement of high performance plasmas in magnetic confinement systems' was held from 27 July to 29 July 2005 in Institute of Plasma Physics, the Chinese Academy of Sciences, Hefei, China. This seminar was organized in the framework of CUP in the field of plasma and nuclear fusion. About 50 persons including 20 Japanese attendees attended this seminar. Long time sustainment of high confinement and high beta plasmas is crucial for realization of an advanced nuclear fusion reactor. This seminar was motivated to summarize the results of CUP obtained in four years activities of CUP, and to extract crucial issues to be resolved near future, which must drive near and mid- term collaborations in the framework of CUP. The 32 of presented papers are indexed individually. (J.P.N.)

  5. Sustainment of high confinement in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ide, S.; Takeji, S.; Sakamoto, Y.; Isayama, A.; Suzuki, T.; Oikawa, T.; Fukuda, T.

    2001-01-01

    confinement is achieved owing to strong internal transport barriers (ITBs), are reported. In a high current plasma with an L-mode edge, deuterium-tritium-equivalent fusion power gain, Q DT eq =0.5 was sustained for 0.8 s (∼ energy confinement time) by adjusting plasma beta precisely using feedback control of stored energy. In a high triangularity plasma with an ELMy H-mode edge, the shrinkage of reversed shear region was suppressed and quasi steady sustainment of high confinement was achieved by raising the poloidal beta and enhancing the bootstrap current peaked at the ITB layer. High bootstrap current fraction (∼80%) was obtained in a high q regime (q 95 ∼9), which leaded to full non-inductive current drive condition. The normalized beta (β N ) of ∼ 2 and H-factor of H 89 ∼3.5 (HH 98y2 ∼2.2) were sustained for 2.7 s (∼ 6 times energy confinement time). (author)

  6. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a silent threat to health. So come and get your blood pressure checked.

  7. HIGH BLOOD PRESSURE: DOES THIS CONCERN ME?

    CERN Multimedia

    2007-01-01

    To find out, the Medical Service's nurses are organising A HIGH BLOOD PRESSURE SCREENING AND PREVENTION CAMPAIGN from Monday, 26th to Thursday, 29th March 2007 at the Infirmary - Building 57 - ground floor A blood pressure test, advice, information and, if necessary, referral for specialist medical treatment will be offered to any person working on the CERN site. High blood pressure is a stealth threat to health. So come and get your blood pressure checked.

  8. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  9. Electrostatic levitation, control and transport in high rate, low cost production of inertial confinement fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.; Johnson, W.L.

    1979-01-01

    Inertial confinement fusion requires production of power plant grade targets at high rates and process yield. A review of present project specifications and techniques to produce targets is discussed with special emphasis on automating the processes and combining them with an electrostatic transport and suspension system through the power plant target factory

  10. Experimental characterization of the concrete behaviour under high confinement: influence of the saturation ratio and of the water/cement ratio

    International Nuclear Information System (INIS)

    Vu, X.H.

    2007-08-01

    The objective of this thesis is to experimentally characterize the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour under high confinement. This thesis lies within a more general scope of the understanding of concrete behaviour under severe loading situations (near field detonation or ballistic impacts). A near field detonation or an impact on a concrete structure generate very high levels of stress associated with complex loading paths in the concrete material. To validate concrete behaviour models, experimental results are required. The work presented in this thesis concerns tests conducted using a static triaxial press that allows to obtain stress levels of the order of the giga Pascal. The porous character of concrete and the high confinement required on the one hand, a development of a specimen protection device, and on the other hand, a development of an instrumentation with strain gauges, which is unprecedented for such high confinements. Hydrostatic and triaxial tests, conducted on the one hand on model materials and on the other hand on concrete, allowed to validate the developed experimental procedures as well as the technique of strain and stress measurements. The studies concerning the influence of the saturation ratio and of the water/cement ratio of concrete on its behaviour required the formulation of a plain baseline concrete and of two modified concretes with different water/cement ratios. The analysis of triaxial tests performed on the baseline concrete shows that the saturation ratio of concrete has a major influence on its static behaviour under high confinement. This influence is particularly marked for the concrete loading capacity and for the shape of limit state curves for saturation ratios greater than 50%. The concrete loading capacity increases with the confinement pressure for tests on dry concrete whereas beyond a given confinement pressure, it remains limited for wet or saturated concrete

  11. High pressure effect for high-Tc superconductors

    International Nuclear Information System (INIS)

    Takahashi, Hiroki; Tomita, Takahiro

    2011-01-01

    A number of experimental and theoretical studies have been performed to understand the mechanism of high-T c superconductivity and to enhance T c . High-pressure techniques have played a very important role for these studies. In this paper, the high-pressure techniques and physical properties of high-T c superconductor under high pressure are presented. (author)

  12. Pressure pressure-balanced pH sensing system for high temperature and high pressure water

    International Nuclear Information System (INIS)

    Tachibana, Koji

    1995-01-01

    As for the pH measurement system for high temperature, high pressure water, there have been the circumstances that first the reference electrodes for monitoring corrosion potential were developed, and subsequently, it was developed for the purpose of maintaining the soundness of metallic materials in high temperature, high pressure water in nuclear power generation. In the process of developing the reference electrodes for high temperature water, it was clarified that the occurrence of stress corrosion cracking in BWRs is closely related to the corrosion potential determined by dissolved oxygen concentration. As the types of pH electrodes, there are metal-hydrogen electrodes, glass electrodes, ZrO 2 diaphragm electrodes and TiO 2 semiconductor electrodes. The principle of pH measurement using ZrO 2 diaphragms is explained. The pH measuring system is composed of YSZ element, pressure-balanced type external reference electrode, pressure balancer and compressed air vessel. The stability and pH response of YSZ elements are reported. (K.I.)

  13. High pressure multiple shock response of aluminum

    International Nuclear Information System (INIS)

    Lawrence, R.J.; Asay, J.R.

    1977-01-01

    It is well known that both dynamic yield strength and rate-dependent material response exert direct influence on the development of surface and interface instabilities under conditions of strong shock loading. A detailed understanding of these phenomena is therefore an important aspect of the analysis of dynamic inertial confinement techniques which are being used in such applications as the generation of controlled thermonuclear fusion. In these types of applications the surfaces and interfaces under consideration can be subjected to cyclic loading characterized by shock pressures on the order of 100 GPa or more. It thus becomes important to understand how rate effects and material strength differ from the values observed in the low pressure regime where they are usually measured, as well as how they are altered by the loading history

  14. High pressure gas reinjection unit

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    Nuovo Pignone has built for gas reinjection at Ekofisk the highest pressure injection unit to date: suction pressure 246 bar, discharge 647 bar, for 5.7 million cu m/day of natural gas, and driven by a GE MS 5001 gas turbine of 24,000 hp. The barrel-type compressor has been used already in Algeria at Hassi Messaoud. Full scale tests have shown that the unit is satisfactory; special attention being paid to the stability of the rotor. Air cooled heat exchangers were used in the test loop to cool the discharge gas; at Ekofisk, heat exchangers with sea water will be used. The valves in the test loop were of a special, low- noise type. Vibrations of the rotor system and changes in gas pressure monitored, showing that a pressure of 680 bars can be achieved without instability. Economic considerations lead to preference for rotary compressors driven by gas turbines for similar applications in the exploitation of oil fields. A graph of the characteristics of the unit is given.

  15. High-pressure boron hydride phases

    International Nuclear Information System (INIS)

    Barbee, T.W. III; McMahan, A.K.; Klepeis, J.E.; van Schilfgaarde, M.

    1997-01-01

    The stability of boron-hydrogen compounds (boranes) under pressure is studied from a theoretical point of view using total-energy methods. We find that the molecular forms of boranes known to be stable at ambient pressure become unstable at high pressure, while structures with extended networks of bonds or metallic bonding are energetically favored at high pressures. If such structures are metastable on return to ambient pressure, they would be energetic as well as dense hydrogen storage media. An AlH 3 -like structure of BH 3 is particularly interesting in that it may be accessible by high-pressure diamond anvil experiments, and should exhibit both second-order structural and metal-insulator transitions at lower pressures. copyright 1997 The American Physical Society

  16. Role of gravity or confining pressure and contact stiffness in granular rheology

    NARCIS (Netherlands)

    Singh, A.; Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2015-01-01

    The steady-state shear rheology of granular materials is investigated in slow quasistatic and inertial flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the focus of this study. A series of particle simulations are performed on a weakly frictional

  17. High-pressure torsion of hafnium

    International Nuclear Information System (INIS)

    Edalati, Kaveh; Horita, Zenji; Mine, Yoji

    2010-01-01

    Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.

  18. Summary of results of frictional sliding studies, at confining pressures up to 6.98 kb, in selected rock materials

    Science.gov (United States)

    Summers, R.; Byerlee, J.

    1977-01-01

    This report is a collection of stress-strain charts which were produced by deforming selected simuiated fault gouge materials. Several sets of samples consisted of intact cylinders, 1.000 inch in diameter and 2.500 inches long. The majority of the samples consisted of thin layers of the selected sample material, inserted within a diagonal sawcut in a 1.000-inch by 2.500-inch Westerly Granite cylinder. Two sorts of inserts were used. The first consisted of thin wafers cut from 1.000-inch-diameter cores of the rock being tested. The other consisted of thin layers of crushed material packed onto the sawcut surface. In several groups of tests using various thicknesses (0.010 inch to 0.160 inch) of a given type material there were variations in the stress level and/or stability of sliding as a function of the fault zone width. Because of this we elected to use a standard 0.025-inch width fault zone to compare the frictional properties of many of the different types of rock materials. This 0.025-inch thickness was chosen partially because this thickness of crushed granite behaves approximately the same as a fractured sample of initially intact granite, and also because this is near the lower limit at which we could cut intact wafers for those samples that were prepared from thin slices of rock. One series of tests was done with saw cut granite cylinders without fault gouge inserts. All of these tests were done in a hydraulically operated triaxial testing machine. The confining pressure (δ1, least principal stress) was applied by pumping petroleum ether into a pressure vessel. The differential stress (δ3-δ1) was applied by a hydraulically operated ram that could be advanced into the pressure vessel at any of several strain rates (10-4sec-1, 10-5sec-1, 10-6sec-1, 10-7sec-1, or 10-8sec-1). All samples were jacketed in polyurethane tubing to exclude the confining pressure medium from the samples. The majority of the samples, with the exception of some of the initially

  19. High pressure X-ray studies

    International Nuclear Information System (INIS)

    Sikka, S.K.

    1981-01-01

    High pressure research has already led to new insights in the physical properties of materials and at times to the synthesis of new ones. In all this, X-ray diffraction has been a valuable diagnostic experimental tool. In particular, X-rays in high pressure field have been used (a) for crystallographic identification of high pressure polymorphs and (b) for study of the effect of pressure on lattice parameters and volume under isothermal conditions. The results in the area (a) are reviewed. The techniques of applying high pressures are described. These include both static and dynamic shockwave X-ray apparatus. To illustrate the effect of pressure, some of the pressure induced phase transitions in pure metals are described. It has been found that there is a clear trend for elements in any group of the periodic table to adopt similar structures at high pressures. These studies have enabled to construct generalized phase diagrams for many groups. In the case of alloys, the high pressure work done on Ti-V alloys is presented. (author)

  20. Competitive photocyclization/rearrangement of 4-aryl-1,1-dicyanobutenes controlled by intramolecular charge-transfer interaction. Effect of medium polarity, temperature, pressure, excitation wavelength, and confinement.

    Science.gov (United States)

    Ito, Tadashi; Nishiuchi, Emi; Fukuhara, Gaku; Inoue, Yoshihisa; Mori, Tadashi

    2011-09-01

    A series of 4-aryl-1,1-dicyanobutenes (1a-1f) with different substituents were synthesized to control the intramolecular donor-acceptor or charge-transfer (C-T) interactions in the ground state. Photoexcitation of these C-T substrates led to competitive cyclization and rearrangement, the ratio being critically controlled by various environmental factors, such as solvent polarity, temperature and static pressure, and also by excitation wavelength and supramolecular confinement (polyethylene voids). In non-polar solvents, the rearrangement was dominant (>10 : 1) for all examined substrates, while the cyclization was favoured in polar solvents, in particular at low temperatures. Selective excitation at the C-T band further enhanced the cyclization up to >50 : 1 ratios. More importantly, the cyclization/rearrangement ratio was revealed to be a linear function of the C-T transition energy. However, the substrates with a sterically demanding or highly electron-donating substituent failed to give the cyclization product.

  1. Managing Stress to Control High Blood Pressure

    Science.gov (United States)

    ... Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The importance of stress ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  2. Application of High Pressure in Food Processing

    Directory of Open Access Journals (Sweden)

    Herceg, Z.

    2011-01-01

    Full Text Available In high pressure processing, foods are subjected to pressures generally in the range of 100 – 800 (1200 MPa. The processing temperature during pressure treatments can be adjusted from below 0 °C to above 100 °C, with exposure times ranging from a few seconds to 20 minutes and even longer, depending on process conditions. The effects of high pressure are system volume reduction and acceleration of reactions that lead to volume reduction. The main areas of interest regarding high-pressure processing of food include: inactivation of microorganisms, modification of biopolymers, quality retention (especially in terms of flavour and colour, and changes in product functionality. Food components responsible for the nutritive value and sensory properties of food remain unaffected by high pressure. Based on the theoretical background of high-pressure processing and taking into account its advantages and limitations, this paper aims to show its possible application in food processing. The paper gives an outline of the special equipment used in highpressure processing. Typical high pressure equipment in which pressure can be generated either by direct or indirect compression are presented together with three major types of high pressure food processing: the conventional (batch system, semicontinuous and continuous systems. In addition to looking at this technology’s ability to inactivate microorganisms at room temperature, which makes it the ultimate alternative to thermal treatments, this paper also explores its application in dairy, meat, fruit and vegetable processing. Here presented are the effects of high-pressure treatment in milk and dairy processing on the inactivation of microorganisms and the modification of milk protein, which has a major impact on rennet coagulation and curd formation properties of treated milk. The possible application of this treatment in controlling cheese manufacture, ripening and safety is discussed. The opportunities

  3. Regime of very high confinement in the boronized DIII-D tokamak

    International Nuclear Information System (INIS)

    Jackson, G.L.; Winter, J.; Taylor, T.S.; Burrell, K.H.; DeBoo, J.C.; Greenfield, C.M.; Groebner, R.J.; Hodapp, T.; Holtrop, K.; Lazarus, E.A.; Lao, L.L.; Lippmann, S.I.; Osborne, T.H.; Petrie, T.W.; Phillips, J.; James, R.; Schissel, D.P.; Strait, E.J.; Turnbull, A.D.; West, W.P.; DIII-D Team

    1991-01-01

    Following boronization, tokamak discharges in DIII-D have been obtained with confinement times up to a factor of 3.5 above the ITER89-P L-mode scaling and 1.8 times greater than the DIII-D/JET H-mode scaling relation. Very high confinement phases are characterized by relatively high central density with n e (0)∼1x10 20 m -3 , and central ion temperatures up to 13.6 keV at moderate plasma currents (1.6 MA) and heating powers (12.5--15.3 MW). These discharges exhibit a low fraction of radiated power, P≤25%, Z eff (0) close to unity, and lower impurity influxes than comparable DIII-D discharges before boronization

  4. High pressure injection of dimethyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Glensvig, M.; Sorenson, S.C.; Abata, D.L.

    1997-08-01

    The purpose of this investigation was to achieve a better understanding of the fundamental spray behavior of DME (Dimenthyl Ether) using a standard diesel pump with pintle and hole nozzles. Fundamental spray behavior was characterized by determining fuel spray penetration and angle, atomization and evaporation. The influences of opening pressure, nozzle geometry and ambient pressure above and below the critical pressure of the fuel on the spray behavior were investigated. The influence of opening pressures on the spray characteristics for the hole nozzle was investigated. The results showed that for opening pressures of 120 bar and 180 bar the spray has a similar appearance. For the higher opening pressure (200 bar and 240 bar), the initial spray breaks up very rapidly giving a high initial spray angle. The opening pressure had little influence on spray penetration. The spray angle later in the injection increased as the opening pressure was decreased. Above the critical pressure, the spray from the hole nozzle had a more irregular shape. Penetration decreased and the spray angle increased above the critical pressure. Three pintle nozzles with different geometries and opening pressures were tested. The appearance of the three sprays were very similar. The sprays seemed to be more sharply pointed as the nozzle hole angle decreased. The nozzle with the 4 deg. hole nozzle angle and an opening pressure of 280 bar had the highest penetration and highest initial spray angle. The pintle nozzle with the 12 deg. hole nozzle angle and opening pressure of approx. 450 bar was tested above the critical ambient pressure. Penetration was very similar for injection above and below the critical ambient pressure, while the spray angle decreased for the spray above the critical ambient pressure. (au)

  5. Evaluation of high-pressure containment buildings for LMFBR's

    International Nuclear Information System (INIS)

    Armstrong, G.R.

    1981-01-01

    A study was conducted on the use of High Pressure LMFBR Containment Buildings for 1000 MW(e) LMFBRs. Two principal aspects were investigated: accident consequence mitigation and cost. Two types of hypothetical accidents were analyzed to establish consequence mitigation: melt-through and energetic expulsion. Three Containment Building (CB) design pressures were investigated: 69 kPa (10 psig), 207 kPa (30 psig), and 414 kPa (60 psig). Four types of design structures were analyzed to establish cost: steel, steel with confinement building, reinforced concrete, and prestressed/post-tensioned concrete. Results show that: it is within reason that a high pressure containment for a 1000 MW(e) reactor can be fabricated that will retain its integrity during postulated severe hypothetical accidents, if available measures are taken to reduce or prevent hydrogen production and the cost differential between basic high (414 kPa) and low (69 kPa) pressure containments is $10 x 10 6 or less

  6. High Pressure EVA Glove (HPEG), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Final Frontier Design's (FFD) High Pressure EVA Glove (HPEG) is a game changing technology enabling future exploration class space missions. The high operating...

  7. Techniques in high pressure neutron scattering

    CERN Document Server

    Klotz, Stefan

    2013-01-01

    Drawing on the author's practical work from the last 20 years, Techniques in High Pressure Neutron Scattering is one of the first books to gather recent methods that allow neutron scattering well beyond 10 GPa. The author shows how neutron scattering has to be adapted to the pressure range and type of measurement.Suitable for both newcomers and experienced high pressure scientists and engineers, the book describes various solutions spanning two to three orders of magnitude in pressure that have emerged in the past three decades. Many engineering concepts are illustrated through examples of rea

  8. Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.

    Science.gov (United States)

    Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué

    2017-10-01

    Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.

  9. Fluid transport properties of rock fractures at high pressure and temperature. Progress report, July 1, 1979-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Engelder, T.; Scholz, C.

    1980-04-01

    Flow rates and thus permeability were measured for a variety of effective pressures on artificially prepared joints in Cheshire quartzite. Permeabilities calculated from constant head tests compare with permeabilities calculated from pulse decay tests. Measurement of the change in aperture with effective pressure shows that at effective pressures of less than 20 MPa changes in confining pressure have a larger influence on the aperture than changes in pore pressure. Joint permeability changes with aperture; thus changes in confining pressure are more influential on permeability than changes in pore pressure. Although a cubic law model for flow along a joint gives a rough estimate of joint permeability, measurements of the changes in flow rate with aperture suggest that the cubic law is inadequate for smooth joints at high pressure. This is so because the effective cross section available for flow changes with pressure in a nonlinear manner.

  10. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, Bogdan M., E-mail: bogdan.mihalcea@inflpr.ro; Vişan, Gina T.; Ganciu, Mihai [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Atomiştilor Str. Nr. 409, 077125 Măgurele, Ilfov (Romania); Giurgiu, Liviu C. [University of Bucharest, Faculty of Physics, Atomistilor Str. Nr. 405, 077125 Măgurele (Romania); Stan, Cristina [Department of Physics, Politehnica University, 313 Splaiul Independenţei, RO-060042 Bucharest (Romania); Filinov, Vladimir; Lapitsky, Dmitry, E-mail: dmitrucho@yandex.ru; Deputatova, Lidiya; Syrovatka, Roman [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya Str. 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-03-21

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  11. Multipole electrodynamic ion trap geometries for microparticle confinement under standard ambient temperature and pressure conditions

    International Nuclear Information System (INIS)

    Mihalcea, Bogdan M.; Vişan, Gina T.; Ganciu, Mihai; Giurgiu, Liviu C.; Stan, Cristina; Filinov, Vladimir; Lapitsky, Dmitry; Deputatova, Lidiya; Syrovatka, Roman

    2016-01-01

    Trapping of microparticles and aerosols is of great interest for physics and chemistry. We report microparticle trapping in case of multipole linear Paul trap geometries, operating under standard ambient temperature and pressure conditions. An 8- and 12-electrode linear trap geometries have been designed and tested with an aim to achieve trapping for larger number of particles and to study microparticle dynamical stability in electrodynamic fields. We report emergence of planar and volume ordered structures of microparticles, depending on the a.c. trapping frequency and particle specific charge ratio. The electric potential within the trap is mapped using the electrolytic tank method. Particle dynamics is simulated using a stochastic Langevin equation. We emphasize extended regions of stable trapping with respect to quadrupole traps, as well as good agreement between experiment and numerical simulations.

  12. Confinement properties of high energy density plasmas in the Wisconsin levitated octupole

    International Nuclear Information System (INIS)

    Twichell, J.C.

    1984-08-01

    The confinement of particles and energy is critically dependent on the plasma-wall interaction. Results of a study detailing this interaction are presented. High power ICRF heated and gun afterglow plasmas were studied to detail the mechanisms determining particle and energy confinement. An extensive zero-D simulation code is used to assist in interpreting the experimental data. Physically reasonable models for plasma surface interactions, time dependent coronal treatment of impurities and multiple region treatment of neutrals are used in modeling the plasma. Extensive diagnostic data are used to verify the model. Non-heated plasmas decay from 28 to 3 eV allowing clear identification of wall impact energy thresholds for desorption and particle reflection. The charge state distribution of impurities verifies the reflux to plasma diffusion rate ratio. Close agreement between the simulation and experimental data is found

  13. Turbulent edge transport in the Princeton Beta Experiment-Modified high confinement mode

    Science.gov (United States)

    Tynan, G. R.; Schmitz, L.; Blush, L.; Boedo, J. A.; Conn, R. W.; Doerner, R.; Lehmer, R.; Moyer, R.; Kugel, H.; Bell, R.; Kaye, S.; Okabayashi, M.; Sesnic, S.; Sun, Y.

    1994-10-01

    The first probe measurements of edge turbulence and transport in a neutral beam induced high confinement mode (H-mode) are reported. A strong negative radial electric field is directly observed in H-mode. A transient suppression of normalized ion saturation and floating potential fluctuation levels occurs at the low confinement mode to high confinement mode (L-H) transition, followed by a recovery to near low mode (L-mode) levels. The average poloidal wave number and the poloidal wave-number spectral width are decreased, and the correlation between fluctuating density and potential is reduced. A large-amplitude coherent oscillation, localized to the strong radial electric field region, is observed in H-mode but does not cause transport. In H-mode the effective turbulent diffusion coefficient is reduced by an order of magnitude inside the last closed flux surface and in the scrape-off layer. The results are compared with a heuristic model of turbulence suppression by velocity-shear stabilization.

  14. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    Science.gov (United States)

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  15. Nucleation at high pressure I: Theoretical considerations.

    NARCIS (Netherlands)

    Luijten, C.C.M.; Dongen, van M.E.H.

    1999-01-01

    A theoretical approach is presented that accounts for the influence of high pressure background gases on the vapor-to-liquid nucleation process. The key idea is to treat the carrier gas pressure as a perturbation parameter that modifies the properties of the nucleating substance. Two important

  16. High-pressure differential scanning microcalorimeter.

    Science.gov (United States)

    Senin, A A; Dzhavadov, L N; Potekhin, S A

    2016-03-01

    A differential scanning microcalorimeter for studying thermotropic conformational transitions of biopolymers at high pressure has been designed. The calorimeter allows taking measurements of partial heat capacity of biopolymer solutions vs. temperature at pressures up to 3000 atm. The principles of operation of the device, methods of its calibration, as well as possible applications are discussed.

  17. High-pressure oxidation of ethane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; G. Jacobsen, Jon; Rasmussen, Christian T.

    2017-01-01

    Ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending...... on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate...

  18. High-pressure phase transitions of strontianite

    Science.gov (United States)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  19. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  20. High pressure processing of meat

    DEFF Research Database (Denmark)

    Grossi, Alberto; Christensen, Mette; Ertbjerg, Per

    the rheological properties of pork meat batters by inducing formation of protein gels. HP induced protein gels are suggested to be formed by high molecular weight myofibrillar protein aggregates and by peptides formed by lysosomal enzyme-induced cleavage of myofibrillar proteins. Perspectives: The data presented...

  1. Raman spectroscopy of triolein under high pressures

    Science.gov (United States)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  2. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  3. Laboratory measurement of elastic anisotropy on spherical rock samples by longitudinal and transverse sounding under confining pressure

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Svitek, Tomáš

    2015-01-01

    Roč. 56, February 2015 (2015), s. 294-302 ISSN 0041-624X R&D Projects: GA MŠk LH13102; GA ČR GAP104/12/0915; GA ČR GA13-13967S Institutional support: RVO:67985831 Keywords : elastic anisotropy * hydrostatic pressure * ultrasonic sounding * high pressure * longitudinal and shear waves Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.954, year: 2015

  4. Modeling High Pressure Micro Hollow Cathode Discharges

    National Research Council Canada - National Science Library

    Boeuf, Jean-Pierre; Pitchford, Leanne

    2004-01-01

    This report results from a contract tasking CPAT as follows: The Grantee will perform theoretical modeling of point, surface, and volume high-pressure plasmas created using Micro Hollow Cathode Discharge sources...

