WorldWideScience

Sample records for high conductivity lithium-ion

  1. Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives

    Science.gov (United States)

    Ahn, Soonho; Kim, Youngduk; Kim, Kyung Joon; Kim, Tae Hyung; Lee, Hyungkeun; Kim, Myung H.

    As lithium ion cells dominate the battery market, the performance improvement is an utmost concern among developers and researchers. Conductive additives are routinely employed to enhance electrode conductivity and capacity. Carbon particulates—graphite or carbon black powders—are conventional and popular choices as conductive fillers. However, percolation requirements of particles demand significant volumetric content of impalpable, and thereby high area conductive fillers. As might be expected, the electrode active surface area escalates unnecessarily, resulting in overall increase in reaction with electrolytes and organic solvents. The increased reactions usually manifest as an irreversible loss of anode capacity, gradual oxidation and consumption of electrolyte on the cathode—which causes capacity decline during cycling—and an increased threat to battery safety by gas evolution and exothermic solvent oxidation. In this work we have utilized high aspect ratio, flexible, micronic metal fibers as low active area and high conductivity additives. The metal fibers appear well dispersed within the electrode and to satisfy percolation requirements very efficiently at very low volumetric content compared to conventional carbon-based conductive additives. Results from 18650-type cells indicate significant enhancements in electrode capacity and high rate capability while the irreversible capacity loss is negligible.

  2. Cobalt Oxide Porous Nanofibers Directly Grown on Conductive Substrate as a Binder/Additive-Free Lithium-Ion Battery Anode with High Capacity.

    Science.gov (United States)

    Liu, Hao; Zheng, Zheng; Chen, Bochao; Liao, Libing; Wang, Xina

    2017-12-01

    In order to reduce the amount of inactive materials, such as binders and carbon additives in battery electrode, porous cobalt monoxide nanofibers were directly grown on conductive substrate as a binder/additive-free lithium-ion battery anode. This electrode exhibited very high specific discharging/charging capacities at various rates and good cycling stability. It was promising as high capacity anode materials for lithium-ion battery.

  3. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  4. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  5. Composite Conducting Polymer Cathodes For High Energy Density Lithium-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future NASA planetary exploration missions require secondary (rechargeable) batteries that can operate at extreme temperatures (-60oC to 60oC) yet deliver high...

  6. Structures and ion conduction pathways of amorphous lithium ion conductors

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei

    2014-01-01

    For ( 7 Li 2 S) x (P 2 S 5 ) 100-x glasses (x = 50, 60, and 70) and 7 Li 7 P 3 S 11 metastable crystal, time-of-flight neutron diffraction and synchrotron X-ray diffraction experiments were performed, and three-dimensional structures and conduction pathways of lithium ions were studied using the reverse Monte Carlo (RMC) modeling and the bond valence sum (BVS) approach. The conduction pathways of the lithium ions could be classified into two types: lithium 'stable' and 'metastable' regions, respectively. Moreover, it was found that there is a significant relationship between the activation energy of the electrical conduction and the topology of the conduction pathways of the lithium ions. (author)

  7. Li_4Ti_5O_1_2/Ketjen Black with open conductive frameworks for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Yang; Dong, Hui; Zhang, Huang; Liu, Yijun; Ji, Mandi; Xu, Yunlong; Wang, Qingqing; Luo, Lei

    2016-01-01

    Graphical abstract: The Li_4Ti_5O_1_2/Ketjen Black composites are synthesized via a simple hydrothermal method. As an anode for lithium ion battery, the composite exhibits ultrahigh capacity and excellent low temperature performance. - Highlights: • Mesoporous LTO/KB composites were synthesized via hydrothermal method. • KB is used as carbon template and conductive additive. • The LTO/KB electrode without carbon black was fabricated. • This as-prepared electrode shows excellent rate capacity performance. • LTO/KB composite exhibits ultrahigh cycle performance at low temperature. - Abstract: The Li_4Ti_5O_1_2/Ketjen Black composites are synthesized via a simple hydrothermal method. The materials are characterized by XRD, SEM, HR-TEM, EDS, galvanostatic charge/discharge test, CV and EIS. The results indicate that Li_4Ti_5O_1_2 (LTO) particles grow both in the pores and on the surface of mesoporous Ketjen Black (KB) forming open conductive frameworks and the Ketjen Black works as host forthe growth of Li_4Ti_5O_1_2 primary nanoparticles. The LTO/KB electrode is fabricated without extra carbon black conductive agents and exhibits excellent electrochemical performances, especially at low temperature. The improved performances can be attributed to the presence of mesoporous Ketjen Black conductive templates with high electronic conductivity and formed 3D frameworks beneficial to the lithium ion diffusion.

  8. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    We describe the synthesis and lithium-ion conductivity of new perovskite-related oxides ... work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. ..... On the other hand, Nb/Ta compounds show a higher conductivity.

  9. Testing Conducted for Lithium-Ion Cell and Battery Verification

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  10. High capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Lopez, Herman A.; Anguchamy, Yogesh Kumar; Deng, Haixia; Han, Yongbon; Masarapu, Charan; Venkatachalam, Subramanian; Kumar, Suject

    2015-11-19

    High capacity silicon based anode active materials are described for lithium ion batteries. These materials are shown to be effective in combination with high capacity lithium rich cathode active materials. Supplemental lithium is shown to improve the cycling performance and reduce irreversible capacity loss for at least certain silicon based active materials. In particular silicon based active materials can be formed in composites with electrically conductive coatings, such as pyrolytic carbon coatings or metal coatings, and composites can also be formed with other electrically conductive carbon components, such as carbon nanofibers and carbon nanoparticles. Additional alloys with silicon are explored.

  11. Conductive Polymeric Binder for Lithium-Ion Battery Anode

    Science.gov (United States)

    Gao, Tianxiang

    Tin (Sn) has a high-specific capacity (993 mAhg-1) as an anode material for Li-ion batteries. To overcome the poor cycling performance issue caused by its large volume expansion and pulverization during the charging and discharging process, many researchers put efforts into it. Most of the strategies are through nanostructured material design and introducing conductive polymer binders that serve as matrix of the active material in anode. This thesis aims for developing a novel method for preparing the anode to improve the capacity retention rate. This would require the anode to have high electrical conductivity, high ionic conductivity, and good mechanical properties, especially elasticity. Here the incorporation of a conducting polymer and a conductive hydrogel in Sn-based anodes using a one-step electrochemical deposition via a 3-electrode cell method is reported: the Sn particles and conductive component can be electrochemically synthesized and simultaneously deposited into a hybrid thin film onto the working electrode directly forming the anode. A well-defined three dimensional network structure consisting of Sn nanoparticles coated by conducting polymers is achieved. Such a conductive polymer-hydrogel network has multiple advantageous features: meshporous polymeric structure can offer the pathway for lithium ion transfer between the anode and electrolyte; the continuous electrically conductive polypyrrole network, with the electrostatic interaction with elastic, porous hydrogel, poly (2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylonitrile) (PAMPS) as both the crosslinker and doping anion for polypyrrole (PPy) can decrease the volume expansion by creating porous scaffold and softening the system itself. Furthermore, by increasing the amount of PAMPS and creating an interval can improve the cycling performance, resulting in improved capacity retention about 80% after 20 cycles, compared with only 54% of that of the control sample without PAMPS. The cycle

  12. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe

    2017-05-16

    A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  13. Zn substitution NiFe{sub 2}O{sub 4} nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Junwei [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hou, Xianhua, E-mail: houxh@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Huang, Fengsi; Shen, Kaixiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Lam, Kwok-ho [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hunghom, Kowloon 999077 (Hong Kong); Ru, Qiang [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Hu, Shejun, E-mail: husj@scnu.edu.cn [Guang dong Engineering Technology Research Center of Efficient Green Energy and Environmental Protection Materials, Guangzhou 510006 (China); Guang dong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2016-08-15

    Zn{sup 2+} ion substituted nickel ferrite nanomaterials with the chemical formula Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g{sup −1}at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni{sub 1−x}Zn{sub x}Fe{sub 2}O{sub 4} anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  14. Zn substitution NiFe_2O_4 nanoparticles with enhanced conductivity as high-performances electrodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Mao, Junwei; Hou, Xianhua; Huang, Fengsi; Shen, Kaixiang; Lam, Kwok-ho; Ru, Qiang; Hu, Shejun

    2016-01-01

    Zn"2"+ ion substituted nickel ferrite nanomaterials with the chemical formula Ni_1_−_xZn_xFe_2O_4 for x = 0, 0.3, 0.5, 0.7 and 1 have been synthesized by a facile green-chemical hydrothermal method as anode materials in lithium ion battery. The morphology and structure of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The physical and electrochemical properties were tested by electrochemical system. Furthermore, the energetic and electronic properties of the samples were investigated by density functional calculations. The results suggest that Zn substitution can affect the conduction performance of the zinc - nickel ferrite. Meanwhile, electrochemical results show that an enhancement in the capacity with increasing Zn concentration is observed especially for x = 0.3 which exhibit high discharge capacity of 1416 mAh g"−"1at the end of 100th cycle. Moreover, the theoretical research method with high yield synthesis strategy described in the present work holds promise for the general fabrication of other metallic elements substitution in complex transition metal oxides for high power LIBs. - Highlights: • Ni_1_−_xZn_xFe_2O_4 anodes have been synthesized by hydrothermal method. • First principles calculation was used to investigate the conduction performance. • Electrochemical performance was enhanced with Zn substitution.

  15. Foldable, High Energy Density Lithium Ion Batteries

    Science.gov (United States)

    Suresh, Shravan

    Lithium Ion Batteries (LIBs) have become ubiquitous owing to its low cost, high energy density and, power density. Due to these advantages, LIBs have garnered a lot of attention as the primary energy storage devices in consumer electronics and electric vehicles. Recent advances in the consumer electronics research and, the drive to reduce greenhouse gases have created a demand for a shape conformable, high energy density batteries. This thesis focuses on the aforementioned two aspects of LIBs: (a) shape conformability (b) energy density and provides potential solutions to enhance them. This thesis is divided into two parts viz. (i) achieving foldability in batteries and, (ii) improving its energy density. Conventional LIBs are not shape conformable due to two limitations viz. inelasticity of metallic foils, and delamination of the active materials while bending. In the first part of the thesis (in Chapter 3), this problem is solved by replacing metallic current collector with Carbon Nanotube Macrofilms (CNMs). CNMs are superelastic films comprising of porous interconnected nanotube network. Using Molecular Dynamics (MD) simulation, we found that in the presence of an interconnected nanotube network CNMs can be fully folded. This is because the resultant stress due to bending and, the effective bending angle at the interface is reduced due to the network of nanotubes. Hence, unlike an isolated nanotube (which ruptures beyond 120 degrees of bending), a network of nanotubes can be completely folded. Thus, by replacing metallic current collector foils with CNMs, the flexibility limitation of a conventional LIB can be transcended. The second part of this thesis focusses on enhancing the energy density of LIBs. Two strategies adopted to achieve this goal are (a) removing the dead weight of the batteries, and (b) incorporating high energy density electrode materials. By incorporating CNMs, the weight of the batteries was reduced by 5-10 times due to low mass loading of

  16. Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance

    Science.gov (United States)

    Liu, Ying; Palmieri, Alessandro; He, Junkai; Meng, Yongtao; Beauregard, Nicole; Suib, Steven L.; Mustain, William E.

    2016-01-01

    The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C. PMID:27167615

  17. High-discharge-rate lithium ion battery

    Science.gov (United States)

    Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

    2014-04-22

    The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

  18. High-capacity nanocarbon anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei

    2015-01-01

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g −1 . • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g −1 and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g −1 at 0.1 A g −1 for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g −1 at 4 A g −1 for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability

  19. Conductive polymer and Si nanoparticles composite secondary particles and structured current collectors for high loading lithium ion negative electrode application

    Science.gov (United States)

    Liu, Gao

    2017-07-11

    Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.

  20. Electronically conductive polymer binder for lithium-ion battery electrode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2017-08-01

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  1. Electronically conductive polymer binder for lithium-ion battery electrode

    Science.gov (United States)

    Liu, Gao; Xun, Shidi; Battaglia, Vincent S.; Zheng, Honghe; Wu, Mingyan

    2015-07-07

    A family of carboxylic acid groups containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. Triethyleneoxide side chains provide improved adhesion to materials such as, graphite, silicon, silicon alloy, tin, tin alloy. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.

  2. Single-ion conducting diblock terpolymers for lithium-ion batteries

    Science.gov (United States)

    Morris, Melody; Epps, Thomas H., III

    Block polymer (BP) electrolytes provide an attractive route to overcome the competing constraints of high conductivity and mechanical/thermal stability in lithium-ion batteries through nanoscale self-assembly. For example, macromolecules can be engineered such that one domain conducts lithium ions and the other prevents lithium dendrite formation. Herein, we report on the behavior of a single-ion conducting BP electrolyte that was designed to facilitate the transport of lithium ions. These polymers differ from traditional salt-doped BP electrolytes, which require the addition of a lithium salt to bestow conductivity and typically suffer from substantial counterion motion that reduces efficiency. New single-ion BPs were synthesized, and the nanoscale morphologies were determined using small angle X-ray scattering and transmission electron microscopy. Electrolyte performance was measured using AC impedance spectroscopy and DC polarization, and the results were correlated to nanoscale morphology and ion content. Enhanced physical understanding of single-ion BPs was gained by connecting the ion mobility to the chemistry, chain structure, and ion content of the single-ion BP. These studies can be applied to other charged-neutral block polymers to elucidate the effects of ion content on self-assembly and macroscopic properties.

  3. Cr-substituted LiCoPO4 core with a conductive carbon layer towards high-voltage lithium-ion batteries

    Science.gov (United States)

    Wang, Yue; Chen, Junhong; Qiu, Jingyi; Yu, Zhongbao; Ming, Hai; Li, Meng; Zhang, Songtong; Yang, Yusheng

    2018-02-01

    Electrical and ionic conductivity are two major limiting factors for LiCoPO4 cathode material. To overcome these shortcomings, a Cr-substituted LiCoPO4 core with a conductive carbon layer cathode material is synthesized using the sol-gel method. The physical chemistry properties of these materials are systematically investigated by using various characterization methods. For instance, the XRD and Rietveld refinement results reveal that Cr successfully substitutes the Co within the LiCoPO4 core to form LiCo1-1.5xCrxPO4/C (x = 0, 0.02, 0.04, 0.06) without changing the olivine structure but exhibits a decrease in the unit cell volume with increasing Cr substitution. SEM and TEM images indicate that Cr substitution does not lead to changes in the basic morphology of LiCo1-1.5xCrxPO4/C (x = 0, 0.02, 0.04, 0.06) material, which is composed of agglomerated nanoparticles with an 8 nm carbon layer on the surface. The EDS and XPS results confirm that Cr is uniformly distributed on the surface and that the oxidation state of Cr is +3. FTIR spectra indicate that the antisite defect concentration decreases with increasing Cr substitution. Furthermore, Cr substitution significantly improves the electrochemical performances of LiCo1-1.5xCrxPO4/C (x = 0.02, 0.04, 0.06) cathode. Notably, the LiCo0.94Cr0.04PO4/C delivers an initial discharge capacity of 144 mA h g-1 at 0.1 C and shows a capacity retention of 71% after 100 cycles between 3.0 and 5.0 V. The CV and EIS results indicate that the polarization is reduced and that the electronic and ionic conductivities are improved by Cr substitution. The good electrochemical performances for Cr-substituted LiCoPO4/C electrodes are attributed to the lower antisite defect concentration, as the reduction of polarization, the improvement of electronic and ion conductivity and the uniform carbon layer. These features will accelerate the commercial application of LiCoPO4 towards the start-art of the high voltage lithium-ion batteries.

  4. Abuse behavior of high-power, lithium-ion cells

    Science.gov (United States)

    Spotnitz, R.; Franklin, J.

    Published accounts of abuse testing of lithium-ion cells and components are summarized, including modeling work. From this summary, a set of exothermic reactions is selected with corresponding estimates of heats of reaction. Using this set of reactions, along with estimated kinetic parameters and designs for high-rate batteries, models for the abuse behavior (oven, short-circuit, overcharge, nail, crush) are developed. Finally, the models are used to determine that fluorinated binder plays a relatively unimportant role in thermal runaway.

  5. Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Hong; Zhang, Yin; Yao, Zhikan; John, Angelin Ebanezar; Li, Yang; Li, Weishan; Zhu, Baoku

    2016-01-01

    Highlights: • For the first time, a cross-linked gel polymer electrolyte with additional lithium ions, was introduced into a nonwoven separator. • The PI nonwoven is employed to ensure enhanced thermal stability and mechanical strength of the IACS. • With the introduction of PAMPS(Li"+), the migration and mobility rate of anions could be hindered by the -SO_3"− group, giving rise to a high lithium ion transference number. • This IACS is recommended as a promising candidate for the high-power and high-safety lithium ion batteries. - Abstract: A novel composite nonwoven separator exhibiting high heat resistance, high ionic conductivity and high lithium ion transference number is fabricated by a simple dip-coating and heat treatment method. The thermal stable polyimide (PI) nonwoven matrix is chosen as a mechanical support and contributes to improving the thermal shrinkage of the composite nonwoven separator (abbreviated as IACS). The cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) PAMPS(Li"+) gel polymer electrolyte (GPE), lithium ion sources of a single ion conductor, is introduced into the PI nonwoven matrix and acts as a functional filler. This PAMPS (Li"+) GPE is proved to be able to provide internal short circuit protection, to alleviate liquid electrolyte leakage effectively, to supply more lithium ions dissociating from PAMPS (Li"+) by liquid electrolyte solvent, to contribute a more stable interfacial resistance, and thus resulting in an excellent cyclability. More notably, the migration and mobility rate of anions could be hindered by the −SO_3"− group in the PAMPS (Li"+) polymer based on electrostatic interaction, giving rise to a very high lithium ion transference number. These fascinating characteristics endow the IACS a great promise for the application in the high power and high safety lithium ion batteries.

  6. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Jun; Hou, Wenhua; Wang, Jiulin; Nuli, Yanna

    2015-08-24

    Herein, MoO2 nanoplates have been facilely prepared through a hydrothermal process by using MoO3 microbelts as the intercalation host. The obtained MoO2 nanoplates manifest excellent electrochemical properties when the discharge cutoff voltage is simply set at 1.0 V to preclude the occurrence of conversion reactions. Its initial reversible capacity reaches 251 mAh g(-1), which is larger than that of Li4Ti5O12 , at a current rate of 0.2 C. The average capacity decay is only 0.0465 mAh g(-1) per cycle, with a coulombic efficiency of 99.5% (from the 50th cycle onward) for 2000 cycles at 1 C. Moreover, this MoO2 electrode demonstrates an outstanding high power performance. When the current rate is increased from 0.2 to 50 C, about 54% of the capacity is retained. The superior electrochemical performance can be attributed to the metallic conductivity of MoO2, short Li(+) diffusion distance in the nanoplates, and reversible crystalline phase conversion of the addition-type reaction of MoO2. The prepared MoO2 nanoplates may hopefully replace their currently used analogues, such as Li4Ti5O12 , in high power lithium-ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  8. Synthesis and characterization of advanced Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Haiyan, E-mail: hyyan1979@163.com; Zhang, Gai; Li, Yongfei

    2017-01-30

    Highlights: • Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT composite is explored as cathode material for Lithium-ion batteries. • The introduce of PEDOT is effectively way to enhance the electron condcutivity of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}. • The Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT hybrids exhibit superior rate capability and cycling stability. - Abstract: Monoclinic Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} compound is gathering significant interest as cathode material for lithium-ion batteries at the moment because of its high theoretical capacity, good safety and low cost. However, it suffers from bad rate capability and short cycling performance duo to the intrinsic low electronic conductivity. Herein, we report a design of Li{sub 3}V{sub 2}(PO{sub 4}){sub 3} particles coated by conducting polymer PEDOT through a facile method. When the cell is tested between 3.0 and 4.3 V, the core-shell Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT electrode delivers a capacity of 128.5 mAh g{sup −1} at 0.1C which is about 96.6% of the theoretical capacity. At a high rate of 8C, it can still maintain a capacity of 108.6 mAh g{sup −1} for over 15 cycles with capacity decay rate of only 0.049% per cycle. The impressive electrochemical performance could be attributed to the coated PEDOT layer which can provide a fast electronic connection. Therefore, it can be make a conclusion that the core-shell Li{sub 3}V{sub 2}(PO{sub 4}){sub 3}@PEDOT composite is a promising cathode material for next-generation lithium-ion batteries.

  9. Silicon oxide based high capacity anode materials for lithium ion batteries

    Science.gov (United States)

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  10. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  11. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Inda, Yasushi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan); Katoh, Takashi [Research and Development Department, Ohara-inc, 1-15-30 Oyama, Sagamihara, Kanagawa 229-1186 (Japan); Baba, Mamoru [Graduate School of Engineering, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551 (Japan)

    2007-12-06

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10{sup -3} S cm{sup -1} or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO{sub 2} positive electrode, a Li{sub 4}Ti{sub 5}O{sub 12} negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic. (author)

  12. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries.

    Science.gov (United States)

    Kalluri, Sujith; Yoon, Moonsu; Jo, Minki; Liu, Hua Kun; Dou, Shi Xue; Cho, Jaephil; Guo, Zaiping

    2017-12-01

    Cathode material degradation during cycling is one of the key obstacles to upgrading lithium-ion and beyond-lithium-ion batteries for high-energy and varied-temperature applications. Herein, we highlight recent progress in material surface-coating as the foremost solution to resist the surface phase-transitions and cracking in cathode particles in mono-valent (Li, Na, K) and multi-valent (Mg, Ca, Al) ion batteries under high-voltage and varied-temperature conditions. Importantly, we shed light on the future of materials surface-coating technology with possible research directions. In this regard, we provide our viewpoint on a novel hybrid surface-coating strategy, which has been successfully evaluated in LiCoO 2 -based-Li-ion cells under adverse conditions with industrial specifications for customer-demanding applications. The proposed coating strategy includes a first surface-coating of the as-prepared cathode powders (by sol-gel) and then an ultra-thin ceramic-oxide coating on their electrodes (by atomic-layer deposition). What makes it appealing for industry applications is that such a coating strategy can effectively maintain the integrity of materials under electro-mechanical stress, at the cathode particle and electrode- levels. Furthermore, it leads to improved energy-density and voltage retention at 4.55 V and 45 °C with highly loaded electrodes (≈24 mg.cm -2 ). Finally, the development of this coating technology for beyond-lithium-ion batteries could be a major research challenge, but one that is viable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High Capacity Anodes for Advanced Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion batteries are slowly being introduced into satellite power systems, but their life still presents concerns for longer duration missions. Future NASA...

  14. Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yoon, Sukeun; Woo, Sang-Gil; Jung, Kyu-Nam; Song, Huesup

    2014-01-01

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO 3 . • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO 3 . • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO 3 with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO 3 . - Abstract: Cauliflower-like WO 3 was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO 3 nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li + /Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO 3 was revealed for the first time. The cauliflower-like WO 3 after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li 5.5 WO 3 ) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO 3 particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries

  15. Mechanics of high-capacity electrodes in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhu, Ting

    2016-01-01

    Rechargeable batteries, such as lithium-ion batteries, play an important role in the emerging sustainable energy landscape. Mechanical degradation and resulting capacity fade in high-capacity electrode materials critically hinder their use in high-performance lithium-ion batteries. This paper presents an overview of recent advances in understanding the electrochemically-induced mechanical behavior of the electrode materials in lithium-ion batteries. Particular emphasis is placed on stress generation and facture in high-capacity anode materials such as silicon. Finally, we identify several important unresolved issues for future research. (topical review)

  16. Rechargeable Lithium-Ion Based Batteries and Thermal Management for Airborne High Energy Electric Lasers (Preprint)

    National Research Council Canada - National Science Library

    Fellner, Joseph P; Miller, Ryan M; Shanmugasundaram, Venkatrama

    2006-01-01

    ...). Rechargeable lithium-ion polymer batteries, for applications such as remote-control aircraft, are achieving simultaneously high energy density and high power density (>160 Whr/kg at > 1.0 kW/kg...

  17. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  18. Synthesis of hierarchical conductive C/LiFePO_4/carbon nanotubes composite with less antisite defects for high power lithium-ion batteries

    International Nuclear Information System (INIS)

    Song, Jianjun; Shao, Guangjie; Ma, Zhipeng; Wang, Guiling; Yang, Jing

    2015-01-01

    Graphical abstract: The hierarchical conductive C/LiFePO4/CNTs composite with less antisite defects is synthesized by a modified solvothemal process and delivers superior electrochemical performance with high rate capability and good capacity retention. - Abstract: The low electronic conductivity and Li ion diffusion ability are two major obstacles to realize its wide application for LiFePO_4 materials. The material with hierarchical conductive structure and lower antisite defects concentration can effectively enhance the electronic conductivity and Li ion diffusion ability. We firstly report here a modified solvothemal process for the fabrication of hierarchical conductive C/LiFePO_4/CNTs composite with less antisite defects. It is found that the modified solvothemal process is facilitated to decrease Fe_L_i antisite defects and enhance the electronic continuity between LFP and CNTs. In favor of its unique properties, the C/LFP/CNTs composites can deliver superior rate capability and cycling stability. Remarkably, even at a high rate of 20C (3400 mA g"−"1), a high initial discharge capacity of 91.6 mAh g"−"1 and good cycle retention of 95% with almost 100% coulombic efficiency are still obtained after 100 cycles.

  19. Conducting polyaniline-wrapped lithium vanadium phosphate nanocomposite as high-rate and cycling stability cathode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Haiyan; Chen, Weixing; Wu, Xinming; Li, Yongfei

    2014-01-01

    Highlights: • Li 3 V 2 (PO 4 ) 3 /polyaniline has been firstly synthesized and investigated. • Conducting polyaniline can remarkably enhance the conductivity of Li 3 V 2 (PO 4 ) 3 . • Polyaniline-coated Li 3 V 2 (PO 4 ) 3 exhibits superior rate capability and cyclability. - Abstract: This work introduces a facile strategy to improve the high-rate capability and cycling stability for carbon-free Li 3 V 2 (PO 4 ) 3 by coating with conducting polymer polyaniline. Core-shell Li 3 V 2 (PO 4 ) 3 /polyaniline nanocomposite with typical sizes of 200 nm has been synthesized via a microwave heating assisted sol-gel method followed by a self-assembly process. The highly conductive and uniform polyaniline layer coated on the surface of Li 3 V 2 (PO 4 ) 3 nanoparticles significantly enhances the electrochemical performance of the electrode, which exhibits better rate capability and excellent cycling stability compared with the pristine Li 3 V 2 (PO 4 ) 3 . The resultant nanocomposite exhibits a high initial discharge capacity of 130.7 mAhg −1 at 0.1 C within a voltage range of 3.0-4.3 V. When cycled at a rate of 10 C the capacity can reach up to 101.5 mAhg −1 , and the capacity retention is 87.3% after 500 cycles. The likely contributing factor to the excellent electrochemical performance of core-shell Li 3 V 2 (PO 4 ) 3 /polyaniline could be related to the uniform conducting polymer layer, which can improve the electrical conductivity of Li 3 V 2 (PO 4 ) 3

  20. Investigation of the lithium ion mobility in cyclic model compounds and their ion conduction properties

    Energy Technology Data Exchange (ETDEWEB)

    Thielen, Joerg

    2011-07-27

    In view of both, energy density and energy drain, rechargeable lithium ion batteries outperform other present accumulator systems. However, despite great efforts over the last decades, the ideal electrolyte in terms of key characteristics such as capacity, cycle life, and most important reliable safety, has not yet been identified. Steps ahead in lithium ion battery technology require a fundamental understanding of lithium ion transport, salt association, and ion solvation within the electrolyte. Indeed, well defined model compounds allow for systematic studies of molecular ion transport. Thus, in the present work, based on the concept of immobilizing ion solvents, three main series with a cyclotriphosphazene (CTP), hexaphenylbenzene (HBP), and tetramethylcyclotetrasiloxane (TMS) scaffold were prepared. Lithium ion solvents, among others ethylene carbonate (EC), which has proven to fulfill together with propylene carbonate safety and market concerns in commercial lithium ion batteries, were attached to the different cores via alkyl spacers of variable length. All model compounds were fully characterized, pure and thermally stable up to at least 235 C, covering the requested broad range of glass transition temperatures from -78.1 C up to +6.2 C. While the CTP models tend to rearrange at elevated temperatures over time, which questions the general stability of alkoxide related (poly)phosphazenes, both, the HPB and CTP based models show no evidence of core stacking. In particular the CTP derivatives represent good solvents for various lithium salts, exhibiting no significant differences in the ionic conductivity {sigma}{sub dc} and thus indicating comparable salt dissociation and rather independent motion of cations and ions. In general, temperature-dependent bulk ionic conductivities investigated via impedance spectroscopy follow a William-Landel-Ferry (WLF) type behavior. Modifications of the alkyl spacer length were shown to influence ionic conductivities only in

  1. On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, Nicole R.; Ha, Seungbum; He, Meinan; Dees, Dennis; Trask, Steve; Polzin, Bryant; Gallagher, Kevin G.

    2017-01-01

    In this study, parasitic side reactions in lithium-ion batteries were examined experimentally using a potentiostatic hold at high cell voltage. The experimental leakage current measured during the potentiostatic hold was compared to the Tafel expression and showed poor agreement with the expected transfer coefficient values, indicating that a more complicated expression could be needed to accurately capture the physics of this side reaction. Here we show that cross-talk between the electrodes is the primary contribution to the observed leakage current after the relaxation of concentration gradients has ceased. This cross-talk was confirmed with experiments using a lithium-ion conducting glass ceramic (LICGC) separator, which has high conductance only for lithium cations. The cells with LICGC separators showed significantly less leakage current during the potentiostatic hold test compared to cells with standard microporous separators where cross-talk is present. In addition, direct-current pulse power tests show an impedance rise for cells held at high potentials and for cells held at high temperatures, which could be attributed to film formation from the parasitic side reaction. Based on the experimental findings, a phenomenological mechanism is proposed for the parasitic side reaction which accounts for cross-talk and mass transport of the decomposition products across the separator.

  2. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  3. Rational design of hierarchical ZnO@Carbon nanoflower for high performance lithium ion battery anodes

    Science.gov (United States)

    liu, Huichao; Shi, Ludi; Li, Dongzhi; Yu, Jiali; Zhang, Han-Ming; Ullah, Shahid; Yang, Bo; Li, Cuihua; Zhu, Caizhen; Xu, Jian

    2018-05-01

    The rational structure design and strong interfacial bonding are crucially desired for high performance zinc oxide (ZnO)/carbon composite electrodes. In this context, micro-nano secondary structure design and strong dopamine coating strategies are adopted for the fabrication of flower-like ZnO/carbon (ZnO@C nanoflowers) composite electrodes. The results show the ZnO@C nanoflowers (2-6 μm) are assembled by hierarchical ZnO nanosheets (∼27 nm) and continuous carbon framework. The micro-nano secondary architecture can facilitate the penetration of electrolyte, shorten lithium ions diffusion length, and hinder the aggregation of the nanosheets. Moreover, the strong chemical interaction between ZnO and coating carbon layer via C-Zn bond improves structure stability as well as the electronic conductivity. As a synergistic result, when evaluated as lithium ion batteries (LIBs) anode, the ZnO@C nanoflower electrodes show high reversible capacity of ca. 1200 mA h g-1 at 0.1 A g-1 after 80 cycles. As well as good long-cycling stability (638 and 420 mA h g-1 at 1 and 5 A g-1 after 500 cycles, respectively) and excellent rate capability. Therefore, this rational design of ZnO@C nanoflowers electrode is a promising anode for high-performance LIBs.

  4. Conductive surface modification of cauliflower-like WO{sub 3} and its electrochemical properties for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sukeun, E-mail: skyoon@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of); Woo, Sang-Gil [Advanced Batteries Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Jung, Kyu-Nam [Energy Efficiency and Materials Research Division, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of); Song, Huesup, E-mail: hssong@kongju.ac.kr [Division of Advanced Materials Engineering, Kongju National University, Chungnam 330-717 (Korea, Republic of)

    2014-11-15

    Highlights: • Synthesis of cauliflower-like carbon-decorated WO{sub 3}. • Superior cyclability and rate capability for cauliflower-like carbon-decorated WO{sub 3}. • Electrochemical reaction behavior of cauliflower-like carbon-decorated WO{sub 3} with lithium. • In-situ XRD analysis during the first discharge–charge shows a complex reaction of intercalation and conversion of WO{sub 3}. - Abstract: Cauliflower-like WO{sub 3} was synthesized by a hydrothermal reaction without a surfactant, followed by firing, and was investigated as an anode material for lithium-ion battery applications. The scanning electron microscope (SEM) and transmission electron microscope (TEM) characterization indicated that WO{sub 3} nanorods had an aggregation framework and built a cauliflower morphology. With the objective of understanding the charge–discharge process within a voltage range of 0–3 V vs. Li{sup +}/Li, in situ X-ray diffraction was used and a complex reaction of intercalation and conversion of WO{sub 3} was revealed for the first time. The cauliflower-like WO{sub 3} after being decorated with carbon provides a high gravimetric capacity of >635 mA h/g (Li{sub 5.5}WO{sub 3}) with good cycling and a high rate capability when used as an anode in lithium-ion batteries. Based on our studies, we attribute the high electrochemical performance to the nanoscopic WO{sub 3} particles and a conductive carbon layer, which makes them a potential candidate for lithium-ion batteries.

  5. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    Science.gov (United States)

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  6. Diagnostic examination of thermally abused high-power lithium-ion cells

    Science.gov (United States)

    Abraham, D. P.; Roth, E. P.; Kostecki, R.; McCarthy, K.; MacLaren, S.; Doughty, D. H.

    The inherent thermal instability of lithium-ion cells is a significant impediment to their widespread commercialization for hybrid-electric vehicle applications. Cells containing conventional organic electrolyte-based chemistries are prone to thermal runaway at temperatures around 180 °C. We conducted accelerating rate calorimetry measurements on high-power 18650-type lithium-ion cells in an effort to decipher the sequence of events leading to thermal runaway. In addition, electrode and separator samples harvested from a cell that was heated to 150 °C then air-quenched to room temperature were examined by microscopy, spectroscopy, and diffraction techniques. Self-heating of the cell began at 84 °C. The gases generated in the cell included CO 2 and CO, and smaller quantities of H 2, C 2H 4, CH 4, and C 2H 6. The main changes on cell heating to 150 °C were observed on the anode surface, which was covered by a thick layer of surface deposits that included LiF and inorganic and organo-phosphate compounds. The sources of gas generation and the mechanisms leading to the formation of compounds observed on the electrode surfaces are discussed.

  7. Performance of Novel Randomly Oriented High Graphene Carbon in Lithium Ion Capacitors

    Directory of Open Access Journals (Sweden)

    Rahul S. Kadam

    2018-01-01

    Full Text Available The structure of carbon material comprising the anode is the key to the performance of a lithium ion capacitor. In addition to determining the capacity, the structure of the carbon material also determines the diffusion rate of the lithium ion into the anode which in turn controls power density which is vital in high rate applications. This paper covers details of systematic investigation of the performance of a structurally novel carbon, called Randomly Oriented High Graphene (ROHG carbon, and graphite in a high rate application device, that is, lithium ion capacitor. Electrochemical impedance spectroscopy shows that ROHG is less resistive and has faster lithium ion diffusion rates (393.7 × 10−3 S·s(1/2 compared to graphite (338.1 × 10−3 S·s(1/2. The impedance spectroscopy data is supported by the cell data showing that the ROHG carbon based device has energy density of 22.8 Wh/l with a power density of 4349.3 W/l, whereas baseline graphite based device has energy density of 5 Wh/l and power density of 4243.3 W/l. This data clearly shows advantage of the randomly oriented graphene platelet structure of ROHG in lithium ion capacitor performance.

  8. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Tianyue Zheng

    2017-11-01

    Full Text Available Flexible butyl interconnection segments are synthetically incorporated into an electronically conductive poly(pyrene methacrylate homopolymer and its copolymer. The insertion of butyl segment makes the pyrene polymer more flexible, and can better accommodate deformation. This new class of flexible and conductive polymers can be used as a polymer binder and adhesive to facilitate the electrochemical performance of a silicon/graphene composite anode material for lithium ion battery application. They act like a “spring” to maintain the electrode mechanical and electrical integrity. High mass loading and high areal capacity, which are critical design requirements of high energy batteries, have been achieved in the electrodes composed of the novel binders and silicon/graphene composite material. A remarkable area capacity of over 5 mAh/cm2 and volumetric capacity of over 1700 Ah/L have been reached at a high current rate of 333 mA/g.

  9. Lithium ion conduction in sol-gel synthesized LiZr2(PO4)3 polymorphs

    Science.gov (United States)

    Kumar, Milind; Yadav, Arun Kumar; Anita, Sen, Somaditya; Kumar, Sunil

    2018-04-01

    Safety issue associated with the high flammability and volatility of organic electrolytes used in commercial rechargeable lithium ion batteries has led to significant attention to ceramic-based solid electrolytes. In the present study, lithium ion conduction in two polymorphs of LiZr2(PO4)3 synthesized via the sol-gel route has been investigated. Rietveld refinement of room temperature X-ray diffraction data of LiZr2(PO4)3 powders calcined at 900 °C and 1300 °C confirmed these to be the monoclinic phase with P21/n structure and rhombohedral phase with R3¯c structure, respectively. Increase in calcination temperature and resultant phase transformation improved the room temperature conductivity from 2.27×10-6 ohm-1m-1 for the monoclinic phase to 1.41×10-4 ohm-1m-1 for rhombohedral phase. Temperature dependence of conductivity was modeled using Arrhenius law and activation energy of ˜ 0.59 eV (for monoclinic phase) and ˜0.50 eV (for rhombohedral phase) were obtained.

  10. VO2 nanoparticles on edge orientated graphene foam for high rate lithium ion batteries and supercapacitors

    Science.gov (United States)

    Ren, Guofeng; Zhang, Ruibo; Fan, Zhaoyang

    2018-05-01

    With the fully exposed graphene edges, high conductivity and large surface area, edge oriented graphene foam (EOGF), prepared by deposition of perpendicular graphene network encircling the struts of Ni foam, is a superior scaffold to support active materials for electrochemical applications. With VO2 as an example, EOGF loaded VO2 nanoparticle (VO2/EOGF) electrode has high rate performance as cathode in lithium ion batteries (LIBs). In addition to the Li+ intercalation into the lattice, contribution of non-diffusion-limited pseudocapacitance to the capacity is prominent at high rates. VO2/EOGF based supercapacitor also exhibits fast response, with a characteristic frequency of 15 Hz when the phase angle reaches -45°, or a relaxation time constant of 66.7 ms. These results suggest the promising potential of EOGF as a scaffold in supporting active nanomaterials for electrochemical energy storage and other applications.

  11. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  12. Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Chao Yan

    2017-01-01

    Full Text Available Heavy-phosphorus-doped silicon anodes were fabricated on CuO nanorods for application in high power lithium-ion batteries. Since the conductivity of lithiated CuO is significantly better than that of CuO, after the first discharge, the voltage cut-off window was then set to the range covering only the discharge–charge range of Si. Thus, the CuO core was in situ lithiated and acts merely as the electronic conductor in the following cycles. The Si anode presented herein exhibited a capacity of 990 mAh/g at the rate of 9 A/g after 100 cycles. The anode also presented a stable rate performance even at a current density as high as 20 A/g.

  13. Conductivity through Polymer Electrolytes and Its Implications in Lithium-Ion Batteries: Real-World Application of Periodic Trends

    Science.gov (United States)

    Compton, Owen C.; Egan, Martin; Kanakaraj, Rupa; Higgins, Thomas B.; Nguyen, SonBinh T.

    2012-01-01

    Periodic conductivity trends are placed in the scope of lithium-ion batteries, where increases in the ionic radii of salt components affect the conductivity of a poly(ethyleneoxide)-based polymer electrolyte. Numerous electrolytes containing varying concentrations and types of metal salts are prepared and evaluated in either one or two laboratory…

  14. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  15. Octahedral Tin Dioxide Nanocrystals Anchored on Vertically Aligned Carbon Aerogels as High Capacity Anode Materials for Lithium-Ion Batteries

    Science.gov (United States)

    Liu, Mingkai; Liu, Yuqing; Zhang, Yuting; Li, Yiliao; Zhang, Peng; Yan, Yan; Liu, Tianxi

    2016-01-01

    A novel binder-free graphene - carbon nanotubes - SnO2 (GCNT-SnO2) aerogel with vertically aligned pores was prepared via a simple and efficient directional freezing method. SnO2 octahedrons exposed of {221} high energy facets were uniformly distributed and tightly anchored on multidimensional graphene/carbon nanotube (GCNT) composites. Vertically aligned pores can effectively prevent the emersion of “closed” pores which cannot load the active SnO2 nanoparticles, further ensure quick immersion of electrolyte throughout the aerogel, and can largely shorten the transport distance between lithium ions and active sites of SnO2. Especially, excellent electrical conductivity of GCNT-SnO2 aerogel was achieved as a result of good interconnected networks of graphene and CNTs. Furthermore, meso- and macroporous structures with large surface area created by the vertically aligned pores can provide great benefit to the favorable transport kinetics for both lithium ion and electrons and afford sufficient space for volume expansion of SnO2. Due to the well-designed architecture of GCNT-SnO2 aerogel, a high specific capacity of 1190 mAh/g with good long-term cycling stability up to 1000 times was achieved. This work provides a promising strategy for preparing free-standing and binder-free active electrode materials with high performance for lithium ion batteries and other energy storage devices. PMID:27510357

  16. Li4Ti5O12 on graphene for high rate lithium ion batteries

    CSIR Research Space (South Africa)

    Wen, L

    2016-11-01

    Full Text Available Spinel Li(sub4)Ti(sub5)O(sub12) has been considered as a promising anode material to substitute graphite in lithium ion batteries (LIBs) for large scale electrical energy storage due to its high safety and long cycling stability. However...

  17. Thermal management for high power lithium-ion battery by minichannel aluminum tubes

    International Nuclear Information System (INIS)

    Lan, Chuanjin; Xu, Jian; Qiao, Yu; Ma, Yanbao

    2016-01-01

    Highlights: • A new design of minichannel cooling is developed for battery thermal management system. • Parametric studies of minichannel cooling for a cell are conducted at different discharge rates. • Minichannel cooling can maintain almost uniform temperature (T_d_i_f_f < 1 °C). • Pumping power assumption is only about 5 milliwatt. - Abstract: Lithium-ion batteries are widely used for battery electric (all-electric) vehicles (BEV) and hybrid electric vehicles (HEV) due to their high energy and power density. An battery thermal management system (BTMS) is crucial for the performance, lifetime, and safety of lithium-ion batteries. In this paper, a novel design of BTMS based on aluminum minichannel tubes is developed and applied on a single prismatic Li-ion cell under different discharge rates. Parametric studies are conducted to investigate the performance of the BTMS using different flow rates and configurations. With minichannel cooling, the maximum cell temperature at a discharge rate of 1C is less than 27.8 °C, and the temperature difference across the cell is less than 0.80 °C using flow rate at 0.20 L/min, at the expense of 8.69e-6 W pumping power. At higher discharge rates, e.g., 1.5C and 2C, higher flow rates are required to maintain the same temperature rise and temperature difference. The flow rate needed is 0.8 L/min for 1.5C and 2.0 L/min for 2C, while the required pumping power is 4.23e-4 W and 5.27e-3 W, respectively. The uniform temperature distribution (<1 °C) inside the single cell and efficient pumping power demonstrate that the minichannel cooling system provides a promising solution for the BTMS.

  18. Cu_2O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Huang; Dong, Hui; Zhang, Xuan; Xu, Yunlong; Fransaer, Jan

    2016-01-01

    Though MXenes, a new family of 2D transition metal carbides, are generating considerable interests as electrode materials for batteries and supercapacitors, further application is hindered by their low capacities and poor rate capabilities. Here we propose a simple route for the synthesis of Cu_2O particle hybridized titanium carbide Ti_2CT_x (T = O, OH) composites via a solvothermal method. Electrodes containing Cu_2O/MXene were fabricated without carbon black, and tested as anodes for lithium ion batteries. A discharge capacity of 143 mAh g"−"1 was obtained at a discharge current density of 1000 mA g"−"1 and the capacity retention was near 100% after 200 cycles. The hybrid electrodes with open conductive frameworks exhibited significantly improved electrochemical performance, suggesting a new method for preparing MXene-based composites for energy storage application.

  19. Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liang, Chu; Gao, Mingxia; Pan, Hongge; Liu, Yongfeng; Yan, Mi

    2013-01-01

    Highlights: •Progress in lithium alloys and metal oxides as anode materials for lithium-ion batteries is reviewed. •Electrochemical characteristics and lithium storage mechanisms of lithium alloys and metal oxides are summarized. •Strategies for improving electrochemical lithium storage properties of lithium alloys and metal oxides are discussed. •Challenges in developing lithium alloys and metal oxides as commercial anodes for lithium-ion batteries are pointed out. -- Abstract: Lithium alloys and metal oxides have been widely recognized as the next-generation anode materials for lithium-ion batteries with high energy density and high power density. A variety of lithium alloys and metal oxides have been explored as alternatives to the commercial carbonaceous anodes. The electrochemical characteristics of silicon, tin, tin oxide, iron oxides, cobalt oxides, copper oxides, and so on are systematically summarized. In this review, it is not the scope to retrace the overall studies, but rather to highlight the electrochemical performances, the lithium storage mechanism and the strategies in improving the electrochemical properties of lithium alloys and metal oxides. The challenges and new directions in developing lithium alloys and metal oxides as commercial anodes for the next-generation lithium-ion batteries are also discussed

  20. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio

    2012-11-21

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon additive, the irreversible capacity during galvanostatic cycling between 2.75 and 5.25 V versus Li/Li+ could be as high as 700 mAh g-1 (of carbon). In the potential region below 5 V versus Li/Li+, high surface carbon additives also showed irreversible plateaus at about 4.1-4.2 and 4.6 V versus Li/Li+. These plateaus disappeared after thermal treatments at or above 150 °C in inert gas. The influence of the irreversible capacity of carbon additives on the overall performances of positive electrodes was discussed. © 2012 Springer Science+Business Media Dordrecht.

  1. Ionic conductivity of metal oxides : an essential property for all-solid-state Lithium-ion batteries

    NARCIS (Netherlands)

    Chen, C.; Eichel, R.-A.; Notten, P.H.L.

    2017-01-01

    Essential progress has been made for adopting metal oxides (MeO) in various energy storage and energy conversion applications. Among these, utilizing MeO in Lithium-ions batteries (LIBs) seems to be one of the most promising applications. In particular, conductive Li-containing oxides or

  2. Modification of SnO2 Anodes by Atomic Layer Deposition for High Performance Lithium Ion Batteries

    KAUST Repository

    Yesibolati, Nulati

    2013-01-01

    Tin dioxide (SnO2) is considered one of the most promising anode materials for Lithium ion batteries (LIBs), due to its large theoretical capacity and natural abundance. However, its low electronic/ionic conductivities, large volume change during

  3. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  4. A High Performance Lithium-Ion Capacitor with Both Electrodes Prepared from Sri Lanka Graphite Ore.

    Science.gov (United States)

    Gao, Xiaoyu; Zhan, Changzhen; Yu, Xiaoliang; Liang, Qinghua; Lv, Ruitao; Gai, Guosheng; Shen, Wanci; Kang, Feiyu; Huang, Zheng-Hong

    2017-04-14

    The natural Sri Lanka graphite (vein graphite) is widely-used as anode material for lithium-ion batteries (LIBs), due to its high crystallinity and low cost. In this work, graphitic porous carbon (GPC) and high-purity vein graphite (PVG) were prepared from Sri Lanka graphite ore by KOH activation, and high temperature purification, respectively. Furthermore, a lithium-ion capacitor (LIC) is fabricated with GPC as cathode, and PVG as anode. The assembled GPC//PVG LIC shows a notable electrochemical performance with a maximum energy density of 86 W·h·kg -1 at 150 W·kg -1 , and 48 W·h·kg -1 at a high-power density of 7.4 kW·kg -1 . This high-performance LIC based on PVG and GPC is believed to be promising for practical applications, due to its low-cost raw materials and industrially feasible production.

  5. High-rate capability of lithium-ion batteries after storing at elevated temperature

    International Nuclear Information System (INIS)

    Wu, Mao-Sung; Chiang, Pin-Chi Julia

    2007-01-01

    High-rate performances of a lithium-ion battery after storage at elevated temperature are investigated electrochemically by means of three-electrode system. The high-rate capability is decreased significantly after high-temperature storage. A 3 C discharge capacities after room-temperature storage and 60 o C storage are 650 and 20 mAh, respectively. Lithium-ion diffusion in lithium cobalt oxide cathode limits the battery's capacity and the results show that storage temperature changes this diffusion behavior. Transmission electron microscopy (TEM) images show that many defects are directly observed in the cathode after storage compared with the fresh cathode; the structural defects block the diffusion within the particles. Electrochemical impedance and polarization curve indicate that mass-transfer (diffusion) dominates the discharge capacity during high-rate discharge

  6. Fabrication and demonstration of high energy density lithium ion microbatteries

    Science.gov (United States)

    Sun, Ke

    Since their commercialization by Sony two decades ago, Li-ion batteries have only experienced mild improvement in energy and power performance, which remains one of the main hurdles for their widespread implementation in applications outside of powering compact portable devices, such as in electric vehicles. Li-ion batteries must be advanced through a disruptive technological development or a series of incremental improvements in chemistry and design in order to be competitive enough for advanced applications. As it will be introduced in this work, achieving this goal by new chemistries and chemical modifications does not seem to be promising in the short term, so efforts to fully optimize existing systems must be pursued at in parallel. This optimization must be mainly relying on the modification and optimizations of micro and macro structures of current battery systems. This kind of battery architecture study will be even more important when small energy storage devices are desired to power miniaturized and autonomous gadgets, such as MEMs, micro-robots, biomedical sensors, etc. In this regime, the limited space available makes requirements on electrode architecture more stringent and the assembly process more challenging. Therefore, the study of battery assembly strategies for Li-ion microbatteries will benefit not only micro-devices but also the development of more powerful and energetic large scale battery systems based on available chemistries. In chapter 2, preliminary research related to the mechanism for the improved rate capability of cathodes by amorphous lithium phosphate surficial films will be used to motivate the potential for structural optimization of existing commercial lithium ion battery electrode. In the following chapters, novel battery assembly techniques will be explored to achieve new battery architectures. In chapter 3, direct ink writing will be used to fabricate 3D interdigitated microbattery structures that have superior areal energy

  7. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  8. Lithium ion conductivity of molecularly compatibilized chitosan-poly(aminopropyltriethoxysilane)-poly(ethylene oxide) nanocomposites

    International Nuclear Information System (INIS)

    Fuentes, S.; Retuert, P.J.; Gonzalez, G.

    2007-01-01

    Films of composites of chitosan/poly(aminopropyltriethoxysilane)/poly(ethylene oxide) (CHI/pAPS/PEO) containing a fixed amount of lithium salt are studied. The ternary composition diagram of the composites, reporting information on the mechanic stability, the transparence and the electrical conductivity of the films, shows there is a window in which the molecular compatibility of the components is optimal. In this window, defined by the components ratios CHI/PEO 3:2, pAPS/PEO 2:3 and CHI/PEO 1:2, there is a particular composition Li x (CHI) 1 (PEO) 2 (pAPS) 1.2 for which the conductivity reaches a value of 1.7 x 10 -5 S cm -1 at near room temperature. Considering the balance between the Lewis acid and basic sites available in the component and the observed stoichiometry limits of formed polymer complexes, the conductivity values of these products may be understood by the formation of a layered structure in which the lithium ions, stabilized by the donors, poly(ethylene oxide) and/or poly(aminopropyltriethoxysilane), are intercalated in a chitosan matrix

  9. Electrospun polyacrylonitrile/polyurethane composite nanofibrous separator with electrochemical performance for high power lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zainab, Ghazala [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Xianfeng, E-mail: wxf@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Yu, Jianyong [Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China); Zhai, Yunyun; Ahmed Babar, Aijaz; Xiao, Ke [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Ding, Bin, E-mail: binding@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of High Performance Fibers & Products, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620 (China); Nanofibers Research Center, Modern Textile Institute, Donghua University, Shanghai 200051 (China)

    2016-10-01

    Lithium ion batteries (LIBs) for high performance require separators with auspicious reliability and safety. Keeping LIBs reliability and safety in view, microporous polyacrylonitrile (PAN)/polyurethane (PU) nonwoven composite separator have been developed by electrospinning technique. The physical, electrochemical and thermal properties of the PAN/PU separator were characterized. Improved ionic conductivity up to 2.07 S cm{sup −1}, high mechanical strength (10.38 MPa) and good anodic stability up to 5.10 V are key outcomes of resultant membranes. Additionally, high thermal stability displaying only 4% dimensional change after 0.5 h long exposure to 170 °C in an oven, which could be valuable addition towards the safety of LIBs. Comparing to commercialized polypropylene based separators, resulting membranes offered improved internal short-circuit protection function, offering better rate capability and enhanced capacity retention under same observation conditions. These fascinating characteristics endow these renewable composite nonwovens as promising separators for high power LIBs battery. - Highlights: • The PAN/PU based separators were prepared by multi-needle electrospinning technique. • The electrospun separators displays good mechanical properties and thermal stability. • These separators exhibit good wettability with liquid electrolyte, high ion conductivity and internal short-circuit protection. • Nanofibrous composite nonwoven possesses stable cyclic performance which give rise to acceptable battery performances.

  10. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Gao, Tao; Olguin, Marco; Ho, Janet; Fan, Xiulin; Luo, Chao; Wang, Chunsheng; Xu, Kang

    2015-11-20

    Lithium-ion batteries raise safety, environmental, and cost concerns, which mostly arise from their nonaqueous electrolytes. The use of aqueous alternatives is limited by their narrow electrochemical stability window (1.23 volts), which sets an intrinsic limit on the practical voltage and energy output. We report a highly concentrated aqueous electrolyte whose window was expanded to ~3.0 volts with the formation of an electrode-electrolyte interphase. A full lithium-ion battery of 2.3 volts using such an aqueous electrolyte was demonstrated to cycle up to 1000 times, with nearly 100% coulombic efficiency at both low (0.15 coulomb) and high (4.5 coulombs) discharge and charge rates. Copyright © 2015, American Association for the Advancement of Science.

  11. Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Bao, Qi; Huang, Yao-Hui; Lan, Chun-Kai; Chen, Bing-Hong; Duh, Jenq-Gong

    2015-01-01

    Silicon (Si) has been perceived as a promising next-generation anode material for lithium ion batteries (LIBs) due to its superior theoretical capacity. Despite the natural abundance of this element on Earth, large-scale production of high-purity Si nanomaterials in a green and energy-efficient way is yet to become an industrial reality. Spray-drying methods have been exploited to recover Si particles from low-value sludge produced in the photovoltaic industry, providing a massive and cost-effective Si resource for fabricating anode materials. To address such drawbacks like volume expansion, low electrical and Li + conductivity and unstable solid electrolyte interphase (SEI) formation, the recycled silicon particles have been downsized into nanoscale and shielded by a highly conductive and protective graphene multilayer through high energy ball milling. Cyclic voltammetry and electrochemical impedance spectroscopy measurements have revealed that the graphene wrapping and size reduction approach have significantly improved the electrochemical performance. It delivers an excellent reversible capacity of 1,138 mA h g −1 and a long cycle life with 73% capacity retention over 150 cycles at a high current of 450 mA g −1 . The plentiful waste conversion methodology also provides considerable opportunities for developing additional rechargeable devices, ceramic, powder metallurgy and silane/siloxane products

  12. N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries with greatly enhanced electrochemical performance

    International Nuclear Information System (INIS)

    Guanghui, Wu; Ruiyi, Li; Zaijun, Li; Junkang, Liu; Zhiguo, Gu; Guangli, Wang

    2015-01-01

    Graphical abstract: The study reported a novel N-doped graphene/graphite anode material for lithium ion batteries. The composite exhibits a largely enhanced electrochemical performance. The study also provides an attractive approach for the fabrication of various graphite-based materials for high power batteries. Display Omitted -- Highlights: • The paper developed a new N-doped graphene/graphite composite for lithium ion battery • The composite contains a three-dimensional graphene framework with rich of open pores • The hybrid offers a higher electrical conductivity when compared with pristine graphite • The hybrid electrode provides a greatly enhanced electrochemical performance • The study provides a prominent approach for fabrication of graphite-based materials -- ABSTRACT: Present graphite anode cannot meet the increasing requirement of electronic devices and electric vehicles due to its low specific capacity, poor cycle stability and low rate capability. The study reported a promising N-doped graphene/graphite composite as a conductive agent-free anode material for lithium ion batteries. Herein, graphite oxide and urea were dispersed in ultrapure water and partly reduced by ascorbic acid. Followed by mixing with graphite and hydrothermal treatment to produce graphene oxide/graphite hydrogel. The hydrogel was dried and finally annealed in Ar/H 2 to obtain N-doped graphene/graphite composite. The result shows that all of graphite particles was dispersed in three-dimensional graphene framework with a rich of open pores. The open pore accelerates the electrolyte transport. The graphene framework works as a conductive agent and graphite particle connector and improves the electron transfer. Electrical conductivity of the composite reaches 5912 S m −1 , which is much better than that of the pristine graphite (4018 S m −1 ). The graphene framework also acts as an expansion absorber in the anodes of lithium ion battery to relieve the large strains

  13. Scalable 2D Mesoporous Silicon Nanosheets for High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Chen, Song; Chen, Zhuo; Xu, Xingyan; Cao, Chuanbao; Xia, Min; Luo, Yunjun

    2018-03-01

    Constructing unique mesoporous 2D Si nanostructures to shorten the lithium-ion diffusion pathway, facilitate interfacial charge transfer, and enlarge the electrode-electrolyte interface offers exciting opportunities in future high-performance lithium-ion batteries. However, simultaneous realization of 2D and mesoporous structures for Si material is quite difficult due to its non-van der Waals structure. Here, the coexistence of both mesoporous and 2D ultrathin nanosheets in the Si anodes and considerably high surface area (381.6 m 2 g -1 ) are successfully achieved by a scalable and cost-efficient method. After being encapsulated with the homogeneous carbon layer, the Si/C nanocomposite anodes achieve outstanding reversible capacity, high cycle stability, and excellent rate capability. In particular, the reversible capacity reaches 1072.2 mA h g -1 at 4 A g -1 even after 500 cycles. The obvious enhancements can be attributed to the synergistic effect between the unique 2D mesoporous nanostructure and carbon capsulation. Furthermore, full-cell evaluations indicate that the unique Si/C nanostructures have a great potential in the next-generation lithium-ion battery. These findings not only greatly improve the electrochemical performances of Si anode, but also shine some light on designing the unique nanomaterials for various energy devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Micro-sized organometallic compound of ferrocene as high-performance anode material for advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Zhen; Feng, Li; Su, Xiaoru; Qin, Chenyang; Zhao, Kun; Hu, Fang; Zhou, Mingjiong; Xia, Yongyao

    2018-01-01

    An organometallic compound of ferrocene is first investigated as a promising anode for lithium-ion batteries. The electrochemical properties of ferrocene are conducted by galvanostatic charge and discharge. The ferrocene anode exhibits a high reversible capacity and great cycling stability, as well as superior rate capability. The electrochemical reaction of ferrocene is semi-reversible and some metallic Fe remains in the electrode even after delithiation. The metallic Fe formed in electrode and the stable solid electrolyte interphase should be responsible for its excellent electrochemical performance.

