WorldWideScience

Sample records for high concentration salt

  1. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes

    Directory of Open Access Journals (Sweden)

    Aharon eOren

    2013-11-01

    Full Text Available Extremely halophilic microorganisms that accumulate KCl for osmotic balance (the Halobacteriaceae, Salinibacter have a large excess of acidic amino acids in their proteins. This minireview explores the occurrence of acidic proteomes in halophiles of different physiology and phylogenetic affiliation. For fermentative bacteria of the order Halanaerobiales, known to accumulate KCl, an acidic proteome was predicted. However, this is not confirmed by genome analysis. The reported excess of acidic amino acids is due to a high content of Gln and Asn, which yield Glu and Asp upon acid hydrolysis. The closely related Halorhodospira halophila and Halorhodospira halochloris use different strategies to cope with high salt. The first has an acidic proteome and accumulates high KCl concentrations at high salt concentrations; the second does not accumulate KCl and lacks an acidic proteome. Acidic proteomes can be predicted from the genomes of some moderately halophilic aerobes that accumulate organic osmotic solutes (Halomonas elongata, Chromohalobacter salexigens and some marine bacteria. Based on the information on cultured species it is possible to understand the pI profiles predicted from metagenomic data from hypersaline environments.

  2. Characterization of high-milk-protein powders upon rehydration under various salt concentrations.

    Science.gov (United States)

    Hussain, R; Gaiani, C; Aberkane, L; Scher, J

    2011-01-01

    Rehydration of native micellar casein and native whey isolate protein powders was followed in different ionic environments. Solutions of NaCl and CaCl2 in the concentration range of 0 to 12% (wt%) were used as rehydration media. The rehydration profiles obtained were interpreted in terms of wetting, swelling, and dispersion stages by using a turbidity method. Two behaviors were observed depending on the salt concentration. For native micellar casein powder, a significant change was observed between 3 and 6% NaCl and between 0.75 and 1.5% CaCl2. The first behavior (low salt concentration) presents a typical rehydration profile: quick wetting, swelling, and long dispersion stage. The dispersion stage of the second behavior (high salt concentration) was significantly shortened, indicating a strong modification of the protein backbone. The rehydration of whey protein powder was less influenced by salts. At low salt concentrations, a typical profile for whey powders was observed: wetting with lump formation and no swelling followed by a quick dispersion. At high CaCl2 concentrations, no turbidity stabilization was observed, indicating a possible protein unfolding and denaturation. Additionally, the changes in secondary structures of the 2 proteins upon salt increase were followed by Fourier transform infrared spectroscopy and confirmed the different profiles observed. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. High dietary salt does not significantly affect plasma 25-hydroxyvitamin D concentrations of Sprague Dawley rats

    Directory of Open Access Journals (Sweden)

    Bayorh Mohamed A

    2010-12-01

    Full Text Available Abstract Background The Dahl salt-sensitive rat, but not the Dahl salt-resistant rat, develops hypertension and hypovitaminosis D when fed a high salt diet. Since the salt-sensitive rat and salt-resistant rat were bred from the Sprague Dawley rat, the aim of this research was to test the hypothesis that salt-resistant and Sprague Dawley rats would be similar in their vitamin D endocrine system response to high salt intake. Findings Sprague Dawley, salt-sensitive, and salt-resistant rats were fed high (80 g/kg, 8% or low (3 g/kg, 3% salt diets for three weeks. The blood pressure of Sprague Dawley rats increased from baseline to week 3 during both high and low salt intake and the mean blood pressure at week 3 of high salt intake was higher than that at week 3 of low salt intake (P Conclusions These data indicate that the effect of high salt intake on the vitamin D endocrine system of Sprague Dawley rats at week 3 was similar to that of salt-resistant rats. The salt-sensitive rat, thus, appears to be a more appropriate model than the Sprague Dawley rat for assessing possible effects of salt-sensitivity on vitamin D status of humans.

  4. Solution behavior and activity of a halophilic esterase under high salt concentration.

    Directory of Open Access Journals (Sweden)

    Lang Rao

    Full Text Available BACKGROUND: Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. METHODOLOGY/PRINCIPAL FINDINGS: A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2-16, with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45 degrees C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22 degrees C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD, dynamic light scattering (DLS and small angle neutron scattering (SANS were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the alpha-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. CONCLUSIONS/SIGNIFICANCE: The solution alpha-helical structure and activity relation also matched the highest proportion of enzyme unimers

  5. Effects of High Salt Concentration and Residue on Copper and Aluminum Corrosion

    Institute of Scientific and Technical Information of China (English)

    HUO Ying; TAN Mike; Yong jun; SHU Li

    2013-01-01

    Traditional researches on metal corrosion under salt solutions deposit conditions are usually carried out by visual,electron microscopic observations and simple electrochemical measurement via a traditional one-piece electrode.These techniques have difficulties in measuring localized corrosion that frequently occur in inhomogeneous media.This paper reports the results from the experiments using specially shaped coupons and a relatively new method of measuring heterogeneous electrochemical processes,namely,the wire beam electrode(WBE).Preliminary results from copper and aluminum corrosion in highly concentrated sodium chloride solutions with and without solid deposits show that the method is useful in simulating and studying corrosion especially localized corrosion in pipelines.

  6. Decondensation behavior of DNA chains induced by multivalent cations at high salt concentrations:Molecular dynamics simulations and experiments

    Institute of Scientific and Technical Information of China (English)

    蒋杨伟; 冉诗勇; 何林李; 王向红; 章林溪

    2015-01-01

    Using molecular dynamics simulations and atomic force microscopy (AFM), we study the decondensation process of DNA chains induced by multivalent cations at high salt concentrations in the presence of short cationic chains in solutions. The typical simulation conformations of DNA chains with varying salt concentrations for multivalent cations imply that the concentration of salt cations and the valence of multivalent cations have a strong influence on the process of DNA decondensation. The DNA chains are condensed in the absence of salt or at low salt concentrations, and the compacted conformations of DNA chains become loose when a number of cations and anions are added into the solution. It is explicitly demonstrated that cations can overcompensate the bare charge of the DNA chains and weaken the attraction interactions between the DNA chains and short cationic chains at high salt concentrations. The condensation-decondensation transi-tions of DNA are also experimentally observed in mixing spermidine withλ-phage DNA at different concentrations of NaCl/MgCl2 solutions.

  7. Geobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions.

    Science.gov (United States)

    Sun, Dan; Call, Douglas; Wang, Aijie; Cheng, Shaoan; Logan, Bruce E

    2014-12-01

    An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G. sulfurreducens PCA and Geobacter metallireducens GS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290 ± 29 A m−3 in a high-concentration phosphate buffer solution (PBS-H, 200 mM). This current density was significantly higher than that produced by the mixed culture (189 ± 44 A m−3) or the type strains (Geobacter strains and mixed cultures in terms of its salt tolerance.

  8. G eobacter sp. SD-1 with enhanced electrochemical activity in high-salt concentration solutions

    KAUST Repository

    Sun, Dan

    2014-07-16

    © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd. Summary: An isolate, designated strain SD-1, was obtained from a biofilm dominated by Geobacter sulfurreducens in a microbial fuel cell. The electrochemical activity of strain SD-1 was compared with type strains, G.sulfurreducensPCA and Geobacter metallireducensGS-15, and a mixed culture in microbial electrolysis cells. SD-1 produced a maximum current density of 290±29Am-3 in a high-concentration phosphate buffer solution (PBS-H, 200mM). This current density was significantly higher than that produced by the mixed culture (189±44Am-3) or the type strains (<70Am-3). In a highly saline water (SW; 50mM PBS and 650mM NaCl), current by SD-1 (158±4Am-3) was reduced by 28% compared with 50mM PBS (220±4Am-3), but it was still higher than that of the mixed culture (147±19Am-3), and strains PCA and GS-15 did not produce any current. Electrochemical tests showed that the improved performance of SD-1 was due to its lower charge transfer resistance and more negative potentials produced at higher current densities. These results show that the electrochemical activity of SD-1 was significantly different than other Geobacter strains and mixed cultures in terms of its salt tolerance.

  9. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations.

    Science.gov (United States)

    Lenton, Samuel; Walsh, Danielle L; Rhys, Natasha H; Soper, Alan K; Dougan, Lorna

    2016-07-21

    Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.

  10. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Xu, Lining, E-mail: xulining@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Minxu [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China); Meng, Yao [Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhu, Jinyang; Zhang, Lei [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083 (China)

    2014-09-30

    Highlights: • The corrosion behavior of 13Cr steel exposed to bromine salt completion fluid containing high concentration bromine ions was investigated. • There are passive circles around pits on the 13Cr steel surface after 7 d of exposure. • Macroscopic galvanic corrosion formed between the passive halo and the pit. • The mechanism of pitting corrosion on 13Cr stainless steel exposed to heavy bromine brine was established. - Abstract: A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH{sup −} ligand generates and adsorbs in a certain scale because of abundant OH{sup −} on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs.

  11. Corrosion mechanism of 13Cr stainless steel in completion fluid of high temperature and high concentration bromine salt

    Science.gov (United States)

    Liu, Yan; Xu, Lining; Lu, Minxu; Meng, Yao; Zhu, Jinyang; Zhang, Lei

    2014-09-01

    A series of corrosion tests of 13Cr stainless steel were conducted in a simulated completion fluid environment of high temperature and high concentration bromine salt. Corrosion behavior of specimens and the component of corrosion products were investigated by means of scanning electron microscope (SEM), confocal laser scanning microscopy (CLSM) and X-ray photoelectron spectroscopy (XPS). The results indicate that 13Cr steel suffers from severe local corrosion and there is always a passive halo around every pit. The formation mechanism of the passive halo is established. OH- ligand generates and adsorbs in a certain scale because of abundant OH- on the surface around the pits. Passive film forms around each pit, which leads to the occurrence of passivation in a certain region. Finally, the dissimilarities in properties and morphologies of regions, namely the pit and its corresponding passive halo, can result in different corrosion sensitivities and may promote the formation of macroscopic galvanic pairs

  12. A case study of high sea salt aerosol (SSA) concentrations as a hazard to aviation

    OpenAIRE

    2015-01-01

    Abstract: On the night of 2nd January 2014 an aircraft on approach to Cork airport was required to abort a landing attempt due to sea salt aerosol (SSA) accretion on the windscreen. The salt reduced forward facing visibility to dangerously low levels. This was the first time such an incident was recorded by Irelands Air Accident Investigation Unit. This paper describes the meteorological conditions at the time of the aborted landing approach. Sea salt aerosol formation mechanisms are ela...

  13. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken.

    Science.gov (United States)

    Balamurugan, S; Ahmed, Rafath; Chibeu, Andrew; Gao, Anli; Koutchma, Tatiana; Strange, Phil

    2016-02-01

    National and international health agencies have recommended a significant reduction in daily intake of sodium by reducing the amount of NaCl in foods, specifically processed meats. However, sodium reduction could increase the risk of survival and growth of spoilage and pathogenic microorganisms on these products. Therefore, alternate processing technologies to improve safety of sodium reduced foods are necessary. This study examined the effects of three different salt types and concentrations on high-pressure inactivation of Listeria monocytogenes in pre-blended ground chicken formulations. Ground chicken formulated with three salt types (NaCl, KCl, CaCl2), at three concentrations (0, 1.5, 2.5%) and inoculated with a four strain cocktail of L. monocytogenes (10(8) CFU g(-1)) were subjected to four pressure treatments (0, 100, 300, 600 MPa) and two durations (60, 180 s) in an experiment with factorial design. Surviving cells were enumerated by plating on Oxford agar and analysed by factorial ANOVA. Pressure treatments at 100 or 300 MPa did not significantly (P=0.19-050) reduce L. monocytogenes populations. Neither salt type nor concentration had a significant effect on L. monocytogenes populations at these pressure levels. At 600 MPa, salt types, concentrations and duration of pressure treatment all had a significant effect on L. monocytogenes populations. Formulations with increasing concentrations of NaCl or KCl showed significantly lower reduction in L. monocytogenes, while increase in CaCl2 concentration resulted in a significantly higher L. monocytogenes reduction. For instance, increase in NaCl concentration from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 2.49 and 1.29, respectively, when exposed to 600 MPa for 60s. In the case of CaCl2, increase from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 7.28 and 7.47, respectively. These results demonstrate that high-pressure processing is a viable process to improve microbial safety of sodium

  14. Spectroscopical Determination of ground-level concentrations of Reactive Halogen Species (RHS) above salt lakes, salt pans and other areas with high halogen emissions

    Science.gov (United States)

    Holla, Robert; Landwehr, Sebastian; Platt, Ulrich; Kotte, Karsten; Lisitsyna, Linda V.; Mulder, Ines; Emmerich, Maren; Huber, Stefan; Heidak, Markus

    2010-05-01

    Reactive Halogen Species (RHS), especially BrO and IO, are crucial for the photo chemistry of ozone, the oxidation capacity of the troposphere and have an impact on the equilibria of many atmospheric reaction cycles. This also induces a potential influence on the earth's climate. Beside polar regions, volcanoes and the marine boundary layer salt lakes are an important source for reactive halogen species. At the Dead Sea BrO mixing ratios of up to 176 ppt were measured in summer 2001 [Matveev et al., 2001] and IO was identified with maximal mixing ratios of more than 10 ppt by [Zingler and Platt, 2005]. The Salar de Uyuni in Bolivia showed the presence of up to 20 ppt BrO [Hönninger et al., 2004]. Salt pans and salt deserts may be important halogen sources as well. Saline soils cover 2.5% of the land surface of the earth and might increase in the near future due to desertification as one aspect of the global climate change. Within the scope of the DFG research group HALOPROC a measurement campaign in Southern Russia was performed in August 2009. The ground-level concentrations of BrO, IO, Ozone and other trace gases above the salt lakes El'Ton, Baskuntschak and other local areas were measured using the Multi-AXis-DOAS technique. A further campaign was performed in Mauritania in November/December 2009 in cooperation with the BMBF project SOPRAN. In addition to the above-mentioned measurements the Long-Path DOAS technique was used in order to measure the ground-level concentrations at two different sites: 1. the salt pan Sebkha N'Dramcha and 2. close to a sea weed field at Poste Iwik in a coastal area. We present results from both campaigns concerning the concentrations of bromine oxide (BrO), iodine oxide (IO), ozone (O3)and formaldehyde (HCHO) and give an outlook on possible further campaigns in the future.