  5. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  6. Preeclampsia and High Blood Pressure During Pregnancy

    Science.gov (United States)

    ... Gynecologists f AQ FREQUENTLY ASKED QUESTIONS FAQ034 PREGNANCY Preeclampsia and High Blood Pressure During Pregnancy • What is ... is chronic hypertension during pregnancy managed? • What is preeclampsia? • When does preeclampsia occur? • What causes preeclampsia? • What ...

  7. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  8. Adiabatic Quasi-Spherical Compressions Driven by Magnetic Pressure for Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Nash, Thomas J.

    2000-01-01

    The magnetic implosion of a high-Z quasi-spherical shell filled with DT fuel by the 20-MA Z accelerator can heat the fuel to near-ignition temperature. The attainable implosion velocity on Z, 13-cm/micros, is fast enough that thermal losses from the fuel to the shell are small. The high-Z shell traps radiation losses from the fuel, and the fuel reaches a high enough density to reabsorb the trapped radiation. The implosion is then nearly adiabatic. In this case the temperature of the fuel increases as the square of the convergence. The initial temperature of the fuel is set by the heating of an ion acoustic wave to be about 200-eV after a convergence of 4. To reach the ignition temperature of 5-keV an additional convergence of 5 is required. The implosion dynamics of the quasi-spherical implosion is modeled with the 2-D radiation hydrodynamic code LASNEX. LASNEX shows an 8-mm diameter quasi-spherical tungsten shell on Z driving 6-atmospheres of DT fuel nearly to ignition at 3.5-keV with a convergence of 20. The convergence is limited by mass flow along the surface of the quasi-spherical shell. With a convergence of 20 the final spot size is 400-microm in diameter

  9. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  10. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    1999-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  11. Plasma confinement in a magnetic dipole

    International Nuclear Information System (INIS)

    Kesner, J.; Bromberg, L.; Garnier, D.; Mauel, M.

    2001-01-01

    A dipole fusion confinement device is stable to MHD interchange and ballooning modes when the pressure profile is sufficiently gentle. The plasma can be confined at high beta, is steady state and disruption free. Theory indicates that when the pressure gradient is sufficiently gentle to satisfy MHD requirements drift waves will also be stable. The dipole approach is particularly applicable for advanced fuels. A new experimental facility is presently being built to test the stability and transport properties of a dipole-confined plasma. (author)

  12. High Pressure Physics at Brigham Young University

    Science.gov (United States)

    Decker, Daniel

    2000-09-01

    I will discuss the high pressure research of Drs. J. Dean Barnett, Daniel L. Decker and Howard B. Vanfleet of the department of Physics and Astronomy at Brigham Young University and their many graduate students. I will begin by giving a brief history of the beginning of high pressure research at Brigham Young University when H. Tracy Hall came to the University from General Elecrtric Labs. and then follow the work as it progressed from high pressure x-ray diffraction experiments, melting curve measurements under pressure to pressure effects on tracer diffusion and Mossbauer effect spectra. This will be followed by showing the development of pressure calibration techniques from the Decker equation of state of NaCl to the ruby fluorescence spectroscopy and a short discussion of using a liquid cell for hydrostatic measurements and temperature control for precision high pressure measurements. Then I will conclude with a description of thermoelectric measuremnts, critical phenomena at the magnetic Curie point, and the tricritical point of BaTiO_3.

  13. High methane natural gas/air explosion characteristics in confined vessel.

    Science.gov (United States)

    Tang, Chenglong; Zhang, Shuang; Si, Zhanbo; Huang, Zuohua; Zhang, Kongming; Jin, Zebing

    2014-08-15

    The explosion characteristics of high methane fraction natural gas were investigated in a constant volume combustion vessel at different initial conditions. Results show that with the increase of initial pressure, the peak explosion pressure, the maximum rate of pressure rise increase due to a higher amount (mass) of flammable mixture, which delivers an increased amount of heat. The increased total flame duration and flame development time result as a consequence of the higher amount of flammable mixture. With the increase of the initial temperature, the peak explosion pressures decrease, but the pressure increase during combustion is accelerated, which indicates a faster flame speed and heat release rate. The maximum value of the explosion pressure, the maximum rate of pressure rise, the minimum total combustion duration and the minimum flame development time is observed when the equivalence ratio of the mixture is 1.1. Additionally, for higher methane fraction natural gas, the explosion pressure and the maximum rate of pressure rise are slightly decreased, while the combustion duration is postponed. The combustion phasing is empirically correlated with the experimental parameters with good fitting performance. Furthermore, the addition of dilute gas significantly reduces the explosion pressure, the maximum rate of pressure rise and postpones the flame development and this flame retarding effect of carbon dioxide is stronger than that of nitrogen. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Holographic interferometry of high pressure

    International Nuclear Information System (INIS)

    McIlwain, M.E.

    1987-01-01

    Measurements in turbulent flows have been historically performed using various types of probes and optical diagnostic methods. In general, probes suffer from plasma perturbation effects and are single point determination methods. Optical methods appear to be better suited to determinations in turbulent flows, however interpretation of the resulting data can often be complex. Methods such as laser Doppler anemometry, which relies on entrained particles, suffers from the fact that particles small enough to be swept along by the plasma are usually melted or sublimed in the plasma. Light refraction or diffraction methods such as shadow photography, interferometry, and holography have also been used to observe plasma flows. These methods typically suffer from the difficulty of interpreting line of sight images and obtaining quantitative data. A new method based on multi-pass holographic interferometry will be discussed. This method has certain advantages which can significantly simplify the complexity of line of sight interferometry image deconvolution. When the method employs high speed cinematography, time resolved images of the plasma flow can be obtained. This method has been applied to both transferred and non-transferred arcs and various types of DC-plasma torch produced jets. These studies and conclusions as to the usefulness of the technique are presented

  15. Confinement characteristics of high-energy ions produced by ICRF heating in the large helical device

    International Nuclear Information System (INIS)

    Kumazawa, R; Saito, K; Torii, Y; Mutoh, T; Seki, T; Watari, T; Osakabe, M; Murakami, S; Sasao, M; Watanabe, T; Yamamoto, T; Notake, T; Takeuchi, N; Saida, T; Shimpo, F; Nomura, G; Yokota, M; Kato, A; Zao, Y; Okada, H; Isobe, M; Ozaki, T; Narihara, K; Nagayama, Y; Inagaki, S; Morita, S; Krasilnikov, A V; Idei, H; Kubo, S; Ohkubo, K; Sato, M; Shimozuma, T; Yoshimura, Y; Ikeda, K; Nagaoka, K; Oka, Y; Takeiri, Y; Tsumori, K; Ashikawa, N; Emoto, M; Funaba, H; Goto, M; Ida, K; Kobuchi, T; Liang, Y; Masuzaki, S; Minami, T; Miyazawa, J; Morisaki, T; Muto, S; Nakamura, Y; Nakanishi, H; Nishimura, K; Noda, N; Ohdachi, S; Peterson, B J; Sagara, A; Sakakibara, S; Sakamoto, R; Sato, K; Shoji, M; Suzuki, H; Tanaka, K; Toi, K; Tokuzawa, T; Watanabe, K Y; Yamada, I; Yamamoto, S; Yoshinuma, M; Yokoyama, M; Watanabe, K-Y; Kaneko, O; Kawahata, K; Komori, A; Ohyabu, N; Yamada, H; Yamazaki, K; Sudo, S; Matsuoka, K; Hamada, Y; Motojima, O; Fujiwara, M

    2003-01-01

    The behaviour of high-energy ions accelerated by an ion cyclotron range of frequency (ICRF) electric field in the large helical device (LHD) is discussed. A better confinement performance of high-energy ions in the inward-shifted magnetic axis configuration was experimentally verified by measuring their energy spectrum and comparing it with the effective temperature determined by an electron slowing down process. In the standard magnetic axis configuration a saturation of the measured tail temperature was observed as the effective temperature was increased. The ratio between these two quantities is a measure of the quality of transfer efficiency from high-energy ions to a bulk plasma; when this efficiency was compared with Monte Carlo simulations the results agreed fairly well. The ratio of the stored energy of the high-energy ions to that of the bulk plasma was measured using an ICRF heating power modulation method; it was deduced from phase differences between total and bulk plasma stored energies and the modulated ICRF heating power. The measured high energy fraction agreed with that calculated using the injected ICRF heating power, the transfer efficiency determined in the experiment and the confinement scaling of the LHD plasma

  16. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  17. On high-pressure melting of tantalum

    Science.gov (United States)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  18. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  19. Solids, liquids, and gases under high pressure

    Science.gov (United States)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  20. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    Science.gov (United States)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  1. Hydrostatic pressure and temperature effects on the binding energy and optical absorption of a multilayered quantum dot with a parabolic confinement

    International Nuclear Information System (INIS)

    Ortakaya, Sami; Kirak, Muharrem

    2016-01-01

    The influence of hydrostatic pressure, temperature, and impurity on the electronic and optical properties of spherical core/shell/well/shell (CSWS) nanostructure with parabolic confinement potential is investigated theoretically. The energy levels and wave functions of the structure are calculated by using shooting method within the effective-mass approximation. The numerical results show that the ground state donor binding energy as a function layer thickness very sensitively depends on the magnitude of pressure and temperature. Also, we investigate the probability distributions to understand clearly electronic properties. The obtained results show that the existence of the pressure and temperature has great influence on the electronic and optical properties. (paper)

  2. Discovery of stationary operation of quiescent H-mode plasmas with net-zero neutral beam injection torque and high energy confinement on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Muscatello, C. M.; Osborne, T. H.; Petty, C. C.; Snyder, P. B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Barada, K.; Rhodes, T. L.; Zeng, L. [University of California-Los Angeles, Los Angeles, California 90024 (United States); Solomon, W. M. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Yan, Z. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H{sub 98y2} international tokamak energy confinement scaling (H{sub 98y2} = 1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggered in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers E × B rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the E × B shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β{sub N} = 1.6–1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints

  3. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, July 1, 1975--January 31, 1976

    International Nuclear Information System (INIS)

    Haught, A.F.; Polk, D.H.; Fader, W.J.; Tomlinson, R.G.; Jong, R.A.; Ard, W.B.; Mensing, A.E.; Churchill, T.L.; Stufflebeam, J.H.; Bresnock, F.J.

    1976-01-01

    The Laser Initiated Target Experiment (LITE) at the United Technologies Research Center is designed to address the target plasma buildup approach to a steady state mirror fusion device. A dense, mirror confined, target plasma is produced by high power laser irradiation of a solid lithium hydride particle, electrically suspended in a vacuum at the center of an established minimum-B magnetic field. Following expansion in and capture by the magnetic field, this target plasma is irradiated by an energetic neutral hydrogen beam. Charge exchange collisions with energetic beam particles serve to heat the confined plasma while ionization of the neutral beam atoms and trapping in the mirror magnetic field add particles to the confined plasma. For sufficiently high beam intensities, confined plasmas losses will be offset so that buildup of the plasma density occurs, thus demonstrating sustenance and fueling as well as the heating by neutral beam injection of a steady state mirror fusion device. Investigations of the decay of the magnetically confined target plasmas and initial studies of energetic neutral beam injection into confined target plasmas, conducted during this report period, are presented. Additional development of the LITE experimental systems including improvements in the laser plasma production facility, the energetic neutral beam line, and the heavy ion probe diagnostic is reported. A series of calculations on enhanced scattering and classical decay for plasma mirror confined in a LITE type system are discussed

  4. Radioresistance increase in polymers at high pressures

    International Nuclear Information System (INIS)

    Milinchuk, V.; Kirjukhin, V.; Klinshpont, E.

    1977-01-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibres were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures. (J.B.)

  5. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  6. High pressure, high current, low inductance, high reliability sealed terminals

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  7. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  8. Confined recrystallization of high-purity aluminium during accumulative roll bonding of aluminium laminates

    International Nuclear Information System (INIS)

    Chekhonin, Paul; Beausir, Benoît; Scharnweber, Juliane; Oertel, Carl-Georg; Hausöl, Tina; Höppel, Heinz Werner; Brokmeier, Heinz-Günter; Skrotzki, Werner

    2012-01-01

    Aluminium laminates consisting of high-purity aluminium and commercially pure aluminium have been produced by accumulative roll bonding (ARB) at ambient temperature for up to 10 cycles. To study the microstructure and texture development of the high-purity aluminium layers with regard to the shrinking layer thickness during ARB, microstructure and texture investigations were carried out by electron backscatter diffraction and neutron and X-ray diffraction, respectively. While the commercially pure aluminium layers develop an ultrafine-grained microstructure, partial discontinuous recrystallization occurs in the high-purity layers. The texture of the high-purity layers mainly consists of Cube and “Tilted Cube” (tilted with respect to the transverse direction) components. The experimental results are discussed with respect to confined recrystallization in the ARB aluminium laminates.

  9. High-Pressure Polymorphism in Orthoamphiboles

    Science.gov (United States)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  10. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  11. High pressure synthesis of bismuth disulfide

    DEFF Research Database (Denmark)

    Søndergaard-Pedersen, Simone; Nielsen, Morten Bormann; Bremholm, Martin

    In this research the BiS2 compound was synthesized by a high pressure and high temperature method using a multi-anvil large volume press and the structure was solved by single crystal diffraction. The structure contains Bi atoms in distorted square-based pyramidal coordination to five surrounding...

  12. Experimental studies of high-confinement mode plasma response to non-axisymmetric magnetic perturbations in ASDEX Upgrade

    Science.gov (United States)

    Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team

    2017-01-01

    The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m  =  qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.

  13. The compact mirrors with high pressure plasmas

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Bagryansky, P.A.; Ivanov, A.A.; Lizunov, A.A.; Murakhtin, S.V.; Prikhodko, V.V.; Collatz, S.; Noack, K.

    2004-01-01

    The gas dynamic trap (GDP) experimental facility at the Budker Institute Novosibirsk is a long axial-symmetric mirror system with a high mirror ratio variable in the range of 12.5 - 100 for the confinement of a two-component plasma. One component is a collisional plasma with ion and electron temperatures up to 100 eV and density up to 10 14 cm -3 . The second component is the population of high-energetic fast ions with energies of 2-18 keV and a density up to 10 13 cm -3 which is produced by neutral beam injection (NBI). GDP is currently undergoing an upgrade whose first stage is the achievement of the synthesized hot ion plasmoid experiment (SHIP). This experiment aims at the investigation of plasmas and at the knowledge of plasma parameters that have never been achieved before in magnetic mirrors. The paper presents the physical concept of the SHIP experiment, the results of numerical pre-calculations and draws conclusions regarding possible scenarios of experiments. The simulation of a maximal NBI power regime with hydrogen injection gave a fast ion density of 1.2*10 14 cm -3 with a mean energy of 14 keV. The calculation of the deuterium injection regime with 2 MW NBI power gave a maximal fast ion density of 1.9*10 14 cm -3 with a beam energy of 9 keV. The calculation of an experimental scenario with reduced magnetic field resulted in a maximal β-value of 62%, so this regime is recommended for the study of high-β effects in plasmas confined in axial-symmetric mirrors

  14. Nonlinear gyrokinetic simulations of the I-mode high confinement regime and comparisons with experiment

    Energy Technology Data Exchange (ETDEWEB)

    White, A. E., E-mail: whitea@mit.edu; Howard, N. T.; Creely, A. J.; Chilenski, M. A.; Greenwald, M.; Hubbard, A. E.; Hughes, J. W.; Marmar, E.; Rice, J. E.; Sierchio, J. M.; Sung, C.; Walk, J. R.; Whyte, D. G. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Mikkelsen, D. R.; Edlund, E. M.; Kung, C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Holland, C. [University of California, San Diego (UCSD) San Diego, California 92093 (United States); Candy, J.; Petty, C. C. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States); Reinke, M. L. [York University, Heslington, York YO10 5DD (United Kingdom); and others

    2015-05-15

    For the first time, nonlinear gyrokinetic simulations of I-mode plasmas are performed and compared with experiment. I-mode is a high confinement regime, featuring energy confinement similar to H-mode, but without enhanced particle and impurity particle confinement [D. G. Whyte et al., Nucl. Fusion 50, 105005 (2010)]. As a consequence of the separation between heat and particle transport, I-mode exhibits several favorable characteristics compared to H-mode. The nonlinear gyrokinetic code GYRO [J. Candy and R. E. Waltz, J Comput. Phys. 186, 545 (2003)] is used to explore the effects of E × B shear and profile stiffness in I-mode and compare with L-mode. The nonlinear GYRO simulations show that I-mode core ion temperature and electron temperature profiles are more stiff than L-mode core plasmas. Scans of the input E × B shear in GYRO simulations show that E × B shearing of turbulence is a stronger effect in the core of I-mode than L-mode. The nonlinear simulations match the observed reductions in long wavelength density fluctuation levels across the L-I transition but underestimate the reduction of long wavelength electron temperature fluctuation levels. The comparisons between experiment and gyrokinetic simulations for I-mode suggest that increased E × B shearing of turbulence combined with increased profile stiffness are responsible for the reductions in core turbulence observed in the experiment, and that I-mode resembles H-mode plasmas more than L-mode plasmas with regards to marginal stability and temperature profile stiffness.

  15. High-purity aluminium creep under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Zajtsev, V.I.; Lyafer, E.I.; Tokij, V.V.

    1977-01-01

    The effect of the hydrostatic pressure on the rate of steady-state creep of high-purity aluminium was investigated. It is shown that the hydrostatic pressure inhibits the creep. The activation volume of the creep is independent of the direction in the range of (4.7-6.2) kg/mm 2 and of the pressure in the range of (1-7.8000) atm. It is concluded that self-diffusion does not control the creep of high-purity aluminium at room temperature in the investigated stress and pressure range

  16. Attainment of high confinement in neutral beam heated divertor discharges in the PDX tokamak

    International Nuclear Information System (INIS)

    Kaye, S.M.; Bell, M.; Bol, K.

    1983-11-01

    The PDX divertor configuration has recently been converted from an open to a closed geometry to inhibit the return of neutral gas from the divertor region to the main chamber. Since then, operation in a regime with high energy confinement in neutral beam heated discharges (ASDEX H-mode) has been routine over a wide range of operating conditions. These H-mode discharges are characterized by a sudden drop in divertor density and H/sub α/ emission and a spontaneous rise in main chamber plasma density during neutral beam injection. The confinement time is found to scale nearly linearly with plasma current, but it can be degraded due to either the presence of edge instabilities or heavy gas puffing. Detailed Thomson scattering temperature profiles show high values of Te near the plasma edge (approx. 450 eV) with sharp radial gradients (approx. 400 eV/cm) near the separatrix. Density profiles are broad and also exhibit steep gradients close to the separatrix

  17. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  18. Thin shell, high velocity inertial confinement fusion implosions on the national ignition facility.

    Science.gov (United States)

    Ma, T; Hurricane, O A; Callahan, D A; Barrios, M A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Haan, S W; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; MacPhee, A G; Pak, A; Park, H-S; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Springer, P T; Tommasini, R; Benedetti, L R; Bionta, R; Bond, E; Bradley, D K; Caggiano, J; Celliers, P; Cerjan, C J; Church, J A; Dixit, S; Dylla-Spears, R; Edgell, D; Edwards, M J; Field, J; Fittinghoff, D N; Frenje, J A; Gatu Johnson, M; Grim, G; Guler, N; Hatarik, R; Herrmann, H W; Hsing, W W; Izumi, N; Jones, O S; Khan, S F; Kilkenny, J D; Knauer, J; Kohut, T; Kozioziemski, B; Kritcher, A; Kyrala, G; Landen, O L; MacGowan, B J; Mackinnon, A J; Meezan, N B; Merrill, F E; Moody, J D; Nagel, S R; Nikroo, A; Parham, T; Ralph, J E; Rosen, M D; Rygg, J R; Sater, J; Sayre, D; Schneider, M B; Shaughnessy, D; Spears, B K; Town, R P J; Volegov, P L; Wan, A; Widmann, K; Wilde, C H; Yeamans, C

    2015-04-10

    Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165  μm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

  19. Hydrogen - High pressure production and storage

    International Nuclear Information System (INIS)

    Lauretta, J.R

    2005-01-01

    The development of simple, safe and more and more efficient technologies for the production and the storage of hydrogen is necessary condition for the transition towards the economy of hydrogen.In this work the hydrogen production studies experimentally to high pressure by electrolysis of alkaline solutions without the intervention of compressing systems and its direct storage in safe containers.The made tests show that the process of electrolysis to high pressure is feasible and has better yield than to low pressure, and that is possible to solve the operation problems, with relatively simple technology.The preliminary studies and tests indicate that the system container that studied is immune to the outbreak and can have forms and very different sizes, nevertheless, to reach or to surpass the efficiency of storage of the conventional systems the investments necessary will be due to make to be able to produce aluminum alloy tubes of high resistance

  20. High-Tc superconductors under very high pressure

    International Nuclear Information System (INIS)

    Wijngaarden, R.J.; Scholtz, J.J.; Eenige, E.N. van; Griessen, R.

    1991-01-01

    High pressure has played a crucial role in the short history of high T c superconductors. Soon after the discovery of superconductivity by Bednorz and Muller in La-Ba-Cu-O, Chu et al. showed that the critical temperature T c could be significantly increased by pressure. This observation led to the discovery of YBa 2 Cu 3 O 7 by Wu et al. with a T c above 90 K. Incidentally, this high T c is probably also due to the fact that YBa 2 Cu 3 O 7 has two CuO 2 layers per unit cell instead of a single one in La-Ba-Cu-O. The authors discuss the high pressure dependence of the oxide superconductors, particularly at pressures above 10 GPa, and the nonmonotonic dependence of transition temperature on pressure

  1. Application of high-power lasers to equation-of-state research at ultrahigh pressures

    International Nuclear Information System (INIS)

    Trainor, R.J.; Graboske, H.C.; Long, K.S.; Shaner, J.W.

    1978-01-01

    The application of high-power pulsed lasers to ultrahigh pressure equation-of-state (EOS) experiments is discussed. It is shown that pressures along the principal Hugoniot between 1 and 10 TPa can be produced with existing lasers used for inertial-confinement fusion research. The relevance of measurements in this pressure regime to improving our understanding of condensed matter physics is also discussed. New experimental techniques as well as potential experimental problems are described, and EOS experiments on the Janus and Argus laser systems are proposed

  2. High pressure freon decontamination of remote equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.

    1987-01-01

    A series of decontamination tests using high pressure FREON 113 was conducted in the 200 Area of the Hanford site. The intent of these tests was to evaluate the effectiveness of FREON 113 in decontamination of manipulator components, tools, and equipment items contaminated with mixed fission products. The test results indicated that high pressure FREON 113 is very effective in removing fissile material from a variety of objects and can reduce both the quantity and the volume of the radioactive waste material presently being buried

  3. High pressure water jet cutting and stripping

    Science.gov (United States)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  4. High pressure water jet mining machine

    Science.gov (United States)

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  5. Raman study of opal at high pressure

    Science.gov (United States)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  6. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  7. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  8. Confinement studies of a high current density RFP in the Extrap T1 Upgrade device

    International Nuclear Information System (INIS)

    Drake, J.R.; Brzozowski, J.H.; Brunsell, P.; Hellblom, G.; Karlsson, P.; Mazur, S.; Nordlund, P.; Welander, A.; Zastrow, K.D.

    1992-01-01

    Confinement studies have been carried out on the Extrap T1 device operated in the reversed field pinch (RFP) mode. Extrap T1 is a small device with a major radius of R=0.5 m and a high aspect ratio, R/a=8.9. For these experiments, the device has been operated with a resistive shell with measured, toroidally-averaged flux penetration times of τ sv = 500μs (vertical) and τ sR =300μs (radial). The pulse lengths are about 600 μs, which is slightly longer than the shell penetration time. The purpose of these experiments is to study energy confinement in a high aspect-ratio, high current-density RFP device with a resistive shell. The device can be operated with high current densities which exceed 20 MAm -2 on axis. For these discharges, the average electron density is relatively high, ≅ 1x10 20 m -3 . Therefore, although the average current density exceeds 5 MAm -2 , the important parameter / ≅ I/N is maintained less than 1x10 -13 Am, where N is the line density. The plasma diagnostics for the device include a single chord CO 2 laser interferometer ( ), single point Thomson scattering (T e , n o ), VUV and visible spectroscopy (T e , Z eff ) surface barrier diodes for soft X-ray measurements (T e ), bolometry (P rad ), surface probes (Γ p ,T i ) and comprehensive magnetic diagnostics for both equilibrium and magnetic fluctuation studies. (author) 5 refs., 1 fig., 1 tab

  9. Impurity toroidal rotation and transport in Alcator C-Mod ohmic high confinement mode plasmas

    International Nuclear Information System (INIS)

    Rice, J. E.; Goetz, J. A.; Granetz, R. S.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Marmar, E. S.; Mossessian, D.; Pedersen, T. Sunn; Snipes, J. A.