  15. A comparative study on electrochemical performances of the electrodes with different nanocarbon conductive additives for lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Taiqiang; Pan, Likun; Liu, Xinjuan; Sun, Zhuo

    2013-01-01

    Three nanocarbon materials (0 D acetylene black (AB), 1 D carbon nanotubes (CNTs) and 2 D reduced graphene oxide (RGO)) were used as conductive additives (CAs) in the mesocarbon microbead anodes for lithium ion batteries. The electrochemical performances of the electrodes were investigated. The results show that the CAs have a significant impact on the electrode performance because they can influence the electron conduction and lithium ion transportation within the electrode. The electrode with RGO achieves a maximum capacity of 387 mAh g −1 after 50 cycles at a current density of 50 mA g −1 , much higher than those of the electrodes with AB (334 mAh g −1 ) and CNTs (319 mAh g −1 ). The improvement should be mainly ascribed to the “plane-to-point” conducting network formed in the electrode with 2 D RGO which can favor the electron conduction and enhance the lithium ion transportation. - Highlights: • Three carbon materials were used as additives in the electrodes of Li ion battery. • The electrochemical performances of the electrodes were comparatively investigated. • The carbon additives have a significant impact on the electrode performance. • RGO additive acts as a bridge to form a “plane-to-point” conducting network. • The electrode with RGO exhibits better performance than those with other additives

  16. Hollow-Cuboid Li3VO4/C as High-Performance Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Changkun; Liu, Chaofeng; Nan, Xihui; Song, Huanqiao; Liu, Yaguang; Zhang, Cuiping; Cao, Guozhong

    2016-01-13

    Li3VO4 has been demonstrated to be a promising anode material for lithium-ion batteries with a low, safe voltage and large capacity. However, its poor electronic conductivity hinders its practical application particularly at a high rate. This work reports that Li3VO4 coated with carbon was synthesized by a one-pot, two-step method with F127 ((PEO)100-(PPO)65-(PEO)100) as both template and carbon source, yielding a microcuboid structure. The resulting Li3VO4/C cuboid shows a stable capacity of 415 mAh g(-1) at 0.5 C and excellent capacity stability at high rates (e.g., 92% capacity retention after 1000 cycles at 10 C = 4 A g(-1)). The lithiation/delithiation process of Li3VO4/C was studied by ex situ X-ray diffraction and Raman spectroscopy, which confirmed that Li3VO4/C underwent a reversible intercalation reaction during discharge/charge processes. The excellent electrochemical performance is attributed largely to the unique microhollow structure. The voids inside hollow structure can not only provide more space to accommodate volume change during discharge/charge processes but also allow the lithium ions insertion and extraction from both outside and inside the hollow structure with a much larger surface area or more reaction sites and shorten the lithium ions diffusion distance, which leads to smaller overpotential and faster reaction kinetics. Carbon derived from F127 through pyrolysis coats Li3VO4 conformably and thus offers good electrical conduction. The results in this work provide convincing evidence that the significant potential of hollow-cuboid Li3VO4/C for high-power batteries.

  17. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  18. Robust, High Capacity, High Power Lithium Ion Batteries for Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium ion battery technology provides the highest energy density of all rechargeable battery technologies available today. However, the majority of the research...

  19. Novel iron oxide nanotube arrays as high-performance anodes for lithium ion batteries

    Science.gov (United States)

    Zhong, Yuan; Fan, Huiqing; Chang, Ling; Shao, Haibo; Wang, Jianming; Zhang, Jianqing; Cao, Chu-nan

    2015-11-01

    Nanostructured iron oxides can be promising anode materials for lithium ion batteries (LIBs). However, improvement on the rate capability and/or electrochemical cycling stability of iron oxide anode materials remains a key challenge because of their poor electrical conductivities and large volume expansion during cycling. Herein, the vertically aligned arrays of one-dimensional (1D) iron oxide nanotubes with 5.8 wt% carbon have been fabricated by a novel surfactant-free self-corrosion process and subsequent thermal treatment. The as-fabricated nanotube array electrode delivers a reversible capacity of 932 mAh g-1 after 50 charge-discharge cycles at a current of 0.6 A g-1. The electrode still shows a reversible capacity of 610 mAh g-1 even at a very high rate (8.0 A g-1), demonstrating its prominent rate capability. Furthermore, the nanotube array electrode also exhibits the excellent electrochemical cycling stability with a reversible capacity of 880 mAh g-1 after 500 cycles at a current of 4 A g-1. The nanotube array electrode with superior lithium storage performance reveals the promising potential as a high-performance anode for LIBs.

  20. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery.

    Science.gov (United States)

    Li, Weifeng; Yang, Yanmei; Zhang, Gang; Zhang, Yong-Wei

    2015-03-11

    Density functional theory calculations have been performed to investigate the binding and diffusion behavior of Li in phosphorene. Our studies reveal the following findings: (1) Li atom forms strong binding with phosphorus atoms and exists in the cationic state; (2) the shallow energy barrier (0.08 eV) of Li diffusion on monolayer phosphorene along zigzag direction leads to an ultrahigh diffusivity, which is estimated to be 10(2) (10(4)) times faster than that on MoS2 (graphene) at room temperature; (3) the large energy barrier (0.68 eV) along armchair direction results in a nearly forbidden diffusion, and such strong diffusion anisotropy is absent in graphene and MoS2; (4) a remarkably large average voltage of 2.9 V is predicted in the phosphorene-based Li-ion battery; and (5) a semiconducting to metallic transition induced by Li intercalation of phosphorene gives rise to a good electrical conductivity, ideal for use as an electrode. Given these advantages, it is expected that phosphorene will present abundant opportunities for applications in novel electronic device and lithium-ion battery with a high rate capability and high charging voltage.

  1. Li2C2, a High-Capacity Cathode Material for Lithium Ion Batteries.

    Science.gov (United States)

    Tian, Na; Gao, Yurui; Li, Yurong; Wang, Zhaoxiang; Song, Xiaoyan; Chen, Liquan

    2016-01-11

    As a typical alkaline earth metal carbide, lithium carbide (Li2C2) has the highest theoretical specific capacity (1400 mA h g(-1)) among all the reported lithium-containing cathode materials for lithium ion batteries. Herein, the feasibility of using Li2C2 as a cathode material was studied. The results show that at least half of the lithium can be extracted from Li2C2 and the reversible specific capacity reaches 700 mA h g(-1). The C≡C bond tends to rotate to form C4 (C≡C⋅⋅⋅C≡C) chains during lithium extraction, as indicated with the first-principles molecular dynamics (FPMD) simulation. The low electronic and ionic conductivity are believed to be responsible for the potential gap between charge and discharge, as is supported with density functional theory (DFT) calculations and Arrhenius fitting results. These findings illustrate the feasibility to use the alkali and alkaline earth metal carbides as high-capacity electrode materials for secondary batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Conductivity and applications of Li-biphenyl-1,2-dimethoxyethane solution for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    Geng Chu; Bo-Nan Liu; Fei Luo; Wen-Jun Li; Hao Lu; Li-Quan Chen; Hong Li

    2017-01-01

    The total conductivity of Li-biphenyl-l,2-dimethoxyethane solution (LixBp(DME)9.65,Bp =biphenyl,DME =1,2-dimethoxyethane,x =0.25,0.50,1.00,1.50,2.00) is measured by impedance spectroscopy at a temperature range from 0 ℃C to 40 ℃C.The Li1.50Bp(DME)9.65 has the highest total conductivity 10.7 mS/cm.The conductivity obeys Arrhenius law with the activation energy (Ea(x=0.50) =0.014 eV,Ea(x=1.00) =0.046 eV).The ionic conductivity and electronic conductivity of LixBp(DME)9.65 solutions are investigated at 20 ℃C using the isothermal transient ionic current (ITIC) technique with an ion-blocking stainless steal electrode.The ionic conductivity and electronic conductivity of Li1.00Bp(DME)9.65 are measured as 4.5 mS/cm and 6.6 mS/cm,respectively.The Li1.00Bp(DME)9.65 solution is tested as an anode material of half liquid lithium ion battery due to the coexistence of electronic conductivity and ionic conductivity.The lithium iron phosphate (LFP) and Li1.5Al0.5Ti1.5(PO4)3 (LATP) are chosen to be the counter electrode and electrolyte,respectively.The assembled cell is cycled in the voltage range of 2.2 V-3.75 V at a current density of 50 mA/g.The potential of Lit.00Bp(DME)9.65 solution is about 0.3 V vs.Li+/Li,which indicates the solution has a strong reducibility.The Li1.00Bp(DME)9.65 solution is also used to prelithiate the anode material with low first efficiency,such as hard carbon,soft carbon and silicon.

  3. Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yifan; Du, Ning, E-mail: dna1122@zju.edu.cn; Zhang, Hui; Yang, Deren

    2015-02-15

    Highlights: • A uniform SiO{sub 2} layer was deposited on multi-walled carbon nanotube. • Synthesis of uniform (MWCNT)@Si nanocomposites via the magnesiothermic reduction. • The MWCNT@Si nanocomposites show high reversible capacity and good cyclability. • Enhanced performance is attributed to porous nanostructure, introduction of MWCNTs. - Abstract: We demonstrate the synthesis of uniform multi-walled carbon nanotube (MWCNT)@Si nanocomposites via the magnesiothermic reduction of pre-synthesized MWCNT@SiO{sub 2} nanocables. At first, the acid vapor steaming is used to treat the surface, which can facilitate the uniform deposition of SiO{sub 2} layer via the TEOS hydrolysis. Then, the uniform MWCNT@Si nanocomposites are obtained on the basis of MWCNT@SiO{sub 2} nanocables via a simple magnesiothermic reduction. When used as an anode material for lithium-ion batteries, the as-synthesized MWCNT@Si nanocomposites show high reversible capacity and good cycling performance, which is better than bulk Si and bare MWCNTs. It is believed that the good electrochemical performance can be attributed to the novel porous nanostructure and the introduction of MWCNTs that can buffer the volume change, maintain the electrical conductive network, and enhance the electronic conductivity and lithium-ion transport.

  4. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode.

    Science.gov (United States)

    Zhang, Shijia; Li, Chen; Zhang, Xiong; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2017-05-24

    Lithium-ion capacitors (LICs) are considered as promising energy storage devices to realize excellent electrochemical performance, with high energy-power output. In this work, we employed a simple method to synthesize a composite electrode material consisting of Fe 3 O 4 nanocrystallites mechanically anchored among the layers of three-dimensional arrays of graphene (Fe 3 O 4 -G), which exhibits several advantages compared with other traditional electrode materials, such as high Li storage capacity (820 mAh g -1 at 0.1 A g -1 ), high electrical conductivity, and improved electrochemical stability. Furthermore, on the basis of the appropriated charge balance between cathode and anode, we successfully fabricated Fe 3 O 4 -G//activated carbon (AC) soft-packaging LICs with a high energy density of 120.0 Wh kg -1 , an outstanding power density of 45.4 kW kg -1 (achieved at 60.5 Wh kg -1 ), and an excellent capacity retention of up to 94.1% after 1000 cycles and 81.4% after 10 000 cycles. The energy density of the Fe 3 O 4 -G//AC hybrid device is comparable with Ni-metal hydride batteries, and its capacitive power capability and cycle life is on par with supercapacitors (SCs). Therefore, this lithium-ion hybrid capacitor is expected to bridge the gap between Li-ion battery and SCs and gain bright prospects in next-generation energy storage fields.

  5. Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Wen, Fang; Shu, Hongbo; Zhang, Yuanyuan; Wan, Jiajia; Huang, Weihua; Yang, Xiukang; Yu, Ruizhi; Liu, Li; Wang, Xianyou

    2016-01-01

    LiMnPO 4 has been considered as one of the most promising high voltage cathode materials for next-generation lithium ion batteries. However, LiMnPO 4 suffers from intrinsic drawbacks of extremely low electronic conductivity and ionic diffusivity between LiMnPO 4 /MnPO 4 . In this paper, mesoporous LiMnPO 4 nanoparticles are synthesized successfully via a facile glycine-assisted solvothermal rout. The as-prepared mesoporous LiMnPO 4 /C nanoparticles present well-defined abundant mesoporous structure (diameter of 3 ∼ 10 nm), uniform carbon layer (thickness of 3 ∼ 4 nm), high specific surface area (90.1 m 2 /g). As a result, the mesoporous LiMnPO 4 /C nanoparticles achieve excellent electrochemical performance as cathode materials for lithium ion batteries. It demonstrates a high discharge capacity of 167.7, 161.6, 156.4, 148.4 and 128.7 mAh/g at 0.1, 0.5, 1, 2 and 5C, and maintains a discharge capacity of 130.0 mAh/g after 100 cycles at 1C. The good electrochemical performance is attributed to its special interpenetrating mesoporous structure in LiMnPO 4 nanoparticles, which significantly enhances the ionic and electronic transport and additional capacitive behavior to compensate the sluggish kinetics.

  6. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  7. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin

    2014-01-01

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles

  8. Highly featured amorphous silicon nanorod arrays for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Soleimani-Amiri, Samaneh; Safiabadi Tali, Seied Ali; Azimi, Soheil; Sanaee, Zeinab; Mohajerzadeh, Shamsoddin, E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2014-11-10

    High aspect-ratio vertical structures of amorphous silicon have been realized using hydrogen-assisted low-density plasma reactive ion etching. Amorphous silicon layers with the thicknesses ranging from 0.5 to 10 μm were deposited using radio frequency plasma enhanced chemical vapor deposition technique. Standard photolithography and nanosphere colloidal lithography were employed to realize ultra-small features of the amorphous silicon. The performance of the patterned amorphous silicon structures as a lithium-ion battery electrode was investigated using galvanostatic charge-discharge tests. The patterned structures showed a superior Li-ion battery performance compared to planar amorphous silicon. Such structures are suitable for high current Li-ion battery applications such as electric vehicles.

  9. Atomic Layer Deposition of Stable LiAlF4 Lithium Ion Conductive Interfacial Layer for Stable Cathode Cycling.

    Science.gov (United States)

    Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi

    2017-07-25

    Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.

  10. Asymmetric Membranes Containing Micron-Size Silicon for High Performance Lithium Ion Battery Anode

    International Nuclear Information System (INIS)

    Byrd, Ian; Wu, Ji

    2016-01-01

    Micron-size Si anode is notorious for having extremely poor cycle life. It is mainly caused by the large volume change (∼300%) and poor mechanical strength of the Si electrode. Satisfying methods to address this issue are seriously lacking in literature. In this study, novel single-layer, double-layer and triple-layer asymmetric membranes containing micron-size silicon have been fabricated using a simple phase inversion method to dramatically improve its cyclability. The electrochemical performance of these asymmetric membranes as lithium ion battery anodes are evaluated and compared to pure micron-size Si powders and carbonaceous asymmetric membranes. All three types of asymmetric membrane electrodes demonstrate significantly enhanced stability as compared to pure Si powders. The single-layer asymmetric membrane has the largest capacity degradation due to the loss of pulverized Si powders from the membrane surface, only 40% of whose capacity can be retained in 100 cycles. But this performance is still much better than pure micron-size silicon electrode. After being coated with nanoporous carbonaceous layers on both sides of a single-layer asymmetric membrane to make a triple-layer asymmetric membrane (sandwich structure), the capacity retention is notably increased to 88% in 100 cycles at 610 mAh g"−"1 and 0.5C. The enhanced stability is attributed to the extra nanoporous coatings that can prevent the fractured Si powders from being leached out and allow facile lithium ion diffusions. Such a novel, efficient and scalable method may provide beneficiary guidance for designing high capacity lithium ion battery anodes with large volume change issues.

  11. A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries

    Science.gov (United States)

    Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping

    2018-04-01

    Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.

  12. Aqueous Binder Enhanced High-Performance GeP5 Anode for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jun He

    2018-02-01

    Full Text Available GeP5 is a recently reported new anode material for lithium ion batteries (LIBs, it holds a large theoretical capacity about 2300 mAh g−1, and a high rate capability due to its bi-active components and superior conductivity. However, it undergoes a large volume change during its electrochemical alloying and de-alloying with Li, a suitable binder is necessary to stable the electrode integrity for improving cycle performance. In this work, we tried to apply aqueous binders LiPAA and NaCMC to GeP5 anode, and compared the difference in electrochemical performance between them and traditional binder PVDF. As can be seen from the test result, GeP5 can keep stable in both common organic solvents and proton solvents such as water and alcohol solvents, it meets the application requirements of aqueous binders. The electrochemistry results show that the use of LiPAA binder can significantly improve the initial Coulombic efficiency, reversible capacity, and cyclability of GeP5 anode as compared to the electrodes based on NaCMC and PVDF binders. The enhanced electrochemical performance of GeP5 electrode with LiPAA binder can be ascribed to the unique high strength long chain polymer structure of LiPAA, which also provide numerous uniform distributed carboxyl groups to form strong ester groups with active materials and copper current collector. Benefit from that, the GeP5 electrode with LiPAA can also exhibit excellent rate capability, and even at low temperature, it still shows attractive electrochemical performance.

  13. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  14. In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Wu, Ruofei; Xia, Guofeng; Shen, Shuiyun; Zhu, Fengjuan; Jiang, Fengjing; Zhang, Junliang

    2015-01-01

    Graphical abstract: In-situ soft-templated LFP nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs), exhibited superior electrochemical performance due to the synergetic effect between CNTs and CNSs, which form interconnected conductive network for fast transport of both electrons and lithium ions. - Highlights: • LFP nanocrystals were in-situ synthesized on interconnected CNTs/CNSs framework with an in-situ soft-templated method. • LFP@CNTs/CNSs exhibited superior rate capability and cycling stability, due to interconnected conductive network for fast transport of both electrons and lithium ions. • The synergetic effect between CNTs and CNSs on the electrochemical performance of LFP electrode was demonstrated by a systematically electrochemical study compared with LFP/CNSs and LFP/CNTs. - Abstract: Lithium ion phosphate (LiFePO 4 ) nanocrystals are successfully in-situ grown on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs) with a soft-templated method, which involves the multi-constituent co-assembly of a triblock copolymer, CNTs, resol and precursors of LFP followed by thermal treatment. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and N 2 adsorption-desorption techniques are used to characterize the structure and morphology of the as-synthesized materials. When used as the cathode of lithium ion batteries, the LFP@CNTs/CNSs composite exhibits superior rate capability and cycling stability, compared with the samples modified only with CNSs (designated as LFP/CNSs) or with CNTs (designated as LFP/CNTs). This is mainly attributed to the synergetic effect between CNTs and CNSs caused by their unique structure, which forms interconnected conductive network for fast transport of both electrons and lithium ions, and thus remarkably improves the electrode kinetics. Firstly, nano-sized LFP are in-situ grown on the

  15. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  16. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  17. High-Performance Ga2O3 Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Tang, Xun; Huang, Xin; Huang, Yongmin; Gou, Yong; Pastore, James; Yang, Yao; Xiong, Yin; Qian, Jiangfeng; Brock, Joel D; Lu, Juntao; Xiao, Li; Abruña, Héctor D; Zhuang, Lin

    2018-02-14

    There is a great deal of interest in developing battery systems that can exhibit self-healing behavior, thus enhancing cyclability and stability. Given that gallium (Ga) is a metal that melts near room temperature, we wanted to test if it could be employed as a self-healing anode material for lithium-ion batteries (LIBs). However, Ga nanoparticles (NPs), when directly applied, tended to aggregate upon charge/discharge cycling. To address this issue, we employed carbon-coated Ga 2 O 3 NPs as an alternative. By controlling the pH of the precursor solution, highly dispersed and ultrafine Ga 2 O 3 NPs, embedded in carbon shells, could be synthesized through a hydrothermal carbonization method. The particle size of the Ga 2 O 3 NPs was 2.6 nm, with an extremely narrow size distribution, as determined by high-resolution transmission electron microscopy and Brunauer-Emmett-Teller measurements. A lithium-ion battery anode based on this material exhibited stable charging and discharging, with a capacity of 721 mAh/g after 200 cycles. The high cyclability is due to not only the protective effects of the carbon shell but also the formation of Ga 0 during the lithiation process, as indicated by operando X-ray absorption near-edge spectroscopy.

  18. CuO nanorods/graphene nanocomposites for high-performance lithium-ion battery anodes

    International Nuclear Information System (INIS)

    Wang, Qi; Zhao, Jun; Shan, Wanfei; Xia, Xinbei; Xing, Lili; Xue, Xinyu

    2014-01-01

    Highlights: • CuO/GNS nanocomposites are synthesized by a hydrothermal method. • CuO/GNSs as LIB anodes exhibit much higher cyclability and capacity than CuO nanostructures. • Such excellent performances can be attributed to the synergistic effect between CuO and GNSs. -- Abstract: CuO/graphene nanocomposites are synthesized by a hydrothermal method, and their application as anodes of lithium-ion batteries has been investigated. CuO nanorods are uniformly coating on the surface of graphene nanosheets. CuO/graphene nanocomposites exhibit high cyclability and capacity. After 50 cycles, the capacity can maintain at 692.5 mA h g −1 at 0.1 C rate (10 h per half cycle). Such a high performance can be attributed to the synergistic effect between graphene nanosheets and CuO nanorods. The present results indicate that CuO/graphene nanocomposites have potential applications in the anodes of lithium-ion battery

  19. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lithium titanate hybridized with trace amount of graphene used as an anode for a high rate lithium ion battery

    International Nuclear Information System (INIS)

    Dong, Hai-Yong; He, Yan-Bing; Li, Baohua; Zhang, Chen; Liu, Ming; Su, Fangyuan; Lv, Wei; Kang, Feiyu; Yang, Quan-Hong

    2014-01-01

    A novel Li 4 Ti 5 O 12 (LTO) electrode with a hierarchical carbon-based conducting network has been developed for high rate lithium ion battery. The unique network is constructed by graphene sheets (GS) that are not only dispersed among (inter-) but also inside (intra-) LTO particles, together with a thin carbon layer wrapping around the LTO particles. The intraparticle GS promotes the electron transfer inside LTO particles while the interparticle GS together with carbon coating bridges the particles guaranteeing fast electron transfer among LTO particles, which construct a highway throughout the whole electrode sheet. Quantitatively, only a trace amount of GS (∼ 0.4 wt%) synergistic with carbon coating (∼0.8 wt%) contributes to a more effective conducting network in the produced LTO electrode and as a result much better performance as compared to the LTO case with similar carbon coating but free of GS. Due to the effectiveness of the conducting network, even with a tap density as high as ∼1.0 g cm −3 , the novel LTO possesses both excellent rate performance and cycling behaviors. The capacity of 123.5 mA h g −1 is obtained at a charge/discharge rate as high as 30 C and a very high capacity of 144.8 mAh g −1 is maintained even after 100 cycles at 10 C. Due to such a low fraction of carbon and a high tape density, the novel LTO electrode has a great practical application value in both the power and energy storage lithium ion batteries

  1. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery

    Science.gov (United States)

    Xu, Xin; Meng, Zhen; Zhu, Xueling; Zhang, Shunlong; Han, Wei-Qiang

    2018-03-01

    Pyrite FeS2 has long been used as commercial primary lithium batteries at room temperature. To achieve rechargeable FeS2 battery, biomass-carbon@FeS2 composites are prepared using green and renewable auricularia auricula as carbon source through the process of carbonization and sulfuration. The auricularia auricula has strong swelling characteristics to absorb aqueous solution which can effectively absorb Fe ions into its body. FeS2 homogeneously distributed in biomass carbon matrix performs high electronic and ionic conductivity. The specific capacity of biomass-carbon@FeS2 composites remains 850 mAh g-1 after 80 cycles at 0.5C and 700 mAh g-1 at the rate of 2C after 150 cycles. Biomass-carbon@FeS2 composites exhibit high-rate capacity in lithium-ion battery.

  2. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-04-01

    Full Text Available High-performance lithium ion batteries (LIBs require electrode material to have an ideal electrode construction which provides fast ion transport, short solid-state ion diffusion, large surface area, and high electric conductivity. Herein, highly porous three-dimensional (3D aerogels composed of cobalt ferrite (CoFe2O4, CFO nanoparticles (NPs and carbon nanotubes (CNTs are prepared using sustainable alginate as the precursor. The key feature of this work is that by using the characteristic egg-box structure of the alginate, metal cations such as Co2+ and Fe3+ can be easily chelated via an ion-exchange process, thus binary CFO are expected to be prepared. In the hybrid aerogels, CFO NPs interconnected by the CNTs are embedded in carbon aerogel matrix, forming the 3D network which can provide high surface area, buffer the volume expansion and offer efficient ion and electron transport pathways for achieving high performance LIBs. The as-prepared hybrid aerogels with the optimum CNT content (20 wt% delivers excellent electrochemical properties, i.e., reversible capacity of 1033 mAh g−1 at 0.1 A g−1 and a high specific capacity of 874 mAh g−1 after 160 cycles at 1 A g−1. This work provides a facile and low cost route to fabricate high performance anodes for LIBs. Keywords: Alginate, Aerogels, Cobalt ferrite, Anode, Lithium-ion battery

  3. Closing to Scaling-Up High Reversible Si/rGO Nanocomposite Anodes for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Tokur, Mahmud; Algul, Hasan; Ozcan, Seyma; Cetinkaya, Tugrul; Uysal, Mehmet; Akbulut, Hatem

    2016-01-01

    Highlights: • rGO wrapped Si composite anodes for li-ion batteries were prepared by a hybrid assembly and followed by GO reduction. • To improve mechanical bonding between rGO and Si nanoparticles, mechanical alloying method was performed. • Different Si/rGO composite mixtures were prepared to investigate electrochemical performance of composite anodes. - Abstract: In spite of its excellent discharge capacity, low conductivity and poor cycling stability prevent to commercialize silicon negative electrodes for the Lithium ion batteries (LIBs). Since graphene has large surface area, high electrical conductivity and discharge capacity, silicon/graphene nanocomposite anodes in proper architectures alleviate difficulties to improve electrochemical performances of the LIBs. This article demonstrates the nanocomposite synthesizing with 10 wt.%, 30 wt.% and 50 wt.% graphene oxide (GO) dispersion in the silicon matrix following reduction of GO (rGO) result in remarkable improvements in the discharge capacity, cycle stability and rate capability. Mechanical milling after GO reduction provides decoration of silicon nanoparticles between the rGO sheets and improves interfacial bonding between silicon and rGO which alleviates huge volume increase during cycling. Among the nanocomposite negative electrodes, 50 wt.% rGO exhibits highest reversible capacity of about 2000 mAh g −1 after 100 cycles and good coulombic efficiency approximately 99%. This study proves that dispersion of silicon with rGO and the increase content of rGO lead to improve ionic conductivity, cycling stability, reversibility and rate capability of the Lithium ion cell. Because of the easy scaling-up possibility of the method Si/rGO hybrid nanocomposites can be new electrodes for electrochemical energy storage. .

  4. Fabrication of hierarchical structured SiO2/polyetherimide-polyurethane nanofibrous separators with high performance for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhai, Yunyun; Xiao, Ke; Yu, Jianyong; Ding, Bin

    2015-01-01

    Highlights: • Electrospinning followed by dip-coating was used to fabricate SiO 2 /PEI-PU membranes. • Introducing PEI, PU and SiO 2 improved safety, tensile strength and ionic conductivity. • Coating SiO 2 also restrained the micro-shorting and migrated the self-discharge. • SiO 2 /PEI-PU membranes based cell exhibited prominent cycling and rate performance. - ABSTRACT: The performance of lithium ion battery based on electrospun nanofibrous membranes has gained a great deal of attention in the past decades, but the intrinsic low mechanical strength and large pore size of electrospun membranes limit their battery performance. To overcome this limitation, a powerful strategy for designing, fabricating and evaluating silica nanoparticles coated polyetherimide-polyurethane (SiO 2 /PEI-PU) nanofibrous composite membranes is easily developed via electrospinning followed by a dip-coating process. Benefiting from the high porosity, interpenetrating network structure and synergetic effect of PU, PEI and SiO 2 nanoparticles, the as-prepared composite membranes exhibit high ionic conductivity (2.33 mS cm −1 ), robust tensile strength (15.65 MPa) and improved safety (excellent thermal resistance and flame retardant property). Additionally, the as-prepared composite membranes possess relatively narrow pore size distribution with average pore size of 0.58 μm after coating SiO 2 nanoparticles, which plays an important role in hindering the micro-shorting and mitigating self-discharge. Significantly, the SiO 2 /PEI-PU membranes based Li/LiFePO 4 cell exhibits more excellent cycling stability with capacity retention of 98.7% after 50 cycles at 0.2 C rate and better rate capability compared with the Celgard membrane based cell. The results clearly demonstrate that this is a promising separator candidate for next-generation lithium ion batteries, which may represent a significant step toward separators with improved performance

  5. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Yingying Lv

    2014-11-01

    Full Text Available A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m2/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li+ ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  6. A single lithium-ion battery protection circuit with high reliability and low power consumption

    International Nuclear Information System (INIS)

    Jiang Jinguang; Li Sen

    2014-01-01

    A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range. The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range. In order to reduce the circuit's power consumption, a sleep state control circuit is developed. Additionally, the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source. The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process. The measured reference voltage is 1.19 V, the overvoltage is 4.2 V and the undervoltage is 2.2 V. The total power is about 9 μW. (semiconductor integrated circuits)

  7. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery

    Science.gov (United States)

    Hua, Kang; Li, Xiujuan; Fang, Dong; Yi, Jianhong; Bao, Rui; Luo, Zhiping

    2018-07-01

    Lithium vanadate nanowires have been electrodeposited onto a titanium (Ti) foil by a direct current electrodeposition without template. The morphology, crystal structure, and the effects of deposition voltage, temperature and time on the prepared samples were tested and presented. The as-prepared lithium vanadate nanowires/Ti composite can be used as electrode for lithium-ion battery. Electrochemical measurements showed that the electrode displayed a specific discharge capacitance as high as 235.1 mAh g-1 after 100 cycles at a current density of 30 mA g-1. This research provides a new pathway to explore high tap density vanadates nanowires on metals with enhanced electrochemical performance.

  8. Three-dimensional core-shell Fe_2O_3 @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Xiaohua; Zhang, Miao; Liu, Enzuo; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Zhao, Naiqin

    2016-01-01

    Highlights: • The 3D core-shell Fe_2O_3@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe_2O_3 nanorods and outer carbon layer. • The Fe_2O_3@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe_2O_3 @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe_2O_3 nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe_2O_3 nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe_2O_3 to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  9. A Universal Strategy for Hollow Metal Oxide Nanoparticles Encapsulated into B/N Co-Doped Graphitic Nanotubes as High-Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Tabassum, Hassina; Zou, Ruqiang; Mahmood, Asif; Liang, Zibin; Wang, Qingfei; Zhang, Hao; Gao, Song; Qu, Chong; Guo, Wenhan; Guo, Shaojun

    2018-02-01

    Yolk-shell nanostructures have received great attention for boosting the performance of lithium-ion batteries because of their obvious advantages in solving the problems associated with large volume change, low conductivity, and short diffusion path for Li + ion transport. A universal strategy for making hollow transition metal oxide (TMO) nanoparticles (NPs) encapsulated into B, N co-doped graphitic nanotubes (TMO@BNG (TMO = CoO, Ni 2 O 3 , Mn 3 O 4 ) through combining pyrolysis with an oxidation method is reported herein. The as-made TMO@BNG exhibits the TMO-dependent lithium-ion storage ability, in which CoO@BNG nanotubes exhibit highest lithium-ion storage capacity of 1554 mA h g -1 at the current density of 96 mA g -1 , good rate ability (410 mA h g -1 at 1.75 A g -1 ), and high stability (almost 96% storage capacity retention after 480 cycles). The present work highlights the importance of introducing hollow TMO NPs with thin wall into BNG with large surface area for boosting LIBs in the terms of storage capacity, rate capability, and cycling stability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-Level Heteroatom Doped Two-Dimensional Carbon Architectures for Highly Efficient Lithium-Ion Storage

    Directory of Open Access Journals (Sweden)

    Zhijie Wang

    2018-04-01

    Full Text Available In this work, high-level heteroatom doped two-dimensional hierarchical carbon architectures (H-2D-HCA are developed for highly efficient Li-ion storage applications. The achieved H-2D-HCA possesses a hierarchical 2D morphology consisting of tiny carbon nanosheets vertically grown on carbon nanoplates and containing a hierarchical porosity with multiscale pore size. More importantly, the H-2D-HCA shows abundant heteroatom functionality, with sulfur (S doping of 0.9% and nitrogen (N doping of as high as 15.5%, in which the electrochemically active N accounts for 84% of total N heteroatoms. In addition, the H-2D-HCA also has an expanded interlayer distance of 0.368 nm. When used as lithium-ion battery anodes, it shows excellent Li-ion storage performance. Even at a high current density of 5 A g−1, it still delivers a high discharge capacity of 329 mA h g−1 after 1,000 cycles. First principle calculations verifies that such unique microstructure characteristics and high-level heteroatom doping nature can enhance Li adsorption stability, electronic conductivity and Li diffusion mobility of carbon nanomaterials. Therefore, the H-2D-HCA could be promising candidates for next-generation LIB anodes.

  11. Enhanced Lithium Ion Transport by Superionic Pathways Formed on the Surface of Two-dimensional Structured Li0.85Na0.15V3O8 for High-Performance Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Lu, Xuena; Shang, Yu; Zhang, Sen; Deng, Chao

    2015-01-01

    Highlights: • Li 0.85 Na 0.15 V 3 O 8 nanosheet with superionic conductive layer was constructed. • Li x V 2 O 5 surface layer provides facile pathways for lithium migration. • Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability. - Abstract: Poor ion transport and rate capability are the main challenges for LiV 3 O 8 as cathode material for lithium ion batteries. Here we report a novel strategy for enhancing lithium ion transport by building superionic pathways on the surface of Li 0.85 Na 0.15 V 3 O 8 nanosheet. The two-dimensional Li 0.85 Na 0.15 V 3 O 8 nanoparticle with an ion conductive layer of Li x V 2 O 5 on its surface is constructed by a modified sol–gel strategy with carefully controlled sodium incorporation and elements stoichiometry. Ultrathin Li x V 2 O 5 surface layer not only provides facile pathways for lithium migration, but also increases the structure stability during cycling. The Li x V 2 O 5 -Li 0.85 Na 0.15 V 3 O 8 composite displays good high rate capability of 172.3 mAh g −1 at 5C and excellent cycling stability of 98.9% over fifty cycles. This superior electrochemical property is attributed to the occupation of lithium site by Na + in LiV 3 O 8 host crystals and the surface superionic pathways of Li x V 2 O 5 phase. Therefore, the advantages of both high ion transport and the structure stabilization in present study put forward a new strategy for achieving high-performance LiV 3 O 8 electrode material with tailored nanoarchitecture

  12. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  13. Non-Flammable, High Voltage Electrolytes for Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An electrolyte will be demonstrated for lithium ion batteries with increased range of charge and discharge voltages and with improved fire safety. Experimental...

  14. Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode

    KAUST Repository

    Cui, Li-Feng; Hu, Liangbing; Wu, Hui; Choi, Jang Wook; Cui, Yi

    2011-01-01

    overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon

  15. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  16. Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Ming; Shao, Leng-Leng; Yang, Hua-Bin; Zhao, Qian-Yong; Yuan, Zhong-Yong

    2015-01-01

    Graphical abstract: LiFePO4/C nanocomposites were prepared by a quasi-sol–gel method with the use of organophosphonic acid, exhibiting improved electrochemical performance with excellent cycle stability. Display Omitted -- Highlights: •Amino tris(methylene phosphonic acid) is served as a novel precursor for LiFePO 4 /C. •Nano-sized and high-purity LiFePO 4 /C composites are obtained by a quasi-sol–gel route. •Core-shell structured LiFePO 4 /C nanocomposites are fabricated by further introducing sucrose. •Superior electrochemical performance is observed in the organophosphorus-synthesized LiFePO 4 /C. -- Abstract: Amino tris(methylene phosphonic acid) (ATMP) is selected as phosphorus and carbon co-source for the synthesis of uniformly nano-sized LiFePO 4 /C by a quasi-sol–gel method. This strategy using ATMP instead of conventional NH 4 H 2 PO 4 supplies two advantages: firstly, ATMP in situ chelates Li + onto its framework and subsequently binds with FeC 2 O 4 in aqueous solution, forming a molecule-scale homogeneous precursor which can obviously improve the purity of LiFePO 4 . Secondly, the organic carbon contained in ATMP can form uniformly distributed conductive carbon networks among LiFePO 4 particles after calcination, which improves the electrical conductivity. The resultant LiFePO 4 /C with 1.1 wt.% carbon achieves a higher discharge capacity than those of LiFePO 4 and LiFePO 4 /C prepared with inorganic NH 4 H 2 PO 4 . Moreover, core-shell structured LiFePO 4 /C nanocomposites are also fabricated by further introducing sucrose into the synthesis system. The high-quality carbon shell effectively hinders the LiFePO 4 particle growth and aggregation under high-temperature treatment, which further enhances the electrical conductivity and lithium-ion diffusion, resulting in the improved electrochemical performance with excellent cycle stability (the optimum discharge capacity of 158.6 mAh g −1 at 0.1 C and 138.4 mAh g −1 at 2 C). The high

  17. A High-Performance Lithium-Ion Capacitor Based on 2D Nanosheet Materials.

    Science.gov (United States)

    Li, Shaohui; Chen, Jingwei; Cui, Mengqi; Cai, Guofa; Wang, Jiangxin; Cui, Peng; Gong, Xuefei; Lee, Pooi See

    2017-02-01

    Lithium-ion capacitors (LICs) are promising electrical energy storage systems for mid-to-large-scale applications due to the high energy and large power output without sacrificing long cycle stability. However, due to the different energy storage mechanisms between anode and cathode, the energy densities of LICs often degrade noticeably at high power density, because of the sluggish kinetics limitation at the battery-type anode side. Herein, a high-performance LIC by well-defined ZnMn 2 O 4 -graphene hybrid nanosheets anode and N-doped carbon nanosheets cathode is presented. The 2D nanomaterials offer high specific surface areas in favor of a fast ion transport and storage with shortened ion diffusion length, enabling fast charge and discharge. The fabricated LIC delivers a high specific energy of 202.8 Wh kg -1 at specific power of 180 W kg -1 , and the specific energy remains 98 Wh kg -1 even when the specific power achieves as high as 21 kW kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ternary CNTs@TiO₂/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries.

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Naga, Ahmed Osama Abo El; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-06-20

    TiO₂ nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li⁺ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO₂/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO₂/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO₂ and TiO₂/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li⁺ ion diffusivity, promoting a strongly favored lithium insertion into the TiO₂/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  19. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  20. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  1. Improvement of high voltage cycling performance and thermal stability of lithium-ion cells by use of a thiophene additive

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Soo; Sun, Yang-Kook; Kim, Dong-Won [Department of Chemical Engineering, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Noh, Jaegeun [Department of Chemistry, Hanyang University, Seungdong-gu, Seoul 133-791 (Korea); Song, Kwang Soup [Advanced Medical Device Center, Korea Electrotechnology, Research Institute, Ansan, Gyeonggi-do 426-170 (Korea)

    2009-10-15

    This study demonstrates that the addition of thiophene improves the cycle life of lithium-ion cells at high voltage. Electrochemical impedance spectroscopy results suggest that addition of thiophene significantly suppresses the increase of the charge transfer resistance that occurs during cycling up to high voltage. Differential scanning calorimetric studies showed that the thermal stability of fully charged LiCoO{sub 2} cathode was also enhanced in the presence of thiophene. (author)

  2. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity

    International Nuclear Information System (INIS)

    Zhu, Jiadeng; Lu, Yao; Chen, Chen; Ge, Yeqian; Jasper, Samuel; Leary, Jennifer D.; Li, Dawei; Jiang, Mengjin; Zhang, Xiangwu

    2016-01-01

    Hematite iron oxide (α-Fe_2O_3) is considered to be a prospective anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity (1007 mAh g"−"1), nontoxicity, and low cost. However, the low electrical conductivity and large volume change during Li insertion/extraction of α-Fe_2O_3 hinder its use in practical batteries. In this study, carbon-coated α-Fe_2O_3 nanofibers, prepared via an electrospinning method followed by a thermal treatment process, are employed as the anode material for LIBs. The as-prepared porous nanofibers with a carbon content of 12.5 wt% show improved cycling performance and rate capability. They can still deliver a high and stable capacity of 715 mAh g"−"1 even at superior high current density of 1000 mA g"−"1 after 200 cycles with a large Coulombic efficiency of 99.2%. Such improved electrochemical performance can be assigned to their unique porous fabric structure as well as the conductive carbon coating which shorten the distance for Li ion transport, enhancing Li ion reversibility and kinetic properties. It is, therefore, demonstrated that carbon-coated α-Fe_2O_3 nanofiber prepared under optimized conditions is a promising anode material candidate for LIBs. - Graphical abstract: Carbon-coated α-Fe_2O_3 nanofibers are employed as anode material to achieve high and stable electrochemical performance for lithium-ion batteries, enhancing their commercial viability. - Highlights: • α-Fe_2O_3/C nanofibers were fabricated by electrospinning and thermal treatment. • α-Fe_2O_3/C nanofibers exhibit stable cyclability and good rate capability. • α-Fe_2O_3–C nanofibers maintain high capacity at 1000 mA g"−"1 for 200 cycles. • A capacity retention of 99.2% is achieved by α-Fe_2O_3–C nanofibers after 200 cycles.

  3. Low Li+ Insertion Barrier Carbon for High Energy Efficient Lithium-Ion Capacitor.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Huang, Xiaolei; Tan, Teck Leong; Xue, Jun Min

    2018-01-17

    Lithium-ion capacitor (LIC) is an attractive energy-storage device (ESD) that promises high energy density at moderate power density. However, the key challenge in its design is the low energy efficient negative electrode, which barred the realization of such research system in fulfilling the current ESD technological inadequacy due to its poor overall energy efficiency. Large voltage hysteresis is the main issue behind high energy density alloying/conversion-type materials, which reduces the electrode energy efficiency. Insertion-type material though averted in most research due to the low capacity remains to be highly favorable in commercial application due to its lower voltage hysteresis. To further reduce voltage hysteresis and increase capacity, amorphous carbon with wider interlayer spacing has been demonstrated in the simulation result to significantly reduce Li + insertion barrier. Hence, by employing such amorphous carbon, together with disordered carbon positive electrode, a high energy efficient LIC with round-trip energy efficiency of 84.3% with a maximum energy density of 133 Wh kg -1 at low power density of 210 W kg -1 can be achieved.

  4. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  5. Facile Synthesis of V2O5 Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xingyuan Zhang

    2017-01-01

    Full Text Available Three-dimensional V2O5 hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V2O5 materials are composed of microspheres 2–3 μm in diameter and with a distinct hollow interior. The as-synthesized V2O5 hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g−1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V2O5 cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V2O5 hollow material as a high-performance cathode for lithium-ion batteries.

  6. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  7. Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Kim, Doo Soo; Hur, Jaehyun; Park, Min Sang; Yoon, Sukeun; Kim, Il Tae

    2018-06-01

    We report a facile approach to synthesize Fe-Sb-based hybrid oxides nanocomposites consisting of Sb, Sb2O3, and Fe3O4 for use as new anode materials for lithium-ion batteries. The composites are synthesized via galvanic replacement between Fe3+ and Sb at high temperature in triethylene glycol medium. The phase, morphology, and composition changes of the composites involved in the various stages of the replacement reaction are characterized using X-ray diffractometry, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The as-prepared composites have different compositions with very small particle sizes (interfacial contact area between the nanocomposite and electrolyte, stable structure of the composites owing to a mixture of inactive phases generated by the conversion reaction between Li+ and oxide metal-whose structure serves as an electron conductor, inhibits agglomeration of Sb particles, and acts as an effective buffer against volume change of Sb during cycling-and high Li+ diffusion ability.

  8. High-Temperature Stable Anatase Titanium Oxide Nanofibers for Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Lee, Sangkyu; Eom, Wonsik; Park, Hun; Han, Tae Hee

    2017-08-02

    Control of the crystal structure of electrochemically active materials is an important approach to fabricating high-performance electrodes for lithium-ion batteries (LIBs). Here, we report a methodology for controlling the crystal structure of TiO 2 nanofibers by adding aluminum isopropoxide to a common sol-gel precursor solution utilized to create TiO 2 nanofibers. The introduction of aluminum cations impedes the phase transformation of electrospun TiO 2 nanofibers from the anatase to the rutile phase, which inevitably occurs in the typical annealing process utilized for the formation of TiO 2 crystals. As a result, high-temperature stable anatase TiO 2 nanofibers were created in which the crystal structure was well-maintained even at high annealing temperatures of up to 700 °C. Finally, the resulting anatase TiO 2 nanofibers were utilized to prepare LIB anodes, and their electrochemical performance was compared to pristine TiO 2 nanofibers that contain both anatase and rutile phases. Compared to the electrode prepared with pristine TiO 2 nanofibers, the electrode prepared with anatase TiO 2 nanofibers exhibited excellent electrochemical performances such as an initial Coulombic efficiency of 83.9%, a capacity retention of 89.5% after 100 cycles, and a rate capability of 48.5% at a current density of 10 C (1 C = 200 mA g -1 ).

  9. Graphene Carbon Nanotube Carpets Grown Using Binary Catalysts for High-Performance Lithium-Ion Capacitors.

    Science.gov (United States)

    Salvatierra, Rodrigo Villegas; Zakhidov, Dante; Sha, Junwei; Kim, Nam Dong; Lee, Seoung-Ki; Raji, Abdul-Rahman O; Zhao, Naiqin; Tour, James M

    2017-03-28

    Here we show that a versatile binary catalyst solution of Fe 3 O 4 /AlO x nanoparticles enables homogeneous growth of single to few-walled carbon nanotube (CNT) carpets from three-dimensional carbon-based substrates, moving past existing two-dimensional limited growth methods. The binary catalyst is composed of amorphous AlO x nanoclusters over Fe 3 O 4 crystalline nanoparticles, facilitating the creation of seamless junctions between the CNTs and the underlying carbon platform. The resulting graphene-CNT (GCNT) structure is a high-density CNT carpet ohmically connected to the carbon substrate, an important feature for advanced carbon electronics. As a demonstration of the utility of this approach, we use GCNTs as anodes and cathodes in binder-free lithium-ion capacitors, producing stable devices with high-energy densities (∼120 Wh kg -1 ), high-power density capabilities (∼20,500 W kg -1 at 29 Wh kg -1 ), and a large operating voltage window (4.3 to 0.01 V).

  10. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-01-01

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi 0.8 Co 0.2 O 2 cathode and DEC-EC-LiPF 6 electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF 6 salt in the electrolyte at elevated temperature

  11. High power, gel polymer lithium-ion cells with improved low temperature performance for NASA and DoD applications

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Narayanan, S. R.; Alamgir, Mohamed; Yu, Ji-Sang; Plichta, Edward P.

    2004-01-01

    Both NASA and the U.S. Army have interest in developing secondary energy storage devices that are capable of meeting the demanding performance requirements of aerospace and man-portable applications. In order to meet these demanding requirements, gel-polymer electrolyte-based lithium-ion cells are being actively considered, due to their promise of providing high specific energy and enhanced safety aspects.

  12. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  13. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Na, Zhaolin; Huang, Gang; Liang, Fei; Yin, Dongming; Wang, Limin

    2016-08-16

    The preparation of novel one-dimensional core-shell Fe/Fe2 O3 nanowires as anodes for high-performance lithium-ion batteries (LIBs) is reported. The nanowires are prepared in a facile synthetic process in aqueous solution under ambient conditions with subsequent annealing treatment that could tune the capacity for lithium storage. When this hybrid is used as an anode material for LIBs, the outer Fe2 O3 shell can act as an electrochemically active material to store and release lithium ions, whereas the highly conductive and inactive Fe core functions as nothing more than an efficient electrical conducting pathway and a remarkable buffer to tolerate volume changes of the electrode materials during the insertion and extraction of lithium ions. The core-shell Fe/Fe2 O3 nanowire maintains an excellent reversible capacity of over 767 mA h g(-1) at 500 mA g(-1) after 200 cycles with a high average Coulombic efficiency of 98.6 %. Even at 2000 mA g(-1) , a stable capacity as high as 538 mA h g(-1) could be obtained. The unique composition and nanostructure of this electrode material contribute to this enhanced electrochemical performance. Due to the ease of large-scale fabrication and superior electrochemical performance, these hybrid nanowires are promising anode materials for the next generation of high-performance LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators

    International Nuclear Information System (INIS)

    Li, Xiaofei; He, Jinlin; Wu, Dazhao; Zhang, Mingzu; Meng, Juwen; Ni, Peihong

    2015-01-01

    (290 wt%) and ionic conductivity (1.76 mS cm −1 ). More importantly, the LiFePO 4 /Li half-cell assembled with PHS-10 composite separator displays a good C-rate performance, which shows an enhancement in the chemical stability and discharge capacity. The capacity keeps above 150 mA h g −1 after 100 charge–discharge cycles. These performances endow this composite membrane as a promising candidate for high-performance lithium-ion battery separators

  15. Modification of SnO2 Anodes by Atomic Layer Deposition for High Performance Lithium Ion Batteries

    KAUST Repository

    Yesibolati, Nulati

    2013-05-01

    Tin dioxide (SnO2) is considered one of the most promising anode materials for Lithium ion batteries (LIBs), due to its large theoretical capacity and natural abundance. However, its low electronic/ionic conductivities, large volume change during lithiation/delithiation and agglomeration prevent it from further commercial applications. In this thesis, we investigate modified SnO2 as a high energy density anode material for LIBs. Specifically two approaches are presented to improve battery performances. Firstly, SnO2 electrochemical performances were improved by surface modification using Atomic Layer Deposition (ALD). Ultrathin Al2O3 or HfO2 were coated on SnO2 electrodes. It was found that electrochemical performances had been enhanced after ALD deposition. In a second approach, we implemented a layer-by-layer (LBL) assembled graphene/carbon-coated hollow SnO2 spheres as anode material for LIBs. Our results indicated that the LBL assembled electrodes had high reversible lithium storage capacities even at high current densities. These superior electrochemical performances are attributed to the enhanced electronic conductivity and effective lithium diffusion, because of the interconnected graphene/carbon networks among nanoparticles of the hollow SnO2 spheres.

  16. One Step Hydrothermal Synthesis of FeCO3 Cubes for High Performance Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Zhang, Congcong; Liu, Weijian; Chen, Dongyang; Huang, Jiayi; Yu, Xiaoyuan; Huang, Xueyan; Fang, Yueping

    2015-01-01

    Highlights: • FeCO 3 nanocubes with edge length of ∼300 nm were prepared. • A reversible capacity of 761 mAh g −1 was achieved at 200 mA g −1 after 130 cycles. • Cyclic voltammetry and electrochemical impedance were employed to understand the cell performances. - Abstract: Uniform FeCO 3 cubes with edge length of ∼300 nm were prepared by a facile one-step hydrothermal reaction and studied as anode material for lithium-ion batteries. Interestingly, the FeCO 3 anode has an extremely high initial specific capacity of 1796 mAh g −1 . After cycling at a current rate of 200 mA g −1 for 130 cycles, an excellent discharge capacity of 761 mAh g −1 is still maintained. Moreover, the FeCO 3 anode exhibits significant high-rate capability, e.g., ∼430 mAh g −1 is obtained at a current rate of 1200 mA g −1 . The observation of the FeCO 3 cubes represents an important development of realizing both high capacity and good cycleability in conversion type anode materials for lithium-ion battery at the same time. Such cheap, easy-to-make, and environmentally benign material is promising for practical deployment for lithium ion batteries anode.

  17. Hydroxylamine hydrochloride: A novel anode material for high capacity lithium-ion batteries

    Science.gov (United States)

    Shao, Lianyi; Shu, Jie; Lao, Mengmeng; Lin, Xiaoting; Wu, Kaiqiang; Shui, Miao; Li, Peng; Long, Nengbing; Ren, Yuanlong

    2014-12-01

    H3NOHCl is used for the first time as anode material for lithium-ion batteries. Electrochemical results show that H3NOHCl with particle size of 4-12 μm can deliver an initial charge capacity of 1018.6 mAh g-1, which is much higher than commercial graphite. After 30 cycles, the reversible capacity can be kept at 676.1 mAh g-1 at 50 mA g-1. Up to 50 cycles, H3NOHCl still maintains a lithium storage capacity of 368.9 mAh g-1. Even cycled at 200 mA g-1, H3NOHCl can deliver a charge capacity of 715.7 mAh g-1. It suggests that H3NOHCl has high lithium storage capacity, excellent cycling stability and outstanding rate performance. Besides, the electrochemical reaction between H3NOHCl and Li is also investigated by various ex-situ techniques. It can be found that H3NOHCl irreversibly decomposes into Li3N and LiCl during the initial discharge process and LiNO2 can be formed after a reverse charge process.

  18. Nanoscale zinc-based metal-organic framework with high capacity for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changdong [Changzhou University, School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (China); Gao, Yuanrui; Liu, Lili [Shanghai University, Department of Chemistry, College of Science (China); Song, Yidan; Wang, Xianmei [Changzhou University, School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (China); Liu, Hong-Jiang, E-mail: liuhj@shu.edu.cn [Shanghai University, Department of Chemistry, College of Science (China); Liu, Qi, E-mail: liuqi62@163.com [Changzhou University, School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, and Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (China)

    2016-12-15

    Layered zinc-based metal-organic framework ([Zn(4,4′-bpy)(tfbdc)(H{sub 2}O){sub 2}], Zn-LMOF) nanosheets were synthesized by a facile hydrothermal method (4,4′-bpy = 4,4′-bipyridine, H{sub 2}tfbdc = tetrafluoroterephthalic acid). The materials were characterized by IR spectrum, elemental analysis, thermogravimetric analysis, powder X-ray diffraction, transmission electron microscope (TEM), scanning electron microscope (SEM), and the Brunauer–Emmett–Teller (BET) surface. When the Zn-LMOF nanosheets with the thickness of about 24 ± 8 nm were used as an anode material of lithium-ion batteries, not only the Zn-LMOF electrode shows a high reversible capacity, retaining 623 mAh g{sup −1} after 100 cycles at a current density of 50 mA g{sup −1} but also exhibits an excellent cyclic stability and a higher rate performance.

  19. Hierarchical three-dimensional porous SnS{sub 2}/carbon cloth anode for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Junfeng, E-mail: chchjjff@163.com [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Zhang, Xiutai [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China); Xing, Shumin [College of Mathematics and Physics, Anyang Institute of Technology, Anyang 455000 (China); Fan, Qiufeng; Yang, Junping; Zhao, Luhua; Li, Xiang [College of Electronic Information and Electric Engineering, Anyang Institute of Technology, Anyang 455000 (China)

    2016-08-15

    Graphical abstract: Hierarchical 3D porous SnS{sub 2}/carbon cloth, good electrochemical performance. - Highlights: • Hierarchical 3D porous SnS{sub 2}/carbon cloth has been firstly synthesized. • The SnS{sub 2}/carbon clothes were good candidates for excellent lithium ion batteries. • The SnS{sub 2}/carbon cloth exhibits improved capacity compared to pure SnS{sub 2}. - Abstract: Hierarchical three-dimension (3D) porous SnS{sub 2}/carbon clothes were synthesized via a facile polyol refluxing process. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmet–Teller (BET) and UV–vis diffuse reflectance spectrometer (UV–vis DRS). The 3D porous SnS{sub 2}/carbon clothes-based lithium ion batteries exhibited high reversible capacity and good rate capability as anode materials. The good electrochemical performance for lithium ion storage could be attributed to the special nanostructure, leading to high-rate transportation of electrolyte ion and electrons throughout the electrode matrix.

  20. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  1. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.

    Science.gov (United States)

    Li, Xue; He, Xinyi; Shi, Chunmei; Liu, Bo; Zhang, Yiyong; Wu, Shunqing; Zhu, Zizong; Zhao, Jinbao

    2014-12-01

    Nanorod-like CuS and Cu2 S have been fabricated by a hydrothermal approach without using any surfactant and template. The electrochemical behavior of CuS and Cu2 S nanorod anodes for lithium-ion batteries reveal that they exhibit stable lithium-ion insertion/extraction reversibility and outstanding rate capability. Both of the electrodes exhibit excellent capacity retentions irrespective of the rate used, even at a high current density of 3200 mA g(-1) . More than 370 mAh g(-1) can be retained for the CuS electrode and 260 mAh g(-1) for the Cu2 S electrode at the high current rate. After 100 cycles at 100 mA g(-1) , the obtained CuS and Cu2 S electrodes show discharge capacities of 472 and 313 mAh g(-1) with retentions of 92% and 96%, respectively. Together with the simplicity of fabrication and good electrochemical properties, CuS and Cu2 S nanorods are promising anode materials for practical use the next-generation lithium-ion batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High-Capacity and Long-Cycle Life Aqueous Rechargeable Lithium-Ion Battery with the FePO4 Anode.