  15. Erosion-corrosion in carbon dioxide saturated systems in presence of sand, inhibitor, oil, and high concentration of salt

    Science.gov (United States)

    Hassani, Shokrollah

    Oil and gas production is usually accompanied by formation water which typically contains high levels of chloride. Some effects of chloride concentration on corrosion are not widely known in the literature, and this can result in misleading conclusions. One goal of this research was to contribute to a better understanding of the effects of chloride concentration in CO2 corrosion. Experimental and theoretical studies conducted in the present work have shown that increasing the NaCl concentration in solution has three important effects on corrosion results. First, standard pH meter readings in high NaCl concentration solutions require corrections. Second, increasing the NaCl concentration decreases the CO2 concentration in solution and therefore contributes to a decrease in the corrosion rate. Third, increasing the NaCl concentration increases the solubility of FeCO3 and therefore reduces the likelihood of forming an iron carbonate scale. High NaCl concentration also decreases the sand erosion rate of the metal slightly by increasing the density and viscosity of the liquid. There are two main contributions of this research. The first contribution is the experimental characterization of inhibited erosion-corrosion behavior of mild steel under CO2-saturated conditions with a high salt concentration. Chemical inhibition is one the most important techniques for controlling erosion-corrosion in offshore mild steel pipelines, tubing and pipe fittings in oil and gas industry. The second contribution is the introduction of a new approach for predicting inhibited erosion-corrosion in mild steel pipes including the effects of flow and environmental conditions, sand production, and an oil phase. Sand erosion can decrease the efficiency of corrosion protection systems including iron-carbonate scale formation and chemical inhibition. The need to be able to predict inhibitor performance under sand production conditions is particularly acute when the wells are deep or off

  16. The inhibitory effect of carboxymethylcellulose with high viscosity on lipid absorption in broiler chickens coincides with reduced bile salt concentration and raised microbial numbers in the small intestine

    NARCIS (Netherlands)

    Smits, CHM; Veldman, A; Verkade, HJ; Beynen, AC

    1998-01-01

    Two diets, with or without a nonfermentable carboxymethylcellulose (CMC) with high viscosity, were fed to broiler chickens beginning at 2 wk of age to study whether the anti-nutritive effect of gelling fibers on Lipid digestibility maybe associated with reduced intestinal bile salt concentration. Mo

  17. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    present in the saline aquifer. The brine can be displaced over large areas and can reach shallower groundwater resources. High salt concentrations could lead to a degradation of groundwater quality. For water suppliers the most important information is whether and how much salt is produced at a water...... production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...... polynomial chaos expansion (aPC) [1]. The aPC is applied in this work to provide probabilities and risk values for salt concentrations at the water production well. Mixing in the aquifer has a key influence on the salt concentration at the well. Dispersion and diffusion are the relevant processes for mixing...

  18. Salt Concentration Differences Alter Membrane Resistance in Reverse Electrodialysis Stacks

    KAUST Repository

    Geise, Geoffrey M.

    2014-01-14

    Membrane ionic resistance is usually measured by immersing the membrane in a salt solution at a single, fixed concentration. While salt concentration is known to affect membrane resistance when the same concentration is used on both sides of the membrane, little is known about membrane resistance when the membrane is placed between solutions of different concentrations, such as in a reverse electrodialysis (RED) stack. Ionic resistance measurements obtained using Selemion CMV and AMV that separated sodium chloride and ammonium bicarbonate solutions of different concentrations were greater than those measured using only the high-concentration solution. Measured RED stack resistances showed good agreement with resistances calculated using an equivalent series resistance model, where the membranes accounted for 46% of the total stack resistance. The high area resistance of the membranes separating different salt concentration solutions has implications for modeling and optimizing membranes used in RED systems.

  19. Rice potassium transporter OsHAK1 is essential for maintaining potassium-mediated growth and functions in salt tolerance over low and high potassium concentration ranges.

    Science.gov (United States)

    Chen, Guang; Hu, Qingdi; Luo, Le; Yang, Tianyuan; Zhang, Song; Hu, Yibing; Yu, Ling; Xu, Guohua

    2015-12-01

    Potassium (K) absorption and translocation in plants rely upon multiple K transporters for adapting varied K supply and saline conditions. Here, we report the expression patterns and physiological roles of OsHAK1, a member belonging to the KT/KUP/HAK gene family in rice (Oryza sativa L.). The expression of OsHAK1 is up-regulated by K deficiency or salt stress in various tissues, particularly in the root and shoot apical meristem, the epidermises and steles of root, and vascular bundles of shoot. Both oshak1 knockout mutants in comparison to their respective Dongjin or Manan wild types showed a dramatic reduction in K concentration and stunted root and shoot growth. Knockout of OsHAK1 reduced the K absorption rate of unit root surface area by ∼50-55 and ∼30%, and total K uptake by ∼80 and ∼65% at 0.05-0.1 and 1 mm K supply level, respectively. The root net high-affinity K uptake of oshak1 mutants was sensitive to salt stress but not to ammonium supply. Overexpression of OsHAK1 in rice increased K uptake and K/Na ratio. The positive relationship between K concentration and shoot biomass in the mutants suggests that OsHAK1 plays an essential role in K-mediated rice growth and salt tolerance over low and high K concentration ranges.

  20. Survey of Properties of Key Single and Mixture Halide Salts for Potential Application as High Temperature Heat Transfer Fluids for Concentrated Solar Thermal Power Systems

    Directory of Open Access Journals (Sweden)

    Chao-Jen Li

    2014-04-01

    Full Text Available In order to obtain high energy efficiency in a concentrated solar thermal power plant, more and more high concentration ratio to solar radiation are applied to collect high temperature thermal energy in modern solar power technologies. This incurs the need of a heat transfer fluid being able to work at more and more high temperatures to carry the heat from solar concentrators to a power plant. To develop the third generation heat transfer fluids targeting at a high working temperature at least 800 ℃, a research team from University of Arizona, Georgia Institute of Technology, and Arizona State University proposed to use eutectic halide salts mixtures in order to obtain the desired properties of low melting point, low vapor pressure, great stability at temperatures at least 800 ℃, low corrosion, and favorable thermal and transport properties. In this paper, a survey of the available thermal and transport properties of single and eutectic mixture of several key halide salts is conducted, providing information of great significance to researchers for heat transfer fluid development.

  1. Forces between Hydrophobic Solids in Concentrated Aqueous Salt Solution

    OpenAIRE

    Mastropietro, Dean J; Ducker, William A.

    2012-01-01

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108 degrees. Thus, in 1 M salt solution, it is unnecessar...

  2. Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars

    Directory of Open Access Journals (Sweden)

    Piotr Giel

    2011-07-01

    Full Text Available For proper growth and development, rhododendrons need acidic soils, whereas calcium carbonate (CaCO3 in the substrate markedly limits their growth. In this study, we analysed the reactions of rhododendrons to high concentrations of calcium salts and pH in the substrate. We used 4-month-old seedlings of Rhododendron 'Cunningham's White' and 1.5-year-old seedlings and rooted cuttings of R. 'Cunningham's White' and R. 'Catawbiense Grandiflorum'. Their reactions depended mostly on calcium salt type added to the substrate (sulphate or carbonate. An increase in concentrations of phenolic compounds was detected mostly in roots of the plants grown in a substrate with a high calcium carbonate content. Addition of calcium salts to the substrate caused a significant rise in total nonstructural carbohydrates in leaves and roots of the studied plants. As compared to the control, an increase in substrate pH in the variant with calcium carbonate limited the activity of acid phosphatase, while lowering of substrate pH in the variant with calcium sulphate, significantly increased its activity. Along with the rise in substrate pH, a remarkable increase was observed in the activity of nonspecific dehydrogenase (DHA in the substrate with CaCO3, as compared to the control. Unfavourable soil conditions (high calcium content and alkaline pH caused a decrease in assimilation of minerals by the studied plants (mostly phosphorus and manganese. Our results show that the major factor limiting rhododendron growth is an increase in substrate pH, rather than an increase in the concentration of calcium ions.

  3. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    Science.gov (United States)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  4. Biochemical characterisation of LigN, an NAD+-dependent DNA ligase from the halophilic euryarchaeon Haloferax volcanii that displays maximal in vitro activity at high salt concentrations

    Directory of Open Access Journals (Sweden)

    MacNeill Stuart A

    2006-11-01

    Full Text Available Abstract Background DNA ligases are required for DNA strand joining in all forms of cellular life. NAD+-dependent DNA ligases are found primarily in eubacteria but also in some eukaryotic viruses, bacteriophage and archaea. Among the archaeal NAD+-dependent DNA ligases is the LigN enzyme of the halophilic euryarchaeon Haloferax volcanii, the gene for which was apparently acquired by Hfx.volcanii through lateral gene transfer (LGT from a halophilic eubacterium. Genetic studies show that the LGT-acquired LigN enzyme shares an essential function with the native Hfx.volcanii ATP-dependent DNA ligase protein LigA. Results To characterise the enzymatic properties of the LigN protein, wild-type and three mutant forms of the LigN protein were separately expressed in recombinant form in E.coli and purified to apparent homogeneity by immobilised metal ion affinity chromatography (IMAC. Non-isotopic DNA ligase activity assays using λ DNA restriction fragments with 12 bp cos cohesive ends were used to show that LigN activity was dependent on addition of divalent cations and salt. No activity was detected in the absence of KCl, whereas maximum activity could be detected at 3.2 M KCl, close to the intracellular KCl concentration of Hfx.volcanii cells. Conclusion LigN is unique amongst characterised DNA ligase enzymes in displaying maximal DNA strand joining activity at high (> 3 M salt levels. As such the LigN enzyme has potential both as a novel tool for biotechnology and as a model enzyme for studying the adaptation of proteins to high intracellular salt levels.

  5. Forces between hydrophobic solids in concentrated aqueous salt solution.

    Science.gov (United States)

    Mastropietro, Dean J; Ducker, William A

    2012-03-09

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108°. Thus, in 1 M salt solution, it is unnecessary to invoke the presence of a hydrophobic force at separations greater than 5 nm. Through measurement in salt solution, we avoid the necessity of accounting for large electrostatic forces that frequently occur in pure water and may obscure resolution of other forces.

  6. Application of extraction chromatography to the separation of thorium and uranium dissolved in a solution of high salt concentration.

    Science.gov (United States)

    Fujiwara, Asako; Kameo, Yutaka; Hoshi, Akiko; Haraga, Tomoko; Nakashima, Mikio

    2007-01-26

    Extraction chromatography with commercially available UTEVA resin (for uranium and tetravalent actinide) was applied for the separation of Th and U from control solutions prepared from a multi-element control solution and from sample solutions of solidified simulated waste. Thorium and U in control solutions with 1-5mol/dm(3) HNO(3) were extracted with UTEVA resin and recovered with a solution containing 0.1mol/dm(3) HNO(3) and 0.05mol/dm(3) oxalic acid to be separated from the other metallic elements. Extraction behavior of U in the sample solutions was similar to that in the control solutions, but extraction of Th was dependent on the concentration of HNO(3). Thorium was extracted from 5mol/dm(3) HNO(3) sample solutions but not from 1mol/dm(3) HNO(3) sample solutions. We conjecture that thorium fluoride formation interferes with extraction of Th. Addition of Al(NO(3))(3) and Fe(NO(3))(3), which have higher stability constant with fluoride ion than Th, does improve extractability of Th from 1mol/dm(3) HNO(3) sample solution.