    2000-01-01

    Central toroidal rotation and impurity transport coefficients have been determined in Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] Ohmic high confinement mode (H-mode) plasmas from observations of x-ray emission following impurity injection. Rotation velocities up to 3x10 4 m/sec in the co-current direction have been observed in the center of the best Ohmic H-mode plasmas. Purely ohmic H-mode plasmas display many characteristics similar to ion cyclotron range of frequencies (ICRF) heated H-mode plasmas, including the scaling of the rotation velocity with plasma parameters and the formation of edge pedestals in the electron density and temperature profiles. Very long impurity confinement times (∼1 sec) are seen in edge localized mode-free (ELM-free) Ohmic H-modes and the inward impurity convection velocity profile has been determined to be close to the calculated neoclassical profile. (c) 2000 American Institute of Physics

  10. Compression Behavior of Confined Columns with High-Volume Fly Ash Concrete

    Directory of Open Access Journals (Sweden)

    Sung-Won Yoo

    2017-01-01

    Full Text Available The use of fly ash in ordinary concrete provides practical benefits to concrete structures, such as a gain in long-term strength, reduced hydration heat, improved resistance to chloride, and enhanced workability. However, few studies with high-volume fly ash (HVFA concrete have been conducted that focus on the structural applications such as a column. Thus, there is a need to promote field applications of HVFA concrete as a sustainable construction material. To this end, this study investigated the compressive behavior of reinforced concrete columns that contain HVFA with a 50 percent replacement rate. Six columns were fabricated for this study. The study variables were the HVFA replacement rate, tied steel ratio, and tie steel spacing. The computed ultimate strength by the American Concrete Institute (ACI code conservatively predicted the measured values, and, thus, the existing equation in the ACI code is feasible for confined RC columns that contain HVFA. In addition, an analysis model was calibrated based on the experimental results and is recommended for predicting the stress-strain relationship of confined reinforced concrete columns that contain HVFA.

  11. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  12. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  13. A Cascade Disaster Caused by Geological and Coupled Hydro-Mechanical Factors—Water Inrush Mechanism from Karst Collapse Column under Confining Pressure

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-11-01

    Full Text Available The water inrush from karst collapse column (KCC is a cascading, vicious cycle disaster caused by geological and mining activities, that can cause serious casualties and property losses. The key to preventing this risk is to study the mechanism of water inrush under confining pressure. Aiming at the investigationg the characteristics of the KCC named X1 in Chensilou mine, a series of methods, including connectivity experiments, water pressure monitoring tests in two side-walls, and numerical simulations based on plastic damage-seepage (PD-S theory have been developed. The methods are used to test the security of the 2519 mining area, the damage thickness, pore water pressure, and seepage vector in the X1. The results indicate that the X1 has a certain water blocking capacity. In addition, with the decrease of confining pressure and increase of shear stress, deviatoric stress could cause the increase of permeability, the reduction of strength, and the reduction of pore water pressure in KCC. Therefore the increased effective stress in the rock will force the rock to become more fractured. Conversely, the broken rock could cause the change of stress, and further initiate new plastic strains, damage and pore water pressure until a new equilibrium is reached. This cascading water inrush mechanism will contribute to the exploitation of deep coal resources in complex geological and hydrogeological conditions.

  14. Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.

    Science.gov (United States)

    Ma, T; Patel, P K; Izumi, N; Springer, P T; Key, M H; Atherton, L J; Benedetti, L R; Bradley, D K; Callahan, D A; Celliers, P M; Cerjan, C J; Clark, D S; Dewald, E L; Dixit, S N; Döppner, T; Edgell, D H; Epstein, R; Glenn, S; Grim, G; Haan, S W; Hammel, B A; Hicks, D; Hsing, W W; Jones, O S; Khan, S F; Kilkenny, J D; Kline, J L; Kyrala, G A; Landen, O L; Le Pape, S; MacGowan, B J; Mackinnon, A J; MacPhee, A G; Meezan, N B; Moody, J D; Pak, A; Parham, T; Park, H-S; Ralph, J E; Regan, S P; Remington, B A; Robey, H F; Ross, J S; Spears, B K; Smalyuk, V; Suter, L J; Tommasini, R; Town, R P; Weber, S V; Lindl, J D; Edwards, M J; Glenzer, S H; Moses, E I

    2013-08-23

    Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

  15. High pressure photoinduced ring opening of benzene

    International Nuclear Information System (INIS)

    Ciabini, Lucia; Santoro, Mario; Bini, Roberto; Schettino, Vincenzo

    2002-01-01

    The chemical transformation of crystalline benzene into an amorphous solid (a-C:H) was induced at high pressure by employing laser light of suitable wavelengths. The reaction was forced to occur at 16 GPa, well below the pressure value (23 GPa) where the reaction normally occurs. Different laser sources were used to tune the pumping wavelength into the red wing of the first excited singlet state S 1 ( 1 B 2u ) absorption edge. Here the benzene ring is distorted, presenting a greater flexibility which makes the molecule unstable at high pressure. The selective pumping of the S 1 level, in addition to structural considerations, was of paramount importance to clarify the mechanism of the reaction

  16. Advanced Diagnostics for High Pressure Spray Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Skeen, Scott A.; Manin, Julien Luc; Pickett, Lyle M.

    2014-06-01

    The development of accurate predictive engine simulations requires experimental data to both inform and validate the models, but very limited information is presently available about the chemical structure of high pressure spray flames under engine- relevant conditions. Probing such flames for chemical information using non- intrusive optical methods or intrusive sampling techniques, however, is challenging because of the physical and optical harshness of the environment. This work details two new diagnostics that have been developed and deployed to obtain quantitative species concentrations and soot volume fractions from a high-pressure combusting spray. A high-speed, high-pressure sampling system was developed to extract gaseous species (including soot precursor species) from within the flame for offline analysis by time-of-flight mass spectrometry. A high-speed multi-wavelength optical extinction diagnostic was also developed to quantify transient and quasi-steady soot processes. High-pressure sampling and offline characterization of gas-phase species formed following the pre-burn event was accomplished as well as characterization of gas-phase species present in the lift-off region of a high-pressure n-dodecane spray flame. For the initial samples discussed in this work several species were identified, including polycyclic aromatic hydrocarbons (PAH); however, quantitative mole fractions were not determined. Nevertheless, the diagnostic developed here does have this capability. Quantitative, time-resolved measurements of soot extinction were also accomplished and the novel use of multiple incident wavelengths proved valuable toward characterizing changes in soot optical properties within different regions of the spray flame.

  17. Cobalt ferrite nanoparticles under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Saccone, F. D.; Ferrari, S.; Grinblat, F.; Bilovol, V. [Instituto de Tecnologías y Ciencias de la Ingeniería, “Ing. H. Fernández Long,” Av. Paseo Colón 850 (1063), Buenos Aires (Argentina); Errandonea, D., E-mail: daniel.errandonea@uv.es [Departamento de Fisica Aplicada, Institut Universitari de Ciència dels Materials, Universitat de Valencia, c/ Doctor Moliner 50, E-46100 Burjassot, Valencia (Spain); Agouram, S. [Departamento de Física Aplicada y Electromagnetismo, Universitat de València, 46100 Burjassot, Valencia (Spain)

    2015-08-21

    We report by the first time a high pressure X-ray diffraction and Raman spectroscopy study of cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles carried out at room temperature up to 17 GPa. In contrast with previous studies of nanoparticles, which proposed the transition pressure to be reduced from 20–27 GPa to 7.5–12.5 GPa (depending on particle size), we found that cobalt ferrite nanoparticles remain in the spinel structure up to the highest pressure covered by our experiments. In addition, we report the pressure dependence of the unit-cell parameter and Raman modes of the studied sample. We found that under quasi-hydrostatic conditions, the bulk modulus of the nanoparticles (B{sub 0} = 204 GPa) is considerably larger than the value previously reported for bulk CoFe{sub 2}O{sub 4} (B{sub 0} = 172 GPa). In addition, when the pressure medium becomes non-hydrostatic and deviatoric stresses affect the experiments, there is a noticeable decrease of the compressibility of the studied sample (B{sub 0} = 284 GPa). After decompression, the cobalt ferrite lattice parameter does not revert to its initial value, evidencing a unit cell contraction after pressure was removed. Finally, Raman spectroscopy provides information on the pressure dependence of all Raman-active modes and evidences that cation inversion is enhanced by pressure under non-hydrostatic conditions, being this effect not fully reversible.

  18. Sounding experiments of high pressure gas discharge

    International Nuclear Information System (INIS)

    Biele, Joachim K.

    1998-01-01

    A high pressure discharge experiment (200 MPa, 5·10 21 molecules/cm 3 , 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm 3 ) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm 3 ) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved

  19. High Pressure Inactivation of HAV within Mussels

    Science.gov (United States)

    The potential of hepatitis A virus (HAV) to be inactivated within Mediterranean mussels (Mytilus galloprovincialis) and blue mussels (Mytilus edulis) by high pressure processing was evaluated. HAV was bioaccumulated within mussels to approximately 6-log10 PFU by exposure of mussels to HAV-contamina...

  20. Teaming Up Against High Blood Pressure

    Centers for Disease Control (CDC) Podcasts

    2012-09-04

    This podcast is based on the September 2012 CDC Vital Signs report. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.  Created: 9/4/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 9/4/2012.

  1. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  2. Study of ceramics sintering under high pressures

    International Nuclear Information System (INIS)

    Kunrath Neto, A.O.

    1990-01-01

    A systematic study was made on high pressure sintering of ceramics in order to obtain materials with controlled microstructure, which are not accessible by conventional methods. Some aspects with particular interest were: to achieve very low porosity, with fine grains; to produce dispersed metastable and denser phases which can act as toughening agents; the study of new possibilities for toughening enhancement. (author)

  3. Analysis of high-pressure safety valves

    NARCIS (Netherlands)

    Beune, A.

    2009-01-01

    In presently used safety valve sizing standards the gas discharge capacity is based on a nozzle flow derived from ideal gas theory. At high pressures or low temperatures real gas effects can no longer be neglected, so the discharge coefficient corrected for flow losses cannot be assumed constant

  4. High pressure studies of planetary matter

    International Nuclear Information System (INIS)

    Ross, M.

    1989-06-01

    Those materials which are of greatest interest to the physics of the deep planetary interiors are Fe, H 2 , He and the Ices. These are sufficiently diverse and intensively studied to offer an overview of present day high pressure research. 13 refs., 1 fig

  5. High pressure and synchrotron radiation satellite workshop

    International Nuclear Information System (INIS)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A.

    2006-01-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations

  6. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    Science.gov (United States)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  7. High hydrostatic pressure processing of tropical fruits.

    Science.gov (United States)

    Lopes, Maria Lúcia M; Valente Mesquita, Vera L; Chiaradia, Ana Cristina N; Fernandes, Antônio Alberto R; Fernandes, Patricia M B

    2010-02-01

    Interest in the nonthermal method of high hydrostatic pressure (HHP) for food preservation has increased recently due to the possibility of inactivating microorganisms and enzymes while maintaining product sensorial and nutritional properties. This work deals with HHP use for the preservation of tropical fruit products. HHP is shown to be a practical approach to obtaining high-quality tropical fruit products that are both nutritive and safe.

  8. High pressure neutron powder diffraction at LANSCE

    International Nuclear Information System (INIS)

    Von Dreele, R.B.

    1994-01-01

    By making use of the recently developed ''Paris-Edinburgh'' high pressure cell, the author has successfully performed neutron powder experiments to 10GPa at ambient temperature. Results for the structural compression of the high Tc 1223-Hg superconductor to 9.2 GPa, the compression and possible hydrogen bond formation in brucite, Mg(OD) 2 , to 9.3 GPa, and the molecular reorientation in nitromethane to 5.5 GPa will be presented

  9. High temperature and high pressure equation of state of gold

    International Nuclear Information System (INIS)

    Matsui, Masanori

    2010-01-01

    High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements. The lattice thermal pressures at high temperatures have been estimated based on the Mie-Grueneisen-Debye type treatment with the Vinet isothermal EOS. The contribution of electronic thermal pressure at high temperatures, which is relatively insignificant for Au, has also been included here. The optimized EOS parameters are K' 0T = 6.0 and q = 1.6 with fixed K 0T = 167 GPa, γ 0 = 2.97, and Θ 0 = 170 K from previous investigations. We propose the present EOS to be used as a reliable pressure standard for static experiments up to 3000K and 300 GPa.

  10. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita

    2016-01-01

    This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure and inter......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...... and intermolecular interactions on optical excitations, electron–phonon interaction, and changes in backbone conformations. This picture is connected to the optical high pressure studies of other π-conjugated systems and emerging x-ray scattering experiments from polyfluorenes which provides a structure-property map...

  11. Impurity transport model for the normal confinement and high density H-mode discharges in Wendelstein 7-AS

    International Nuclear Information System (INIS)

    Ida, K; Burhenn, R; McCormick, K; Pasch, E; Yamada, H; Yoshinuma, M; Inagaki, S; Murakami, S; Osakabe, M; Liang, Y; Brakel, R; Ehmler, H; Giannone, L; Grigull, P; Knauer, J P; Maassberg, H; Weller, A

    2003-01-01

    An impurity transport model based on diffusivity and the radial convective velocity is proposed as a first approach to explain the differences in the time evolution of Al XII (0.776 nm), Al XI (55 nm) and Al X (33.3 nm) lines following Al-injection by laser blow-off between normal confinement discharges and high density H-mode (HDH) discharges. Both discharge types are in the collisional regime for impurities (central electron temperature is 0.4 keV and central density exceeds 10 20 m -3 ). In this model, the radial convective velocity is assumed to be determined by the radial electric field, as derived from the pressure gradient. The diffusivity coefficient is chosen to be constant in the plasma core but is significantly larger in the edge region, where it counteracts the high local values of the inward convective velocity. Under these conditions, the faster decay of aluminium in HDH discharges can be explained by the smaller negative electric field in the bulk plasma, and correspondingly smaller inward convective velocity, due to flattening of the density profiles

  12. On the energy confinement in the TM-G tokamak with high plasma density

    International Nuclear Information System (INIS)

    Stefanovskij, A.M.

    1986-01-01

    Energy confinement time τ E , when plasma density changing, has been measured at the TM-G-tokamak device with a graphite discharge chamber. The measurements have been carried out in three different discharge modes with a similar stability margin on the limiter (q L )=3) and with different values of the discharge current of a longitudinal field (I p =20, 40 and 60 kA, V T =0.8; 1.6 and 2.4 T). On the basis of experimental data analysis the conclusion is made that saturation of τ E (n e ) dependence at high plasma density occurs due to current channel compression and violation of a ''self-consistent'' profile of current density. Drift wave excitation at densities similar to the limiting Murakami density can also play an important role

  13. The high-pressure behavior of bloedite

    DEFF Research Database (Denmark)

    Comodi, Paola; Nazzareni, Sabrina; Balic Zunic, Tonci

    2014-01-01

    High-pressure single-crystal synchrotron X‑ray diffraction was carried out on a single crystal of bloedite [Na2Mg(SO4)24H2O] compressed in a diamond-anvil cell. The volume-pressure data, collected up to 11.2 GPa, were fitted by a second- and a third-order Birch-Murnaghan equation of state (EOS....... Pressure decreases significantly the distortion of Na coordination. Up to 10 GPa, the donor-acceptor oxygen distances decrease significantly and the difference between the two water molecules decreases with an increase in the strengths of hydrogen bonds. At the same time, the bond lengths from Na and Mg...... to O atoms of the water molecules decrease faster than other bonds to these cations suggesting that there is a coupling between the Na-Ow and Mg-Ow bond strengths and the “hydrogen transfer” to acceptor O atoms....

  14. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiali; Yu, Xinhai, E-mail: yxhh@ecust.edu.cn; Tu, Shan-Tung; Wang, Zhengdong [Key Laboratory of Pressure Systems and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Wang, Zhenyu [Integrated Micro & Nano System Engineering Center, School of Software and Microelectronics at Wuxi, Peking University (China)

    2016-04-15

    The effects of the gas pressure (p{sub g}), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter d{sub h} = 1000 μm) driven at constant voltage loading on the drive electrode (V{sub rf}) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When p{sub g} increased, the maximum electron (n{sub e}) or ion density (n{sub Ar+}) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λ{sub SEE-e}). The peak n{sub e} and n{sub Ar+} were not a monotonic function of p{sub g}, resulting from the two conflicting effects of p{sub g} on n{sub e} and n{sub Ar+}. The impact of ions on the electrode was enhanced when p{sub g} increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various p{sub g}. The effects of t on the peaks and distributions of n{sub e} and n{sub Ar+} were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for p{sub g} of 800 Pa and V{sub rf} of 180 V. The Au vapor addition increased the peaks of n{sub e} and n{sub Ar+}, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  15. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    International Nuclear Information System (INIS)

    Tang, Jiali; Yu, Xinhai; Tu, Shan-Tung; Wang, Zhengdong; Wang, Zhenyu

    2016-01-01

    The effects of the gas pressure (p_g), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter d_h = 1000 μm) driven at constant voltage loading on the drive electrode (V_r_f) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When p_g increased, the maximum electron (n_e) or ion density (n_A_r_+) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λ_S_E_E_-_e). The peak n_e and n_A_r_+ were not a monotonic function of p_g, resulting from the two conflicting effects of p_g on n_e and n_A_r_+. The impact of ions on the electrode was enhanced when p_g increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various p_g. The effects of t on the peaks and distributions of n_e and n_A_r_+ were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for p_g of 800 Pa and V_r_f of 180 V. The Au vapor addition increased the peaks of n_e and n_A_r_+, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  16. Strain engineered pyrochlore at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; Fuentes, Antonio F.; Park, Changyong; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Zr2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

  17. High Pressure and Temperature Effects in Polymers

    Science.gov (United States)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  18. 7 CFR 58.219 - High pressure pumps and lines.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  19. Intermittent fluctuations in the Alcator C-Mod scrape-off layer for ohmic and high confinement mode plasmas

    Science.gov (United States)

    Garcia, O. E.; Kube, R.; Theodorsen, A.; LaBombard, B.; Terry, J. L.

    2018-05-01

    Plasma fluctuations in the scrape-off layer of the Alcator C-Mod tokamak in ohmic and high confinement modes have been analyzed using gas puff imaging data. In all cases investigated, the time series of emission from a single spatially resolved view into the gas puff are dominated by large-amplitude bursts, attributed to blob-like filament structures moving radially outwards and poloidally. There is a remarkable similarity of the fluctuation statistics in ohmic plasmas and in edge localized mode-free and enhanced D-alpha high confinement mode plasmas. Conditionally averaged waveforms have a two-sided exponential shape with comparable temporal scales and asymmetry, while the burst amplitudes and the waiting times between them are exponentially distributed. The probability density functions and the frequency power spectral densities are similar for all these confinement modes. These results provide strong evidence in support of a stochastic model describing the plasma fluctuations in the scrape-off layer as a super-position of uncorrelated exponential pulses. Predictions of this model are in excellent agreement with experimental measurements in both ohmic and high confinement mode plasmas. The stochastic model thus provides a valuable tool for predicting fluctuation-induced plasma-wall interactions in magnetically confined fusion plasmas.

  20. Inspection technology for high pressure pipes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae H.; Lee, Jae C.; Eum, Heung S.; Choi, Yu R.; Moon, Soon S.; Jang, Jong H

    2000-02-01

    Various kinds of defects are likely to be occurred in the welds of high pressure pipes in nuclear power plants. Considering the recent accident of Zuruga nuclear power plant in Japan, reasonable policy is strongly requested for the high pressure pipe integrity. In this study, we developed the technologies to inspect pipe welds automatically. After development of scanning robot prototype in the first research year, we developed and implemented the algorithm of automatic tracking of the scanning robot along the weld line of the pipes. We use laser slit beam on weld area and capture the image using digital camera. Through processing of the captures image, we finally determine the weld line automatically. In addition, we investigated a new technology on micro systems for developing micro scanning robotic inspection of the pipe welds. The technology developed in this study is being transferred to the industry. (author)

  1. High pressure injection injuries: an overview.

    Science.gov (United States)

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  2. Stress concentration effects in high pressure components

    International Nuclear Information System (INIS)

    Aller, J.E.

    1990-01-01

    This paper examines the stress concentration effects of sideholes in thick walled, high pressure cylinders. It has been shown that the theoretical stress concentration factor at the intersection of a small crossbore in a closed end, thick walled cylinder varies between 3.0 and 4.0. Tests have shown that this effect can be greatly reduced in practice by carefully radiusing the bore intersection and autofrettaging the cylinder. It has also been shown that the minimum stress concentration factor occurs when the main bore and sidehole or crossbore have the same diameter, and the radius of the intersection is approximately equal to the sidehole radius. When the bore and sidehole intersection angle decreases from 90 degrees, the stress concentration factor increases significantly. Knowledge of these fundamental relationships can be used in maintaining, as well ad designing, high pressure equipment

  3. Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides.

    Science.gov (United States)

    Krückel, Clemens J; Fülöp, Attila; Klintberg, Thomas; Bengtsson, Jörgen; Andrekson, Peter A; Torres-Company, Víctor

    2015-10-05

    In this paper we introduce a low-stress silicon enriched nitride platform that has potential for nonlinear and highly integrated optics. The manufacturing process of this platform is CMOS compatible and the increased silicon content allows tensile stress reduction and crack free layer growth of 700 nm. Additional benefits of the silicon enriched nitride is a measured nonlinear Kerr coefficient n(2) of 1.4·10(-18) m(2)/W (5 times higher than stoichiometric silicon nitride) and a refractive index of 2.1 at 1550 nm that enables high optical field confinement allowing high intensity nonlinear optics and light guidance even with small bending radii. We analyze the waveguide loss (∼1 dB/cm) in a spectrally resolved fashion and include scattering loss simulations based on waveguide surface roughness measurements. Detailed simulations show the possibility for fine dispersion and nonlinear engineering. In nonlinear experiments we present continuous-wave wavelength conversion and demonstrate that the material does not show nonlinear absorption effects. Finally, we demonstrate microfabrication of resonators with high Q-factors (∼10(5)).

  4. High Pressure Multicomponent Adsorption in Porous Media

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1999-01-01

    We analyse adsorption of a multicomponent mixture at high pressure on the basis of the potential theory of adsorption. The adsorbate is considered as a segregated mixture in the external field produced by a solid adsorbent. we derive an analytical equation for the thickness of a multicomponent fi...... close to a dew point. This equation (asymptotic adsorption equation, AAE) is a first order approximation with regard to the distance from a phase envelope....

  5. Path Dependency of High Pressure Phase Transformations

    Science.gov (United States)

    Cerreta, Ellen

    2017-06-01

    At high pressures titanium and zirconium are known to undergo a phase transformation from the hexagonal close packed (HCP), alpha-phase to the simple-hexagonal, omega-phase. Under conditions of shock loading, the high-pressure omega-phase can be retained upon release. It has been shown that temperature, peak shock stress, and texture can influence the transformation. Moreover, under these same loading conditions, plastic processes of slip and twinning are also affected by similar differences in the loading path. To understand this path dependency, in-situ velocimetry measurements along with post-mortem metallographic and neutron diffraction characterization of soft recovered specimens have been utilized to qualitatively understand the kinetics of transformation, quantify volume fraction of retained omega-phase and characterize the shocked alpha and omega-phases. Together the work described here can be utilized to map the non-equilibrium phase diagram for these metals and lend insight into the partitioning of plastic processes between phases during high pressure transformation. In collaboration with: Frank Addesssio, Curt Bronkhorst, Donald Brown, David Jones, Turab Lookman, Benjamin Morrow, Carl Trujillo, Los Alamos National Lab.; Juan Pablo Escobedo-Diaz, University of New South Wales; Paulo Rigg, Washington State University.

  6. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    Kremser, D.T.

    1982-01-01

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R 1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  7. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  8. Hydrogen high pressure proportional drift detector

    International Nuclear Information System (INIS)

    Arefiev, A.; Balaev, A.

    1983-01-01

    The design and operation performances of a proportional drift detector PDD are described. High sensitivity of the applied PAD makes it possible to detect the neutron-proton elastic scattering in the energy range of recoil protons as low as 1 keV. The PDD is filled with hydrogen up to the pressure at 40 bars. High purity of the gas is maintained by a continuously operating purification system. The detector has been operating for several years in a neutron beam at the North Area of the CERN SPS

  9. Confinement of a high current proton beam in a linear induction accelerator

    International Nuclear Information System (INIS)

    Kerslick, G.S.; Roth, I.S.; Golkowski, C.; Ivers, J.D.; Nation, J.A.

    1987-01-01

    A 1 MeV, 6 kA, 50 ns annular proton beam has been generated in a two stage induction linac. Several confinement systems designed to allow propagation through multiple acceleration stages have been studied. In the first, the beam is injected through a half cusp into a 1.4 T solenoidal magnetic field. In the second system the beam is generated in a full cusp diode. The third system discussed relies on collective confinement of the protons by the space charge of the neutralizing electrons. This is in contrast to the previously described systems which rely on magnetic confinement. A comparison between the three methods of transport is made

  10. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  11. Sizing of high-pressure restriction orifices

    International Nuclear Information System (INIS)

    Casado Flores, E.