    Science.gov (United States)

    Wang, Yuesheng; Yang, Shi-Ze; You, Ya; Feng, Zimin; Zhu, Wen; Gariépy, Vincent; Xia, Jiexiang; Commarieu, Basile; Darwiche, Ali; Guerfi, Abdelbast; Zaghib, Karim

    2018-02-28

    Aqueous lithium-ion batteries are emerging as strong candidates for a great variety of energy storage applications because of their low cost, high-rate capability, and high safety. Exciting progress has been made in the search for anode materials with high capacity, low toxicity, and high conductivity; yet, most of the anode materials, because of their low equilibrium voltages, facilitate hydrogen evolution. Here, we show the application of olivine FePO 4 and amorphous FePO 4 ·2H 2 O as anode materials for aqueous lithium-ion batteries. Their capacities reached 163 and 82 mA h/g at a current rate of 0.2 C, respectively. The full cell with an amorphous FePO 4 ·2H 2 O anode maintained 92% capacity after 500 cycles at a current rate of 0.2 C. The acidic aqueous electrolyte in the full cells prevented cathodic oxygen evolution, while the higher equilibrium voltage of FePO 4 avoided hydrogen evolution as well, making them highly stable. A combination of in situ X-ray diffraction analyses and computational studies revealed that olivine FePO 4 still has the biphase reaction in the aqueous electrolyte and that the intercalation pathways in FePO 4 ·2H 2 O form a 2-D mesh. The low cost, high safety, and outstanding electrochemical performance make the full cells with olivine or amorphous hydrated FePO 4 anodes commercially viable configurations for aqueous lithium-ion batteries.

  3. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    Science.gov (United States)

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. High-rate and ultralong cycle-life LiFePO_4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Feng, Jinpeng; Wang, Youlan

    2016-01-01

    Highlights: • B-doped carbon decorated LiFePO_4 has been fabricated for the first time. • The LiFePO_4@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO_4@C. • The LiFePO_4@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO_4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO_4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO_4@B_0_._4-C can reach 164.1 mAh g"−"1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g"−"1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g"−"1 and can be maintained at 124.5 mAh g"−"1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO_4@B-C composite for high-performance lithium-ion batteries.

  5. Scalable integration of Li5FeO4 towards robust, high-performance lithium-ion hybrid capacitors.

    Science.gov (United States)

    Park, Min-Sik; Lim, Young-Geun; Hwang, Soo Min; Kim, Jung Ho; Kim, Jeom-Soo; Dou, Shi Xue; Cho, Jaephil; Kim, Young-Jun

    2014-11-01

    Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. In Situ Synthesis of Mn3 O4 Nanoparticles on Hollow Carbon Nanofiber as High-Performance Lithium-Ion Battery Anode.

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-26

    The practical applications of Mn 3 O 4 in lithium-ion batteries are greatly hindered by fast capacity decay and poor rate performance as a result of significant volume changes and low electrical conductivity. It is believed that the synthesis of nanoscale Mn 3 O 4 combined with carbonaceous matrix will lead to a better electrochemical performance. Herein, a convenient route for the synthesis of Mn 3 O 4 nanoparticles grown in situ on hollow carbon nanofiber (denoted as HCF/Mn 3 O 4 ) is reported. The small size of Mn 3 O 4 particles combined with HCF can significantly alleviate volume changes and electrical conductivity; the strong chemical interactions between HCF and Mn 3 O 4 would improve the reversibility of the conversion reaction for MnO into Mn 3 O 4 and accelerate charge transfer. These features endow the HCF/Mn 3 O 4 composite with superior cycling stability and rate performance if used as the anode for lithium-ion batteries. The composite delivers a high discharge capacity of 835 mA h g -1 after 100 cycles at 200 mA g -1 , and 652 mA h g -1 after 240 cycles at 1000 mA g -1 . Even at 2000 mA g -1 , it still shows a high capacity of 528 mA h g -1 . The facile synthetic method and outstanding electrochemical performance of the as-prepared HCF/Mn 3 O 4 composite make it a promising candidate for a potential anode material for lithium-ion batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries

    Science.gov (United States)

    Zhang, Zhonghua; Zhou, Zhenfang; Nie, Sen; Wang, Honghu; Peng, Hongrui; Li, Guicun; Chen, Kezheng

    2014-12-01

    Flower-like hydrogenated TiO2(B) nanostructures have been synthesized via a facile solvothermal approach combined with hydrogenation treatment. The obtained TiO2(B) nanostructures show uniform and hierarchical flower-like morphology with a diameter of 124 ± 5 nm, which are further constructed by primary nanosheets with a thickness of 10 ± 1.2 nm. The Ti3+ species and/or oxygen vacancies are well introduced into the structures of TiO2(B) after hydrogen reduction, resulting in an enhancement in the electronic conductivity (up to 2.79 × 10-3 S cm-1) and the modified surface electrochemical activity. When evaluated for lithium storage capacity, the hydrogenated TiO2(B) nanostructures exhibit enhanced electrochemical energy storage performances compared to the pristine TiO2(B) nanostructures, including high capacity (292.3 mA h g-1 at 0.5C), excellent rate capability (179.6 mA h g-1 at 10C), and good cyclic stability (98.4% capacity retention after 200 cycles at 10C). The reasons for these improvements are explored in terms of the increased electronic conductivity and the facilitation of lithium ion transport arising from the introduction of oxygen vacancies and the unique flower-like morphologies.

  8. Restricted lithium ion dynamics in PEO-based block copolymer electrolytes measured by high-field nuclear magnetic resonance relaxation

    Science.gov (United States)

    Huynh, Tan Vu; Messinger, Robert J.; Sarou-Kanian, Vincent; Fayon, Franck; Bouchet, Renaud; Deschamps, Michaël

    2017-10-01

    The intrinsic ionic conductivity of polyethylene oxide (PEO)-based block copolymer electrolytes is often assumed to be identical to the conductivity of the PEO homopolymer. Here, we use high-field 7Li nuclear magnetic resonance (NMR) relaxation and pulsed-field-gradient (PFG) NMR diffusion measurements to probe lithium ion dynamics over nanosecond and millisecond time scales in PEO and polystyrene (PS)-b-PEO-b-PS electrolytes containing the lithium salt LiTFSI. Variable-temperature longitudinal (T1) and transverse (T2) 7Li NMR relaxation rates were acquired at three magnetic field strengths and quantitatively analyzed for the first time at such fields, enabling us to distinguish two characteristic time scales that describe fluctuations of the 7Li nuclear electric quadrupolar interaction. Fast lithium motions [up to O (ns)] are essentially identical between the two polymer electrolytes, including sub-nanosecond vibrations and local fluctuations of the coordination polyhedra between lithium and nearby oxygen atoms. However, lithium dynamics over longer time scales [O (10 ns) and greater] are slower in the block copolymer compared to the homopolymer, as manifested experimentally by their different transverse 7Li NMR relaxation rates. Restricted dynamics and altered thermodynamic behavior of PEO chains anchored near PS domains likely explain these results.

  9. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries

    International Nuclear Information System (INIS)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang

    2013-01-01

    Highlights: •A novel approach has been developed to fabricate 1D Li 4 Ti 5 O 12 /C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li 4 Ti 5 O 12 /C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li 4 Ti 5 O 12 (Li 4 Ti 5 O 12 /C) nanorods for high rate lithium ion batteries. The carbon coated TiO 2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO 2 powder is immersed in KOH sulotion and subsequently transforms into Li 4 Ti 5 O 12 /C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li 4 Ti 5 O 12 , one-dimensional (1D) Li 4 Ti 5 O 12 /C nanostructures show much better rate capability and cycling stability. The 1D Li 4 Ti 5 O 12 /C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport

  10. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

    Science.gov (United States)

    Li, Wangda; Dolocan, Andrei; Oh, Pilgun; Celio, Hugo; Park, Suhyeon; Cho, Jaephil; Manthiram, Arumugam

    2017-01-01

    Undesired electrode–electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-metal oxide, reveals the dynamic behaviour of cathode interphases driven by conductive carbon additives (carbon black) in a common nonaqueous electrolyte. Region-of-interest sensitive secondary-ion mass spectrometry shows that a cathode-electrolyte interphase, initially formed on carbon black with no electrochemical bias applied, readily passivates the cathode particles through mutual exchange of surface species. By tuning the interphase thickness, we demonstrate its robustness in suppressing the deterioration of the electrode/electrolyte interface during high-voltage cell operation. Our results provide insights on the formation and evolution of cathode interphases, facilitating development of in situ surface protection on high-energy-density cathode materials in lithium-based batteries. PMID:28443608

  11. Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass-ceramics with water

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Satoshi; Imanishi, Nobuyuki; Zhang, Tao; Xie, Jian; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu [Department of Chemistry, Faculty of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507 (Japan)

    2009-04-01

    The water stability of the fast lithium ion conducting glass-ceramic electrolyte, Li{sub 1+x+y}Al{sub x}Ti{sub 2-x}Si{sub y}P{sub 3-y}O{sub 12} (LATP), has been examined in distilled water, and aqueous solutions of LiNO{sub 3}, LiCl, LiOH, and HCl. This glass-ceramics are stable in aqueous LiNO{sub 3} and aqueous LiCl, and unstable in aqueous 0.1 M HCl and 1 M LiOH. In distilled water, the electrical conductivity slightly increases as a function of immersion time in water. The Li-Al/Li{sub 3-x}PO{sub 4-y}N{sub y}/LATP/aqueous 1 M LiCl/Pt cell, where lithium phosphors oxynitrides Li{sub 3-x}PO{sub 4-y}N{sub y} (LiPON) are used to protect the direct reaction of Li and LATP, shows a stable open circuit voltage (OCV) of 3.64 V at 25 C, and no cell resistance change for 1 week. Lithium phosphors oxynitride is effectively used as a protective layer to suppress the reaction between the LATP and Li metal. The water-stable Li/LiPON/LATP system can be used in Li/air secondary batteries with the air electrode containing water. (author)

  12. Iron titanium phosphates as high-specific-capacity electrode materials for lithium ion batteries

    Czech Academy of Sciences Publication Activity Database

    Essehli, R.; El Bali, B.; Faik, A.; Naji, M.; Benmokhtar, S.; Zhong, Y.R.; Su, L.W.; Zhou, Z.; Kim, J.; Kang, K.; Dušek, Michal

    2014-01-01

    Roč. 585, FEB (2014), s. 434-441 ISSN 0925-8388 Institutional support: RVO:68378271 Keywords : crystal structure * electrolyte * nasicon * oxyphosphate * lithium -ion batteries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.999, year: 2014

  13. Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries

    Science.gov (United States)

    Zhang, Jie; Chu, Ruixia; Chen, Yanli; Jiang, Heng; Zhang, Ying; Huang, Nay Ming; Guo, Hang

    2018-03-01

    Binder-free nickel cobaltite on a carbon nanofiber (NiCo2O4@CNF) anode for lithium ion batteries was prepared via a two-step procedure of electrospinning and electrodeposition. The CNF was obtained by annealing electrospun poly-acrylonitrile (PAN) in nitrogen (N2). The NiCo2O4 nanostructures were then grown on the CNF by electrodeposition, followed by annealing in air. Experimental results showed that vertically aligned NiCo2O4 nanosheets had uniformly grown on the surface of the CNF, forming an interconnected network. The NiCo2O4@CNF possessed considerable lithium storage capacity and cycling stability. It exhibited a high reversible capacity of 778 mAhg-1 after 300 cycles at a current density of 0.25 C (1 C = 890 mAg-1) with an average capacity loss rate of 0.05% per cycle. The NiCo2O4@CNF had considerable rate capacities, delivering a capacity of 350 mAhg-1 at a current density of 2.0 C. The outstanding electrochemical performance can be mainly attributed to the following: (1) The nanoscale structure of NiCo2O4 could not only shorten the diffusion path of lithium ions and electrons but also increase the specific surface area, providing more active sites for electrochemical reactions. (2) The CNF with considerable mechanical strength and electrical conductivity could function as an anchor for the NiCo2O4 nanostructure and ensure an efficient electron transfer. (3) The porous structure resulted in a high specific surface area and an effective buffer for the volume changes during the repeated charge-discharge processes. Compared with a conventional hydrothermal method, electrodeposition could significantly simplify the preparation of NiCo2O4, with a shorter preparation period and lower energy consumption. This work provides an alternative strategy to obtain a high performance anode for lithium ion batteries.

  14. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles.

    Science.gov (United States)

    Li, Bingbing; Gao, Xianfeng; Li, Jianyang; Yuan, Chris

    2014-01-01

    Although silicon nanowires (SiNW) have been widely studied as an ideal material for developing high-capacity lithium ion batteries (LIBs) for electric vehicles (EVs), little is known about the environmental impacts of such a new EV battery pack during its whole life cycle. This paper reports a life cycle assessment (LCA) of a high-capacity LIB pack using SiNW prepared via metal-assisted chemical etching as anode material. The LCA study is conducted based on the average U.S. driving and electricity supply conditions. Nanowastes and nanoparticle emissions from the SiNW synthesis are also characterized and reported. The LCA results show that over 50% of most characterized impacts are generated from the battery operations, while the battery anode with SiNW material contributes to around 15% of global warming potential and 10% of human toxicity potential. Overall the life cycle impacts of this new battery pack are moderately higher than those of conventional LIBs but could be actually comparable when considering the uncertainties and scale-up potential of the technology. These results are encouraging because they not only provide a solid base for sustainable development of next generation LIBs but also confirm that appropriate nanomanufacturing technologies could be used in sustainable product development.

  15. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries.

    Science.gov (United States)

    Hu, Chuangang; Xiao, Ying; Zhao, Yang; Chen, Nan; Zhang, Zhipan; Cao, Minhua; Qu, Liangti

    2013-04-07

    Highly nitrogen-doped carbon capsules (hN-CCs) have been successfully prepared by using inexpensive melamine and glyoxal as precursors via solvothermal reaction and carbonization. With a great promise for large scale production, the hN-CCs, having large surface area and high-level nitrogen content (N/C atomic ration of ca. 13%), possess superior crossover resistance, selective activity and catalytic stability towards oxygen reduction reaction for fuel cells in alkaline medium. As a new anode material in lithium-ion battery, hN-CCs also exhibit excellent cycle performance and high rate capacity with a reversible capacity of as high as 1046 mA h g(-1) at a current density of 50 mA g(-1) after 50 cycles. These features make the hN-CCs developed in this study promising as suitable substitutes for the expensive noble metal catalysts in the next generation alkaline fuel cells, and as advanced electrode materials in lithium-ion batteries.

  16. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  17. Synthesis and Characterization of Silicon Nanoparticles Inserted into Graphene Sheets as High Performance Anode Material for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2014-01-01

    Full Text Available Silicon nanoparticles have been successfully inserted into graphene sheets via a novel method combining freeze-drying and thermal reduction. The structure, electrochemical performance, and cycling stability of this anode material were characterized by SEM, X-ray diffraction (XRD, charge/discharge cycling, and cyclic voltammetry (CV. CV showed that the Si/graphene nanocomposite exhibits remarkably enhanced cycling performance and rate performance compared with bare Si nanoparticles for lithium ion batteries. XRD and SEM showed that silicon nanoparticles inserted into graphene sheets were homogeneous and had better layered structure than the bare silicon nanoparticles. Graphene sheets improved high rate discharge capacity and long cycle-life performance. The initial capacity of the Si nanoparticles/graphene keeps above 850 mAhg−1 after 100 cycles at a rate of 100 mAg−1. The excellent cycle performances are caused by the good structure of the composites, which ensured uniform electronic conducting sheet and intensified the cohesion force of binder and collector, respectively.

  18. Partially etched Ti3AlC2 as a promising high capacity Lithium-ion battery anode.

    Science.gov (United States)

    Chen, Xifan; Zhu, Yuanzhi; Zhu, Xiaoquan; Peng, Wenchao; Li, Yang; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin

    2018-06-25

    MXenes, a family of two-dimensional transition-metal carbide and nitride materials, are supposed to be the promising materials in energy storage because of the high electronic conductivity, hydrophilic surfaces and low diffusion barriers. MXenes are generally prepared by removing the "A" elements (A = Al, Si, Sn, etc.) from their corresponding MAX phases by using hydrofluoric acid (HF) and the other etching agents, despite the fact that these "A" elements usually have great volumetric and gravimetric capacities. Herein, we studied the etching progress of Ti3AlC2 and evaluated their anode performance in Lithium-ion batteries. We found that a partially etched sample (0.5h-peTi3C2Tx) showed much higher capacity (160 mA h g-1, 331.6 mA h cm-3 at 1C) when compared with the fully etched Ti3C2Tx (110 mA h g-1, 190.3 mA h cm-3 at 1C). Besides, a 99% capacity retention was observed even after 1000 cycles in the 0.5h-peTi3C2Tx anode. This interesting result can be explained, at least in part, by the alloying of the residue Al element during lithiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    Science.gov (United States)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing

  20. Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ding, Y.; Li, G.R.; Xiao, C.W.; Gao, X.P.

    2013-01-01

    Li 4 Ti 5 O 12 /carbon composites have shown promising high rate capability as anode materials for lithium ion batteries. In this paper, unique effects of graphene in Li 4 Ti 5 O 12 /carbon composites on electrochemical performances are focused by means of comparing Li 4 Ti 5 O 12 /graphene with Li 4 Ti 5 O 12 /conductive carbon black (CCB) and Li 4 Ti 5 O 12 . The investigated anode materials are synthesized by a facile hydrothermal method. The amount of graphene or CCB in the Li 4 Ti 5 O 12 /carbon composites is about 3 wt% measured by thermogravimetric (TG) analysis. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that Li 4 Ti 5 O 12 /graphene consists of small sized Li 4 Ti 5 O 12 nanocrystals supported on graphene nanosheets, while Li 4 Ti 5 O 12 /CCB comprises Li 4 Ti 5 O 12 nanocrystal aggregates coated nearly by graphited carbon. The electrochemical performances of these samples as anode materials for lithium ion batteries are investigated by galvanostatic charge–discharge method. Li 4 Ti 5 O 12 /graphene provides a superior rate capability. At the high current density of 1600 mA g −1 , the reversible capacity after 200 cycles is still more than 120 mAh g −1 , which is about 40% higher than that of Li 4 Ti 5 O 12 /CCB. Cyclic voltammetry (CV) demonstrates that stronger pseudocapacitive effect occurs on Li 4 Ti 5 O 12 /graphene than on Li 4 Ti 5 O 12 /CCB. This derived from the structure features that graphene-supported small Li 4 Ti 5 O 12 nanocrystals provide more surface active sites for the lithium ion insertion/extraction. The strong pseudocapacitive effect is responsible for the improvements of capacity and high-rate capability. Further, electrochemical impedance spectra (EIS) show that Li 4 Ti 5 O 12 /graphene electrode have lower charge transfer resistance and smaller diffusion impedance, indicating the obvious advantages in electrode kinetics over Li 4 Ti 5 O 12 and Li 4 Ti 5 O 12

  1. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs.

    Science.gov (United States)

    Zhang, Ye; Bai, Wenyu; Cheng, Xunliang; Ren, Jing; Weng, Wei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Peng, Huisheng

    2014-12-22

    The construction of lightweight, flexible and stretchable power systems for modern electronic devices without using elastic polymer substrates is critical but remains challenging. We have developed a new and general strategy to produce both freestanding, stretchable, and flexible supercapacitors and lithium-ion batteries with remarkable electrochemical properties by designing novel carbon nanotube fiber springs as electrodes. These springlike electrodes can be stretched by over 300 %. In addition, the supercapacitors and lithium-ion batteries have a flexible fiber shape that enables promising applications in electronic textiles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  3. Rational synthesis of graphene-encapsulated uniform MnMoO4 hollow spheres as long-life and high-rate anodes for lithium-ion batteries.

    Science.gov (United States)

    Wei, Huaixin; Yang, Jun; Zhang, Yufei; Qian, Yong; Geng, Hongbo

    2018-03-29

    In this manuscript, the graphene-encapsulated MnMoO 4 hollow spheres (MnMoO 4 @G) synthesized by an effective strategy were reported. Benefiting from the intriguing hybrid architecture of hollow structure and conductive graphene network, the MnMoO 4 @G composite displays superior electrochemical performance with high specific capacity of 1142 mA h g -1 , high reversible cycling stability of 921 mA h g -1 at a current density of 100 mA g -1 after 70 cycles, and stable rate performance (around 513 mA h g -1 at a current density of 4.0 A g -1 ). The remarkable battery performance can be attributed to the rational design of the architecture, which not only ensures the fast transport of electrons and lithium ions within the electrode material, but also effectively relax the stress induced by the insertion/extraction of lithium ions. This facile synthetic method can extend to other transition metal oxides with large volume excursions and poor electric conductivity and promotes the development of transition metal oxides as high-performance LIB anode material. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries

    International Nuclear Information System (INIS)

    Tang, H.; Xia, X.H.; Zhang, Y.J.; Tong, Y.Y.; Wang, X.L.; Gu, C.D.; Tu, J.P.

    2015-01-01

    Construction of high-capacity anode is highly important for the development of next-generation high-performance lithium ion batteries (LIBs). Herein we fabricate Si/Ag nanowires/reduced graphene oxide (Si/Ag NWs/rGO) integrated composite film by introducing binary conductive networks (Ag NWs and rGO) into Si active materials with the help of a facile vacuum-filtration method. Active Si nanoparticles are homogeneously encapsulated by binary Ag NWs-rGO conductive network, in which Ag NWs are interwoven among the rGO sheets. The electrochemical properties of the integrated Si/Ag NWs/rGO composite film are thoroughly characterized as anode of LIBs. Compared to the Si/rGO composite film, the integrated Si/Ag NWs/rGO composite film exhibits enhanced electrochemical performances with higher capacity, better high-rate capability and cycling stability (1269 mAh g"−"1 at 50 mA g"−"1 up to 50 cycles). The binary conductive network plays a positive role in the enhancement of performance due to its faster ion/electron transfer, and better anti-structure degradation caused by volume expansion during the cycling process.

  5. NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery

    Science.gov (United States)

    Battery Technology News Release: NREL's Advanced Atomic Layer Deposition Enables Lithium-Ion Battery increasingly demanding needs of any battery application. These lithium-ion batteries feature a hybrid solid further customized lithium-ion battery materials for high performance devices by utilizing our patented

  6. Alumina-coated and manganese monoxide embedded 3D carbon derived from avocado as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    rehman, Wasif ur; Xu, Youlong; Du, Xianfeng; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Jin, Yanling; Zhang, Baofeng; Li, Xifei

    2018-07-01

    Derived from avocado fruit, a three dimension (3D) carbon is prepared via a hydrothermal/pyrolysis process followed by embedding with MnO nanoparticles by a wet chemical method and coating with Al2O3 through an atomic layer deposition technique. The obtained material presents a hierarchical structure that MnO nanocrystals wrapped in 3D carbon and then encapsulated in a uniform Al2O3 layer with a thickness of about 5 nm. Benefiting from this hierarchical structure in which 3D carbon offers numerous electronic pathways to enhance the conductivity and Al2O3 nanolayer provide a shelter to keep away from dissolution of Mn4+ and volume changes during charge/discharge process. This material (marked as C/MnO@Al2O3) has exhibited high rate performance and excellent cyclability as an anode for lithium ion batteries. A high specific capacity of about 600 mA h g-1 is achieved at a current density of 1000 mA g-1 and the electrode can still deliver a high specific capacity of about 1165 mA h g-1 at 150 mA g-1 after 100 cycles. These results facilitate a green and high potential of anode materials towards promising devices for advance performance of lithium-ion batteries.

  7. Electrospun single crystalline fork-like K2V8O21 as high-performance cathode materials for lithium-ion batteries

    Science.gov (United States)

    Hao, Pengfei; Zhu, Ting; Su, Qiong; Lin, Jiande; Cui, Rong; Cao, Xinxin; Wang, Yaping; Pan, Anqiang

    2018-06-01

    Single crystalline fork-like potassium vanadate (K2V8O21) has been successfully prepared through electrospinning combined with a subsequent annealing process. The as-obtained K2V8O21 forks show a unique layer-by-layer stacked structure with conductive carbon. When used as cathode materials for lithium-ion batteries, the as-prepared fork-like materials exhibit high specific discharge capacity and excellent cyclic stability. High specific discharge capacity of 200.2 mA h g-1 and 131.5 mA h g-1 can be delivered at the current densities of 50 mA g-1 and 500 mA g-1, respectively. Furthermore, the K2V8O21 electrodes exhibit excellent long-term cycling stability that maintain a capacity of 108.3 mA h g-1 after 300 cycles at 500 mA g-1 with a fading rate of only 0.054% per cycle, revealing their potential applications in next generation high-performance lithium-ion batteries.

  8. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2016-01-01

    Full Text Available A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle, high porosity (69.77%, and super electrolyte compatibility (497%, electrolyte uptake. It had a higher ionic conductivity (13.897 mS·cm−1 than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1 was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries.

  9. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Science.gov (United States)

    Huang, Fenglin; Liu, Wenting; Li, Peiying; Ning, Jinxia; Wei, Qufu

    2016-01-01

    A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle), high porosity (69.77%), and super electrolyte compatibility (497%, electrolyte uptake). It had a higher ionic conductivity (13.897 mS·cm−1) than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1) was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries. PMID:28787873

  10. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Dai, Ruoling; Sun, Weiwei; Wang, Yong

    2016-01-01

    Highlights: • Sn-based metal-organic-framework (MOF) is prepared. • Ultrasmall tin nanodots (2–3 nm) are embedded in nitrogen-doped mesoporous carbon. • The Sn/C composite anode shows high capacity and ultralong cycle life. - Abstract: This work reports a facile metal-organic-framework based approach to synthesize Sn/C composite, in which ultrasmall Sn nanodots with typical size of 2–3 nm are uniformly embedded in the nitrogen-doped porous carbon matrix (denoted as Sn@NPC). The effect of thermal treatment and nitrogen doping are also explored. Owing to the delicate size control and confined volume change within carbon matrix, the Sn@NPC composite can exhibit reversible capacities of 575 mAh g −1 (Sn contribution: 1091 mAh g −1 ) after 500 cycles at 0.2 A g −1 and 507 mAh g −1 (Sn contribution: 1077 mAh g −1 ) after 1500 cycles at 1 A g −1 . The excellent long-life electrochemical stability of the Sn@NPC anode has been mainly attributed to the uniform distribution of ultrasmall Sn nanodots and the highly-conductive and flexible N-doped carbon matrix, which can effectively facilitate lithium ion/electron diffusion, buffer the large volume change and improve the structure stability of the electrode during repetitive cycling with lithium ions.

  11. The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery

    Science.gov (United States)

    Xu, XiaoLong; Qi, CongYu; Hao, ZhenDong; Wang, Hao; Jiu, JinTing; Liu, JingBing; Yan, Hui; Suganuma, Katsuaki

    2018-03-01

    The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g-1 at 0.1C and a discharge specific energy of 141.7 mWh g-1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.[Figure not available: see fulltext.

  12. High-Capacity Micrometer-Sized Li 2 S Particles as Cathode Materials for Advanced Rechargeable Lithium-Ion Batteries

    KAUST Repository

    Yang, Yuan

    2012-09-19

    Li 2S is a high-capacity cathode material for lithium metal-free rechargeable batteries. It has a theoretical capacity of 1166 mAh/g, which is nearly 1 order of magnitude higher than traditional metal oxides/phosphates cathodes. However, Li 2S is usually considered to be electrochemically inactive due to its high electronic resistivity and low lithium-ion diffusivity. In this paper, we discover that a large potential barrier (∼1 V) exists at the beginning of charging for Li 2S. By applying a higher voltage cutoff, this barrier can be overcome and Li 2S becomes active. Moreover, this barrier does not appear again in the following cycling. Subsequent cycling shows that the material behaves similar to common sulfur cathodes with high energy efficiency. The initial discharge capacity is greater than 800 mAh/g for even 10 μm Li 2S particles. Moreover, after 10 cycles, the capacity is stabilized around 500-550 mAh/g with a capacity decay rate of only ∼0.25% per cycle. The origin of the initial barrier is found to be the phase nucleation of polysulfides, but the amplitude of barrier is mainly due to two factors: (a) charge transfer directly between Li 2S and electrolyte without polysulfide and (b) lithium-ion diffusion in Li 2S. These results demonstrate a simple and scalable approach to utilizing Li 2S as the cathode material for rechargeable lithium-ion batteries with high specific energy. © 2012 American Chemical Society.

  13. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    Science.gov (United States)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  14. Constructing Dense SiO x @Carbon Nanotubes versus Spinel Cathode for Advanced High-Energy Lithium-Ion Batteries

    KAUST Repository

    Ming, Hai

    2017-02-09

    A newly designed dense SiOx@carbon nanotubes (CNTs) composite with a high conductivity of 3.5 S cm−1 and tap density of 1.13 g cm−3 was prepared, in which the CNTs were stripped by physical energy crushing and then coated on SiOx nanoparticles. The composite exhibits high capacities of 835 and 687 mAh g−1 at current densities of 100 and 200 mA g−1, which can be finely persevered over 100 cycles. Benefiting from this promising anode, two new full cells of SiOx@CNTs/LiMn2O4 and SiOx@CNTs/LiNi0.5Mn1.5O4 with high energy densities of 2273 and 2747 Wh kganode−1 (i. e. 413 and 500 Wh kgcathode−1), respectively, were successfully assembled and can cycle more than 400 cycles. Even with further cycling at the elevated temperature of 45 °C, the cells can still deliver relatively high capacities of 568 and 465 mAh ganode−1, respectively, over 100 cycles. Such desired high-energy lithium-ion batteries with working voltages over 4.0 V can be widely developed for diverse applications (e. g. in handheld devices, electric vehicles, and hybrid electric vehicles). The easy extension of the presented synthetic strategy and the configuration of high-energy battery system would be significant in materials synthesis and energy-storage devices.

  15. High performance screen printable lithium-ion battery cathode ink based on C-LiFePO4

    International Nuclear Information System (INIS)

    Sousa, R.E.; Oliveira, J.; Gören, A.; Miranda, D.; Silva, M.M.; Hilliou, Loic; Costa, C.M.; Lanceros-Mendez, S.

    2016-01-01

    Highlights: • C-LiFePO 4 paste was been prepared for screen-printing technique. • The inks produced have a Newtonian viscosity of 3 Pa.s for this printing technique. • C-LiFePO 4 inks present a 48.2 mAh.g −1 after 50 cycles at 5C. • This ink is suitable in the development of printed lithium ion batteries. - Abstract: Lithium-ion battery cathodes have been fabricated by screen-printing through the development of C-LiFePO 4 inks. It is shown that shear thinning polymer solutions in N-methyl-2-pyrrolidone (NMP) with Newtonian viscosity above 0.4 Pa s are the best binders for formulating a cathode paste with satisfactory film forming properties. The paste shows an elasticity of the order of 500 Pa and, after shear yielding, shows an apparent viscosity of the order of 3 Pa s for shear rates corresponding to those used during screen-printing. The screen-printed cathode produced with a thickness of 26 μm shows a homogeneous distribution of the active material, conductive additive and polymer binder. The total resistance and diffusion coefficient of the cathode are ∼ 450 Ω and 2.5 × 10 −16 cm 2 s −1 , respectively. The developed cathodes show an initial discharge capacity of 48.2 mAh g −1 at 5C and a discharge value of 39.8 mAh g −1 after 50 cycles. The capacity retention of 83% represents 23% of the theoretical value (charge and/or discharge process in twenty minutes), demonstrating the good performance of the battery. Thus, the developed C-LiFePO 4 based inks allow to fabricate screen-printed cathodes suitable for printed lithium-ion batteries.

  16. High Energy, Long Cycle Life Lithium-ion Batteries for PHEV Application

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Donghai [Pennsylvania State Univ., University Park, PA (United States); Manthiram, Arumugam [Univ. of Texas, Austin, TX (United States); Wang, Chao-Yang [EC Power LLC, State College, PA (United States); Liu, Gao [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zhang, Zhengcheng [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-05-15

    High-loading and high quality PSU Si anode has been optimized and fabricated. The electrochemical performance has been utilized. The PSU Si-graphite anode exhibits the mass loading of 5.8 mg/cm2, charge capacity of 850 mAh/ g and good cycling performance. This optimized electrode has been used for full-cell fabrication. The performance enhancement of Ni-rich materials can be achieved by a diversity of strategies. Higher Mn content and a small amount of Al doping can improve the electrochemical performance by suppressing interfacial side reactions with electrolytes, thus greatly benefiting the cyclability of the samples. Also, surface coatings of Li-rich materials and AlF3 are able to improve the performance stability of Ni-rich cathodes. One kilogram of optimized concentration-gradient LiNi0.76Co0.10Mn0.14O2 (CG) with careful control of composition, morphology and electrochemical performance was delivered to our collaborators. The sample achieved an initial specific capacity close to 190 mA h g-1 at C/10 rate and 180 mA h g-1 at C/3 rate as well as good cyclability in pouch full cells with a 4.4 V upper cut-off voltage at room temperature. Electrolyte additive with Si-N skeleton forms a less resistant SEI on the surface of silicon anode (from PSU) as evidenced by the evolution of the impedance at various lithiation/de-lithiation stages and the cycling data The prelithiation result demonstrates a solution processing method to achieve large area, uniform SLMP coating on well-made anode surface for the prelithiation of lithium-ion batteries. The prelithiation effect with this method is applied both in graphite half cells, graphite/NMC full cells, SiO half cells, SiO/NMC full cells, Si-Graphite half cells and Si-Graphite/NMC full cells with improvements in cycle performance and higher first cycle coulombic efficiency than their corresponding cells without SLMP prelithiation. As to the full

  17. Lithium ion conducting biopolymer electrolyte based on pectin doped with Lithium nitrate

    Science.gov (United States)

    Manjuladevi, R.; Selvin, P. Christopher; Selvasekarapandian, S.; Shilpa, R.; Moniha, V.

    2018-04-01

    The Biopolymer electrolyte based on pectin doped with lithium nitrate of different concentrations have been prepared by solution casting technique. The decrease in crystalline nature of the biopolymer has been identified by XRD analyses. The complex formation between the polymer and the salt has been revealed using FTIR analysis. The ionic conductivity has been explored using A.C. impedance spectroscopy which reveals that the biopolymer containing 30 wt% Pectin: 70wt%LiNO3 has highest ionic conductivity of 3.97 × 10-3 Scm-1.

  18. One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries

    Science.gov (United States)

    Zhang, Fan; Zhang, Ruihan; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin; Yang, Jian; Qian, Yitai; Li, Lifei

    2014-11-01

    Well dispersed rice-like FeCO3 nanoparticles were produced and combined with reduced graphene oxide (RGO) via a one-pot solvothermal route. SEM characterization shows that rice-like FeCO3 nanoparticles are homogeneously anchored on the surface of the graphene nanosheets; the addition of RGO is helpful to form a uniform morphology and reduce the particle size of FeCO3 to nano-grade. As anode materials for lithium-ion batteries, the FeCO3/RGO nanocomposites exhibit significantly improved lithium storage properties with a large reversible capacity of 1345 mA h g-1 for the first cycle and a capacity retention of 1224 mA h g-1 after 50 cycles with a good rate capability compared with pure FeCO3 particles. The superior electrochemical performance of the FeCO3/RGO nanocomposite electrode compared to the pure FeCO3 electrode can be attributed to the well dispersed RGO which enhances the electronic conductivity and accommodates the volume change during the conversion reactions. Our study shows that the FeCO3/RGO nanocomposite could be a suitable candidate for high capacity lithium-ion batteries.

  19. A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Mozhzhukhina, Nataliia; Longinotti, M. Paula; Corti, Horacio R.; Calvo, Ernesto J.

    2015-01-01

    The electrical mobility of LiPF 6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li + ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF 6 ), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF 6 molar conductivity composition dependence for ACN molar fraction (x ACN ) ∼ 0.95, which was not observed for TBAPF 6 . The dependence of the measured Li/Li + couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li + ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO

  20. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Chen, Wufeng; Zhu, Zhiye; Li, Sirong; Chen, Chunhua; Yan, Lifeng

    2012-03-01

    A novel method has been developed to prepare hydrogenated graphene (HG) via a direct synchronized reduction and hydrogenation of graphene oxide (GO) in an aqueous suspension under 60Co gamma ray irradiation at room temperature. GO can be reduced by the aqueous electrons (eaq-) while the hydrogenation takes place due to the hydrogen radicals formed in situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be 5.27 wt% with H/C = 0.76. The yield of the target product is on the gram scale. The as-prepared HHG also shows high performance as an anode material for lithium ion batteries.

  1. Hierarchical SnO2-Graphite Nanocomposite Anode for Lithium-Ion Batteries through High Energy Mechanical Activation

    International Nuclear Information System (INIS)

    Ng, Vincent Ming Hong; Wu, Shuying; Liu, Peijiang; Zhu, Beibei; Yu, Linghui; Wang, Chuanhu; Huang, Hui; Xu, Zhichuan J.; Yao, Zhengjun; Zhou, Jintang; Que, Wenxiu; Kong, Ling Bing

    2017-01-01

    Highlights: •A simple and scalable process to concomitant downsizing to nanoscale, carbon coating, inclusion of voids and conductive network of graphite. •Using tungsten carbide milling media and 80:1 ball to powder ratio, micron SnO 2 particles are comminuted to nanosized SnO 2 crystallites. •Hierarchical structure of carbon-coated SnO2 nanoclusters anchored on thin graphite sheets are prepared. •Impressive reversible capacity of 725 mAh g −1 is achieved by ball milling a mixture of SnO 2 with 20 wt. % graphite for 20 h. •Synthesis parameters such as graphite content and milling time are systematically examined. -- Abstract: Development of novel electrode materials with unique architectural designs is necessary to attain high power and energy density lithium-ion batteries (LIBs). SnO 2 , with high theoretical capacity of 1494 mAh g −1 , is a promising candidate anode material, which has been explored with various strategies, such as dimensional reduction, morphological modifications and composite formation. Unfortunately, most of the SnO 2 -based electrodes are prepared by using complex chemical synthesis methods, which are not feasible to scale up for practical applications. In addition, concomitant irrecoverable initial capacity loss and consequently poor initial Coulombic efficiency still persistently plagued these SnO 2 -based anodes. To overcome hitherto conceived irreversible formation of Li 2 O by conversion reaction, to fully harness its theoretical capacity, this work demonstrates that a hierarchical structured SnO 2 -C nanocomposite with 68.5% initial Coulombic efficiency and reversible capacity of 725 mAh g −1 can be derived from the mixtures of SnO 2 and graphite, by using low cost industrial compatible high energy ball milling activation.

  2. Block copolymer with simultaneous electric and ionic conduction for use in lithium ion batteries

    Science.gov (United States)

    Javier, Anna Esmeralda K; Balsara, Nitash Pervez; Patel, Shrayesh Naran; Hallinan, Jr., Daniel T

    2013-10-08

    Redox reactions that occur at the electrodes of batteries require transport of both ions and electrons to the active centers. Reported is the synthesis of a block copolymer that exhibits simultaneous electronic and ionic conduction. A combination of Grignard metathesis polymerization and click reaction was used successively to synthesize the block copolymer containing regioregular poly(3-hexylthiophene) (P3HT) and poly(ethylene oxide) (PEO) segments. The P3HT-PEO/LiTFSI mixture was then used to make a lithium battery cathode with LiFePO.sub.4 as the only other component. All-solid lithium batteries of the cathode described above, a solid electrolyte and a lithium foil as the anode showed capacities within experimental error of the theoretical capacity of the battery. The ability of P3HT-PEO to serve all of the transport and binding functions required in a lithium battery electrode is thus demonstrated.

  3. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Jiawen Xiong

    2018-04-01

    Full Text Available Highly porous carbon with large surface areas is prepared using cotton as carbon sources which derived from discard cotton balls. Subsequently, the sulfur-nitrogen co-doped carbon was obtained by heat treatment the carbon in presence of thiourea and evaluated as Lithium-ion batteries anode. Benefiting from the S, N co-doping, the obtained S, N co-doped carbon exhibits excellent electrochemical performance. As a result, the as-prepared S, N co-doped carbon can deliver a high reversible capacity of 1,101.1 mA h g−1 after 150 cycles at 0.2 A g−1, and a high capacity of 531.2 mA h g−1 can be observed even after 5,000 cycles at 10.0 A g−1. Moreover, excellently rate capability also can be observed, a high capacity of 689 mA h g−1 can be obtained at 5.0 A g−1. This superior lithium storage performance of S, N co-doped carbon make it as a promising low-cost and sustainable anode for high performance lithium ion batteries.

  4. Polymer-Templated LiFePO4/C Nanonetworks as High-Performance Cathode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Fischer, Michael G; Hua, Xiao; Wilts, Bodo D; Castillo-Martínez, Elizabeth; Steiner, Ullrich

    2018-01-17

    Lithium iron phosphate (LFP) is currently one of the main cathode materials used in lithium-ion batteries due to its safety, relatively low cost, and exceptional cycle life. To overcome its poor ionic and electrical conductivities, LFP is often nanostructured, and its surface is coated with conductive carbon (LFP/C). Here, we demonstrate a sol-gel based synthesis procedure that utilizes a block copolymer (BCP) as a templating agent and a homopolymer as an additional carbon source. The high-molecular-weight BCP produces self-assembled aggregates with the precursor-sol on the 10 nm scale, stabilizing the LFP structure during crystallization at high temperatures. This results in a LFP nanonetwork consisting of interconnected ∼10 nm-sized particles covered by a uniform carbon coating that displays a high rate performance and an excellent cycle life. Our "one-pot" method is facile and scalable for use in established battery production methodologies.

  5. Crystal structure and lithium ion conductivity of A-site deficient perovskites La1/3-xLi3xTaO3

    International Nuclear Information System (INIS)

    Mizumoto, Katsuyoshi; Hayashi, Shinsuke

    1997-01-01

    The crystal structure and lithium ion conductivity of La 1/3-x Li 3x TaO 3 solid solutions with the A-site deficient perovskite structure have been studied. Single phase solid solutions were obtained in the range of x=0 to 1/6. Change from tetragonal to cubic structure and decrease in the lattice volume were observed with increasing the x value. The maximum conductivity obtained was 7 x 10 -3 S·m -1 at x=0.06. The composition-dependence on the carrier concentration was calculated and compared with conductivity data. (author)

  6. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Science.gov (United States)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-04-01

    The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  7. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries.

    Science.gov (United States)

    Liao, Mingna; Zhang, Qilun; Tang, Fengling; Xu, Zhiwei; Zhou, Xin; Li, Youpeng; Zhang, Yali; Yang, Chenghao; Ru, Qiang; Zhao, Lingzhi

    2018-03-22

    The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs) and nanoflowers (CoO-FLs) are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g -1 , while the reversible capacity is maintained at 1776 m Ah g -1 after 80 cycles at a current density of 100 mA h g -1 . The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li⁺ intercalation and extraction reaction as well as buffering the volume expansion.

  8. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mingna Liao

    2018-03-01

    Full Text Available The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs and nanoflowers (CoO-FLs are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g−1, while the reversible capacity is maintained at 1776 m Ah g−1 after 80 cycles at a current density of 100 mA h g−1. The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li+ intercalation and extraction reaction as well as buffering the volume expansion.

  9. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries.

    Science.gov (United States)

    Ha, Jeonghyun; Park, Seung-Keun; Yu, Seung-Ho; Jin, Aihua; Jang, Byungchul; Bong, Sungyool; Kim, In; Sung, Yung-Eun; Piao, Yuanzhe

    2013-09-21

    A composite of modified graphene and LiFePO4 has been developed to improve the speed of charging-discharging and the cycling stability of lithium ion batteries using LiFePO4 as a cathode material. Chemically activated graphene (CA-graphene) has been successfully synthesized via activation by KOH. The as-prepared CA-graphene was mixed with LiFePO4 to prepare the composite. Microscopic observation and nitrogen sorption analysis have revealed the surface morphologies of CA-graphene and the CA-graphene/LiFePO4 composite. Electrochemical properties have also been investigated after assembling coin cells with the CA-graphene/LiFePO4 composite as a cathode active material. Interestingly, the CA-graphene/LiFePO4 composite has exhibited better electrochemical properties than the conventional graphene/LiFePO4 composite as well as bare LiFePO4, including exceptional speed of charging-discharging and excellent cycle stability. That is because the CA-graphene in the composite provides abundant porous channels for the diffusion of lithium ions. Moreover, it acts as a conducting network for easy charge transfer and as a divider, preventing the aggregation of LiFePO4 particles. Owing to these properties of CA-graphene, LiFePO4 could demonstrate enhanced and stably long-lasting electrochemical performance.

  10. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  11. Electrospun N-doped Hierarchical Porous Carbon Nanofiber with Improved Graphitization Degree for High Performance Lithium Ion Capacitor.

    Science.gov (United States)

    Li, Baohua; Shi, Ruiying; Han, Cuiping; Xu, Xiaofu; Qing, Xianying; Xu, Lei; Li, Hongfei; Li, Junqin; Wong, Ching-Ping

    2018-05-14

    Lithium ion capacitor (LIC) has been regarded as a promising device to combine the merits of lithium ion batteries and supercapacitors, which can meet the requirements for both high energy and power density. The development of advanced electrode is the key. Herein, we demonstrate the bottom-up synthesis of activated carbon nanofiber (a-PANF) with hierarchical porous structure and high graphitization degree. Electrospinning is employed to prepare interconnected fiber network with macropores and ferric acetylacetonate is introduced as both mesopore creating agent and graphitic catalyst to increase the graphitization degree. Furthermore, chemical activation enlarges the specific surface area by producing rich micropores. Half cell evaluation of the as-prepared a-PANF displays a discharge capacity of 80 mAh g-1 at 0.1 A g-1 within 2~4.5 V and no capacity fading after 1000 cycles at 2 A g-1, which is significantly higher than conventional activated carbon. Furthermore, the as-assembled LIC with a-PANF cathode and Fe3O4 anode achieves a superior energy density of 124.6 Wh kg-1 at a specific power of 93.8 W kg-1, and remains 103.7 Wh kg-1 at 4687.5 W kg-1, demonstrating the promising application of a-PANF as potential electrode candidates for efficient energy storage systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Zhixin Tai

    2017-07-01

    Full Text Available Engineering design of battery configurations and new battery system development are alternative approaches to achieve high performance batteries. A novel flexible and ultra-light graphite anode is fabricated by simple friction drawing on filter paper with a commercial 8B pencil. Compared with the traditional anode using copper foil as current collector, this innovative current-collector-free design presents capacity improvement of over 200% by reducing the inert weight of the electrode. The as-prepared pencil-trace electrode exhibits excellent rate performance in potassium-ion batteries (KIBs, significantly better than in lithium-ion batteries (LIBs, with capacity retention of 66% for the KIB vs. 28% for the LIB from 0.1 to 0.5 A g−1. It also shows a high reversible capacity of ∼230 mAh g−1 at 0.2 A g−1, 75% capacity retention over 350 cycles at 0.4 A g−1and the highest rate performance (based on the total electrode weight among graphite electrodes for K+ storage reported so far. Keywords: Current-collector-free, Flexible pencil-trace electrode, Potassium-ion battery, Lithium-ion battery, Layer-by-layer interconnected architecture

  13. Cu-SnO2 nanostructures obtained via galvanic replacement control as high performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Park, Duckshin; Hur, Jaehyun; Son, Hyung Bin; Park, Min Sang; Lee, Seung Geol; Kim, Ji Hyeon; Kim, Il Tae

    2018-01-01

    SnO2 has been considered as a promising anode material for lithium ion batteries (LIBs) because of its high theoretical capacity (782 mAh g-1). However, the reaction between lithium ions and Sn causes a large volume change, resulting in the pulverization of the anode, a loss of contact with the current collector, and a deterioration in electrochemical performance. Several strategies have been proposed to mitigate the drastic volume changes to extend the cyclic life of SnO2 materials. Herein, novel composites consisting of Cu and SnO2 were developed via the galvanic replacement reaction. The reaction was carried out at 180 °C for different durations and triethylene glycol was used as the medium solvent. The structure, morphology, and composition of the composites were analyzed by X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The reaction time affected the particle size, which in turn affected the reaction kinetics. Furthermore, the novel nanostructures contained an inactive metal phase (Cu), which acted both as the buffer space against the volume change of Sn during the alloying reaction and as the electron conductor, resulting in a lower impedance of the composites. When evaluated as potential anodes for LIBs, the composite electrodes displayed extraordinary electrochemical performance with a high capacity and Coulombic efficiency, an excellent cycling stability, and a superior rate capability compared to a Sn electrode.

  14. Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode

    KAUST Repository

    Cui, Li-Feng

    2011-01-01

    Silicon, as an alloy-type anode material, has recently attracted lots of attention because of its highest known Li+ storage capacity (4200 mAh/g). But lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Silicon nanostructures such as nanowires and nanotubes can overcome the pulverization problem, however these nano-engineered silicon anodes usually involve very expensive processes and have difficulty being applied in commercial lithium ion batteries. In this study, we report a novel method using amorphous silicon as inorganic glue replacing conventional polymer binder. This inorganic glue method can solve the loss of contact issue in conventional silicon particle anode and enables successful cycling of various sizes of silicon particles, both nano-particles and micron particles. With a limited capacity of 800 mAh/g, relatively large silicon micron-particles can be stably cycled over 200 cycles. The very cheap production of these silicon particle anodes makes our method promising and competitive in lithium ion battery industry. © 2011 The Electrochemical Society.

  15. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries

    Science.gov (United States)

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; DUGNANI, Roberto; Liu, Hezhou

    2016-01-01

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge–discharge cycling and the finding fully described in this manuscript. PMID:27265146

  16. Li{sub 2}FeSiO{sub 4} nanorod as high stability electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chun-Han; Shen, Yu-Wen; Chien, Li-Hsuan; Kuo, Ping-Lin, E-mail: plkuo@mail.ncku.edu.tw [National Cheng Kung University, Department of Chemical Engineering (China)

    2015-01-15

    Li{sub 2}FeSiO{sub 4} (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO{sub 4}, and SiO{sub 2} nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g{sup −1} in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure.

  17. Super high energy density of Li3V2(PO4)3 as cathode materials for lithium ion batteries

    Science.gov (United States)

    Noerochim, Lukman; Amin, Mochammad Karim Al; Susanti, Diah; Triwibowo, Joko

    2018-04-01

    Lithium ion batteries have many advantages such as high energy density, no memory effect, long time cycleability and friendly environment. One type of cathode material that can be developed is Li3V2(PO4)3. In this study has been carried out the synthesis of Li3V2(PO4)3 with a hydrothermal temperature variation of 140, 160 and 180 °C and calcination temperature at 800 °C. SEM images show that the morphology of Li3V2(PO4)3 has irregular flakes with a size between 1-10 µm. CV results show redox reaction occurs in the range between 3 V to 4.8 V with the highest specific discharge capacity of 136 mAh/g for specimen with temperature hydrothermal and calcination are 180 °C and 800 °C. This result demonstrates that Li3V2(PO4)3 has a great potential as cathode material for lithium ion battery.

  18. Li2FeSiO4 nanorod as high stability electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Hsu, Chun-Han; Shen, Yu-Wen; Chien, Li-Hsuan; Kuo, Ping-Lin

    2015-01-01

    Li 2 FeSiO 4 (LFS) nanorods, with a diameter of 80–100 nm and length of 0.8–1.0 μm, were synthesized successfully from a mixture of LiOH, FeSO 4 , and SiO 2 nanoparticles via a simple hydrothermal process. The secondary structure with micro-sized bundles of nanorods was developed with high crystallinity under the hydrothermal condition of 180 °C for 72 h. Then, sucrose, as carbon source, was coated and carbonized on the surface of the LFS nanorods to fabricate LFS/C nanorod composite. The resulting LFS/C nanorod composite was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and surface area measurements. When used as the cathode materials for lithium-ion battery, the electrochemical performance of the LFS/C nanorod material delivers discharge capacities of 156 mAh g −1 in the voltage window of 1.8−4.7 V and also demonstrates good cycle stability when it is cycled between 1.8 and 4.1 V. In short, superior electrochemical properties could be caused by the short lithium-ion diffusion path of its nanorod structure

  19. Interconnected α-Fe2O3 nanosheet arrays as high-performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cai, Dandan; Li, Dongdong; Ding, Liang-Xin; Wang, Suqing; Wang, Haihui

    2016-01-01

    The electrode materials with structure stability and binder-free are urgently required for improving the electrochemical performance of lithium-ion batteries. In this work, interconnected α-Fe 2 O 3 nanosheet arrays directly grown on Ti foil were fabricated via a facile galvanostatic electrodeposition method followed by thermal treatment. The as-prepared α-Fe 2 O 3 has an open network structure constituted of interconnected nanosheets and can be directly used as integrated electrodes for lithium-ion batteries. The α-Fe 2 O 3 nanosheet arrays exhibit a high reversible capacity of 986.3 mAh g −1 at a current density of 100 mA g −1 . Moreover, a reversible capacity of ca. 425.9 mAh g −1 is achieved even at a superhigh current density of 10 A g −1 , which is higher than the theoretical capacity of commercially used graphite. The excellent performance could be attributed to the efficient electron transport, the large electrode/electrolyte interfaces and the good accommodations for volume expansion from the interconnected nanosheet arrays structure.

  20. Versatile Coating of Lithium Conductive Li2TiF6 on Over-lithiated Layered Oxide in Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Choi, Wonchang; Benayard, Anass; Park, Jin-Hwan; Park, Junho; Doo, Seok-Gwang; Mun, Junyoung

    2014-01-01

    Highlights: • Li 2 TiF 6 coating was designed to grow surface lithium conductivity and stability. • We conducted an easy and versatile Li 2 TiF 6 lithium conductive coating on cathode. • The coating was performed very simply by ambient-temperature co-precipitation. • After the coating, rate capability, cycleability and thermal stability improved. - Abstract: We demonstrate an easy and versatile approach to modify a cathode-surface with a highly lithium–ion conductive layer by coating it with Li 2 TiF 6 . The thin and homogeneous Li 2 TiF 6 coating is introduced onto an over-lithiated layered oxide (OLO, namely Li 1.17 Ni 0.17 Co 0.1 Mn 0.56 O 2 ) surface via simple co-precipitation at ambient temperature by using Li 2 CO 3 and H 2 TiF 6 aqueous solutions. The lithium–conductive fluoride coating is expected to effectively suppress the undesired electrochemical and thermal interfacial reactions involving the OLO, which is critical in improving cycle performance and thermal stability. After Li 2 TiF 6 surface modification, the coated OLO materials showed high rate capability as well as long cyclability and improved thermal stability. The crystalline structure and surface microstructure of the prepared OLOs were investigated by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Ultimately, the performances of the assembled lithium ion batteries were thoroughly investigated by electrochemical methods and thermal analysis

  1. Preparation and characterization of conducting polyaniline-coated LiVPO4F nanocrystals with core-shell structure and its application in lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan, Haiyan; Wu, Xinming; Li, Yongfei

    2015-01-01

    Highlights: • Conducting PANI-coated LiVPO 4 F has been firstly prepared and investigated. • The unique core-shell structure is helpful for the performance of LiVPO 4 F/PANI. • PANI can enhance the electronic conductivity and increase the lithium diffusion coefficient. • LiVPO 4 F/PANI nanocomposite exhibits superior capacity and cycle stability. - Abstract: In this paper, the electrochemical performance of the pure LiVPO 4 F electrode is significantly improved by coating it with the conducting polyaniline via sol-gel method followed by a self-assembly process. X-ray diffraction (XRD) results indicate that the as-prepared sample crystallized in a triclinic LiVPO 4 F phase. Scanning and transmission electron microscopy images show that the particle size of the composite is about hundreds of nanometer and the conducting layer of polyaniline is uniformly coated on the surface of LiVPO 4 F particles. Electrochemical tests reveal that the polyaniline-coated LiVPO 4 F composite exhibits superior capacity and cycle stability, delivering an initial discharge capacity of 149.3 mAh g −1 at 0.1 C in the voltage range of 3.0–4.5 V. Even at high current rates, it can still present discharge capacities of 146.7, 140.1, 131.9 and 121.5 mAh g −1 at 0.2, 1, 2 and 5 C, respectively. The superior electrochemical performance of the electrode could be attributed to the uniform conducting polymer layer, which improves the electronic conductivity and Li-ions diffusion of LiVPO 4 F. Therefore, it can be drawn a conclusion that the remarkable electrochemical performance of the polyaniline-coated LiVPO 4 F makes this 4 V-class electrode a promising alternative for next-generation lithium-ion batteries.

  2. Freeze-drying synthesis of three-dimensional porous LiFePO{sub 4} modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Xiaofeng; Zhou, Yingke, E-mail: zhouyk888@hotmail.com; Song, Yijie

    2017-04-01

    Highlights: • Three-dimensional porous LiFePO{sub 4}/N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO{sub 4} electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO{sub 4}/N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO{sub 4} modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO{sub 4} to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  3. Freeze-drying synthesis of three-dimensional porous LiFePO4 modified with well-dispersed nitrogen-doped carbon nanotubes for high-performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Tu, Xiaofeng; Zhou, Yingke; Song, Yijie

    2017-01-01

    Highlights: • Three-dimensional porous LiFePO 4 /N-CNTs is synthesized by a freeze-drying method. • The N-CNTs conductive network enhances the electron transport within the LiFePO 4 electrode. • The continuous pores accelerate the diffusion of lithium ions. • LiFePO 4 /N-CNTs demonstrates an excellent electrochemical Li-insertion performance. - Abstract: The three-dimensional porous LiFePO 4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO 4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.

  4. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Manfred Kerner

    2018-02-01

    Full Text Available Promising electrochemical and dynamical properties, as well as high thermal stability, have been the driving forces behind application of ionic liquids (ILs and polymerized ionic liquids (PILs as electrolytes for high-temperature lithium-ion batteries (HT-LIBs. Here, several ternary lithium-salt/IL/PIL electrolytes (PILel have been investigated for synergies of having both FSI and TFSI anions present, primarily in terms of physico-chemical properties, for unique application in HT-LIBs operating at 80 °C. All of the electrolytes tested have low Tg and are thermally stable ≥100 °C, and with TFSI as the exclusive anion the electrolytes (set A have higher thermal stabilities ≥125 °C. Ionic conductivities are in the range of 1 mS/cm at 100 °C and slightly higher for set A PILel, which, however, have lower oxidation stabilities than set B PILel with both FSI and TFSI anions present: 3.4–3.7 V vs. 4.2 V. The evolution of the interfacial resistance increases for all PILel during the first 40 h, but are much lower for set B PILel and generally decrease with increasing Li-salt content. The higher interfacial resistances only influence the cycling performance at high C-rates (1 C, where set B PILel with high Li-salt content performs better, while the discharge capacities at the 0.1 C rate are comparable. Long-term cycling at 0.5 C, however, shows stable discharge capacities for 100 cycles, with the exception of the set B PILel with high Li-salt content. Altogether, the presence of both FSI and TFSI anions in the PILel results in lower ionic conductivities and decreased thermal stabilities, but also higher oxidation stabilities and reduced interfacial resistances and, in total, result in an improved rate capability, but compromised long-term capacity retention. Overall, these electrolytes open for novel designs of HT-LIBs.