  7. Nitrite toxicity of Litopenaeus vannamei in water containing low concentrations of sea salt or mixed salts

    Science.gov (United States)

    Sowers, A.; Young, S.P.; Isely, J.J.; Browdy, C.L.; Tomasso, J.R.

    2004-01-01

    The uptake, depuration and toxicity of environmental nitrite was characterized in Litopenaeus vannamei exposed in water containing low concentrations of artificial sea salt or mixed salts. In 2 g/L artificial sea salts, nitrite was concentrated in the hemolymph in a dose-dependent and rapid manner (steady-state in about 2 d). When exposed to nitrite in 2 g/L artificial sea salts for 4 d and then moved to a similar environment without added nitrite, complete depuration occurred within a day. Increasing salinity up to 10 g/L decreased uptake of environmental nitrite. Nitrite uptake in environments containing 2 g/L mixed salts (combination of sodium, potassium, calcium and magnesium chlorides) was similar to or lower than rates in 2 g/L artificial sea salt. Toxicity was inversely related to total dissolved salt and chloride concentrations and was highest in 2 g/L artificial sea salt (96-h medial lethal concentration = 8.4 mg/L nitrite-N). Animals that molted during the experiments did not appear to be more susceptible to nitrite than animals that did not molt. The shallow slope of the curve describing the relationship between toxicity and salinity suggests that management of nitrite toxicity in low-salinity shrimp ponds by addition of more salts may not be practical. ?? Copyright by the World Aquaculture Society 2004.

  8. Urinary iodine concentration and availability of iodated salt in school ...

    African Journals Online (AJOL)

    Urinary iodine concentration and availability of iodated salt in school children in a ... Log in or Register to get access to full text downloads. ... Education and communication strategies to different stakeholders need to be strengthened to ...

  9. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    Science.gov (United States)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  10. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Han, Juan; Wang, Yun; Yu, Cuilan; Li, Chunxiang; Yan, Yongsheng; Liu, Yan; Wang, Liang

    2011-01-31

    Ionic liquid-salt aqueous two-phase flotation (ILATPF) is a novel, green, non-toxic and sensitive samples pretreatment technique. ILATPF coupled with high-performance liquid chromatography (HPLC) was developed for the analysis of chloramphenicol, which combines ionic liquid aqueous two-phase system (ILATPS) based on imidazolium ionic liquid (1-butyl-3-methylimidazolium chloride, [C(4)mim]Cl) and inorganic salt (K(2)HPO(4)) with solvent sublation. In ILATPF systems, phase behaviors of the ILATPF were studied for different types of ionic liquids and salts. The sublation efficiency of chloramphenicol in [C(4)mim]Cl-K(2)HPO(4) ILATPF was influenced by the types of salts, concentration of K(2)HPO(4) in aqueous solution, solution pH, nitrogen flow rate, sublation time and the amount of [C(4)mim]Cl. Under the optimum conditions, the average sublation efficiency is up to 98.5%. The mechanism of ILATPF contains two principal processes. One is the mechanism of IL-salt ILATPS formation, the other is solvent sublation. This method was practical when applied to the analysis of chloramphenicol in lake water, feed water, milk, and honey samples with the linear range of 0.5-500 ng mL(-1). The method yielded limit of detection (LOD) of 0.1 ng mL(-1) and limit of quantification (LOQ) of 0.3 ng mL(-1). The recovery of CAP was 97.1-101.9% from aqueous samples of environmental and food samples by the proposed method. Compared with liquid-liquid extraction, solvent sublation and ionic liquid aqueous two-phase extraction, ILATPF can not only separate and concentrate chloramphenicol with high sublation efficiency, but also efficiently reduce the wastage of IL. This novel technique is much simpler and more environmentally friendly and is suggested to have important applications for the concentration and separation of other small biomolecules.

  11. Electrodialysis for the concentration of ethanolamine salts

    NARCIS (Netherlands)

    Groot, de Matheus T.; Bos, Ardina A.C.M.; Peris Lazaro, Alicia; Rooij, de Ralph M.; Bargeman, Gerrald

    2011-01-01

    Monoethanolamine (MEA) is currently produced from oil-based chemicals in an energy intensive process. Fermentative MEA production from renewable sources is considered to be a more sustainable process option. In such a process MEA is likely to be produced in a relatively low concentration in protonat

  12. Development of a robust ionic liquid-based dispersive liquid-liquid microextraction against high concentration of salt for preconcentration of trace metals in saline aqueous samples: Application to the determination of Pb and Cd

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, Seyed Reza [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Shemirani, Farzaneh, E-mail: shemiran@khayam.ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, Tehran (Iran, Islamic Republic of)

    2010-06-11

    A new ionic liquid-based dispersive liquid-liquid microextraction method was developed for preconcentration and determination of compounds in aqueous samples containing very high salt concentrations. This method can solve the problems associated with the limited application of the conventional IL-based DLLME in these samples. This is believed to arise from dissolving of the ionic liquids in aqueous samples with high salt content. In this method, the robustness of microextraction system against high salt concentration (up to 40%, w/v) is increased by introducing a common ion of the ionic liquid into the sample solution. The proposed method was applied satisfactorily to the preconcentration of lead and cadmium in saline samples. After preconcentration, the settled IL-phase was dissolved in 100 {mu}L ethanol and aspirated into the flame atomic absorption spectrometer (FAAS) using a home-made microsample introduction system. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 10 mL of sample, the enhancement factors of 273 and 311 and the detection limits of 0.6 {mu}g L{sup -1} and 0.03 {mu}g L{sup -1} were obtained for lead and cadmium, respectively. Validation of the method was performed by both an analysis of a certified reference material (CRM) and comparison of results with those obtained by ISO standard method.

  13. 高浓度盐对光催化降解有机废水的影响%Effects of High Concentration Salts on Photocatalytic Degradation of Organic Wastewater

    Institute of Scientific and Technical Information of China (English)

    尹文静; 李浩; 白书立

    2011-01-01

    [Objective] The study aimed to research the effects of high concentration salts on the photocatalytic degradation of the organic wastewater. [Method] With the rhodamine B as the degradation object, the Fe-doped TiO2 nanotube arrays were prepared by using the electrochemical anodic oxidation method and it was taken as the photocatalytic agent to degrade the rhodamine B so as to simulate the waste water. The effects of 4 kinds of common salt including NaCl, Na2SO4, KC1 and K2SO4 with higher concn. On degrading the organic wastewater by the light catalytic degradation were examined resp. And the limit concentration of the salts that could improve or suppress the photocatalytic degradation of the organic wastewater was confirmed. [Result] According to relationship chart of the photocatalytic efficiency and time for the 10 mg/ L rhodamine B solution without adding the salt, it was found that the solution had the degradation rates close to 100% at 180 min. In the the concentration range involved by the experiment, the same kind of salt all had the biggest optimal concentration for the degradation rate of the waste water. As for4 kinds of the salt with the concn. Of 8% , the 4 kinds of the salts could play a improvement action on the photocatalytic degradation of the organic wastewater, their improving degree was different, in which the improvement action of 8% Na2SO4 was most obvious. [Conclusion] 4 kinds of the high concentration salts all play an improvement action on the photocatalytic degradation of the organic wastewater.%[目的]研究高浓度盐对光催化降解有机废水的影响.[方法]以罗丹明B为降解对象,采用电化学阳极氧化法制备Fe掺杂TiO2纳米管阵列,以此为光催化剂降解罗丹明B模拟废水,并分别考察了NaCl、Na2SO4、KCl和K2SO4这4种常见的盐在较高浓度下对光催化降解有机废水的影响,确定盐促进或抑制光催化降解有机废水的极限浓度.[结果]根据不掺盐10 mg/L罗丹明B溶

  14. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.

    Science.gov (United States)

    Sevda, Surajbhan; Sreekrishnan, T R

    2012-01-01

    The aim of this study was to investigate the feasibility of using agar salt bridges for proton transport in Microbial Fuel Cells (MFC). It also tries to elucidate and effect of mediators on electricity production from wastewaters through experimentation using a simulated wastewater. In order to offset the very high cost of proton exchange membrane, salt bridges have been used in dual chamber MFCs. When the concentration of salt was varied in agar salt bridges from 1% to 10%, the volumetric power density changed from 1.71 to 84.99 mW/m(3) with a concomitant variation in power density from 0.32 to 16.02 mW/m(2). The maximum power density was observed at 5% salt concentration with 10% agar, which was accompanied by 88.41% COD reduction. In the case of methylene blue (0.01 mM) as the electron mediator, the voltage and current generation were 0.551 V and 0.47 mA, respectively. A maximum open circuit voltage of 0.718 V was seen at 0.08 mM methylene blue concentration, whereas maximum power densities of 17.59 mW/m(2) and 89.22 mW/m(3) were obtained. Different concentrations of neutral red were also tried out as mediators. A maximum open circuit voltage of 0.730 V was seen at 0.01 mM neutral red, corresponding to a power density of 12.02 mW/m(2) (volumetric power density of 60.97 mW/m(3)). Biofilm formation on the electrode surface was not observed in the presence of mediators, but was present in the absence of mediators. The results clearly demonstrated the feasibility to use agar salt bridge for proton transport and role of mediators in MFCs to generate electricity.

  15. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Ramana G. [The University of Alabama

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the

  16. High-temperature vacuum distillation separation of plutonium waste salts

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, E. [Los Alamos National Lab., NM (United States)

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  17. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Madsen, M.; Sophanodora, P.

    2002-01-01

    Plaa-som is a Thai fermented fish product prepared from snakehead fish, salt, palm syrup and sometimes roasted rice. We studied the effects of different salt concentrations on decrease in pH and on microflora composition during fermentation. Two low-salt batches were prepared, containing 6% and 7......% salt (w/w) as well as two high-salt batches, containing 9% and 11% salt. pH decreased rapidly from 6 to 4.5 in low-salt batches, whereas in high-salt batches, a slow or no decrease in pH was found. Lactic acid bacteria (LAB) and yeasts were isolated as the dominant microorganisms during fermentation...

  18. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  19. Heterologous expression in Pichia pastoris and characterization of a novel GH11 xylanase from saline-alkali soil with excellent tolerance to high pH, high salt concentrations and ethanol.

    Science.gov (United States)

    Wang, Hui; Li, Zhongyuan; Liu, Huihui; Li, Shuang; Qiu, Haiyan; Li, Kun; Luo, Xuegang; Song, Yajian; Wang, Nan; He, Hongpeng; Zhou, Hao; Ma, Wenjian; Zhang, Tongcun

    2017-11-01

    A GH11 xylanase gene (xyn11-1) cloned from saline-alkali soil was successfully expressed in Pichia pastoris GS115. The purified recombinant Xyn11-1 showed its maximal activity at pH 6.0, and retained more than 60.4% of activity at pH 10.0, with good pH stability. Its optimal temperature was 50 °C and it was stable after incubation for 1 h at 30 °C. Furthermore, Xyn11-1 was highly salt-tolerant, retaining more than 77.4% of activity in the presence of 0.25-4 M NaCl and displaying more than 47.2% relative activity after being incubated in the presence of 5 M NaCl at 37 °C for 10 min. In addition, 5 mM β-Mercaptoethanol, Cu(2+), Co(2+), and Mn(2+) increased the xylanase activity by 22.3%, 8.8%, 7.1%, and 4.4%, respectively. Significantly, 93.4% and 59.8% of the optimal activity was retained in the presence of 2% and 10% (v/v) ethanol, respectively. Under optimal conditions, the Km,Vmax, and Kcat value of Xyn11-1 for beechwood xylan were 3.7 mg ml(-1), 101.0 μmol min(-1) mg(-1) and 42.1 s(-1), respectively. Xyn11-1 is a strict endo-β-1,4-xylanase, its main enzymatic products being xylotetraose and xylopentaose. Xyn11-1 is the first reported GH11 xylanase isolated from saline-alkali soil, and has excellent tolerance of high pH, high salt concentrations and ethanol, which indicates its great potential for basic research and industrial applications. Copyright © 2017. Published by Elsevier Inc.