    1995-01-01

    Constant up-grading of power plants sometimes requires the modification of components which form part of suppliers' packages. In order to protect technology they have developed, however, the suppliers do not supply their calculation criteria. In order to reduce the costs of such improvements, and so as to be able to undertake the modification without having to rely on the original supplier, this paper describes the basic criteria applicable to the study of high-pressure restriction orifices, which can be considered to be representative of the components in question. The restriction orifices discussed are: - Insert - Multiplates in series with one perforation in each plate - Multiplates in series with several perforations in each plate For each type, an explanation of their sizing is given, together with the equations relating the corresponding flow and pressure drop. (Author)

  12. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2013-01-01

    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive...... media, as well as localized sampling of gas evolved at the electrodes for gas analysis. A number of safety and engineering design challenges have been addressed. Furthermore, we present a series of electrochemical cell holders that have been constructed in order to accommodate different types of cells...... and facilitate different types of electrochemical measurements. Selected examples of materials and electrochemical cells examined in the test station are provided, ranging from the evaluation of the ionic conductivity of liquid electrolytic solutions immobilized in mesoporous ceramic structures...

  13. SrWO4 at high pressures

    International Nuclear Information System (INIS)

    Grzechnik, A.; Crichton, W.A.; Hanfland, M.

    2005-01-01

    Room-temperature high-pressure behaviour of SrWO 4 scheelite (I4 1 /a, Z=4) has been studied to 20.7 GPa in a diamond anvil cell using synchrotron angle-dispersive X-ray powder diffraction. Above 10 GPa, it transforms to the fergusonite structure (I2/a, Z=4). Both scheelite and fergusonite types are ordered superstructures of fluorite (Fm anti 3m, Z=4). There is no significant volume collapse at the scheelite-fergusonite phase transition. However, the compression data including both phases of strontium tungstate cannot be fitted by a common Birch-Murnaghan equation of state. An onset of decomposition into component oxides occurs at about 15 GPa. The pressure-induced transformations are irreversible. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela

    2014-09-29

    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  15. High pressure study of high-temperature superconductors

    International Nuclear Information System (INIS)

    Souliou, Sofia-Michaela

    2014-01-01

    The current thesis studies experimentally the effect of high external pressure on high-T c superconductors. The structure and lattice dynamics of several members of the high-T c cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T c superconductor YBa 2 Cu 3 O 6+x have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa 2 Cu 3 O 6.55 samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa 2 Cu 4 O 8 . A clear renormalization of some of the Raman phonons is seen below T c as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B 1g -like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa 2 Cu 3 O 6+x . At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group Imm2). The structural transition is clearly reflected in the high pressure

  16. Highly crystalline carbon dots from fresh tomato: UV emission and quantum confinement

    Science.gov (United States)

    Liu, Weijian; Li, Chun; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Wang, Jinping

    2017-12-01

    In this article, fresh tomatoes are explored as a low-cost source to prepare high-performance carbon dots by using microwave-assisted pyrolysis. Given that amino groups might act as nucleophiles for cleaving covalent bridging ester or ether in the crosslinked macromolecules in the biomass bulk, ethylenediamine (EDA) and urea with amino groups were applied as nucleophiles to modulate the chemical composites of the carbon nanoparticles in order to tune their fluorescence emission and enhance their quantum yields. Very interestingly, the carbon dots synthesized in the presence of urea had a highly crystalline nature, a low-degree amorphous surface and were smaller than 5 nm. Moreover, the doped N contributed to the formation of a cyclic form of core that resulted in a strong electron-withdrawing ability within the conjugated C plane. Therefore, this type of carbon dot exhibited marked quantum confinement, with the maximum fluorescence peak located in the UV region. Carbon nanoparticles greater than 20 nm in size, prepared using pristine fresh tomato and in the presence of EDA, emitted surface state controlled fluorescence. Additionally, carbon nanoparticles synthesized using fresh tomato pulp in the presence of EDA and urea were explored for bioimaging of plant pathogenic fungi and the detection of vanillin.

  17. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Megajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i ≥ 0.5 GeV u -1 ) heavy ions, has been proposed

  18. Polyethylene Glycol Based Graphene Aerogel Confined Phase Change Materials with High Thermal Stability.

    Science.gov (United States)

    Fu, Yang; Xiong, Weilai; Wang, Jianying; Li, Jinghua; Mei, Tao; Wang, Xianbao

    2018-05-01

    Polyethylene glycol (PEG) based graphene aerogel (GA) confined shaped-stabilized phase change materials (PCMs) are simply prepared by a one-step hydrothermal method. Three-dimensional GA inserted by PEG molecule chains, as a supporting material, obtained by reducing graphene oxide sheets, is used to keep their stabilized shape during a phase change process. The volume of GA is obviously expended after adding PEG, and only 9.8 wt% of GA make the composite achieve high energy efficiency without leakage during their phase change because of hydrogen bonding widely existing in the GA/PEG composites (GA-PCMs). The heat storage energy of GA-PCMs is 164.9 J/g, which is 90.2% of the phase change enthalpy of pure PEG. In addition, this composite inherits the natural thermal properties of graphene and thus shows enhanced thermal conductivity compared with pure PEG. This novel study provides an efficient way to fabricate shape-stabilized PCMs with a high content of PEG for thermal energy storage.

  19. Inertial Confinement Fusion: steady progress towards ignition and high gain (summary talk)

    International Nuclear Information System (INIS)

    Basko, M.M.

    2005-01-01

    Most important recent advances in inertial confinement fusion (ICF) are highlighted. With the construction of the NIF and LMJ facilities, and a number of improvements in the target design, the conventional indirect-drive approach is making a steady progress towards demonstration of ignition and high gain. The development of the polar direct-drive concept made also the prospects for direct-drive ignition on the NIF extremely favorable. A substantial progress has been reported from the Institute of Laser Engineering in Osaka on exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at a lowest possible cost. In heavy ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (E i > or ∼ 0.5 GeV/u) heavy ions, has been proposed. (author)

  20. Inertial confinement fusion: steady progress towards ignition and high gain (summary talk)

    Science.gov (United States)

    Basko, M. M.

    2005-10-01

    Based on the results presented at the 20th IAEA Fusion Energy Conference 2004, this paper highlights the most important recent advances in inertial confinement fusion (ICF). With the construction of the National Ignition Facility (NIF) and the Laser Mégajoule facility and many improvements in the target design, the conventional indirect-drive approach is advancing steadily towards the demonstration of ignition and high gain. The development of the polar direct-drive concept also made the prospects for direct-drive ignition on the NIF very favourable. Substantial progress was reported on the exploration of the fast-ignition approach to ICF. Parallel to that, multi-wire Z-pinches have become a competitive driver option for achieving ignition at the lowest possible cost. In heavy-ion fusion, experiments have been devoted so far to studying the generation, transport, and final focusing of high-current ion beams. A new concept for a power plant with a heavy-ion driver, based on a cylindrical direct-drive target compressed and ignited (in the fast-ignition mode) by two separate beams of very energetic (Ei>~ 0.5 GeV u-1) heavy ions, has been proposed.

  1. SUPPESSION OF LARGE EDGE LOCALIZED MODES IN HIGH CONFINEMENT DIII-D PLASMAS WITH A STOCHASTIC MAGNETIC BOUNDARY

    International Nuclear Information System (INIS)

    EVANS, TE; MOYER, RA; THOMAS, PR; WATKINS, JG; OSBORNE, TH; BOEDO, JA; FENSTERMACHER, ME; FINKEN, KH; GROEBNER, RJ; GROTH, M; HARRIS, JH; LAHAYE, RJ; LASNIER, CJ; MASUZAKI, S; OHYABU, N; PRETTY, D; RHODES, TL; REIMERDES, H; RUDAKOV, DL; SCHAFFER, MJ; WANG, G; ZENG, L.

    2003-01-01

    OAK-B135 A stochastic magnetic boundary, produced by an externally applied edge resonant magnetic perturbation, is used to suppress large edge localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H-mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H-mode transport barrier is unaffected by the stochastic boundary. The core confinement of these discharges is unaffected, despite a three-fold drop in the toroidal rotation in the plasma core. These results demonstrate that stochastic boundaries are compatible with H-modes and may be attractive for ELM control in next-step burning fusion tokamaks

  2. Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary.

    Science.gov (United States)

    Evans, T E; Moyer, R A; Thomas, P R; Watkins, J G; Osborne, T H; Boedo, J A; Doyle, E J; Fenstermacher, M E; Finken, K H; Groebner, R J; Groth, M; Harris, J H; La Haye, R J; Lasnier, C J; Masuzaki, S; Ohyabu, N; Pretty, D G; Rhodes, T L; Reimerdes, H; Rudakov, D L; Schaffer, M J; Wang, G; Zeng, L

    2004-06-11

    A stochastic magnetic boundary, produced by an applied edge resonant magnetic perturbation, is used to suppress most large edge-localized modes (ELMs) in high confinement (H-mode) plasmas. The resulting H mode displays rapid, small oscillations with a bursty character modulated by a coherent 130 Hz envelope. The H mode transport barrier and core confinement are unaffected by the stochastic boundary, despite a threefold drop in the toroidal rotation. These results demonstrate that stochastic boundaries are compatible with H modes and may be attractive for ELM control in next-step fusion tokamaks.

  3. 30 CFR 57.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  4. High-pressure-high-temperature treatment of natural diamonds

    CERN Document Server

    Royen, J V

    2002-01-01

    The results are reported of high-pressure-high-temperature (HPHT) treatment experiments on natural diamonds of different origins and with different impurity contents. The diamonds are annealed in a temperature range up to 2000 sup o C at stabilizing pressures up to 7 GPa. The evolution is studied of different defects in the diamond crystal lattice. The influence of substitutional nitrogen atoms, plastic deformation and the combination of these is discussed. Diamonds are characterized at room and liquid nitrogen temperature using UV-visible spectrophotometry, Fourier transform infrared spectrophotometry and photoluminescence spectrometry. The economic implications of diamond HPHT treatments are discussed.

  5. Low-to-high confinement transition mediated by turbulence radial wave number spectral shift in a fusion plasma

    DEFF Research Database (Denmark)

    Xu, G. S.; Wan, B. N.; Wang, H. Q.

    2016-01-01

    A new model for the low-to-high (L-H) confinement transition has been developed based on a new paradigm for turbulence suppression by velocity shear [G. M. Staebler et al., Phys. Rev. Lett.110, 055003 (2013)]. The model indicates that the L-H transition can be mediated by a shift in the radial wa...

  6. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  7. Recent progress in high-pressure studies on organic conductors

    Directory of Open Access Journals (Sweden)

    Syuma Yasuzuka and Keizo Murata

    2009-01-01

    Full Text Available Recent high-pressure studies of organic conductors and superconductors are reviewed. The discovery of the highest Tc superconductivity among organics under high pressure has triggered the further progress of the high-pressure research. Owing to this finding, various organic conductors with the strong electron correlation were investigated under high pressures. This review includes the pressure techniques using the cubic anvil apparatus, as well as high-pressure studies of the organic conductors up to 10 GPa showing extraordinary temperature and pressure dependent transport phenomena.

  8. Condensed matter at high shock pressures

    International Nuclear Information System (INIS)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-01-01

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N 2 , CO, SiO 2 -aerogel, H 2 O, and C 6 H 6 . The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab

  9. Commentary on differential-pressure measurements at high reference pressures

    International Nuclear Information System (INIS)

    Hasbrouck, R.T.; Noyes, R.P.

    1981-01-01

    Some practical approaches to the difficult problems in calibrating and implementing differential-pressure measurements are discussed. The data presented were gathered several years ago in separate investigations. An attempt is made to compare the results of these investigations to the common mode concept as described by Peter K. Stein in his publication, The Measurement of Differential Quantities - Problems and Approaches. Although one of these investigations involed a 10,000- to 20,000-psi reference-pressure gas measured at an ambient temperature and the other a classic /sup Δ/P flow measurement of cryogenic temperature, the problems encountered were the same

  10. Conformable pressure vessel for high pressure gas storage

    Science.gov (United States)

    Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.

    2016-01-12

    A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.

  11. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    Science.gov (United States)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  12. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  13. Progress in laboratory high gain ICF [inertial confinement fusion]: Prospects for the future

    International Nuclear Information System (INIS)

    Storm, E.; Lindl, J.D.; Campbell, E.M.

    1988-01-01

    Inertial confinement fusion (ICF), a thermonuclear reaction in a small (/approximately/5 mm diameter) fuel capsule filled with a few milligrams of deuterium and tritium, has been the subject of very fruitful experimentation since the early 1970's. High gain ICF is now on the threshold of practical applications. With a Laboratory Microfusion Facility (LMF), these applications will have major implications for national defense, basic and applied science, and power production. With a driver capable of delivering about 10 MJ in a 10-ns pulse at an intensity of /approximately/3 /times/ 10 14 W/cm 2 , an appropriately configured cryogenic capsule could be compressed to a density of about 200 g/cm 3 and a temperature of 3--5 keV. Under these conditions, up to 10 mg of DT could be ignited, and with a burn efficiency of about 30%, release up to 1000 MJ of fusion energy, an energy gain of about 100. A thousand megajoules is equivalent to about one quarter ton of TNT, or about 7 gallons of oil--an amount of energy tractable under laboratory conditions and potentially very useful for a variety of applications. 61 refs., 33 figs

  14. High-resolution Electrical Resistivity Tomography monitoring of a tracer test in a confined aquifer

    Science.gov (United States)

    Wilkinson, P. B.; Meldrum, P. I.; Kuras, O.; Chambers, J. E.; Holyoake, S. J.; Ogilvy, R. D.

    2010-04-01

    A permanent geoelectrical subsurface imaging system has been installed at a contaminated land site to monitor changes in groundwater quality after the completion of a remediation programme. Since the resistivities of earth materials are sensitive to the presence of contaminants and their break-down products, 4-dimensional resistivity imaging can act as a surrogate monitoring technology for tracking and visualising changes in contaminant concentrations at much higher spatial and temporal resolution than manual intrusive investigations. The test site, a municipal car park built on a former gasworks, had been polluted by a range of polycyclic aromatic hydrocarbons and dissolved phase contaminants. It was designated statutory contaminated land under Part IIA of the UK Environmental Protection Act due to the risk of polluting an underlying minor aquifer. Resistivity monitoring zones were established on the boundaries of the site by installing vertical electrode arrays in purpose-drilled boreholes. After a year of monitoring data had been collected, a tracer test was performed to investigate groundwater flow velocity and to demonstrate rapid volumetric monitoring of natural attenuation processes. A saline tracer was injected into the confined aquifer, and its motion and evolution were visualised directly in high-resolution tomographic images in near real-time. Breakthrough curves were calculated from independent resistivity measurements, and the estimated seepage velocities from the monitoring images and the breakthrough curves were found to be in good agreement with each other and with estimates based on the piezometric gradient and assumed material parameters.

  15. Enhancement of confinement in tokamaks

    International Nuclear Information System (INIS)

    Furth, H.P.

    1986-05-01

    A plausible interpretation of the experimental evidence is that energy confinement in tokamaks is governed by two separate considerations: (1) the need for resistive MHD kink-stability, which limits the permissible range of current profiles - and therefore normally also the range of temperature profiles; and (2) the presence of strongly anomalous microscopic energy transport near the plasma edge, which calibrates the amplitude of the global temperature profile, thus determining the energy confinement time tau/sub E/. Correspondingly, there are two main paths towards the enhancement of tokamak confinement: (1) Configurational optimization, to increase the MHD-stable energy content of the plasma core, can evidently be pursued by varying the cross-sectional shape of the plasma and/or finding stable radial profiles with central q-values substantially below unity - but crossing from ''first'' to ''second'' stability within the peak-pressure region would have the greatest ultimate potential. (2) Suppression of edge turbulence, so as to improve the heat insulation in the outer plasma shell, can be pursued by various local stabilizing techniques, such as use of a poloidal divertor. The present confinement model and initial TFTR pellet-injection results suggest that the introduction of a super-high-density region within the plasma core should be particularly valuable for enhancing ntau/subE/. In D-T operation, a centrally peaked plasma pressure profile could possibly lend itself to alpha-particle-driven entry into the second-stability regime

  16. High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation Cooling in Textor-94

    Science.gov (United States)

    Messiaen, A. M.

    1996-11-01

    A new discharge regime has been observed on the pumped limiter tokamak TEXTOR-94 in the presence of strong radiation cooling and for different scenarii of additional hearing. The radiated power fraction (up to 90%) is feedback controlled by the amount of Ne seeded in the edge. This regime meets many of the necessary conditions for a future fusion reactor. Energy confinement increases with increasing densities (reminiscent of the Z-mode obtained at ISX-B) and as good as ELM-free H-mode confinement (enhancement factor verus ITERH93-P up to 1.2) is obtained at high densities (up to 1.2 times the Greenwald limit) with peaked density profiles showing a peaking factor of about 2 and central density values around 10^14cm-3. In experiments where the energy content of the discharges is kept constant with an energy feedback loop acting on the amount of ICRH power, stable and stationary discharges are obtained for intervals of more than 5s, i.e. 100 times the energy confinement time or about equal to the skin resistive time, even with the cylindrical q_α as low as 2.8 β-values up to the β-limits of TEXTOR-94 are achieved (i.e. β n ≈ 2 of and β p ≈ 1.5) and the figure of merit for ignition margin f_Hqa in these discharges can be as high as 0.7. No detrimental effects of the seeded impurity on the reactivity of the plasma are observed. He removal in these discharges has also been investigated. [1] Laboratoire de Physique des Plasmas-Laboratorium voor Plasmafysica, Association "EURATOM-Belgian State", Ecole Royale Militaire-Koninklijke Militaire School, Brussels, Belgium [2] Institut für Plasmaphysik, Forschungszentrum Jülich, GmbH, Association "EURATOM-KFA", Jülich, Germany [3] Fusion Energy Research Program, Mechanical Engineering Division, University of California at San Diego, La Jolla, USA [4] FOM Institüt voor Plasmafysica Rijnhuizen, Associatie "FOM-EURATOM", Nieuwegein, The Netherlands [*] Researcher at NFSR, Belgium itemize

  17. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.

    Science.gov (United States)

    Park, H-S; Hurricane, O A; Callahan, D A; Casey, D T; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Le Pape, S; Ma, T; Patel, P K; Remington, B A; Robey, H F; Salmonson, J D; Kline, J L

    2014-02-07

    This Letter reports on a series of high-adiabat implosions of cryogenic layered deuterium-tritium (DT) capsules indirectly driven by a "high-foot" laser drive pulse at the National Ignition Facility. High-foot implosions have high ablation velocities and large density gradient scale lengths and are more resistant to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot. Indeed, the observed hot spot mix in these implosions was low and the measured neutron yields were typically 50% (or higher) of the yields predicted by simulation. On one high performing shot (N130812), 1.7 MJ of laser energy at a peak power of 350 TW was used to obtain a peak hohlraum radiation temperature of ∼300  eV. The resulting experimental neutron yield was (2.4±0.05)×10(15) DT, the fuel ρR was (0.86±0.063)  g/cm2, and the measured Tion was (4.2±0.16)  keV, corresponding to 8 kJ of fusion yield, with ∼1/3 of the yield caused by self-heating of the fuel by α particles emitted in the initial reactions. The generalized Lawson criteria, an ignition metric, was 0.43 and the neutron yield was ∼70% of the value predicted by simulations that include α-particle self-heating.

  18. Optical confinement and light guiding in high dielectric contrast materials systems

    Science.gov (United States)

    Foresi, James S.

    A study of silicon photonic devices, including waveguides and microcavities, is presented in this thesis. The high index difference of Silicon-On-Insulator materials is used to design submicron devices capable of light localization and routing. Losses due to interface roughness between the high and low index materials are measured to be 40dB/cm. An analysis of lithographically induced interface roughness is performed and a method for evaluating nanometer-scale roughness is presented. High index differences lead to compact bends and power splitters. Bends of 2.0μm radius are measured to have losses less than 0.5dB. Splitting angles of 5o with losses less than 1.5dB are demonstrated. The bends and splitters are the most compact devices of their kind. The design, fabrication and analysis of two light confining devices in the SOI system are presented: photonic band gap (PBG) and microdisk microcavities. A PBG waveguide microcavity with minimum dimensions of 0.10μm is fabricated and transmission measurements reveal cavity Q's of 265, a resonant wavelength of 1564nm, and a modal volume of 0.27/mu m3. This is the first demonstration of PBG resonance at optical frequencies. The PBG microcavity volume is two orders of magnitude smaller than has been achieved in other microcavity devices. Microdisk and microring resonators are demonstrated. A waveguide-coupled microring is shown to operate as a channel dropping filter with Q's of 250 and a free spectral range of 25nm. The application of the microcavity devices to spontaneous emission control of erbium-doped silicon is analyzed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  19. A Review of Quantum Confinement

    Science.gov (United States)

    Connerade, Jean-Patrick

    2009-12-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker [1]—henceforth cited as SW—in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell

  20. A Review of Quantum Confinement

    International Nuclear Information System (INIS)

    Connerade, Jean-Patrick

    2009-01-01

    A succinct history of the Confined Atom problem is presented. The hydrogen atom confined to the centre of an impenetrable sphere counts amongst the exactly soluble problems of physics, alongside much more noted exact solutions such as Black Body Radiation and the free Hydrogen atom in absence of any radiation field. It shares with them the disadvantage of being an idealisation, while at the same time encapsulating in a simple way particular aspects of physical reality. The problem was first formulated by Sommerfeld and Welker - henceforth cited as SW - in connection with the behaviour of atoms at very high pressures, and the solution was published on the occasion of Pauli's 60th birthday celebration. At the time, it seemed that there was not much other connection with physical reality beyond a few simple aspects connected to the properties of atoms in solids, for which more appropriate models were soon developed. Thus, confined atoms attracted little attention until the advent of the metallofullerene, which provided the first example of a confined atom with properties quite closely related to those originally considered by SW. Since then, the problem has received much more attention, and many more new features of quantum confinement, quantum compression, the quantum Faraday cage, electronic reorganisation, cavity resonances, etc have been described, which are relevant to real systems. Also, a number of other situations have been uncovered experimentally to which quantum confinement is relevant. Thus, studies of the confined atom are now more numerous, and have been extended both in terms of the models used and the systems to which they can be applied. Connections to thermodynamics are explored through the properties of a confined two-level atom adapted from Einstein's celebrated model, and issues of dynamical screening of electromagnetic radiation by the confining shell are discussed in connection with the Faraday cage produced by a confining conducting shell. The

  1. High-efficiency targets for high-gain inertial confinement fusion

    International Nuclear Information System (INIS)

    Gardner, J.H.; Bodner, S.E.

    1986-01-01

    Rocket efficiencies as high as 15% are possible using short wavelength lasers and moderately high aspect ratio pellet designs. These designs are made possible by two recent breakthroughs in physics constraints. First is the development of the induced spatial incoherence (ISI) technique, which allows uniform illumination of the pellet and relaxes the constraint of thermal smoothing, permitting the use of short wavelength laser light. Second is the discovery that the Rayleigh--Taylor growth rate is considerably reduced at short laser wavelengths. By taking advantage of the reduced constraints imposed by nonuniform laser illumination and Rayleigh--Taylor instability, pellets using (1)/(4) μm laser light and initial aspect ratios of about 10 (with in flight aspect ratios of about 150--200) may produce energy gains as high as 200--250

  2. High blood pressure and visual sensitivity

    Science.gov (United States)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  3. An experimental platform for triaxial high-pressure/high-temperature testing of rocks using computed tomography

    Science.gov (United States)

    Glatz, Guenther; Lapene, Alexandre; Castanier, Louis M.; Kovscek, Anthony R.

    2018-04-01

    A conventional high-pressure/high-temperature experimental apparatus for combined geomechanical and flow-through testing of rocks is not X-ray compatible. Additionally, current X-ray transparent systems for computed tomography (CT) of cm-sized samples are limited to design temperatures below 180 °C. We describe a novel, high-temperature (>400 °C), high-pressure (>2000 psi/>13.8 MPa confining, >10 000 psi/>68.9 MPa vertical load) triaxial core holder suitable for X-ray CT scanning. The new triaxial system permits time-lapse imaging to capture the role of effective stress on fluid distribution and porous medium mechanics. System capabilities are demonstrated using ultimate compressive strength (UCS) tests of Castlegate sandstone. In this case, flooding the porous medium with a radio-opaque gas such as krypton before and after the UCS test improves the discrimination of rock features such as fractures. The results of high-temperature tests are also presented. A Uintah Basin sample of immature oil shale is heated from room temperature to 459 °C under uniaxial compression. The sample contains kerogen that pyrolyzes as temperature rises, releasing hydrocarbons. Imaging reveals the formation of stress bands as well as the evolution and connectivity of the fracture network within the sample as a function of time.

  4. High beta plasma confinement and neoclassical effects in a small aspect ratio reversed field pinch

    International Nuclear Information System (INIS)

    Hayase, K.; Sugimoto, H.; Ashida, H.

    2003-01-01

    The high β equilibrium and stability of a reversed field pinch (RFP) configuration with a small aspect ratio are theoretically studied. The equilibrium profile, high beta limit and the bootstrap current effect on those are calculated. The Mercier stable critical β decreases with 1/A, but β∼0.2 is permissible at A=2 with help of edge current profile modification. The effect of bootstrap current is evaluated for various pressure and current profiles and cross-sectional shapes of plasma by a self-consistent neoclassical PRSM equilibrium formulation. The high bootstrap current fraction (F bs ) increases the shear stabilization effect in the core region, which enhances significantly the stability β limit compared with that for the classical equilibrium. These features of small aspect ratio RFP, high β and high F bs , and a possibly easier access to the quasi-single helicity state beside the intrinsic compact structure are attractive for the feasible economical RFP reactor concept. (author)

  5. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    Science.gov (United States)

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Neoclassical tearing modes on ASDEX Upgrade: Improved scaling laws, high confinement at high βN and new stabilization experiments

    International Nuclear Information System (INIS)

    Guenter, S.; Gude, A.; Igochine, V.; Maraschek, M.; Sips, A.C.C.; Zohm, H.; Gantenbein, G.; Sauter, O.