  5. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency

    Science.gov (United States)

    Zhang, Lifeng; Song, Jiajia; Liu, Yi; Yuan, Xiaoyan; Guo, Shouwu

    2018-03-01

    Developing high energy storage lithium ion batteries (LIBs) using manganese oxides as anodes is an attractive challenge due to their high theoretical capacity and abundant resources. However, the manganese oxides anodes still suffer from the low initial Coulombic efficiency and poor rate performance. Herein, we demonstrate that nano-sized morphological engineering is a facile and effective strategy to improve the electrochemical performance of the manganese dioxide (MnO2) for LIBs. The tailored MnO2 nanoparticles (NPs) exhibit high reversible capacity (1095 mAh g-1 at 100 mA g-1), high initial Coulombic efficiency (94.5%) and good rate capability (464 mAh g-1 at 2000 mA g-1). The enhanced electrochemical performance of MnO2 NPs can be attributed to the presences of numerous electrochemically active sites and interspaces among the NPs.

  6. The characterization of secondary lithium-ion battery degradation when operating complex, ultra-high power pulsed loads

    Science.gov (United States)

    Wong, Derek N.

    The US Navy is actively developing all electric fleets, raising serious questions about what is required of onboard power supplies in order to properly power the ship's electrical systems. This is especially relevant when choosing a viable power source to drive high power propulsion and electric weapon systems in addition to the conventional loads deployed aboard these types of vessels. Especially when high pulsed power loads are supplied, the issue of maintaining power quality becomes important and increasingly complex. Conventionally, a vessel's electrical power is generated using gas turbine or diesel driven motor-generator sets that are very inefficient when they are used outside of their most efficient load condition. What this means is that if the generator is not being utilized continuously at its most efficient load capacity, the quality of the output power may also be effected and fall outside of the acceptable power quality limits imposed through military standards. As a solution to this potential problem, the Navy has proposed using electrochemical storage devices since they are able to buffer conventional generators when the load is operating below the generator's most efficient power level or able to efficiently augment a generator when the load is operating in excess of the generator's most efficient power rating. Specifically, the US Navy is interested in using commercial off-the-shelf (COTS) lithium-ion batteries within an intelligently controlled energy storage module that could act as either a prime power supply for on-board pulsed power systems or as a backup generator to other shipboard power systems. Due to the unique load profile of high-rate pulsed power systems, the implementation of lithium-ion batteries within these complex systems requires them to be operated at very high rates and the effects these things have on cell degradation has been an area of focus. There is very little published research into the effects that high power transient

  7. Silver-nickel oxide core-shell nanoflower arrays as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhao, Wenjia; Du, Ning; Zhang, Hui; Yang, Deren

    2015-07-01

    We demonstrate the synthesis of Ag-NiO core-shell nanoflower arrays via a one-step solution-immersion process and subsequent RF-sputtering method. The aligned Ag nanoflower arrays on copper substrate are prepared by a facile displacement reaction in absence of any surfactant at a mild temperature. When used as anode materials for lithium-ion batteries, the Ag-NiO core-shell nanoflower arrays show better cycling performance and higher capacity than the planar NiO electrodes. The improved performance should be attributed to the core-shell structures that can enhance the conductivity and accommodate the volume change during the charge-discharge process.

  8. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo₂O₄ nanoflakes electrodes.

    Science.gov (United States)

    Mohamed, Saad Gomaa; Chen, Chih-Jung; Chen, Chih Kai; Hu, Shu-Fen; Liu, Ru-Shi

    2014-12-24

    A successive preparation of FeCo2O4 nanoflakes arrays on nickel foam substrates is achieved by a simple hydrothermal synthesis method. After 170 cycles, a high capacity of 905 mAh g(-1) at 200 mA g(-1) current density and very good rate capabilities are obtained for lithium-ion battery because of the 2D porous structures of the nanoflakes arrays. The distinctive structural features provide the battery with excellent electrochemical performance. The symmetric supercapacitor on nonaqueous electrolyte demonstrates high specific capacitance of 433 F g(-1) at 0.1 A g(-1) and 16.7 F g(-1) at high scan rate of 5 V s(-1) and excellent cyclic performance of 2500 cycles of charge-discharge cycling at 2 A g(-1) current density, revealing excellent long-term cyclability of the electrode even under rapid charge-discharge conditions.

  9. Peapod-like Li3 VO4 /N-Doped Carbon Nanowires with Pseudocapacitive Properties as Advanced Materials for High-Energy Lithium-Ion Capacitors.

    Science.gov (United States)

    Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan

    2017-07-01

    Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li 3 VO 4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li 3 VO 4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g -1 at 0.1 A g -1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li 3 VO 4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li 3 VO 4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg -1 at a power density of 532 W kg -1 , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Science.gov (United States)

    Feng, Jinpeng; Wang, Youlan

    2016-12-01

    An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO4. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO4 is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO4@B0.4-C can reach 164.1 mAh g-1 at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g-1). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g-1 and can be maintained at 124.5 mAh g-1 after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO4@B-C composite for high-performance lithium-ion batteries.

  11. Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Zhi-Wei; Wen, Tao; Liang, Kuang; Jiang, Yi-Fan; Zhou, Xiao; Shen, Cong-Cong; Xu, An-Wu

    2017-02-01

    As the ever-growing demand for high-performance power sources, lithium-ion batteries with high storage capacities and outstanding rate performance have been widely considered as a promising storage device. In this work, starting with metal-organic frameworks, we have developed a facile approach to the synthesis of hybrid Fe 3 O 4 /VO x hollow microboxes via the process of hydrolysis and ion exchange and subsequent calcination. In the constructed architecture, the hollow structure provides an efficient lithium ion diffusion pathway and extra space to accommodate the volume expansion during the insertion and extraction of Li + . With the assistance of carbon coating, the obtained Fe 3 O 4 /VO x @C microboxes exhibit excellent cyclability and enhanced rate performance when employed as an anode material for lithium-ion batteries. As a result, the obtained Fe 3 O 4 /VO x @C delivers a high Coulombic efficiency (near 100%) and outstanding reversible specific capacity of 742 mAh g -1 after 400 cycles at a current density of 0.5 A g -1 . Moreover, a remarkable reversible capacity of 556 mAh g -1 could be retained even at a current density of 2 A g -1 . This study provides a fundamental understanding for the rational design of other composite oxides as high-performance electrode materials for lithium-ion batteries.

  12. Charge Localization in the Lithium Iron Phosphate Li3Fe2(PO4)3at High Voltages in Lithium-Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza; Christiansen, Ane Sælland; Loftager, Simon

    2015-01-01

    Possible changes in the oxidation state of the oxygen ion in the lithium iron phosphate Li3Fe2(PO4)3 at high voltages in lithium-ion (Li-ion) batteries are studied using experimental and computational analysis. Results obtained from synchrotron-based hard X-ray photoelectron spectroscopy...

  13. Mesoporous Silicon Sponge as an Anti-Pulverization Structure for High-Performance Lithium-ion Battery Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolin; Gu, Meng; Hu, Shenyang Y.; Kennard, Rhiannon; Yan, Pengfei; Chen, Xilin; Wang, Chong M.; Sailor, Michael J.; Zhang, Jiguang; Liu, Jun

    2014-07-08

    Nanostructured silicon is a promising anode material for high performance lithium-ion batteries, yet scalable synthesis of such materials, and retaining good cycling stability in high loading electrode remain significant challenges. Here, we combine in-situ transmission electron microscopy and continuum media mechanical calculations to demonstrate that large (>20 micron) mesoporous silicon sponge (MSS) prepared by the scalable anodization method can eliminate the pulverization of the conventional bulk silicon and limit particle volume expansion at full lithiation to ~30% instead of ~300% as observed in bulk silicon particles. The MSS can deliver a capacity of ~750 mAh/g based on the total electrode weight with >80% capacity retention over 1000 cycles. The first-cycle irreversible capacity loss of pre-lithiated MSS based anode is only <5%. The insight obtained from MSS also provides guidance for the design of other materials that may experience large volume variation during operations.

  14. Random oriented hexagonal nickel hydroxide nanoplates grown on graphene as binder free anode for lithium ion battery with high capacity

    Science.gov (United States)

    Du, Yingjie; Ma, Hu; Guo, Mingxuan; Gao, Tie; Li, Haibo

    2018-05-01

    In this work, two-step method has been employed to prepare random oriented hexagonal hydroxide nanoplates on graphene (Ni(OH)2@G) as binder free anode for lithium ion battery (LIB) with high capacity. The morphology, microstructure, crystal phase and elemental bonding have been characterized. When evaluated as anode for LIB, the Ni(OH)2@G exhibited high initial discharge capacity of 1318 mAh/g at the current density of 50 mA/g. After 80 cycles, the capacity was maintained at 834 mAh/g, implying 63.3% remaining. Even the charge rate was increased to 2000 mA/g, an impressive capacity of 141 mAh/g can be obtained, indicating good rate capability. The superior LIB behavior of Ni(OH)2@G is ascribed to the excellent combination between Ni(OH)2 nanoplates and graphene via both covalent chemical bonding and van der Waals interactions.

  15. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Peichao, E-mail: lianpeichao@126.com [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jingyi [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Cai, Dandan; Liu, Guoxue [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yingying [Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Haihui, E-mail: hhwang@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2014-08-01

    Highlights: • Porous nano-sized Sn@C/graphene electrode material was designed and prepared. • The preparation method presented here can avoid the agglomeration of nanoparticles. • The prepared Sn@C/graphene electrode material exhibits outstanding cyclability. - Abstract: Tin is a promising high-capacity anode material for lithium-ion batteries, but it usually suffers from the problem of poor cycling stability due to the large volume change during the charge–discharge process. In this article, porous nano-sized Sn@C/graphene electrode material with three-dimensional carbon network was designed and prepared. Reducing the size of the Sn particles to nanoscale can mitigate the absolute strain induced by the large volume change during lithiation–delithiation process, and retard particle pulverization. The porous structure can provide a void space, which helps to accommodate the volume changes of the Sn nanoparticles during the lithium uptake-release process. The carbon shell can avoid the aggregation of the Sn nanoparticles on the same piece of graphene and detachment of the pulverized Sn particles during the charge–discharge process. The 3D carbon network consisted of graphene sheets and carbon shells can not only play a structural buffering role in minimizing the mechanical stress caused by the volume change of Sn, but also keep the overall electrode highly conductive during the lithium uptake-release process. As a result, the as-prepared Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries exhibited outstanding cyclability. The reversible specific capacity is almost constant from the tenth cycle to the fiftieth cycle, which is about 600 mA h g{sup −1}. The strategy presented in this work may be extended to improve the cycle performances of other high-capacity electrode materials with large volume variations during charge–discharge processes.

  16. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  17. Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yue, Lu; Zhang, Wenhui; Yang, Jingfeng; Zhang, Lingzhi

    2014-01-01

    A novel Si/porous-C composite with buffering voids was prepared by the co-assembly of phenol-formaldehyde resin, SiO 2 and Si nanoparticles, followed by a carbonizing process and subsequent removal of SiO 2 template. Si nanoparticle was coated with a layer of porous carbon shell with rationally designed void in between which provides the accommodating space for the volume change of Si over cycling. The as-prepared composite electrode exhibited good electrochemical performances as an anode material in lithium-ion cells, showing a stable reversible capacity of 980 mAh g −1 over 80 cycles with small capacity fade of 0.17%/cycle and high rate capability (721 mAh g −1 at 2000 mA g −1 )

  18. Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance

    International Nuclear Information System (INIS)

    Li Mengyuan; Liu Chunling; Shi Meirong; Dong Wensheng

    2011-01-01

    Nanostructure Sn-Co-C composites with different compositions are synthesized by a simple solution polymerization using inexpensive raw materials followed by pyrolysis in nitrogen atmosphere. The nanostructure Sn-Co-C composites are characterized using various analytic techniques. The results show that the electrochemical performances of the composites are strongly dependent on their structure and composition. Among these composites the Sn-Co-C-1 with a weight composition of Sn 0.31 Co 0.09 C 0.6 exhibits high reversible capacity and excellent cycleability when used as an anode for rechargeable lithium ion batteries. This composite is composed of SnCo 2 , SnCo, Sn and amorphous carbon, and the nanoparticles of SnCo 2 , SnCo and Sn are uniformly dispersed into the amorphous carbon matrix, the average diameter of these metal nanoparticles is 8.44 nm.

  19. Novel graphene papers with sporadic alkyl brushes on the basal plane as a high-capacity flexible anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Oh, Kyung Min; Cho, Sung-Woo; Kim, Gyeong-Ok; Ryu, Kwang-Sun; Jeong, Han Mo

    2014-01-01

    Graphene paper that exhibits an excellent stabilized capacity, as high as 1300 mAh g −1 at a current rate of 60 mA g −1 , as a lithium ion battery anode is fabricated and evaluated. The few-layer graphene used to make the graphene paper is prepared via the thermal reduction of graphite oxide. The graphene is then modified by a novel method utilizing inherent defects, namely epoxy groups, on the graphene as active sites for a reaction with methanol, 1-butanol, 1-hexanol, and 1-octanol. The density values and X-ray diffraction patterns obtained for the graphene paper demonstrate that the alkyl brushes on the graphene sheets expand the d-spacing and hinder close restacking of the sheets, thereby inducing the formation of extra cavities within the paper. This loose packing due to the alkyl brushes increases sensitively as the alkyl chain length of the alcohol becomes longer. The lithium ion insertion capacity of a graphene paper electrode at the first cycle also increases with the alkyl chain length. However, fading of the capacity at early charge/discharge cycles is accelerated by the modification process because of electrolyte penetration into the gallery and the acceleration of protective solid electrolyte interface film formation due to looser packing. The paper composed of graphene modified with 1-butanol rather than shorter or longer alcohols exhibits the best reversible storage capacity, more than two-fold higher when compared to that of pristine graphene paper, due to a compromise between two conflicting effects on the reversible storage capacity by long alkyl brushes. The tensile properties and electrical conductivity of the graphene papers are also examined

  20. Nuclear spectroscopy with lithium ions

    International Nuclear Information System (INIS)

    Heiser, C.

    1977-02-01

    A survey of the state of nuclear spectroscopy with lithium ions is given. Proceeding from the physical and nuclear properties the specific topics arising by the acceleration of these ions are discussed. The results obtained from measurements of excitation functions of different lithium reactions, particularly of compound reactions, with several target nuclei are summarized. Besides compound reactions direct reactions are important, especially transfer reactions, elastic and inelastic scattering and exchange reactions. The results on high spin states obtained by in-beam gamma-spectroscopy are discussed in detail. Finally the possibilities are considered for accelerating lithium ions in the cyclotron U-120 and in the tandem generator EGP-10 of the ZfK. (author)

  1. High Rate and Stable Li-Ion Insertion in Oxygen-Deficient LiV3O8 Nanosheets as a Cathode Material for Lithium-Ion Battery.

    Science.gov (United States)

    Song, Huanqiao; Luo, Mingsheng; Wang, Aimei

    2017-01-25

    Low performance of cathode materials has become one of the major obstacles to the application of lithium-ion battery (LIB) in advanced portable electronic devices, hybrid electric vehicles, and electric vehicles. The present work reports a versatile oxygen-deficient LiV 3 O 8 (D-LVO) nanosheet that was synthesized successfully via a facile oxygen-deficient hydrothermal reaction followed by thermal annealing in Ar. When used as a cathode material for LIB, the prepared D-LVO nanosheets display remarkable capacity properties at various current densities (a capacity of 335, 317, 278, 246, 209, 167, and 133 mA h g -1 at 50, 100, 200, 500, 1000, 2000, and 4000 mA g -1 , respectively) and excellent lithium-ion storage stability, maintaining more than 88% of the initial reversible capacity after 200 cycles at 1000 mA g -1 . The outstanding electrochemical properties are believed to arise largely from the introduction of tetravalent V (∼15% V 4+ ) and the attendant oxygen vacancies into LiV 3 O 8 nanosheets, leading to intrinsic electrical conductivity more than 1 order of magnitude higher and lithium-ion diffusion coefficient nearly 2 orders of magnitude higher than those of LiV 3 O 8 without detectable V 4+ (N-LVO) and thus contributing to the easy lithium-ion diffusion, rapid phase transition, and the excellent electrochemical reversibility. Furthermore, the more uniform nanostructure, as well as the larger specific surface area of D-LVO than N-LVO nanosheets may also improve the electrolyte penetration and provide more reaction sites for fast lithium-ion diffusion during the discharge/charge processes.

  2. Highly-crystalline ultrathin Li4Ti5O12 nanosheets decorated with silver nanocrystals as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Xu, G. B.; Li, W.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, Paul K.

    2015-02-01

    A novel composite of highly-crystalline ultrathin Li4Ti5O12 (LTO) nanosheets and Ag nanocrystals (denoted as LTO NSs/Ag) as an anode material for Li-ion batteries (LIBs) is prepared by hydrothermal synthesis, post calcination and electroless deposition. The characterizations of structure and morphology reveal that the LTO nanosheets have single-crystal nature with a thickness of about 10 nm and highly dispersed Ag nanocrystals have an average diameter of 5.8 nm. The designed LTO NSs/Ag composite takes advantage of both components, thereby providing large contact area between the electrolyte and electrode, low polarization of voltage difference, high electrical conductivity and lithium ion diffusion coefficient during electrochemical processes. The evaluation of its electrochemical performance demonstrates that the prepared LTO NSs/Ag composite has superior lithium storage performance. More importantly, this unique composite has an ability to deliver high reversible capacities with superlative cyclic capacity retention at different current rates, and exhibit excellent high-rate performance at a current rate as high as 30 C. Our results improve the current performance of LTO based anode material for LIBs.

  3. Flexible Aqueous Lithium-Ion Battery with High Safety and Large Volumetric Energy Density.

    Science.gov (United States)

    Dong, Xiaoli; Chen, Long; Su, Xiuli; Wang, Yonggang; Xia, Yongyao

    2016-06-20

    A flexible and wearable aqueous lithium-ion battery is introduced based on spinel Li1.1 Mn2 O4 cathode and a carbon-coated NASICON-type LiTi2 (PO4 )3 anode (NASICON=sodium-ion super ionic conductor). Energy densities of 63 Wh kg(-1) or 124 mWh cm(-3) and power densities of 3 275 W kg(-1) or 11.1 W cm(-3) can be obtained, which are seven times larger than the largest reported till now. The full cell can keep its capacity without significant loss under different bending states, which shows excellent flexibility. Furthermore, two such flexible cells in series with an operation voltage of 4 V can be compatible with current nonaqueous Li-ion batteries. Therefore, such a flexible cell can potentially be put into practical applications for wearable electronics. In addition, a self-chargeable unit is realized by integrating a single flexible aqueous Li-ion battery with a commercial flexible solar cell, which may facilitate the long-time outdoor operation of flexible and wearable electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Lithium iron phosphate/carbon nanocomposite film cathodes for high energy lithium ion batteries

    International Nuclear Information System (INIS)

    Liu, Yanyi; Liu, Dawei; Zhang, Qifeng; Yu, Danmei; Liu, Jun; Cao, Guozhong

    2011-01-01

    This paper reports sol-gel derived nanostructured LiFePO4/carbon nanocomposite film cathodes exhibiting enhanced electrochemical properties and cyclic stabilities. LiFePO4/carbon films were obtained by spreading sol on Pt coated Si wafer followed by ambient drying overnight and annealing/pyrolysis at elevated temperature in nitrogen. Uniform and crack-free LiFePO4/carbon nanocomposite films were readily obtained and showed olivine phase as determined by means of X-Ray Diffractometry. The electrochemical characterization revealed that, at a current density of 200 mA/g (1.2 C), the nanocomposite film cathodes demonstrated an initial lithium-ion intercalation capacity of 312 mAh/g, and 218 mAh/g after 20 cycles, exceeding the theoretical storage capacity of conventional LiFePO4 electrode. Such enhanced Li-ion intercalation performance could be attributed to the nanocomposite structure with fine crystallite size below 20 nm as well as the poor crystallinity which provides a partially open structure allowing easy mass transport and volume change associated with Li-ion intercalation. Moreover the surface defect introduced by carbon nanocoating could also effectively facilitate the charge transfer and phase transitions.

  5. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.

    Science.gov (United States)

    Han, Hyungkyu; Song, Taeseup; Lee, Eung-Kwan; Devadoss, Anitha; Jeon, Yeryung; Ha, Jaehwan; Chung, Yong-Chae; Choi, Young-Min; Jung, Yeon-Gil; Paik, Ungyu

    2012-09-25

    Titanium dioxide (TiO(2)) is one of the most promising anode materials for lithium ion batteries due to low cost and structural stability during Li insertion/extraction. However, its poor rate capability limits its practical use. Although various approaches have been explored to overcome this problem, previous reports have mainly focused on the enhancement of both the electronic conductivity and the kinetic associated with lithium in the composite film of active material/conducting agent/binder. Here, we systematically explore the effect of the contact resistance between a current collector and a composite film of active material/conducting agent/binder on the rate capability of a TiO(2)-based electrode. The vertically aligned TiO(2) nanotubes arrays, directly grown on the current collector, with sealed cap and unsealed cap, and conventional randomly oriented TiO(2) nanotubes electrodes were prepared for this study. The vertically aligned TiO(2) nanotubes array electrode with unsealed cap showed superior performance with six times higher capacity at 10 C rate compared to conventional randomly oriented TiO(2) nanotubes electrode with 10 wt % conducting agent. On the basis of the detailed experimental results and associated theoretical analysis, we demonstrate that the reduction of the contact resistance between electrode and current collector plays an important role in improving the electronic conductivity of the overall electrode system.

  6. Perfluoroalkyl-substituted ethylene carbonates: Novel electrolyte additives for high-voltage lithium-ion batteries

    Science.gov (United States)

    Zhu, Ye; Casselman, Matthew D.; Li, Yan; Wei, Alexander; Abraham, Daniel P.

    2014-01-01

    A new family of polyfluoroalkyl-substituted ethylene carbonates is synthesized and tested as additives in lithium-ion cells containing EC:EMC + LiPF6-based electrolyte. The influence of these compounds is investigated in Li1.2Ni0.15Mn0.55Co0.1O2//graphite cells via a combination of galvanostatic cycling and electrochemical impedance spectroscopy (EIS) tests. Among the four additives studied in this work (4-(trifluoromethyl)-1,3-dioxolan-2-one (TFM-EC), 4-(perfluorobutyl)-1,3-dioxolan-2-one (PFB-EC), 4-(perfluorohexyl)-1,3-dioxolan-2-one (PFH-EC), and 4-(perfluorooctyl)-1,3-dioxolan-2-one (PFO-EC)), small amounts (0.5 wt%) of PFO-EC is found to be most effective in lessening cell performance degradation during extended cycling. Linear sweep voltammetry (LSV), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy are used to further characterize the effects of PFO-EC on the positive and negative electrodes. LSV data from the electrolyte, and XPS analyses of electrodes harvested after cycling, suggest that PFO-EC is oxidized on the cathode forming surface films that slow electrode/cell impedance rise. Differential capacity (dQ/dV) plots from graphite//Li cells suggest that PFO-EC is involved in solid electrolyte interphase (SEI) formation. Raman data from anodes after cycling suggest that structural disordering of graphite is reduced by the addition of PFO-EC, which may explain the improved cell capacity retention.

  7. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering

    OpenAIRE

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-01-01

    Abstract: Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delit...

  8. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage

    Science.gov (United States)

    Shi, Yongzheng; Yang, Dongzhi; Yu, Ruomeng; Liu, Yaxin; Hao, Shu-Meng; Zhang, Shiyi; Qu, Jin; Yu, Zhong-Zhen

    2018-04-01

    To satisfy increasing power demands of mobile devices and electric vehicles, rationally designed electrodes with short diffusion length are highly imperative to provide highly efficient ion and electron transport paths for high-rate and long-life lithium-ion batteries. Herein, binder-free electrodes with the robust three-dimensional conductive network are prepared by assembling ultralong TiO2 nanowires with reduced graphene oxide (RGO) sheets for high-performance lithium-ion storage. Ultralong TiO2 nanowires are synthesized and used to construct an interconnecting network that avoids the use of inert auxiliary additives of polymer binders and conductive agents. By thermal annealing, a small amount of anatase is generated in situ in the TiO2(B) nanowires to form abundant TiO2(B)/anatase interfaces for accommodating additional lithium ions. Simultaneously, RGO sheets efficiently enhance the electronic conductivity and enlarge the specific surface area of the TiO2/RGO nanocomposite. The robust 3D network in the binder-free electrode not only effectively avoids the agglomeration of TiO2/RGO components during the long-term charging/discharging process, but also provides direct and fast ion/electron transport paths. The binder-free electrode exhibits a high reversible capacity of 259.9 mA h g-1 at 0.1 C and an excellent cycling performance with a high reversible capacity of 111.9 mA h g-1 at 25 C after 5000 cycles.

  9. Porous Carbon Spheres Doped with Fe_3C as an Anode for High-Rate Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Chen, Shouhui; Wu, Jiafeng; Zhou, Rihui; Zuo, Li; Li, Ping; Song, Yonghai; Wang, Li

    2015-01-01

    Highlights: • Novel porous carbon spheres doped with Fe_3C was prepared via hydrothermal reaction. • The resulted material was fabricated as an anode for high-rate lithium-ion batteries. • A stepwise increase profile was shown in the discharge/charge process. • Pseudocapacity was one of the properties owned by the as-prepared anode. - Abstract: The search of advanced anodes has been an important way to satisfy the ever-growing demands on high rate performance lithium-ion batteries (LIBs). It was observed that the capacity of Fe_3C as an anode is larger than its theoretical one, which might be attributed to the pseudocapacity on the interface between the carbide and electrolyte. In this work, a novel carbon sphere doped with Fe_3C nanoparticles was fabricated and tested as the anode in LIBs. In the first place, iron precursors were embedded in the cross-link polymer resorcinol-formaldehyde (RF) spheres via a facile hydrothermal reaction, in which RF served as the carbon source and ethanol as a dispersant agent. Consequently, the hydrothermal products were carbonized successively at 700 °C under inert atmosphere to obtain porous carbon spheres doped with Fe_3C. When the composite severed as an anode in LIBs, its discharge capacity increased to the largest during the first 250-400 cycles, then dropped down to a similar level of that after 1000 cycles at different current rates. The discharge capacity of the composite increased from ∼300 mAh g"−"1 to ∼540 mAh g"−"1 at the current of 100 mA g"−"1 during the initial hundreds cycles, and even a discharge capacity of ∼230 mAh g"−"1 at the current of 2000 mA g"−"1. Moreover, it was observed that a discharge plateau gradually appeared between 0.7∼1.1 V during the first hundreds of cycles. The electrochemical behaviors of the anode before 1000 discharge/charge cycles were compared with that after 1000 discharge/charge cycles by cyclic voltammetry and electrochemical impedance spectroscopy to find

  10. First-Principles Study of MoO3/Graphene Composite as Cathode Material for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Cui, Yanhua; Zhao, Yu; Chen, Hong; Wei, Kaiyuan; Ni, Shuang; Cui, Yixiu; Shi, Siqi

    2018-03-01

    Using first-principles calculations, we have systematically investigated the adsorption and diffusion behavior of Li in MoO3 bulk, on MoO3 (010) surface and in MoO3/graphene composite. Our results indicate that, in case of MoO3 bulk, Li diffusion barriers in the interlayer and intralayer spaces are 0.55 eV and 0.58 eV respectively, which are too high to warrant fast Lithium-ion charge/discharge processes. While on MoO3 (010) surface, Li exhibits a diffusion barrier as low as 0.07 eV which guarantees an extremely fast Li diffusion rate during charge/discharge cycling. However, in MoO3/graphene monolayer, Li diffusion barrier is at the same level as that on MoO3 (010) surface, which also ensures a very rapid Li charge/discharge rate. The rapid Li charge/discharge rate in this system originates from the removal of the upper dangling O1 atoms which hinder the Li diffusion on the lower MoO3 layer. Besides this, due to the interaction between Li and graphene, the Li average binding energy increases to 0.14 eV compared to its value on MoO3 (010) surface which contributes to a higher voltage. Additionally, the increased ratio of surface area provides more space for Li storage and the capacity of MoO3/graphene composite increases up to 279.2 mAhg-1. The last but not the least, due to the high conductivity of graphene, the conductivity of MoO3/graphene composite enhances greatly which is beneficial for electrode materials. In the light of present results, MoO3/graphene composite exhibits higher voltage, good conductivity, large Li capacity and very rapid Li charge/discharge rate, which prove it as a promising cathode material for high-performance lithium-ion batteries (LIBs).

  11. Method of fabricating electrodes including high-capacity, binder-free anodes for lithium-ion batteries

    Science.gov (United States)

    Ban, Chunmei; Wu, Zhuangchun; Dillon, Anne C.

    2017-01-10

    An electrode (110) is provided that may be used in an electrochemical device (100) such as an energy storage/discharge device, e.g., a lithium-ion battery, or an electrochromic device, e.g., a smart window. Hydrothermal techniques and vacuum filtration methods were applied to fabricate the electrode (110). The electrode (110) includes an active portion (140) that is made up of electrochemically active nanoparticles, with one embodiment utilizing 3d-transition metal oxides to provide the electrochemical capacity of the electrode (110). The active material (140) may include other electrochemical materials, such as silicon, tin, lithium manganese oxide, and lithium iron phosphate. The electrode (110) also includes a matrix or net (170) of electrically conductive nanomaterial that acts to connect and/or bind the active nanoparticles (140) such that no binder material is required in the electrode (110), which allows more active materials (140) to be included to improve energy density and other desirable characteristics of the electrode. The matrix material (170) may take the form of carbon nanotubes, such as single-wall, double-wall, and/or multi-wall nanotubes, and be provided as about 2 to 30 percent weight of the electrode (110) with the rest being the active material (140).

  12. Core-shell LiFePO4 /carbon-coated reduced graphene oxide hybrids for high-power lithium-ion battery cathodes.

    Science.gov (United States)

    Ha, Sung Hoon; Lee, Yun Jung

    2015-01-26

    Core-shell carbon-coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high-power lithium-ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon-coated LiFePO4 -rGO (LFP/C-rGO) hybrids were ascribed to three factors: 1) In-situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4 , 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C-rGO hybrids with LFP/C-rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li(+) ion and electron transport for high power applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui

    2014-04-30

    Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier's law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180°C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Han [Chemical; Maglia, Filippo [BMW Group, Munich 80788, Germany; Lamp, Peter [BMW Group, Munich 80788, Germany; Amine, Khalil [Chemical; Chen, Zonghai [Chemical

    2017-12-13

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.

  15. Mesoporous Spinel Li4Ti5O12 Nanoparticles for High Rate Lithium-ion Battery Anodes

    International Nuclear Information System (INIS)

    Liu, Weijian; Shao, Dan; Luo, Guoen; Gao, Qiongzhi; Yan, Guangjie; He, Jiarong; Chen, Dongyang; Yu, Xiaoyuan; Fang, Yueping

    2014-01-01

    Graphical abstract: - Highlights: • Mesoporous Li 4 Ti 5 O 12 nanoparticles were prepared by a simple hydrothermal method. • The mesoporous Li 4 Ti 5 O 12 nanoparticles exhibited a diameter of 40 ± 5 nm and a pore-size distribution of 6 - 8 nm. • Cells with the mesoporous Li 4 Ti 5 O 12 anode showed excellent high rate electrochemical properties. - Abstract: Mesoporous spinel lithium titanate (Li 4 Ti 5 O 12 ) nanoparticles with the diameter of 40 ± 5 nm and the pore-size distribution of 6 - 8 nm were prepared by a simple hydrothermal method. As an anode material for lithium-ion batteries, these spinel Li 4 Ti 5 O 12 mesoporous nanoparticles exhibited desirable lithium storage properties with an initial discharge capacity of 176 mAh g −1 at 1 C rate and a capacity of approximately 145 mAh g −1 after 200 cycles at a high rate of 20 C. These excellent electrochemical properties at high charge/discharge rates are due to the mesoporous nano-scale structures with small size particles, uniform mesopores and larger electrode/electrolyte contact area, which shortens the diffusion path for both electrons and Li + ions, and offers more active sites for Li + insertion-extraction process

  16. Construction of reduced graphene oxide supported molybdenum carbides composite electrode as high-performance anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Minghua; Zhang, Jiawei [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Chen, Qingguo, E-mail: qgchen@263.net [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Qi, Meili [Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), and School of Applied Science, Harbin University of Science and Technology, Harbin 150080 (China); Xia, Xinhui, E-mail: helloxxh@zju.edu.cn [State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    Highlights: • Reduced graphene oxide supported molybdenum carbides are prepared by two-step strategy. • A unique sheet-on-sheet integrated nanostructure is favorable for fast ion/electron transfer. • The integrated electrode shows excellent Li ion storage performance. - Abstract: Metal carbides are emerging as promising anodes for advanced lithium ion batteries (LIBs). Herein we report reduced graphene oxide (RGO) supported molybdenum carbides (Mo{sub 2}C) integrated electrode by the combination of solution and carbothermal methods. In the designed integrated electrode, Mo{sub 2}C nanoparticles are uniformly dispersed among graphene nanosheets, forming a unique sheet-on-sheet integrated nanostructure. As anode of LIBs, the as-prepared Mo{sub 2}C-RGO integrated electrode exhibits noticeable electrochemical performances with a high reversible capacity of 850 mAh g{sup −1} at 100 mA g{sup −1}, and 456 mAh g{sup −1} at 1000 mA g{sup −1}, respectively. Moreover, the Mo{sub 2}C-RGO integrated electrode shows excellent cycling life with a capacity of ∼98.6 % at 1000 mA g{sup −1} after 400 cycles. Our research may pave the way for construction of high-performance metal carbides anodes of LIBs.

  17. Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

    International Nuclear Information System (INIS)

    Minella, M.; Versaci, D.; Casino, S.; Di Lupo, F.; Minero, C.; Battiato, A.; Penazzi, N.; Bodoardo, S.

    2017-01-01

    Titanium dioxide/reduced graphene oxide (TiO 2 -rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO 2 , GO was synthesized from graphite, adsorbed onto TiO 2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO 2 -rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

  18. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery

    Science.gov (United States)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang

    2017-08-01

    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  19. Metallic Sn-Based Anode Materials: Application in High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Ying, Hangjun; Han, Wei-Qiang

    2017-11-01

    With the fast-growing demand for green and safe energy sources, rechargeable ion batteries have gradually occupied the major current market of energy storage devices due to their advantages of high capacities, long cycling life, superior rate ability, and so on. Metallic Sn-based anodes are perceived as one of the most promising alternatives to the conventional graphite anode and have attracted great attention due to the high theoretical capacities of Sn in both lithium-ion batteries (LIBs) (994 mA h g -1 ) and sodium-ion batteries (847 mA h g -1 ). Though Sony has used Sn-Co-C nanocomposites as its commercial LIB anodes, to develop even better batteries using metallic Sn-based anodes there are still two main obstacles that must be overcome: poor cycling stability and low coulombic efficiency. In this review, the latest and most outstanding developments in metallic Sn-based anodes for LIBs and SIBs are summarized. And it covers the modification strategies including size control, alloying, and structure design to effectually improve the electrochemical properties. The superiorities and limitations are analyzed and discussed, aiming to provide an in-depth understanding of the theoretical works and practical developments of metallic Sn-based anode materials.

  20. Uniform Incorporation of Flocculent Molybdenum Disulfide Nanostructure into Three-Dimensional Porous Graphene as an Anode for High-Performance Lithium Ion Batteries and Hybrid Supercapacitors.

    Science.gov (United States)

    Zhang, Fan; Tang, Yongbing; Liu, Hui; Ji, Hongyi; Jiang, Chunlei; Zhang, Jing; Zhang, Xiaolong; Lee, Chun-Sing

    2016-02-01

    Hybrid supercapacitors (HSCs) with lithium-ion battery-type anodes and electric double layer capacitor-type cathodes are attracting extensive attention and under wide investigation because of their combined merits of both high power and energy density. However, the performance of most HSCs is limited by low kinetics of the battery-type anode which cannot match the fast kinetics of the capacitor-type cathode. In this study, we have synthesized a three-dimensional (3D) porous composite with uniformly incorporated MoS2 flocculent nanostructure onto 3D graphene via a facile solution-processed method as an anode for high-performance HSCs. This composite shows significantly enhanced electrochemical performance due to the synergistic effects of the conductive graphene sheets and the interconnected porous structure, which exhibits a high rate capability of 688 mAh/g even at a high current density of 8 A/g and a stable cycling performance (997 mAh/g after 700 cycles at 2 A/g). Furthermore, by using this composite as the anode for HSCs, the HSC shows a high energy density of 156 Wh/kg at 197 W/kg, which also remains at 97 Wh/kg even at a high power density of 8314 W/kg with a stable cycling life, among the best results of the reported HSCs thus far.

  1. Core-shell structured MnSiO3 supported with CNTs as a high capacity anode for lithium-ion batteries.

    Science.gov (United States)

    Feng, Jing; Li, Qin; Wang, Huijun; Zhang, Min; Yang, Xia; Yuan, Ruo; Chai, Yaqin

    2018-04-17

    Metal silicates are good candidates for use in lithium ion batteries (LIBs), however, their electrochemical performance is hindered by their poor electrical conductivity and volume expansion during Li+ insertion/desertion. In this work, one-dimensional core-shell structured MnSiO3 supported with carbon nanotubes (CNTs) (referred to as CNT@MnSiO3) with good conductivity and electrochemical performance has been successfully synthesized using a solvothermal process under moderate conditions. In contrast to traditional composites of CNTs and nanoparticles, the CNT@MnSiO3 composite in this work is made up of CNTs with a layer of MnSiO3 on the surface. The one-dimensional CNT@MnSiO3 nanotubes provide a useful channel for transferring Li+ ions during the discharge/charge process, which accelerates the Li+ diffusion speed. The CNTs inside the structure not only enhance the conductivity of the composite, but also prevent volume expansion. A high reversible capacity (920 mA h g-1 at 500 mA g-1 over 650 cycles) and good rate performance were obtained for CNT@MnSiO3, showing that this strategy of synthesizing coaxial CNT@MnSiO3 nanotubes offers a promising method for preparing other silicates for LIBs or other applications.

  2. Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application

    Science.gov (United States)

    Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa

    2017-01-01

    Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.

  3. High quality NMP exfoliated graphene nanosheet-SnO2 composite anode material for lithium ion battery.

    Science.gov (United States)

    Ravikumar, Raman; Gopukumar, Sukumaran

    2013-03-21

    A graphene nanosheet-SnO(2) (GNS-SnO(2)) composite is prepared using N-methylpyrrolidone as a solvent to exfoliate graphene from graphite bar with the aid of CTAB by single phase co-precipitation method. The synthesized composites has been characterised physically by powder XRD which confirms the formation of the composite tetragonal SnO(2) crystal system with the low intense broad 002 plane for GNS. The sandwiched morphology of GNS-SnO(2) and the formation of nanosized particles (around 20 nm) have been confirmed by SEM and TEM images. The presence of sp(2) carbon in the GNS is clear by the highly intense G than D band in laser Raman spectroscopy analysis; furthermore, a single chemical shift has been observed at 132.14 ppm from solid-state (13)C NMR analysis. The synthesized composite has been electrochemically characterized using charge-discharge and EIS analysis. The capacity retentions at the end of the first 10 cycles is 57% (100 mA g(-1) rate), the second 10 cycles is 77.83% (200 mA g(-1)), and the final 10 cycles (300 mA g(-1)) is 81.5%. Moreover the impedance analysis clearly explains the low resistance pathway for Li(+) insertion after 30 cycles when compared with the initial cycle. This superior characteristic of GNS-SnO(2) composite suggests that it is a promising candidate for lithium ion battery anode.

  4. Numerical simulation of a high-brightness lithium ion gun for a Zeeman polarimetry on JT-60U

    International Nuclear Information System (INIS)

    Kojima, Atsushi; Kamiya, Kensaku; Fujita, Takaaki; Kamada, Yutaka; Iguchi, Harukazu

    2007-01-01

    A lithium ion gun is under construction for a lithium beam Zeeman polarimetry on JT-60U. The performance of the prototype ion gun has been estimated by the numerical simulation taking the space charge effects into account. The target values of the ion gun are the beam energy of 30 keV, the beam current of 10 mA and the beam divergence angle within 0.13 degrees. The low divergence of 0.13 degrees is required for the geometry of the Zeeman polarimetry on JT-60U where the observation area is 6.5 m away from the neutralizer. The numerical simulation needs to be carried out for the design study because the requirement of the divergence angle is severe for the development of the high-brightness ion gun. The simulation results show the beam loss of 50% caused by the clash to the electrode such as the cathode and the neutralizer. Moreover, the beam transport efficiency from the neutralizer to the observation area is low due to the broadening of the divergence angle. The total beam efficiency is about 5%. Extracted beam profile affects the beam focusing and the efficiency. The peaked profile achieves better efficiency than the hollow one. As a result, beam current of 1 mA is obtained at the observation area by the simulation for the prototype ion gun. (author)

  5. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  6. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    Science.gov (United States)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  7. Three-Dimensional Porous Iron Vanadate Nanowire Arrays as a High-Performance Lithium-Ion Battery.

    Science.gov (United States)

    Cao, Yunhe; Fang, Dong; Liu, Ruina; Jiang, Ming; Zhang, Hang; Li, Guangzhong; Luo, Zhiping; Liu, Xiaoqing; Xu, Jie; Xu, Weilin; Xiong, Chuanxi

    2015-12-23

    Development of three-dimensional nanoarchitectures on current collectors has emerged as an effective strategy for enhancing rate capability and cycling stability of the electrodes. Herein, a new type of three-dimensional porous iron vanadate (Fe0.12V2O5) nanowire arrays on a Ti foil has been synthesized by a hydrothermal method. The as-prepared Fe0.12V2O5 nanowires are about 30 nm in diameter and several micrometers in length. The effect of reaction time on the resulting morphology is investigated and the mechanism for the nanowire formation is proposed. As an electrode material used in lithium-ion batteries, the unique configuration of the Fe0.12V2O5 nanowire arrays presents enhanced capacitance, satisfying rate capability and good cycling stability, as evaluated by cyclic voltammetry and galvanostatic discharge-charge cycling. It delivers a high discharge capacity of 293 mAh·g(-1) at 2.0-3.6 V or 382.2 mAh·g(-1) at 1.0-4.0 V after 50 cycles at 30 mA·g(-1).

  8. Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode

    Science.gov (United States)

    Cui, Dongming; Zheng, Zhong; Peng, Xue; Li, Teng; Sun, Tingting; Yuan, Liangjie

    2017-09-01

    The composite of fluorine-doped SnO2 anchored on reduced graphene oxide (F-SnO2/rGO) has been synthesized through a hydrothermal method. F-SnO2 particles with average size of 8 nm were uniformly anchored on the surfaces of rGO sheets and the resulting composite had a high loading of F-SnO2 (ca. 90%). Benefiting from the remarkably improved electrical conductivity and Li-ion diffusion in the electrode by F doping and rGO incorporation, the composite material exhibited high reversible capacity, excellent long-term cycling stability and superior rate capability. The electrode delivered a large reversible capacity of 1037 mAh g-1 after 150 cycles at 100 mA g-1 and high rate capacities of 860 and 770 mAh g-1 at 1 and 2 A g-1, respectively. Moreover, the electrode could maintain a high reversible capacities of 733 mAh g-1 even after 250 cycles at 500 mA g-1. The outstanding electrochemical performance of the as-synthesized composite make it a promising anode material for high-energy lithium ion batteries.

  9. Porous Hollow Superlattice NiMn2O4/NiCo2O4 Mesocrystals as a Highly Reversible Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Lingjun Li

    2018-05-01

    Full Text Available As a promising high-capacity anode material for Li-ion batteries, NiMn2O4 always suffers from the poor intrinsic conductivity and the architectural collapse originating from the volume expansion during cycle. Herein, a combined structure and architecture modulation is proposed to tackle concurrently the two handicaps, via a facile and well-controlled solvothermal approach to synthesize NiMn2O4/NiCo2O4 mesocrystals with superlattice structure and hollow multi-porous architecture. It is demonstrated that the obtained NiCo1.5Mn0.5O4 sample is made up of a new mixed-phase NiMn2O4/NiCo2O4 compound system, with a high charge capacity of 532.2 mAh g−1 with 90.4% capacity retention after 100 cycles at a current density of 1 A g−1. The enhanced electrochemical performance can be attributed to the synergistic effects of the superlattice structure and the hollow multi-porous architecture of the NiMn2O4/NiCo2O4 compound. The superlattice structure can improve ionic conductivity to enhance charge transport kinetics of the bulk material, while the hollow multi-porous architecture can provide enough void spaces to alleviate the architectural change during cycling, and shorten the lithium ions diffusion and electron-transportation distances.

  10. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  11. High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis

    Science.gov (United States)

    Hamid, N. A.; Wennig, S.; Hardt, S.; Heinzel, A.; Schulz, C.; Wiggers, H.

    2012-10-01

    Olivine, LiFePO4 is a promising cathode material for lithium-ion batteries due to its low cost, environmental acceptability and high stability. Its low electric conductivity prevented it for a long time from being used in large-scale applications. Decreasing its particle size along with carbon coating significantly improves electronic conductivity and lithium diffusion. With respect to the controlled formation of very small particles with large specific surface, gas-phase synthesis opens an economic and flexible route towards high-quality battery materials. Amorphous FePO4 was synthesized as precursor material for LiFePO4 by flame spray pyrolysis of a solution of iron acetylacetonate and tributyl phosphate in toluene. The pristine FePO4 with a specific surface from 126-218 m2 g-1 was post-processed to LiFePO4/C composite material via a solid-state reaction using Li2CO3 and glucose. The final olivine LiFePO4/C particles still showed a large specific surface of 24 m2 g-1 and were characterized using X-ray diffraction (XRD), electron microscopy, X-ray photoelectron spectrocopy (XPS) and elemental analysis. Electrochemical investigations of the final LiFePO4/C composites show reversible capacities of more than 145 mAh g-1 (about 115 mAh g-1 with respect to the total coating mass). The material supports high drain rates at 16 C while delivering 40 mAh g-1 and causes excellent cycle stability.

  12. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    Science.gov (United States)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  13. Amorphous Ultrathin SnO2 Films by Atomic Layer Deposition on Graphene Network as Highly Stable Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xie, Ming; Sun, Xiang; George, Steven M; Zhou, Changgong; Lian, Jie; Zhou, Yun

    2015-12-23

    Amorphous SnO2 (a-SnO2) thin films were conformally coated onto the surface of reduced graphene oxide (G) using atomic layer deposition (ALD). The electrochemical characteristics of the a-SnO2/G nanocomposites were then determined using cyclic voltammetry and galvanostatic charge/discharge curves. Because the SnO2 ALD films were ultrathin and amorphous, the impact of the large volume expansion of SnO2 upon cycling was greatly reduced. With as few as five formation cycles best reported in the literature, a-SnO2/G nanocomposites reached stable capacities of 800 mAh g(-1) at 100 mA g(-1) and 450 mAh g(-1) at 1000 mA g(-1). The capacity from a-SnO2 is higher than the bulk theoretical values. The extra capacity is attributed to additional interfacial charge storage resulting from the high surface area of the a-SnO2/G nanocomposites. These results demonstrate that metal oxide ALD on high surface area conducting carbon substrates can be used to fabricate high power and high capacity electrode materials for lithium-ion batteries.

  14. Co-estimation of state-of-charge, capacity and resistance for lithium-ion batteries based on a high-fidelity electrochemical model

    International Nuclear Information System (INIS)

    Zheng, Linfeng; Zhang, Lei; Zhu, Jianguo; Wang, Guoxiu; Jiang, Jiuchun

    2016-01-01

    Highlights: • The numerical solution for an electrochemical model is presented. • Trinal PI observers are used to concurrently estimate SOC, capacity and resistance. • An iteration-approaching method is incorporated to enhance estimation performance. • The robustness against aging and temperature variations is experimentally verified. - Abstract: Lithium-ion batteries have been widely used as enabling energy storage in many industrial fields. Accurate modeling and state estimation play fundamental roles in ensuring safe, reliable and efficient operation of lithium-ion battery systems. A physics-based electrochemical model (EM) is highly desirable for its inherent ability to push batteries to operate at their physical limits. For state-of-charge (SOC) estimation, the continuous capacity fade and resistance deterioration are more prone to erroneous estimation results. In this paper, trinal proportional-integral (PI) observers with a reduced physics-based EM are proposed to simultaneously estimate SOC, capacity and resistance for lithium-ion batteries. Firstly, a numerical solution for the employed model is derived. PI observers are then developed to realize the co-estimation of battery SOC, capacity and resistance. The moving-window ampere-hour counting technique and the iteration-approaching method are also incorporated for the estimation accuracy improvement. The robustness of the proposed approach against erroneous initial values, different battery cell aging levels and ambient temperatures is systematically evaluated, and the experimental results verify the effectiveness of the proposed method.

  15. Hierarchically porous Li3VO4/C nanocomposite as an advanced anode material for high-performance lithium-ion capacitors

    Science.gov (United States)

    Xu, Xuena; Niu, Feier; Zhang, Dapeng; Chu, Chenxiao; Wang, Chunsheng; Yang, Jian; Qian, Yitai

    2018-04-01

    Lithium-ion capacitors, as a hybrid electrochemical energy storage device, realize high specific energy and power density within one device, thus attracting extensive attention. Here, hierarchically porous Li3VO4/C nanocomposite is prepared by a solvo-thermal reaction, followed with a post-annealing process. This composite has macropores at the center and mesopores in the wall, thus effectively promoting electrolyte penetration and structure stability upon cycling simultaneously. Compared to mesoporous Li3VO4, the enhanced rate capability and specific capacity of hierarchically porous Li3VO4/C indicate the synergistic effect of mesopores and macropores. Inspired by these results, this composite is coupled with mesoporous carbon (CMK-3) for lithium-ion capacitors, generating a specific energy density of 105 Wh kg-1 at a power density of 188 W kg-1. Even if the power density increases to 9.3 kW kg-1, the energy density still remains 62 Wh kg-1. All these results demonstrate the promising potential of hierarchically porous Li3VO4 in lithium ion capacitors.

  16. Synthesis of Fe3O4 cluster microspheres/graphene aerogels composite as anode for high-performance lithium ion battery

    Science.gov (United States)

    Zhou, Shuai; Zhou, Yu; Jiang, Wei; Guo, Huajun; Wang, Zhixing; Li, Xinhai

    2018-05-01

    Iron oxides are considered as attractive electrode materials because of their capability of lithium storage, but their poor conductivity and large volume expansion lead to unsatisfactory cycling stability. We designed and synthesized a novel Fe3O4 cluster microspheres/Graphene aerogels composite (Fe3O4/GAs), where Fe3O4 nanoparticles were assembled into cluster microspheres and then embedded in 3D graphene aerogels framework. In the spheres, the sufficient free space between Fe3O4 nanoparticles could accommodate the volume change during cycling process. Graphene aerogel works as flexible and conductive matrix, which can not only significantly increase the mechanical stress, but also further improve the storage properties. The Fe3O4/GAs composite as an anode material exhibits high reversible capability and excellent cyclic capacity for lithium ion batteries (LIBs). A reversible capability of 650 mAh g-1 after 500 cycles at a current density of 1 A g-1 can be maintained. The superior storage capabilities of the composites make them potential anode materials for LIBs.

  17. N-Doped Dual Carbon-Confined 3D Architecture rGO/Fe3O4/AC Nanocomposite for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Ding, Ranran; Zhang, Jie; Qi, Jie; Li, Zhenhua; Wang, Chengyang; Chen, Mingming

    2018-04-25

    To address the issues of low electrical conductivity, sluggish lithiation kinetics and dramatic volume variation in Fe 3 O 4 anodes of lithium ion battery, herein, a double carbon-confined three-dimensional (3D) nanocomposite architecture was synthesized by an electrostatically assisted self-assembly strategy. In the constructed architecture, the ultrafine Fe 3 O 4 subunits (∼10 nm) self-organize to form nanospheres (NSs) that are fully coated by amorphous carbon (AC), formatting core-shell structural Fe 3 O 4 /AC NSs. By further encapsulation by reduced graphene oxide (rGO) layers, a constructed 3D architecture was built as dual carbon-confined rGO/Fe 3 O 4 /AC. Such structure restrains the adverse reaction of the electrolyte, improves the electronic conductivity and buffers the mechanical stress of the entire electrode, thus performing excellent long-term cycling stability (99.4% capacity retention after 465 cycles relevant to the second cycle at 5 A g -1 ). Kinetic analysis reveals that a dual lithium storage mechanism including a diffusion reaction mechanism and a surface capacitive behavior mechanism coexists in the composites. Consequently, the resulting rGO/Fe 3 O 4 /AC nanocomposite delivers a high reversible capacity (835.8 mA h g -1 for 300 cycles at 1 A g -1 ), as well as remarkable rate capability (436.7 mA h g -1 at 10 A g -1 ).

  18. Carbon nanofibers with highly dispersed tin and tin antimonide nanoparticles: Preparation via electrospinning and application as the anode materials for lithium-ion batteries

    Science.gov (United States)

    Li, Zhi; Zhang, Jiwei; Shu, Jie; Chen, Jianping; Gong, Chunhong; Guo, Jianhui; Yu, Laigui; Zhang, Jingwei

    2018-03-01

    One-dimensional carbon nanofibers with highly dispersed tin (Sn) and tin antimonide (SnSb) nanoparticles are prepared by electrospinning in the presence of antimony-doped tin oxide (denoted as ATO) wet gel as the precursor. The effect of ATO dosage on the microstructure and electrochemical properties of the as-fabricated Sn-SnSb/C composite nanofibers is investigated. Results indicate that ATO wet gel as the precursor can effectively improve the dispersion of Sn nanoparticles in carbon fiber and prevent them from segregation during the electrospinning and subsequent calcination processes. The as-prepared Sn-SnSb/C nanofibers as the anode materials for lithium-ion batteries exhibit high reversible capacity and stable cycle performance. Particularly, the electrode made from Sn-SnSb/C composite nanofibers obtained with 0.9 g of ATO gel has a high specific capacity of 779 mAh·g-1 and 378 mAh·g-1 at the current density of 50 mA·g-1 and 5 A·g-1, respectively, and it exhibits a capacity retention of 97% after 1200 cycles under the current density of 1 A·g-1. This is because the carbon nanofibers can form a continuous conductive network to buffer the volume change of the electrodes while Sn and Sn-SnSb nanoparticles uniformly distributed in the carbon nanofibers are free of segregation, thereby contributing to electrochemical performances of the electrodes.

  19. Highly stable carbon coated Mg2Si intermetallic nanoparticles for lithium-ion battery anode

    Science.gov (United States)

    Tamirat, Andebet Gedamu; Hou, Mengyan; Liu, Yao; Bin, Duan; Sun, Yunhe; Fan, Long; Wang, Yonggang; Xia, Yongyao

    2018-04-01

    Silicon is an ideal candidate anode material for Li-ion batteries (LIBs). However, it suffers from rapid capacity fading due to large volume expansion upon lithium insertion. Herein, we design and fabricate highly stable carbon coated porous Mg2Si intermetallic anode material using facile mechano-thermal technique followed by carbon coating using thermal vapour deposition (TVD), toluene as carbon source. The electrode exhibits an excellent first reversible capacity of 726 mAh g-1 at a rate of 100 mA g-1. More importantly, the electrode demonstrates high rate capability (380 mAh g-1 at high rate of 2 A g-1) as well as high cycle stability, with capacity retentions of 65% over 500 cycles. These improvements are attributable to both Mg supporting medium and the uniform carbon coating, which can effectively increase the conductivity and electronic contact of the active material and protects large volume alterations during the electrochemical cycling process.

  20. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang; Cui, Li-Feng; Yang, Yuan; Sanchez Casalongue, Hernan; Robinson, Joshua Tucker; Liang, Yongye; Cui, Yi; Dai, Hongjie

    2010-01-01

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free

  1. LiFePO4 nanoparticles encapsulated in graphene nanoshells for high-performance lithium-ion battery cathodes.

    Science.gov (United States)

    Fei, Huilong; Peng, Zhiwei; Yang, Yang; Li, Lei; Raji, Abdul-Rahman O; Samuel, Errol L G; Tour, James M

    2014-07-11

    LiFePO4 encapsulated in graphene nanoshells (LiFePO4@GNS) nanoparticles were synthesized by solid state reaction between graphene-coated Fe nanoparticles and LiH2PO4. The resulting nanocomposite was demonstrated to be a superior lithium-ion battery cathode with improved cycle and rate performances.

  2. Lithium ion batteries based on nanoporous silicon

    Science.gov (United States)

    Tolbert, Sarah H.; Nemanick, Eric J.; Kang, Chris Byung-Hwa

    2015-09-22

    A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.

  3. Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    He, Jianxin; Zhao, Shuyuan; Lian, Yanping; Zhou, Mengjuan; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-01-01

    Highlights: • GN@C/Fe 3 O 4 are synthesized via in-situ electrospinning and thermal treatment. • GN@C/Fe 3 O 4 show unique dark/light banding with a hierarchical porous structure. • Doped graphene induces a uniform distribution of smaller size Fe 3 O 4 nanoparticles. • Doped graphene provides more active sites and accommodate the volume change. • GN@C/Fe 3 O 4 electrode displays a reversible capacity of 872 mAh/g after 100 cycles. - Abstract: Porous graphene-doped carbon/Fe 3 O 4 (GN@C/Fe 3 O 4 ) nanofibers are synthesized via in-situ electrospinning and subsequent thermal treatment for use as lithium-ion battery anode materials. A polyacrylonitrile (PAN)/polymethyl methacrylate (PMMA) solution containing ferric acetylacetone and graphene oxide nanosheets is used as the electrospinning precursor solution. The resulting porous GN@C/Fe 3 O 4 nanofibers show unique dark/light banding and a hierarchical porous structure. These nanofibers have a Brunauer–Emmett–Teller (BET) specific surface area of 323.0 m 2 /g with a total pore volume of 0.337 cm 3 /g, which is significantly greater than that of a sample without graphene and C/Fe 3 O 4 nanofibers. The GN@C/Fe 3 O 4 nanofiber electrode displays a reversible capacity of 872 mAh/g at a current density of 100 mA/g after 100 cycles, excellent cycling stability, and superior rate capability (455 mA/g at 5 A/g). The excellent performance of porous GN@C/Fe 3 O 4 is attributed to the material’s unique structure, including its striped topography, hierarchical porous structure, and inlaid flexible graphene, which not only provides more accessible active sites for lithium-ion insertion and high-efficiency transport pathways for ions and electrons, but also accommodates the volume change associated with lithium insertion/extraction. Moreover, the zero-valent iron and graphene in the porous nanofibers enhance the conductivity of the electrodes.