  20. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  1. Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt

    Energy Technology Data Exchange (ETDEWEB)

    Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

    2010-07-01

    Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium

  2. Role of salt concentration in blend polymer for energy storage conversion devices

    Energy Technology Data Exchange (ETDEWEB)

    Arya, Anil; Sharma, A. L., E-mail: alsharmaiitkgp@gmail.com [Centre for Physical Sciences, Central university of Punjab, Bathinda-151001. INDIA (India); Sadiq, M. [Department of Physics, I.I.T. (BHU), Varanasi-India (India)

    2016-05-06

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO, PAN and LiPF{sub 6} are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.

  3. Role of salt concentration in blend polymer for energy storage conversion devices

    Science.gov (United States)

    Arya, Anil; Sadiq, M.; Sharma, A. L.

    2016-05-01

    Solid Polymer Electrolytes (SPE) are materials of considerable interest worldwide, which serves dual purpose of electrolyte and separator between electrode compartments in renewable energy conversion/storage devices such as; high energy density batteries, electrochromic display devices, and supercapacitors. Polymer blend electrolytes are prepared for various concentration of salt (Ö/Li) with the constant ratio (0.5 gm) of each PEO and PAN polymers (blend polymer) using solution casting technique. Solid polymeric ionic conductor as a separator is the ultimate substitute to eliminate the drawback related to liquid and gel polymer ionic conductors. In the present work, solid polymer electrolyte film consisting of PEO, PAN and LiPF6 are examined for various concentration of lithium salt by keeping PEO/PAN blend ratio as a constant with a view to optimize the dominant salt concentration which could give the maximum conductivity at ambient temperature.

  4. Research on vacuum membrane distillation technique disposing of high concentration inorganic salt reverse osmosis dense dewatering%减压膜蒸馏技术处理无机高盐 RO 浓排水研究

    Institute of Scientific and Technical Information of China (English)

    郭建中; 路全忠; 杨才伟

    2012-01-01

      针对无机高盐 RO 浓排水具有含盐量高难处理的特点,本文研究了减压膜蒸馏技术处理无机高盐RO 浓排水试验阶段中不同料液温度、真空度、流速对膜通量的影响.结果表明:料液温度、真空度、流速与膜通量存在相关性.随着料液温度和真空度的提高,膜通量会相应增加;随着料液流速的增加膜通量也有增加,但流速小于0.2 m/s 时对膜通量的影响明显,当流速大于0.2m/s 时对膜通量影响小%  Aimed at the characteristic of high salinity and difficult dispose of high concentration inorganic salt reverse osmosis dewatering, this paper studies the vacuum membrane distillation technique dispose of high concentration inorganic salt reverse osmosis dewatering, and analyse the influence of different vacuum, material fluid temperature, flow velocity to membrane flux. The result shows that there is a correlation between membrane flux and vacuum, material fluid temperature and flow velocity. With increasing of vacuum and material fluid temperature, membrane flux increased accordingly; and when the velocity increased and membrane flux increased at the same time. With the velocity was less than 0.2 m/s, the influence to membrane flux came to be obvious, when the velocity was above 0.2 m/s, the influence to membrane flux went light.

  5. Energy harvesting through charged nanochannels using external flows of different salt concentrations

    Science.gov (United States)

    Chanda, Sourayon; Tsai, Peichun Amy

    2016-11-01

    Renewable electricity may be generated by mixing of two solutions of different salt concentrations through charged nanochannels or pores, by leveraging ion-selective effect of the nano-confinements. We numerically investigate such a continuous power generation system using reverse electrodialysis (RED) with external flows. In the simulation model, two reservoirs are connected using a nanochannel of constant surface charge density. Solutions of high and low concentrations flow through the two reservoirs at a constant velocity. We examine the effects of (salt) concentration gradients and nanochannel dimensions on the power generation. Moreover, the effect of external flow velocity on the process is analyzed. Our results show that the maximum surface charge density, open circuit voltage, channel resistance, and energy conversion efficiency of the process are significantly affected by the difference of the high and low concentrations and the nanochannel dimension ratio.

  6. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  7. Different thermodynamic signatures for DNA minor groove binding with changes in salt concentration and temperature.

    Science.gov (United States)

    Wang, Shuo; Kumar, Arvind; Aston, Karl; Nguyen, Binh; Bashkin, James K; Boykin, David W; Wilson, W David

    2013-10-04

    The effects of salt concentration and temperature on the thermodynamics of DNA minor groove binding have quite different signatures: binding enthalpy is salt concentration independent but temperature dependent. Conversely, binding free energy is salt dependent but essentially temperature independent through enthalpy-entropy compensation.

  8. Different Thermodynamic Signatures for DNA Minor Groove Binding with Changes in Salt Concentration and Temperature

    OpenAIRE

    2013-01-01

    The effects of salt concentration and temperature on the thermodynamics of DNA minor groove binding have quite different signatures: binding enthalpy is salt concentration independent but temperature dependent. Conversely, binding free energy is salt dependent but essentially temperature independent through enthalpy-entropy compensation.

  9. Direct Grout Stabilization of High Cesium Salt Waste: Salt Alternative Phase III Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.A.

    1998-12-07

    The direct grout alternative is a viable option for treatment/stabilization and disposal of salt waste containing Cs-137 concentrations of 1-3 Ci/gal. The composition of the direct grout salt solution is higher in sodium salts and contains up to a few hundred ppm Cs-137 more than the current reference salt solution. However it is still similar to the composition of the current reference salt solution. Consequently, the processing, setting, and leaching properties (including TCLP for Cr and Hg) of the direct grout and current saltstone waste forms are very similar. The significant difference between these waste solutions is that the high cesium salt solution will contain between 1 and 3 Curies of Cs-137 per gallon compared to a negligible amount in the current salt solution. This difference will require special engineering and shielding for a direct grout processing facility and disposal units to achieve acceptable radiation exposure conditions. The Cs-137 concentration in the direct grout salt solution will also affect the long-term curing temperature of the waste form since 4.84 Watts of energy are generated per 1000 Ci of Cs-137. The temperature rise of the direct grout during long-term curing has been calculated by A. Shaddy, SRTC.1 The effect of curing temperature on the strength, leaching and physical durability of the direct grout saltstone is described in this report. At the present time, long term curing at 90 degrees C appears to be unacceptable because of cracking which will affect the structural integrity as evaluated in the immersion test. (The experiments conducted in this feasibility study do not address the effect of cracking on leaching of contaminants other than Cr, Hg, and Cs.) No cracking of the direct grout or reference saltstone waste forms was observed for samples cured at 70 degrees C. At the present time the implications of waste form cracking at elevated curing temperatures has not been fully addressed. The direct grout falls within the

  10. Iron corrosion in concentrated saline solutions at elevated T in high-level radioactive waste salt rock repositories. A thermodynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Andres G.; Moog, Helge C. [Gesellschaft fuer Anlagen und Reaktorsicherheit mbH (GRS), Braunschweig (Germany)

    2015-07-01

    Predictions of the evolution of the interfacial chemistry of corroding iron in high salinary milieus at temperatures of 25 C to 100 C based on an extended thermodynamic data basis for the system Fe(II)-Fe(III)-Na-K-Cl-Mg-Ca-SO{sub 4}-S-CO{sub 3}-H{sub 2} are presented. Future research directions are discussed.

  11. Microbial Succession And Biochemical Aspects Of Mandai Fermentation At Low Salt Concentration.

    Directory of Open Access Journals (Sweden)

    Hasrul Satria Nur

    2009-04-01

    Full Text Available Mandai isfermented food that traditionally made from the flesh of jack fruit (Arthocarphus champeden Spreg.. Usually mandai ismade as high salt concentration. However, the objective of this research is to study the succession and biochemicalaspects of microbials during fermentation at low salt concentration (10% w/v for 14 days. During the period offermentation microbial cell numbers and biochemical aspects were observed at the 3rd, 5th, 7th and 14th day. Total cellnumber of bacteria and yeast were measured by pour plate method. The measurement was also conducted on fleshbefore incubation. The biochemical aspect observation included the contents of reducing sugar, N-total, salt, and pH.The research results indicated that the pattern of microbial succession occurred the fermentation. Yeast cells grewdominantly (2.8 x 109 CFU/g on the 5th day fermentation but bacteria were dominant at the end (1.1 x 107 CFU/g. Thehighest decrease of reducing sugar and N-total contents were 0.240% at the 14th day and 0.159% at the 5th day,respectively. However, salt concentration was relatively stable and pH was varied within the range of 3.71-6.12 for thewhole period fermentation.

  12. The effect of high hydrostatic pressure, sodium nitrite and salt concentration on the growth of Listeria monocytogenes on RTE ham and turkey.

    Science.gov (United States)

    Myers, Kevin; Montoya, Damian; Cannon, Jerry; Dickson, James; Sebranek, Joseph

    2013-02-01

    Growth of Listeria monocytogenes was evaluated for up to 182 days after inoculation on ready-to-eat (RTE) sliced ham and turkey breast formulated with sodium nitrite (0 or 200 ppm), sodium chloride (1.8% or 2.4%), and treated (no treatment or 600 MPa) with high hydrostatic pressure (HHP). HHP at 600 MPa for 3 min resulted in a 3.85-4.35 log CFU/g reduction in L. monocytogenes. With formulations at similar proximate analyses, one of the evaluation days (day 21) without HHP showed significantly greater growth of L. monocytogenes in ham than in turkey breast, but there were no significant differences on other evaluation days or with HHP. There were no differences in growth of L. monocytogenes due to sodium chloride level. Sodium nitrite provided a small, but significant inhibition of L. monocytogenes without HHP, but addition of sodium nitrite did not significantly affect growth of L. monocytogenes with use of HHP. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Interactions between high salt intake and the musculoskeletal system

    Science.gov (United States)

    Heer, Martina; Frings-Meuthen, Petra; Buehlmeier, Judith; Baecker, Natalie

    Lowering mechanical load like in microgravity is the dominant stimulus leading to muscle and bone loss. However, high dietary salt (NaCl) intake is also considered as a risk factor for osteoporosis and thereby might exacerbate the microgravity induced bone loss. We have recently shown that a very high salt intake leads to an increased bone resorption most likely because of a low-grade metabolic acidosis (Frings-Meuthen et al. JBMR, Epub Dec 2007). A decrease in pH, however, is on the one hand mandatory to activate osteoclast activity, on the other hand it might affect protein metabolism and thereby muscle mass. In head-down bed rest (HDBR) studies physiological adaptation as seen in microgravity is mimicked. In a recent short-term HDBR study of 14 days, we combined high salt intake and low mechanical loading to test if low-grade metabolic acidosis induced by high NaCl intake is an additive stimulus for increased bone resorption and muscle protein loss. The results show that high NaCl intake combined with low mechanical load exaggerates the increase in calcium excretion as well as the rise in bone resorption marker C-telopeptide (both: p ¡ 0.001). Bone alkaline phosphatase, a bone formation marker, was not different according to NaCl intake (p = 0.74). Additionally, the slightly negative nitrogen balance in HDBR ( 0.34 ± 1.2 g/d) was exacerbated 3 fold by high NaCl intake ( 1.34 ± 1.0 g/d; p ¡ 0.001). These results were accompanied by reduced bicarbonate (p = 0.018) and base excess (p = 0.009) concentrations during high salt intake. In conclusion, HDBR and high salt intake cause -like in ambulatory test subjectsa low-grade metabolic acidosis. This may exacerbate bone resorption and nitrogen loss, which may then exaggerate disuse induced bone and muscle loss.

  14. Investigation of iodine concentration in salt, water and soil along the coast of Zhejiang, China

    Institute of Scientific and Technical Information of China (English)

    LU Ying-li; WANG Ning-jian; ZHU Lan; WANG Guo-xing; WU Hui; KUANG Lin; ZHU Wen-ming

    2005-01-01

    Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples through random sampling in June, 2005. Salt, water and soil iodine was detected by arsenic-cerium redox method. Statistical analysis was expressed as mean±SEMby Windows SPSS 13.0. Results: (1) The iodine concentration in salt was 27.9±4.33 mg/kg (n=108). (2) Seventy-five water samples were collected. The water iodine value was 0.6~84.8 μg/L (mean of 11.66 μg/L). The watershed along the Qiantang River has significantly higher iodine content than the water in Lin'an in mountain area (P<0.01). The iodine content and mean iodine content of tap water, well or spring water and natural water sources were 4.30±2.43 μg/L (n=34), 23.59±27.74 μg/L (n=19)and 12.72±10.72 μg/L (n=22) respectively. This indicated that among environmental water sources, the ditch iodine content was the highest with river water iodine being the lowest (P<0.01). (3) Soil iodine value was 0.11~2.93 mg/kg (mean of 1.32 mg/kg).Though there was no statistical difference of soil iodine in different districts (P=0.131), soil iodine content correlated positively with water iodine content. Conclusion: Iodine concentration in salt accords with national policy of adding iodine in salt. Foreland has more iodine in water than mountain area. The data reflected that water and soil iodine in foreland area was not high, which suggests universal iodized salt should be necessary. Environment iodine has relatively close association with pollution.