    2003-01-01

    In this paper recent results on the physics of neoclassical tearing modes (NTMs) achieved on ASDEX Upgrade are reported. A scaling law for NTM decay has been found, showing that the minimum local bootstrap current density required for mode growth is proportional to the ion gyro radius. As this scaling law does not depend on the seed island size, and thus on the background MHD activity, it is more reliable than previously derived scaling laws for the NTM onset. Furthermore, the recently reported Frequently Interrupted Regime (FIR) is discussed. In this new regime (m,n) NTMs are characterized by frequent amplitude drops caused by interaction with (m+1,n+1) background MHD activity. Due to the resulting reduced time averaged island size this leads to lower confinement degradation compared to that caused by the usual NTMs. As shown here, the transition into this regime can actively be triggered by lowering the magnetic shear at the q=(m+1)/=(n+1) rational surface. Further investigations regard mechanisms to increase the β N value for NTM onset such as plasma shaping, seed island size and density profile control. Using these studies, a scenario with high β N (β N = 3:5) at high density (n/n GW = 0.83) and confinement (H 98(y,2) = 1.2) has been developed. Moreover, this scenario is characterized by type II ELM activity and thus by moderate heat load to the target plates. Finally, new NTM stabilization experiments are reported, demonstrating an increase in β N after NTM stabilization. (author)

  7. Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores

    International Nuclear Information System (INIS)

    Carrillo, Jan-Michael Y.; Sumpter, Bobby G.

    2014-01-01

    Coarse-grained molecular dynamics simulations are used to probe the dynamic phenomena of polymer melts confined in nanopores. The simulation results show excellent agreement in the values obtained for the normalized coherent single chain dynamic structure factor, (S(Q,Δt))/(S(Q,0)) . In the bulk configuration, both simulations and experiments confirm that the polymer chains follow Rouse dynamics. However, under confinement, the Rouse modes are suppressed. The mean-square radius of gyration 〈R g 2 〉 and the average relative shape anisotropy 〈κ 2 〉 of the conformation of the polymer chains indicate a pancake-like conformation near the surface and a bulk-like conformation near the center of the confining cylinder. This was confirmed by direct visualization of the polymer chains. Despite the presence of these different conformations, the average form factor of the confined chains still follows the Debye function which describes linear ideal chains, which is in agreement with small angle neutron scattering experiments (SANS). The experimentally inaccessible mean-square displacement (MSD) of the confined monomers, calculated as a function of radial distance from the pore surface, was obtained in the simulations. The simulations show a gradual increase of the MSD from the adsorbed, but mobile layer, to that similar to the bulk far away from the surface

  8. Food processing by high hydrostatic pressure.

    Science.gov (United States)

    Yamamoto, Kazutaka

    2017-04-01

    High hydrostatic pressure (HHP) process, as a nonthermal process, can be used to inactivate microbes while minimizing chemical reactions in food. In this regard, a HHP level of 100 MPa (986.9 atm/1019.7 kgf/cm 2 ) and more is applied to food. Conventional thermal process damages food components relating color, flavor, and nutrition via enhanced chemical reactions. However, HHP process minimizes the damages and inactivates microbes toward processing high quality safe foods. The first commercial HHP-processed foods were launched in 1990 as fruit products such as jams, and then some other products have been commercialized: retort rice products (enhanced water impregnation), cooked hams and sausages (shelf life extension), soy sauce with minimized salt (short-time fermentation owing to enhanced enzymatic reactions), and beverages (shelf life extension). The characteristics of HHP food processing are reviewed from viewpoints of nonthermal process, history, research and development, physical and biochemical changes, and processing equipment.

  9. High- and low-pressure operation of the gas electron multiplier

    International Nuclear Information System (INIS)

    Bondar, A.; Buzulutskov, A.; Shekhtman, L.; Sauli, F.

    1998-01-01

    We have studied the operation of the gas electron multiplier (GEM) in gas mixtures Xe-CO 2 , Ar-CO 2 and CH 4 at different pressures varying from 0.1 to 5 atm. In Ar- and Xe-based mixtures, the maximum GEM gain considerably decreases with pressure, from a few hundreds at 1 atm to below 10 at 5 atm. Combined gain of GEM and the micro-strip gas chamber (MSGC) can exceed values of 10000 at 1 atm and 100 at 5 atm. High GEM gains, of above 1000, were obtained in CH 4 at low pressures. We have observed the effect of the avalanche confinement in GEM micro-holes, resulting in violation of the pressure scaling and in the possibility of GEM operation in pure noble gases. (author)

  10. Rheological assessment of nanofluids at high pressure high temperature

    Science.gov (United States)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  11. Laser - driven high - energy ions and their application to inertial confinement fusion

    International Nuclear Information System (INIS)

    Borghesi, M.

    2007-01-01

    The acceleration of high-energy ion beams (up to several tens of MeV per nucleon) following the interaction of short and intense laser pulses with solid targets has been one of the most important results of recent laser-plasma research [1]. The acceleration is driven by relativistic electrons, which acquire energy directly from the laser pulse and set up extremely large (∼TV/m) space charge fields at the target interfaces. The properties of laser-driven ion beams (high brightness and laminarity, high-energy cut-off, ultrashort burst duration) distinguish them from lower energy ions accelerated in earlier experiments at moderate laser intensities, and compare favourably with those of 'conventional' accelerator beams. In view of these properties, laser-driven ion beams can be employed in a number of innovative applications in the scientific, technological and medical areas. We will discuss in particular aspects of interest to their application in an Inertial Confinement Fusion context. Laser-driven protons are indeed being considered as a possible trigger for Fast Ignition of a precompressed fuel.[2] Recent results relating to the optimization of beam energy and focusing will be presented. These include the use of laser-driven impulsive fields for proton beam collimation and focusing [3], and the investigation of acceleration in presence of finite-scale plasma gradient. Proposed target developments enabling proton production at high repetition rate will also be discussed. Another important area of application of proton beams is diagnostic use in a particle probing arrangement for detection of density non-homogeneities [4] and electric/magnetic fields [5]. We will discuss the use of laser-driven proton beams for the diagnosis of magnetic and electric fields in planar and hohlraum targets and for the detection of fields associated to relativistic electron propagation through dense matter, an issue of high relevance for electron driven Fast Ignition. [1] M

  12. Engineering Model of High Pressure Moist Air

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2017-01-01

    Full Text Available The article deals with the moist air equation of state. There are equations of state discussed in the article, i.e. the model of an ideal mixture of ideal gases, the model of an ideal mixture of real gases and the model based on the virial equation of state. The evaluation of sound speed based on the ideal mixture concept is mentioned. The sound speed calculated by the model of an ideal mixture of ideal gases is compared with the sound speed calculated by using the model based on the concept of an ideal mixture of real gases. The comparison of enthalpy end entropy based on the model of an ideal mixture of ideal gases and the model of an ideal mixture of real gases is performed. It is shown that the model of an ideal mixture of real gases deviates from the model of an ideal mixture of ideal gases only in the case of high pressure. An impossibility of the definition of partial pressure in the mixture of real gases is discussed, where the virial equation of state is used.

  13. [High blood pressure and physical exercise].

    Science.gov (United States)

    Sosner, P; Gremeaux, V; Bosquet, L; Herpin, D

    2014-06-01

    High blood pressure is a frequent pathology with many cardiovascular complications. As highlighted in guidelines, the therapeutic management of hypertension relies on non-pharmacological measures, which are diet and regular physical activity, but both patients and physicians are reluctant to physical activity prescription. To acquire the conviction that physical activity is beneficial, necessary and possible, we can take into account some fundamental and clinical studies, as well as the feedback of our clinical practice. Physical inactivity is a major risk factor for cardiovascular morbidity and mortality, and hypertension contributes to increase this risk. Conversely, regular practice of physical activity decreases very significantly the risk by up to 60%. The acute blood pressure changes during exercise and post-exercise hypotension differs according to the dynamic component (endurance or aerobic and/or strength exercises), but the repetition of the sessions leads to the chronic hypotensive benefit of physical activity. Moreover, physical activity prescription must take into account the assessment of global cardiovascular risk, the control of the hypertension, and the opportunities and desires of the patient in order to promote good adherence and beneficial lifestyle change. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion

    International Nuclear Information System (INIS)

    Betti, R.; Zhou, C.

    2005-01-01

    Scaling relations to optimize implosion parameters for fast-ignition inertial confinement fusion are derived and used to design high-gain fast-ignition targets. A method to assemble thermonuclear fuel at high densities, high ρR, and with a small-size hot spot is presented. Massive cryogenic shells can be imploded with a low implosion velocity V I on a low adiabat α using the relaxation-pulse technique. While the low V I yields a small hot spot, the low α leads to large peak values of the density and areal density. It is shown that a 750 kJ laser can assemble fuel with V I ≅1.7x10 7 cm/s, α≅0.7, ρ≅400 g/cc, ρR≅3 g/cm 2 , and a hot-spot volume of less than 10% of the compressed core. If fully ignited, this fuel assembly can produce high gains of interest to inertial fusion energy applications

  15. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  16. High-speed repetitive pellet injector for plasma fueling of magnetic confinement fusion devices

    International Nuclear Information System (INIS)

    Combs, S.K.; Baylor, L.R.; Foust, C.R.

    1993-01-01

    The projected fueling requirements of future magnetic confinement devices for controlled thermonuclear research [e.g., the International Thermonuclear Experimental Reactor (ITER)] indicate that a flexible plasma fueling capability is required. This includes a mix of traditional gas puffing and low- and high-velocity deuterium-tritium pellets. Conventional pellet injectors (based on light gas guns or centrifugal accelerators) can reliably provide frozen hydrogen pellets (1- to 6-mm-diam sizes tested) up to ∼1.3-km/s velocity at the appropriate pellet fueling rates (1 to 10 Hz or greater). For long-pulse operation in a higher velocity regime (>2 km/s), an experiment in collaboration between Oak Ridge National Laboratory (ORNL) and ENEA Frascati is under way. This activity will be carried out in the framework of a collaborative agreement between the US Department of Energy and European Atomic Energy Community -- ENEA Association. In this experiment, an existing ORNL hydrogen extruder (equipped with a pellet chambering mechanism/gun barrel assembly) and a Frascati two-stage light gas gun driver have been combined on a test facility at ORNL. Initial testing has been carried out with single deuterium pellets accelerated up to 2.05 km/s with the two-stage driver; in addition, some preliminary repetitive testing (to commission the diagnostics) was performed at reduced speeds, including sequences at 0.5 to 1 Hz and 10 to 30 pellets. The primary objective of this study is to demonstrate repetitive operation (up to ∼1 Hz) with speeds in the 2- to 3-km/s range. In addition, the strength of extruded hydrogen ice as opposed to that produced in situ by direct condensation in pipe guns can be investigated. The equipment and initial experimental results are described

  17. High β experiment and confinement regimes in a compact helical system

    International Nuclear Information System (INIS)

    Matsuoka, K.; Okamura, S.; Nishimura, K.; Tsumori, K.; Akiyama, R.; Yamada, H.; Sakakibara, S.; Lazaros, A.; Xu, J.; Ida, K.; Tanaka, K.; Morisaki, T.; Morita, S.; Arimoto, H.; Fujiwara, M.; Idei, H.; Iguchi, H.; Kaneko, O.; Kawamoto, T.; Kubo, S.; Kuroda, T.; Motojima, O.; Ozaki, T.; Pustovitov, V.D.; Sagara, A.; Takahashi, C.; Toi, K.; Watari, T.; Yamada, I.

    1995-01-01

    A volume-averaged equilibrium β value left angle β eq right angle of 2.14% is achieved in a compact helical system using two neutral beam lines with balanced injection and intense wall conditioning with Ti gettering. This value is the highest β value realized so far in helical systems. Reheat mode, where the stored energy increases after turn-off of a strong gas puff, is employed in the experiment. Discharge conditions are as follows: B t =0.61T; beam power through the port, 1.1MW (coinjection) and 0.8MW (counterinjection); line-averaged electron density n e =6.5x10 13 cm -3 . Amplitudes of magnetic fluctuations integrated over the frequency range from 3kHz to 100kHz become saturated at left angle β eq right angle higher than 1%. Dominant coherent modes are m/n=2/1 and 1/1 when left angle β eq right angle is lower and higher respectively than 1%. Dependence of the energy confinement time τ E on n e (up to 8x10 13 cm -3 ) and B t (from 0.6 to 1.8T) is also studied in this high β experiment. When the density increases τ E degrades compared with the LHD scaling; the density dependence exhibits Bohm-like behaviour. On the contrary, τ E scales as B ∼0.75 t , which is rather close to the LHD scaling (gyro-Bohm-like behaviour). ((orig.))

  18. High Thermal Rectifications Using Liquid Crystals Confined into a Conical Frustum

    Science.gov (United States)

    Silva, José Guilherme; Fumeron, Sébastien; Moraes, Fernando; Pereira, Erms

    2018-05-01

    In recent years, phononics, that studies thermal analogs of electronic devices, has become an important subject due to the need for better use of energy resources influenced by growing demand. On developing of these analogs, for example, thermal diodes, a successful route is the design of nanostructured materials (e.g., carbon nanotubes). However, these materials entail increased costs due to the use of complex techniques/equipments, while alternative cheaper materials present nearly comparable efficiency. In this work, we investigate how a thermal diode made by an alternative material (nematic liquid crystal), confined in a conical frustum capillary, can be optimized to achieve high rectifications. In such capillary tube, the thermotropic nematic liquid crystal 5CB produces an axially anisotropic defect called escaped radial disclination. With the molecular director field of such structure, we obtain the thermal conductivity tensor of the diode and solve the steady-state regime of Laplace and Fourier equations using the finite element method. We observed the anisotropy of the system with the non-linear temperature dependences of the molecular thermal conductivities that rectify the heat flux at rates up to 1266% at room temperature. Studying the sensitivity of the system with respect to shape and molecular and thermal aspects, we found that the improved thermal diode is suitable to be miniaturized and applied on well-determined areas, and it is robust against variations of the inward pumped heat flux. This work contributes to the usage of liquid crystals in non-display devices, having potential applications on controlling the heat flux through surfaces.

  19. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    International Nuclear Information System (INIS)

    WEST, WP; BURRELL, KH; DeGRASSIE, JS; DOYLE, EJ; GREENFIELD, CM; LASNIER, CJ; SNYDER, PB; ZENG, L.

    2003-01-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D α time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with β N *H 89L product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved

  20. QUIESCENT H-MODE, AN ELM-FREE HIGH-CONFINEMENT MODE ON DIII-D WITH POTENTIAL FOR STATIONARY STATE OPERATION

    Energy Technology Data Exchange (ETDEWEB)

    WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L

    2003-08-01

    OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.

  1. Computer simulations of high pressure systems

    International Nuclear Information System (INIS)

    Wilkins, M.L.

    1977-01-01

    Numerical methods are capable of solving very difficult problems in solid mechanics and gas dynamics. In the design of engineering structures, critical decisions are possible if the behavior of materials is correctly described in the calculation. Problems of current interest require accurate analysis of stress-strain fields that range from very small elastic displacement to very large plastic deformation. A finite difference program is described that solves problems over this range and in two and three space-dimensions and time. A series of experiments and calculations serve to establish confidence in the plasticity formulation. The program can be used to design high pressure systems where plastic flow occurs. The purpose is to identify material properties, strength and elongation, that meet the operating requirements. An objective is to be able to perform destructive testing on a computer rather than on the engineering structure. Examples of topical interest are given

  2. Urea and deuterium mixtures at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, M., E-mail: m.donnelly-2@sms.ed.ac.uk; Husband, R. J.; Frantzana, A. D.; Loveday, J. S. [Centre for Science at Extreme Conditions and School of Physics and Astronomy, The University of Edinburgh, Erskine Williamson Building, Peter Guthrie Tait Road, The King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Bull, C. L. [ISIS, Rutherford Appleton Laboratory, Oxford Harwell, Didcot OX11 0QX (United Kingdom); Klotz, S. [IMPMC, CNRS UMR 7590, Université P and M Curie, 4 Place Jussieu, 75252 Paris (France)

    2015-03-28

    Urea, like many network forming compounds, has long been known to form inclusion (guest-host) compounds. Unlike other network formers like water, urea is not known to form such inclusion compounds with simple molecules like hydrogen. Such compounds if they existed would be of interest both for the fundamental insight they provide into molecular bonding and as potential gas storage systems. Urea has been proposed as a potential hydrogen storage material [T. A. Strobel et al., Chem. Phys. Lett. 478, 97 (2009)]. Here, we report the results of high-pressure neutron diffraction studies of urea and D{sub 2} mixtures that indicate no inclusion compound forms up to 3.7 GPa.

  3. Recent developments in high pressure water technology

    International Nuclear Information System (INIS)

    Johnson, N.A.; Johnson, T.

    1992-01-01

    High Pressure Water Jetting has advanced rapidly in the last decade to a point where the field is splitting into specialised areas. This has left the end user or client in the dark as to whether water jetting will work and if so what equipment is best suited to their particular application. The aim of this paper is to give an overview of:-1. The way water is delivered to the surface and the parameters which control the concentration of energy available on impact. 2. The factors governing application driven selection of equipment. 3. The effects to technical advances in pumps and delivery systems on equipment selection with reference to their to their application to concrete removal and nuclear decontamination. (Author)

  4. Condensed matter at high shock pressures

    Energy Technology Data Exchange (ETDEWEB)

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  5. High-pressure structures of methane hydrate

    International Nuclear Information System (INIS)

    Hirai, H; Uchihara, Y; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively

  6. High Pressure Quick Disconnect Particle Impact Tests

    Science.gov (United States)

    Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    NASA Johnson Space Center White Sands Test Facility (WSTF) performed particle impact testing to determine whether there is a particle impact ignition hazard in the quick disconnects (QDs) in the Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS). Testing included standard supersonic and subsonic particle impact tests on 15-5 PH stainless steel, as well as tests performed on a QD simulator. This paper summarizes the particle impact tests completed at WSTF. Although there was an ignition in Test Series 4, it was determined the ignition was caused by the presence of a machining imperfection. The sum of all the test results indicates that there is no particle impact ignition hazard in the ISS ECLSS QDs. KEYWORDS: quick disconnect, high pressure, particle impact testing, stainless steel

  7. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.

    Science.gov (United States)

    O'Brien, D; Capper, J L; Garnsworthy, P C; Grainger, C; Shalloo, L

    2014-03-01

    Life-cycle assessment (LCA) is the preferred methodology to assess carbon footprint per unit of milk. The objective of this case study was to apply an LCA method to compare carbon footprints of high-performance confinement and grass-based dairy farms. Physical performance data from research herds were used to quantify carbon footprints of a high-performance Irish grass-based dairy system and a top-performing United Kingdom (UK) confinement dairy system. For the US confinement dairy system, data from the top 5% of herds of a national database were used. Life-cycle assessment was applied using the same dairy farm greenhouse gas (GHG) model for all dairy systems. The model estimated all on- and off-farm GHG sources associated with dairy production until milk is sold from the farm in kilograms of carbon dioxide equivalents (CO2-eq) and allocated emissions between milk and meat. The carbon footprint of milk was calculated by expressing GHG emissions attributed to milk per tonne of energy-corrected milk (ECM). The comparison showed that when GHG emissions were only attributed to milk, the carbon footprint of milk from the Irish grass-based system (837 kg of CO2-eq/t of ECM) was 5% lower than the UK confinement system (884 kg of CO2-eq/t of ECM) and 7% lower than the US confinement system (898 kg of CO2-eq/t of ECM). However, without grassland carbon sequestration, the grass-based and confinement dairy systems had similar carbon footprints per tonne of ECM. Emission algorithms and allocation of GHG emissions between milk and meat also affected the relative difference and order of dairy system carbon footprints. For instance, depending on the method chosen to allocate emissions between milk and meat, the relative difference between the carbon footprints of grass-based and confinement dairy systems varied by 3 to 22%. This indicates that further harmonization of several aspects of the LCA methodology is required to compare carbon footprints of contrasting dairy systems. In

  8. A Nutritional Strategy for the Treatment of High Blood Pressure.

    Science.gov (United States)

    Podell, Richard N.

    1984-01-01

    Some physicians wonder if high blood pressure can be controlled without the use of drugs and their potential side effects. Current findings concerning nutrition and high blood pressure are presented. (RM)

  9. Stress and High Blood Pressure: What's the Connection?

    Science.gov (United States)

    Stress and high blood pressure: What's the connection? Stress and long-term high blood pressure may not be linked, but taking steps to reduce your stress can improve your general health, including your blood ...

  10. High blood pressure - what to ask your doctor

    Science.gov (United States)

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  11. High Blood Pressure, Afib and Your Risk of Stroke

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, AFib and Your Risk of Stroke Updated:Aug ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  12. External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire

    International Nuclear Information System (INIS)

    Rezaei, G.; Mousavi, S.; Sadeghi, E.

    2012-01-01

    Based on the effective-mass approximation within a variational scheme, binding energy and self-polarization of hydrogenic impurity confined in a finite confining potential square quantum well wire, under the action of external electric field and hydrostatic pressure, are investigated. The binding energy and self-polarization are computed as functions of the well width, impurity position, electric field, and hydrostatic pressure. Our results show that the external electric field and hydrostatic pressure as well as the well width and impurity position have a great influence on the binding energy and self-polarization.

  13. High-momentum tail in the Tonks-Girardeau gas under general confining potentials

    International Nuclear Information System (INIS)

    Moreno, Gustavo A.

    2009-01-01

    We prove that the ground state momentum distribution of a one-dimensional system of impenetrable bosons exhibits a k -4 tail for any confining potential. We also derive an expression for easily computing the asymptotic occupation numbers and verify our results with an exact numerical approach.

  14. Formation of compact toroidal configurations for magnetic confinement of high temperature plasmas

    International Nuclear Information System (INIS)

    Fuentes, N.O.; Rodrigo, A.B.

    1986-01-01

    The formation stage of inverted magnetic field toroidal configurations (FRC) for hot plasmas confinement using a low energy linear theta pinch is studied. The diagnostic techniques used are based on optical spectroscopy, ultrarapid photography, magnetic probes and excluded flux compensated bonds. The generalities of the present research program, the used diagnostic techniques and the results obtained are discussed. (Author)

  15. Confinement dependent chemotaxis in two-photon polymerized linear migration constructs with highly definable concentration gradients

    DEFF Research Database (Denmark)

    Hjortø, Gertrud Malene; Olsen, Mark Holm; Svane, Inge Marie

    2015-01-01

    Dendritic cell chemotaxis is known to follow chemoattractant concentration gradients through tissue of heterogeneous pore sizes, but the dependence of migration velocity on pore size and gradient steepness is not fully understood. We enabled chemotaxis studies for at least 42 hours at confinement...

  16. Effect of high pressure on mesophilic lactic fermentation streptococci

    Energy Technology Data Exchange (ETDEWEB)

    Reps, A; Kuzmicka, M; Wisniewska, K [Chair of Food Biotechnology, University of Warmia and Mazury, ul. Heweliusza 1, 10-724 Olsztyn (Poland)], E-mail: arnold.reps@uwm.edu.pl

    2008-07-15

    The research concerned the effect of high pressure on mesophilic lactic fermentation streptococci, present in two cheese-making commercial inocula produced by Christian-Hansen. Water solutions of inocula were pressurized at 50-800 MPa, at room temperature, for 30-120 min. Pressurization at 50-100 MPa slightly increased or reduced the number of lactic streptococci, depending on the inoculum and pressurization time. Pressurization at 200 MPa caused a reduction in the number of streptococci by over 99.9%, whereas the pressure of 400 MPa and above almost completely inactivated streptococci. Pressurization also reduced the dynamics of microorganism growth and acidification, to the degree depending on the pressure.

  17. Subnanosecond breakdown in high-pressure gases

    Science.gov (United States)

    Naidis, George V.; Tarasenko, Victor F.; Babaeva, Natalia Yu; Lomaev, Mikhail I.

    2018-01-01

    Pulsed discharges in high-pressure gases are of considerable interest as sources of nonequilibrium plasma for various technological applications: pollution control, pumping of laser media, plasma-assisted combustion, etc. Recently, attention has been attracted to the use of subnanosecond voltage fronts, producing diffuse discharges with radii of several millimeters. Such plasma structures, similar to pulsed glow discharges, are of special interest for applications due to quasi-uniformity of plasma parameters in relatively large gas volumes. This review presents the results of experimental and computational study of subnanosecond diffuse discharge formation. A description of generators of short high-voltage pulses with subnanosecond fronts and of discharge setups is given. Diagnostic methods for the measurement of various discharge parameters with high temporal and spatial resolution are described. Obtained experimental data on plasma properties for a wide range of governing factors are discussed. A review of various theoretical approaches used for computational study of the dynamics and structure of fast ionization waves is given; the applicability of conventional fluid streamer models for simulation of subnanosecond ionization waves is discussed. Calculated spatial-temporal profiles of plasma parameters during streamer propagation are presented. The efficiency of subnanosecond discharges for the production of reactive species is evaluated. On the basis of the comparison of simulation results and experimental data the effects of various factors (voltage rise time, polarity, etc.) on discharge characteristics are revealed. The major physical phenomena governing the properties of subnanosecond breakdown are analyzed.