  4. Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries

    Science.gov (United States)

    Chen, Rongrong; Wu, Yixiong; Kong, Xiang Yang

    2014-07-01

    A microwave-assisted hydrothermal approach combined with carbothermal reduction has been developed to synthesize monodisperse porous LiFePO4/C microspheres, which possess the diameter range of 1.0-1.5 μm, high tap density of ∼1.3 g cm-3, and mesoporous characteristic with Brunauer-Emmett-Teller (BET) surface area of 30.6 m2 g-1. The obtained microspheres show meatball-like morphology aggregated by the carbon-coated LiFePO4 nanoparticles. The electrochemical impedance spectra (EIS) results indicate that carbon coating can effectively enhance both of the electronic and ionic conductivities for LiFePO4/C microspheres. The Li-ion diffusion coefficient of the LiFePO4/C microspheres calculated from the cyclic voltammetry (CV) curves is ∼6.25 × 10-9 cm2 s-1. The electrochemical performance can achieve about 100 and 90 mAh g-1 at 5C and 10C charge/discharge rates, respectively. As cathode material, the as-prepared LiFePO4/C microspheres show excellent rate capability and cycle stability, promising for high power lithium-ion batteries.

  5. Facile Synthesis of ZnO Nanoparticles on Nitrogen-Doped Carbon Nanotubes as High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Haipeng Li

    2017-09-01

    Full Text Available ZnO/nitrogen-doped carbon nanotube (ZnO/NCNT composite, prepared though a simple one-step sol-gel synthetic technique, has been explored for the first time as an anode material. The as-prepared ZnO/NCNT nanocomposite preserves a good dispersity and homogeneity of the ZnO nanoparticles (~6 nm which deposited on the surface of NCNT. Transmission electron microscopy (TEM reveals the formation of ZnO nanoparticles with an average size of 6 nm homogeneously deposited on the surface of NCNT. ZnO/NCNT composite, when evaluated as an anode for lithium-ion batteries (LIBs, exhibits remarkably enhanced cycling ability and rate capability compared with the ZnO/CNT counterpart. A relatively large reversible capacity of 1013 mAh·g−1 is manifested at the second cycle and a capacity of 664 mAh·g−1 is retained after 100 cycles. Furthermore, the ZnO/NCNT system displays a reversible capacity of 308 mAh·g−1 even at a high current density of 1600 mA·g−1. These electrochemical performance enhancements are ascribed to the reinforced accumulative effects of the well-dispersed ZnO nanoparticles and doping nitrogen atoms, which can not only suppress the volumetric expansion of ZnO nanoparticles during the cycling performance but also provide a highly conductive NCNT network for ZnO anode.

  6. In situ preparation of Fe3O4 in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries

    Science.gov (United States)

    Liu, Yuewen; Hassan Siddique, Ahmad; Huang, Heran; Fang, Qile; Deng, Wei; Zhou, Xufeng; Lu, Huanming; Liu, Zhaoping

    2017-11-01

    A new conductive carbon hybrid combining both reduced graphene nanoscrolls and carbon nanotubes (rGNSs-CNTs) is prepared, and used to host Fe3O4 nanoparticles through an in situ synthesis method. As an anode material for LIBs, the obtained Fe3O4@rGNSs-CNTs shows good electrochemical performance. At a current density of 0.1 A g-1, the anode material shows a high reversible capacity of 1232.9 mAh g-1 after 100 cycles. Even at a current density of 1 A g-1, it still achieves a high reversible capacity of 812.3 mAh g-1 after 200 cycles. Comparing with bare Fe3O4 and Fe3O4/rGO composite anode materials without nanoscroll structure, Fe3O4@rGNSs-CNTs shows much better rate capability with a reversible capacity of 605.0 and 500.0 mAh g-1 at 3 and 5 A g-1, respectively. The excellent electrochemical performance of the Fe3O4@rGNSs-CNTs anode material can be ascribed to the hybrid structure of rGNSs-CNTs, and their strong interaction with Fe3O4 nanoparticles, which on one hand provides more pathways for lithium ions and electrons, on the other hand effectively relieves the volume change of Fe3O4 during the charge-discharge process.

  7. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  8. Membranes in Lithium Ion Batteries

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-01-01

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed. PMID:24958286

  9. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  10. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xianlai; Li, Jinhui, E-mail: jinhui@tsinghua.edu.cn

    2014-04-01

    Highlights: • Manual dismantling is superior in spent high-power LiBs recycling. • Heated ionic liquid can effectively separate Al and cathode materials. • Fourier’s law was adopted to determine the heat transfer mechanism. • The process of spent LiBs recycling with heated ionic liquid dismantling was proposed. - Abstract: Because of the increasing number of electric vehicles, there is an urgent need for effective recycling technologies to recapture the significant amount of valuable metals contained in spent lithium-ion batteries (LiBs). Previous studies have indicated, however, that Al and cathode materials were quite difficult to separate due to the strong binding force supplied by the polyvinylidene fluoride (PVDF), which was employed to bind cathode materials and Al foil. This research devoted to seek a new method of melting the PVDF binder with heated ionic liquid (IL) to separate Al foil and cathode materials from the spent high-power LiBs. Theoretical analysis based on Fourier’s law was adopted to determine the heat transfer mechanism of cathode material and to examine the relationship between heating temperature and retention time. All the experimental and theoretic results show that peel-off rate of cathode materials from Al foil could reach 99% when major process parameters were controlled at 180 °C heating temperature, 300 rpm agitator rotation, and 25 min retention time. The results further imply that the application of IL for recycling Al foil and cathode materials from spent high-power LiBs is highly efficient, regardless of the application source of the LiBs or the types of cathode material. This study endeavors to make a contribution to an environmentally sound and economically viable solution to the challenge of spent LiB recycling.

  11. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    International Nuclear Information System (INIS)

    Tang, Haoqing; Zan, Lingxing; Zhu, Jiangtao; Ma, Yiheng; Zhao, Naiqin; Tang, Zhiyuan

    2016-01-01

    Lithium zinc titanate (Li_2ZnTi_3O_8) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li_2ZnTi_3O_8/La_2O_3 nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li_2ZnTi_3O_8, the Li_2ZnTi_3O_8/La_2O_3 electrode display a high specific capacity of 188.6 mAh g"−"1 and remain as high as 147.7 mAh g"−"1 after 100 cycles at 2.0 A g"−"1. Moreover, a reversible capacity of 76.3 mAh g"−"1 can be obtained after 1000 cycles at 2.0 A g"−"1 and the retention is 42.7% for Li_2ZnTi_3O_8/La_2O_3, which is much higher than un-coated Li_2ZnTi_3O_8. The superior lithium storage performances of the Li_2ZnTi_3O_8/La_2O_3 can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La_2O_3 coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La_2O_3 coated Li_2ZnTi_3O_8 particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li_2ZnTi_3O_8 has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li"+).

  12. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries.

    Science.gov (United States)

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-05-16

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g(-1) after 200 cycles at 100 mA g(-1), superior capacity retention (96%), and outstanding rate performance (505 mAh g(-1) after 1000 cycles at 1000 mA g(-1)). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance.

  13. In Situ Synthesis of Tungsten-Doped SnO2 and Graphene Nanocomposites for High-Performance Anode Materials of Lithium-Ion Batteries.

    Science.gov (United States)

    Wang, Shuai; Shi, Liyi; Chen, Guorong; Ba, Chaoqun; Wang, Zhuyi; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2017-05-24

    The composite of tungsten-doped SnO 2 and reduced graphene oxide was synthesized through a simple one-pot hydrothermal method. According to the structural characterization of the composite, tungsten ions were doped in the unit cells of tin dioxide rather than simply attaching to the surface. Tungsten-doped SnO 2 was in situ grown on the surface of graphene sheet to form a three-dimensional conductive network that enhanced the electron transportation and lithium-ion diffusion effectively. The issues of SnO 2 agglomeration and volume expansion could be also avoided because the tungsten-doped SnO 2 nanoparticles were homogeneously distributed on a graphene sheet. As a result, the nanocomposite electrodes of tungsten-doped SnO 2 and reduced graphene oxide exhibited an excellent long-term cycling performance. The residual capacity was still as high as 1100 mA h g -1 at 0.1 A g -1 after 100 cycles. It still remained at 776 mA h g -1 after 2000 cycles at the current density of 1A g -1 .

  14. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Guanghui Yuan

    2018-01-01

    Full Text Available A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG, is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g−1 after 200 cycles at 100 mA g−1. Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li+ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  15. A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as free-standing anode for high rate lithium ion batteries

    Science.gov (United States)

    Zhu, Kunxu; Gao, Hanyang; Hu, Guoxin

    2018-01-01

    Advanced flexible electrode is crucial in the development of flexible energy storage devices for emerging wearable and portable electronics. Herein, a free-standing flexible mesoporous Li4Ti5O12-rGO (LTO-rGO) nanocomposite film is rationally designed and fabricated for lithium ion batteries (LIBs). This efficient synthesis involves the growth of lithium titanate hydrate (LTH) precursors on the graphene oxide (GO) by a hydrothermal reaction, assembly into LTH-GO film by vacuum filtration with some extra GO added, and subsequent conversion into LTO-rGO nanocomposite film through calcination. When rGO content in the LTO-rGO film is set, the addition sequence of GO is found to affect its textural and mechanical properties. The resultant free-standing LTO-rGO electrode, taking advantages of high Li4Ti5O12 loading of 73.9%, mesoporous layer-stacked channels with good electron/ion conductivity, good mechanical strength, and enlarged electrode/electrolyte contact area, delivers excellent electrochemical performance (e.g., specific capacity of 135.4 mAh g-1 at 40 C) over the electrode of conventional configuration. Moreover, no organic but all inorganic reagents are used in the synthesis, offering an eco-friendly, cost-efficient, and easily scalable way to fabricate binder-free flexible electrode for LIBs.

  16. Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries

    Science.gov (United States)

    Zhu, Chengling; Zhu, Shenmin; Zhang, Kai; Hui, Zeyu; Pan, Hui; Chen, Zhixin; Li, Yao; Zhang, Di; Wang, Da-Wei

    2016-01-01

    Construction of metal oxide nanoparticles as anodes is of special interest for next-generation lithium-ion batteries. The main challenge lies in their rapid capacity fading caused by the structural degradation and instability of solid-electrolyte interphase (SEI) layer during charge/discharge process. Herein, we address these problems by constructing a novel-structured SnO2-based anode. The novel structure consists of mesoporous clusters of SnO2 quantum dots (SnO2 QDs), which are wrapped with reduced graphene oxide (RGO) sheets. The mesopores inside the clusters provide enough room for the expansion and contraction of SnO2 QDs during charge/discharge process while the integral structure of the clusters can be maintained. The wrapping RGO sheets act as electrolyte barrier and conductive reinforcement. When used as an anode, the resultant composite (MQDC-SnO2/RGO) shows an extremely high reversible capacity of 924 mAh g−1 after 200 cycles at 100 mA g−1, superior capacity retention (96%), and outstanding rate performance (505 mAh g−1 after 1000 cycles at 1000 mA g−1). Importantly, the materials can be easily scaled up under mild conditions. Our findings pave a new way for the development of metal oxide towards enhanced lithium storage performance. PMID:27181691

  17. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.

    Science.gov (United States)

    Sun, Fu; Huang, Kai; Qi, Xiang; Gao, Tian; Liu, Yuping; Zou, Xianghua; Wei, Xiaolin; Zhong, Jianxin

    2013-09-21

    We have successfully fabricated a free-standing Si-re-G (reduced graphene) alternating stratum structure composite through a repeated process of filtering liquid exfoliated graphene oxide and uniformly dispersed Si solution, followed by the reduction of graphene oxide. The as-prepared free-standing flexible alternating stratum structure composite was directly evaluated as the anode for rechargeable lithium half-cells without adding any polymer binder, conductive additives or using current collectors. The half cells based on this new alternating structure composite exhibit an unexpected capacity of 1500 mA h g(-1) after 100 cycles at 1.35 A g(-1). Our rationally proposed strategy has incorporated the long cycle life of carbon and the high lithium-storage capacity of Si into one entity using the feasible and scalable vacuum filtration technique, rendering this new protocol as a readily applicable means of addressing the practical application challenges associated with the next generation of rechargeable lithium-ion batteries.

  18. A General and Mild Approach to Controllable Preparation of Manganese-Based Micro- and Nanostructured Bars for High Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Ma, Guo; Li, Sheng; Zhang, Weixin; Yang, Zeheng; Liu, Shulin; Fan, Xiaoming; Chen, Fei; Tian, Yuan; Zhang, Weibo; Yang, Shihe; Li, Mei

    2016-03-07

    One-dimensional (1D) micro- and nanostructured electrode materials with controllable phase and composition are appealing materials for use in lithium-ion batteries with high energy and power densities, but they are challenging to prepare. Herein, a novel ethanol-water mediated co-precipitation method by a chimie douce route (synthesis conducted under mild conditions) has been exploited to selectively prepare an extensive series of manganese-based electrode materials, manifesting the considerable generalizability and efficacy of the method. Moreover, by simply tuning the mixed solvent and reagents, transition metal oxide bars with differing aspect ratios and compositions were prepared with an unprecedented uniformity. Application prospects are demonstrated by Li-rich 0.5 Li2 MnO3 ⋅0.5 LiNi1/3 Co1/3 Mn1/3 O2 bars, which demonstrate excellent reversible capacity and rate capability thanks to the steerable nature of the synthesis and material quality. This work opens a new route to 1D micro- and nanostructured materials by customizing the precipitating solvent to orchestrate the crystallization process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution x-ray Compton scattering.

    Science.gov (United States)

    Hafiz, Hasnain; Suzuki, Kosuke; Barbiellini, Bernardo; Orikasa, Yuki; Callewaert, Vincent; Kaprzyk, Staszek; Itou, Masayoshi; Yamamoto, Kentaro; Yamada, Ryota; Uchimoto, Yoshiharu; Sakurai, Yoshiharu; Sakurai, Hiroshi; Bansil, Arun

    2017-08-01

    Reduction-oxidation (redox) reactions are the key processes that underlie the batteries powering smartphones, laptops, and electric cars. A redox process involves transfer of electrons between two species. For example, in a lithium-ion battery, current is generated when conduction electrons from the lithium anode are transferred to the redox orbitals of the cathode material. The ability to visualize or image the redox orbitals and how these orbitals evolve under lithiation and delithiation processes is thus of great fundamental and practical interest for understanding the workings of battery materials. We show that inelastic scattering spectroscopy using high-energy x-ray photons (Compton scattering) can yield faithful momentum space images of the redox orbitals by considering lithium iron phosphate (LiFePO 4 or LFP) as an exemplar cathode battery material. Our analysis reveals a new link between voltage and the localization of transition metal 3d orbitals and provides insight into the puzzling mechanism of potential shift and how it is connected to the modification of the bond between the transition metal and oxygen atoms. Our study thus opens a novel spectroscopic pathway for improving the performance of battery materials.

  20. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng

    2009-09-09

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires showed great performance as anode material. Since carbon has a much smaller capacity compared to silicon, the carbon core experiences less structural stress or damage during lithium cycling and can function as a mechanical support and an efficient electron conducting pathway. These nanowires have a high charge storage capacity of ∼2000 mAh/g and good cycling life. They also have a high Coulmbic efficiency of 90% for the first cycle and 98-99.6% for the following cycles. A full cell composed of LiCoO2 cathode and carbon-silicon core-shell nanowire anode is also demonstrated. Significantly, using these core-shell nanowires we have obtained high mass loading and an area capacity of ∼4 mAh/cm2, which is comparable to commercial battery values. © 2009 American Chemical Society.

  1. The prospects of phosphorene as an anode material for high-performance lithium-ion batteries: a fundamental study.

    Science.gov (United States)

    Zhang, Congyan; Yu, Ming; Anderson, George; Dharmasena, Ruchira Ravinath; Sumanasekera, Gamini

    2017-02-17

    To completely understand lithium adsorption, diffusion, and capacity on the surface of phosphorene and, therefore, the prospects of phosphorene as an anode material for high-performance lithium-ion batteries (LIBs), we carried out density-functional-theory calculations and studied the lithium adsorption energy landscape, the lithium diffusion mobility, the lithium intercalation, and the lithium capacity of phosphorene. We also carried out, for the very first time, experimental measurement of the lithium capacity of phosphorene. Our calculations show that the lithium diffusion mobility along the zigzag direction in the valley of phosphorene was about 7 to 11 orders of magnitude faster than that along the other directions, indicating its ultrafast and anisotropic diffusivity. The lithium intercalation in phosphorene was studied by considering various Li n P 16 configurations (n = 1-16) including single-side and double-side adsorptions. We found that phosphorene could accommodate up to a ratio of one Li per P atom (i.e. Li 16 P 16 ). In particular, we found that, even at a high Li concentration (e.g. x = 1 in Li x P), there was no lithium clustering, and the structure of phosphorene (when fractured) is reversible during lithium intercalation. The theoretical value of the lithium capacity for a monolayer phosphorene is predicted to be above 433 mAh g -1 , depending on whether Li atoms are adsorbed on the single side or the double side of phosphorene. Our experimental measurement of the lithium capacity for few-layer phosphorene networks shows a reversible stable value of ∼453 mAh g -1 even after 50 cycles. Our results clearly show that phosphorene, compared to graphene and other two-dimensional materials, has great promise as a novel anode material for high-performance LIBs.

  2. Facile synthesis of Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet as high-performance anode for lithium-ion batteries

    Science.gov (United States)

    Zhang, Dan; Li, Guangshe; Yu, Meijie; Fan, Jianming; Li, Baoyun; Li, Liping

    2018-04-01

    Iron nitrides are considered as highly promising anode materials for lithium-ion batteries because of their nontoxicity, high abundance, low cost, and higher electrical conductivity. Unfortunately, their limited synthesis routes are available and practical application is still hindered by their fast capacity decay. Herein, a facile and green route is developed to synthesize Fe4N/Fe2O3/Fe/porous N-doped carbon nanosheet composite. The size of Fe4N/Fe2O3/Fe particles is small (10-40 nm) and they are confined in porous N-doped carbon nanosheet. These features are conducive to accommodate volume change well, shorten the diffusion distance and further elevate electrical conductivity. When tested as anode material for lithium-ion batteries, a high discharge capacity of 554 mA h g-1 after 100 cycles at 100 mA g-1 and 389 mA h g-1 after 300 cycles at 1000 mA g-1 are retained. Even at 2000 mA g-1, a high capacity of 330 mA h g-1 can be achieved, demonstrating superior cycling stability and rate performance. New prospects will be brought by this work for the synthesis and the potential application of iron nitrides materials as an anode for LIBs.

  3. Three-dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth as binder-free anode for the high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaohua; Zhang, Miao [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Liu, Enzuo, E-mail: ezliu@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); He, Fang; Shi, Chunsheng [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); He, Chunnian [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China); Li, Jiajun [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Zhao, Naiqin, E-mail: nqzhao@tju.edu.cn [School of Materials Science and Engineering and Tianjin Key Laboratory of Composites and Functional Materials, Tianjin University, Tianjin 300350 (China); Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350 (China)

    2016-12-30

    Highlights: • The 3D core-shell Fe{sub 2}O{sub 3}@C/CC structure is fabricated by simple hydrothermal route. • The composite connected 3D carbon networks consist of carbon cloth, Fe{sub 2}O{sub 3} nanorods and outer carbon layer. • The Fe{sub 2}O{sub 3}@C/CC used as binder-free anode in LIBs, demonstrates excellent performances. - Abstract: A facile and scalable strategy is developed to fabricate three dimensional core-shell Fe{sub 2}O{sub 3} @ carbon/carbon cloth structure by simple hydrothermal route as binder-free lithium-ion battery anode. In the unique structure, carbon coated Fe{sub 2}O{sub 3} nanorods uniformly disperse on carbon cloth which forms the conductive carbon network. The hierarchical porous Fe{sub 2}O{sub 3} nanorods in situ grown on the carbon cloth can effectively shorten the transfer paths of lithium ions and reduce the contact resistance. The carbon coating significantly inhibits pulverization of active materials during the repeated Li-ion insertion/extraction, as well as the direct exposure of Fe{sub 2}O{sub 3} to the electrolyte. Benefiting from the structural integrity and flexibility, the nanocomposites used as binder-free anode for lithium-ion batteries, demonstrate high reversible capacity and excellent cyclability. Moreover, this kind of material represents an alternative promising candidate for flexible, cost-effective, and binder-free energy storage devices.

  4. Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Chen, Da; Yi, Ran; Chen, Shuru; Xu, Terrence; Gordin, Mikhail L.; Lv, Dongping; Wang, Donghai

    2014-01-01

    Highlights: • A homogeneous V 2 O 5 /graphene nanocomposite is successfully synthesized. • V 2 O 5 nanoparticles are highly encapsulated in the 2D graphene matrix. • V 2 O 5 /graphene nanocomposite shows much better performance than bare V 2 O 5 . - Abstract: In this work, V 2 O 5 /graphene nanocomposites have been synthesized by a facile solvothermal approach. The V 2 O 5 nanoparticles, around 20–40 nm in size, were encapsulated in the 2D graphene matrix. The reversible Li-cycling properties of V 2 O 5 /graphene have been evaluated by galvanostatic discharge–charge cycling, cyclic voltammetry, and impedance spectroscopy. Compared with the bare V 2 O 5 nanoparticles, the V 2 O 5 /graphene nanocomposites exhibited enhanced electrochemical performance with higher reversible capacity and improved cycling stability and rate capability. The graphene nanosheets act not only as an electronically conductive matrix to improve the electronic and ionic conductivity of the composite electrode, but also as a flexible buffer matrix to maintain the structural integrity of the composite electrodes by preventing particle agglomeration, thus leading to the improvement of the electrochemical performance of V 2 O 5

  5. Copper sulfide microspheres wrapped with reduced graphene oxide for high-capacity lithium-ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiyong; Li, Kun; Wang, Yunhui; Zeng, Jing; Ji, Panying; Zhao, Jinbao, E-mail: jbzhao@xmu.edu.cn

    2016-11-15

    Highlights: • We prepare the nanocomposites of Cu{sub x}S microspheres wrapped with rGO. • As-prepared Cu{sub x}S/rGO can effectively accommodate large volume changes. • As-prepared Cu{sub x}S/rGO supply a 2D conductive network. • As-prepared Cu{sub x}S/rGO trap the polysulfides generated during the discharge–charge. • The Cu{sub x}S/rGO has high capacity, cycle stability and excellent rate capability. - Abstract: In this study, a facile two-step approach was developed to prepare the nanocomposites (Cu{sub x}S/rGO) of copper sulfide (Cu{sub x}S) microspheres wrapped with reduced graphene oxide (rGO). The morphology and structure of Cu{sub x}S/rGO materials were researched by using SEM, XRD and laser Raman spectroscopy. As-prepared Cu{sub x}S/rGO nanocomposites, as an active anode material in LIBs, showed distinctly improved electrochemical characteristics, superior cycling stability and high rate capability. Due to the synergistic effect between the Cu{sub x}S microspheres and the rGO nanosheets, as-prepared Cu{sub x}S/rGO nanocomposites could effectively alleviate large volume changes, provide a 2D conductive network and trap the diffusion of polysulfides during the discharge–charge processes, therefore, the Cu{sub x}S/rGO nanocomposites showed excellent electrochemical characteristics.

  6. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Seyed Saeed Madani

    2018-04-01

    Full Text Available This paper reviews different methods for determination of thermal parameters of lithium ion batteries. Lithium ion batteries are extensively employed for various applications owing to their low memory effect, high specific energy, and power density. One of the problems in the expansion of hybrid and electric vehicle technology is the management and control of operation temperatures and heat generation. Successful battery thermal management designs can lead to better reliability and performance of hybrid and electric vehicles. Thermal cycling and temperature gradients could have a considerable impact on the lifetime of lithium ion battery cells. Thermal management is critical in electric vehicles (EVs and good thermal battery models are necessary to design proper heating and cooling systems. Consequently, it is necessary to determine thermal parameters of a single cell, such as internal resistance, specific heat capacity, entropic heat coefficient, and thermal conductivity in order to design suitable thermal management system.

  7. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  9. Thermal characteristics of Lithium-ion batteries

    Science.gov (United States)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter

  10. Improvement in ionic conductivity of self-supported P(MMA-AN-VAc) gel electrolyte by fumed silica for lithium ion batteries

    International Nuclear Information System (INIS)

    Liao Youhao; Rao Mumin; Li Weishan; Tan Chunlin; Yi Jin; Chen Lang

    2009-01-01

    Fumed silica was used as a dopant in the preparation of poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)) to improve the ionic conductivity of the P(MMA-AN-VAc)-based gel polymer electrolyte (GPE). The performance of the P(MMA-AN-VAc) membrane and its GPE for lithium ion battery use were studied by XRD, SEM, TGA, LSV, CA, EIS, and charge/discharge test. It is found that the doping of fumed silica in the P(MMA-AN-VAc) changes the membrane from semi-crystal to amorphous state and the pore structure of the membrane. By the doping of 10 wt.% fumed silica in the membrane, the porosity of the membrane increases with the pore dispersed more uniformly and interconnected and having higher electrolyte uptake, resulting in the improvement in ionic conductivity of the GPE from 3.48 x 10 -3 to 5.13 x 10 -3 S cm -1 at ambient temperature. On the other hand, the thermal stability of the membrane, the electrochemical stability of the GPE, and the cyclic performance of the battery are also improved.

  11. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  12. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  13. Progress in Application of CNTs in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    Full Text Available The lithium-ion battery is widely used in the fields of portable devices and electric cars with its superior performance and promising energy storage applications. The unique one-dimensional structure formed by the graphene layer makes carbon nanotubes possess excellent mechanical, electrical, and electrochemical properties and becomes a hot material in the research of lithium-ion battery. In this paper, the applicable research progress of carbon nanotubes in lithium-ion battery is described, and its future development is put forward from its two aspects of being not only the anodic conductive reinforcing material and the cathodic energy storage material but also the electrically conductive framework material.

  14. Towards high-energy and durable lithium-ion batteries via atomic layer deposition: elegantly atomic-scale material design and surface modification

    International Nuclear Information System (INIS)

    Meng, Xiangbo

    2015-01-01

    Targeted at fueling future transportation and sustaining smart grids, lithium-ion batteries (LIBs) are undergoing intensive investigation for improved durability and energy density. Atomic layer deposition (ALD), enabling uniform and conformal nanofilms, has recently made possible many new advances for superior LIBs. The progress was summarized by Liu and Sun in their latest review [1], offering many insightful views, covering the design of nanostructured battery components (i.e., electrodes and solid electrolytes), and nanoscale modification of electrode/electrolyte interfaces. This work well informs peers of interesting research conducted and it will also further help boost the applications of ALD in next-generation LIBs and other advanced battery technologies. (viewpoint)

  15. Fabrication of Li4Ti5O12-TiO2 Nanosheets with Structural Defects as High-Rate and Long-Life Anodes for Lithium-Ion Batteries.

    Science.gov (United States)

    Xu, Hui; Chen, Jian; Li, Yanhuai; Guo, Xinli; Shen, Yuanfang; Wang, Dan; Zhang, Yao; Wang, Zengmei

    2017-06-07

    Development of high-power lithium-ion batteries with high safety and durability has become a key challenge for practical applications of large-scale energy storage devices. Accordingly, we report here on a promising strategy to synthesize a high-rate and long-life Li 4 Ti 5 O 12 -TiO 2 anode material. The novel material exhibits remarkable rate capability and long-term cycle stability. The specific capacities at 20 and 30 C (1 C = 175 mA g -1 ) reach 170.3 and 168.2 mA h g -1 , respectively. Moreover, a capacity of up to 161.3 mA h g -1 is retained after 1000 cycles at 20 C, and the capacity retention ratio reaches up to 94.2%. The extraordinary rate performance of the Li 4 Ti 5 O 12 -TiO 2 composite is attributed to the existence of oxygen vacancies and grain boundaries, significantly enhancing electrical conductivity and lithium insertion/extraction kinetics. Meanwhile, the pseudocapacitive effect is induced owing to the presence of abundant interfaces in the composite, which is beneficial to enhancing specific capacity and rate capability. Additionally, the ultrahigh capacity at low rates, greater than the theoretical value of spinel Li 4 Ti 5 O 12 , may be correlated to the lithium vacancies in 8a sites, increasing the extra docking sites of lithium ions.

  16. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Zhian; Zhao, Xingxing; Li, Jie

    2015-01-01

    Graphical abstract: A homogeneous nanocomposite of SnSe and carbon black was synthesised by high energy ball milling and empolyed as an anode material for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). The nanocomposite anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Highlights: • A homogeneous nanocomposite of SnSe and carbon black was fabricated by high energy ball milling. • SnSe and carbon black are homogeneously mixed at the nanoscale level. • The SnSe/C anode exhibits excellent electrochemical performances in both SIBs and LIBs. - Abstract: A homogeneous nanocomposite of SnSe and carbon black, denoted as SnSe/C nanocomposite, was fabricated by high energy ball milling and empolyed as a high performance anode material for both sodium-ion batteries and lithium-ion batteries. The X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy observations confirmed that SnSe in SnSe/C nanocomposite was homogeneously distributed within carbon black. The nanocomposite anode exhibited enhanced electrochemical performances including a high capacity, long cycling behavior and good rate performance in both sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs). In SIBs, an initial capacitiy of 748.5 mAh g −1 was obtained and was maintained well on cycling (324.9 mAh g −1 at a high current density of 500 mA g −1 in the 200 th cycle) with 72.5% retention of second cycle capacity (447.7 mAh g −1 ). In LIBs, high initial capacities of approximately 1097.6 mAh g −1 was obtained, and this reduced to 633.1 mAh g −1 after 100 cycles at 500 mA g −1

  17. High-energy lithium-ion hybrid supercapacitors composed of hierarchical urchin-like WO3/C anodes and MOF-derived polyhedral hollow carbon cathodes.

    Science.gov (United States)

    Xu, Juan; Li, Yuanyuan; Wang, Lei; Cai, Qifa; Li, Qingwei; Gao, Biao; Zhang, Xuming; Huo, Kaifu; Chu, Paul K

    2016-09-22

    A lithium-ion hybrid supercapacitor (Li-HSC) comprising a Li-ion battery type anode and an electrochemical double layer capacitance (EDLC) type cathode has attracted much interest because it accomplishes a large energy density without compromising the power density. In this work, hierarchical carbon coated WO 3 (WO 3 /C) with a unique mesoporous structure and metal-organic framework derived nitrogen-doped carbon hollow polyhedra (MOF-NC) are prepared and adopted as the anode and the cathode for Li-HSCs. The hierarchical mesoporous WO 3 /C microspheres assembled by radially oriented WO 3 /C nanorods along the (001) plane enable effective Li + insertion, thus exhibit high capacity, excellent rate performance and a long cycling life due to their high Li + conductivity, electronic conductivity and structural robustness. The WO 3 /C structure shows a reversible specific capacity of 508 mA h g -1 at a 0.1 C rate (1 C = 696 mA h g -1 ) after 160 discharging-charging cycles with excellent rate capability. The MOF-NC achieved the specific capacity of 269.9 F g -1 at a current density of 0.2 A g -1 . At a high current density of 6 A g -1 , 92.4% of the initial capacity could be retained after 2000 discharging-charging cycles, suggesting excellent cycle stability. The Li-HSC comprising a WO 3 /C anode and a MOF-NC cathode boasts a large energy density of 159.97 W h kg -1 at a power density of 173.6 W kg -1 and 88.3% of the capacity is retained at a current density of 5 A g -1 after 3000 charging-discharging cycles, which are better than those previously reported for Li-HSCs. The high energy and power densities of the Li-HSCs of WO 3 /C//MOF-NC render large potential in energy storage.

  18. Cr3+ and Nb5+ co-doped Ti2Nb10O29 materials for high-performance lithium-ion storage

    Science.gov (United States)

    Yang, Chao; Yu, Shu; Ma, Yu; Lin, Chunfu; Xu, Zhihao; Zhao, Hua; Wu, Shunqing; Zheng, Peng; Zhu, Zi-Zhong; Li, Jianbao; Wang, Ning

    2017-08-01

    Ti2Nb10O29 is an advanced anode material for lithium-ion batteries due to its large specific capacity and high safety. However, its poor electronic/ionic conductivity significantly limits its rate capability. To tackle this issue, a Cr3+-Nb5+ co-doping is employed, and a series of CrxTi2-2xNb10+xO29 compounds are prepared. The co-doping does not change the Wadsley-Roth shear structure but increases the unit-cell volume and decreases the particle size. Due to the increased unit-cell volumes, the co-doped samples show increased Li+-ion diffusion coefficients. Experimental data and first-principle calculations reveal significantly increased electronic conductivities arising from the formation of impurity bands after the co-doping. The improvements of the electronic/ionic conductivities and the smaller particle sizes in the co-doped samples significantly contribute to improving their electrochemical properties. During the first cycle at 0.1 C, the optimized Cr0.6Ti0.8Nb10.6O29 sample delivers a large reversible capacity of 322 mAh g-1 with a large first-cycle Coulombic efficiency of 94.7%. At 10 C, it retains a large capacity of 206 mAh g-1, while that of Ti2Nb10O29 is only 80 mAh g-1. Furthermore, Cr0.6Ti0.8Nb10.6O29 shows high cyclic stability as demonstrated in over 500 cycles at 10 C with tiny capacity loss of only 0.01% per cycle.

  19. Thin film rechargeable electrodes based on conductive blends of nanostructured olivine LiFePO4 and sucrose derived nanocarbons for lithium ion batteries.

    Science.gov (United States)

    Praveen, P; Jyothsna, U; Nair, Priya; Ravi, Soumya; Balakrishnan, A; Subramanian, K R V; Nair, A Sreekumaran; Nair, V Shantikumar; Sivakumar, N

    2013-08-01

    The present study provides the first reports of a novel approach of electrophoretic co-deposition technique by which titanium foils are coated with LiFePO4-carbon nanocomposites synthesized by sol gel route and processed into high-surface area cathodes for lithium ion batteries. The study elucidates how sucrose additions as carbon source can affect the surface morphology and the redox reaction behaviors underlying these cathodes and thereby enhance the battery performance. The phase and morphological analysis were done using XRD and XPS where the LiFePO4 formed was confirmed to be a high purity orthorhombic system. From the analysis of the relevant electrochemical parameters using cyclic voltammetry and electrochemical impedance spectroscopy, a 20% increment and 90% decrement in capacity and impedance values were observed respectively. The composite electrodes also exhibited a specific capacity of 130 mA h/g. It has been shown that cathodes based on such composite systems can allow significant room for improvement in the cycling performance at the electrode/electrolyte interface.

  20. High Voltage Surface Degradation on Carbon Blacks in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Younesi, Reza

    In order to increase the power density of Li-ion batteries, much research is focused on developing cathode materials that can operate at high voltages above 4.5 V with a high capacity, high cycling stability, and rate capability. However, at high voltages all the components of positive electrodes...... including carbon black (CB) additives have a potential risk of degradation. Though the weight percentage of CB in commercial batteries is generally very small, the volumetric amount and thus the surface area of CB compose a rather large part of a cathode due to its small particle size (≈ 50 nm) and high...

  1. High performance of mesoporous γ-Fe2O3 nanoparticle/Ketjen Black composite as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Dong, Hui; Xu, Yunlong; Ji, Mandi; Zhang, Huang; Zhao, Zhen; Zhao, Chongjun

    2015-01-01

    Highlights: • A mesoporous γ-Fe 2 O 3 /KB composite was synthesized via solvothermal method. • KB was used as a carbon template to improve electrochemical performance of γ-Fe 2 O 3 . • 3D network structure can relieve volume change and improve the ionic transport. • The composite exhibited an ultrahigh capacity and high rate performance. - Abstract: A type of γ-Fe 2 O 3 nanoparticle/Ketjen Black (KB) composite material is synthesized by a solvothermal method combined with precursor thermal transformation. The structure and morphology are characterized by XRD, raman spectra, TG, nitrogen sorption, SEM, TEM and EDS. The results show that the composite has a uniform nanoporous network and well-dispersed γ-Fe 2 O 3 particles with a size of ca. 5 nm are embedded in the mesopores of KB. The γ-Fe 2 O 3 /KB exhibits superior eletrochemical performances to the bare γ-Fe 2 O 3 , especially at high current rate. The discharge capacity of the composite is 1100 mAh·g −1 at the first cycle and remains 988.8 mAh·g −1 after 100 cycles at 0.2 C. Moreover, it also maintains a high discharge capacity of 697.8 mAh·g −1 at 2 C and 410.1 mAh·g −1 at 5 C after 100 cycles, respectively. Such improved electrochemical performances could be attributed to the superior conductivity and favorable structure of KB, which contributes to the improvement in electronic conductivity and structure stability of γ-Fe 2 O 3 during the lithium ion insertion/desertion process

  2. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.

    Science.gov (United States)

    Kasnatscheew, Johannes; Wagner, Ralf; Winter, Martin; Cekic-Laskovic, Isidora

    2018-04-18

    Energy storage is considered a key technology for successful realization of renewable energies and electrification of the powertrain. This review discusses the lithium ion battery as the leading electrochemical storage technology, focusing on its main components, namely electrode(s) as active and electrolyte as inactive materials. State-of-the-art (SOTA) cathode and anode materials are reviewed, emphasizing viable approaches towards advancement of the overall performance and reliability of lithium ion batteries; however, existing challenges are not neglected. Liquid aprotic electrolytes for lithium ion batteries comprise a lithium ion conducting salt, a mixture of solvents and various additives. Due to its complexity and its role in a given cell chemistry, electrolyte, besides the cathode materials, is identified as most susceptible, as well as the most promising, component for further improvement of lithium ion batteries. The working principle of the most important commercial electrolyte additives is also discussed. With regard to new applications and new cell chemistries, e.g., operation at high temperature and high voltage, further improvements of both active and inactive materials are inevitable. In this regard, theoretical support by means of modeling, calculation and simulation approaches can be very helpful to ex ante pre-select and identify the aforementioned components suitable for a given cell chemistry as well as to understand degradation phenomena at the electrolyte/electrode interface. This overview highlights the advantages and limitations of SOTA lithium battery systems, aiming to encourage researchers to carry forward and strengthen the research towards advanced lithium ion batteries, tailored for specific applications.

  3. Lithium-ion battery materials and engineering current topics and problems from the manufacturing perspective

    CERN Document Server

    Gulbinska, Malgorzata K

    2014-01-01

    Gaining public attention due, in part,  to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batterie

  4. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

    International Nuclear Information System (INIS)

    Hussain, Abid; Tso, C.Y.; Chao, Christopher Y.H.

    2016-01-01

    It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density. - Highlights: • Thermal management for Li-ion batteries using nickel-paraffin is studied. • The temperature is reduced by 31% as compared to natural air cooling mode. • The temperature increases with increase of porosity and pore density of metal foam. • Battery discharge capacity increases with the increase in porosity. • Battery discharge capacity increases with the decreases in pore density.

  5. High rate capacity nanocomposite lanthanum oxide coated lithium zinc titanate anode for rechargeable lithium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haoqing, E-mail: tanghaoqing@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zan, Lingxing [Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn 53117 (Germany); Zhu, Jiangtao; Ma, Yiheng [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhao, Naiqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tang, Zhiyuan, E-mail: zytang46@163.com [Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-05-15

    Lithium zinc titanate (Li{sub 2}ZnTi{sub 3}O{sub 8}) is an important titanium material of promising candidates for anode materials with superior electrochemical performance and thus has attracted extensive attention. Herein, high capacity, stable Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} nanocomposite for lithium-ion battery anode is prepared by a facile strategy. Compared to unmodified Li{sub 2}ZnTi{sub 3}O{sub 8}, the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} electrode display a high specific capacity of 188.6 mAh g{sup −1} and remain as high as 147.7 mAh g{sup −1} after 100 cycles at 2.0 A g{sup −1}. Moreover, a reversible capacity of 76.3 mAh g{sup −1} can be obtained after 1000 cycles at 2.0 A g{sup −1} and the retention is 42.7% for Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3}, which is much higher than un-coated Li{sub 2}ZnTi{sub 3}O{sub 8}. The superior lithium storage performances of the Li{sub 2}ZnTi{sub 3}O{sub 8}/La{sub 2}O{sub 3} can be ascribed to the stable layer of protection, small particle size and large surface area. Cyclic voltammograms result reveals that the La{sub 2}O{sub 3} coating layer reduces the polarization and improves the electrochemical activity of anode. - Highlights: • Nano layer La{sub 2}O{sub 3} coated Li{sub 2}ZnTi{sub 3}O{sub 8} particles have been prepared via a suspension mixing process followed by heat treatment. • Coated Li{sub 2}ZnTi{sub 3}O{sub 8} has enhanced high rate capability, cyclic stability and long lifespan performance. • Electrochemical properties were tested in a charge/discharge voltage range of 3.0–0.05 V (vs. Li/Li{sup +}).

  6. Anatase-TiO{sub 2}/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinlong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Feng, Haibo; Jiang, Jianbo [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Qian, Dong, E-mail: qiandong6@vip.sina.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Li, Junhua; Peng, Sanjun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Liu, Youcai, E-mail: liuyoucai@126.com [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-08-01

    Highlights: • Anatase-TiO{sub 2}/CNTs nanocomposite was prepared by a facile and scalable hydrolysis route. • The composite exhibits super-high rate capability and excellent cycling stability for LIBs. • The nanocomposite shows great potential as a superior anode material for LIBs. - Abstract: Anatase-TiO{sub 2}/carbon nanotubes (CNTs) with robust nanostructure is fabricated via a facile two-step synthesis by ammonia water assisted hydrolysis and subsequent calcination. The as-synthesized nanocomposite was characterized employing X-ray powder diffraction, Fourier transform infrared spectrophotometry, Raman spectrophotometry, thermal gravimetric analysis, transmission electron microscopy, high-resolution transmission electron microscopy and selected area electronic diffraction, and its electrochemical properties as an anode material for lithium-ion batteries (LIBs) were investigated by cyclic voltammetry, galvanostatic discharge/charge test and electrochemical impendence spectroscopy. The results show that the pure anatase TiO{sub 2} nanoparticles with diameters of about 10 nm are uniformly distributed on/among the CNTs conducting network. The as-synthesized nanocomposite exhibits remarkably improved performances in LIBs, especially super-high rate capability and excellent cycling stability. Specifically, a reversible capacity as high as 92 mA h g{sup −1} is achieved even at a current density of 10 A g{sup −1} (60 C). After 100 cycles at 0.1 A g{sup −1}, it shows good capacity retention of 185 mA h g{sup −1} with an outstanding coulombic efficiency up to 99%. Such superior Li{sup +} storage properties demonstrate the reinforced synergistic effects between the nano-sized TiO{sub 2} and the interweaved CNTs network, endowing the nanocomposite with great application potential in high-power LIBs.

  7. Advanced Lithium-ion Batteries with High Specific Energy and Improved Safety for Nasa's Missions

    Science.gov (United States)

    West, William; Smart, Marshall; Soler, Jess; Krause, Charlie; Hwang, Constanza; Bugga, Ratnakumar

    2012-01-01

    High Energy Materials ( Cathodes, anodes and high voltage and safe electrolyte are required to meet the needs of the future space missions. A. Cathodes: The layered layered composites of of Li2MnO3 and LiMO2 are promising Power capability of the materials, however requires further improvement. Suitable morphology is critical for good performance and high tap (packing) density. Surface coatings help in the interfacial kinetics and stability. B. Electrolytes: Small additions of Flame Retardant Additives improves flammability without affecting performance (Rate and cycle life). 1.0 M in EC+EMC+TPP was shown to have good performance against the high voltage cathode; Performance demonstrated in large capacity prototype MCMB- LiNiCoO2 Cells. Formulations with higher proportions are looking promising. Still requires further validation through abuse tests (e.g., on 18650 cells).

  8. Advanced Nanostructured Cathode for Ultra High Specific Energy Lithium Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Integrate advanced nanotechnology with energy storage technology to develop advanced cathode materials for use in Li-ion batteries while maintaining a high level of...

  9. Solid Lithium Ion Conductors (SLIC) for Lithium Solid State Batteries

    Data.gov (United States)

    National Aeronautics and Space Administration — To identify the most lithium-ion conducting solid electrolytes for lithium solid state batteries from the emerging types of solid electrolytes, based on a...

  10. A Novel 2D Porous Print Fabric-like α-Fe_2O_3 Sheet with High Performance as the Anode Material for Lithium-ion Battery

    International Nuclear Information System (INIS)

    Zhang, Suyue; Zhang, Peigen; Xie, Anjian; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua

    2016-01-01

    Anode materials are very crucial in lithium ion batteries. Exploring the simple and low cost production of anodes with excellent electrochemical performance remains a great challenge. Here, we used natural flower spikes of Typha orientalis as the bio-templates and organizers to prepare a novel two-dimensional (2D) porous print fabric-like α-Fe_2O_3 sheet with thickness of about 30 nm. The prepared large-area sheets were orderly assembled by many nanosheets or nanoparticles, and two kinds of pore structures, such as pores with average diameter of about 50 nm or pore channels with aspect ratio of ca. 4, presented between adjacent nanosheets. The pre-treatment by ammonium for flower spikes has a great effect on the microstructure and electrochemical performance of the products. As the anode material for lithium ion battery (LIB), the as-obtained porous print fabric-like α-Fe_2O_3 sheets show an initial discharge capacity of 2264 mA h g"−"1 and the specific capacity of 1028 mA h g"−"1 after 100 cycles at a current density of 500 mA g"−"1, which is higher than the theoretical capacity of α-Fe_2O_3 (1007 mA h g"−"1). This highly reversible capacity is attributed to the very thin large-area sheet structure, and many pores or pore channels among the interconnected nanosheets, which could increase lithium-ion mobility, facilitate the transport of electrons and shorten the distance for Li"+ diffusion, and also buffer large volume changes of the anodes during lithium insertion and extraction at the same time. The synthesis process is very simple, providing a low-cost production approach toward high-performance energy storage materials.

  11. High capacity Si/DC/MWCNTs nanocomposite anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou Zhibin; Xu Yunhua; Liu Wengang; Niu Libin

    2010-01-01

    Nanocomposites comprising nanocrystal silicon (Si), disordered carbon (DC), and multi-walled carbon nanotubes (MWCNTs) - denoted as Si/DC/MWCNTs - have been prepared by pyrolyzing the phenol-formaldehyde resin (PFR) mixed with Si and MWCNTs. This nanocomposite anode material showed a discharge capacity of 1216 mAh/g in the first cycle, and a charge capacity of 711 mAh/g after 20 charge-discharge, much higher than that of Si/DC composite. It can be observed that Si particles wrapped in MWCNTs were homogeneously embedded into the matrix of the DC. The improved electrochemical performance is hypothesized to be mainly attributed to the morphology stability of the composite due to the excellent resiliency and distinct electric conductivity of the MWCNTs.

  12. SnO2 Quantum Dots@Graphene Oxide as a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Zhao, Kangning; Zhang, Lei; Xia, Rui; Dong, Yifan; Xu, Wangwang; Niu, Chaojiang; He, Liang; Yan, Mengyu; Qu, Longbin; Mai, Liqiang

    2016-02-03

    Tin-based electrode s offer high theoretical capacities in lithium ion batteries, but further commercialization is strongly hindered by the poor cycling stability. An in situ reduction method is developed to synthesize SnO2 quantum dots@graphene oxide. This approach is achieved by the oxidation of Sn(2+) and the reduction of the graphene oxide. At 2 A g(-1), a capacity retention of 86% is obtained even after 2000 cycles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. SnO and SnO·CoO nanocomposite as high capacity anode materials for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Das, B., E-mail: bijoy822000@gmail.com; Reddy, M.V.; Chowdari, B.V.R, E-mail: phychowd@nus.edu.sg

    2016-02-15

    Highlights: • The preparation methods are simple, low cost and can be scaled up for large production. • SnO is cheap, non-toxic and eco-friendly. • SnO shows high reversible capacity (Theoretical reversible capacity: 875 mA h g{sup −1}). • We showed high reversible capacity and columbic efficiency for SnO and SnO based composites. • We addressed the capacity degradation by introducing secondary phase (CoO and CNT etc.) - Abstract: We prepared SnO nanoparticles (SnO–S) and SnO·CoO nanocomposites (SnO·CoO–B) as anodes for lithium ion batteries (LIBs) by chemical and ball-milling approaches, respectively. They are characterized by X-ray diffraction and TEM techniques. The Li- storage performance are evaluated by galvanostatic cycling and cyclic voltammetry. The SnO–S and SnO·CoO–B showed improved cycling performance due to their finite particle size (i.e. nano-size) and presence of secondary phase (CoO). Better cycling stability is noticed for SnO·CoO–B with the expense of their reversible capacity. Also, addition of carbon nanotubes (CNT) to SnO–S further improved the cycling performance of SnO–S. When cycled at 60 mA g{sup −1}, the first-cycle reversible capacities of 635, 590 and 460 (±10) mA h g{sup −1} are noticed for SnO–S, SnO@CNT and SnO·CoO–B, respectively. The capacity fading observed are 3.7 and 1.8 mA h g{sup −1} per cycle for SnO–S and SnO@CNT, respectively; whereas 1–1.2 mA h g{sup −1} per cycle for SnO·CoO–B. All the samples show high coulombic efficiency, 96–98% in the range of 5–50 cycles.

  14. Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries

    International Nuclear Information System (INIS)

    Guo, Donglei; Wei, Xiuge; Chang, Zhaorong; Tang, Hongwei; Li, Bao; Shangguan, Enbo; Chang, Kun; Yuan, Xiao-Zi; Wang, Haijiang

    2015-01-01

    Graphical abstract: Polyhedron structured sphere-like LiMn 2 O 4 synthesized from β-MnO 2 nanorod precursor via a solid state reaction at a temperature of 800 °C exhibits excellent rate capability and cycling performance at both 25 °C and 55 °C. - Highlights: • Polyhedron sphere-like LiMn 2 O 4 was synthesized from β-MnO 2 nanorod precursor. • The polyhedron sphere-like LiMn 2 O 4 exhibits excellent rate capability and cycling performance. • The polyhedron sphere-like structure spinel LiMn 2 O 4 suppresses the dissolution of manganese ions. • The polyhedron sphere-like LiMn 2 O 4 has high diffusion coefficient of Li + . - Abstract: Polyhedron structured sphere-like lithium manganese oxide (LiMn 2 O 4 ) is successfully synthesized from β-MnO 2 nanorod precursor via a solid state reaction at a temperature of 800 °C. For comparison, LiMn 2 O 4 materials with nanorod and octahedron structures are also obtained from β-MnO 2 nanorod precursor at temperatures of 700 °C and 900 °C, respectively. The galvanostatic charge–discharge result shows that the polyhedron sphere-like LiMn 2 O 4 sample exhibits the best electrochemical performance at high rate and high temperature. After 100 cycles at 5 C, this electrode is able to maintain 94% of its capacity at 25 °C and 81% at 55 °C. This is attributed to that the polyhedron sphere-like spinel LiMn 2 O 4 can suppress the dissolution of manganese ions. Based on Brunauer Emmett Teller (BET), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the polyhedron sphere-like LiMn 2 O 4 sample has the lowest BET surface area, largest diffusion coefficient of Li + and least charge transfer resistance. This study provides an insight into the capacity fading of LiMn 2 O 4 electrodes and the polyhedron structured sphere-like LiMn 2 O 4 can be a promising material for lithium ion batteries

  15. Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries

    KAUST Repository

    Cui, Li-Feng; Yang, Yuan; Hsu, Ching-Mei; Cui, Yi

    2009-01-01

    We introduce a novel design of carbon-silicon core-shell nanowires for high power and long life lithium battery electrodes. Amorphous silicon was coated onto carbon nanofibers to form a core-shell structure and the resulted core-shell nanowires

  16. Nest-like LiFePO4/C architectures for high performance lithium ion batteries

    International Nuclear Information System (INIS)

    Deng Honggui; Jin Shuangling; Zhan Liang; Qiao Wenming; Ling Licheng

    2012-01-01

    Highlights: ► Nest-like LiFePO 4 /C architectures (nest-like LPCs) were synthesized by solvothermal method. ► The microstructures of nest-like LPCs are very stable constructed by many nanosheets. ► The unique structures offer nest-like LPC electrode with high rate performance. ► The reversible capacity of nest-like LPCs electrode is as high as 120 mAh g −1 at 10 C. - Abstract: A novel kind of microsized nest-like LiFePO 4 /C architectures was synthesized by solvothermal method using inexpensive and stable Fe 3+ salt as iron source and ethylene glycol as mediate. A layer of carbon could be coated directly on the surface of LiFePO 4 crystals and the nest-like unique structures offer the cathode materials with high reversible capacity, excellent cycling stability and high rate performance. The reversible capacity can maintain 159 mAh g −1 at 0.1 C and 120 mAh g −1 at 10 C.

  17. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook, E-mail: jaekook@chonnam.ac.kr

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K{sup +})-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K{sup +} ion doping caused no change in the phase structure, and highly crystalline K{sub x}Cu{sub 1−x}O{sub 1−δ} (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K{sup +}-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g{sup −1} for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g{sup −1} at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g{sup −1} at 0.1 C and 68.9 mA h g{sup −1} at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K{sup +} ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  18. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    International Nuclear Information System (INIS)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-01-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K + )-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K + ion doping caused no change in the phase structure, and highly crystalline K x Cu 1−x O 1−δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K + -doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g −1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g −1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g −1 at 0.1 C and 68.9 mA h g −1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K + ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  19. Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery

    Science.gov (United States)

    Thi, Trang Vu; Rai, Alok Kumar; Gim, Jihyeon; Kim, Jaekook

    2014-06-01

    A simple and efficient approach was developed to synthesize CuO nanoparticles with improved electrochemical performance. Potassium (K+)-doped CuO nanoparticles were synthesized by a simple and cost-effective solvothermal method followed by annealing at 500 °C for 5 h under air atmosphere. For comparison, an undoped CuO sample was also synthesized under the same conditions. X-ray diffraction analysis demonstrates that the K+ ion doping caused no change in the phase structure, and highly crystalline KxCu1-xO1-δ (x = 0.10) powder without any impurity was obtained. As an anode material for a lithium ion battery, the K+-doped CuO nanoparticle electrode exhibited better capacity retention with a reversible capacity of over 354.6 mA h g-1 for up to 30 cycles at 0.1 C, as well as a high charge capacity of 162.3 mA h g-1 at a high current rate of 3.2 C, in comparison to an undoped CuO electrode (275.9 mA h g-1 at 0.1 C and 68.9 mA h g-1 at 3.2 C). The high rate capability and better cycleability of the doped electrode can be attributed to the influence of the K+ ion nanostructure on the increased electronic conductivity, diffusion efficiency, and kinetic properties of CuO during the lithiation and delithiation process.

  20. A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode.

    Science.gov (United States)

    Sun, Fei; Gao, Jihui; Zhu, Yuwen; Pi, Xinxin; Wang, Lijie; Liu, Xin; Qin, Yukun

    2017-02-03

    Hybridizing battery and capacitor materials to construct lithium ion capacitors (LICs) has been regarded as a promising avenue to bridge the gap between high-energy lithium ion batteries and high-power supercapacitors. One of the key difficulties in developing advanced LICs is the imbalance in the power capability and charge storage capacity between anode and cathode. Herein, we design a new LIC system by integrating a rationally designed Sn-C anode with a biomass-derived activated carbon cathode. The Sn-C nanocomposite obtained by a facile confined growth strategy possesses multiple structural merits including well-confined Sn nanoparticles, homogeneous distribution and interconnected carbon framework with ultra-high N doping level, synergically enabling the fabricated anode with high Li storage capacity and excellent rate capability. A new type of biomass-derived activated carbon featuring both high surface area and high carbon purity is also prepared to achieve high capacity for cathode. The assembled LIC (Sn-C//PAC) device delivers high energy densities of 195.7 Wh kg -1 and 84.6 Wh kg -1 at power densities of 731.25 W kg -1 and 24375 W kg -1 , respectively. This work offers a new strategy for designing high-performance hybrid system by tailoring the nanostructures of Li insertion anode and ion adsorption cathode.

  1. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED

    Energy Technology Data Exchange (ETDEWEB)

    Sunstrom, Joseph [Daikin America, Inc., Orangeburg, NY (United States); Hendershot, Ron E. [Daikin America, Inc., Orangeburg, NY (United States)

    2017-03-06

    An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. The results are promising for future advanced battery development for vehicles as well as other applications.

  2. Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation

    International Nuclear Information System (INIS)

    Wang, Shunli; Shang, Liping; Li, Zhanfeng; Deng, Hu; Li, Jianchao

    2016-01-01

    Highlights: • A novel concept (SOB, State of Balance) is proposed for the LIB pack equalization. • Core parameter detection and filtering is analyzed to identify the LIB pack behavior. • The electrical UKF model is adopted for the online dynamic estimation. • The equalization target model is built based on the optimum preference. • Comprehensive imbalance state calculation is implemented for the adjustment. - Abstract: A novel concept named as state of balance (SOB) is proposed and its online dynamic estimation method is presented for the high-power lithium-ion battery (LIB) packs, based on which the online dynamic equalization adjustment is realized aiming to protect the operation safety of its power supply application. The core parameter detection method based on the specific moving average algorithm is studied because of their identical varying characteristics on the individual cells due to the manufacturing variability and other factors, affecting the performance of the high-power LIB pack. The SOB estimation method is realized with the detailed deduction, in which a dual filter consisting of the Unscented Kalman filter (UKF), equivalent circuit model (ECM) and open circuit voltage (OCV) is used in order to predict the SOB state. It is beneficial for the energy operation and the energy performance state can be evaluated online prior to the adjustment method based on the terminal voltage consistency. The energy equalization is realized that is based on the credibility reasoning together with the equalization model building process. The experiments including the core parameter detection, SOB estimation and equalization adjustment are done and the experimental results are analyzed. The experiment results show that the numerical Coulomb efficiency is bigger than 95%. The cell voltage measurement error is less than 5 mV and the terminal voltage measurement error of the LIB pack is less than 1% FS. The measurement error of the battery discharge and charge

  3. High-Rate Long-Life Pored Nanoribbon VNb9O25 Built by Interconnected Ultrafine Nanoparticles as Anode for Lithium-Ion Batteries.