  15. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  16. Deformation in layered Zechstein-III K-Mg salts with high mechanical contrasts. Core analysis revealing strain concentrations and the development of fracturing and folding into a tectonic mélange.

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2017-04-01

    In fully developed evaporite cycles, effective viscosity contrasts of up to five orders of magnitude are possible between different layers, but the structures and mechanics in evaporites with such extreme mechanical stratification are not well understood. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt We analyzed a unique carnallite (KMgCl3*6H20) - and bischofite (MgCl2*6H20) - rich drill core from the Zechstein III-1b subunit in the Veendam Pillow in the Netherlands, which has a complex tectonic history with multiple phases of extension and compression as shown by seismic reflection data. Salt withdrawal followed by convergent flow into the salt pillow produced ruptures and folds in the underlying ZIII- Anhydrite-Carbonate Stringer and formed the outer shape of the soft ZIII-1b layer. The slabbed core was analyzed by macroscale photography, bulk chemical methods, XRD and optical microscopy. Results show high strain in the weaker bischofite- and carnallite- rich layers, with associated dynamic recrystallization at very low differential stress, completely overprinting the original texture. Stronger layers formed by alternating beds of halite and carnallite show complex recumbent folding on different scales commonly interrupted by sub-horizontal shear zones with brittle deformation, veins and boudinage. We attribute this tectonic fragmentation to be associated with a softening of the complete ZIII-1b subunit during its deformation. The result is a tectonic mélange with cm - to 10m size blocks with internal folds and boudinage. We infer that these structures and

  17. Comparative Salt Stress Study on Intracellular Ion Concentration in Marine and Salt-adapted Freshwater Strains of Microalgae

    Directory of Open Access Journals (Sweden)

    Ahmad Farhad TALEBI

    2013-08-01

    Full Text Available Salinity imposes significant stresses in various living organisms including microalgae. High extracellular concentration of Na+ directly influences ionic balance inside the cell and subsequently the cellular activities. In the present study, the effect of such stress on growth and intracellular ions concentration (IIC of Dunaliella salina and Chlorella Spp. was investigated. IIC was analyzed using Ion chromatography technique. D. salina showed the highest degree of resistance to increase in salinity as little changes occurred both in IIC and in growth parameters. D. salina could maintain the balance of K+ inside the cell and eject the excess Na+ even at NaCl concentrations above 1M. Moreover, D. salina accumulated β-carotene in order to protect its photosynthetic apparatus. Among Chlorella species, C. vulgaris showed signs of adaptation to high content of salinity, though it is a fresh water species by nature. Moreover, the response shown by C. vulgaris to rise in salinity was even stronger than that of C. salina, which is presumably a salt-water resistant species. In fact, C. vulgaris could maintain intracellular K+ better than C. salina in response to increasing salinity, and as a result, it could survive at NaCl concentrations as high as 0.75 M. Marine strains such as D. salina well cope with the fluctuations in salinity through the existing adaptation mechanisms i.e. maintaining the K+/N+ balance inside the cell, K+ accumulation and Na+ ejection, accumulation of photosynthetic pigments like β-carotene.

  18. Conformational Variety of Polyanionic Peptides At Low Salt Concentrations

    Science.gov (United States)

    Bertrand, Marylène; Brack, André

    1997-12-01

    Cordially dedicated to Dr. Leslie Orgel on the occasion of his 70th birthday. Sequential oligo- and polypeptides based on glutamic acid and leucine residues have been synthesized. In pure water, they exhibit a random coil conformation. Addition of very small amounts of divalent metallic cations induces the formation of ordered structure in the peptides which remain in solution. Higher salt concentrations precipitate the peptides. Polypeptides with alternating glutamic acid and leucine residues undergo a coil to β-sheet transition in the presence of Ca^2+, Ba^2+, Mn^2+, Co^2+, Zn^2+ and Hg^2+. Addition of Cu^2+ or Fe^3+ induces the formation of an α-helix. Solid amorphous CdS generates water soluble β-sheets, as well. Sequential poly(Leu-Glu-Glu-Leu) adopts an α-helix in the presence of divalent cations. The sequence-dependent conformational diversity was extended to poly(Asp-Leu) and poly(Leu-Asp-Asp-Leu).

  19. Effect of alternative salt use on broiler breast meat yields, tenderness, flavor, and sodium concentration.

    Science.gov (United States)

    Broadway, P R; Behrends, J M; Schilling, M W

    2011-12-01

    Fresh chicken breast fillets were marinated with gourmet-style salts: Himalayan pink salt, Sonoma gourmet salt, sel gus de Guerande, and Bolivian rose salt to evaluate their effects on marination and cook loss yields, tenderness, sensory attributes, and sodium concentration. Fresh chicken breast fillets (48-h postmortem) were vacuum tumbled (137 kPa at 20 rpm for 17 min) in a solution of water, salt, and sodium tripolyphosphate at a level of 20% of the meat weights. Instrumental analyses showed no significant difference (P > 0.05) in meat quality with respect to marination yield, cook yield, or shear-force value. There were also no significant differences (P > 0.05) in sensory descriptors between salt treatments. However, Sonoma gourmet salt showed a tendency (P = 0.0693) to score increased savory note values from panelists, whereas Bolivian rose salt received the lowest score. There were no significant differences (P > 0.05) in sodium concentrations between salt treatments, but numerically, sel gus de Guerande had the lowest sodium concentration, which could be important in producing reduced sodium products. Understanding different salts and sodium concentrations allows the poultry industry to use gourmet salts in products and maintain overall meat quality and flavor.

  20. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly but important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.

  1. EFFECTS OF SALT CONCENTRATIONS ON ANTIOXIDANT ENZYME ACTIVITY OF GRAIN SORGHUM

    Directory of Open Access Journals (Sweden)

    Ridvan Temizgul

    2016-07-01

    Full Text Available The present study was conducted to determine salt response of grain sorghum (Sureno plants through antioxidant defense enzymes and to determine their salt resistanceat biochemical level. Sorghum plants were grown in climate chambers for 15 days in 3 replications in Hoagland growth medium under different salt concentrations (0, 50, 100, 150, 200 mM. At the end of growing period, roots and leaves were separated and the effects of salt stress were assessed spectrophotometrically through antioxidant enzymes, chlorophyll and carotenes. Root CAT increased until 100 mM, SOD, APX and GST activities increased with increasing salt concentrations until 150 mM and then they all decreased. Increasing salt concentrations elevated MDA accumulation in sorghum roots. Leaf SOD and APX activities and proline contents increased until 150 mM and CAT, GR and GST activities increased until 100 mM and then they all decreased. Leaf MDA contents also increased with higher salt concentrations. However, increasing salt concentrations decreased chlorophyll contents at 100 mM, carotene contents increased until 150 mM and then decreased. Although ascending antioxidant enzyme activity improved salt resistance of sorghum plants, increasing concentrations were not found to be sufficient. Thus, further studies with higher concentrations should be carried out to elucidate the case.

  2. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng, E-mail: mcho@korea.ac.kr [Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 136-713 (Korea, Republic of); Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Heejae; Kim, Seongheun [Department of Chemistry, Korea University, Seoul 136-713 (Korea, Republic of)

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  3. urinary iodine concentration and availability of iodated salt in school ...

    African Journals Online (AJOL)

    use and storage of iodated salt in Ludewa District, Tanzania. Design: A ... and iodine have a significant impact on human .... colour is proportional to the amount of iodine present in the .... widely recommended as a representative group.

  4. Fermentation and microflora of plaa-som, a thai fermented fish product prepared with different salt concentrations.

    Science.gov (United States)

    Paludan-Müller, Christine; Madsen, Mette; Sophanodora, Pairat; Gram, Lone; Møller, Peter Lange

    2002-02-25

    Plaa-som is a Thai fermented fish product prepared from snakehead fish, salt, palm syrup and sometimes roasted rice. We studied the effects of different salt concentrations on decrease in pH and on microflora composition during fermentation. Two low-salt batches were prepared, containing 6% and 7% salt (w/w) as well as two high-salt batches, containing 9% and 11% salt. pH decreased rapidly from 6 to 4.5 in low-salt batches, whereas in high-salt batches, a slow or no decrease in pH was found. Lactic acid bacteria (LAB) and yeasts were isolated as the dominant microorganisms during fermentation. LAB counts increased to 10(8)-10(9) cfu g(-1) and yeast counts to 10(7)-5 x 10(7) cfu g(-1) in all batches, except in the 11% salt batch, where counts were 1-2 log lower. Phenotypic tests, ITS-PCR, carbohydrate fermentations and 16S rRNA gene sequencing identified LAB isolates as Pediococcus pentosaceus, Lactobacillus alimentarius/farciminis, Weisella confusa, L. plantarum and Lactococcus garviae. The latter species was only isolated from high-salt batches. Phenotypic characteristics, ITS-PCR and carbohydrate assimilation identified 95% of the yeasts as Zygosaccharomyces rouxii. It is concluded that the fermentation of plaa-som is delayed by a salt-level of 9% due to an inhibition of LAB growth. The growth of Z. rouxii has no influence on the fermentation rate, but may contribute positively to the flavour development of the product.

  5. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  6. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    Science.gov (United States)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  7. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Science.gov (United States)

    Pin, Liu; Qiang, Ma; Zheng, Fang; Jie, Ma; Yong-Sheng, Hu; Zhi-Bin, Zhou; Hong, Li; Xue-Jie, Huang; Li-Quan, Chen

    2016-07-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

  8. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    Institute of Scientific and Technical Information of China (English)

    刘品; 马强; 方铮; 马洁; 胡勇胜; 周志彬; 李泓; 黄学杰; 陈立泉

    2016-01-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific ca-pacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (−3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries.

  9. Investigation of iodine concentration in salt, water and soil along the coast of Zhejiang, China*

    OpenAIRE

    Lu, Ying-Li; Wang, Ning-jian; Zhu, Lan; Wang, Guo-xing; Wu, Hui; Kuang, Lin; Zhu, Wen-ming

    2005-01-01

    Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples throug...

  10. Quantification of salt concentrations in cured pork by computed tomography

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Risum, Jørgen; Adler-Nissen, Jens

    2004-01-01

    profiles were extracted and fitted to a diffusion model which included a term to account for a non-negligible mass transfer coefficient. It was found that CT provides accurate estimates of salt gradients in meat and it was suggested that this analytical method could be valuable in scientific research...

  11. Quantification of salt concentrations in cured pork by computed tomography

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Risum, Jørgen; Adler-Nissen, Jens

    2004-01-01

    profiles were extracted and fitted to a diffusion model which included a term to account for a non-negligible mass transfer coefficient. It was found that CT provides accurate estimates of salt gradients in meat and it was suggested that this analytical method could be valuable in scientific research...

  12. Vortex- and CO2 -gas-assisted liquid-liquid microextraction with salt addition for the high-performance liquid chromatographic determination of furanic compounds in concentrated juices and dried fruits.

    Science.gov (United States)

    Abu-Bakar, Nur-Bahiyah; Makahleh, Ahmad; Saad, Bahruddin

    2016-03-01

    A novel microextraction method based on vortex- and CO2 -assisted liquid-liquid microextraction with salt addition for the isolation of furanic compounds (5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, 2-furaldehyde, 3-furaldehyde, 2-furoic and 3-furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r(2) >0.999), low detection limits (0.08-1.9 μg/L) and good recoveries (80.7-122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples.

  13. [Development of salt concentrates for mineralization of recycled water aboard the space station].

    Science.gov (United States)

    Skliar, E F; Amiragov, M S; Bobe, L S; Gavrilov, L I; Kurochkin, M G; Solntseva, D P; Krasnov, M S; Skuratov, V M

    2006-01-01

    Recycled water can be brought up to the potable grade by adding minimal quantities of three soluble concentrates with the maximal content of inorganic salts. The authors present results of 3-year storage of potable water mineralized with makeup concentrates and analysis of potable water prepared with the use of the salt concentrates stored over this period of time. A water mineralization unit has been designed based on the principle of cyclic duty to produce physiologically healthy potable water with a preset salt content.

  14. Optimization of salt concentration in polymer based ionic conductor

    Science.gov (United States)

    Thakur, Deep Kumar; Sharma, A. L.