  18. High pressure apparatus transport properties study in high magnetic field

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Sechovský, V.; Mikulina, O.; Kamarád, Jiří; Alsmadi, A. M.; Nakotte, H.; Lacerda, A. H.

    2002-01-01

    Roč. 16, 20, 21 & 22 (2002), s. 3330-3333 ISSN 0217-9792 R&D Projects: GA ČR GP202/01/D045; GA ČR GA202/00/1217; GA MŠk ME 165 Grant - others:NSF(XX) DMR-0094241 Institutional research plan: CEZ:AV0Z1010914 Keywords : high-pressure apparatus Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.604, year: 2002

  19. 30 CFR 56.13021 - High-pressure hose connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  20. 76 FR 38697 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2011-07-01

    ... imports from China of high pressure steel cylinders, provided for in subheading 7311.00.00 of the... threatened with material injury by reason of LTFV and subsidized imports of high pressure steel cylinders... contained in USITC Publication 4241 (July 2011), entitled High Pressure Steel Cylinders from China...

  1. 77 FR 37712 - High Pressure Steel Cylinders From China

    Science.gov (United States)

    2012-06-22

    ...), that an industry in the United States is materially injured by reason of imports of high pressure steel... preliminary determinations by Commerce that imports of high pressure steel cylinders from China were... Publication 4328 (June 2012), entitled High Pressure Steel Cylinders from China: Investigation Nos. 701-TA-480...

  2. A friction test between steel and a brittle material at high contact pressures and high sliding velocities

    Directory of Open Access Journals (Sweden)

    Picart D.

    2012-08-01

    Full Text Available Our aim is to characterize the interface behaviour between an aggregate material and steel. This work focuses on contact pressures and sliding velocities reaching 100 MPa and 10 m/s. The set-up consists in a cylindrical sample of the aggregate material which slips into a steel tube. The tube is both a confinement vessel and a sliding surface. Thanks to confinement, the material can be tested under high stresses without failure. The interface pressure is generated by an axial compression. The sample is pressed on a spring, so it can be simultaneously compressed and rubbed on the tube. The set-up has been tested in the case of a quasi-static loading and the 100 MPa pressure has been reached. Then the set-up was mounted on a Split Hopkinson Pressure Bar device in order to reach higher velocities. Numerical simulations have been realized to check the feasibility and the relevance of this dynamic test. These results are analysed and compared to the experimental ones.

  3. Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Ottaviano, Luisa; Pu, Minhao; Semenova, Elizaveta

    2016-01-01

    AlGaAs is a promising material for integrated nonlinearphotonics due to its intrinsic high nonlinearity. However,the challenging fabrication of deep etched AlGaAs devices makes it difficult to realize high-performance devices such as low-loss dispersion engineered waveguides and high quality...... microring resonators. Here, we report a process tomake high-quality AlGaAs-on-insulator (AlGaAsOI) waferswhere high confinement waveguides can be realized. Using optimized patterning processes, we fabricated AlGaAsOI waveguides with propagation losses as low as 1 dB/cmand microring resonators with quality...

  4. Studies on chemical phenomena of high concentration tritium water and organic compounds of tritium from viewpoint of the tritium confinement

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Hayashi, Takumi; Iwai, Yasunori; Isobe, Kanetsugu; Hara, Masanori; Sugiyama, Takahiko; Okuno, Kenji

    2009-01-01

    As a part of the grant-in-aid for scientific research on priority areas entitled 'frontiers of tritium researches toward fusion reactors', coordinated two research programs on chemical phenomena of high concentration tritium water and organic compounds of tritium from view point of the tritium confinement have been conducted by the C01 team. The results are summarized as follows: (1) Chemical effects of the high concentration tritium water on stainless steels as structural materials of fusion reactors were investigated. Basic data on tritium behaviors at the metal-water interface and corrosion of metal in tritium water were obtained. (2) Development of the tritium confinement and extraction system for the circulating cooling water in the fusion reactor was studied. Improvement was obtained in the performance of a chemical exchange column and catalysts as major components of the water processing system. (J.P.N.)

  5. Highly strained InGaAs oxide confined VCSELs emitting in 1.25 μm

    International Nuclear Information System (INIS)

    Chang, S.J.; Yu, H.C.; Su, Y.K.; Chen, I.L.; Lee, T.D.; Lu, C.M.; Chiou, C.H.; Lee, Z.H.; Yang, H.P.; Sung, C.P.

    2005-01-01

    Highly strained GaAs-based all-epitaxial oxide confined vertical cavity surface emitting lasers (VCSELs) emitting in 1.25 μm were fabricated. Compared with the designed cavity resonance, it was found that lasing wavelength blue shifted by 29 nm when the driving current was small. The observation of such oxide mode is attributed to the effective optical thickness shrinkage of the oxide layer, and large detuning between the gain peak and cavity resonance

  6. Conformal coating of amorphous silicon and germanium by high pressure chemical vapor deposition for photovoltaic fabrics

    Science.gov (United States)

    Ji, Xiaoyu; Cheng, Hiu Yan; Grede, Alex J.; Molina, Alex; Talreja, Disha; Mohney, Suzanne E.; Giebink, Noel C.; Badding, John V.; Gopalan, Venkatraman

    2018-04-01

    Conformally coating textured, high surface area substrates with high quality semiconductors is challenging. Here, we show that a high pressure chemical vapor deposition process can be employed to conformally coat the individual fibers of several types of flexible fabrics (cotton, carbon, steel) with electronically or optoelectronically active materials. The high pressure (˜30 MPa) significantly increases the deposition rate at low temperatures. As a result, it becomes possible to deposit technologically important hydrogenated amorphous silicon (a-Si:H) from silane by a simple and very practical pyrolysis process without the use of plasma, photochemical, hot-wire, or other forms of activation. By confining gas phase reactions in microscale reactors, we show that the formation of undesired particles is inhibited within the microscale spaces between the individual wires in the fabric structures. Such a conformal coating approach enables the direct fabrication of hydrogenated amorphous silicon-based Schottky junction devices on a stainless steel fabric functioning as a solar fabric.

  7. Detailed high-resolution three-dimensional simulations of OMEGA separated reactants inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B. [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States); Grim, Gary P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2016-07-15

    We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long

  8. High-field penning-malmberg trap: confinement properties and use in positron accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, J.H.

    1997-09-01

    This dissertation reports on the development of the 60 kG cryogenic positron trap at Lawrence Livermore National Laboratory, and compares the trap`s confinement properties with other nonneutral plasma devices. The device is designed for the accumulation of up to 2{times}10{sup 9} positrons from a linear-accelerator source. This positron plasma could then be used in Bhabha scattering experiments. Initial efforts at time-of-flight accumulation of positrons from the accelerator show rapid ({approximately}100 ms) deconfinement, inconsistent with the long electron lifetimes. Several possible deconfinement mechanisms have been explored, including annihilation on residual gas, injection heating, rf noise from the accelerator, magnet field curvature, and stray fields. Detailed studies of electron confinement demonstrate that the empirical scaling law used to design the trap cannot be extrapolated into the parameter regime of this device. Several possible methods for overcoming these limitations are presented.

  9. Comparison of particle confinement in the high confinement mode plasmas with the edge localized mode of the Japan Atomic Energy Research Institute Tokamak-60 Upgrade and the DIII-D tokamak

    International Nuclear Information System (INIS)

    Takenaga, H.; Mahdavi, M.A.; Baker, D.R.

    2001-01-01

    Particle confinement was compared for the high confinement mode plasmas with the edge localized mode in the Japan Atomic Energy Research Institute Tokamak-60 Upgrade (JT-60U) [S. Ishida, JT-60 Team, Nucl. Fusion 39, 1211 (1999)] and the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. 1, p. 159] considering separate confinement times for particles supplied by neutral beam injection (NBI) (center fueling) and by recycling and gas-puffing (edge fueling). Similar dependence on the NBI power was obtained in JT-60U and DIII-D. The particle confinement time for center fueling in DIII-D was smaller by a factor of 4 in the low density discharges and by a factor of 1.8 in the high density discharges than JT-60U scaling, respectively, suggesting the stronger dependence on the density in DIII-D. The particle confinement time for edge fueling in DIII-D was comparable with JT-60U scaling in the low density discharges. However, it decreased to a much smaller value in the high density discharges

  10. Confined Tension and Triaxial Extension Tests on Eglin High-Strength Concrete

    Science.gov (United States)

    2014-10-17

    specimen were filled with Devcon 5-Minute epoxy . We encased the specimen in a liquid-tight flexible jacket to exclude the confining fluid from any...sealed to the steel endcaps with epoxy and wire clamps. Figure 3. Schematic diagram of test specimen prepared for TXE testing. TXE tests are...150 MPa – we wrapped two Kevlar jackets (0.01 in thick) around the specimen prior to installing the polyolefin jacket (0.02 in thick). The Kevlar

  11. Investigation of the effects of time periodic pressure and engpotential gradients on viscoelastic fluid flow in circular narrow confinements

    DEFF Research Database (Denmark)

    Nguyen, Trieu; van der Meer, Devaraj; van den Berg, Albert

    2017-01-01

    -Boltzmann equation, together with the incompressible Cauchy momentum equation under no-slip boundary conditions for viscoelastic fluid in the case of a combination of time periodic pressure-driven and electro-osmotic flow. The resulting solutions allow us to predict the electrical current and solution flow rate...... conversion applications. We also found that time periodic electro-osmotic flow in many cases is much stronger enhanced than time periodic pressure-driven flow when comparing the flow profiles of oscillating PDF and EOF in micro-and nanochannels. The findings advance our understanding of time periodic......In this paper we present an in-depth analysis and analytical solution for time periodic hydrodynamic flow (driven by a time-dependent pressure gradient and electric field) of viscoelastic fluid through cylindrical micro-and nanochannels. Particularly, we solve the linearized Poisson...

  12. Single stage high pressure centrifugal slurry pump

    Science.gov (United States)

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  13. Recombination times in germanium under high pressure

    International Nuclear Information System (INIS)

    Kuyt, J.H.

    1975-01-01

    The influence of pressure on a well defined recombination process was studied. The centres were introduced by γirradiation and the lifetime determined by the decay time of photoconductivity. An optical pressure vessel is described which allows for a hydrostatic variation of 3000 bars. The diffusion constant and lifetime measurements are presented and analysed. (V.J.C.)

  14. High beta capture and mirror confinement of laser produced plasmas. Final report

    International Nuclear Information System (INIS)

    Haught, A.F.; Tomlinson, R.G.; Ard, W.B.; Boedeker, L.R.; Churchill, T.L.; Fader, W.J.; Jong, R.A.; Mensing, A.E.; Polk, D.H.; Stufflebeam, J.H.

    1977-12-01

    The LITE fusion plasma research program at UTRC has been investigating the stabilization and confinement physics of a mirror plasma created by energetic neutral beam heating of a confined target plasma. During the period covered by this report work has been concentrated on the investigation of hot ion losses in a warm target plasma, development of a cryocondensation pump for the LITE beam line neutralizer, theoretical studies of ECRH modification of the ambipolar potential in mirror plasmas, and analysis of the effects of localized cold plasma on DCLC stabilization. The results of these investigations are summarized below and detailed in four papers which comprise the body of this report. Measurements of the lifetime of hot ions in a mirror confined warm plasma have been carried out by observations of the hot ion buildup time obtained with energetic neutral beam injection. A cryocondensation pump of novel design has been constructed and incorporated in the neutralizer chamber of the LITE neutral beam line. Calculations have been carried out to evaluate the sizes and shapes of ambipolar potential modification produced by electron cyclotron resonance heated electrons and to determine the spatial distribution and densities of cold ions trapped in the potential wells. The effects of the spatial distribution of the cold ions on their effectiveness for stabilizing the drift cyclotron loss cone instability has been studied numerically using the formulation of Pearlstein in which the dispersion relation for the DCLC mode is solved for finite-size plasmas containing hot and cold components

  15. Quark confinement

    International Nuclear Information System (INIS)

    Joos, H.

    1976-07-01

    The main topics of these lectures are: phenomenological approach to quark confinement, standard Lagrangian of hadrondynamics, Lagrangian field theory and quark confinement, classical soliton solutions in a simple model, quantization of extended systems, colour charge screening and quantization on a lattice and remarks on applications. A survey of the scientific publications listed according to the topics until 26 March 1976 is supplemented. (BJ) [de

  16. Gluon confinement

    International Nuclear Information System (INIS)

    Novello, M.; Lorenci, V.A. de; Elbaz, E.

    1997-02-01

    In this paper we present a new model for a gauge field theory such that self-interacting spin-one particles can be confined in a compact domain. The necessary conditions to produce the confining potential appear already in the properties of the eikonal structure generated by the particular choice of the dynamics. (author)

  17. Tailoring electron energy distribution functions through energy confinement in dual radio-frequency driven atmospheric pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, C.; Waskoenig, J. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Gans, T. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2012-10-08

    A multi-scale numerical model based on hydrodynamic equations with semi-kinetic treatment of electrons is used to investigate the influence of dual frequency excitation on the effective electron energy distribution function (EEDF) in a radio-frequency driven atmospheric pressure plasma. It is found that variations of power density, voltage ratio, and phase relationship provide separate control over the electron density and the mean electron energy. This is exploited to directly influence both the phase dependent and time averaged effective EEDF. This enables tailoring the EEDF for enhanced control of non-equilibrium plasma chemical kinetics at ambient pressure and temperature.

  18. New concept for a high-repetition-rate reactor for inertial-confinement fusion

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1980-11-01

    A new design concept was developed that has three additional features that are very important in reducing program risk: (1) through a proper choice of the working temperature (400 to 540 0 C) and of the liquid metal (lithium or lead-lithium eutectic alloy), we can select a chamber pressure within the range of 10 -1 to 10 -4 Torr, required for the propagation of either a laser-beam or a heavy-ion-beam driver; (2) presently available ferritic steels can be used for the structural material; and (3) the new concept allows flexibility in irradiaton geometry. Although two-sided irradiation at high f/Nos. seems most attractive from the standpoints of minimizing the number of chamber penetrations and of simplifing the layout of the balance of plant, we must provide for the possibility that target-implosion physics will require a more symmetrical illumination geometry

  19. High Pressure Laminates with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Sandra Magina

    2016-02-01

    Full Text Available High-pressure laminates (HPLs are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB was incorporated for the first time into melamine-formaldehyde resin (MF matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR. Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms, whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms. The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.

  20. Automated high pressure cell for pressure jump x-ray diffraction.

    Science.gov (United States)

    Brooks, Nicholas J; Gauthe, Beatrice L L E; Terrill, Nick J; Rogers, Sarah E; Templer, Richard H; Ces, Oscar; Seddon, John M

    2010-06-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  1. Automated high pressure cell for pressure jump x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  2. Automated high pressure cell for pressure jump x-ray diffraction

    International Nuclear Information System (INIS)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M.; Terrill, Nick J.; Rogers, Sarah E.

    2010-01-01

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  3. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli

    2018-02-01

    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  4. High cost of stage IV pressure ulcers.

    Science.gov (United States)

    Brem, Harold; Maggi, Jason; Nierman, David; Rolnitzky, Linda; Bell, David; Rennert, Robert; Golinko, Michael; Yan, Alan; Lyder, Courtney; Vladeck, Bruce

    2010-10-01

    The aim of this study was to calculate and analyze the cost of treatment for stage IV pressure ulcers. A retrospective chart analysis of patients with stage IV pressure ulcers was conducted. Hospital records and treatment outcomes of these patients were followed up for a maximum of 29 months and analyzed. Costs directly related to the treatment of pressure ulcers and their associated complications were calculated. Nineteen patients with stage IV pressure ulcers (11 hospital-acquired and 8 community-acquired) were identified and their charts were reviewed. The average hospital treatment cost associated with stage IV pressure ulcers and related complications was $129,248 for hospital-acquired ulcers during 1 admission, and $124,327 for community-acquired ulcers over an average of 4 admissions. The costs incurred from stage IV pressure ulcers are much greater than previously estimated. Halting the progression of early stage pressure ulcers has the potential to eradicate enormous pain and suffering, save thousands of lives, and reduce health care expenditures by millions of dollars. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Sleep Deprivation: A Cause of High Blood Pressure?

    Science.gov (United States)

    ... it true that sleep deprivation can cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Possibly. It's thought that ... hours a night could be linked to increased blood pressure. People who sleep five hours or less a ...

  6. High Pressure Electrochemical Oxygen Generation for ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Giner, Inc. has developed an advanced high pressure electrochemical oxygen concentrator (EOC) that offers a simple alternative to the use of pressure swing...

  7. High-temperature fiber optic pressure sensor

    Science.gov (United States)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  8. Studies about pressure variations and their effects during a fire in a confined and forced ventilated enclosure: safety consequences in the case of a nuclear facility

    International Nuclear Information System (INIS)

    Hugues Pretrel; Laurent Bouilloux; Jerome Richard

    2005-01-01

    Full text of publication follows: In a nuclear facility, the cells are confined and forced ventilated and some of them are equipped with isolation devices designed to close in case of a fire. So, if a fire occurred, the pressure variations in the cell could be important. This contribution presents the safety concerns related to pressure variation effects (propagation of smokes and/or flames through the fire barriers, propagation of radioactive material) and the research works carried out by the french 'Institut de Radioprotection et de Surete Nucleaire' (IRSN) on this topic. These research works are composed of two different studies. The first study permits to quantify the overpressure and depression levels and to reveal the influence of the fire heat release rate (HRR), of the characteristics of the cell, of the ventilation layout (especially the airflow resistances of the ventilation branches) and of the control of the fire dampers. This study is based on three sets of experimental tests performed in three large-scale facilities of various dimensions (3600 m3, 400 m3 and 120 m3 in volume) and with several settings of the ventilation network. The analysis focuses on the conditions that lead to significant overpressure and depression peaks and identifies the level of fire HRR and airflow resistances for which pressure peaks may become a safety concern. The second study allows to characterise the behaviour of sectorisation and containment equipments subject to pressure stresses. The mechanical resistance of some equipments (doors, fire dampers) subject to pressure stresses as well as the aeraulic behaviour of this equipment (gas leak rates) are determined in order to assess the potential transfer of contamination in the ventilation networks. (authors)

  9. Generation of high pressure shocks relevant to the shock-ignition intensity regime

    Czech Academy of Sciences Publication Activity Database

    Batani, D.; Antonelli, L.; Atzeni, S.; Badziak, J.; Baffigi, F.; Chodukowski, T.; Consoli, F.; Cristoforetti, G.; De Angelis, R.; Dudžák, Roman; Folpini, G.; Giuffrida, L.; Gizzi, L.A.; Kalinowska, Z.; Koester, P.; Krouský, Eduard; Krůs, Miroslav; Labate, L.; Levato, Tadzio; Maheut, Y.; Malka, G.; Margarone, Daniele; Marocchino, A.; Nejdl, Jaroslav; Nicolai, Ph.; O’Dell, T.; Pisarczyk, T.; Renner, Oldřich; Rhee, Y.-J.; Ribeyre, X.; Richetta, M.; Rosinski, M.; Sawicka, Magdalena; Schiavi, A.; Skála, Jiří; Šmíd, Michal; Spindloe, Ch.; Ullschmied, Jiří; Velyhan, Andriy; Vinci, T.

    2014-01-01

    Roč. 21, č. 3 (2014), 032710-032710 ISSN 1070-664X R&D Projects: GA MŠk(CZ) LC528; GA MŠk LM2010014 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : High-pressure shocks * shock ignition * inertial confinement fusion * PALS laser Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4869715

  10. GENERATION OF HIGH SHOCK PRESSURES BY LASER PULSES

    OpenAIRE

    Romain , J.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 µm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of ...

  11. High Temperature Characterization of Ceramic Pressure Sensors

    National Research Council Canada - National Science Library

    Fonseca, Michael A; English, Jennifer M; Von Arx, Martin; Allen, Mark G

    2001-01-01

    This work reports functional wireless ceramic micromachined pressure sensors operating at 450 C, with demonstrated materials and readout capability indicating potential extension to temperatures in excess of 600 C...

  12. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  13. Elasticity of stishovite at high pressure

    Science.gov (United States)

    Li, Baosheng; Rigden, Sally M.; Liebermann, Robert C.

    1996-08-01

    The elastic-wave velocities of stishovite, the rutile-structured polymorph of SiO 2, were measured to 3 GPa at room temperature in a piston cylinder apparatus using ultrasonic interferometry on polycrystalline samples. These polycrystalline samples (2-3 mm in length and diameter) were hot-pressed at 14 GPa and 1050°C in a 2000 ton uniaxial split-sphere apparatus (USSA-2000) using fused silica rods as starting material. They were characterized as low porosity (less than 1%), single phase, fine grained, free of cracks and preferred orientation, and acoustically isotropic by using density measurement, X-ray diffraction, scanning electron microscopy, and bench-top velocity measurements. On the basis of subsequent in situ X-ray diffraction study at high P and T on peak broadening on similar specimens, it is evident that the single crystal grains within these polycrystalline aggregates are well equilibrated and that these specimens are free of residual strain. P- and S-wave velocities measured at 1 atm are within 1.5% of the Hashin-Shtrikman bounds calculated from single-crystal elastic moduli. Measured pressure derivatives of the bulk and shear moduli, K' 0 = 5.3 ± 0.1 and G' 0 = 1.8 ± 0.1, are not unusual compared with values measured for other transition zone phases such as silicate spinel and majorite garnet. Isothermal compression curves calculated with the measured values of K0 and K' 0 agree well with experimental P-V data to 16 GPa. The experimental value of dG /dP is in excellent agreement with predictions based on elasticity systematics. Theoretical models are not yet able to replicate the measured values of K' 0 and G' 0.

  14. Theoretical treatment of high-frequency, large-amplitude ac voltammetry applied to ideal surface-confined redox systems

    International Nuclear Information System (INIS)

    Bell, Christopher G.; Anastassiou, Costas A.; O’Hare, Danny; Parker, Kim H.; Siggers, Jennifer H.

    2012-01-01

    Highlights: ► Theory of ac voltammetry on ideal surface-confined redox systems. ► Analytical description of the harmonics and transient of the current response. ► Solution valid for high frequency, large-amplitude sinusoidal input voltage. ► Protocol for determining system parameters from experimental current responses. - Abstract: Large-amplitude ac voltammetry, where the applied voltage is a large-amplitude sinusoidal waveform superimposed onto a dc ramp, is a powerful method for investigating the reaction kinetics of surface-confined redox species. Here we consider the large-amplitude ac voltammetric current response of a quasi-reversible, ideal, surface-confined redox system, for which the redox reaction is described by Butler–Volmer theory. We derive an approximate analytical solution, which is valid whenever the angular frequency of the sine-wave is much larger than the rate of the dc ramp and the standard kinetic rate constant of the redox reaction. We demonstrate how the third harmonic and the initial transient of the current response can be used to estimate parameters of the electrochemical system, namely the kinetic rate constant, the electron transfer coefficient, the adsorption formal potential, the initial proportion of oxidised molecules and the linear double-layer capacitance.

  15. High-pressure system for Compton scattering experiments

    International Nuclear Information System (INIS)

    Oomi, G.; Honda, F.; Kagayama, T.; Itoh, F.; Sakurai, H.; Kawata, H.; Shimomura, O.

    1998-01-01

    High-pressure apparatus for Compton scattering experiments has been developed to study the momentum distribution of conduction electrons in metals and alloys at high pressure. This apparatus was applied to observe the Compton profile of metallic Li under pressure. It was found that the Compton profile at high pressure could be obtained within several hours by using this apparatus and synchrotron radiation. The result on the pressure dependence of the Fermi momentum of Li obtained here is in good agreement with that predicted from the free-electron model

  16. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    Science.gov (United States)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Esources for energies Esource luminosity in units of 10^{44} erg/s.

  17. Advances in high pressure science and technology: proceedings of the fourth national conference on high pressure science and technology

    International Nuclear Information System (INIS)

    Yousuf, Mohammad; Subramanian, N.; Govinda Rajan, K.

    1997-09-01

    The proceedings of the fourth National Conference on High Pressure Science and Technology covers a wide area of research and development activities in the field of high pressure science and technology, broadly classified into the following themes: mechanical behaviour of materials; instrumentation and methods in high pressure research; pressure calibration, standards and safety aspects; phase transitions; shock induced reactions; mineral science, geophysics, geochemistry and planetary sciences; optical, electronic and transport properties; synthesis of materials; soft condensed matter physics and liquid crystals; computational methods in high pressure research. Papers relevant to INIS are indexed separately

  18. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  19. Neutron powder diffraction under high pressure at J-PARC

    International Nuclear Information System (INIS)

    Utsumi, Wataru; Kagi, Hiroyuki; Komatsu, Kazuki; Arima, Hiroshi; Nagai, Takaya; Okuchi, Takuo; Kamiyama, Takashi; Uwatoko, Yoshiya; Matsubayashi, Kazuyuki; Yagi, Takehiko

    2009-01-01

    It is expected that high-pressure material science and the investigation of the Earth's interior will progress greatly using the high-flux pulse neutrons of J-PARC. In this article, we introduce our plans for in situ neutron powder diffraction experiments under high pressure at J-PARC. The use of three different types of high-pressure devices is planned; a Paris-Edinburgh cell, a new opposed-anvil cell with a nano-polycrystalline diamond, and a cubic anvil high-pressure apparatus. These devices will be brought to the neutron powder diffraction beamlines to conduct a 'day-one' high-pressure experiment. For the next stage of research, we propose construction of a dedicated beamline for high-pressure material science. Its conceptual designs are also introduced here.