    Science.gov (United States)

    Qian, Shangshu; Yu, Haoxiang; Yan, Lei; Zhu, Haojie; Cheng, Xing; Xie, Ying; Long, Nengbing; Shui, Miao; Shu, Jie

    2017-09-13

    VNb 9 O 25 is a novel lithium storage material, which has not been systematically investigated so far. Via electrospinning technology, VNb 9 O 25 samples with two different morphologies, pored nanoribbon and rodlike nanoparticles, are prepared in relatively low temperature and time-saving calcination conditions. It is found that the formation process of different morphologies depends on the control of self-aggregation of the precursor by using different sample collectors. Compared with rodlike VNb 9 O 25 (RL-VNb 9 O 25 ), pored nanoribbon VNb 9 O 25 (PR-VNb 9 O 25 ) can deliver a higher specific capacity, lower capacity loss, and better cyclability. Even cycled at 1000 mA g -1 , the reversible capacity of 132.3 mAh g -1 is maintained by PR-VNb 9 O 25 after 500 cycles, whereas RL-VNb 9 O 25 only exhibits a capacity of 102.7 mAh g -1 . The enhancement should be attributed to the pored nanoribbon structure with large specific surface area and shorter pathway for lithium ions transport. Furthermore, the lithium ions insertion/extraction process is verified from refinement results of in situ X-ray diffraction data, which is associated with a lithium occupation process in type III and VI cavities through tunnels I, II, and III. In addition, high structural stability and electrochemical reversibility are also demonstrated. All of these advantages suggest that PR-VNb 9 O 25 is a promising anode material for lithium-ion batteries.

  4. Human-rated Safety Certification of a High Voltage Robonaut Lithium-ion Battery

    Science.gov (United States)

    Jeevarajan, Judith; Yayathi, S.; Johnson, M.; Waligora, T.; Verdeyen, W.

    2013-01-01

    NASA's rigorous certification process is being followed for the R2 high voltage battery program for use of R2 on International Space Station (ISS). Rigorous development testing at appropriate levels to credible off-nominal conditions and review of test data led to design improvements for safety at the virtual cell, cartridge and battery levels. Tests were carried out at all levels to confirm that both hardware and software controls work. Stringent flight acceptance testing of the flight battery will be completed before launch for mission use on ISS.

  5. High-performing mesoporous iron oxalate anodes for lithium-ion batteries.

    Science.gov (United States)

    Ang, Wei An; Gupta, Nutan; Prasanth, Raghavan; Madhavi, Srinivasan

    2012-12-01

    Mesoporous iron oxalate (FeC(2)O(4)) with two distinct morphologies, i.e., cocoon and rod, has been synthesized via a simple, scalable chimie douce precipitation method. The solvent plays a key role in determining the morphology and microstructure of iron oxalate, which are studied by field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Crystallographic characterization of the materials has been carried out by X-ray diffraction and confirmed phase-pure FeC(2)O(4)·2H(2)O formation. The critical dehydration process of FeC(2)O(4)·2H(2)O resulted in anhydrous FeC(2)O(4), and its thermal properties are studied by thermogravimetric analysis. The electrochemical properties of anhydrous FeC(2)O(4) in Li/FeC(2)O(4) cells are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. The studies showed that the initial discharge capacities of anhydrous FeC(2)O(4) cocoons and rods are 1288 and 1326 mA h g(-1), respectively, at 1C rate. Anhydrous FeC(2)O(4) cocoons exhibited stable capacity even at high C rates (11C). The electrochemical performance of anhydrous FeC(2)O(4) is found to be greatly influenced by the number of accessible reaction sites, morphology, and size effects.

  6. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    Science.gov (United States)

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  8. Multiwalled carbon nanotube@a-C@Co9S8 nanocomposites: a high-capacity and long-life anode material for advanced lithium ion batteries

    Science.gov (United States)

    Zhou, Yanli; Yan, Dong; Xu, Huayun; Liu, Shuo; Yang, Jian; Qian, Yitai

    2015-02-01

    A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries.A one-dimensional MWCNT@a-C@Co9S8 nanocomposite has been prepared via a facile solvothermal reaction followed by a calcination process. The amorphous carbon layer between Co9S8 and MWCNT acts as a linker to increase the loading of sulfides on MWCNT. When evaluated as anode materials for lithium ion batteries, the MWCNT@a-C@Co9S8 nanocomposite shows the advantages of high capacity and long life, superior to Co9S8 nanoparticles and MWCNT@Co9S8 nanocomposites. The reversible capacity could be retained at 662 mA h g-1 after 120 cycles at 1 A g-1. The efficient synthesis and excellent performances of this nanocomposite offer numerous opportunities for other sulfides as a new anode for lithium ion batteries. Electronic supplementary information (ESI) available: Infrared spectrogram (IR) of glucose treated MWCNT; TEM images of MWCNT@a-C treated by different concentrations of glucose; SEM and TEM images of the intermediate product obtained from the solvothermal reaction between thiourea and Co(Ac)2; EDS spectrum of MWCNT@a-C@Co9S8 composites; SEM and TEM images of MWCNT@Co9S8 nanocomposites obtained without the hydrothermal treatment by glucose; SEM and TEM images of Co9S8 nanoparticles; Galvanostatic discharge-charge profiles and cycling performance of MWCNT@a-C; TEM images

  9. Carbon coated Li{sub 4}Ti{sub 5}O{sub 12} nanorods as superior anode material for high rate lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang, E-mail: azhangxg@nuaa.edu.cn

    2013-09-25

    Highlights: •A novel approach has been developed to fabricate 1D Li{sub 4}Ti{sub 5}O{sub 12}/C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li{sub 4}Ti{sub 5}O{sub 12}/C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li{sub 4}Ti{sub 5}O{sub 12} (Li{sub 4}Ti{sub 5}O{sub 12}/C) nanorods for high rate lithium ion batteries. The carbon coated TiO{sub 2} nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO{sub 2} powder is immersed in KOH sulotion and subsequently transforms into Li{sub 4}Ti{sub 5}O{sub 12}/C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li{sub 4}Ti{sub 5}O{sub 12}, one-dimensional (1D) Li{sub 4}Ti{sub 5}O{sub 12}/C nanostructures show much better rate capability and cycling stability. The 1D Li{sub 4}Ti{sub 5}O{sub 12}/C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport.

  10. Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries

    International Nuclear Information System (INIS)

    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

    2011-01-01

    Graphene-modified LiFePO 4 composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO 4 nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO 4 primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO 4 nanoparticles and graphene sheets was beneficial for Li + diffusion. The composite cathode material could deliver a capacity of 70 mAh g -1 at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

  11. High energy density layered-spinel hybrid cathodes for lithium ion rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Basu, S., E-mail: sbasumajumder@yahoo.com [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Dahiya, P.P.; Akhtar, Mainul [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Ray, S.K. [Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India); Chang, J.K. [Institute of Materials Science and Engineering, National Central University, Taiwan (China); Majumder, S.B. [Materials Science Center, Indian Institute of Technology Kharagpur, Kharagpur 721 302 (India)

    2016-11-15

    Highlights: • Structural integration of layered domains in spinel matrix of the composite particles. • Highest discharge capacity (275 mAh g{sup −1}) in composite with 30.0 mole% Li{sub 2}MnO{sub 3}. • Reasonably good rate capability of layered-spinel composite cathode. • Capacity fading with cycling is related to cubic to tetragonal structural phase transition. - Abstract: High energy density Li{sub 2}MnO{sub 3} (layered)–LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} (spinel) composite cathodes have been synthesized using auto-combustion route. Rietveld refinements together with the analyses of high resolution transmission electron micrographs confirm the structural integration of Li{sub 2}MnO{sub 3} nano-domains into the LiMn{sub 1.5}Ni{sub 0.5}O{sub 4} matrix of the composite cathodes. The discharge capacity of the composite cathodes are due to the intercalation of Li{sup +} ion in the tetrahedral (8a) and octahedral (16c) sites of the spinel component and also the insertion of Li{sup +} in the freshly prepared MnO{sub 2} lattice, formed after Li{sub 2}O extraction from the Li{sub 2}MnO{sub 3} domains. The capacity fading of the composite cathodes are explained to be due to the layered to spinel transition of the Li{sub 2}MnO{sub 3} component and Li{sup +} insertion into the octahedral site of the spinel lattices which trigger cubic to tetragonal phase transition resulting volume expansion which eventually retard the Li{sup +} intercalation with cycling.

  12. Porous worm-like NiMoO4 coaxially decorated electrospun carbon nanofiber as binder-free electrodes for high performance supercapacitors and lithium-ion batteries

    Science.gov (United States)

    Tian, Xiaodong; Li, Xiao; Yang, Tao; Wang, Kai; Wang, Hongbao; Song, Yan; Liu, Zhanjun; Guo, Quangui

    2018-03-01

    The peculiar architectures consisting of electrospun carbon nanofibers coaxially decorated by porous worm-like NiMoO4 were successfully fabricated for the first time to address the poor cycling stability and inferior rate capability of the state-of-the-art NiMoO4-based electrodes caused by the insufficient structural stability, dense structure and low conductivity. The porous worm-like structure endows the electrode high capacitance/capacity due to large effective specific surface area and short electron/ion diffusion channels. Moreover, the robust integrated electrode with sufficient internal spaces can self-accommodate volume variation during charge/discharge processes, which is beneficial to the structural stability and integrity. By the virtue of rational design of the architecture, the hybrid electrode delivered high specific capacitance (1088.5 F g-1 at 1 A g-1), good rate capability (860.3 F g-1 at 20 A g-1) and long lifespan with a capacitance retention of 73.9% after 5000 cycles when used as supercapacitor electrode. For lithium-ion battery application, the electrode exhibited a high reversible capacity of 1132.1 mAh g-1 at 0.5 A g-1. Notably, 689.7 mAh g-1 can be achieved even after 150 continuous cycles at a current density of 1 A g-1. In the view of their outstanding electrochemical performance and the cost-effective fabrication process, the integrated nanostructure shows great promising applications in energy storage.

  13. Novel peapoded Li4Ti5O12 nanoparticles for high-rate and ultralong-life rechargeable lithium ion batteries at room and lower temperatures

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Fang, Ling; Zhang, Yan; Wang, Yu

    2016-01-01

    In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile hydrothermal reaction and the subsequent solid-state process. Compared to the previous reports, the as-prepared samples obtained by our new strategy exhibit excellent electrochemical performances, such as outstanding rate capability (an extremely reversible capability of 148 mA h g-1, 125 mA h g-1 at 30 C and 90 C, respectively) as well as excellent cycling performance (about 5% capacity loss after 5000 cycles at 10 C with 152 mA h g-1 capacity retained). The low-temperature measurements also demonstrate that the electrochemical performances of the peapod-like Li4Ti5O12-C composite are remarkably improved at various rate currents (at the low-temperature of -25 °C, a high Coulombic efficiency of about 99% can be achieved after 500 cycles at 10 C).In this paper, a novel peapod-like Li4Ti5O12-C composite architecture with high conductivity is firstly designed and synthesized to be used as anode materials for lithium-ion batteries. In the synthesis, Na2Ti3O7 nanotubes act as precursors and sacrificial templates, and glucose molecules serve as the green carbon source, thus the peapod-like Li4Ti5O12-C composite can be fabricated by a facile hydrothermal reaction and the subsequent solid-state process. Compared to the previous reports, the as-prepared samples obtained by our new strategy exhibit excellent electrochemical performances, such as outstanding rate capability (an extremely reversible capability of 148 mA h g-1, 125 mA h g-1 at 30 C and 90 C, respectively) as well as excellent cycling performance (about 5% capacity loss after 5000 cycles at 10 C with 152 mA h g-1 capacity

  14. A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Wang, Jiantao; Wang, Hui; Zhang, Bingchang; Wang, Yao; Lu, Shigang; Zhang, Xiaohong

    2015-01-01

    Highlights: • A flexible SiNW array in PDMS structure is designed and fabricated as Li-ion battery anode material. • The aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton during the process of charge and discharge. • The loose SiO 2 shells coating on the SiNWscould form the protective layer in charge/discharge. • The as-obtain flexible SiNW array/PDMS composite exhibits a much better cycling stability. - Abstract: A Silicon nanowire (SiNW) array inserted into flexible poly-dimethylsiloxane (SiNW array/PDMS) composite structure as anode with high capacity and long-term cycling stability is synthesized by a cost-effective and scalable method. In this structure, the aggregation and fracture of SiNWs are alleviated by the flexible PDMS skeleton. Act as the main active component, the SiNWs are coated by loose SiO 2 shells. These loose SiO 2 shells not only provide space for the large volume changes of SiNW, but also react with the electrolyte and form the stable protective layer during the processes of the lithiation and delithiation. These two functions could improve the cycling stability and columbic efficiency of the SiNWs. The as-obtain flexible SiNW array/PDMS composite structure exhibits excellent long-term cycling stability with a specific capacity of 887.2 mA·h·g −1 and capacity retention of ∼83.4% over 350 cycles at 0.5 C rate compared with the fifteenth cycle. The design of this new structure provides a potential way for developing other functional composite materials

  15. Highly flexible self-standing film electrode composed of mesoporous rutile TiO2/C nanofibers for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhao Bote; Cai Rui; Jiang Simin; Sha Yujing; Shao Zongping

    2012-01-01

    There is increasing interest in flexible, safe, high-power thin-film lithium-ion batteries which can be applied to various modern devices. Although TiO 2 in rutile phase is highly attractive as an anode material of lithium-ion batteries for its high thermal stability and theoretical capacity of 336 mA h g −1 and low price, its inflexibility and sluggish lithium intercalation kinetics of bulk phase strongly limit its practical application for particular in thin-film electrode. Here we show a simple way to prepare highly flexible self-standing thin-film electrodes composed of mesoporous rutile TiO 2 /C nanofibers with low carbon content ( 2 in as-fabricated nanofibers. Big size (10 cm × 4 cm), flexible thin film is obtained after heat treatment under 10%H 2 –Ar at 900 °C for 3 h. After optimization, the diameter of fibers can reach as small as ∼110 nm, and the as-prepared rutile TiO 2 films show high initial electrochemical activity with the first discharge capacity as high as 388 mA h g −1 . What is more, very stable reversible capacities of ∼122, 92, and 70 mA h g −1 are achieved respectively at 1, 5 and 10 C rates with negligible decay rate within 100 cycling times.

  16. Ultradispersed Nanoarchitecture of LiV3O8 Nanoparticle/Reduced Graphene Oxide with High-Capacity and Long-Life Lithium-Ion Battery Cathodes

    Science.gov (United States)

    Mo, Runwei; Du, Ying; Rooney, David; Ding, Guqiao; Sun, Kening

    2016-01-01

    Lack of high-performance cathode materials has become the major barriers to lithium-ion battery applications in advanced communication equipment and electric vehicles. In this paper, we report a versatile interfacial reaction strategy, which is based on the idea of space confinement, for the synthesis of ultradispersed LiV3O8 nanoparticles (~10 nm) on graphene (denoted as LVO NPs-GNs) with an unprecedented degree of control on the separation and manipulation of the nucleation, growth, anchoring, and crystallization of nanoparticles in a water-in-oil emulsion system over free growth in solution. The prepared LVO NPs-GNs composites displayed high performance as an cathode material for lithium-ion battery, including high reversible lithium storage capacity (237 mA h g-1 after 200 cycles), high Coulombic efficiency (about 98%), excellent cycling stability and high rate capability (as high as 176 mA h g-1 at 0.9 A g-1, 128 mA h g-1 at 1.5 A g-1, 91 mA h g-1 at 3 A g-1 and 59 mA h g-1 at 6 A g-1, respectively). Very significantly, the preparation method employed can be easily adapted and may opens the door to complex hybrid materials design and engineering with graphene for advanced energy storage.

  17. A graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite electrode as a high stability lithium-ion anode material

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jicai [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Roll Forging Research Institute, Jilin University, Changchun, 130025, Jilin (China); Wang, Juan; Zhou, Meixin; Li, Yi [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China); Wang, Xiaofeng [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Yu, Kaifeng, E-mail: yukf@jlu.edu.cn [Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun, 130025 (China)

    2016-07-15

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO{sub 2}–TiO{sub 2} ternary nanocomposite, in which the nanometer-sized TiO{sub 2} and SnO{sub 2} nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO{sub 2}, bulk TiO{sub 2} and grapheme–SnO{sub 2} composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg{sup −1} at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg{sup −1} at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO{sub 2}, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO{sub 2}–TiO{sub 2} nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO{sub 2}–TiO{sub 2} nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  18. 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Mo, Yudi; Ru, Qiang; Song, Xiong; Hu, Shejun; Guo, Lingyun; Chen, Xiaoqiu

    2015-01-01

    Highlights: • D-glucose molecules as organic carbon source, have a crucial effect on the morphology and pore distribution of the synthetic products. • Facile synthesis: solvothermal method. • High rate capacity: 625 mAh g −1 at 4.4 C. • Improved long-term cycling stability: 1389 mAh g −1 after 180 cycles at 0.55 C. - Abstract: In this work, organic carbon modified NiCo 2 O 4 (NCO@C) nanocomposite with porous 3-dimensional (3D) structure was successfully synthesized by a facile hydrothermal method in D-glucose-mediated processes. A detailed research reveals that D-glucose molecules play an important role in the formation of the porous 3D structure and also provide a conductive carbon network within the NCO@C nanocomposite materials. Such a porous 3D interconnected carbonaceous nanostructure applied as electrode material for lithium-ion batteries (LIBs) shows that its reversible capacity, cycling stability, and rate capability are significantly enhanced in comparison with those of pure NiCo 2 O 4 (NCO) electrode. The as-prepared NCO@C composite electrode with porous 3D nanostructure displays a higher discharge specific capacity of 1389 mAh g −1 even after 180 cycles at a current rate of 0.55 C. Furthermore, this composite material also presents a high rate capacity, when the current rate gradually increases to 0.55 C, 1.1 C, 2.2 C, and 4.4 C, the reversible capacity can still render about 1082, 1029, 850, and 625 mAh g −1 , respectively. The enhanced electrochemical performance indicated that the NCO@C nanocomposite might be a very promising candidate to replace conventional graphite-based anode materials for LIBs

  19. A graphene–SnO_2–TiO_2 ternary nanocomposite electrode as a high stability lithium-ion anode material

    International Nuclear Information System (INIS)

    Liang, Jicai; Wang, Juan; Zhou, Meixin; Li, Yi; Wang, Xiaofeng; Yu, Kaifeng

    2016-01-01

    In this work, a solvothermal method combined with a hydrothermal two-step method is developed to synthesize graphene–SnO_2–TiO_2 ternary nanocomposite, in which the nanometer-sized TiO_2 and SnO_2 nanoparticles form in situ uniformly anchored on the surface of graphene sheets, as high stability and capacity lithium-ion anode materials. Compared to graphene–TiO_2, bulk TiO_2 and grapheme–SnO_2 composites, the as-prepared nanocomposite delivers a superior rate performance of 499.3 mAhg"−"1 at 0.2 C and an outstanding stability cycling capability (1073.4 mAhg"−"1 at 0.2 C after 50 cycles), due to the synergistic effects contributed from individual components, for example, high specific capacity of SnO_2, excellent conductivity of 3D graphene networks. - Graphical abstract: Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure. - Highlights: • We have synthesized a graphene–SnO_2–TiO_2 nanocomposite by a two-step method to improve the cycling performance. • Graphene–SnO_2–TiO_2 nanocomposite is synthesized by a hydrothermal two-step method. • The composite exhibits higher reversible capacity and better cycle/rate performance due to the unique structure.

  20. In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation

    International Nuclear Information System (INIS)

    Wang, Zhaozhi; Guo, Haifu; Yan, Peng

    2015-01-01

    Highlights: • Graphene-decorated Li 3 V 2 (PO 4 ) 3 is synthesized via microwave irradiation. • Both Li 3 V 2 (PO 4 ) 3 and RGO can be simultaneously achieved through this route. • The GO is reduced by microwave irradiation not the carbon. • Li 3 V 2 (PO 4 ) 3 /RGO displays excellent high-rate ability and cyclic stability. - Abstract: We report a simple and rapid method to synthesize graphene-modified Li 3 V 2 (PO 4 ) 3 as cathode material for lithium-ion batteries via microwave irradiation. By treating graphene oxide and the precursor of Li 3 V 2 (PO 4 ) 3 in a commercial microwave oven, both reduced graphene oxide and Li 3 V 2 (PO 4 ) 3 could be simultaneously synthesized within 5 min. The structure, morphology and electrochemical performances of as-synthesized graphene-modified Li 3 V 2 (PO 4 ) 3 are investigated systematically by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, charge/discharge tests, electrochemical impedance spectra (EIS) and cyclic voltammetry (CV). The XRD result indicates that single-phase graphene-modified Li 3 V 2 (PO 4 ) 3 with monoclinic structure can be obtained. Both SEM and TEM images show that Li 3 V 2 (PO 4 ) 3 nanocrystals are embedded in the reduced graphene oxide sheets which could provide an easy path for the electrons and Li-ions during the cycling process. Compared with the pristine Li 3 V 2 (PO 4 ) 3 electrode, graphene-modified Li 3 V 2 (PO 4 ) 3 exhibits a better high-rate ability and cyclic stability. These superior electrochemical performances are attributed to the good conductivity of reduced graphene oxide which enhances the electrons and Li-ions transport on the surface of Li 3 V 2 (PO 4 ) 3 . Thus, this simple and rapid method could be promising to synthesize graphene-modified electrode materials

  1. Electrostatic Self-Assembly of Fe3O4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes

    Directory of Open Access Journals (Sweden)

    Jung Kyoo Lee

    2013-09-01

    Full Text Available Magnetite, Fe3O4, is a promising anode material for lithium ion batteries due to its high theoretical capacity (924 mA h g−1, high density, low cost and low toxicity. However, its application as high capacity anodes is still hampered by poor cycling performance. To stabilize the cycling performance of Fe3O4 nanoparticles, composites comprising Fe3O4 nanoparticles and graphene sheets (GS were fabricated. The Fe3O4/GS composite disks of mm dimensions were prepared by electrostatic self-assembly between negatively charged graphene oxide (GO sheets and positively charged Fe3O4-APTMS [Fe3O4 grafted with (3-aminopropyltrimethoxysilane (APTMS] in an acidic solution (pH = 2 followed by in situ chemical reduction. Thus prepared Fe3O4/GS composite showed an excellent rate capability as well as much enhanced cycling stability compared with Fe3O4 electrode. The superior electrochemical responses of Fe3O4/GS composite disks assure the advantages of: (1 electrostatic self-assembly between high storage-capacity materials with GO; and (2 incorporation of GS in the Fe3O4/GS composite for high capacity lithium-ion battery application.

  2. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  3. Acetylene Black Induced Heterogeneous Growth of Macroporous CoV2O6 Nanosheet for High-Rate Pseudocapacitive Lithium-Ion Battery Anode.

    Science.gov (United States)

    Zhang, Lei; Zhao, Kangning; Luo, Yanzhu; Dong, Yifan; Xu, Wangwang; Yan, Mengyu; Ren, Wenhao; Zhou, Liang; Qu, Longbing; Mai, Liqiang

    2016-03-23

    Metal vanadates suffer from fast capacity fading in lithium-ion batteries especially at a high rate. Pseudocapacitance, which is associated with surface or near-surface redox reactions, can provide fast charge/discharge capacity free from diffusion-controlled intercalation processes and is able to address the above issue. In this work, we report the synthesis of macroporous CoV2O6 nanosheets through a facile one-pot method via acetylene black induced heterogeneous growth. When applied as lithium-ion battery anode, the macroporous CoV2O6 nanosheets show typical features of pseudocapacitive behavior: (1) currents that are mostly linearly dependent on sweep rate and (2) redox peaks whose potentials do not shift significantly with sweep rate. The macroporous CoV2O6 nanosheets display a high reversible capacity of 702 mAh g(-1) at 200 mA g(-1), excellent cyclability with a capacity retention of 89% (against the second cycle) after 500 cycles at 500 mA g(-1), and high rate capability of 453 mAh g(-1) at 5000 mA g(-1). We believe that the introduction of pseudocapacitive properties in lithium battery is a promising direction for developing electrode materials with high-rate capability.

  4. Preparation of a Si/SiO2 -Ordered-Mesoporous-Carbon Nanocomposite as an Anode for High-Performance Lithium-Ion and Sodium-Ion Batteries.

    Science.gov (United States)

    Zeng, Lingxing; Liu, Renpin; Han, Lei; Luo, Fenqiang; Chen, Xi; Wang, Jianbiao; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2018-04-03

    In this work, an Si/SiO 2 -ordered-mesoporous carbon (Si/SiO 2 -OMC) nanocomposite was initially fabricated through a magnesiothermic reduction strategy by using a two-dimensional bicontinuous mesochannel of SiO 2 -OMC as a precursor, combined with an NaOH etching process, in which crystal Si/amorphous SiO 2 nanoparticles were encapsulated into the OMC matrix. Not only can such unique porous crystal Si/amorphous SiO 2 nanoparticles uniformly dispersed in the OMC matrix mitigate the volume change of active materials during the cycling process, but they can also improve electrical conductivity of Si/SiO 2 and facilitate the Li + /Na + diffusion. When applied as an anode for lithium-ion batteries (LIBs), the Si/SiO 2 -OMC composite displayed superior reversible capacity (958 mA h g -1 at 0.2 A g -1 after 100 cycles) and good cycling life (retaining a capacity of 459 mA h g -1 at 2 A g -1 after 1000 cycles). For sodium-ion batteries (SIBs), the composite maintained a high capacity of 423 mA h g -1 after 100 cycles at 0.05 A g -1 and an extremely stable reversible capacity of 190 mA h g -1 was retained even after 500 cycles at 1 A g -1 . This performance is one of the best long-term cycling properties of Si-based SIB anode materials. The Si/SiO 2 -OMC composites exhibited great potential as an alternative material for both lithium- and sodium-ion battery anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coupling Mo2C@C core-shell nanocrystals on 3D graphene hybrid aerogel for high-performance lithium ion battery

    Science.gov (United States)

    Xin, Hailin; Hai, Yang; Li, Dongzhi; Qiu, Zhaozheng; Lin, Yemao; Yang, Bo; Fan, Haosen; Zhu, Caizhen

    2018-05-01

    Hybrid aerogel by dispersing Mo2C@C core-shell nanocrystals into three-dimensional (3D) graphene (Mo2C@C-GA) has been successfully prepared through two-step methods. Firstly, carbon-coated MoO2 nanocrystals uniformly anchor on 3D graphene aerogel (MoO2@C-GA) via hydrothermal reaction. Then the MoO2@C-GA precursor is transformed into Mo2C@C-GA after the following carbonization process. Furthermore, the freeze-drying step plays an important role in the resulting pore size distribution of the porous networks. Moreover, graphene aerogels exhibit extremely low densities and superior electrical properties. When evaluated as anode material for lithium ion battery, Mo2C@C-GA delivers excellent rate capability and stable cycle performance when compared with C-GA and Mo2C nanoparticles. Mo2C@C-GA exhibits the initial discharge capacity of 1461.4 mA h g-1 at the current density of 0.1 A g-1, and retains a reversible capacity of 1089.8 mA h g-1 after 100 cycles at a current density of 0.1 A g-1. Even at high current density of 5 A g-1, a discharge capacity of 623.5 mA h g-1 can be still achieved. The excellent performance of Mo2C@C-GA could be attributed to the synergistic effect of Mo2C@C nanocrystals and the 3D graphene conductive network.

  6. Mesostructured niobium-doped titanium oxide-carbon (Nb-TiO2-C) composite as an anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Hwang, Keebum; Sohn, Hiesang; Yoon, Songhun

    2018-02-01

    Mesostructured niobium (Nb)-doped TiO2-carbon (Nb-TiO2-C) composites are synthesized by a hydrothermal process for application as anode materials in Li-ion batteries. The composites have a hierarchical porous structure with the Nb-TiO2 nanoparticles homogenously distributed throughout the porous carbon matrix. The Nb content is controlled (0-10 wt%) to investigate its effect on the physico-chemical properties and electrochemical performance of the composite. While the crystalline/surface structure varied with the addition of Nb (d-spacing of TiO2: 0.34-0.36 nm), the morphology of the composite remained unaffected. The electrochemical performance (cycle stability and rate capability) of the Nb-TiO2-C composite anode with 1 wt% Nb doping improved significantly. First, a full cut-off potential (0-2.5 V vs. Li/Li+) of Nb-doped composite anode (1 wt%) provides a higher energy utilization than that of the un-doped TiO2-C anode. Second, Nb-TiO2-C composite anode (1 wt%) exhibits an excellent long-term cycle stability (100% capacity retention, 297 mAh/g at 0.5 C after 100 cycles and 221 mAh/g at 2 C after 500 cycles) and improved rate-capability (192 mAh/g at 5 C), respectively (1 C: 150 mA/g). The superior electrochemical performance of Nb-TiO2-C (1 wt%) could be attributed to the synergistic effect of improved electronic conductivity induced by optimal Nb doping (1 wt%) and lithium-ion penetration (high diffusion kinetics) through unique pore structures.

  7. There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Juan; Xi, Lihua; Tang, Jingjing; Chen, Feng; Wu, Lili; Zhou, Xiangyang

    2016-01-01

    SnO 2 quantum dots have attracted enormous interest, since they have been shown to effectively minimize the volume change stress, improve the anode kinetic and shorten the lithium ion migration distance when used as anode materials for lithium ion battery. In this work, we report a facile strategy to fabricate nanostructure with homogenous SnO 2 quantum dots anchored on three-dimensional (3D) nitrogen and sulfur dual-doped porous carbon (NSGC@SnO 2 ). Characterization results show that the obtained SnO 2 quantum dots have an average critical size of 3–5 nm and uniformly encapsulated in the porous of NSGC matrix. The as-designed nanostructure can effectively avoid the aggregation of SnO 2 quantum dots as well as accommodate the mechanical stress induced by the volume change of SnO 2 quantum dots and thus maintain the structure integrity of the electrode. As a result, the obtained NSGC@SnO 2 composite exhibits a specific reversible capacity as high as 1118 mAh g −1 at a current of 200 mA g −1 after 100 cycles along with a high coulombic efficiency of 98% and excellent rate capability.

  8. Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film

    International Nuclear Information System (INIS)

    Xu, Jingjing; Xia, Qingbo; Chen, Fangyuan; Liu, Tao; Li, Li; Cheng, Xueyuan; Lu, Wei; Wu, Xiaodong

    2016-01-01

    The cathode/electrolyte interface stability is the key factor for the cyclic performance and the safety performance of lithium ion batteries. Suppression of consuming key elements in the electrode materials is essential in this concern. In this purpose, we investigate a facile strategy to solve interfacial issue for high-voltage lithium ion batteries by adding an oxidable fluorinated phosphate, Bis(2,2,2-trifluoroethyl) Phosphite (BTFEP), as a sacrificial additive in electrolyte. We demonstrate that BTFEP additive could be oxidized at slightly above 4.28 V which is a relatively lower voltage than that of solvents, and the oxidative products facilitate in-situ forming a stable solid electrolyte interphase (SEI) film on the cathode surface. The results manifest the SEI film validly restrains the generation of HF and the interfacial side reaction between high-voltage charged LiNi 0.5 Mn 1.5 O 4 (LNMO) and electrolyte, hence, the dissolution of Mn and Ni is effectively suppressed. Finally, the cyclic performance of LNMO after 200 cycles was remarkably improved from 68.4% in blank electrolyte to 95% in 1 wt% BTFEP-adding electrolyte.

  9. Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Yankun; Li, Dan; Liu, Yushan; Zhang, Jianmin

    2016-01-01

    Highlights: • 3D ZnSnO 3 hollow cubes@reducedgrapheneoxideaerogels(ZGAs) were fabricated. • The electrochemical properties of ZGAs were investigated for LIBs. • ZGAs demonstrated superior lithium storage performance. - Abstract: 3D ZnSnO 3 hollow cubes@reduced graphene oxide aerogels (ZGAs) were fabricated via a colloid electrostatic self-assembly method between the graphene oxide (GO) nanosheets and poly(diallyldimethylammonium chloride) (PDDA) modified ZnSnO 3 hollow cubes colloid, followed by hydrothermal and freeze-drying treatments. The unique porous architecture of ZnSnO 3 hollow cubes encapsulated by flexible reduced graphene oxide (rGO) sheets not only effectively retarded the huge volume expansion during repeated charge-discharge cycles, but also facilitated fast lithium ion and electron transport through 3D networks. The ZGAs exhibited significantly enhanced cycling stability (745.4 mAh g −1 after 100 cycles at a current of 100 mA g −1 ) and superior rate capability (as high as 552.6 mAh g −1 at 1200 mA g −1 ). The results indicate that the ZGAs are promising anode materials for high-performance lithium-ion batteries.

  10. A general approach for MFe2O4 (M = Zn, Co, Ni) nanorods and their high performance as anode materials for lithium ion batteries

    Science.gov (United States)

    Wang, Nana; Xu, Huayun; Chen, Liang; Gu, Xin; Yang, Jian; Qian, Yitai

    2014-02-01

    MFe2O4 (M = Zn, Co, Ni) nanorods are synthesized by a template-engaged reaction, with β-FeOOH nanorods as precursors which are prepared by a hydrothermal method. The final products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The electrochemical properties of the MFe2O4 (M = Zn, Co, Ni) nanorods are tested as the anode materials for lithium ion batteries. The reversible capacities of 800, 625 and 520 mAh g-1 are obtained for CoFe2O4, ZnFe2O4 and NiFe2O4, respectively, at the high current density of 1000 mA g-1 even after 300 cycles. The superior lithium-storage performances of MFe2O4 (M = Zn, Co, Ni) nanorods can be attributed to the one-dimensional (1D) nanostructure, which can shorten the diffusion paths of lithium ions and relax the strain generated during electrochemical cycling. These results indicate that this method is an effective, simple and general way to prepare good electrochemical properties of 1D spinel Fe-based binary transition metal oxides. In addition, the impact of different reaction temperatures on the electrochemical properties of MFe2O4 nanorods is also investigated.

  11. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    Science.gov (United States)

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  12. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Ahmed, Sally; Hussain, Muhammad Mustafa

    2016-01-01

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material

  13. Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes

    KAUST Repository

    Ruffo, Riccardo; Hong, Seung Sae; Chan, Candace K.; Huggins, Robert A.; Cui, Yi

    2009-01-01

    The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured

  14. Role of Disorder in Enhancing Lithium-Ion Battery Performance

    DEFF Research Database (Denmark)

    Yue, Yuanzheng; He, W.

    and type of disorder, material performances can be significantly enhanced. Disorder can be tuned by doping, calcination, redox reaction, composition tuning, and so on. Recently we have fabricated a cathode material for lithium ion battery by introducing heterostructure and disorder into the material...... material exhibits the extremely high reversible lithium ion capacity and extraordinary rate capability with high cycling stability at high discharge current. In this presentation we demonstrate that the disorder plays a decisive role in achieving those exceptional electrochemical performances. We describe...... how the disorder affects the migration of both lithium ions and electrons. It is found that both the modified glassy surface and the heterogeneous superlattice structure greatly contribute to the extremely high discharge/charge rates owing to the enhanced storage capacity of lithium ions and ultrafast...

  15. Reliable reference electrodes for lithium-ion batteries

    KAUST Repository

    La Mantia, F.; Wessells, C.D.; Deshazer, H.D.; Cui, Yi

    2013-01-01

    Despite the high attention drawn to the lithium-ion batteries by the scientific and industrial community, most of the electrochemical characterization is carried out using poor reference electrodes or even no reference electrode. In this case

  16. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.; Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2016-01-01

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes

  17. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-09-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

  18. Cryogenic plasma-processed silicon microspikes as a high-performance anode material for lithium ion-batteries

    Science.gov (United States)

    Sakai, Joe; Luais, Erwann; Wolfman, Jérôme; Tillocher, Thomas; Dussart, Rémi; Tran-Van, Francois; Ghamouss, Fouad

    2017-10-01

    Micro- or nano-structuring is essential in order to use Si as an anode material for lithium ion batteries. In the present study, we attempted to use Si wafers with a spiky microstructure (SMS), the so-called black-Si, prepared by a cryogenic reactive ion etching process with an SF6/O2 gas mixture, for Li half-cells. The SMS with various sizes of spikes from 2.0 μm (height) × 0.2 μm (width) to 21 μm × 1.0 μm was etched by varying the SF6/O2 gas flow ratio. An anode of SMS of 11 μm-height in average showed stable charge/discharge capacity and Coulombic efficiency higher than 99% for more than 300 cycles, causing no destruction to any part of the Si wafer. The spiky structure turned columnar after cycles, suggesting graded lithiation levels along the length. The present results suggest a strategy to utilize a wafer-based Si material for an anode of a lithium ion battery durable against repetitive lithiation/delithiation cycles.

  19. Spray-Drying-Induced Assembly of Skeleton-Structured SnO2/Graphene Composite Spheres as Superior Anode Materials for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Liu, Dongdong; Kong, Zhen; Liu, Xuehua; Fu, Aiping; Wang, Yiqian; Guo, Yu-Guo; Guo, Peizhi; Li, Hongliang; Zhao, Xiu Song

    2018-01-24

    Three-dimensional skeleton-structured assemblies of graphene sheets decorated with SnO 2 nanocrystals are fabricated via a facile and large-scalable spray-drying-induced assembly process with commercial graphene oxide and SnO 2 sol as precursors. The influences of different parameters on the morphology, composition, structure, and electrochemical performances of the skeleton-structured SnO 2 /graphene composite spheres are studied by XRD, TGA, SEM, TEM, Raman spectroscopy, and N 2 adsorption-desorption techniques. Electrochemical properties of the composite spheres as the anode electrode for lithium-ion batteries are evaluated. After 120 cycles under a current density of 100 mA g -1 , the skeleton-structured SnO 2 /graphene spheres still display a specific discharge capacity of 1140 mAh g -1 . It is roughly 9.5 times larger than that of bare SnO 2 clusters. It could still retain a stable specific capacity of 775 mAh g -1 after 50 cycles under a high current density of 2000 mA g -1 , exhibiting extraordinary rate ability. The superconductivity of the graphene skeleton provides the pathway for electron transportation. The large pore volume deduced from the skeleton structure of the SnO 2 /graphene composite spheres increases the penetration of electrolyte and the diffusion of lithium ions and also significantly enhances the structural integrity by acting as a mechanical buffer.

  20. Co_3V_2O_8 Hexagonal Pyramid with Tunable Inner Structure as High Performance Anode Materials for Lithium Ion Battery

    International Nuclear Information System (INIS)

    Zhang, Qiang; Pei, Jian; Chen, Gang; Bie, Changfeng; Chen, Dahong; Jiao, Yang; Rao, Jiancun

    2017-01-01

    Co_3V_2O_8 hexagonal pyramid was successfully fabricated via a simple hydrothermal process and subsequent heat treatment. The inner structure of the hexagonal pyramid was further adjusted by controlling the size of Co_7V_4O_1_6(OH)_2(H_2O) precursors. Hierarchical Co_3V_2O_8 hexagonal pyramid with height of 1 μm were orderly constructed from 60–80 nm inter-connected particles, showing numerous interval voids. Benefiting from its unique structure, the as-prepared sample showed higher electrochemical performance as an anode material for lithium-ion batteries than that of another bulk sample with height of 5 μm and adhesive inner structure. When tested at a current density of 500 mA g"−"1, the hierarchical Co_3V_2O_8 hexagonal pyramid exhibited good rate capacity, high cycling stability, and excellent discharge capacity up to 712 mA h g"−"1, making it promising electrode materials for lithium-ion batteries.

  1. Mesoporous Amorphous Silicon: A Simple Synthesis of a High-Rate and Long-Life Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Lin, Liangdong; Xu, Xuena; Chu, Chenxiao; Majeed, Muhammad K; Yang, Jian

    2016-11-02

    Amorphous Si (a-Si) shows potential advantages over crystalline Si (c-Si) in lithium-ion batteries, owing to its high lithiation potential and good tolerance to intrinsic strain/stress. Herein, porous a-Si has been synthesized by a simple process, without the uses of dangerous or expensive reagents, sophisticated equipment, and strong acids that potential cause environment risks. These porous a-Si particles exhibit excellent electrochemical performances, owing to their porous structure, amorphous nature, and surface modification. They deliver a capacity of 1025 mAh g -1 at 3 A g -1 after 700 cycles. Moreover, the reversible capacity after electrochemical activation, is quite stable throughout the cycling, resulting in a capacity retention about around 88 %. The direct comparison between a-Si and c-Si anodes clearly supports the advantages of a-Si in lithium-ion batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Guo, Shasha; Chen, Yaxin; Shi, Liluo; Dong, Yue; Ma, Jing; Chen, Xiaohong; Song, Huaihe

    2018-04-01

    In this paper, a low-cost and environmental friendly synthesis strategy is proposed to fabricate nitrogen-doped biomass-based ultra-thin carbon nanosheets (N-CNS) with interconnected framework by using soybean milk as the carbon precursor and sodium chloride as the template. The interconnected porous nanosheet structure is beneficial for lithium ion transportation, and the defects introduced by pyridine nitrogen doping are favorable for lithium storage. When used as the anodes for lithium-ion batteries, the N-CNS electrode shows a high initial reversible specific capacity of 1334 mAh g-1 at 50 mA g-1, excellent rate performance (1212, 555 and 336 mAh g-1 at 0.05, 0.5 and 2 A g-1, respectively) and good cycling stability (355 mAh g-1 at 1 A g-1 after 1000 cycles). Furthermore, this study demonstrates the prospects of biomass and soybean milk, as the potential anode for the application of electrochemical energy storage devices.

  3. In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance

    International Nuclear Information System (INIS)

    Wang Bei; Wang Ying; Park, Jinsoo; Ahn, Hyojun; Wang Guoxiu

    2011-01-01

    Highlights: → In situ solution-based preparation of Co 3 O 4 /graphene composite material. → Well dispersed Co 3 O 4 nanoparticles on graphene nanosheets. → Co 3 O 4 /graphene exhibits highly reversible lithium storage capacity. → Co 3 O 4 /graphene delivers superior supercapacitance up to 478 F g -1 . → Functional groups make contributions to the overall supercapacitance. - Abstract: Co 3 O 4 /graphene nanocomposite material was prepared by an in situ solution-based method under reflux conditions. In this reaction progress, Co 2+ salts were converted to Co 3 O 4 nanoparticles which were simultaneously inserted into the graphene layers, upon the reduction of graphite oxide to graphene. The prepared material consists of uniform Co 3 O 4 nanoparticles (15-25 nm), which are well dispersed on the surfaces of graphene nanosheets. This has been confirmed through observations by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The prepared composite material exhibits an initial reversible lithium storage capacity of 722 mAh g -1 in lithium-ion cells and a specific supercapacitance of 478 F g -1 in 2 M KOH electrolyte for supercapacitors, which were higher than that of the previously reported pure graphene nanosheets and Co 3 O 4 nanoparticles. Co 3 O 4 /graphene nanocomposite material demonstrated an excellent electrochemical performance as an anode material for reversible lithium storage in lithium ion cells and as an electrode material in supercapacitors.

  4. Ascorbic Acid-Assisted Eco-friendly Synthesis of NiCo2O4 Nanoparticles as an Anode Material for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Karunakaran, Gopalu; Maduraiveeran, Govindhan; Kolesnikov, Evgeny; Balasingam, Suresh Kannan; Viktorovich, Lysov Dmitry; Ilinyh, Igor; Gorshenkov, Mikhail V.; Sasidharan, Manickam; Kuznetsov, Denis; Kundu, Manab

    2018-05-01

    We have synthesized NiCo2O4 nanoparticles (NCO NPs) using an ascorbic acid-assisted co-precipitation method for the first time. When NCO NPs are used as an anode material for lithium-ion batteries, the cell exhibits superior lithium storage properties, such as high capacity (700 mA h g-1 after 300 cycles at 200 mA g-1), excellent rate capabilities (applied current density range 100-1200 mA g-1), and impressive cycling stability (at 1200 mA g-1 up to 650 cycles). The enhanced electrochemical properties of NCO NPs are due to the nanometer dimensions which not only offers a smooth charge-transport pathway and short diffusion paths of the lithium ions but also adequate spaces for volume expansion during Li storage. Hence, this eco-friendly synthesis approach will provide a new strategy for the synthesis of various nanostructured metal oxide compounds, for energy conversion and storage systems applications.

  5. Comprehensive Enhancement of Nanostructured Lithium-Ion Battery Cathode Materials via Conformal Graphene Dispersion.

    Science.gov (United States)

    Chen, Kan-Sheng; Xu, Rui; Luu, Norman S; Secor, Ethan B; Hamamoto, Koichi; Li, Qianqian; Kim, Soo; Sangwan, Vinod K; Balla, Itamar; Guiney, Linda M; Seo, Jung-Woo T; Yu, Xiankai; Liu, Weiwei; Wu, Jinsong; Wolverton, Chris; Dravid, Vinayak P; Barnett, Scott A; Lu, Jun; Amine, Khalil; Hersam, Mark C

    2017-04-12

    Efficient energy storage systems based on lithium-ion batteries represent a critical technology across many sectors including consumer electronics, electrified transportation, and a smart grid accommodating intermittent renewable energy sources. Nanostructured electrode materials present compelling opportunities for high-performance lithium-ion batteries, but inherent problems related to the high surface area to volume ratios at the nanometer-scale have impeded their adoption for commercial applications. Here, we demonstrate a materials and processing platform that realizes high-performance nanostructured lithium manganese oxide (nano-LMO) spinel cathodes with conformal graphene coatings as a conductive additive. The resulting nanostructured composite cathodes concurrently resolve multiple problems that have plagued nanoparticle-based lithium-ion battery electrodes including low packing density, high additive content, and poor cycling stability. Moreover, this strategy enhances the intrinsic advantages of nano-LMO, resulting in extraordinary rate capability and low temperature performance. With 75% capacity retention at a 20C cycling rate at room temperature and nearly full capacity retention at -20 °C, this work advances lithium-ion battery technology into unprecedented regimes of operation.

  6. Li2 NH-LiBH4 : a Complex Hydride with Near Ambient Hydrogen Adsorption and Fast Lithium Ion Conduction.

    Science.gov (United States)

    Wang, Han; Cao, Hujun; Zhang, Weijin; Chen, Jian; Wu, Hui; Pistidda, Claudio; Ju, Xiaohua; Zhou, Wei; Wu, Guotao; Etter, Martin; Klassen, Thomas; Dornheim, Martin; Chen, Ping

    2018-01-26

    Complex hydrides have played important roles in energy storage area. Here a complex hydride made of Li 2 NH and LiBH 4 was synthesized, which has a structure tentatively indexed using an orthorhombic cell with a space group of Pna2 1 and lattice parameters of a=10.121, b=6.997, and c=11.457 Å. The Li 2 NH-LiBH 4 sample (in a molar ratio of 1:1) shows excellent hydrogenation kinetics, starting to absorb H 2 at 310 K, which is more than 100 K lower than that of pristine Li 2 NH. Furthermore, the Li + ion conductivity of the Li 2 NH-LiBH 4 sample is about 1.0×10 -5  S cm -1 at room temperature, and is higher than that of either Li 2 NH or LiBH 4 at 373 K. Those unique properties of the Li 2 NH-LiBH 4 complex render it a promising candidate for hydrogen storage and Li ion conduction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mesoporous NiCo2O4 nanoneedles grown on three dimensional graphene networks as binder-free electrode for high-performance lithium-ion batteries and supercapacitors

    International Nuclear Information System (INIS)

    Liu, Sainan; Wu, Jun; Zhou, Jiang; Fang, Guozhao; Liang, Shuquan

    2015-01-01

    Graphical abstract: Mesoporous NiCo 2 O 4 nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. Significantly, as a binder-free electrode for high-performance lithium-ion batteries and supercapacitors, the hybrid exhibits high specific capacity/capacitance and excellent cycling stability over long-term cycling. - Highlights: • Mesoporous NiCo 2 O 4 nanoneedles grown on 3D graphene networks are successfully prepared. • The NiCo 2 O 4 /3DGN hybrid is directly used as binder-free electrode for LIBs and SCs. • The hybrid exhibits superior long-term cycling stability up to 2000 cycles for LIBs application. • The hybrid delivers a high specific capacitance of 970 F g −1 at 20 A g −1 . • The hybrid demonstrates excellent capacitance retention of ∼96.5% after 3000 cycles for SCs application. - Abstract: Mesoporous nickel cobaltite (NiCo 2 O 4 ) nanoneedles grown on three dimensional graphene networks have been successfully prepared by a facile solvothermal reaction with subsequent annealing treatment. The NiCo 2 O 4 /3DGN hybrid is then used as binder-free electrode for high-performance lithium-ion batteries and supercapacitors. The three dimensional graphene based binder-free electrode is considered more desirable than powder nanostructures in terms of shorter Li + ion diffusion and electron transportation paths, good strain accommodation, better interfacial/chemical distributions and high electrical conductivity. As a result, when used as an anode material for lithium-ion batteries (LIBs), it exhibits high specific discharge capacity as well as superior cycling stability up to 2000 cycles. When it is used for supercapacitor application, this hybrid delivers a high specific capacitance of 970 F g −1 at a high current density of 20 A g −1 with excellent capacitance retention of ∼96.5% after 3000 cycles. Moreover, this synthesis strategy is simple

  8. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  9. High-rate and ultralong cycle-life LiFePO{sub 4} nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jinpeng, E-mail: goldminer@sina.com; Wang, Youlan

    2016-12-30

    Highlights: • B-doped carbon decorated LiFePO{sub 4} has been fabricated for the first time. • The LiFePO{sub 4}@B-CdisplaysimprovedbatteryperformancecomparedtoLiFePO{sub 4}@C. • The LiFePO{sub 4}@B-C is good candidate for high-performance lithium-ion batteries. - Abstract: An evolutionary modification approach, boron-doped carbon coating, has been used to improve the electrochemical performances of positive electrodes for lithium-ion batteries, and demonstrates apparent and significant modification effects. In this study, the boron-doped carbon coating is firstly adopted and used to decorate the performance of LiFePO{sub 4}. The obtained composite exhibits a unique core-shell structure with an average diameter of 140 nm and a 4 nm thick boron-doped carbon shell that uniformly encapsulates the core. Owing to the boron element which could induce high amount of defects in the carbon, the electronic conductivity of LiFePO{sub 4} is greatly ameliorated. Thus, the boron-doped composite shows superior rate capability and cycle stability than the undoped sample. For instance, the reversible specific capacity of LiFePO{sub 4}@B{sub 0.4}-C can reach 164.1 mAh g{sup −1} at 0.1C, which is approximately 96.5% of the theoretical capacity (170 mAh g{sup −1}). Even at high rate of 10C, it still shows a high specific capacity of 126.8 mAh g{sup −1} and can be maintained at 124.5 mAh g{sup −1} after 100 cycles with capacity retention ratio of about 98.2%. This outstanding Li-storage property enable the present design strategy to open up the possibility of fabricating the LiFePO{sub 4}@B-C composite for high-performance lithium-ion batteries.

  10. Free-form Flexible Lithium-Ion Microbattery

    KAUST Repository

    Kutbee, Arwa T.

    2016-03-02

    Wearable electronics need miniaturized, safe and flexible power sources. Lithium ion battery is a strong candidate as high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present integration strategy to rationally design materials and processes to report flexible inorganic lithium-ion microbattery with no restrictions on the materials used. The battery shows an enhanced normalized capacity of 147 μAh/cm2 when bent.

  11. Flexible lithium-ion planer thin-film battery

    KAUST Repository

    Kutbee, Arwa T.

    2016-02-03

    Commercialization of wearable electronics requires miniaturized, flexible power sources. Lithium ion battery is a strong candidate as the next generation high performance flexible battery. The development of flexible materials for battery electrodes suffers from the limited material choices. In this work, we present a flexible inorganic lithium-ion battery with no restrictions on the materials used. The battery showed an enhanced normalized capacity of 146 ??Ah/cm2.

  12. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.

    Science.gov (United States)

    Ling, Min; Qiu, Jingxia; Li, Sheng; Yan, Cheng; Kiefel, Milton J; Liu, Gao; Zhang, Shanqing

    2015-07-08

    An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.

  13. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    Science.gov (United States)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  14. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries

    Science.gov (United States)

    Tian, Xiaohui; Zhou, Yingke; Tu, Xiaofeng; Zhang, Zhongtang; Du, Guodong

    2017-02-01

    A three-dimensional graphene aerogel supporting LiFePO4 nanoparticles (LFP/GA) has been synthesized by a hydrothermal process. The morphology and microstructure of LFP/GA were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and thermal gravimetric analysis. The electrochemical properties were evaluated by constant-current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. Well-distributed LFP nanoparticles are anchored on both sides of graphene and then assemble into a highly porous three-dimensional aerogel architecture. Conductive graphene networks provide abundant paths to facilitate the transfer of electrons, while the aerogel structures offer plenty of interconnected open pores for the storage of electrolyte to enable the fast supply of Li ions. The LFP and graphene aerogel composites present superior specific capacity, rate capability and cycling performance in comparison to the pristine LFP or LFP supported on graphene sheets and are thus promising for lithium-ion battery applications.

  15. Effect of Porosity on the Thick Electrodes for High Energy Density Lithium Ion Batteries for Stationary Applications

    Directory of Open Access Journals (Sweden)

    Madhav Singh

    2016-11-01

    Full Text Available A series of 250–350 μ m-thick single-sided lithium ion cell graphite anodes and lithium nickel manganese cobalt oxide (NMC cathodes with constant area weight, but varying porosity were prepared. Over this wide thickness range, micron-sized carbon fibers were used to stabilize the electrode structure and to improve electrode kinetics. By choosing the proper porosities for the anode and cathode, kinetic limitations and aging losses during cell cycling could be minimized and energy density improved. The cell (C38%-A48% exhibits the highest energy density, 441 Wh/L at the C/10 rate, upon cycling at elevated temperature and different C-rates. The cell (C38%-A48% showed 9% higher gravimetric energy density at C/10 in comparison to the cell with as-coated electrodes.

  16. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator.

    Science.gov (United States)

    Zhang, Jianjun; Liu, Zhihong; Kong, Qingshan; Zhang, Chuanjian; Pang, Shuping; Yue, Liping; Wang, Xuejiang; Yao, Jianhua; Cui, Guanglei

    2013-01-01

    A renewable and superior thermal-resistant cellulose-based composite nonwoven was explored as lithium-ion battery separator via an electrospinning technique followed by a dip-coating process. It was demonstrated that such nanofibrous composite nonwoven possessed good electrolyte wettability, excellent heat tolerance, and high ionic conductivity. The cells using the composite separator displayed better rate capability and enhanced capacity retention, when compared to those of commercialized polypropylene separator under the same conditions. These fascinating characteristics would endow this renewable composite nonwoven a promising separator for high-power lithium-ion battery.

  17. Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries

    Science.gov (United States)

    Hua, Qiqi; Dai, Dongyang; Zhang, Chengzhi; Han, Fei; Lv, Tiezheng; Li, Xiaoshan; Wang, Shijie; Zhu, Rui; Liao, Haojie; Zhang, Shiguo

    2018-05-01

    Although several Si/C composite structures have been proposed for high-performance lithium-ion batteries (LIBs), they have still suffered from expensive and complex processes of nano-Si production. Herein, a simple, controllable oxygen inward diffusion was utilized to transform Si sludge obtained from the photovoltaic (PV) industry into the nano-Si/SiOx structure as a result of the high diffusion efficiency of O inside Si and high surface area of the sludge. After further process, a yolk/shell Si/C structure was obtained as an anode material for LIBs. This composite demonstrated an excellent cycling stability, with a high reversible capacity (˜ 1250 mAh/g for 500 cycles), by void space originally left by the SiOx accommodate inner Si expansion. We believe this is a rather simple way to convert the waste Si into a valuable nano-Si for LIB applications.

  18. Embedding ultrafine ZnSnO3 nanoparticles into reduced graphene oxide composites as high-performance electrodes for lithium ion batteries

    Science.gov (United States)

    Ma, Yuhang; Jiang, Ranran; Li, Dan; Dong, Yutao; Liu, Yushan; Zhang, Jianmin

    2018-05-01

    Ultrafine ZnSnO3 nanoparticles, with an average diameter of 45 nm, homogeneously grown on reduced graphene oxide (rGO) have been successfully fabricated via methods of low temperature coprecipitation, colloid electrostatic self-assembly, and hydrothermal treatment. The uniformly distributed ZnSnO3 nanocrystals could inhibit the restacking of rGO sheets. In turn, the existence of rGO could hinder the growth and aggregation of ZnSnO3 nanoparticles in the synthesis process, increase the conductivity of the composite, and buffer the volume expansion of the ZnSnO3 nanocrystals upon lithium ion insertion and extraction. The obtained ZnSnO3/rGO exhibited superior cycling stability with a discharge/charge capacity of 718/696 mA h g-1 after 100 cycles at a current density of 0.1 A g-1.