    2017-07-01

    Free standing polymeric films (electrolytes) have been prepared by PAN as a polymer host and Li salt (LiPF6) using the standard solution cast process. Interaction of polymer-salt complex of the host matrix has also been observed in the Fourier transform infrared (FTIR) spectrum results. The cation (Li+) coordination at nitrile (-C≡N) site of the polymer backbone along with the appearance of a shoulder suggesting strong evidence of polymer-ion interaction. Field Emission Scanning Electron Microscopy (FESEM), was used to study morphological information of grain boundaries and cracks while Complex impedance spectroscopy suggests bulk electrical conduction. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically SPE's have the conductivities that are lower than those of organic liquid electrolytes.

  15. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    Energy Technology Data Exchange (ETDEWEB)

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  16. Increased chloride concentration in a lake due to deicing salt application.

    Science.gov (United States)

    Thunqvist, E L

    2003-01-01

    During winter, the Swedish National Road Administration uses on average 250,000 tonnes of sodium chloride for deicing purposes. Chloride concentration is a function of the amount of deicing salt applied during the winter season and the amount of water in which the salt can be diluted. An estimation of seasonal amount of deicing salt in relation to amount of run-off was used in order to identify the effects of deicing salt. The measured chloride concentration in a lake used as a municipal water supply was similar to the concentration estimated by a simple steady state method accounting for the catchment area. The simplified steady state method was a useful tool for estimating steady state concentrations on a regional level, including a non-influenced lake as a comparison.

  17. Short term effects of increasing dietary salt concentrations on urine composition in healthy cats.

    Science.gov (United States)

    Paßlack, N; Burmeier, H; Brenten, T; Neumann, K; Zentek, J

    2014-09-01

    High dietary salt (NaCl) concentrations are assumed to be beneficial in preventing the formation of calcium oxalate (CaOx) uroliths in cats, since increased water intake and urine volume have been observed subsequent to intake. In human beings, dietary NaCl restriction is recommended for the prevention of CaOx urolith formation, since high NaCl intake is associated with increased urinary Ca excretion. The aim of the present study was to clarify the role of dietary NaCl in the formation of CaOx uroliths in cats. Eight cats received four diets that differed in Na and Cl concentrations (0.38-1.43% Na and 0.56-2.52% Cl dry matter, DM). Each feeding period consisted of a 21 day adaptation period, followed by a 7 day sampling period for urine collection. Higher dietary NaCl concentrations were associated with increased urine volume and renal Na excretion. Urinary Ca concentration was constant, but renal Ca excretion increased from 0.62 to 1.05 mg/kg bodyweight (BW)/day with higher dietary NaCl concentrations (P ≤ 0.05). Urinary oxalate (Ox), citrate, P and K concentrations decreased when NaCl intake was high (P ≤ 0.05), and urinary pH was low in all groups (6.33-6.45; P > 0.05). Relative supersaturation of CaOx in the urine was unaffected by dietary NaCl concentrations. In conclusion, the present study demonstrated several beneficial effects of high dietary NaCl intake over a relatively short time period. In particular, urinary Ca concentration remained unchanged because of increased urine volume. Decreased urinary Ox concentrations might help to prevent the formation of CaOx uroliths, but this should be verified in future studies in diseased or predisposed cats.

  18. Phase equilibria for salt-induced lysozyme precipitation: Effect of salt concentration and pH

    OpenAIRE

    Popova, E.; WATANABE, E. O.; PESSOA FILHO, P. A.; Maurer, G.

    2008-01-01

    The salt-induced precipitation of lysozyme from aqueous solutions was studied at 25 degrees C and various pH values by cloud-point investigations, precipitation experiments (analysing the compositions of the coexisting phases) and microscopic investigations of the precipitates. Sodium sulphate as well as ammonium sulphate were used to induce the precipitation. The experimental results are discussed and used to develop a scheme of the phase equilibrium in water-rich aqueous solutions of lysozy...

  19. Long-term exposure to high concentration of salt stress induces antioxidative response in Candida albicans%长期高盐刺激诱导白假丝酵母菌耐受氧化应激

    Institute of Scientific and Technical Information of China (English)

    杨丰; 曹永兵; 颜天华; 王秋娟; 季晖; 姜远英

    2011-01-01

    Objective To investigate the effect of long-term exposure to high concentration of sodium chloride on resistance to oxidative stress in Candida albicans (C. albicans). Methods Two C. albicans strains, SC5314 and ATCC766155,were challenged with 1 mol/L NaCl for 24 consecutive days. Spot assay was performed to compare the resistance to hydrogen peroxide and miconazole between the wild-type and derivative strains. The transcription levels of antioxidant enzymes, including superoxide dismutase (SOD1), catalase (CAT1), and glutathione reductase (GR), were determined by real-time RT-PCR, and their activities were also examined. Peroxidation of lipid was examined by determining the contents of malondialdehyde (MDA);the cellular level of reactive oxygen species (ROS) was also determined. Results Long-term exposure to high concentration of sodium chloride enhanced the resistance of C. albicans to oxidative stress (hydrogen peroxide [12 mmol/L] and miconazole [4μg/ml]); the exposure increased the transcription of antioxidant enzymes, SOD1, CAT1, and GR by 2-5 folds; and it also significantly increased the activities of the antioxidant enzymes (P < 0. 05). Meanwhile, it significantly alleviated the peroxidation of lipid (P<0.01) and decreased the intracellular ROS contents (P<0.01). Conclusion Long-term exposure to salt stress can increase the resistance to oxidative stress in C. albicans.%目的 观察长期高浓度氯化钠刺激对白假丝酵母菌耐受氧化应激能力的影响.方法 选用2株白假丝酵母菌国际标准株SC5314和ATCC76615,用含有1 mol/L氯化钠的YEPD培养液连续培养24 d,考察子代与亲本菌对氧化应激的耐受能力.采用real-time RT-PCR考察白假丝酵母菌抗氧化酶的转录水平,并测定其抗氧化酶的活性,利用丙二醛(MDA)测定试剂盒衡量白假丝酵母菌脂质过氧化损伤,并测量白假丝酵母菌菌体细胞内活性氧水平.结果 长期用高浓度氯化钠刺激能增加白

  20. Americans with High Blood Pressure Still Eating Too Much Salt

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_163977.html Americans With High Blood Pressure Still Eating Too Much Salt Average sodium intake ... March 8, 2017 (HealthDay News) -- For Americans with high blood pressure, cutting back on salt is an important way ...

  1. Mechanisms by Which Salt Concentration Moderates the Dynamics of Human Serum Transferrin.

    Science.gov (United States)

    Abdizadeh, Haleh; Atilgan, Ali Rana; Atilgan, Canan

    2017-05-11

    The dynamical and thermodynamic behavior of human transferrin (hTf) protein in saline aqueous solution of various concentrations is studied. hTf is an essential transport protein circulating iron in the blood and delivering it to tissues. It displays highly pH dependent cooperativity between the two lobes, each carrying an iron, and forms a tight complex with the receptor during endocytosis, eventually recycled to the serum after iron release. Molecular dynamics simulations are used to investigate the effects of the amount of salt on protein conformation and dynamics to analyze the structure-function relationship in free hTf at serum pH. To monitor the ionic strength dependence, four different ionic concentrations, 0, 50, 130, and 210 mM NaCl for two protonation states of the iron coordination site is considered. Two mechanisms by which salt affects hTf are disclosed. In the totally closed state where iron coordinating tyrosines are deprotonated, the addition of even 50 mM of salt alters the electrostatic potential distribution around the protein, opening energetic pathways for tyrosine protonation from nearby charged residues as a required first step for iron release. Once domain opening is observed, conformational plasticity renders the iron binding site more accessible by the solvent. At this second stage of iron release, R124 in the N-lobe is identified as kinetically significant anion binding site that accommodates chloride ions and allosterically communicates with the iron binding residues. Opening motions are maximized at 150 mM IS in the N-lobe, and at 210 mM in the C-lobe. The extra mobility in the latter is thought to preclude binding of hTf to its receptor. Thus, the physiological IS is optimal for exposing iron for release from hTf. However, the calculated binding affinities of iron show that even in the most open conformations, iron dissociation needs to be accompanied by chelators.

  2. Temporal and spatial patterns of Cl- and Na+ concentrations and Cl/Na ratios in salted urban watersheds

    Directory of Open Access Journals (Sweden)

    David T. Long

    2015-05-01

    Full Text Available Abstract The study of sodium and chloride in the environment has a long history with a particular focus on road salting in urban areas. In many studies, spatial scales are limited (e.g., city and temporal measurements are coarse (e.g., monthly, with the result that our understanding of the hydrogeochemical dynamics is constrained. Through a unique set of spatial and temporal measurements from the State of Michigan we a examine the spatial distribution of chloride across a broad geographic area, b explore the temporal behavior of chloride and sodium over hydrologic events capturing snowmelt and rain through salting seasons, c evaluate the use of chloride/sodium ratios as a tool for linking sources to concentrations, and d develop a conceptual framework for processes responsible for their environmental concentrations. Results show 1 the short-term and local impact of urban areas on chloride concentrations is clearly delineated, 2 concentration and ratio variations over the hydrographs differ during salting and post-salting periods, 3 chloride/sodium ratios do not clearly indicate a halite source and can be very high (>5 and this is interpreted to be due to the different environmental behaviors of the two ions, and 4 during salting periods, chloride and sodium are quickly removed from the landscape during first flush and diluted as event water begins to dominate, but in post salting periods, only chloride is diluted. We also find evidence for upwelling of brine in some locations. These two solutes are easily measured indicators of human influences on water quality and it is recommended that they routine be included in water quality assessments. However, we suggest more research is necessary to better understand their cycling on shorter time scales and then how this knowledge can be used to inform our understanding of other chemical cycles in the environment.

  3. Iodine Concentration in Iodized Salts Marketed in Lorestan Province, West of Iran

    Directory of Open Access Journals (Sweden)

    Reza Sepahvand

    2016-03-01

    Full Text Available Iodine as a trace micronutrient has important role in body physiology and its sufficient intake is essential for synthesize and secrete adequate amounts of thyroid gland hormones which influenced all periods of human life including fetal, childhood and adolescence. The aim of this study was to evaluate iodine concentration in marketed edible salt samples in Lorestan Province, comparing with existing standards and offering solutions necessary to fix the probably problems. Two hundred and forty samples of 20 brands of marketed edible salt were purchased randomly of eight cities in Lorestan Province during April 2014 to March 2015. Iodine concentration was measured by titration method. Results showed that iodine concentration in 64.59% of salt samples was in acceptable limits according national standard of Iran during this study. A significant number of nonstandard samples showed violation of salt factories of regulations and their noncompliance to mandatory standards. Due to importance of iodine in human health and valuable role in the vital functions of the body at different periods of human life and to avoid violations of iodized salts manufacturers, regular control of marketed salts and enforcement of laws and regulations are recommended.aflatoxin production in treated nuts.

  4. Dynamics of Chemotactic Droplets in Salt Concentration Gradients

    DEFF Research Database (Denmark)

    Cejkova, J.; Novak, M.; Stepanek, F.

    2014-01-01

    The chemotactic movement of decanol droplets in aqueous solutions of sodium decanoate in response to concentration gradients of NaCl has been investigated. Key parameters of the chemotactic response, namely the induction time and the migration velocity, have been evaluated as a function of the so...

  5. Modelling of sea salt concentrations over Europe: key uncertainties and comparison with observations

    Directory of Open Access Journals (Sweden)

    S. Tsyro

    2011-10-01

    Full Text Available Sea salt aerosol can significantly affect the air quality. Sea salt can cause enhanced concentrations of particulate matter and change particle chemical composition, in particular in coastal areas, and therefore should be accounted for in air quality modelling. We have used an EMEP Unified model to calculate sea salt concentrations and depositions over Europe, focusing on studying the effects of uncertainties in sea salt production and lifetime on calculation results. Model calculations of sea salt have been compared with EMEP observations of sodium concentrations in air and precipitation for a four year period, from 2004 to 2007, including size (fine/coarse resolved EMEP intensive measurements in 2006 and 2007. In the presented calculations, sodium air concentrations are between 8% and 46% overestimated, whereas concentrations in precipitation are systematically underestimated by 65–70% for years 2004–2007. A series of model tests have been performed to investigate the reasons for this underestimation, but further studies are needed. The model is found to reproduce the spatial distribution of Na+ in air and precipitation over Europe fairly well, and to capture most of sea salt episodes. The paper presents the main findings from a series of tests in which we compare several different sea spray source functions and also look at the effects of meteorological input and the efficiency of removal processes on calculated sea salt concentrations. Finally, sea salt calculations with the EMEP model have been compared with results from the SILAM model and observations for 2007. While the models produce quite close results for Na+ at the majority of 26 measurement sites, discrepancies in terms of bias and temporal correlation are also found. Those differences are believed to occur due to differences in the representation of source function and size distribution of sea salt aerosol, different meteorology used for model runs and the

  6. Salt concentrations during water production resulting from CO2 storage

    DEFF Research Database (Denmark)

    Walter, Lena; Class, Holger; Binning, Philip John

    2014-01-01

    production well. In this approach the salt concentrations at water production wells depending on different parameters are determined for the assumption of a 2D model domain accounting for groundwater flow. Recognized ignorance resulting from grid resolution is qualitatively studied and statistical...... polynomial chaos expansion (aPC) [1]. The aPC is applied in this work to provide probabilities and risk values for salt concentrations at the water production well. Mixing in the aquifer has a key influence on the salt concentration at the well. Dispersion and diffusion are the relevant processes for mixing....... Nowak: Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliability Engineering & System Safety 106 (2012) 179–190....