  20. High Pressure, High Gradient RF Cavities for Muon Beam Cooling

    CERN Document Server

    Johnson, R P

    2004-01-01

    High intensity, low emittance muon beams are needed for new applications such as muon colliders and neutrino factories based on muon storage rings. Ionization cooling, where muon energy is lost in a low-Z absorber and only the longitudinal component is regenerated using RF cavities, is presently the only known cooling technique that is fast enough to be effective in the short muon lifetime. RF cavities filled with high-pressure hydrogen gas bring two advantages to the ionization technique: the energy absorption and energy regeneration happen simultaneously rather than sequentially, and higher RF gradients and better cavity breakdown behavior are possible than in vacuum due to the Paschen effect. These advantages and some disadvantages and risks will be discussed along with a description of the present and desired RF R&D efforts needed to make accelerators and colliders based on muon beams less futuristic.

  1. Pressure effects on high temperature steam oxidation of Zircaloy-4

    International Nuclear Information System (INIS)

    Park, Kwangheon; Kim, Kwangpyo; Ryu, Taegeun

    2000-01-01

    The pressure effects on Zircaloy-4 (Zry-4) cladding in high temperature steam have been analyzed. A double layer autoclave was made for the high pressure, high temperature oxidation tests. The experimental test temperature range was 700 - 900 deg C, and pressures were 0.1 - 15 MPa. Steam partial pressure turns out to be an important one rather than total pressure. Steam pressure enhances the oxidation rate of Zry-4 exponentially. The enhancement depends on the temperature, and the maximum exists between 750 - 800 deg C. Pre-existing oxide layer decreases the enhancement about 40 - 60%. The acceleration of oxidation rate by high pressure team seems to be originated from the formation of cracks by abrupt transformation of tetragonal phase in oxide, where the un-stability of tetragonal phase comes from the reduction of surface energy by steam. (author)

  2. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott; Dacuñ a, Javier; Rivnay, Jonathan; Jimison, Leslie H.; McCarthy-Ward, Thomas; Heeney, Martin; McCulloch, Iain; Toney, Michael F.; Salleo, Alberto

    2012-01-01

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors

    KAUST Repository

    Himmelberger, Scott

    2012-11-23

    The film thickness of one of the most crystalline and highest performing polymer semiconductors, poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b] thiophene) (PBTTT), is varied in order to determine the effects of interfaces and confinement on the microstructure and performance in organic field effect transistors (OFETs). Crystalline texture and overall film crystallinity are found to depend strongly on film thickness and thermal processing. The angular distribution of crystallites narrows upon both a decrease in film thickness and thermal annealing. These changes in the film microstructure are paired with thin-film transistor characterization and shown to be directly correlated with variations in charge carrier mobility. Charge transport is shown to be governed by film crystallinity in films below 20 nm and by crystalline orientation for thicker films. An optimal thickness is found for PBTTT at which the mobility is maximized in unannealed films and where mobility reaches a plateau at its highest value for annealed films. The effects of confinement on the morphology and charge transport properties of poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene) (PBTTT) are studied using quantitative X-ray diffraction and field-effect transistor measurements. Polymer crystallinity is found to limit charge transport in the thinnest films while crystalline texture and intergrain connectivity modulate carrier mobility in thicker films. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High pressure apparatus for neutron scattering at low temperature

    International Nuclear Information System (INIS)

    Munakata, Koji; Uwatoko, Yoshiya; Aso, Naofumi

    2010-01-01

    Effects of pressure on the physical properties are very important for understanding highly correlated electron systems, in which pressure-induced attractive phenomena such as superconductivity and magnetically ordered non-Fermi liquid have been observed. Up to now, many scientists have developed a lot of high pressure apparatus for each purpose. The characteristic features of various materials and pressure transmitting media for use of high pressure apparatus are reported. Then, two kinds of clamp type high-pressure cell designed for low-temperature neutron diffraction measurements are shown; one is a piston cylinder type high-pressure cell which can be attached to the dilution refrigerator, and the other one is a newly-developed cubic anvil type high-pressure cell which can generate pressure above 7GPa. We also introduce the results of magnetic neutron scattering under pressure on a pressure-induced superconducting ferromagnet UGe 2 in use of the piston cylinder type clamp cell, and those on an iron arsenide superconductor SrFe 2 As 2 in use of the cubic anvil type clamp cell. (author)

  5. Cavitation-induced reactions in high-pressure carbon dioxide

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; van Eck, D.; Kemmere, M.F.; Keurentjes, J.T.F.

    2002-01-01

    The feasibility of ultrasound-induced in situ radical formation in liquid carbon dioxide was demonstrated. The required threshold pressure for cavitation could be exceeded at a relatively low acoustic intensity, as the high vapor pressure of CO2 counteracts the hydrostatic pressure. With the use of

  6. Viscosity of liquid sulfur under high pressure

    International Nuclear Information System (INIS)

    Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S

    2004-01-01

    The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry

  7. Plasma confinement

    CERN Document Server

    Hazeltine, R D

    2003-01-01

    Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.

  8. On the plasma confinement by acoustic resonance. An innovation for electrodeless high-pressure discharge lamps

    Science.gov (United States)

    Courret, Gilles; Nikkola, Petri; Wasterlain, Sébastien; Gudozhnik, Olexandr; Girardin, Michel; Braun, Jonathan; Gavin, Serge; Croci, Mirko; Egolf, Peter W.

    2017-08-01

    In an applied research project on the development of a pulsed microwave sulfur lamp prototype of 1 kW, we have discovered an amazing phenomenon in which the plasma forms a ball staying at the center of the bulb despite gravity, thus protecting the glass from melting. In this paper, it is shown that this results from an acoustic resonance in a spherical mode. Measurements of the plasma response to short pulses are presented showing beats at the spherical resonance. It is demonstrated that the beats could result from the simultaneous excitation of two normal modes with a frequency difference of approximately 1%. One of the two frequencies matches precisely the microwave pulses repetition, a little below 30 kHz. Thus this one is due to a forced oscillation, whereas the other one is due to a free oscillation. The phase velocity of sound was calculated as a function of temperature in order to find the series of temperatures at which a resonance would occur if the bulb were an isothermal solid sphere. The mean temperature inside the actual bulb was determined from the only doublet of this series, that has characteristic frequencies close enough to cause the observed beats. In addition, one of these two modes has a spherical symmetry that can explain the plasma ball formation. The obtained mean temperature is consistent with the direct measurements on the bulb surface as well as with the temperature in the core of a similar plasma found in the literature. We have also proposed a model of the resonance onset based on the acoustic dispersion and the sound amplification due to electromagnetic coupling.

  9. Incidence of secondary aeration in confined flames of high pressure premixed atmospheric burner

    International Nuclear Information System (INIS)

    Cadavid Sierra, Francisco Javier; Buitrago Garcia, Jorge Enrique; Velasquez, Daniel

    2002-01-01

    In this work an experimental study about the variables that affect the secondary aeration has been applied. The relationships with phenomena that affect the proper operation of the combustion chamber are discussed in detail. These phenomena are quenching, flame stabilization and the combustion product recirculation. A flexible combustion system developed to allow variations in the volume of combustion chamber, the area of secondary air entrance, the outlet of combustion products and the thermal output is presented. Also, the system could vary the inlet of primary air, though the study is carried out with maximal working area. The experimental setup allowed to compare and to find the influence of design parameters mentioned above on the secondary aeration and also to obtain the insight that the most important design parameters were combustion product outlet and the combustion intensity

  10. Nonlinear behavior of matrix-inclusion composites under high confining pressure: application to concrete and mortar

    Science.gov (United States)

    Le, Tuan Hung; Dormieux, Luc; Jeannin, Laurent; Burlion, Nicolas; Barthélémy, Jean-François

    2008-08-01

    This paper is devoted to a micromechanics-based simulation of the response of concrete to hydrostatic and oedometric compressions. Concrete is described as a composite made up of a cement matrix in which rigid inclusions are embedded. The focus is put on the role of the interface between matrix and inclusion which represent the interfacial transition zone (ITZ). A plastic behavior is considered for both the matrix and the interfaces. The effective response of the composite is derived from the modified secant method adapted to the situation of imperfect interfaces. To cite this article: T.H. Le et al., C. R. Mecanique 336 (2008).

  11. Announcement: National High Blood Pressure Education Month - May 2016.

    Science.gov (United States)

    2016-05-27

    May is National High Blood Pressure Education Month. High blood pressure (hypertension) is a major contributor to heart disease and stroke, two leading causes of death in the United States.* High blood pressure affects one third of U.S. adults, or approximately 75 million persons, yet approximately 11 million of these persons are not aware they have hypertension, and approximately 18 million are not being treated (unpublished data) (1,2).

  12. Safety regulation on high-pressure gas and gas business

    International Nuclear Information System (INIS)

    Kim, Du Yeoung; An, Dae Jun

    1978-09-01

    This book is divided into two parts. The first part introduces safety regulation on high-pressure gas, enforcement ordinance on safety regulation about high-pressure gas and enforcement regulation on safety regulation about high-pressure gas. The second part indicates regulations on gas business such as general rules, gas business gas supplies, using land, supervision, supple mentary rules and penalty. It has two appendixes on expected questions and questions during last years.

  13. Teaming Up Against High Blood Pressure PSA (:60)

    Centers for Disease Control (CDC) Podcasts

    Nearly one-third of American adults have high blood pressure, and more than half of them don’t have it under control. Simply seeing a doctor and taking medications isn’t enough for many people who have high blood pressure. A team-based approach by patients, health care systems, and health care providers is one of the best ways to treat uncontrolled high blood pressure.

  14. Transportable, small high-pressure preservation vessel for cells

    International Nuclear Information System (INIS)

    Kamimura, N; Sotome, S; Shimizu, A; Nakajima, K; Yoshimura, Y

    2010-01-01

    We have previously reported that the survival rate of astrocytes increases under high-pressure conditions at 4 0 C. However, pressure vessels generally have numerous problems for use in cell preservation and transportation: (1) they cannot be readily separated from the pressurizing pump in the pressurized state; (2) they are typically heavy and expensive due the use of materials such as stainless steel; and (3) it is difficult to regulate pressurization rate with hand pumps. Therefore, we developed a transportable high-pressure system suitable for cell preservation under high-pressure conditions. This high-pressure vessel has the following characteristics: (1) it can be easily separated from the pressurizing pump due to the use of a cock-type stop valve; (2) it is small and compact, is made of PEEK and weighs less than 200 g; and (3) pressurization rate is regulated by an electric pump instead of a hand pump. Using this transportable high-pressure vessel for cell preservation, we found that astrocytes can survive for 4 days at 1.6 MPa and 4 0 C.

  15. Magnetic structures of erbium under high pressure

    DEFF Research Database (Denmark)

    Kawano, S.; Lebech, B.; Achiwa, N.

    1993-01-01

    Neutron diffraction studies of the magnetic structures of erbium metal at 4.5 K and 11.5 kbar hydrostatic pressure have revealed that the transition to a conical structure at low temperatures is suppressed and that the cycloidal structure, with modulation vector Q congruent-to (2/7 2pi/c)c persists...

  16. Generation of high shock pressures by laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Romain, J.P. (GRECO ILM, Laboratoire d' Energetique et Detonique, E.N.S.M.A., 86 - Poitiers (France))

    1984-11-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 ..mu..m wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined.

  17. Generation of high shock pressures by laser pulses

    International Nuclear Information System (INIS)

    Romain, J.P.

    1984-01-01

    Aspects of laser generated high shock pressures and results obtained over the last years are reviewed. Shock pressures up to 5 TPa inferred from shock velocity measurements are reported. Effects of laser wavelength, intensity and 2-D plasma expansion on the generated shock pressure are discussed. The hydrodynamic efficiency determined from various data including new results at 0,26 μm wavelength outlines the advantage of short wavelengths for producing very high pressures. The possibility of achieving shock pressures in the 10 TPa range with the use of the impedance match technique is examined

  18. Vibrational spectroscopy at high external pressures the diamond anvil cell

    CERN Document Server

    Ferraro, John R

    1984-01-01

    Vibrational Spectroscopy at High External Pressures: The Diamond Anvil Cell presents the effects of high pressure on the vibrational properties of materials as accomplished in a diamond anvil cell (DAC). The DAC serves the dual purpose of generating the pressures and being transparent to infrared radiation, allowing the observation of changes caused by pressure. The optical probes highlighted will deal principally with infrared and Raman scattering, although some observations in the visible region will also be presented. The book begins with a discussion of the effects of pressure and pres

  19. Magnetization at high pressure in CeP

    Science.gov (United States)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  20. High pressure studies of fluorenone emission in plastic media

    International Nuclear Information System (INIS)

    Mitchell, D.J.; Schuster, G.B.; Drickamer, H.G.

    1977-01-01

    The energy and the quantum efficiency for fluorenone fluorescence in the crystalline state and in polymeric matrices was measured as a function of external pressure over the range 0--140 kbar. The application of high pressure induces changes in the quantum yield, which ranges from 0.001 at low pressure to a maximum of approx.0.1 at high pressure in hydrocarbon plastics. These results are interpreted as arising from the decrease in the energy of the lowest ππ excited singlet state relative to other relevant states as the external pressure is increased

  1. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    International Nuclear Information System (INIS)

    Rodriguez, Ricardo; Lewis, Winston G

    2014-01-01

    review visits the likelihood for potential energy build-up due to RF propagation in confined spaces that are of waveguide design but with larger dimensions. Such confined spaces include silos, tanks, pipes, manholes, air-condition ducts, tunnels, wells, engine rooms and operator rooms on board vessels. In these confined spaces waves reflect off of the walls and combine constructively or destructively with incident waves producing reinforcement or cancellation respectively. Where there is reinforcement, the intensity of the wave for a particular distance in accordance with the standard, may exceed the exposure limit for this distance from the source thereby exposing the worker to larger intensities than the accepted limit and presenting a potential health and safety threat

  2. Exploring the potential high energy locations and intensities in confined work spaces of waveguide dimensions

    Science.gov (United States)

    Rodriguez, Ricardo; Lewis, Winston G.

    2014-07-01

    review visits the likelihood for potential energy build-up due to RF propagation in confined spaces that are of waveguide design but with larger dimensions. Such confined spaces include silos, tanks, pipes, manholes, air-condition ducts, tunnels, wells, engine rooms and operator rooms on board vessels. In these confined spaces waves reflect off of the walls and combine constructively or destructively with incident waves producing reinforcement or cancellation respectively. Where there is reinforcement, the intensity of the wave for a particular distance in accordance with the standard, may exceed the exposure limit for this distance from the source thereby exposing the worker to larger intensities than the accepted limit and presenting a potential health and safety threat.

  3. Proposed dedicated high pressure beam lines at CHESS

    International Nuclear Information System (INIS)

    Ruoff, A.L.; Vohra, Y.K.; Bassett, W.A.; Batterman, B.W.; Bilderback, D.H.

    1988-01-01

    An instrumentation proposal for dedicated high pressure beam lines at CHESS is described. It is the purpose of this proposed program to provide researchers in high pressure science with beam lines for X-ray diffraction studies in the megabar regime. This will involve radiation from a bending magnet as well as from a wiggler. Examples of the high pressure results up to 2.16 Mbar are shown. Diffraction patterns from bending magnet and wiggler beams are shown and compared. The need for this facility by the high pressure community is discussed. (orig.)

  4. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  5. High pressure argon detector of high energy neutrinos

    International Nuclear Information System (INIS)

    Vishnevskii, A.V.; Golutvin, I.A.; Sarantsev, V.L.; Sviridov, V.A.; Dolgoshein, B.A.; Kalinovskii, A.N.; Sosnovtsev, V.V.; Chernyatin, V.K.; Kaftanov, V.S.; Khovanskii, V.D.; Shevchenko, V.G.

    1979-01-01

    In the present paper, we suggest an electron neutrino detector of a new type where track information is available for all charged particles. As a working medium we use Argon compressed up to a pressure of 100 to 150 atm (approximately 0.2-0.3 g/cm 3 ). The spatial reconstruction of tracks are accomplished with an accuracy not inferior to that of bubble chambers. The detector has a high sensitivity in ionization measurements. An assembly with a working medium mass of approximately 100 tons seem to be realisable. This makes it possible to perform tasks with cross-sections of (10 -5 + 10 -3 ) x delty tot at an intensity of the neutrino beam which is available in present-day accelerators. (orig.)

  6. Confinement and the Pomeron

    International Nuclear Information System (INIS)

    White, A.R.

    1989-01-01

    The importance of confinement for obtaining a unitary high-energy limit for QCD is discussed. ''Minijets'' are argued to build up non-unitary behavior endash when k T > Λ is imposed. For minijets to mix with low k T Pomeron Field Theory describing confinement, and give consistent asymptotic behavior, new ''quarks'' must enter the theory above the minijet transverse momentum scale. The Critical Pomeron is the resulting high-energy limit. 22 refs

  7. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    Science.gov (United States)

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  8. An investigation of the opacity of high-Z mixture and implications for inertial confinement fusion hohlraum design

    International Nuclear Information System (INIS)

    Wang, P.; MacFarlane, J.J.; Orzechowski, T.J.

    1997-01-01

    We use an unresolved transition array model to investigate the opacities of high-Z materials and their mixtures which are of interest to indirect-drive inertial confinement fusion hohlraum design. In particular, we report on calculated opacities for pure Au, Gd, and Sm, as well as Au endash Sm and Au endash Gd mixtures. Our results indicate that mixtures of Au endash Gd and Au endash Sm can produce a significant enhancement in the Rosseland mean opacity. Radiation hydrodynamics simulations of Au radiation burnthrough are also presented, and compared with NOVA experimental data. copyright 1997 American Institute of Physics

  9. Blood pressure in childhood : epidemiological probes into the aetiology of high blood pressure

    NARCIS (Netherlands)

    A. Hofman (Albert)

    1983-01-01

    textabstractHigh arterial blood pressure takes a heavy toll in western populations (1 ). Its causes are still largely unknown, but its sequelae, a variety of cardiovascular and renal diseases, have been referred to as "a modern scourge" (2). High blood pressure of unknown cause, or

  10. High pressure behaviour of uranium mono pnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Ojha, Poonam; Sanyal, S.P.; Aynyas, Mahendra

    2006-01-01

    The pressure induced structural phase transition of three actinide mono pnictides AX (A=U and X=As, Sb, Bi), have been studied theoretically using two body interionic potential with necessary modifications to include the effect of Coulomb screening by the delocalized 5f electrons of the actinide (uranium) ion. The peculiar properties of these compounds have been interpreted in terms of the hybridization of f electrons with the conduction band. The calculated compression curves are compared with the experimental results. These compounds exhibits first order crystallographic phase transition from their NaCl (B 1 ) phase to CsCl (B 2 ) phase at 17GPa, 9.5GPa and 5.3 GPa respectively. The NaCl phase possesses lower energy than CsCl phase and stable at ambient pressure. (author)

  11. Designing high pressure containers for research- principles and applications

    International Nuclear Information System (INIS)

    Anandkumar, V.

    1997-01-01

    The high pressure scientist looks for a well engineered pressure apparatus for high pressure experiments for 1 kbar (0.1 GPa) and above. Often, a variety of difficulties including the choice of materials, design configuration, optimum utilisation of the strength of materials used in the design, are encountered. This article is intended to help the high pressure scientist to select the design approach for pressure retaining container. The limitations imposed by the strength of available materials and engineering standards in building high pressure containers are discussed. Engineering solutions to overcome these limitations with optimal utilisation of the strength of the materials are also discussed. Novel methods to boost up the pressure retaining capacity like multilayered design and autofrettaging are compared along with their relative advantages and disadvantages. Special methods by which it is possible to attain pressures which are several times the yield strength of the materials of construction are presented. In this aspects such as the basis of the codes and their relevance in the design of high pressure equipment will also be described. Discussions are centered around the methods to tackle situations where experimental constraints dictate requirements of pressures higher than those permitted by design codes. Safety features are also discussed. (author)

  12. High beta capture and mirror confinement of laser produced plasmas. Semiannual report, April 1, 1977--September 30, 1977

    International Nuclear Information System (INIS)

    Haught, A.F.; Tomlinson, R.G.; Ard, W.B.

    1977-09-01

    The LITE research program is addressing two aspects of mirror confinement physics. ECRH heating of the confined LITE plasma is being investigated as a means for producing a local electrostatic well to trap cold ions within the plasma and provide DCLC stabilization without the energy drain effects obtained with a cold stabilizing stream. Concurrently, the heavy ion beam probe diagnostic being developed in LITE to experimentally measure the space potential within a minimum-B mirror plasma. During the period, 10-A beam injection focused on the target location has been achieved with the neutral beam source; investigations of hot ion building have been carried out with both a laser produced and a washer gun target; calculations modeling the ECRH stabilization have been performed, the experimental program defined, and preparations for the ECRH stabilization investigation undertaken; and the high current cesium source and high resolution electrostatic analyzer have been developed for the heavy ion beam probe. The physics of the ECRH stabilization model is studied, and conditions necessary to produce a local potential well for trapping cold ions are examined. An analysis of the stabilizing effect of this potential dip on the DCLC mode is presented. The heavy ion probe, under development for direct measurement of the mirror plasma space potential, is discussed. Using Thomson scattering measurements to calibrate the complex response of an electron cyclotron resonance microwave radiometer, measurements have been made of the time history of the electron temperature for the decaying mirror confined laser plasma target with and without streaming plasma stabilization and are reported

  13. Solid gas reaction phase diagram under high gas pressure

    International Nuclear Information System (INIS)

    Ishizaki, K.

    1992-01-01

    This paper reports that to evaluate which are the stable phases under high gas pressure conditions, a solid-gas reaction phase diagram under high gas pressure (HIP phase diagram) has been proposed by the author. The variables of the diagram are temperature, reactant gas partial pressure and total gas pressure. Up to the present time the diagrams have been constructed using isobaric conditions. In this work, the stable phases for a real HIP process were evaluated assuming an isochoric condition. To understand the effect of the total gas pressure on stability is of primary importance. Two possibilities were considered and evaluated, those are: the total gas pressure acts as an independent variable, or it only affects the fugacity values. The results of this work indicate that the total gas pressure acts as an independent variable, and in turn also affects the fugacity values

  14. Practical conditions in the neutron diffraction under high pressure

    International Nuclear Information System (INIS)

    Kamigaki, Kazuo; Ohashi, Masayoshi

    1993-01-01

    Practical analysis is made on some conditions in utilizing neutrons for the study of atomistic structure of materials under high pressure. Investigation is made on the geometrical conditions; size of the specimen, width of slits, and the rate of extra-scattering. Experiments are performed on the effects of absorption by high pressure cell and the disturbance due to an overlapping of diffraction peaks. An observation is presented on the pressure-induced transformation in RbBr. (author)

  15. Pressurizer pump reliability analysis high flux isotope reactor

    International Nuclear Information System (INIS)

    Merryman, L.; Christie, B.

    1993-01-01

    During a prolonged outage from November 1986 to May 1990, numerous changes were made at the High Flux Isotope Reactor (HFIR). Some of these changes involved the pressurizer pumps. An analysis was performed to calculate the impact of these changes on the pressurizer system availability. The analysis showed that the availability of the pressurizer system dropped from essentially 100% to approximately 96%. The primary reason for the decrease in availability comes because off-site power grid disturbances sometimes result in a reactor trip with the present pressurizer pump configuration. Changes are being made to the present pressurizer pump configuration to regain some of the lost availability

  16. High Temperature and Pressure Alkaline Electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank

    against conventional technologies for hydrogen production, such as natural gas reforming, the production and investment costs have to be reduced. A reduction of the investment costs may be achieved by increasing the operational pressure and temperature of the electrolyzer, as this will result in: 1.......3 A cm-2 combined with relatively small production costs may lead to both reduced investment and operating costs for hydrogen and oxygen production. One of the produced electrolysis cells was operated for 350 h. Based on the successful results a patent application covering this novel cell was filed...

  17. High-Performance Pressure Sensor for Monitoring Mechanical Vibration and Air Pressure

    Directory of Open Access Journals (Sweden)

    Yancheng Meng

    2018-05-01

    Full Text Available To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs and poly (dimethylsiloxane (PDMS. In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa−1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 μs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz and large range of air pressure (6–101 kPa, both of which are not achieved before.

  18. What You Should Know About High Blood Pressure and Medications

    Science.gov (United States)

    ... Aortic Aneurysm More What You Should Know About High Blood Pressure and Medications Updated:Jan 18,2017 Is medication ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  19. How Potassium Can Help Control High Blood Pressure

    Science.gov (United States)

    ... Aneurysm More How Potassium Can Help Control High Blood Pressure Updated:Jan 29,2018 Understanding the heart-healthy ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  20. How High Blood Pressure Can Lead to Stroke

    Science.gov (United States)

    ... Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:Jan 29,2018 ... This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  1. High Blood Pressure and Cold Remedies: Which Are Safe?

    Science.gov (United States)

    ... counter cold remedies safe for people who have high blood pressure? Answers from Sheldon G. Sheps, M.D. Over- ... remedies aren't off-limits if you have high blood pressure, but it's important to make careful choices. Among ...

  2. High pressure discharges in cavities formed by microfabrication techniques

    International Nuclear Information System (INIS)

    Khan, B.A.; Cammack, D.A.; Pinker, R.D.; Racz, J.