  19. Sustainability Impact of Nanomaterial Enhanced Lithium Ion Batteries

    Science.gov (United States)

    Ganter, Matthew

    Energy storage devices are becoming an integral part of sustainable energy technology adoption, particularly, in alternative transportation (electric vehicles) and renewable energy technologies (solar and wind which are intermittent). The most prevalent technology exhibiting near-term impact are lithium ion batteries, especially in portable consumer electronics and initial electric vehicle models like the Chevy Volt and Nissan Leaf. However, new technologies need to consider the full life-cycle impacts from material production and use phase performance to the end-of-life management (EOL). This dissertation investigates the impacts of nanomaterials in lithium ion batteries throughout the life cycle and develops strategies to improve each step in the process. The embodied energy of laser vaporization synthesis and purification of carbon nanotubes (CNTs) was calculated to determine the environmental impact of the novel nanomaterial at beginning of life. CNTs were integrated into lithium ion battery electrodes as conductive additives, current collectors, and active material supports to increase power, energy, and thermal stability in the use phase. A method was developed to uniformly distribute CNT conductive additives in composites. Cathode composites with CNT additives had significant rate improvements (3x the capacity at a 10C rate) and higher thermal stability (40% reduction in exothermic energy released upon overcharge). Similar trends were also measured with CNTs in anode composites. Advanced free-standing anodes incorporating CNTs with high capacity silicon and germanium were measured to have high capacities where surface area reduction improved coulombic efficiencies and thermal stability. A thermal stability plot was developed that compares the safety of traditional composites with free-standing electrodes, relating the results to thermal conductivity and surface area effects. The EOL management of nanomaterials in lithium ion batteries was studied and a novel

  20. Stable High-Capacity Lithium Ion Battery Anodes Produced by Supersonic Spray Deposition of Hematite Nanoparticles and Self-Healing Reduced Graphene Oxide

    International Nuclear Information System (INIS)

    Lee, Jong-Gun; Joshi, Bhavana N.; Lee, Jong-Hyuk; Kim, Tae-Gun; Kim, Do-Yeon; Al-Deyab, Salem S.; Seong, Il Won; Swihart, Mark T.; Yoon, Woo Young; Yoon, Sam S.

    2017-01-01

    Hematite (Fe 2 O 3 ) nanoparticles and reduced graphene oxide (rGO) were supersonically sprayed onto copper current collectors to create high-performance, binder-free lithium ion battery (LIB) electrodes. Supersonic spray deposition is rapid, low-cost, and suitable for large-scale production. Supersonic impact of rGO sheets and Fe 2 O 3 nanoparticles on the substrate produces compacted nanocomposite films with short diffusion lengths for Li + ions. This structure produces high reversible capacity and markedly improved capacity retention over many cycles. Decomposition of lithium oxide generated during cycling activates the solid electrolyte interface layer, contributing to high capacity retention. The optimal composition ratio of rGO to Fe 2 O 3 was 9.1 wt.%, which produced a reversible capacity of 1242 mAh g −1 after N = 305 cycles at a current density of 1000 mA g −1 (1C).

  1. Size effects in lithium ion batteries

    International Nuclear Information System (INIS)

    Yao Hu-Rong; Yin Ya-Xia; Guo Yu-Gao

    2016-01-01

    Size-related properties of novel lithium battery materials, arising from kinetics, thermodynamics, and newly discovered lithium storage mechanisms, are reviewed. Complementary experimental and computational investigations of the use of the size effects to modify electrodes and electrolytes for lithium ion batteries are enumerated and discussed together. Size differences in the materials in lithium ion batteries lead to a variety of exciting phenomena. Smaller-particle materials with highly connective interfaces and reduced diffusion paths exhibit higher rate performance than the corresponding bulk materials. The thermodynamics is also changed by the higher surface energy of smaller particles, affecting, for example, secondary surface reactions, lattice parameter, voltage, and the phase transformation mechanism. Newly discovered lithium storage mechanisms that result in superior storage capacity are also briefly highlighted. (topical review)

  2. Liquid-Solid-Solution Assembly of CoFe2O4/Graphene Nanocomposite as a High-Performance Lithium-Ion Battery Anode

    International Nuclear Information System (INIS)

    Zhu, Yanfang; Lv, Xingbin; Zhang, Lili; Guo, Xiaodong; Liu, Daijun; Chen, Jianjun; Ji, Junyi

    2016-01-01

    Graphical abstract: CoFe 2 O 4 /rGO composites are fabricated via a liquid-solid-solution assemble strategy with a well controlled CoFe 2 O 4 size, the composite exhibits a high rate performance for lithium ion batteries anode. - Highlights: • Crumpled CoFe 2 O 4 @graphene composite with uniform CoFe 2 O 4 nanoparticles intimately anchored on graphene sheets was fabricated. • The novel fabrication strategy: liquid-solid-solution strategy where the CoFe 2 O 4 are nucleation and controlled growth at the oil/water interface. • High reversible specific capacity of 1102 mAh g −1 after 100 cycles and high rate capability of 410 mAh g −1 within 230 s charging. - Abstract: CoFe 2 O 4 /graphene composites were fabricated via a novel one-pot liquid-solid-solution (LSS) hydrothermal process. Through ions electrostatic adsorption onto graphene sheets and oil microemulsion encapsulation, CoFe 2 O 4 nanoparticles can be uniformly anchored on crumpled graphene sheets without aggregation, and the size distribution of CoFe 2 O 4 particles can be controlled by the microemulsion shell in the range of 50–100 nm. With the synergistic effect between CoFe 2 O 4 and graphene, the CoFe 2 O 4 /graphene hybrid exhibits a high reversible specific capacity of 1102 mAh g −1 at 0.2 A g −1 after 100 cycles, and a good cycling stability as well. Moreover, the composite has good rate capability. The specific capacity can reach a high value of 410 mAh g −1 even under a high current density of 6.4 A g −1 (corresponds to a charge time of ∼230 s), indicating its promising application as an anode material for lithium ion batteries.

  3. Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Guoliang Gao

    2017-03-01

    Full Text Available Metall oxides have been proven to be potential candidates for the anode material of lithium-ion batteries (LIBs because they offer high theoretical capacities, and are environmentally friendly and widely available. However, the low electronic conductivity and severe irreversible lithium storage have hindered a practical application. Herein, we employed ethanolamine as precursor to prepare Fe2O3/COOH-MWCNT composites through a simple hydrothermal synthesis. When these composites were used as electrode material in lithium-ion batteries, a reversible capacity of 711.2 mAh·g−1 at a current density of 500 mA·g−1 after 400 cycles was obtained. The result indicated that Fe2O3/COOH-MWCNT composite is a potential anode material for lithium-ion batteries.

  4. Solution-combustion synthesized aluminium-doped spinel (LiAl(subx)Mn(sub2-x)O(sub4) as a high-performance lithium-ion battery cathode material

    CSIR Research Space (South Africa)

    Kebede, MA

    2015-06-01

    Full Text Available High-performing (LiAl(subx)Mn(sub2-x)O(sub4) (x = 0, 0.125, 0.25, 0.375, and 0.5) spinel cathode materials for lithium-ion battery were developed using a solution combustion method. The as-synthesized cathode materials have spinel cubic structure...

  5. Electrochemical performances of LiNi1−xMnxPO4 (x = 0.05–0.2) olivine cathode materials for high voltage rechargeable lithium ion batteries

    DEFF Research Database (Denmark)

    Karthikprabhu, S.; Karuppasamy, K.; Vikraman, Dhanasekaran

    2018-01-01

    This study demonstrated to synthesis of carbon-free lithium nickel phosphate (LiNiPO4) and its analogue of manganese doped LiNi1−xMnxPO4 (x = 0.05–0.2) cathode materials by a facile polyol method and their suitability for use in high voltage lithium ion batteries (LIBs). The physicochemical...

  6. Persistent cyclestability of carbon coated Zn–Sn metal oxide/carbon microspheres as highly reversible anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Fang, Guoqing; Kaneko, Shingo; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zhang, Ruixue; Zheng, Junwei; Li, Decheng

    2013-01-01

    Development of high-capacity anode materials equipped with strong cyclestability is a great challenge for use as practical electrode for high-performance lithium-ion rechargeable battery. In this study, we synthesized a carbon coated Zn–Sn metal nanocomposite oxide and carbon spheres (ZTO@C/CSs) via a simple glucose hydrothermal reaction and subsequent carbonization approach. The carbon coated ZTO/carbon microspheres composite maintained a reversible capacity of 680 mAh g −1 after 345 cycles at a current density of 100 mA g −1 , and furthermore the cell based on the composite exhibited an excellent rate capability of 470 mAh g −1 even when the cell was cycled at 2000 mA g –1 . The thick carbon layer formed on the ZTO nanoparticles and carbon spheres effectively buffered the volumetric change of the particles, which thus prolonged the cycling performance of the electrodes

  7. Facile fabrication of composited Mn_3O_4/Fe_3O_4 nanoflowers with high electrochemical performance as anode material for lithium ion batteries

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Hao, Qin; Xu, Caixia

    2015-01-01

    Graphical abstract: Mn_3O_4/Fe_3O_4 nanoflowers are successfully prepared through one step dealloying of Mn_5Fe_5Al_9_0 alloy at room temperature. This hierarchical flower-like structure with consists of a packed array of uniform regular hexagon-like nanoslices. Combined with the specific hierarchical flower-like architecture and the synergistic effect exerted by Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits enhanced performance as anode material for lithium ion batteries than pure Mn_3O_4 and Fe_3O_4 anode. - Highlights: • Mn_3O_4/Fe_3O_4 nanoflowers are easily prepared by one step dealloying method. • The nanoflowers consist of packed regular nanoslices with interconnected voids. • Mn_3O_4/Fe_3O_4 nanoflowers deliver higher discharge capacity than Mn_3O_4 and Fe_3O_4. • Mn_3O_4/Fe_3O_4 nanoflowers show lower initial irreversible loss than Mn_3O_4 anode. - Abstract: Mn_3O_4/Fe_3O_4 nanoflowers with controllable components are simply fabricated through one step etching of the Mn_5Fe_5Al_9_0 ternary alloy. The as-made hierarchical flower-like structure with interconnected voids consists of a packed array of uniform regular hexagon-like nanoslices. Based on the simple dealloying strategy the target metals are directly converted to uniform nanocomposite composed of Mn_3O_4 and Fe_3O_4 species. With the unique hierarchical flower-like structure and the synergistic effects between Mn_3O_4 and Fe_3O_4, the nanocomposite exhibits higher performance as anode material for lithium ion batteries than that of pure Mn_3O_4 and Fe_3O_4 anodes. The Mn_3O_4/Fe_3O_4 nanocomposite deliver much higher discharge capacity and lower initial irreversible loss than Mn_3O_4 anode. The Mn_3O_4/Fe_3O_4 anode material also shows an excellent cycling stability at the high rate of 1500 mA g"−"1 with outstanding rate capability. With the advantages of simple preparation and excellent electrochemical performance, Mn_3O_4/Fe_3O_4 nanoflowers manifest great application potential as

  8. Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters as high rate capability and long life anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wu, Shengming; Xia, Tian; Wang, Jingping; Lu, Feifei; Xu, Chunbo; Zhang, Xianfa; Huo, Lihua; Zhao, Hui

    2017-01-01

    Graphical abstract: Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment. When tested as anode materials for LIBs, UMCN-HCs achieve high reversible capacity, good long cycling life, and rate capability. - Highlights: • UMCN-HCs show high capacity, excellent stability, and good rate capability. • UMCN-HCs retain a capacity of 1067 mAh g"−"1 after 100 cycles at 100 mA g"−"1. • UMCN-HCs deliver a capacity of 507 mAh g"−"1 after 500 cycles at 2 A g"−"1. - Abstract: Herein, Ultrathin mesoporous Co_3O_4 nanosheets-constructed hierarchical clusters (UMCN-HCs) have been successfully synthesized via a facile hydrothermal method followed by a subsequent thermolysis treatment at 600 °C in air. The products consist of cluster-like Co_3O_4 microarchitectures, which are assembled by numerous ultrathin mesoporous Co_3O_4 nanosheets. When tested as anode materials for lithium-ion batteries, UMCN-HCs deliver a high reversible capacity of 1067 mAh g"−"1 at a current density of 100 mA g"−"1 after 100 cycles. Even at 2 A g"−"1, a stable capacity as high as 507 mAh g"−"1 can be achieved after 500 cycles. The high reversible capacity, excellent cycling stability, and good rate capability of UMCN-HCs may be attributed to their mesoporous sheet-like nanostructure. The sheet-layered structure of UMCN-HCs may buffer the volume change during the lithiation-delithiation process, and the mesoporous characteristic make lithium-ion transfer more easily at the interface between the active electrode and the electrolyte.

  9. Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors.

    Science.gov (United States)

    Ma, Yanfeng; Chang, Huicong; Zhang, Miao; Chen, Yongsheng

    2015-09-23

    Lithium-ion hybrid supercapacitors (LIHSs), also called Li-ion capacitors, have attracted much attention due to the combination of the rapid charge-discharge and long cycle life of supercapacitors and the high energy-storage capacity of lithium-ion batteries. Thus, LIHSs are expected to become the ultimate power source for hybrid and all-electric vehicles in the near future. As an electrode material, graphene has many advantages, including high surface area and porous structure, high electric conductivity, and high chemical and thermal stability, etc. Compared with other electrode materials, such as activated carbon, graphite, and metal oxides, graphene-based materials with 3D open frameworks show higher effective specific surface area, better control of channels, and higher conductivity, which make them better candidates for LIHS applications. Here, the latest advances in electrode materials for LIHSs are briefly summarized, with an emphasis on graphene-based electrode materials (including 3D graphene networks) for LIHS applications. An outlook is also presented to highlight some future directions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Zinc terephthalates ZnC_8H_4O_4 as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Zou, Jian; Chen, Shulin; Yang, Jingyi; Qing, Fangzhu; Gao, Peng; Li, Jingze

    2017-01-01

    Graphical abstract: Both of well-crystalline and amorphous zinc terephthalates ZnC_8H_4O_4 are synthesized and amorphous structure demonstrates a higher capacity and better cycling performance. - Highlights: • Crystalline and amorphous ZnC_8H_4O_4 are obtained. • Both crystalline and amorphous ZnC_8H_4O_4 have σ_e of 10"−"7 S m"−"1. • Lithium ion diffusion is the rate-determine process. • Amorphous has a high capacity and durable performance. • Amorphous ZnC_8H_4O_4 has a high apparent lithium ion diffusion coefficient. - Abstract: Organic materials offer the advantages of cost-effective, environmental benignity, and molecular structural diversity as applications of electrode materials for lithium ion batteries. In fact, their lithium storage behaviors in terms of dynamics and kinetics intrinsically lie in ion migration in solids. Thus the solid forms including crystalline and amorphous states are crucial for the properties. In this study, a conventional carbonyl type organic material, namely zinc terephthalate (ZnC_8H_4O_4), is obtained in both well-crystalline and amorphous forms and applied as anodes for lithium ion batteries. ZnC_8H_4O_4 with amorphous structure shows higher lithium storage capacity and better capacity retention compared with that of crystalline one. It is ascribed that the amorphous phase provides a higher lithium ion diffusion coefficient than the crystalline one under the conditions of similar electronic conductivity.

  11. Facile synthesis of hierarchically porous Li{sub 4}Ti{sub 5}O{sub 12} microspheres for high rate lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.F.; Luo, H.J.; Yuan, C.Z.; Su, X.F.; Xu, K.; Zhang, X.G. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Material Science and Engineering

    2010-07-01

    Lithium-ion (Li-ion) batteries are used in electric vehicles (EVs) and hybrid electric vehicles (HEVs) due to their excellent energy storage capacity. Graphite is widely used as an anode material in EV and HEV applications. This study investigated the use of a lithium-titanium alloy (Li{sub 4}Ti{sub 5}O{sub 12}) designed to avoid reductions of the electrolyte on the surface of the electrode. The study showed that the composite material shows excellent cycling performance, excellent reversibility, structural stability, and Li-ion mobility in the charge-discharge process. A simple template-free hydrothermal method for fabricating Li{sub 4}Ti{sub 5}O{sub 12} hierarchical microspheres assembled by uniform nanoparticles was presented. The 1-step process produced microspheres with a high yield and uniform diameter. Details of the synthesis process, and the electrochemical and structural properties of the resulting materials were presented. 5 refs.

  12. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Science.gov (United States)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  13. S/N dual-doped carbon nanosheets decorated with Co x O y nanoparticles as high-performance anodes for lithium-ion batteries

    Science.gov (United States)

    Wang, XiaoFei; Zhu, Yong; Zhu, Sheng; Fan, JinChen; Xu, QunJie; Min, YuLin

    2018-03-01

    In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g-1 after 400th cycles at 1000 mA g-1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.

  14. Performance Degradation of Thermal Parameters during Cycle Ageing of High Energy Density Ni-Mn-Co based Lithium-Ion Battery Cells

    DEFF Research Database (Denmark)

    Stanciu, Tiberiu; Stroe, Daniel Loan; Swierczynski, Maciej Jozef

    2016-01-01

    The accelerated demand for electrifying the transportation sector, coupled with the continuous improvement of rechargeable batteries’ characteristics, have made modern high-energy Lithium-ion (Li-ion) batteries the standard choice for hybrid and electric vehicles (EVs). Consequently, Li......-ion batteries’ electrochemical and thermal characteristics are very important topics, putting them at the forefront of the research. Along with the electrical performance of Li-ion battery cells, their thermal behavior needs to be accurately predicted during operation and over the lifespan of the application...... as well, since the thermal management of the battery is crucial for the safety of the EV driver. Moreover, the thermal management system can significantly lower the degradation rate of the battery pack and thus reduce costs. In this paper, the thermal characterization of a commercially available Nickel...

  15. Hierarchical silicon nanowires-carbon textiles matrix as a binder-free anode for high-performance advanced lithium-ion batteries

    Science.gov (United States)

    Liu, Bin; Wang, Xianfu; Chen, Haitian; Wang, Zhuoran; Chen, Di; Cheng, Yi-Bing; Zhou, Chongwu; Shen, Guozhen

    2013-01-01

    Toward the increasing demands of portable energy storage and electric vehicle applications, the widely used graphite anodes with significant drawbacks become more and more unsuitable. Herein, we report a novel scaffold of hierarchical silicon nanowires-carbon textiles anodes fabricated via a facile method. Further, complete lithium-ion batteries based on Si and commercial LiCoO2 materials were assembled to investigate their corresponding across-the-aboard performances, demonstrating their enhanced specific capacity (2950 mAh g−1 at 0.2 C), good repeatability/rate capability (even >900 mAh g−1 at high rate of 5 C), long cycling life, and excellent stability in various external conditions (curvature, temperature, and humidity). Above results light the way to principally replacing graphite anodes with silicon-based electrodes which was confirmed to have better comprehensive performances. PMID:23572030

  16. Robust Strategy for Crafting Li5Cr7Ti6O25@CeO2 Composites as High-Performance Anode Material for Lithium-Ion Battery.

    Science.gov (United States)

    Mei, Jie; Yi, Ting-Feng; Li, Xin-Yuan; Zhu, Yan-Rong; Xie, Ying; Zhang, Chao-Feng

    2017-07-19

    A facile strategy was developed to prepare Li 5 Cr 7 Ti 6 O 25 @CeO 2 composites as a high-performance anode material. X-ray diffraction (XRD) and Rietveld refinement results show that the CeO 2 coating does not alter the structure of Li 5 Cr 7 Ti 6 O 25 but increases the lattice parameter. Scanning electron microscopy (SEM) indicates that all samples have similar morphologies with a homogeneous particle distribution in the range of 100-500 nm. Energy-dispersive spectroscopy (EDS) mapping and high-resolution transmission electron microscopy (HRTEM) prove that CeO 2 layer successfully formed a coating layer on a surface of Li 5 Cr 7 Ti 6 O 25 particles and supplied a good conductive connection between the Li 5 Cr 7 Ti 6 O 25 particles. The electrochemical characterization reveals that Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode shows the highest reversibility of the insertion and deinsertion behavior of Li ion, the smallest electrochemical polarization, the best lithium-ion mobility among all electrodes, and a better electrochemical activity than the pristine one. Therefore, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) electrode indicates the highest delithiation and lithiation capacities at each rate. At 5 C charge-discharge rate, the pristine Li 5 Cr 7 Ti 6 O 25 only delivers an initial delithiation capacity of ∼94.7 mAh g -1 , and the delithiation capacity merely achieves 87.4 mAh g -1 even after 100 cycles. However, Li 5 Cr 7 Ti 6 O 25 @CeO 2 (3 wt %) delivers an initial delithiation capacity of 107.5 mAh·g -1 , and the delithiation capacity also reaches 100.5 mAh g -1 even after 100 cycles. The cerium dioxide modification is a direct and efficient approach to improve the delithiation and lithiation capacities and cycle property of Li 5 Cr 7 Ti 6 O 25 at large current densities.

  17. New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value

    International Nuclear Information System (INIS)

    Gallus, Dennis Roman; Wagner, Ralf; Wiemers-Meyer, Simon; Winter, Martin; Cekic-Laskovic, Isidora

    2015-01-01

    In pursuit of higher energy density in lithium-ion batteries (LIBs), a most promising approach focuses on cathode materials that operate at higher potentials and exhibit even higher specific charges than present LIB cathodes charged up to only 3.8 to 4.3 V vs. Li/Li + . To enable a high-voltage (HV) application of the cathode, the “by-materials”, in particular the electrolyte components have to be either thermodynamically or kinetically stable. For this reason, the stability of the electrolyte components towards oxidation, in particular, depending on their HOMO energy levels, is crucial. The theoretical calculation of molecular orbital energies is a helpful and commonly used tool to predict electrochemical stability. Earlier studies demonstrated strong correlation between the HOMO energy and the pK a value, as both depend on electron affinity. Here we report on the first study referring to a pK a value based selection procedure on development of new electrolyte components for the application in lithium-ion batteries. The identified trimethylsilyl(TMS)-based additives, which are known to scavenge HF and show sufficient oxidation stability, enable the application of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) at an increased upper cut-off potential of 4.6 V vs. Li/Li + without severe degradation, leading to a 50% higher energy density. The use of pK a values is a simple, but highly effective methodology to select appropriate electrolyte components and thus helps to identify functional electrolytes beyond the typical trial and error approach or time-consuming theoretical calculations.

  18. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives

    Science.gov (United States)

    Boltersdorf, Jonathan; Delp, Samuel A.; Yan, Jin; Cao, Ben; Zheng, Jim P.; Jow, T. Richard; Read, Jeffrey A.

    2018-01-01

    Lithium-ion capacitors (LICs) were investigated for high power, moderate energy density applications for operation in extreme environments with prolonged cycle-life performance. The LICs were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes. The capacity retention was measured under high stress conditions, while the design factor explored was electrolyte formulation using a set of carbonates and electrolyte additives, with a focus on their stability. The LIC cells were evaluated using critical performance tests under the following high stress conditions: long-term voltage floating-cycling stability at room temperature (2.2-3.8 V), high temperature storage at 3.8 V, and charge voltages up to 4.4 V. The rate performance of different electrolytes and additives was measured after the initial LIC cell formation for a 1C-10C rate. The presence of vinylene carbonate (VC) and tris (trimethylsilyl) phosphate (TMSP) were found to be essential to the improved electrochemical performance of the LIC cells under all testing conditions.

  19. In situ synthesis of Co{sub 3}O{sub 4}/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bei, E-mail: Bei.Wang-1@student.uts.edu.au [School of Chemistry and Forensic Science, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Wang Ying [School of Chemistry and Forensic Science, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia); Park, Jinsoo; Ahn, Hyojun [School of Materials Science and Engineering, Gyeongsang National University, 900 Gazwa-dong Jinju, Gyeongnam 660-701 (Korea, Republic of); Wang Guoxiu, E-mail: Guoxiu.Wang@uts.edu.au [School of Chemistry and Forensic Science, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007 (Australia)

    2011-07-21

    Highlights: > In situ solution-based preparation of Co{sub 3}O{sub 4}/graphene composite material. > Well dispersed Co{sub 3}O{sub 4} nanoparticles on graphene nanosheets. > Co{sub 3}O{sub 4}/graphene exhibits highly reversible lithium storage capacity. > Co{sub 3}O{sub 4}/graphene delivers superior supercapacitance up to 478 F g{sup -1}. > Functional groups make contributions to the overall supercapacitance. - Abstract: Co{sub 3}O{sub 4}/graphene nanocomposite material was prepared by an in situ solution-based method under reflux conditions. In this reaction progress, Co{sup 2+} salts were converted to Co{sub 3}O{sub 4} nanoparticles which were simultaneously inserted into the graphene layers, upon the reduction of graphite oxide to graphene. The prepared material consists of uniform Co{sub 3}O{sub 4} nanoparticles (15-25 nm), which are well dispersed on the surfaces of graphene nanosheets. This has been confirmed through observations by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy. The prepared composite material exhibits an initial reversible lithium storage capacity of 722 mAh g{sup -1} in lithium-ion cells and a specific supercapacitance of 478 F g{sup -1} in 2 M KOH electrolyte for supercapacitors, which were higher than that of the previously reported pure graphene nanosheets and Co{sub 3}O{sub 4} nanoparticles. Co{sub 3}O{sub 4}/graphene nanocomposite material demonstrated an excellent electrochemical performance as an anode material for reversible lithium storage in lithium ion cells and as an electrode material in supercapacitors.

  20. In-situ synthesis of interconnected SWCNT/OMC framework on silicon nanoparticles for high performance lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Weiwei Li

    2016-04-01

    Full Text Available In spite of silicon has a superior theoretical capacity, the large volume expansion of Si anodes during Li+ insertion/extraction is the bottle neck that results in fast capacity fading and poor cycling performance. In this paper, we report a silicon, single-walled carbon nanotube, and ordered mesoporous carbon nanocomposite synthesized by an evaporation-induced self-assembly process, in which silicon nanoparticles and single-walled carbon nanotubes were added into the phenolic resol with F-127 for co-condensation. The ordered mesoporous carbon matrix and single-walled carbon nanotubes network could effectively accommodate the volume change of silicon nanoparticles, and the ordered mesoporous structure could also provide efficient channels for the fast transport of Li-ions. As a consequence, this hybrid material exhibits a reversible capacity of 861 mAh g−1 after 150 cycles at a current density of 400 mA g−1. It achieves significant improvement in the electrochemical performance when compared with the raw materials and Si nanoparticle anodes. Keywords: Silicon, Single-walled carbon nanotube, Ordered mesoporous carbon, Lithium ion battery

  1. Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation.

    Science.gov (United States)

    Wang, Xue; Gaustad, Gabrielle; Babbitt, Callie W

    2016-05-01

    Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level. This pre-recycling process aims to achieve material segregation with a focus on the metallic portion and provide clear targets for subsequent recycling processes. The results show that contained metallic materials can be segregated into different size fractions at different levels. For example, for lithium cobalt oxide batteries, cobalt content has been improved from 35% by weight in the metallic portion before this pre-recycling process to 82% in the ultrafine (6mm). However, size fractions across multiple battery chemistries showed significant variability in material concentration. This finding indicates that sorting by cathode before pre-treatment could reduce the uncertainty of input materials and therefore improve the purity of output streams. Thus, battery labeling systems may be an important step towards implementation of any pre-recycling process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. High performance screen-printed electrodes prepared by a green solvent approach for lithium-ion batteries

    Science.gov (United States)

    Gören, A.; Mendes, J.; Rodrigues, H. M.; Sousa, R. E.; Oliveira, J.; Hilliou, L.; Costa, C. M.; Silva, M. M.; Lanceros-Méndez, S.

    2016-12-01

    New inks based on lithium iron phosphate and graphite for cathode and anode, respectively, were developed for printable lithium-ion batteries using the "green solvent" N,N‧-dimethylpropyleneurea (DMPU) and poly(vinylidene fluoride), PVDF, as a binder. The results were compared with the ones from inks developed with the conventionally used solvent N-methyl-2-pyrrolidone, NMP. The rheological properties of the PVDF/DMPU binder solution shows a more pronounced shear thinning behavior than the PVDF/NMP solution. Cathode inks prepared with 2.25 mL and 2.50 mL of DMPU for 1 g of electrode mass show an apparent viscosity of 3 Pa s and 2 Pa s for a shear rate of 100 s-1, respectively, being therefore processable by screen-printing or doctor blade techniques. The electrodes prepared with DMPU and processed by screen-printing show a capacity of 52 mAh g-1 at 2C for the cathode and 349 mAh g-1 at C/5 for the anode, after 45 charge-discharge cycles. The electrochemical performance of both electrodes was evaluated in a full-cell and after 9 cycles, the discharge capacity value is 81 mAh g-1, showing a discharge capacity retention of 64%. The new inks presented in this work are thus suitable for the development of printed batteries and represent a step forward towards more environmental friendly processes.

  3. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries

    International Nuclear Information System (INIS)

    Shi, Ye; Zhou, Xingyi; Yu, Guihua

    2017-01-01

    Developing high-performance battery systems requires the optimization of every battery component, from electrodes and electrolyte to binder systems. However, the conventional strategy to fabricate battery electrodes by casting a mixture of active materials, a nonconductive polymer binder, and a conductive additive onto a metal foil current collector usually leads to electronic or ionic bottlenecks and poor contacts due to the randomly distributed conductive phases. When high-capacity electrode materials are employed, the high stress generated during electrochemical reactions disrupts the mechanical integrity of traditional binder systems, resulting in decreased cycle life of batteries. Thus, it is critical to design novel binder systems that can provide robust, low-resistance, and continuous internal pathways to connect all regions of the electrode. Here in this Account, we review recent progress on material and structural design of novel binder systems. Nonconductive polymers with rich carboxylic groups have been adopted as binders to stabilize ultrahigh-capacity inorganic electrodes that experience large volume or structural change during charge/discharge, due to their strong binding capability to active particles. To enhance the energy density of batteries, different strategies have been adopted to design multifunctional binder systems based on conductive polymers because they can play dual functions of both polymeric binders and conductive additives. We first present that multifunctional binder systems have been designed by tailoring the molecular structures of conductive polymers. Different functional groups are introduced to the polymeric backbone to enable multiple functionalities, allowing separated optimization of the mechanical and swelling properties of the binders without detrimental effect on electronic property. Then, we describe the design of multifunctional binder systems via rationally controlling their nano- and molecular structures, developing

  4. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  5. Mesoporous Cladophora cellulose separators for lithium-ion batteries

    Science.gov (United States)

    Pan, Ruijun; Cheung, Ocean; Wang, Zhaohui; Tammela, Petter; Huo, Jinxing; Lindh, Jonas; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2016-07-01

    Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 μm, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm-1 after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 °C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries.

  6. A highly accurate predictive-adaptive method for lithium-ion battery remaining discharge energy prediction in electric vehicle applications

    International Nuclear Information System (INIS)

    Liu, Guangming; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Hua, Jianfeng

    2015-01-01

    Highlights: • An energy prediction (EP) method is introduced for battery E RDE determination. • EP determines E RDE through coupled prediction of future states, parameters, and output. • The PAEP combines parameter adaptation and prediction to update model parameters. • The PAEP provides improved E RDE accuracy compared with DC and other EP methods. - Abstract: In order to estimate the remaining driving range (RDR) in electric vehicles, the remaining discharge energy (E RDE ) of the applied battery system needs to be precisely predicted. Strongly affected by the load profiles, the available E RDE varies largely in real-world applications and requires specific determination. However, the commonly-used direct calculation (DC) method might result in certain energy prediction errors by relating the E RDE directly to the current state of charge (SOC). To enhance the E RDE accuracy, this paper presents a battery energy prediction (EP) method based on the predictive control theory, in which a coupled prediction of future battery state variation, battery model parameter change, and voltage response, is implemented on the E RDE prediction horizon, and the E RDE is subsequently accumulated and real-timely optimized. Three EP approaches with different model parameter updating routes are introduced, and the predictive-adaptive energy prediction (PAEP) method combining the real-time parameter identification and the future parameter prediction offers the best potential. Based on a large-format lithium-ion battery, the performance of different E RDE calculation methods is compared under various dynamic profiles. Results imply that the EP methods provide much better accuracy than the traditional DC method, and the PAEP could reduce the E RDE error by more than 90% and guarantee the relative energy prediction error under 2%, proving as a proper choice in online E RDE prediction. The correlation of SOC estimation and E RDE calculation is then discussed to illustrate the

  7. Graphene composites as anode materials in lithium-ion batteries

    Science.gov (United States)

    Mazar Atabaki, M.; Kovacevic, R.

    2013-03-01

    Since the world of mobile phones and laptops has significantly altered by a big designer named Steve Jobs, the electronic industries have strived to prepare smaller, thinner and lower weight products. The giant electronic companies, therefore, compete in developing more efficient hardware such as batteries used inside the small metallic or polymeric frame. One of the most important materials in the production lines is the lithium-based batteries which is so famous for its ability in recharging as many times as a user needs. However, this is not an indication of being long lasted, as many of the electronic devices are frequently being used for a long time. The performance, chemistry, safety and above all cost of the lithium ion batteries should be considered when the design of the compounds are at the top concern of the engineers. To increase the efficiency of the batteries a combination of graphene and nanoparticles is recently introduced and it has shown to have enormous technological effect in enhancing the durability of the batteries. However, due to very high electronic conductivity, these materials can be thought of as preparing the anode electrode in the lithiumion battery. In this paper, the various approaches to characterize different types of graphene/nanoparticles and the process of preparing the anode for the lithium-ion batteries as well as their electrical properties are discussed.

  8. Computational multiobjective topology optimization of silicon anode structures for lithium-ion batteries

    Science.gov (United States)

    Mitchell, Sarah L.; Ortiz, Michael

    2016-09-01

    This study utilizes computational topology optimization methods for the systematic design of optimal multifunctional silicon anode structures for lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such this work considers two design objectives, the first being minimum compliance under design dependent volume expansion, and the second maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the influence of the minimum structural feature size and prescribed volume fraction are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the structural and conduction design criteria. The weighted sum method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. A rigid frame structure was found to be an excellent compromise between the structural and conduction design criteria, providing both the required structural rigidity and direct conduction pathways. The developments and results presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.

  9. Solid state electrolytes for all-solid-state 3D lithium-ion batteries

    NARCIS (Netherlands)

    Kokal, I.

    2012-01-01

    The focus of this Ph.D. thesis is to understand the lithium ion motion and to enhance the Li-ionic conductivities in commonly known solid state lithium ion conductors by changing the structural properties and preparation methods. In addition, the feasibility for practical utilization of several

  10. Study on performance of composite polymer films doped with modified molecular sieve for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Yuqing; Zhang Guodong; Du Tingdong; Zhang Lizao

    2010-01-01

    To improve the tensile strength and ionic conductivity of composite polymer films for lithium-ion batteries, molecular sieves of MCM-41 modified with sulfated zirconia (SO 4 2- /ZrO 2 , SZ), denoted as MCM-41/SZ, were doped into a poly(vinylidene fluoride) (PVdF) matrix to fabricate MCM-41/SZ composite polymer films, denoted as MCM-41/SZ films. Examination by transmission electron microscope (TEM) shows that modified molecular sieves have lower aggregation and a more porous structure. Tensile strength tests were carried out to investigate the mechanical performance of MCM-41/SZ films, and then the electrochemical performance of batteries with MCM-41/SZ films as separators was tested. The results show that the tensile strength (σ t ) of MCM-41/SZ film was up to 7.8 MPa; the ionic conductivity of MCM-41/SZ film was close to 10 -3 S cm -1 at room temperature; and the coulombic efficiency of the assembled lithium-ion battery was 92% at the first cycle and reached as high as 99.99% after the 20th cycle. Meanwhile, the charge-discharge voltage plateau of the lithium-ion battery presented a stable state. Therefore, MCM-41/SZ films are a good choice as separators for lithium-ion batteries due to their high tensile strength and ionic conductivity.

  11. High energy density of Li3-xNaxV2(PO4)3/C cathode material with high rate cycling performance for lithium-ion batteries

    Science.gov (United States)

    Zuo, Zong-Lin; Deng, Jian-Qiu; Pan, Jin; Luo, Wen-Bin; Yao, Qing-Rong; Wang, Zhong-Min; Zhou, Huai-Ying; Liu, Hua-Kun

    2017-07-01

    A serials of micro-sized Li3-xNaxV2(PO4)3/C composite has been synthesized by sol-gel method, comprised of numerous primary nanocrystals. This structure can efficiently facilitate lithium-ion transport in secondary aggregated individual particles due to the short diffusion distance among primary nanocrystals, along with a high tap density. With the increasing of Na doping content, the structure evolution occurs in Li3-xNaxV2(PO4)3 from a single-phase structure to a two-phase structure. The appearance of rhombohedral phase can provide a larger free volume of the interstitial space, fastening ionic movement to offer an excellent high rate capability. Furthermore, Na doping can stabilize the rhombohedral structure of the V2(PO4)3 framework, leading to the remarkable cycling stability. Among all the composites, Li2.6Na0.4V2(PO4)3/C presents the best electrochemical performance with a high energy density of 478.8 Wh kg-1, delivering high initial discharge capacities of 121.6, 113.8 and 109.7 mAh g-1 at the rate of 5 C, 10 C and 20 C in a voltage range of 3.0 - 4.3 V, respectively. It also exhibit an excellent high rate cycling performance, with capacity retention of 85.9 %, 81.7 % and 76.5 % after 1000 cycles at the rate of 5 C, 10 C and 20 C in a voltage range of 3.0 - 4.3 V.

  12. Intergrown SnO{sub 2}–TiO{sub 2}@graphene ternary composite as high-performance lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zheng; Gao, Renmei [Shanghai University, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering (China); Tao, Haihua [Inspection Center of Industrial Products and Raw Materials of SHCIQ (China); Yuan, Shuai [Shanghai University, Research Center of Nanoscience and Nanotechnology (China); Xu, Laiqiang; Xia, Saisai; Zhang, Haijiao, E-mail: hjzhang128@shu.edu.cn [Shanghai University, Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering (China)

    2016-10-15

    In recent years, a lot of metal oxides with high theoretical capacity have widely investigated as the high-performance anode materials for lithium-ion batteries (LIBs). In this work, a simple, facile and effective one-pot hydrothermal strategy toward ternary SnO{sub 2}–TiO{sub 2}@graphene composite has been developed by using SnCl{sub 2} and TiOSO{sub 4} as the starting materials. The obtained composite demonstrates a unique structure and high surface areas, in which both SnO{sub 2} and TiO{sub 2} nanoparticles are well grown on the surface of graphene. More interestingly, the SnO{sub 2} and TiO{sub 2} nanoparticles are intergrowth together, totally different with the traditional ternary hybrids. When used as anode material for LIBs, the introduction of TiO{sub 2} plays a crucial role in maintaining the structural stability of the electrode during Li{sup +} insertion/extraction, which can effectively prevent the aggregation of SnO{sub 2} nanoparticles. The electrochemical tests indicate that as-prepared SnO{sub 2}–TiO{sub 2}@graphene composite exhibits a high capacity of 1276 mA h g{sup −1} after 200 cycles at the current density of 200 mA g{sup −1}. Furthermore, the composite also maintains the specific capacity of 611 mA h g{sup −1} at an ultrahigh current density of 2000 mA g{sup −1}, which is superior to those of the reported SnO{sub 2} and SnO{sub 2}/graphene hybrids. Accordingly, the remarkable electrochemical performance of ternary SnO{sub 2}–TiO{sub 2}@graphene composites is mainly attributed to their unique nanostructure, high surface areas, and the synergistic effect not only between graphene and metal oxides but also between the intergrown SnO{sub 2} and TiO{sub 2} nanoparticles.Graphical abstractIntergrown SnO{sub 2} and TiO{sub 2} nanoparticles have been successfully anchored onto the graphene nanosheets as high-performance lithium-ion battery anodes.

  13. Highly efficient solid-state synthesis of carbon-encapsulated ultrafine MoO{sub 2} nanocrystals as high rate lithium-ion battery anode

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Boyang, E-mail: byliu@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Shao, Yingfeng, E-mail: shaoyf@lnm.imech.ac.cn [Chinese Academy of Sciences, State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics (China); Zhang, Yuliang, E-mail: ylzhang@shmtu.edu.cn; Zhang, Fuhua, E-mail: fhzhang@shmtu.edu.cn; Zhong, Ning, E-mail: ningzhong@shmtu.edu.cn [Shanghai Maritime University, College of Ocean Science and Engineering (China); Li, Wenge, E-mail: wgli@shmtu.edu.cn [Shanghai Maritime University, Merchant Marine College (China)

    2016-12-15

    A simple and highly efficient method is developed for the one-step in situ preparation of carbon-encapsulated MoO{sub 2} nanocrystals (MoO{sub 2}@C) with core-shell structure for high-performance lithium-ion battery anode. The synthesis is depending on the solid-state reaction of cyclopentadienylmolybdenum tricarbonyl dimer with ammonium persulfate in an autoclave at 200 °C for 30 min. The large amount of heat generated during the explosive reaction cleaves the cyclopentadiene ligands into small carbon fragments, which form carbon shell after oxidative dehydrogenation coating on the MoO{sub 2} nanocrystals, resulting in the formation of core-shell structure. The MoO{sub 2} nanocrystals have an equiaxial morphology with an ultrafine diameter of 2–8 nm, and the median size is 4.9 nm. Hundreds of MoO{sub 2} nanocrystals are encapsulated together by the worm-like carbon shell, which is amorphous and about 3–5 nm in thickness. The content of MoO{sub 2} nanocrystals in the nanocomposite is about 69.3 wt.%. The MoO{sub 2}@C anode shows stable cyclability and retains a high reversible capacity of 443 mAh g{sup −1} after 50 cycles at a current density of 3 A g{sup −1}, owing to the effective protection of carbon shell.

  14. Method of producing p-i-n structures by compensation of lithium ions from both side of silicon

    International Nuclear Information System (INIS)

    Muminov, R.A.; Radjapov, S.A.; Saymbetov, A.K.; Tursunkulov, O.M.; Pindurin, Yu.S.

    2007-01-01

    Full text: Semiconductor nuclear radiation detectors are needed to solve certain problems in nuclear spectroscopy. The development of efficiency detectors became possible with advances in growing high purify silicon single crystals with the required properties, satisfying the requirements for obtaining detectors based on them. One important requirement for obtaining detectors with sensitive area is that its resistance must be high. This is achieved by using the lithium ion drift process in the volume of the semiconductor detector. Thus it has been developed and created silicon semiconductor nuclear radiation detectors with vide range of diameter of sensitive area up to 100 mm and thickness (from 1mm to 10mm). At present work a new method for producing p-i-n structures was developed to decrease substantially the time required for compensation of silicon by lithium ions and to eliminate at the same time the negative consequences of holding the crystal at a high temperature and under a high voltage. Drift of lithium ions from two ends of prepared samples is conducted to a depth sufficient for the required compensation of the initial acceptor impurity in silicon. The method described above was used to fabricate a batch of Si(Li) detectors with a 1-10 mm thick and 10-110 mm in diameter sensitive region. The thickness of the sensitive region was determined by performing standard measurements and chemical pigmentation. Advantages of detectors are they have improved properties and less time for compensation of lithium ions. (authors)

  15. Superior cycle performance and high reversible capacity of SnO2/graphene composite as an anode material for lithium-ion batteries.

    Science.gov (United States)

    Liu, Lilai; An, Maozhong; Yang, Peixia; Zhang, Jinqiu

    2015-03-12

    SnO2/graphene composite with superior cycle performance and high reversible capacity was prepared by a one-step microwave-hydrothermal method using a microwave reaction system. The SnO2/graphene composite was characterized by X-ray diffraction, thermogravimetric analysis, Fourier-transform infrared spectroscopy, Raman spectroscopy, scanning electron microscope, X-ray photoelectron spectroscopy, transmission electron microscopy and high resolution transmission electron microscopy. The size of SnO2 grains deposited on graphene sheets is less than 3.5 nm. The SnO2/graphene composite exhibits high capacity and excellent electrochemical performance in lithium-ion batteries. The first discharge and charge capacities at a current density of 100 mA g(-1) are 2213 and 1402 mA h g(-1) with coulomb efficiencies of 63.35%. The discharge specific capacities remains 1359, 1228, 1090 and 1005 mA h g(-1) after 100 cycles at current densities of 100, 300, 500 and 700 mA g(-1), respectively. Even at a high current density of 1000 mA g(-1), the first discharge and charge capacities are 1502 and 876 mA h g(-1), and the discharge specific capacities remains 1057 and 677 mA h g(-1) after 420 and 1000 cycles, respectively. The SnO2/graphene composite demonstrates a stable cycle performance and high reversible capacity for lithium storage.

  16. Lithium ion intercalation into thin film anatase

    International Nuclear Information System (INIS)

    Kundrata, I.; Froehlich, K.; Ballo, P.

    2015-01-01

    The aim of this work is to find the optimal parameters for thin film TiO 2 anatase grown by Atomic layer deposition (ALD) for use as electrode in lithium ion batteries. Two parameters, the optimal film thickness and growth conditions are aimed for. Optimal film thickness for achieving optimum between capacity gained from volume and capacity gained by changing of the intercalation constant and optimal growth conditions for film conformity on structured substrates with high aspect ratio. Here we presents first results from this ongoing research and discuss future outlooks. (authors)

  17. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chang Zhaorong; Lv Haojie; Tang Hongwei; Li Huaji; Yuan Xiaozi; Wang Haijiang

    2009-01-01

    To achieve a high-energy-density lithium electrode, high-density LiFePO 4 /C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO 4 as a precursor, glucose as a C source, and Li 2 CO 3 as a Li source, in a pipe furnace under an atmosphere of 5% H 2 -95% N 2 . The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO 4 /carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO 4 /carbon composite powder with a carbon content of 7% reached 1.80 g m -3 . The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g -1 , respectively, with a volume capacity of 300.6 mAh cm -3 , at a 0.1C rate. At a rate of 5C, the LiFePO 4 /carbon composite shows a high discharge capacity of 98.3 mAh g -1 and a volume capacity of 176.94 mAh cm -3 .

  18. One-step argon/nitrogen binary plasma jet irradiation of Li4Ti5O12 for stable high-rate lithium ion battery anodes

    Science.gov (United States)

    Lan, Chun-Kai; Chuang, Shang-I.; Bao, Qi; Liao, Yen-Ting; Duh, Jenq-Gong

    2015-02-01

    Atmospheric pressure Ar/N2 binary plasma jet irradiation has been introduced into the manufacturing process of lithium ions batteries as a facile, green and scalable post-fabrication treatment approach, which enhanced significantly the high-rate anode performance of lithium titanate (Li4Ti5O12). Main emission lines in Ar/N2 plasma measured by optical emission spectroscopy reveal that the dominant excited high-energy species in Ar/N2 plasma are N2*, N2+, N∗ and Ar∗. Sufficient oxygen vacancies have been evidenced by high resolution X-ray photoelectron spectroscopy analysis and Raman spectra. Nitrogen doping has been achieved simultaneously by the surface reaction between pristine Li4Ti5O12 particles and chemically reactive plasma species such as N∗ and N2+. The variety of Li4Ti5O12 particles on the surface of electrodes after different plasma processing time has been examined by grazing incident X-Ray diffraction. Electrochemical impedance spectra (EIS) confirm that the Ar/N2 atmospheric plasma treatment facilitates Li+ ions diffusion and reduces the internal charge-transfer resistance. The as-prepared Li4Ti5O12 anodes exhibit a superior capacity (132 mAh g-1) and excellent stability with almost no capacity decay over 100 cycles under a high C rate (10C).

  19. In situ electrochemical creation of cobalt oxide nanosheets with favorable performance as a high tap density anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Lin, Qian; Sha, Yujing; Zhao, Bote; Chen, Yubo; Tadé, Moses O.; Shao, Zongping

    2015-01-01

    Highlights: • Cobalt oxide nanosheets in situ electrochemical generated from commercial LiCoO_2. • TEM indicates creation of cobalt oxide nanosheets from coarse layered LiCoO_2_. • Coarse-type LiCoO_2 with high tap density shows promising anode performance. • Optimizing weight ratio of LiCoO_2 in electrode, a high capacity was achieved. - Abstract: Cobalt oxides are attractive alternative anode materials for next-generation lithium-ion batteries (LIBs). To improve the performance of conversion-type anode materials such as cobalt oxides, well dispersed and nanosized particulate morphology is typically required. In this study, we describe the in situ electrochemical generation of cobalt oxide nanosheets from commercial micrometer-sized LiCoO_2 oxide as an anode material for LIBs. The electrode material as prepared was analyzed by XRD, FE-SEM and TEM. The electrochemical properties were investigated by cyclic voltammetry and by a constant current galvanostatic discharge–charge test. The material shows a high tap density and promising anode performance in terms of capacity, rate performance and cycling stability. A capacity of 560 mA h g"−"1 is still achieved at a current density of 1000 mA g"−"1 by increasing the amount of additives in the electrode to 40 wt%. This paper provides a new technique for developing a high-performance conversion-type anode for LIBs.

  20. Hierarchical porous ZnMn{sub 2}O{sub 4} microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Haibo; Xie, Guiting; Cheng, Si; Zhen, Zihao [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China); Jiang, Zhongqing [Department of Chemical Engineering, Ningbo University of Technology, Ningbo 315016, Zhejiang (China); Huang, Jianlin; Jiang, Yu; Chen, Bohong [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China); Jiang, Zhong-Jie, E-mail: zhongjiejiang1978@hotmail.com [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong (China)

    2016-09-15

    A simple two-step procedure, which involves the synthesis of the Zn{sub 0.33}Mn{sub 0.67}CO{sub 3} microspheres through a hydrothermal process and the subsequent calcination, has been used to synthesize the ZnMn{sub 2}O{sub 4} microspheres with a hierarchical porous morphology consisting of the ZnMn{sub 2}O{sub 4} sub-nanoparticles. When evaluated as anode materials for lithium ion batteries (LIBs), these hierarchical porous ZnMn{sub 2}O{sub 4} microspheres could exhibit a stable reversible capability of ∼723.7 mAh g{sup −1} at the current density of 400 mA g{sup −1}, which is much higher than those of the ZnMn{sub 2}O{sub 4} based materials reported previously, indicating the great potential of using them as the anode for the LIBs. This is further supported by their better rate capability and higher cycling stability. Careful analysis has shown that the unique porous structure of the hierarchical porous ZnMn{sub 2}O{sub 4} microspheres which consists of the ZnMn{sub 2}O{sub 4} sub-nanoparticles plays an important role in their higher electrochemical performance, since it allows the accommodation of the volume expansion during the repeated discharge–charge cycles, preventing them from the structural destruction, and increase the accessibility of the electrode material to the Li{sup +} storage, making a better utilization of active materials and an easy diffusion of electrolytes in and out of the electrode material. - Graphical abstract: The ZnMn{sub 2}O{sub 4} microspheres with a hierarchical porous morphology consisting of the ZnMn{sub 2}O{sub 4} sub-nanoparticles have been synthesized by the calcination of the Zn{sub 0.33}Mn{sub 0.67}CO{sub 3} microspheres and could exhibit superior electrochemical performance when used as anode materials for lithium ion batteries. - Highlights: • A simple procedure has been used to synthesize the ZnMn{sub 2}O{sub 4} microspheres. • The ZnMn{sub 2}O{sub 4} microspheres exhibit excellent performance when used in LIBs

  1. Hierarchical porous ZnMn_2O_4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries

    International Nuclear Information System (INIS)

    Rong, Haibo; Xie, Guiting; Cheng, Si; Zhen, Zihao; Jiang, Zhongqing; Huang, Jianlin; Jiang, Yu; Chen, Bohong; Jiang, Zhong-Jie

    2016-01-01

    A simple two-step procedure, which involves the synthesis of the Zn_0_._3_3Mn_0_._6_7CO_3 microspheres through a hydrothermal process and the subsequent calcination, has been used to synthesize the ZnMn_2O_4 microspheres with a hierarchical porous morphology consisting of the ZnMn_2O_4 sub-nanoparticles. When evaluated as anode materials for lithium ion batteries (LIBs), these hierarchical porous ZnMn_2O_4 microspheres could exhibit a stable reversible capability of ∼723.7 mAh g"−"1 at the current density of 400 mA g"−"1, which is much higher than those of the ZnMn_2O_4 based materials reported previously, indicating the great potential of using them as the anode for the LIBs. This is further supported by their better rate capability and higher cycling stability. Careful analysis has shown that the unique porous structure of the hierarchical porous ZnMn_2O_4 microspheres which consists of the ZnMn_2O_4 sub-nanoparticles plays an important role in their higher electrochemical performance, since it allows the accommodation of the volume expansion during the repeated discharge–charge cycles, preventing them from the structural destruction, and increase the accessibility of the electrode material to the Li"+ storage, making a better utilization of active materials and an easy diffusion of electrolytes in and out of the electrode material. - Graphical abstract: The ZnMn_2O_4 microspheres with a hierarchical porous morphology consisting of the ZnMn_2O_4 sub-nanoparticles have been synthesized by the calcination of the Zn_0_._3_3Mn_0_._6_7CO_3 microspheres and could exhibit superior electrochemical performance when used as anode materials for lithium ion batteries. - Highlights: • A simple procedure has been used to synthesize the ZnMn_2O_4 microspheres. • The ZnMn_2O_4 microspheres exhibit excellent performance when used in LIBs. • The porous structure plays a crucial role in their high performance. • These spheres exhibit a good morphology retention

  2. Hierarchical flower-like carbon nanosheet assembly with embedded hollow NiCo{sub 2}O{sub 4} nanoparticles for high- performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling; Qiu, Huajun; Luo, Pan; Li, Wenxiang; Zhang, Huijuan; Wang, Yu, E-mail: wangy@cqu.edu.cn

    2017-05-01

    Highlights: • Flower-like NiCo{sub 2}O{sub 4}@carbon nanosphere is firstly synthesized for Li-ion batteries. • The nanostructure exhibits the unique feature of hollow NiCo{sub 2}O{sub 4} nanoparticles embedded inside and graphitized carbon layers coating outside. • The sample reveals stable structure, large specific surface area and good electrical conductivity. • The composite exhibits superior rate capability, cycling capacity and excellent Coulombic efficiency. - Abstract: The fabrication of closely bounded metal oxides/carbon hybrid nano-structures is significant for its use in energy-related areas especially lithium ion batteries (LIBs). In this research, a flower-like carbon sphere with hollow NiCo{sub 2}O{sub 4} nanoparticles encapsulated inside the carbon thin nanopetal is fabricated by using a mixed basic carbonate nickel and cobalt sphere as the precursor and templates followed by the outer carbon membrane covering and two-step calcination process. When tested as anode material for LIBs, this flower-like carbon-based hybrid sphere demonstrates a significantly enhanced reversible capacity and cycling stability at various current densities.

  3. Multi-channel and porous SiO@N-doped C rods as anodes for high-performance lithium-ion batteries

    Science.gov (United States)

    Huang, Xiao; Li, Mingqi

    2018-05-01

    To improve the cycling stability and rate capability of SiO electrodes, multi-channel and porous SiO@N-doped C (mp-SiO@N-doped C) rods are fabricated by the combination of electrospinning and heat treatment with the assistance of poly(methyl methacrylate) (PMMA). During annealing, in-situ PMMA degradation and gasification lead to the formation of multi-channel structure and more pores. As anodes for lithium ion batteries, the mp-SiO@N-doped C rods exhibit excellent cycling stability. At a current density of 400 mA g-1, a discharge capacity of 806 mAh g-1 can be kept after 250 cycles, the retention of which is over than 100% versus the initial reversible capacity. Compared with the SiO@N-doped C rods synthesized without the help of PMMA, the mp-SiO@N-doped C rods exhibit more excellent rate capability. The excellent electrochemical performance is attributed to the special structure of the mp-SiO@N-doped C rods. In addition to the conductivity improved by carbon fibers, the multi-channel and porous structures not only make ions/electrons transfer and electrolyte diffusion easier, but also contribute to the structural stability of the electrodes.

  4. Crystallographic origin of cycle decay of the high-voltage LiNi0.5Mn1.5O4 spinel lithium-ion battery electrode.

    Science.gov (United States)

    Pang, Wei Kong; Lu, Cheng-Zhang; Liu, Chia-Erh; Peterson, Vanessa K; Lin, Hsiu-Fen; Liao, Shih-Chieh; Chen, Jin-Ming

    2016-06-29

    High-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is considered a potential high-power-density positive electrode for lithium-ion batteries, however, it suffers from capacity decay after extended charge-discharge cycling, severely hindering commercial application. Capacity fade is thought to occur through the significant volume change of the LNMO electrode occurring on cycling, and in this work we use operando neutron powder diffraction to compare the structural evolution of the LNMO electrode in an as-assembled 18650-type battery containing a Li4Ti5O12 negative electrode with that in an identical battery following 1000 cycles at high-current. We reveal that the capacity reduction in the battery post cycling is directly proportional to the reduction in the maximum change of the LNMO lattice parameter during its evolution. This is correlated to a corresponding reduction in the MnO6 octahedral distortion in the spinel structure in the cycled battery. Further, we find that the rate of lattice evolution, which reflects the rate of lithium insertion and removal, is ∼9 and ∼10% slower in the cycled than in the as-assembled battery during the Ni(2+)/Ni(3+) and Ni(3+)/Ni(4+) transitions, respectively.

  5. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries

    Science.gov (United States)

    Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin

    2018-02-01

    Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.

  6. Performance Enhancement of Silicon Alloy-Based Anodes Using Thermally Treated Poly(amide imide) as a Polymer Binder for High Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Yang, Hwi Soo; Kim, Sang-Hyung; Kannan, Aravindaraj G; Kim, Seon Kyung; Park, Cheolho; Kim, Dong-Won

    2016-04-05

    The development of silicon-based anodes with high capacity and good cycling stability for next-generation lithium-ion batteries is a very challenging task due to the large volume changes in the electrodes during repeated cycling, which results in capacity fading. In this work, we synthesized silicon alloy as an active anode material, which was composed of silicon nanoparticles embedded in Cu-Al-Fe matrix phases. Poly(amide imide)s, (PAI)s, with different thermal treatments were used as polymer binders in the silicon alloy-based electrodes. A systematic study demonstrated that the thermal treatment of the silicon alloy electrodes at high temperature made the electrodes mechanically strong and remarkably enhanced the cycling stability compared to electrodes without thermal treatment. The silicon alloy electrode thermally treated at 400 °C initially delivered a discharge capacity of 1084 mAh g(-1) with good capacity retention and high Coulombic efficiency. This superior cycling performance was attributed to the strong adhesion of the PAI binder resulting from enhanced secondary interactions, which maintained good electrical contacts between the active materials, electronic conductors, and current collector during cycling. These findings are supported by results from X-ray photoelectron spectroscopy, scanning electron microscopy, and a surface and interfacial cutting analysis system.