  7. Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration

    Directory of Open Access Journals (Sweden)

    Jefferson Luiz de Aguiar Paes

    2014-10-01

    Full Text Available Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.

  8. Temperature and concentration effects on the solvophobic solvation of methane in aqueous salt solutions.

    Science.gov (United States)

    Holzmann, Jörg; Ludwig, Ralf; Geiger, Alfons; Paschek, Dietmar

    2008-12-22

    We perform molecular dynamics (MD) simulations of aqueous salt (NaCl) solutions using the TIP4P-Ew water model (Horn et al., J. Chem. Phys. 2004, 120, 9665) covering broad temperature and concentration ranges extending deeply into the supercooled region. In particular we study the effect of temperature and salt concentration on the solvation of methane at infinite dilution. The salt effect on methane's solvation free energy, solvation enthalpy and entropy, as well as their temperature dependence is found to be semi-quantitatively in accordance with the data of Ben-Naim and Yaacobi (J. Phys. Chem. 1974, 78, 170). To distinguish the influence of local (in close proximity to ions) and global effects, we partition the salt solutions into ion influenced hydration shell regions and bulk water. The chemical potential of methane is systematically affected by the presence of salt in both sub volumes, emphasizing the importance of the global volume contraction due to electrostriction effects. This observation is correlated with systematic structural alterations similar to water under pressure. The observed electrostriction effects are found to become increasingly pronounced under cold (supercooled) conditions. We find that the influence of temperature and salt induced global density changes on the solvation properties of methane is well recovered by simple scaling relation based on predictions of the information theory model of Garde et al. (Phys. Rev. Let. 1999, 77, 4966).

  9. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    Science.gov (United States)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  10. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    Science.gov (United States)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  11. On-site production of a dialysis bath from dry salts. Results of solute concentration control by routine clinical chemistry

    OpenAIRE

    Beige, Joachim; Lutter, Steffen; Martus, Peter

    2012-01-01

    Background. Dialysis bath production, at least in Europe, is currently based on pre-produced aqueous solutions of dialysis salts (concentrate), which are re-handled by dialysis machines to deliver the final dialysate concentrations. Because of the logistics of aqueous solution creation, a large amount of transportation capacity is needed. Therefore, we changed this process to use pre-produced dry salt containers and to undertake in-clinic dissolution of salts and concentration production. Bec...

  12. Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: influence of salt concentration.

    Science.gov (United States)

    Rivadeneyra, M A; Delgado, R; Párraga, J; Ramos-Cormenza, A; Delgado, G

    2006-01-01

    Precipitation of minerals was shown by 22 species of moderately halophilic bacteria in both solid and liquid artificial marine salts media at different concentration and different Mg2+-to-Ca2+ ratio. Precipitation of minerals was observed for all the bacteria used. When salt concentration increased, the quantity and the size of bioliths decreased, the time required for precipitation being increased. The precipitated minerals were calcite, magnesian calcite, aragonite, dolomite, monohydrocalcite, hydromagnesite and struvite in variable proportions, depending on the bacterial species, the salinity and the physical state of the medium; the Mg content of the magnesian calcite also varied according to the same parameters. The precipitated minerals do not correspond exactly to those which could be precipitated inorganically according to the saturation indices. Scanning electron microscopy showed that the formation of the bioliths is initiated by grouping of calcified cells and that the dominant final morphologies were spherulitic with fibrous radiated interiors. It was demonstrated that moderately halophilic bacteria play an active role in the precipitation of carbonates and we hypothesize about this process of biomineralization.

  13. DC electrophoresis and viscosity of realistic salt-free concentrated suspensions: non-equilibrium dissociation-association processes.

    Science.gov (United States)

    Ruiz-Reina, Emilio; Carrique, Félix; Lechuga, Luis

    2014-03-01

    Most of the suspensions usually found in industrial applications are concentrated, aqueous and in contact with the atmospheric CO2. The case of suspensions with a high concentration of added salt is relatively well understood and has been considered in many studies. In this work we are concerned with the case of concentrated suspensions that have no ions different than: (1) those stemming from the charged colloidal particles (the added counterions, that counterbalance their surface charge); (2) the H(+) and OH(-) ions from water dissociation, and (3) the ions generated by the atmospheric CO2 contamination. We call this kind of systems "realistic salt-free suspensions". We show some theoretical results about the electrophoretic mobility of a colloidal particle and the electroviscous effect of realistic salt-free concentrated suspensions. The theoretical framework is based on a cell model that accounts for particle-particle interactions in concentrated suspensions, which has been successfully applied to many different phenomena in concentrated suspensions. On the other hand, the water dissociation and CO2 contamination can be described following two different levels of approximation: (a) by local equilibrium mass-action equations, because it is supposed that the reactions are so fast that chemical equilibrium is attained everywhere in the suspension, or (b) by non-equilibrium dissociation-association kinetic equations, because it is considered that some reactions are not rapid enough to ensure local chemical equilibrium. Both approaches give rise to different results in the range from dilute to semidilute suspensions, causing possible discrepancies when comparing standard theories and experiments concerning transport properties of realistic salt-free suspensions.

  14. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  15. Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt.

    Science.gov (United States)

    Almeida, Nalinda; Rakesh, Leela; Zhao, Jin

    2014-01-01

    Thermo reversible sol-gel transitions of hydroxypropylmethylcellulose (HPMC) are critical for many pharmaceutical, cosmetic, and food applications. This study examined the effects of salt (NaCl and CaCl₂) on the viscoelastic properties of concentrated low molecular weight HPMC solutions and found that the gelation temperature decreased linearly as a function of salt concentrations, independent of valency of cations and the mole concentration of anions. Thermal analysis showed that the depression of melting temperature can be fitted for both NaCl and CaCl₂ as a function of the total number of ions by a single linear curve, which was consistent with the melting point depression of pure water by NaCl and CaCl₂, but with a higher linear slope.

  16. Low salt concentrations activate AMP-activated protein kinase in mouse macula densa cells.

    Science.gov (United States)

    Cook, Natasha; Fraser, Scott A; Katerelos, Marina; Katsis, Frosa; Gleich, Kurt; Mount, Peter F; Steinberg, Gregory R; Levidiotis, Vicki; Kemp, Bruce E; Power, David A

    2009-04-01

    The energy-sensing kinase AMP-activated protein kinase (AMPK) is associated with the sodium-potassium-chloride cotransporter NKCC2 in the kidney and phosphorylates it on a regulatory site in vitro. To identify a potential role for AMPK in salt sensing at the macula densa, we have used the murine macula densa cell line MMDD1. In this cell line, AMPK was rapidly activated by isosmolar low-salt conditions. In contrast to the known salt-sensing pathway in the macula densa, AMPK activation occurred in the presence of either low sodium or low chloride and was unaffected by inhibition of NKCC2 with bumetanide. Assays using recombinant AMPK demonstrated activation of an upstream kinase by isosmolar low salt. The specific calcium/calmodulin-dependent kinase kinase inhibitor STO-609 failed to suppress AMPK activation, suggesting that it was not part of the signal pathway. AMPK activation was associated with increased phosphorylation of the specific substrate acetyl-CoA carboxylase (ACC) at Ser(79), as well as increased NKCC2 phosphorylation at Ser(126). AMPK activation due to low salt concentrations was inhibited by an adenovirus construct encoding a kinase dead mutant of AMPK, leading to reduced ACC Ser(79) and NKCC2 Ser(126) phosphorylation. This work demonstrates that AMPK activation in macula densa-like cells occurs via isosmolar changes in sodium or chloride concentration, leading to phosphorylation of ACC and NKCC2. Phosphorylation of these substrates in vivo is predicted to increase intracellular chloride and so reduce the effect of salt restriction on tubuloglomerular feedback and renin secretion.

  17. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew

    2011-01-01

    conductance for low salt concentrations, we identify a minimum conductance value before saturation at a value independent of salt concentration in the dilute limit. Our model self-consistently couples chemical equilibrium models of the silica wall and the electrolyte bulk, and is parameterized by only...

  18. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Lund Jensen, Kristian; Kristensen, Jesper Toft; Crumrine, Andrew Michael

    2011-01-01

    the nanochannel conductance at low salt concentrations and identify a conductance minimum before saturation at a value independent of salt concentration in the dilute limit. Via the Poisson-Boltzmann equation, our model self-consistently couples chemical-equilibrium dissociation models of the silica wall...

  19. Regional increase of mean chloride concentration in water due to the application of deicing salt.

    Science.gov (United States)

    Thunqvist, Eva-Lotta

    2004-06-05

    The Directive of the European Parliament and of the Council 2000/60/EC: Establishing a Framework for Community Action in the Field of Water Policy, states that it is necessary to consider human activities within a river basin in order to prevent and reduce the spreading of pollutants and to achieve good water status. This paper shows a simple method to estimate the environmental pressure from the deicing of roads as steady state chloride concentration in water. The data processed are presented using GIS. The result showed that the contribution of deicing salt is of importance for the chloride concentration on a regional scale. The increase in chloride concentration is also compared to the background concentration and other sources of chloride within the river basin. Road salt applied by the Swedish National Road Administration (SNRA) accounts for more than half of the total chloride load for the river basin investigated. The method presented may easily be generalised to a national scale for monitoring the environmental effects of deicing salt application.

  20. High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis.

    Science.gov (United States)

    Gaddy, Jennifer A; Radin, Jana N; Loh, John T; Zhang, Feng; Washington, M Kay; Peek, Richard M; Algood, Holly M Scott; Cover, Timothy L

    2013-06-01

    Persistent colonization of the human stomach with Helicobacter pylori is a risk factor for gastric adenocarcinoma, and H. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT) cagA(+) H. pylori strain or an isogenic cagA mutant strain and maintained the animals on a regular diet or a high-salt diet. At 4 months postinfection, gastric adenocarcinoma was detected in 100% of the WT-infected/high-salt-diet animals, 58% of WT-infected/regular-diet animals, and none of the animals infected with the cagA mutant strain (P diet had more severe gastric inflammation, higher gastric pH, increased parietal cell loss, increased gastric expression of interleukin 1β (IL-1β), and decreased gastric expression of hepcidin and hydrogen potassium ATPase (H,K-ATPase) compared to those on a regular diet. Previous studies have detected upregulation of CagA synthesis in response to increased salt concentrations in the bacterial culture medium, and, concordant with the in vitro results, we detected increased cagA transcription in vivo in animals fed a high-salt diet compared to those on a regular diet. Animals infected with the cagA mutant strain had low levels of gastric inflammation and did not develop hypochlorhydria. These results indicate that a high-salt diet potentiates the carcinogenic effects of cagA(+) H. pylori strains.

  1. High-efficiency solar concentrator

    Science.gov (United States)

    Lansing, F. L.; Dorman, J.

    1980-01-01

    A new type of solar concentrator is presented using liquid lenses and simple translational tracking mechanism. The concentrator achieves a 100:1 nominal concentration ratio and is compared in performance with a flat-plate collector having two sheets of glazing and non-selective coating. The results of the thermal analysis show that higher temperatures can be obtained with the concentrator than is possible with the non-concentrator flat-plate type. Furthermore, the thermal efficiency far exceeds that of the comparative flat-plate type for all operating conditions.