    1997-01-01

    High pressure discharges are the basis of small high intensity light sources. In this work, we demonstrate the formation of high pressure discharges, in cavities formed by applying micromachining and integrated circuit techniques to quartz substrates. Cavities containing varying amounts of mercury and argon were fabricated to obtain high pressure discharges. A high pressure mercury discharge was formed in the electrodeless cavities by exciting them with a microwave source, operating at 2.45 GHz and in the electroded cavities by applying a dc voltage. The contraction of the discharge into a high pressure arc was observed. A broad emission spectrum due to self-absorption and collisions between excited atoms and normal atoms, typical of high pressure mercury discharges, was measured. The light output and efficacy increased with increasing pressure. The measured voltage was used to estimate the pressure within the electroded cavities, which is as high as 127 atm for one of the two cavities discussed in this work. Efficacies over 40 lumens per watt were obtained for the electrodeless cavities and over 50 scr(l)m/W for the electroded cavities. copyright 1997 American Institute of Physics

  3. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    Science.gov (United States)

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular

  4. Impurity trapped excitons under high hydrostatic pressure

    Science.gov (United States)

    Grinberg, Marek

    2013-09-01

    Paper summarizes the results on pressure effect on energies of the 4fn → 4fn and 4fn-15d1 → 4fn transitions as well as influence of pressure on anomalous luminescence in Lnα+ doped oxides and fluorides. A model of impurity trapped exciton (ITE) was developed. Two types of ITE were considered. The first where a hole is localized at the Lnα+ ion (creation of Ln(α+1)+) and an electron is attracted by Coulomb potential at Rydberg-like states and the second where an electron captured at the Lnα+ ion (creation of Ln(α-1)+) and a hole is attracted by Coulomb potential at Rydberg-like states. Paper presents detailed analysis of nonlinear changes of energy of anomalous luminescence of BaxSr1-xF2:Eu2+ (x > 0.3) and LiBaF3:Eu2+, and relate them to ITE-4f65d1 states mixing.

  5. Greater confinement disposal of high activity and special case wastes at the Nevada Test Site: A unified migration assessment approach

    International Nuclear Information System (INIS)

    Davis, P.A.; Olague, N.E.; Johnson, V.L.; Dickman, P.T.; O'Neill, L.J.

    1993-01-01

    The Department of Energy's Nevada Field Office has disposed of a small quantity of high activity and special case wastes using Greater Confinement Disposal facilities in Area 5 of the Nevada Test Site. Because some of these wastes are transuranic radioactive wastes, the Environmental Protection Agency standards for their disposal under 40 CFR Part 191 which requires a compliance assessment. In conducting the 40 CFR Part 191 compliance assessment, review of the Greater Confinement Disposal inventory revealed potentially land disposal restricted hazardous wastes. The regulatory options for disposing of land disposal restricted wastes consist of (1) treatment and monitoring, or (2) developing a no-migration petition. Given that the waste is already buried without treatment, a no-migration petition becomes the primary option. Based on a desire to minimize costs associated with site characterization and performance assessment, a single approach has been developed for assessing compliance with 40 CFR Part 191, DOE Order 5820.2A (which regulates low-level radioactive wastes contained in Greater Confinement Disposal facilities) and developing a no-migration petition. The approach consists of common points of compliance, common time frame for analysis, and common treatment of uncertainty. The procedure calls for conservative bias of modeling assumptions, including model input parameter distributions and adverse processes and events that can occur over the regulatory time frame, coupled with a quantitative treatment of data and parameter uncertainty. This approach provides a basis for a defensible regulatory decision. In addition, the process is iterative between modeling and site characterization activities, where the need for site characterization activities is based on a quantitative definition of the most important and uncertain parameters or assumptions

  6. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    Science.gov (United States)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  7. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    KAUST Repository

    Hou, Zhipeng; Zhang, Qiang; Xu, Guizhou; Gong, Chen; Ding, Bei; Wang, Yue; Li, Hang; Liu, Enke; Xu, Feng; Zhang, Hongwei; Yao, Yuan; Wu, Guangheng; Zhang, Xixiang; Wang, Wenhong

    2018-01-01

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  8. Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-high Temperature Stability in a Geometrically Confined Nanostripe

    KAUST Repository

    Hou, Zhipeng

    2018-01-04

    Nanoscale topologically nontrivial spin textures, such as magnetic skyrmions, have been identified as promising candidates for the transport and storage of information for spintronic applications, notably magnetic racetrack memory devices. The design and realization of a single skyrmion chain at room temperature (RT) and above in the low-dimensional nanostructures are of great importance for future practical applications. Here, we report the creation of a single skyrmion bubble chain in a geometrically confined Fe3Sn2 nanostripe with a width comparable to the featured size of a skyrmion bubble. Systematic investigations on the thermal stability have revealed that the single chain of skyrmion bubbles can keep stable at temperatures varying from RT up to a record-high temperature of 630 K. This extreme stability can be ascribed to the weak temperature-dependent magnetic anisotropy and the formation of edge states at the boundaries of the nanostripes. The realization of the highly stable skyrmion bubble chain in a geometrically confined nanostructure is a very important step toward the application of skyrmion-based spintronic devices.

  9. Microstructures define melting of molybdenum at high pressures

    Science.gov (United States)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  10. High-Pressure Oxygen Generation for Outpost EVA Study

    Science.gov (United States)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  11. High blood pressure in acute ischemic stroke and clinical outcome.

    Science.gov (United States)

    Manabe, Yasuhiro; Kono, Syoichiro; Tanaka, Tomotaka; Narai, Hisashi; Omori, Nobuhiko

    2009-11-16

    This study aimed to evaluate the prognostic value of acute phase blood pressure in patients with acute ischemic stroke by determining whether or not it contributes to clinical outcome. We studied 515 consecutive patients admitted within the first 48 hours after the onset of ischemic strokes, employing systolic and diastolic blood pressure measurements recorded within 36 hours after admission. High blood pressure was defined when the mean of at least 2 blood pressure measurements was ≥200 mmHg systolic and/or ≥110 mmHg diastolic at 6 to 24 hours after admission or ≥180 mmHg systolic and/or ≥105 mmHg diastolic at 24 to 36 hours after admission. The high blood pressure group was found to include 16% of the patients. Age, sex, diabetes mellitus, hypercholesterolemia, atrial fibrillation, ischemic heart disease, stroke history, carotid artery stenosis, leukoaraiosis, NIH Stroke Scale (NIHSS) on admission and mortality were not significantly correlated with either the high blood pressure or non-high blood pressure group. High blood pressure on admission was significantly associated with a past history of hypertension, kidney disease, the modified Rankin Scale (mRS) on discharge and the length of stay. On logistic regression analysis, with no previous history of hypertension, diabetes mellitus, atrial fibrillation, and kidney disease were independent risk factors associated with the presence of high blood pressure [odds ratio (OR), 1.85 (95% confidence interval (CI): 1.06-3.22), 1.89 (95% CI: 1.11-3.22), and 3.31 (95% CI: 1.36-8.04), respectively]. Multi-organ injury may be presented in acute stroke patients with high blood pressure. Patients with high blood pressure had a poor functional outcome after acute ischemic stroke.

  12. A high-energy x-ray microscope for inertial confinement fusion

    International Nuclear Information System (INIS)

    Marshall, F.J.; Bennett, G.R.

    1999-01-01

    We have developed a microscope capable of imaging x-ray emission from inertial confinement fusion targets in the range of 7 - 9 keV. Imaging is accomplished with a Kirkpatrick-Baez type, four-image microscope coated with a WB 4 C multilayer having a 2d period of 140 Angstrom. This microscope design (a standard used on the University of Rochester close-quote s OMEGA laser system) is capable of 5 μm resolution over a region large enough to image an imploded target (∼400 μm). This design is capable of being extended to ∼40 keV if state-of-the-art, short-spacing, multilayer coatings are used (∼25 Angstrom), and has been configured to obtain 3 μm resolution with the appropriate choice of mirror size. As such, this type of microscope could serve as a platform for multiframe, hard x-ray imaging on the National Ignition Facility. Characterization of the microscope and laboratory measurements of the energy response made with a cw x-ray source will be shown. copyright 1999 American Institute of Physics

  13. Magnetic confinement

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)

    2005-07-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong

  14. Magnetic confinement

    International Nuclear Information System (INIS)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo

    2005-01-01

    The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n ∼1.5X10 20 m -3 ). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO 2 interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 μs) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong energetic particle

  15. Radioresistance increase in polymers at high pressures. [. gamma. rays

    Energy Technology Data Exchange (ETDEWEB)

    Milinchuk, V; KIRJUKHIN, V; KLINSHPONT, E

    1977-06-01

    The effect was studied of very high pressures ranging within 100 and 2,700 MPa on the radioresistance of polytetrafluoroethylene, polypropylene and polyethylene in gamma irradiation. For experiments industrial polymers in the shape of blocks, films and fibers were used. It is shown that in easily breakable polymers, such as polytetrafluoroethylene and polypropylene, 1.3 to 2 times less free radicals are formed as a result of gamma irradiation and a pressure of 150 MPa than at normal pressure. The considerably reduced radiation-chemical formation of radicals and the destruction suppression by cross-linking in polymers is the evidence of the polymer radioresistance in irradiation at high pressures.

  16. Protection against high intravascular pressure in giraffe legs

    DEFF Research Database (Denmark)

    Petersen, Karin K; Hørlyck, Arne; Østergaard, Kristine Hovkjær

    2013-01-01

    The high blood pressure in giraffe leg arteries renders giraffes vulnerable to edema. We investigated in 11 giraffes whether large and small arteries in the legs and the tight fascia protect leg capillaries. Ultrasound imaging of foreleg arteries in anesthetized giraffes and ex vivo examination....... All three findings can contribute to protection of the capillaries in giraffe legs from a high arterial pressure....... revealed abrupt thickening of the arterial wall and a reduction of its internal diameter just below the elbow. At and distal to this narrowing, the artery constricted spontaneously and in response to norepinephrine and intravascular pressure recordings revealed a dynamic, viscous pressure drop along...

  17. CARS diagnostics of high pressure discharges

    International Nuclear Information System (INIS)

    Uhlenbusch, J.

    2001-01-01

    After a short description of the principles of the CARS, RECARS and POLCARS techniques and a discussion of setups for CARS experiments some experimental results are summarized. The results concern mainly plasma under atmospheric pressure, in particular the determination of temperature in a CO 2 laser-induced pyrolysis flame burning in a silane-acetylene gas mixture, the measurements of N 2 vibrational and rotational temperatures as well as the electron density by CARS and of an NO minority by POLCARS in an atmospheric microwave discharge, and finally RECARS experiments on indium iodide, Which is present in metal halide discharge lamps. Guided by these examples some problems and difficulties arising when performing CARS measurements are discussed

  18. Development of high pressure pipe scanners

    International Nuclear Information System (INIS)

    Kim, Jae H.; Lee, Jae C.; Moon, Soon S.; Eom, Heung S.; Choi, Yu R.

    1998-12-01

    This report describes an automatic ultrasonic scanning system for pressure pipe welds, which was developed in this project using recent advanced technologies on mobile robot and computer. The system consists of two modules: a robot scanner module which navigates and manipulates scanning devices, and a data acquisition module which generates ultrasonic signal and processes the data from the scanner. The robot has 4 magnetic wheels and 2 -axis manipulator on which ultrasonic transducer attached. The wheeled robot can navigate curved surface such as outer wall of circular pipes. Magnetic wheels were optimally designed through magnetic field analysis. Free surface sensing and line tracking control algorithm were developed and implemented, and the control devices and software can be used in practical inspection works. We expect our system can contribute to reduction of inspection time, performance enhancement, and effective management of inspection results

  19. Stress-Dilatancy of Cambria Sand for Triaxial Tests at High Pressures

    Science.gov (United States)

    Szypcio, Zenon

    2017-12-01

    In this paper, the stress-dilatancy relationship of Cambria sand for drained triaxial compression and extension tests at high stress level is investigated. The stress dilatancy relationship is obtained by use of frictional state theory and experimental tests data published in literature. It is shown that stress-dilatancy relationship is bilinear, described by three parameters of frictional state theory: critical frictional angle and two other parameters. It is accepted that critical friction angle is independent of confining pressure. The two additional parameters are strongly dependent on confining pressure and different for initial and advanced stages. The point at which the values of these parameters change is termed as Transformation Shear Point. This point is not simply visible either in stress ratio-strain or the volume strain-shear strain relationship which are traditionally shown in soil mechanics papers. Transformation Shear Point is very characteristic in stress ratio-plastic dilatancy plane. Thus, stress ratio- plastic dilatancy is very important for describing stress-strain behaviour of soils. The relationship shown in the paper can be used in soil modelling in the future.

  20. Various high precision measurements of pressure in atomic energy industry

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Inoue, Akira; Hosoma, Takashi; Tanaka, Izumi; Gabane, Tsunemichi.

    1987-01-01

    As for the pressure measurement in atomic energy industry, it is mostly the measurement using differential pressure transmitters and pressure transmitters for process measurement with the general accuracy of measurement of 0.2 - 0.5 % FS/year. However, recently for the development of nuclear fusion reactors and the establishment of nuclear fuel cycle accompanying new atomic energy technology, there are the needs of the pressure measurement having higher accuracy of 0.01 % FS/year and high resolution, and quartz vibration type pressure sensors appeared. New high accuracy pressure measurement techniques were developed by the advance of data processing and the rationalization of data transmission. As the results, the measurement of the differential pressure of helium-lithium two-phase flow in the cooling system of nuclear fusion reactors, the high accuracy measuring system for the level of plutonium nitrate and other fuel substance in tanks in fuel reprocessing and conversion, the high accuracy measurement of atmospheric pressure and wind velocity in ducts, chimneys and tunnels in nuclear facilities and so on became feasible. The principle and the measured data of quartz vibration type pressure sensors are shown. (Kako, I.)

  1. High-pressure applications in medicine and pharmacology

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C [Centro Nacional de Ressonancia Magnetica Nuclear, Departamento de Bioquimica Medica, Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590 (Brazil)

    2004-04-14

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  2. High-pressure applications in medicine and pharmacology

    International Nuclear Information System (INIS)

    Silva, Jerson L; Foguel, Debora; Suarez, Marisa; Gomes, Andre M O; Oliveira, Andrea C

    2004-01-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic

  3. Temperature control for high pressure processes up to 1400 MPa

    International Nuclear Information System (INIS)

    Reineke, K; Mathys, A; Knorr, D; Heinz, V

    2008-01-01

    Pressure- assisted sterilisation is an emerging technology. Hydrostatic high pressure can reduce the thermal load of the product and this allows quality retention in food products. To guarantee the safety of the sterilisation process it is necessary to investigate inactivation kinetics especially of bacterial spores. A significant roll during the inactivation of microorganisms under high pressure has the thermodynamic effect of the adiabatic heating. To analyse the individual effect of pressure and temperature on microorganism inactivation an exact temperature control of the sample to reach ideal adiabatic conditions and isothermal dwell times is necessary. Hence a heating/cooling block for a high pressure unit (Stansted Mini-Food-lab; high pressure capillary with 300 μL sample volume) was constructed. Without temperature control the sample would be cooled down during pressure built up, because of the non-adiabatic heating of the steel made vessel. The heating/cooling block allows an ideal adiabatic heat up and cooling of the pressure vessel during compression and decompression. The high pressure unit has a pressure build-up rate up to 250 MPa s -1 and a maximum pressure of 1400 MPa. Sebacate acid was chosen as pressure transmitting medium because it had no phase shift over the investigate pressure and temperature range. To eliminate the temperature difference between sample and vessel during compression and decompression phase, the mathematical model of the adiabatic heating/cooling of water and sebacate acid was implemented into a computational routine, written in Test Point. The calculated temperature is the setpoint of the PID controller for the heating/cooling block. This software allows an online measurement of the pressure and temperature in the vessel and the temperature at the outer wall of the vessel. The accurate temperature control, including the model of the adiabatic heating opens up the possibility to realise an ideal adiabatic heating and cooling

  4. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  5. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  6. High pressure processing reaches the U.S. market

    International Nuclear Information System (INIS)

    Mermelstein, N.H.

    1997-01-01

    The first food product commercially produced by a U.S. company using high-pressure processing has had successful test market results. High-pressure processing permits food to be preserved by subjecting it to pressures in the range of 60,000-100,000 psi for a short time instead of exposing the food to heat, freezing, chemicals, or irradiation. To produce Classic Guacamole, Avomex of Keller, Texas, uses a batch isostatic press to deactivate the enzymes in the avocado and to kill bacteria, obtaining a refrigerated shelf life of over 30 days. The guacamole is then vacuum packed and processed again. The product undergoes no heat treatment and does not contain preservatives, and the high pressure does not affect its texture, color, or taste. Meanwhile, a continuous system for high-pressure processing of pumpable foods is currently being developed by Flow International of Kent, Washington, and will be used for testing and applications work at Oregon State University

  7. High pressure orthorhombic structure of CuInSe2

    International Nuclear Information System (INIS)

    Bovornratanaraks, T; Saengsuwan, V; Yoodee, K; McMahon, M I; Hejny, C; Ruffolo, D

    2010-01-01

    The structural behaviour of CuInSe 2 under high pressure has been studied up to 53 GPa using angle-dispersive x-ray powder diffraction techniques. The previously reported structural phase transition from its ambient pressure tetragonal structure to a high pressure phase with a NaCl-like cubic structure at 7.6 GPa has been confirmed. On further compression, another structural phase transition is observed at 39 GPa. A full structural study of this high pressure phase has been carried out and the high pressure structure has been identified as orthorhombic with space group Cmcm and lattice parameters a = 4.867(8) A, b = 5.023(8) A and c = 4.980(3) A at 53.2(2) GPa. This phase transition behaviour is similar to those of analogous binary and trinary semiconductors, where the orthorhombic Cmcm structure can also be viewed as a distortion of the cubic NaCl-type structure.

  8. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  9. Fluorinert as a pressure-transmitting medium for high-pressure diffraction studies

    International Nuclear Information System (INIS)

    Varga, Tamas; Wilkinson, Angus P.; Angel, Ross J.

    2003-01-01

    Fluorinert is a liquid pressure-transmitting medium that is widely used in high-pressure diffraction work. A systematic study of five different fluorinerts was carried out using single-crystal x-ray diffraction in a diamond-anvil cell in order to determine the pressure range over which they provide a hydrostatic stress state to the sample. It was found that none of the fluorinerts studied can be considered hydrostatic above 1.2 GPa, a lower pressure than reported previously

  10. Moessbauer study of phase transitions under high hydrostatic pressures. 1

    International Nuclear Information System (INIS)

    Kapitanov, E.V.; Yakovlev, E.N.

    1979-01-01

    Experimental results of the hydrostatic pressure influence on Moessbauer spectrum parameters are obtained over the pressure range including the area of structural phase transition. A linear increase of the Moessbauer effect probability (recoilless fraction) is accompanied by a linear decrease of the electron density at tin nuclei within the pressure range foregoing the phase transition. The electric resistance and the recoilless fraction of the new phase of Mg 2 Sn are lower, but the electron density at tin nuclei is greater than the initial phase ones. Hydrostatic conditions allow to fix clearly the diphasic transition area and to determine the influence of the pressure on the Moessbauer line position and on the recoilless fraction of the high pressure phase. The phase transition heat Q = 415 cal mol -1 is calculated using recoilless fractions of the high and low pressure phases at 25 kbar. The present results are qualitatively and quantitatively different from the results, obtained at nonhydrostatic conditions. (author)

  11. The effect of high pressure on nitrogen compounds of milk

    International Nuclear Information System (INIS)

    Kielczewska, Katarzyna; Czerniewicz, Maria; Michalak, Joanna; Brandt, Waldemar

    2004-01-01

    The effect of pressurization at different pressures (from 200 to 1000 MPa, at 200 MPa intervals, t const. = 15 min) and periods of time (from 15 to 35 min, at 10 min intervals, p const. = 800 MPa) on the changes of proteins and nitrogen compounds of skimmed milk was studied. The pressurization caused an increase in the amount of soluble casein and denaturation of whey proteins. The level of nonprotein nitrogen compounds and proteoso-peptone nitrogen compounds increased as a result of the high-pressure treatment. These changes increased with an increase in pressure and exposure time. High-pressure treatment considerably affected the changes in the conformation of milk proteins, which was reflected in the changes in the content of proteins sedimenting and an increase in their degree of hydration

  12. Enhanced Exciton and Photon Confinement in Ruddlesden-Popper Perovskite Microplatelets for Highly Stable Low-Threshold Polarized Lasing.

    Science.gov (United States)

    Li, Mingjie; Wei, Qi; Muduli, Subas Kumar; Yantara, Natalia; Xu, Qiang; Mathews, Nripan; Mhaisalkar, Subodh G; Xing, Guichuan; Sum, Tze Chien

    2018-06-01

    At the heart of electrically driven semiconductors lasers lies their gain medium that typically comprises epitaxially grown double heterostuctures or multiple quantum wells. The simultaneous spatial confinement of charge carriers and photons afforded by the smaller bandgaps and higher refractive index of the active layers as compared to the cladding layers in these structures is essential for the optical-gain enhancement favorable for device operation. Emulating these inorganic gain media, superb properties of highly stable low-threshold (as low as ≈8 µJ cm -2 ) linearly polarized lasing from solution-processed Ruddlesden-Popper (RP) perovskite microplatelets are realized. Detailed investigations using microarea transient spectroscopies together with finite-difference time-domain simulations validate that the mixed lower-dimensional RP perovskites (functioning as cladding layers) within the microplatelets provide both enhanced exciton and photon confinement for the higher-dimensional RP perovskites (functioning as the active gain media). Furthermore, structure-lasing-threshold relationship (i.e., correlating the content of lower-dimensional RP perovskites in a single microplatelet) vital for design and performance optimization is established. Dual-wavelength lasing from these quasi-2D RP perovskite microplatelets can also be achieved. These unique properties distinguish RP perovskite microplatelets as a new family of self-assembled multilayer planar waveguide gain media favorable for developing efficient lasers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnetic order and confinement improvement in high-current regimes of RFX-mod with MHD feedback control

    International Nuclear Information System (INIS)

    Piovesan, P.; Zuin, M.; Alfier, A.; Bonfiglio, D.; Bonomo, F.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Fassina, A.; Gobbin, M.; Lorenzini, R.; Marrelli, L.; Martin, P.; Martines, E.; Pasqualotto, R.; Puiatti, M.E.; Spolaore, M.; Valisa, M.; Escande, D.F.

    2009-01-01

    The RFX-mod machine (Sonato et al 2003 Fusion Eng. Des. 66 161) recently achieved, for the first time in a reversed-field pinch, high plasma current up to 1.6 MA with good confinement. Magnetic feedback control of magnetohydrodynamic instabilities was essential to reach the goal. As the current is raised, the plasma spontaneously accesses a new helical state, starting from turbulent multi-helical conditions. Together with this raise, the ratio between the dominant and the secondary mode amplitudes increases in a continuous way. This brings a significant improvement in the magnetic field topology, with the formation of helical flux surfaces in the core. As a consequence, strong helical transport barriers with maximum electron temperature around 1 keV develop in this region. The energy confinement time increases by a factor of 4 with respect to the lower-current, multi-helical conditions. The properties of the new helical state scale favourably with the current, thus opening promising perspectives for the higher current experiments planned for the near future.

  14. Low Power and High Sensitivity MOSFET-Based Pressure Sensor

    International Nuclear Information System (INIS)

    Zhang Zhao-Hua; Ren Tian-Ling; Zhang Yan-Hong; Han Rui-Rui; Liu Li-Tian

    2012-01-01

    Based on the metal-oxide-semiconductor field effect transistor (MOSFET) stress sensitive phenomenon, a low power MOSFET pressure sensor is proposed. Compared with the traditional piezoresistive pressure sensor, the present pressure sensor displays high performances on sensitivity and power consumption. The sensitivity of the MOSFET sensor is raised by 87%, meanwhile the power consumption is decreased by 20%. (cross-disciplinary physics and related areas of science and technology)

  15. High temperature pressure water's blowdown into water. Experimental results

    International Nuclear Information System (INIS)

    Ishida, Toshihisa; Kusunoki, Tsuyoshi; Kasahara, Yoshiyuki; Iida, Hiromasa

    1994-01-01

    The purpose of the present experimental study is to clarify the phenomena in blowdown of high temperature and pressure water in pressure vessel into the containment water for evaluation of design of an advanced marine reactor(MRX). The water blown into the containment water flushed and formed steam jet plume. The steam jet condensed in the water, but some stream penetrated to gas phase of containment and contributed to increase of containment pressure. (author)

  16. The confining trailing string

    CERN Document Server

    Kiritsis, E; Nitti, F

    2014-01-01

    We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.

  17. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.

    Science.gov (United States)

    Chen, Xi; Yip, Ngai Yin

    2018-02-20

    Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.

  18. Comparison of a low- to high-confinement transition theory with experimental data from DIII-D.

    Science.gov (United States)

    Guzdar, P N; Kleva, R G; Groebner, R J; Gohil, P

    2002-12-23

    From our recent theory based on the generation of shear flow and field in finite beta plasmas, the criterion for bifurcation from low to high confinement mode yields a critical parameter proportional to T(e)/square root (L(n)), where T(e) is the electron temperature and L(n) is the density scale length. The predicted threshold shows very good agreement with edge measurements on discharges undergoing low-to-high transitions in DIII-D. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter. The theory also provides an explanation for pellet injection H modes in DIII-D, thereby unifying unconnected methods for accomplishing the transition.

  19. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    Science.gov (United States)

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  20. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.