  7. Unique interconnected graphene/SnO2 nanoparticle spherical multilayers for lithium-ion battery applications.

    Science.gov (United States)

    Shao, Qingguo; Tang, Jie; Sun, Yige; Li, Jing; Zhang, Kun; Yuan, Jinshi; Zhu, Da-Ming; Qin, Lu-Chang

    2017-03-30

    We have designed and synthesized a unique structured graphene/SnO 2 composite, where SnO 2 nanoparticles are inserted in between interconnected graphene sheets which form hollow spherical multilayers. The hollow spherical multilayered structure provides much flexibility to accommodate the configuration and volume changes of SnO 2 in the material. When it is used as an anode material for lithium-ion batteries, such a novel nanostructure can not only provide a stable conductive matrix and suppress the mechanical stress, but also eliminate the need of any binders for constructing electrodes. Electrochemical tests show that the unique graphene/SnO 2 composite electrode as designed could exhibit a large reversible capacity over 1000 mA h g -1 and long cycling life with 88% retention after 100 cycles. These results indicate the great potential of the composite for being used as a high performance anode material for lithium-ion batteries.

  8. Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery.

    Science.gov (United States)

    Shi, Yang; Noelle, Daniel J; Wang, Meng; Le, Anh V; Yoon, Hyojung; Zhang, Minghao; Meng, Ying Shirley; Qiao, Yu

    2016-11-16

    Benzylamine (BA), dibenzylamine (DBA), and trihexylamine (THA) are investigated as thermal-runaway retardants (TRR) for lithium-ion batteries (LIBs). In a LIB, TRR is packaged separately and released when internal shorting happens, so as to suppress exothermic reactions and slow down temperature increase. THA is identified as the most efficient TRR. Upon nail penetration, 4 wt % THA can reduce the peak temperature by nearly 50%. The working mechanisms of the three amines are different: THA is highly wettable to the separator and immiscible with the electrolyte, and therefore, it blocks lithium-ion (Li + ) transport. BA and DBA decrease the ionic conductivity of electrolyte and increase the charge transfer resistance. All three amines react with charged electrodes; the reactions of DBA and THA do not have much influence on the overall heat generation, while the reaction of BA cannot be ignored.

  9. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  10. Investigation on polyethylene-supported and nano-SiO2 doped poly(methyl methacrylate-co-butyl acrylate) based gel polymer electrolyte for high voltage lithium ion battery

    International Nuclear Information System (INIS)

    Xie, Huili; Liao, Youhao; Sun, Ping; Chen, Tingting; Rao, Mumin; Li, Weishan

    2014-01-01

    Highlights: • P(MMA-co-BA)/nano-SiO 2 /PE based GPE was developed for high voltage lithium ion battery. • P(MMA-co-BA)/nano-SiO 2 /PE has uniform and interconnected pore structure. • The GPE exhibits improved ionic conductivity and compatibility with electrodes. • 5 V battery using the GPE presents excellent cyclic stability. - Abstract: Nano-SiO 2 as dopant was used for preparing polyethylene-supported poly(methyl methacrylate-co-butyl acrylate) (P(MMA-co-BA)/PE) based membrane and corresponding gel polymer electrolyte (GPE), which is applied to improve the cyclic stability of high voltage lithium ion battery. P(MMA-co-BA)/nano-SiO 2 /PE based membranes and corresponding GPEs were characterized with scanning electron spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, mechanical test, thermogravimetric analysis, linear sweep voltammetry, and charge/discharge test. It is found that the GPE with 5 wt.% nano-SiO 2 shows the best performance. Compared to the undoped membrane, the 5 wt.% nano-SiO 2 doped membrane has a better pore structure and higher electrolyte uptake, leading to the enhancement in ionic conductivity of the resulting GPE from 1.23 × 10 −3 to 2.26 × 10 −3 S.cm −1 at room temperature. Furthermore, the thermal stability of the doped membrane is increased from 300 to 320 °C while its decomposition potential of GPE is from 5.0 to 5.6 V (vs. Li/Li + ). The cyclic stability of Li/GPE/Li(Li 0.13 Ni 0.30 Mn 0.57 )O 2 cell at the high voltage range of 3.5 V ∼ 5.0 V is consequently improved, the capacity retention of the cell using the doped membrane is 92.8% after 50 cycles while only 88.9% for the cell using undoped membrane and 66.9% for the cell using liquid electrolyte

  11. Phase-pure β-NiMoO4 yolk-shell spheres for high-performance anode materials in lithium-ion batteries

    International Nuclear Information System (INIS)

    Ahn, Jee Hyun; Park, Gi Dae; Kang, Yun Chan; Lee, Jong-Heun

    2015-01-01

    Phase-pure β-NiMoO 4 yolk-shell spheres for lithium-ion battery anodes were prepared for the first time by one-pot spray pyrolysis, and their electrochemical properties were investigated. The yolk-shell-structured β-NiMoO 4 powders exhibited high initial discharge/charge capacities (1634/1253 mA h g −1 ) at a current density of 1000 mA g −1 . After 200 cycles, these powders exhibited a high discharge capacity of 1292 mA h g −1 , whereas the initial discharge capacity (1341 mA h g −1 ) of the filled structured NiMoO 4 powders was dramatically decreased to 479 mA h g −1 . The significant enhancement of the cycling performance of the β-NiMoO 4 powders with ultrafine crystallite size was attributed to the structural stability of the yolk-shell structure

  12. Modification of Ni-Rich FCG NMC and NCA Cathodes by Atomic Layer Deposition: Preventing Surface Phase Transitions for High-Voltage Lithium-Ion Batteries

    Science.gov (United States)

    Mohanty, Debasish; Dahlberg, Kevin; King, David M.; David, Lamuel A.; Sefat, Athena S.; Wood, David L.; Daniel, Claus; Dhar, Subhash; Mahajan, Vishal; Lee, Myongjai; Albano, Fabio

    2016-05-01

    The energy density of current lithium-ion batteries (LIBs) based on layered LiMO2 cathodes (M = Ni, Mn, Co: NMC; M = Ni, Co, Al: NCA) needs to be improved significantly in order to compete with internal combustion engines and allow for widespread implementation of electric vehicles (EVs). In this report, we show that atomic layer deposition (ALD) of titania (TiO2) and alumina (Al2O3) on Ni-rich FCG NMC and NCA active material particles could substantially improve LIB performance and allow for increased upper cutoff voltage (UCV) during charging, which delivers significantly increased specific energy utilization. Our results show that Al2O3 coating improved the NMC cycling performance by 40% and the NCA cycling performance by 34% at 1 C/-1 C with respectively 4.35 V and 4.4 V UCV in 2 Ah pouch cells. High resolution TEM/SAED structural characterization revealed that Al2O3 coatings prevented surface-initiated layered-to-spinel phase transitions in coated materials which were prevalent in uncoated materials. EIS confirmed that Al2O3-coated materials had significantly lower increase in the charge transfer component of impedance during cycling. The ability to mitigate degradation mechanisms for Ni-rich NMC and NCA illustrated in this report provides insight into a method to enable the performance of high-voltage LIBs.

  13. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  14. 3D macroporous electrode and high-performance in lithium-ion batteries using SnO2 coated on Cu foam

    Science.gov (United States)

    Um, Ji Hyun; Choi, Myounggeun; Park, Hyeji; Cho, Yong-Hun; Dunand, David C.; Choe, Heeman; Sung, Yung-Eun

    2016-01-01

    A three-dimensional porous architecture makes an attractive electrode structure, as it has an intrinsic structural integrity and an ability to buffer stress in lithium-ion batteries caused by the large volume changes in high-capacity anode materials during cycling. Here we report the first demonstration of a SnO2-coated macroporous Cu foam anode by employing a facile and scalable combination of directional freeze-casting and sol-gel coating processes. The three-dimensional interconnected anode is composed of aligned microscale channels separated by SnO2-coated Cu walls and much finer micrometer pores, adding to surface area and providing space for volume expansion of SnO2 coating layer. With this anode, we achieve a high reversible capacity of 750 mAh g−1 at current rate of 0.5 C after 50 cycles and an excellent rate capability of 590 mAh g−1 at 2 C, which is close to the best performance of Sn-based nanoscale material so far. PMID:26725652

  15. Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes.

    Science.gov (United States)

    Jin, Yan; Tan, Yingling; Hu, Xiaozhen; Zhu, Bin; Zheng, Qinghui; Zhang, Zijiao; Zhu, Guoying; Yu, Qian; Jin, Zhong; Zhu, Jia

    2017-05-10

    Alloy anodes possessed of high theoretical capacity show great potential for next-generation advanced lithium-ion battery. Even though huge volume change during lithium insertion and extraction leads to severe problems, such as pulverization and an unstable solid-electrolyte interphase (SEI), various nanostructures including nanoparticles, nanowires, and porous networks can address related challenges to improve electrochemical performance. However, the complex and expensive fabrication process hinders the widespread application of nanostructured alloy anodes, which generate an urgent demand of low-cost and scalable processes to fabricate building blocks with fine controls of size, morphology, and porosity. Here, we demonstrate a scalable and low-cost process to produce a porous yin-yang hybrid composite anode with graphene coating through high energy ball-milling and selective chemical etching. With void space to buffer the expansion, the produced functional electrodes demonstrate stable cycling performance of 910 mAh g -1 over 600 cycles at a rate of 0.5C for Si-graphene "yin" particles and 750 mAh g -1 over 300 cycles at 0.2C for Sn-graphene "yang" particles. Therefore, we open up a new approach to fabricate alloy anode materials at low-cost, low-energy consumption, and large scale. This type of porous silicon or tin composite with graphene coating can also potentially play a significant role in thermoelectrics and optoelectronics applications.

  16. Core-shell composite of hierarchical MoS2 nanosheets supported on graphitized hollow carbon microspheres for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    Xia, Yuan; Wang, Beibei; Zhao, Xiaojun; Wang, Gang; Wang, Hui

    2016-01-01

    In this work, a core-shell composite composed of MoS 2 nanosheets grown on hollow carbon microspheres is synthesized by a hydrothermal and a subsequent annealing route. The result shows that well-graphitized hollow-carbon@highlycrystallineMoS 2 (HC@MoS 2 ) was obtained after the four-step reaction. And it is found that the synthesized MoS 2 is consist of 2H and 1T phases. The lithium storage property of the composite is investigated as an anode material for lithium-ion batteries. Benefited from the special morphology and structure, a stable capacity of 970 mAh g −1 for over 100 cycles at a current density of 0.25 A g −1 is realized on the material. Even at a high current density of 4 A g −1 , a reversible capacity as high as 560 mAh g −1 is delivered. Moreover, the reasons for the excellent electrochemical performance of the material are explored and discussed in detail.

  17. Smart Construction of Integrated CNTs/Li4Ti5O12 Core/Shell Arrays with Superior High-Rate Performance for Application in Lithium-Ion Batteries.

    Science.gov (United States)

    Yao, Zhujun; Xia, Xinhui; Zhou, Cheng-Ao; Zhong, Yu; Wang, Yadong; Deng, Shengjue; Wang, Weiqi; Wang, Xiuli; Tu, Jiangping

    2018-03-01

    Exploring advanced high-rate anodes is of great importance for the development of next-generation high-power lithium-ion batteries (LIBs). Here, novel carbon nanotubes (CNTs)/Li 4 Ti 5 O 12 (LTO) core/shell arrays on carbon cloth (CC) as integrated high-quality anode are constructed via a facile combined chemical vapor deposition-atomic layer deposition (ALD) method. ALD-synthesized LTO is strongly anchored on the CNTs' skeleton forming core/shell structures with diameters of 70-80 nm the combined advantages including highly conductive network, large surface area, and strong adhesion are obtained in the CC-LTO@CNTs core/shell arrays. The electrochemical performance of the CC-CNTs/LTO electrode is completely studied as the anode of LIBs and it shows noticeable high-rate capability (a capacity of 169 mA h g -1 at 1 C and 112 mA h g -1 at 20 C), as well as a stable cycle life with a capacity retention of 86% after 5000 cycles at 10 C, which is much better than the CC-LTO counterpart. Meanwhile, excellent cycling stability is also demonstrated for the full cell with LiFePO 4 cathode and CC-CNTs/LTO anode (87% capacity retention after 1500 cycles at 10 C). These positive features suggest their promising application in high-power energy storage areas.

  18. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chundong [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Li, Yi, E-mail: liyi@suda.edu.cn [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Plasma Nanoscience, Industrial Innovation Program, CSIRO Manufacturing Flagship, Lindfield, New South Wales 2070 (Australia); Yang, Yonggang [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou (China); Zhang, Wenjun, E-mail: apwjzh@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF), Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China)

    2015-10-15

    SiC- based nanomaterials possess superior electric, thermal and mechanical properties. However, due to the tricky synthesis process, which needs to be carried out under high temperature with multi-step reaction procedures, the further application is dramatically limited. Herein, a simple as well as a controllable approach is proposed for synthesis of SiC- based nanostructures under low temperature. Phenyl-bridged polysilsesquioxane was chosen as the starting material to react with magnesium at 650 °C, following which SiC@C nanocomposites were finally obtained, and it maintains the original bent rod-like architecture of polysilsesquioxanes. The possible formation process for the nanocomposites can proposed as well. The electrochemical behaviour of nanocomposites was accessed, verifying that the synthesized SiC@C nanocomposites deliver good electrochemical performance. Moreover, SiC@C also shows to be a promising scaffold in supporting Si thin film electrode in achieving stable cycling performance in lithium ion batteries. - Highlights: • SiC@C bent nanorods were synthesized with a magnesium reaction approach. • Carbon nanorod spines studded with ultrafine β-SiC nanocrystallines was realized. • The synthesized SiC@C keeps the original rod-like structure of polysilsesquioxanes. • The possible formation process for the nanocomposites was analysed and proposed. • Si@SiC@C nanocomposites reveal good electrochemical performance in LIBs.

  19. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries

    Science.gov (United States)

    Sha, Yujing; Xu, Xiaomin; Li, Li; Cai, Rui; Shao, Zongping

    2016-05-01

    In this work, carbon-coated hierarchical acanthosphere-like Li4Ti5O12 microspheres (denoted as AM-LTO) were prepared via a two-step hydrothermal process with low-cost glucose as the organic carbon source. The hierarchical porous microspheres had open structures with diameters of 4-6 μm, which consisted of a bunch of willow leaf-like nanosheets. Each nanosheet was comprised of Li4Ti5O12 nanoparticles that are 20 nm in size and coated by a thin carbon layer. When applied as the anode material for lithium-ion batteries (LIBs), the AM-LTO presented outstanding rate and cycling performance due to its unique morphologies. A high capacity of 145.6 mAh g-1 was achieved for AM-LTO at a rate of 40C (1C = 175 mAh g-1). In contrast, the sample synthesized without glucose as carbon source (denoted as S-LTO) experienced an obvious structural collapse during the hydrothermal reaction and presented a specific capacity of only 67 mAh g-1 at 1C, which further decreased to 14 mAh g-1 at 40C. Further morphological growth of the acanthosphere-like Li4Ti5O12 microspheres and their excellent performance as an anode in LIBs were also discussed in this work.

  20. Ultrathin Nanosheet Assembled Sn0.91 Co0.19 S2 Nanocages with Exposed (100) Facets for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Bing; Gu, Peng; Zhang, Guangxun; Lu, Yao; Huang, Kesheng; Xue, Huaiguo; Pang, Huan

    2018-02-01

    Ultrathin 2D inorganic nanomaterials are good candidates for lithium-ion batteries, as well as the micro/nanocage structures with unique and tunable morphologies. Meanwhile, as a cost-effective method, chemical doping plays a vital role in manipulating physical and chemical properties of metal oxides and sulfides. Thus, the design of ultrathin, hollow, and chemical doped metal sulfides shows great promise for the application of Li-ion batteries by shortening the diffusion pathway of Li ions as well as minimizing the electrode volume change. Herein, ultrathin nanosheet assembled Sn 0.91 Co 0.19 S 2 nanocages with exposed (100) facets are first synthesized. The as-prepared electrode delivers an excellent discharge capacity of 809 mA h g -1 at a current density of 100 mA g -1 with a 91% retention after 60 discharge-charge cycles. The electrochemical performance reveals that the Li-ion batteries prepared by Sn 0.91 Co 0.19 S 2 nanocages have high capacity and great cycling stability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Cobalt- and Cadmium-Based Metal-Organic Frameworks as High-Performance Anodes for Sodium Ion Batteries and Lithium Ion Batteries.

    Science.gov (United States)

    Dong, Caifu; Xu, Liqiang

    2017-03-01

    Two multifunctional metal-organic frameworks (MOFs) with the same coordination mode, [Co(L)(H 2 O)] n ·2nH 2 O [defined as "Co(L) MOF"] and [Cd(L)(H 2 O)] n ·2nH 2 O [defined as "Cd(L) MOF"] (L = 5-aminoisophthalic acid) have been fabricated via a simple and versatile scalable solvothermal approach at 85 °C for 24 h. The relationship between the structure of the electrode materials (especially the coordination water and different metal ions) and the electrochemical properties of MOFs have been investigated for the first time. And then the possible electrochemical mechanisms of the electrodes have been studied and proposed. In addition, MOFs/RGO hybrid materials were prepared via ball milling, which demonstrated better electrochemical performances than those of individual Co(L) MOF and Cd(L) MOF. For example, when Co(L) MOF/RGO was applied as anode for sodium ion batteries (SIBs), it retained 206 mA h g -1 after 330 cycles at 500 mA g -1 and 1185 mA h g -1 could be obtained after 50 cycles at 100 mA g -1 for lithium-ion batteries (LIBs). The high-discharge capacity, excellent cyclic stability combined with the facile synthesis procedure enable Co(L) MOF- and Cd(L) MOF-based materials to be prospective anode materials for SIBs and LIBs.

  2. Facile synthesis of hollow Sn–Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Xu, Xinhua, E-mail: xhxutju@gmail.com [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2015-08-30

    Highlights: • Hollow Sn–Co nanospheres were synthesized via a facile galvanic replacement method. • PMMA layers were uniform coated on the surface of Sn–Co composites via in situ emulsion polymerization. • The coating layers are beneficial to suppress the aggregation and stabilize the SEI formation on the surface. • Excellent cycling stability and rate capability were obtained by coating PMMA protective layers on the surface of hollow Sn–Co nanospheres. - Abstract: Polymethyl methacrylate (PMMA)-coated hollow Sn–Co nanospheres (Sn–Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn–Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn–Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g{sup −1} after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn–Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  3. Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries.

    Science.gov (United States)

    Wang, Wei; Qin, Jinwen; Cao, Minhua

    2016-01-20

    An interlaced Zn2GeO4 nanofiber network with continuous and interpenetrated mesoporous structure was prepared using a facile electrospinning method followed by a thermal treatment. The mesoporous structure in Zn2GeO4 nanofibers is directly in situ constructed by the decomposition of polyvinylpyrolidone (PVP), while the interlaced nanofiber network is achieved by the mutual fusion of the junctions between nanofibers in higher calcination temperatures. When used as an anode material in lithium ion batteries (LIBs), it exhibits superior lithium storage performance in terms of specific capacity, cycling stability, and rate capability. The pore engineering and the interlaced network structure are believed to be responsible for the excellent lithium storage performance. The pore structure allows for easy diffusion of electrolyte, shortens the pathway of Li(+) transport, and alleviates large volume variation during repeated Li(+) extraction/insertion. Moreover, the interlaced network structure can provide continuous electron/ion pathways and effectively accommodate the strain induced by the volume change during the electrochemical reaction, thus maintaining structural stability and mechanical integrity of electrode materials during lithiation/delithiation process. This strategy in current work offers a new perspective in designing high-performance electrodes for LIBs.

  4. Facile synthesis of hollow Sn–Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    International Nuclear Information System (INIS)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-01-01

    Highlights: • Hollow Sn–Co nanospheres were synthesized via a facile galvanic replacement method. • PMMA layers were uniform coated on the surface of Sn–Co composites via in situ emulsion polymerization. • The coating layers are beneficial to suppress the aggregation and stabilize the SEI formation on the surface. • Excellent cycling stability and rate capability were obtained by coating PMMA protective layers on the surface of hollow Sn–Co nanospheres. - Abstract: Polymethyl methacrylate (PMMA)-coated hollow Sn–Co nanospheres (Sn–Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn–Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn–Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g −1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn–Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries

  5. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synthesis and electrospinning carboxymethyl cellulose lithium (CMC-Li) modified 9,10-anthraquinone (AQ) high-rate lithium-ion battery.

    Science.gov (United States)

    Qiu, Lei; Shao, Ziqiang; Liu, Minglong; Wang, Jianquan; Li, Pengfa; Zhao, Ming

    2014-02-15

    New cellulose derivative CMC-Li was synthesized, and nanometer CMC-Li fiber was applied to lithium-ion battery and coated with AQ by electrospinning. Under the protection of inert gas, modified AQ/carbon nanofibers (CNF)/Li nanometer composite material was obtained by carbonization in 280 °C as lithium battery anode materials for the first time. The morphologies and structures performance of materials were characterized by using IR, (1)H NMR, SEM, CV and EIS, respectively. Specific capacity was increased from 197 to 226.4 mAhg(-1) after modification for the first discharge at the rate of 2C. Irreversible reduction reaction peaks of modified material appeared between 1.5 and 1.7 V and the lowest oxidation reduction peak of the difference were 0.42 V, the polarization was weaker. Performance of cell with CMC-Li with the high degree of substitution (DS) was superior to that with low DS. Cellulose materials were applied to lithium battery to improve battery performance by electrospinning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A Simple Prelithiation Strategy To Build a High-Rate and Long-Life Lithium-Ion Battery with Improved Low-Temperature Performance.

    Science.gov (United States)

    Liu, Yao; Yang, Bingchang; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2017-12-22

    Lithium-ion batteries (LIBs) are being used to power the commercial electric vehicles (EVs). However, the charge/discharge rate and life of current LIBs still cannot satisfy the further development of EVs. Furthermore, the poor low-temperature performance of LIBs limits their application in cold climates and high altitude areas. Herein, a simple prelithiation method is developed to fabricate a new LIB. In this strategy, a Li 3 V 2 (PO 4 ) 3 cathode and a pristine hard carbon anode are used to form a primary cell, and the initial Li + extraction from Li 3 V 2 (PO 4 ) 3 is used to prelithiate the hard carbon. Then, the self-formed Li 2 V 2 (PO 4 ) 3 cathode and prelithiated hard carbon anode are used to form a 4 V LIB. The LIB exhibits a maximum energy density of 208.3 Wh kg -1 , a maximum power density of 8291 W kg -1 and a long life of 2000 cycles. When operated at -40 °C, the LIB can keep 67 % capacity of room temperature, which is much better than conventional LIBs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Graphene oxide hydrogel as a restricted-area nanoreactor for synthesis of 3D graphene-supported ultrafine TiO2 nanorod nanocomposites for high-rate lithium-ion battery anodes

    Science.gov (United States)

    Cheng, Jianli; Gu, Guifang; Ni, Wei; Guan, Qun; Li, Yinchuan; Wang, Bin

    2017-07-01

    Three-dimensional graphene-supported TiO2 nanorod nanocomposites (3D GS-TNR) are prepared using graphene oxide hydrogel as a restricted-area nanoreactor in the hydrothermal process, in which well-distributed TiO2 nanorods with a width of approximately 5 nm and length of 30 nm are conformally embedded in the 3D interconnected graphene network. The 3D graphene oxide not only works as a restricted-area nanoreactor to constrain the size, distribution and morphology of the TiO2; it also work as a highly interconnected conducting network to facilitate electrochemical reactions and maintain good structural integration when the nanocomposites are used as anode materials in lithium-ion batteries. Benefiting from the nanostructure, the 3D GS-TNR nanocomposites show high capacity and excellent long-term cycling capability at high current rates. The 3D GS-TNR composites deliver a high initial charge capacity of 280 mAh g-1 at 0.2 C and maintain a reversible capacity of 115 mAh g-1, with a capacity retention of 83% at 20 C after 1000 cycles. Meanwhile, compared with that of previously reported TiO2-based materials, the 3D GS-TNR nanocomposites show much better performance, including higher capacity, better rate capability and long-term cycling stability.

  9. 3D Interconnected V6O13 Nanosheets Grown on Carbonized Textile via a Seed-Assisted Hydrothermal Process as High-Performance Flexible Cathodes for Lithium-Ion Batteries

    Science.gov (United States)

    Xu, Shixing; Cen, Dingcheng; Gao, Peibo; Tang, Huang; Bao, Zhihao

    2018-03-01

    Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydrothermal method to form a 3D free-standing electrode for lithium-ion batteries (LIBs). The electrode exhibited a specific capacity of 170 mA h g-1 at a specific current of 300 mA g-1. With carbon nanotube (CNT) coating, its specific capacities further increased 12-40% at the various current rates. It could retain a reversible capacity of 130 mA h g-1, 74% of the initial capacity after 300 cycles at the specific current of 300 mA g-1. It outperformed most of the mixed-valence vanadium oxides. The improved electrochemical performance was ascribed to the synergistic effect of the 3D nanostructure of V6O13 for feasible Li+ diffusion and transport and highly conductive hierarchical conductive network formed by CNT and carbon fiber in c-textile.

  10. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits....

  11. High rate performance of novel cathode material Li1.33Ni1/3Co1/3Mn1/3O2 for lithium ion batteries

    International Nuclear Information System (INIS)

    Liu Haowen; Tan Long

    2011-01-01

    Highlights: → A novel cathode material with highly ordered structure has been prepared for the first time. → The charge and discharge current is 1000 mA g -1 and 2000 mA g -1 , respectively. → The results indicate better discharge capacity and cyclability. - Abstract: Li 1.33 Ni 1/3 Co 1/3 Mn 1/3 O 2 with highly ordered structure has been successfully synthesized via a simple co-precipitation process. Charge-discharge tests showed that the initial discharge capacities are 153.0 mAh g -1 and 128.9 mAh g -1 at 5 C (1000 mA g -1 ) and 10 C (2000 mA g -1 ) between 2.5 and 4.5 V, respectively. The average full-charge time of this material is less than 12 min at 5 C and 6 min at 10 C. The electrode material composed of the prepared showed a better cyclability. The excellent high rate performance is attributed to the improved ordered layered structure and the electrical conductivity. The excess Li shorten Li + diffusion distance between these submicron and nano-scaled particles. The results show that Li 1.33 Ni 1/3 Co 1/3 Mn 1/3 O 2 cathode material has potential application in lithium ion batteries.

  12. Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode.

    Science.gov (United States)

    Chang, Jingbo; Huang, Xingkang; Zhou, Guihua; Cui, Shumao; Hallac, Peter B; Jiang, Junwei; Hurley, Patrick T; Chen, Junhong

    2014-02-01

    Multilayered Si/RGO anode nanostructures, featuring alternating Si nanoparticle (NP) and RGO layers, good mechanical stability, and high electrical conductivity, allow Si NPs to easily expand between RGO layers, thereby leading to high reversible capacity up to 2300 mAh g(-1) at 0.05 C (120 mA g(-1) ) and 87% capacity retention (up to 630 mAh g(-1) ) at 10 C after 152 cycles. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Analysis of influence of heat exchange conditions on the outer surface of the lithium-ion battery to electrolyte temperature under the conditions of high current loads

    Directory of Open Access Journals (Sweden)

    Krasnoshlykov Alexander

    2017-01-01

    Full Text Available Numerical analysis of thermal conditions of a lithium-ion battery using the software package ANSYS Electric and ANSYS Fluent has been carried out. Time dependence of the electrolyte temperature on the various heat exchange conditions on the outer surface has been obtained.

  14. Graphene encapsulated Fe3O4 nanorods assembled into a mesoporous hybrid composite used as a high-performance lithium-ion battery anode material

    DEFF Research Database (Denmark)

    Huang, Wei; Xiao, Xinxin; Engelbrekt, Christian

    2017-01-01

    The discovery of new anode materials and engineering their fine structures are the core elements in the development of new-generation lithium ion batteries (LIBs). To this end, we herein report a novel nanostructured composite consisting of approximately 75% Fe3O4 nanorods and 25% reduced graphene...

  15. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  16. Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries

    KAUST Repository

    Liu, Nian; Hu, Liangbing; McDowell, Matthew T.; Jackson, Ariel; Cui, Yi

    2011-01-01

    Silicon is one of the most promising anode materials for the next-generation high-energy lithium ion battery (LIB), while sulfur and some other lithium-free materials have recently shown high promise as cathode materials. To make a full battery out

  17. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries

    Science.gov (United States)

    Deng, Shengjue; Luo, Zhibin; Liu, Yating; Lou, Xiaoming; Lin, Chunfu; Yang, Chao; Zhao, Hua; Zheng, Peng; Sun, Zhongliang; Li, Jianbao; Wang, Ning; Wu, Hui

    2017-09-01

    Ti2Nb10O29 has recently been reported as a promising anode material for lithium-ion batteries. However, its poor electronic conductivity and insufficient Li+-ion diffusion coefficient significantly limit its rate capability. To tackle this issue, a strategy combining nanosizing and crystal-structure modification is employed. Ti2Nb10O29-x mesoporous microspheres with a sphere-size range of 0.5-4 μm are prepared by a one-step solvothermal method followed by thermal treatment in N2. These Ti2Nb10O29-x mesoporous microspheres exhibit primary nanoparticles, a large specific surface area (22.9 m2 g-1) and suitable pore sizes, leading to easy electron/Li+-ion transport and good interfacial reactivity. Ti2Nb10O29-x shows a defective shear ReO3 crystal structure with O2- vacancies and an increased unit cell volume, resulting in its increased Li+-ion diffusion coefficient. Besides Ti4+ and Nb5+ ions, Ti2Nb10O29-x comprises Nb4+ ions with unpaired 4d electrons, which significantly increase its electronic conductivity. As a result of these improvements, the Ti2Nb10O29-x mesoporous microspheres reveal superior electrochemical performances in term of large reversible specific capacity (309 mAh g-1 at 0.1 C), outstanding rate capability (235 mAh g-1 at 40 C) and durable cyclic stability (capacity retention of 92.1% over 100 cycles at 10 C).

  18. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Wenyao; Fu, Yongsheng; Wang, Xin

    2018-05-01

    A facile strategy to synthesize a composite composed of cubic Co3O4 nanocrystals anchored on chemically integrated g-C3N4-modified N-graphene (CN-NG) as an advanced anode material for high-performance lithium-ion batteries is reported. It is found that the morphology of the Co3O4 nanocrystals contains blunt-edge nanocubes with well-demarcated boundaries and numerous exposed low-index (1 1 1) crystallographic facets. These planes can be directly involved in the electrochemical reactions, providing rapid Li-ion transport channels for charging and discharging and thus enhancing the round-trip diffusion efficiency. On the other hand, the CN-NG support displays unusual textural features, such as superior structural stability, accessible active sites, and good electrical conductivity. The experimental results reveal that the chemical and electronic coupling of graphitic carbon nitride and nitrogen-doped graphene synergistically facilitate the anchoring of Co3O4 nanocrystals and prevents their migration. The resulting Co3O4/CN-NG composite exhibits a high specific reversible capacity of up to 1096 mAh g-1 with excellent cycling stability and rate capability. We believe that such a hybrid carbon support could open a new path for applications in electrocatalysis, sensors, supercapacitors, etc., in the near future.

  19. Mesoporous CNT@TiO2-C Nanocable with Extremely Durable High Rate Capability for Lithium-Ion Battery Anodes

    Science.gov (United States)

    Wang, Bin; Xin, Huolin; Li, Xiaodong; Cheng, Jianli; Yang, Guangcheng; Nie, Fude

    2014-01-01

    A well-designed nanostructure CNT@TiO2-C with fine anatase TiO2 particle (glucose in the hydrothermal process not only solves the interfacial incompatibility between CNTs and titanate sol and controls the nucleation and growth of TiO2 particles, but also introduces a uniform, glucose-derived, carbon-layer on the TiO2 particles. The nanosized TiO2 particle, high conducting network, and interconnected nanopores of the CNT@TiO2-C nanocable greatly improve its electrochemical performances, especially rate capability. The CNT@TiO2-C nanocables show remarkable rate capability with reversible charge capacity of 297, 240, 210,178 and 127 mAh g-1 at 1C, 5C, 10C, 20C and 50C, respectively, as well as excellent high rate cycling stability with capacity retention of 87% after 2000 cycles at 50C.

  20. High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery

    Science.gov (United States)

    Cheng, Qi; Tang, Shun; Liang, Jiyuan; Zhao, Jinxing; Lan, Qian; Liu, Chang; Cao, Yuan-Cheng

    Li4Ti5O12 (LTO) is attractive alternative anode material with excellent cyclic performance and high rate after coating modifications of the conductive materials. Anatase TiO2 and glucose were applied of the synthesis of the carbon coated LTO (C@LTO). XRD results showed that all the major diffractions from the spinel structure of LTO can be found in the C@LTO such as (1 1 1), (3 1 1), (4 0 0) but there are no observations of the Carbon diffraction peaks. Electrochemical Impedance Spectroscopy (EIS) data shows C@LTO resistance was nearly half of the LTO value. Rate performance showed that capacity of C@LTO was higher than that of the pure LTO from 0.1 C, 0.2 C, 1 C, 2 C, 5 C and 10 C, which indicates that this is a promising approach to prepare the high performance LTO anode.

  1. Spherical nano-SnSb/MCMB/carbon core–shell composite for high stability lithium ion battery anodes

    International Nuclear Information System (INIS)

    Li, Juan; Ru, Qiang; Hu, Shejun; Sun, Dawei; Zhang, Beibei; Hou, Xianhua

    2013-01-01

    A novel multi-step design of spherical nano-SnSb/MCMB/carbon core–shell composite for high stability and long life lithium battery electrodes has been introduced. The core–shell composite was successfully synthesized via co-precipitation and subsequent pyrolysis. The resultant composite sphere consisted of nanosized SnSb alloy and mesophase carbon microbeads (MCMB, 10 μm) embedded in a carbon matrix pyrolyzed from glucose and petroleum pitch, in which the MCMB was treated to be the inner core to offer mechanical support and efficient electron conducting pathway. The composite material exhibited a unique stability with a retention discharge capacity rate of 83.52% with reversible capacity of 422.5 mAh g −1 after 100 cycles and a high initial coulombic efficiency of 83.53%. The enhanced electrochemical performance is attributed to the structural stability of the composite sphere during the charging–discharging process

  2. Synthesis and characterization of high-density LiFePO{sub 4}/C composites as cathode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chang Zhaorong [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)], E-mail: czr_56@163.com; Lv Haojie; Tang Hongwei; Li Huaji [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Yuan Xiaozi; Wang Haijiang [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC, V6T 1W5 (Canada)

    2009-08-01

    To achieve a high-energy-density lithium electrode, high-density LiFePO{sub 4}/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO{sub 4} as a precursor, glucose as a C source, and Li{sub 2}CO{sub 3} as a Li source, in a pipe furnace under an atmosphere of 5% H{sub 2}-95% N{sub 2}. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO{sub 4}/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO{sub 4}/carbon composite powder with a carbon content of 7% reached 1.80 g m{sup -3}. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g{sup -1}, respectively, with a volume capacity of 300.6 mAh cm{sup -3}, at a 0.1C rate. At a rate of 5C, the LiFePO{sub 4}/carbon composite shows a high discharge capacity of 98.3 mAh g{sup -1} and a volume capacity of 176.94 mAh cm{sup -3}.

  3. Chemical Shuttle Additives in Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Mary

    2013-03-31

    The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher

  4. The hierarchical cobalt oxide-porous carbons composites and their high performance as an anode for lithium ion batteries enhanced by the excellent synergistic effect

    International Nuclear Information System (INIS)

    Zhao, Shuping; Liu, Wei; Liu, Shuang; Zhang, Yuan; Wang, Huanlei; Chen, Shougang

    2017-01-01

    Highlights: • The CoO/PBCs composites with unique hierarchical architecture by utilizing porous biocarbons derived from kapok fibers (KFs) have been successfully synthesized. • The unique structure is aggregated by CoO rods anchored on the surface or inside the porous carbons. • The CoO/PBCs composites exhibit excellent electrochemical performances. - Abstract: The designed metal oxide-carbon composites are always considered as a potential candidate for high-performance electrode materials. In this work, we fabricated the CoO rods-porous carbon composites with a unique hierarchical architecture by utilizing porous biocarbons derived from kapok fibers (KFs). As the composites of CoO nanocrystals with the mean size of 10 nm and graphene-like carbon sheets, the CoO rods are homogeneously anchored on or inside the porous carbons, thus achieving a 3D hierarchical porous structure. When tested as anode materials for lithium-ion batteries, the as-obtained composites exhibit the high lithium storage of 1057 mAh g"−"1. More importantly, the CoO rods/porous biocarbons composites display a superior long-term stable reversible capacity of about 550 mAh g"−"1 at the high current density of 5 A g"−"1 after 600 cycles. The superior electrochemical performance of the obtained composites has been attributed to the synergistic effect between CoO nanoparticles and porous biocarbons, which makes the composites favorable for fast electronic and ionic transfer, and superior stable structure. Therefore, we believe that the designed preparation of metal oxide architectures in low-cost and renewable porous biocarbons will be a valuable direction for exploring advanced electrode materials.

  5. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yafa Zargouni

    2017-05-01

    Full Text Available In this work, we present the electrochemical deposition of manganese dioxide (MnO2 thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD, is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  6. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    Science.gov (United States)

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  7. 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres with nanosheet constituents as high-capacity anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Wang, Shiqiang [Hubei University, Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Wang, Jiazhao; Wang, Jun [University of Wollongong, Institute for Superconducting and Electronic Materials (Australia); Li, Lin; Yang, Yun; Feng, Chuanqi, E-mail: cfeng@hubu.edu.cn [Hubei University, Key Laboratory for Synthesis and Applications of Organic Functional Molecules (China); Sun, Ziqi, E-mail: ziqi.sun@qut.edu.au [Queensland University of Technology, School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (Australia)

    2015-11-15

    Three-dimensional (3D) Fe{sub 2}(MoO{sub 4}){sub 3} microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe{sub 2}(MoO{sub 4}){sub 3} as anode demonstrates that 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe{sub 2}(MoO{sub 4}){sub 3} anode still arrived at 456 mAh/g over 50 cycles. The large and reversible capacities and stable charge–discharge cycling performance indicate that Fe{sub 2}(MoO{sub 4}){sub 3} is a promising anode material for lithium battery applications.Graphical abstractThe electrochemical properties of Fe{sub 2}(MoO{sub 4}){sub 3} as anode demonstrates that 3D Fe{sub 2}(MoO{sub 4}){sub 3} microspheres delivered an initial capacity of 1855 mAh/g at a current density of 100 mA/g. When the current density was increased to 800 mA/g, the Fe{sub 2}(MoO{sub 4}){sub 3} still behaved high reversible capacity and good cycle performance.

  8. Convenient and high-yielding strategy for preparing nano-ZnMn_2O_4 as anode material in lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Tong; Gao, Yu; Yue, Huijuan; Qiu, Hailong; Guo, Zhendong; Wei, Yingjin; Wang, Chunzhong; Chen, Gang; Zhang, Dong

    2016-01-01

    Graphical abstract: A convenient combustion assist coprecipitation approach to synthesis nano-ZnMn2O4 anode material with excellent electrochemical performance. - Highlights: • ZnMn_2O_4 material has been gained from a novel combustion approach. • The ZnMn_2O_4 generated at 800 °C exhibits the best electrochemical performance. • This convenient method enables scale-up production of transition metal oxides. - Abstract: Time and energy saving synthesis method is crucial to the scale up applications of energy conversion and storage materials. In this report, we demonstrate a convenient and novel approach to fabricate the highly crystalline ZnMn_2O_4 nanoparticles as anode materials for Li rechargeable batteries. Pure phase ZnMn_2O_4 samples can be feasibly obtained under different calcination temperature from the precursor via combustion assisted coprecipitation method. Various techniques are used to characterize the structure and morphology of the products. Sample gained at 800 °C exhibits the best electrochemical property for lithium ion batteries. A reversible specific capacity of 716 mAh g"−"1 can be retained under a current density of 100 mA g"−"1 after 90 circles. Even the current density elevated up to 1000 mA g"−"1, the reversible capacity of the material still can be kept as high as 500 mAh g"−"1 after 1200 cycles. The outstanding performance compared to the other samples benefits from its good crystallinity and uniform dispersion with appropriate particle size.

  9. Lithium-ion batteries

    CERN Document Server

    Yoshio, Masaki; Kozawa, Akiya

    2010-01-01

    This book is a compilation of up-to-date information relative to Li-Ion technology. It provides the reader with a single source covering all important aspects of Li-Ion battery operations. It fills the gap between the old original Li-Ion technology and present state of the technology that has developed into a high state of practice. The book is designed to provide a single source for an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful to researchers interested in energy conversion for the direct conversion of chemical energy into electrica

  10. Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode

    Science.gov (United States)

    Feng, Yangyang; Zhang, Huijuan; Li, Wenxiang; Fang, Ling; Wang, Yu

    2016-01-01

    In this contribution, the novel 2D sandwich-like NiO/C arrays on Ti foil are successfully designed and fabricated for the first time via simple and controllable hydrothermal process. In this strategy, we use green glucose as carbon source and ultrathin Ni(OH)2 nanosheet arrays as precursor for NiO nanoparticles and sacrificial templates for coupled graphitized carbon layers. This advanced sandwiched composite can not only provide large surface area for numerous active sites and continuous contact between active materials and electrolyte, but also protect the active nanoparticles from aggregation, pulverization and peeling off from conductive substrates. Furthermore, the porous structure derived from lots of substances loss under high-temperature calcinations can effectively buffer possible volume expansion and facilitate ion transfer. In this article, sandwiched NiO/C arrays, utilized as anode for LIBs, demonstrated high specific capacity (∼1458 mAh g-1 at 500 mA g-1) and excellent rate performance and cyclablity (∼95.7% retention after 300 cycles).

  11. Two-step carbon coating of lithium vanadium phosphate as high-rate cathode for lithium-ion batteries

    Science.gov (United States)

    Kuang, Quan; Zhao, Yanming

    2012-10-01

    Carbon-coated Li3V2(PO4)3 was firstly prepared at 850 °C via two-step reaction method combined sol-gel and conventional solid-state synthesis by using VPO4/carbon as an intermediate. Two different carbon sources, citric acid and glucose as carbon additives in sequence, ultimately deduced double carbon-coated Li3V2(PO4)3 as a high-rate cathode material. The Li3V2(PO4)3/carbon with 4.39% residual carbon has a splendid electronic conductivity of 4.76×10-2 S cm-1. Even in the voltage window of 2.5-4.8 V, the Li3V2(PO4)3/carbon cathode can retain outstanding rate ability (170.4 mAh g-1 at 1.2 C, 101.9 mAh g-1 at 17 C), and no degradation is found after 120 C current rate. These phenomena show that the two-step carbon-coated Li3V2(PO4)3 can act as a fast charge-discharge cathode material for high-power Li-ion batteries. Furthermore, it's believed that this synthesize method can be easily transplanted to prepare other lithiated vanadium-based phosphates.

  12. High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery

    Directory of Open Access Journals (Sweden)

    Qi Cheng

    Full Text Available Li4Ti5O12 (LTO is attractive alternative anode material with excellent cyclic performance and high rate after coating modifications of the conductive materials. Anatase TiO2 and glucose were applied of the synthesis of the carbon coated LTO (C@LTO. XRD results showed that all the major diffractions from the spinel structure of LTO can be found in the C@LTO such as (111, (311, (400 but there are no observations of the Carbon diffraction peaks. Electrochemical Impedance Spectroscopy (EIS data shows C@LTO resistance was nearly half of the LTO value. Rate performance showed that capacity of C@LTO was higher than that of the pure LTO from 0.1 C, 0.2 C, 1 C, 2 C, 5 C and 10 C, which indicates that this is a promising approach to prepare the high performance LTO anode. Keywords: Li-ion batteries, Rate performance, Carbon materials, Li4Ti5O12 anode

  13. Bio-assisted synthesis of mesoporous Li3V2(PO4)3 for high performance lithium-ion batteries

    International Nuclear Information System (INIS)

    He, Wen; Zhang, Xudong; Du, Xiaoyong; Zhang, Yang; Yue, Yuanzheng; Shen, Jianxing; Li, Mei

    2013-01-01

    Graphical abstract: - Highlights: • We present a biomimetic way for obtaining mesoporous biocarbon coated Li 3 V 2 (PO 4 ) 3 (MBC-LVP). • This method is to apply yeasts as a structural template and a biocarbon source. • The MBC-LVP has uniform particles and fine biocarbon coating network structure. • The MBC-LVP exhibits outstanding electrochemical performances. - Abstract: The mesoporous biocarbon coated Li 3 V 2 (PO 4 ) 3 (MBC-LVP) cathode material is synthesized by a biotemplate-assisted sol–gel reaction process using low-cost beer waste brewing yeasts (BWBYs) as both structural template and biocarbon source. The structure and electrochemical performances of MBC-LVP were investigated using Raman spectra, thermogravimetric measurements (TGA), adsorption–desorption isotherms and pore-size-distribution curves, X-ray diffraction (XRD), transmission electron microscope (TEM and HRTEM), and electrochemical methods. The results show that the MBC-LVP synthesized at 750 °C has a hierarchical nanostructure, which consist of Li 3 V 2 (PO 4 ) 3 crystal nanoparticles and amorphous biocarbons network (11.5%) with hierarchical mesoporous structures (slit shape mesopores, open wormlike mesopores and plugged mesopores). This hierarchical nanostructure facilitates electron and lithium ion diffusion. The MBC-LVP electrode has high discharge capacity (about 205 mAh g −1 ) at a current density of 0.2 C in the voltage region of 3.0–4.8 V and the diffusion coefficient of Li + -ions determined by CV and EIS is higher than those of olivine LiFePO 4 . We have revealed the formation mechanism of MBC-LVP, the possible lithium pathways in the MBC-LVP and established a relation between the structure and the ionic and electronic transport properties

  14. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test

    Science.gov (United States)

    Ping, Ping; Wang, QingSong; Huang, PeiFeng; Li, Ke; Sun, JinHua; Kong, DePeng; Chen, ChunHua

    2015-07-01

    A full-scale burning test is conducted to evaluate the safety of large-size and high-energy 50 Ah lithium-iron phosphate/graphite battery pack, which is composed of five 10 Ah single cells. The complex fire hazards associated with the combustion process of the battery are presented. The battery combustion behavior can be summarized into the following stages: battery expansion, jet flame, stable combustion, a second cycle of a jet flame followed by stable combustion, a third cycle of a jet flame followed by stable combustion, abatement and extinguishment. The multiple jets of flame indicate serious consequences for the battery and pose a challenge for battery safety. The battery ignites when the battery temperature reaches approximately 175-180 °C. This critical temperature is related to an internal short circuit of the battery, which results from the melting of the separator. The maximum temperature of the flame can reach 1500 °C. The heat release rate (HRR) varies based on the oxygen generated by the battery and the Joule effect of the internal short circuit. The HRR and heat of combustion can reach 49.4 kW and 18,195.1 kJ, respectively. The state of charge of the battery has a significant effect on the maximum HRR, the overall heat generation and the mass loss of the battery.

  15. Low temperature synthesis of carbon encapsulated Fe7S8 nanocrystals as high performance anode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Boyang; Zhang, Fuhua; Wu, Qianlin; Wang, Junhua; Li, Wenge; Dong, Lihua; Yin, Yansheng

    2015-01-01

    A novel method is developed for low temperature synthesis of carbon encapsulated spherical Fe 7 S 8 nanocrystals with core–shell structure (Fe 7 S 8 @C) by the reaction of ferrocene with ammonium persulphate. The phase structure, morphology, specific surface area and composition of the nanocomposite are systematically characterized. It is found that the Fe 7 S 8 nanocrystals with a weight percent of 33.5% have a median size of 25.2 nm. The Fe 7 S 8 @C electrodes retain a reversible capacity of 815 and 539 mAh g −1 after 50 cycles at a current density of 200 and 2284 mA g −1 , respectively. The high capacity, good cycling behavior and rate capability of Fe 7 S 8 @C electrodes are attributed to the good protection and electrical conductivity of carbon shell. - Highlights: • Large scale and low temperature synthesis of Fe 7 S 8 @C with core–shell structure. • The Fe 7 S 8 @C electrodes retain a capacity of 815 mAh g −1 after 50 cycles at 200 mA g −1 . • The Fe 7 S 8 @C electrodes show good cycling behavior and rate capability

  16. Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Meaghan Foster

    2014-06-01

    Full Text Available Purpose: Lithium-ion batteries that are commonly used in electric vehicles and plug-in electric hybrid vehicles cannot be simply discarded at the end of vehicle application due to the materials of which they are composed. In addition the US Department of Energy has estimated that the cost per kWh of new lithium-ion batteries for vehicle applications is four times too high, creating an economic barrier to the widespread commercialization of plug-in electric vehicles. (USDOE 2014. Thus, reducing this cost by extending the application life of these batteries appears to be necessary. Even with an extension of application life, all batteries will eventually fail to hold a charge and thus become unusable. Thus environmentally safe disposition must be accomplished. Addressing these cost and environmental issues can be accomplished by remanufacturing end of vehicle life lithium ion batteries for return to vehicle applications as well as repurposing them for stationary applications such as energy storage systems supporting the electric grid. In addition, environmental safe, “green” disposal processes are required that include disassembly of batteries into component materials for recycling. The hypotheses that end of vehicle application remanufacturing, repurposing, and recycling are each economic are examined. This assessment includes a forecast of the number of such batteries to ensure sufficient volume for conducting these activities.Design/methodology/approach: The hypotheses that end of vehicle application remanufacturing, repurposing, and recycling are economic are addressed using cost-benefit analysis applied independently to each. Uncertainty is associated with all future costs and benefits. Data from a variety of sources are combined and reasonable assumptions are made. The robustness of the results is confirmed by sensitivity analysis regarding each key parameter. Determining that a sufficient volume of end of vehicle application lithium-ion

  17. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Liu, Yanguo; Yu, Yanlong; Ahmad, Mashkoor; Nan, Ding; Zhu, Jing

    2014-01-01

    Graphical abstract: - Highlights: • The mesoporous Co 3 O 4 nanosheets-3D graphene networks have been found to display better LIB performance as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. • Electrochemical impedance spectroscopy shows that the addition of 3DGN largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. • The large specific surface area and porous nature of the Co 3 O 4 nanosheets are very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. - Abstract: Mesoporous Co 3 O 4 nanosheets-3D graphene networks (3DGN) hybrid materials have been synthesized by combining chemical vapor deposition (CVD) and hydrothermal method and investigated as anode materials for Li-ion batteries (LIBs). Microscopic characterizations have been performed to confirm the 3DGN and mesoporous Co 3 O 4 nanostructures. The specific surface area and pore size of the hybrid structures have been found ∼ 34.5 m 2 g −1 and ∼ 3.8 nm respectively. It has been found that the Co 3 O 4 /3DGNs composite displays better LIB performance with enhanced reversible capacity, good cyclic performance and rate capability as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. Electrochemical impedance spectroscopy (EIS) results show that the addition of 3DGN not only preserves high conductivity of the composite electrode, but also largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. The improved electrochemical performance is considered due to the addition of 3DGNs which prevent the cracking of electrode. In addition, the large specific surface area and porous nature of the Co 3 O 4 nanosheets are also very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this combination can be considered to be an attractive candidate as an anode material for LIBs

  18. Novel sodium intercalated (NH4)2V6O16 platelets: High performance cathode materials for lithium-ion battery.

    Science.gov (United States)

    Fei, Hailong; Wu, Xiaomin; Li, Huan; Wei, Mingdeng

    2014-02-01

    A simple and versatile method for preparation of novel sodium intercalated (NH4)2V6O16 is developed via a simple hydrothermal route. It is found that ammonium sodium vanadium bronze displays higher discharge capacity and better rate cyclic stability than ammonium vanadium bronze as lithium-ion battery cathode material because of smaller charge transfer resistance, which would favor superior discharge capacity and rate performance. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  19. Materials for lithium-ion battery safety.

    Science.gov (United States)

    Liu, Kai; Liu, Yayuan; Lin, Dingchang; Pei, Allen; Cui, Yi

    2018-06-01

    Lithium-ion batteries (LIBs) are considered to be one of the most important energy storage technologies. As the energy density of batteries increases, battery safety becomes even more critical if the energy is released unintentionally. Accidents related to fires and explosions of LIBs occur frequently worldwide. Some have caused serious threats to human life and health and have led to numerous product recalls by manufacturers. These incidents are reminders that safety is a prerequisite for batteries, and serious issues need to be resolved before the future application of high-energy battery systems. This Review aims to summarize the fundamentals of the origins of LIB safety issues and highlight recent key progress in materials design to improve LIB safety. We anticipate that this Review will inspire further improvement in battery safety, especially for emerging LIBs with high-energy density.

  20. Soft-contact conductive carbon enabling depolarization of LiFePO4 cathodes to enhance both capacity and rate performances of lithium ion batteries

    Science.gov (United States)

    Ren, Wenju; Wang, Kai; Yang, Jinlong; Tan, Rui; Hu, Jiangtao; Guo, Hua; Duan, Yandong; Zheng, Jiaxin; Lin, Yuan; Pan, Feng

    2016-11-01

    Conductive nanocarbons generally are used as the electronic conductive additives to contact with active materials to generate conductive network for electrodes of commercial Li-ion batteries (LIBs). A typical of LiFePO4 (LFP), which has been widely used as cathode material for LIBs with low electronic conductivity, needs higher quantity of conductive nanocarbons to enhance the performance for cathode electrodes. In this work, we systematically studied three types of conductive nanocarbons and related performances in the LFP electrodes, and classify them as hard/soft-contact conductive carbon (named as H/SCC), respectively, according to their crystallite size, surface graphite-defect, specific surface area and porous structure, in which SCC can generate much larger contact area with active nano-particles of cathode materials than that of HCC. It is found that LFP nanocrystals wrapped in SCC networks perform significantly enhanced both capacity and rate performance than that in HCC. Combined experiments with multiphysics simulation, the mechanism is that LFP nanoparticles embedded in SCC with large contact area enable to generate higher depolarized effects with a relatively uniform current density vector (is) and lithium flux vector (NLi) than that in HCC. This discovery will guide us to how to design LIBs by selective using conductive carbon for high-performance LIBs.

  1. Solid-state synthesis of Li{sub 4}Ti{sub 5}O{sub 12} for high power lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seung-Woo [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ryu, Ji Heon [Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University, Siheung 429-793 (Korea, Republic of); Jeong, Joayoung [Cell Precedence Development Group, Samsung SDI, Yongin 446-577 (Korea, Republic of); Yoon, Dang-Hyok, E-mail: dhyoon@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2013-09-05

    Highlights: •High energy milling using 0.30 and 0.45 mm beads for Li{sub 4}Ti{sub 5}O{sub 12} synthesis. •Synthesis of 162 nm-sized pure Li{sub 4}Ti{sub 5}O{sub 12} by solid-state reaction. •Spray drying using fine starting materials to confer paste tackiness. •High capacity of 174 mAh/g and adequate rate properties for high power LIBs applications. -- Abstract: Li{sub 4}Ti{sub 5}O{sub 12} was synthesized by a solid-state reaction between Li{sub 2}CO{sub 3} and anatase TiO{sub 2} for applications to high power lithium ion batteries. The starting materials underwent 6 h of high energy milling using ZrO{sub 2} beads with two different sizes, 0.30 and 0.45 mm. The smaller ZrO{sub 2} beads resulted in finer starting materials. Spray drying was also performed on the 0.30 mm beads-treated particles to enhance the screen printability of a paste containing this powder. The finer starting materials showed a pure 162 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} due to the decreased diffusion length for a solid-state reaction, whereas the 0.45 mm beads-treated starting materials resulted in a 242 nm-sized Li{sub 4}Ti{sub 5}O{sub 12} phase containing 2 wt.% of rutile TiO{sub 2} that had transformed from the anatase phase during heat treatment at 800 °C for 3 h. The finer Li{sub 4}Ti{sub 5}O{sub 12} showed higher charge capacity and better charge/discharge rates than the coarser particles, which highlights the importance of the primary particle size on the electrochemical properties of Li{sub 4}Ti{sub 5}O{sub 12} for high power applications. The fine Li{sub 4}Ti{sub 5}O{sub 12} particles had a discharge capacity of 174 mAh/g at 0.1 C and capacity retention of 80% at 10.0 C.

  2. Nano silicon for lithium-ion batteries

    International Nuclear Information System (INIS)

    Holzapfel, Michael; Buqa, Hilmi; Hardwick, Laurence J.; Hahn, Matthias; Wuersig, Andreas; Scheifele, Werner; Novak, Petr; Koetz, Ruediger; Veit, Claudia; Petrat, Frank-Martin

    2006-01-01

    New results for two types of nano-size silicon, prepared via thermal vapour deposition either with or without a graphite substrate are presented. Their superior reversible charge capacity and cycle life as negative electrode material for lithium-ion batteries have already been shown in previous work. Here the lithiation reaction of the materials is investigated more closely via different electrochemical in situ techniques: Raman spectroscopy, dilatometry and differential electrochemical mass spectrometry (DEMS). The Si/graphite compound material shows relatively high kinetics upon discharge. The moderate relative volume change and low gas evolution of the nano silicon based electrode, both being important points for a possible future use in real batteries, are discussed with respect to a standard graphite electrode

  3. Surface-Modified Membrane as A Separator for Lithium-Ion Polymer Battery

    Directory of Open Access Journals (Sweden)

    Jun Young Kim

    2010-04-01

    Full Text Available This paper describes the fabrication of novel modified polyethylene (PE membranes using plasma technology to create high-performance and cost-effective separator membranes for practical applications in lithium-ion polymer batteries. The modified PE membrane via plasma modification process plays a critical role in improving wettability and electrolyte retention, interfacial adhesion between separators and electrodes, and cycle performance of lithium-ion polymer batteries. This paper suggests that the performance of lithium-ion polymer batteries can be greatly enhanced by the plasma modification of commercial separators with proper functional materials for targeted application.

  4. A facile route for growth of CNTs on Si@hard carbon for conductive agent incorporating anodes for lithium-ion batteries.

    Science.gov (United States)

    Kim, Chanhoon; Choi, Sinho; Yoo, Seungmin; Kwon, Dohyoung; Ko, Seunghee; Kim, Ju-Myung; Lee, Sang-Young; Kim, Il-Doo; Park, Soojin

    2015-07-14

    Conductive agent incorporating Si anodes consisting of directly grown carbon nanotubes on hard carbon encapsulating Si nanoparticles were prepared by a one-pot chemical vapour deposition process. Owing to this fabulous structure, Si-based anodes exhibit excellent cycle retention and rate capability with a high-mass-loading of 3.5 mg cm(-2).

  5. Effect of Heat Treatment on the Lithium Ion Conduction of the LiBH4–LiI Solid Solution