  2. Non-monotonic swelling of surface grafted hydrogels induced by pH and/or salt concentration

    Energy Technology Data Exchange (ETDEWEB)

    Longo, Gabriel S. [Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, La Plata (Argentina); Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Olvera de la Cruz, Monica [Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Szleifer, I., E-mail: igal@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-09-28

    We use a molecular theory to study the thermodynamics of a weak-polyacid hydrogel film that is chemically grafted to a solid surface. We investigate the response of the material to changes in the pH and salt concentration of the buffer solution. Our results show that the pH-triggered swelling of the hydrogel film has a non-monotonic dependence on the acidity of the bath solution. At most salt concentrations, the thickness of the hydrogel film presents a maximum when the pH of the solution is increased from acidic values. The quantitative details of such swelling behavior, which is not observed when the film is physically deposited on the surface, depend on the molecular architecture of the polymer network. This swelling-deswelling transition is the consequence of the complex interplay between the chemical free energy (acid-base equilibrium), the electrostatic repulsions between charged monomers, which are both modulated by the absorption of ions, and the ability of the polymer network to regulate charge and control its volume (molecular organization). In the absence of such competition, for example, for high salt concentrations, the film swells monotonically with increasing pH. A deswelling-swelling transition is similarly predicted as a function of the salt concentration at intermediate pH values. This reentrant behavior, which is due to the coupling between charge regulation and the two opposing effects triggered by salt concentration (screening electrostatic interactions and charging/discharging the acid groups), is similar to that found in end-grafted weak polyelectrolyte layers. Understanding how to control the response of the material to different stimuli, in terms of its molecular structure and local chemical composition, can help the targeted design of applications with extended functionality. We describe the response of the material to an applied pressure and an electric potential. We present profiles that outline the local chemical composition of the

  3. Incomplete Ion Dissociation Underlies the Weakened Attraction between DNA Helices at High Spermidine Concentrations

    OpenAIRE

    Yang,Jie; Rau, Donald C

    2005-01-01

    We have investigated the salt sensitivity of the hexagonal-to-cholesteric phase transition of spermidine-condensed DNA. This transition precedes the resolubilization of precipitated DNA that occurs at high spermidine concentration. The sensitivity of the critical spermidine concentration at the transition point to the anion species and the NaCl concentration indicates that ion pairing of this trivalent ion underlies this unusual transition. Osmotic pressure measurements of spermidine salt sol...

  4. Inorganic Contaminant Concentrations and Body Condition in Wintering Waterfowl from Great Salt Lake, Utah

    Science.gov (United States)

    Vest, J.; Conover, M.; Perschon, C.; Luft, J.

    2006-12-01

    The Great Salt Lake (GSL) is the fourth largest terminal lake in the world and is an important region for migratory and breeding waterbirds. Because the GSL is a closed basin, contaminants associated with industrial and urban development may accumulate in this system. Recently, water and sediment samples from the GSL revealed high concentrations of Hg and Se and methylmercury concentrations in GSL water samples were among the highest ever recorded in surface water by the USGS Mercury Laboratory. Thus, GSL waterbirds are likely exposed to these contaminants and elevated contaminant concentrations may adversely affect survival and reproduction in waterfowl. Our objectives were to 1) estimate mercury (Hg), selenium (Se), cadmium (Cd), copper (Cu), and zinc (Zn) concentrations in wintering waterfowl from GSL and, 2) evaluate relationships between measures of waterfowl body condition and internal organ masses (hereafter body condition) with trace metal concentrations. We collected common goldeneye (COGO), northern shoveler (NSHO), and American green-winged teal (AGWT) from the GSL during early winter. We used ICP-MS to analyze liver and muscle tissue samples for contaminant concentrations. We developed species specific regression models for each of 5 condition indices, including ingesta-free plucked body mass (IFPBM), abdominal fat mass, spleen, liver, and pancreas masses. Independent variables were comprised of Hg, Se, Cd, Cu, and Zn and we included sex and age as covariates in each regression. We used Akaike's Information Criterion adjusted for small sample size to select best and competing models. Subsequently, we used partial correlations to depict inverse relationships identified in competing models. Hg concentrations in COGO and NSHO muscle tissue generally exceeded or approached the 1 ppm wet weight (ww) threshold considered unsafe for human consumption in fish and game. Hg concentrations in liver tissue exceeded or were among the highest reported in published

  5. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    Science.gov (United States)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy

  6. Elevation of Fasting Ghrelin in Healthy Human Subjects Consuming a High-Salt Diet: A Novel Mechanism of Obesity?

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-05-01

    Full Text Available Overweight/obesity is a chronic disease that carries an increased risk of hypertension, diabetes mellitus, and premature death. Several epidemiological studies have demonstrated a clear relationship between salt intake and obesity, but the pathophysiologic mechanisms remain unknown. We hypothesized that ghrelin, which regulates appetite, food intake, and fat deposition, becomes elevated when one consumes a high-salt diet, contributing to the progression of obesity. We, therefore, investigated fasting ghrelin concentrations during a high-salt diet. Thirty-eight non-obese and normotensive subjects (aged 25 to 50 years were selected from a rural community in Northern China. They were sequentially maintained on a normal diet for three days at baseline, a low-salt diet for seven days (3 g/day, NaCl, then a high-salt diet for seven days (18 g/day. The concentration of plasma ghrelin was measured using an immunoenzyme method (ELISA. High-salt intake significantly increased fasting ghrelin levels, which were higher during the high-salt diet (320.7 ± 30.6 pg/mL than during the low-salt diet (172.9 ± 8.9 pg/mL. The comparison of ghrelin levels between the different salt diets was statistically-significantly different (p < 0.01. A positive correlation between 24-h urinary sodium excretion and fasting ghrelin levels was demonstrated. Our data indicate that a high-salt diet elevates fasting ghrelin in healthy human subjects, which may be a novel underlying mechanism of obesity.

  7. Probing the Salt Concentration Dependent Nucelobase Distribution in a Single-Stranded DNA-Single-Walled Carbon Nanotube Hybrid with Molecular Dynamics.

    Science.gov (United States)

    Ghosh, Soumadwip; Patel, Nisheet; Chakrabarti, Rajarshi

    2016-01-28

    The hybrids of single-walled carbon nanotube (SWCNT) and single stranded DNA (ssDNA) are novel nanoscale materials having remarkable applications in nanotechnology. The absorption of nucleobases on the surface of a SWCNT depends strongly on the ionic strength of the medium. In this paper, using atomistic molecular dynamics we have shown that at low salt concentration ssDNA wraps on the surface of SWCNT through hydrophobic π-π stacking between the DNA bases and the sp(2)-hybridized carbon atoms of the carbon nanotube. At high salt concentration, however, the DNA molecule adopts a partially folded structure and the ssDNA-SWCNT wrapping gets weakened significantly due to the self-stacking of the DNA bases. Our study can find relevance in CNT mediated gene delivery processes where subsequent unwrapping of the gene from its carrier is anticipated across the cell membrane regulated by an existing salt concentration gradient.

  8. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    Science.gov (United States)

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  9. Sessile multidroplets and salt droplets under high tangential electric fields

    Science.gov (United States)

    Xie, Guoxin; He, Feng; Liu, Xiang; Si, Lina; Guo, Dan

    2016-01-01

    Understanding the interaction behaviors between sessile droplets under imposed high voltages is very important in many practical situations, e.g., microfluidic devices and the degradation/aging problems of outdoor high-power applications. In the present work, the droplet coalescence, the discharge activity and the surface thermal distribution response between sessile multidroplets and chloride salt droplets under high tangential electric fields have been investigated with infrared thermography, high-speed photography and pulse current measurement. Obvious polarity effects on the discharge path direction and the temperature change in the droplets in the initial stage after discharge initiation were observed due to the anodic dissolution of metal ions from the electrode. In the case of sessile aligned multidroplets, the discharge path direction could affect the location of initial droplet coalescence. The smaller unmerged droplet would be drained into the merged large droplet as a result from the pressure difference inside the droplets rather than the asymmetric temperature change due to discharge. The discharge inception voltages and the temperature variations for two salt droplets closely correlated with the ionization degree of the salt, as well as the interfacial electrochemical reactions near the electrodes. Mechanisms of these observed phenomena were discussed. PMID:27121926

  10. Brief Analysis on Industrial Salt Production Using Concentrated Seawater after Desalination%海水淡化后浓海水工厂化制盐浅析

    Institute of Scientific and Technical Information of China (English)

    麻炳辉; 白永浩

    2013-01-01

    文章介绍了海水淡化和海盐生产的基本工艺,分析了海水淡化后浓海水制盐的几种方法,指出浓海水滩晒制盐是现阶段解决浓海水排放难题的一条有效途径.利用浓海水为原料进行滩晒制盐,尤其是利用二次反渗透法排出的高浓度海水,对制盐企业的技术进步具有一定的积极作用,同时也具有较好的经济和社会效益.%The production technology of seawater desalination and solar salt was introduced in this paper. The salt production using concentrated seawater after desalination was discussed. The effective solution to discharged concentrated seawater was bringing it to solar salt works. The salt production using concentrated seawater, especially the high concentration seawater discharged from second - level reverse osmosis, will promote the production technology level in solar salt works. It will be profitable and have well social benefit.

  11. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, Anoop [Terrafore Inc.

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  12. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models.

    Science.gov (United States)

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR).

  13. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-01

    Chloride ion, the majority salt in nature, is ˜52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10-9m2s-1]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ˜(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ˜50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  14. Enhanced Salt Removal by Unipolar Ion Conduction in Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Kim, Bumjoo; Chen, Lan; Han, Jongyoon

    2016-05-09

    Chloride ion, the majority salt in nature, is ∼52% faster than sodium ion (DNa+ = 1.33, DCl- = 2.03[10(-9)m(2)s(-1)]). Yet, current electrochemical desalination technologies (e.g. electrodialysis) rely on bipolar ion conduction, removing one pair of the cation and the anion simultaneously. Here, we demonstrate that novel ion concentration polarization desalination can enhance salt removal under a given current by implementing unipolar ion conduction: conducting only cations (or anions) with the unipolar ion exchange membrane stack. Combining theoretical analysis, experiment, and numerical modeling, we elucidate that this enhanced salt removal can shift current utilization (ratio between desalted ions and ions conducted through electrodes) and corresponding energy efficiency by the factor ∼(D- - D+)/(D- + D+). Specifically for desalting NaCl, this enhancement of unipolar cation conduction saves power consumption by ∼50% in overlimiting regime, compared with conventional electrodialysis. Recognizing and utilizing differences between unipolar and bipolar ion conductions have significant implications not only on electromembrane desalination, but also energy harvesting applications (e.g. reverse electrodialysis).

  15. Is bile salt-dependent lipase concentration in serum of any help in pancreatic cancer diagnosis?

    Science.gov (United States)

    Lombardo, D; Montalto, G; Roudani, S; Mas, E; Laugier, R; Sbarra, V; Abouakil, N

    1993-09-01

    The diagnostic value of bile salt-dependent lipase for pancreatic diseases was tested in sera of 187 patients. Of these patients, 76 suffered from pancreatic carcinoma, 43 from nonmalignant liver diseases (cirrhosis and chronic hepatitis), 18 from acute pancreatitis, and 20 from chronic pancreatitis. The remaining subjects were controls without pancreatic pathology. Bile salt-dependent lipase was determined by a sandwich enzyme-linked immunosorbent assay using polyclonal antibodies. Amylase and CA 19-9 antigen were also determined. In sera from control patients, the mean level of bile salt-dependent lipase was 1.5 micrograms/L. This level is quite similar to that of patients with benign liver diseases (1.1 micrograms/L) and with chronic pancreatitis (1.4 micrograms/L), but it was raised to 3.5 micrograms/L in patients with acute pancreatitis and decreased to 0.5 microgram/L in subjects with pancreatic adenocarcinoma. Thirty percent of control subjects and 73% of cancer patients had a bile salt-dependent lipase serum level below the cutoff value of 0.5 microgram/L. In acute pancreatitis, 11 of 16 subjects had levels above 1.5 micrograms/L. Amylase level largely increased in acute pancreatitis but was normal in all other groups. Concerning CA 19-9 antigen, 65% of control patients and > 80% of patients with nonmalignant pancreatic or liver diseases had normal levels. In sera from cancer patients, 80% presented with high levels. Accordingly, 36 of 38 patients with pancreatic cancer had either low serum levels of bile salt-dependent lipase ( 37 U/ml; sensitivity 95%).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. High salt intake damages the heart through activation of cardiac (pro renin receptors even at an early stage of hypertension.

    Directory of Open Access Journals (Sweden)

    Yuka Hayakawa

    Full Text Available It has not yet been fully elucidated whether cardiac tissue levels of prorenin, renin and (PRR are activated in hypertension with a high salt intake. We hypothesized that a high salt intake activates the cardiac tissue renin angiotensin system and prorenin-(prorenin receptor system, and damages the heart at an early stage of hypertension.Wistar Kyoto rats (WKY and spontaneously hypertensive rats (SHR received regular (normal-salt diet, 0.9% and high-salt (8.9% chow for 6 weeks from 6 to 12 weeks of age. The systolic blood pressure, plasma renin activity (PRA and plasma angiotensin II concentration were measured, and the protein expressions of prorenin, (prorenin receptor, angiotensinogen, angiotensin II AT1 receptor, ERK1/2, TGF-β, p38MAPK and HSP27 in the myocardium were investigated. The cardiac function was assessed by echocardiography, and histological analysis of the myocardium was performed.The high-salt diet significantly increased the systolic blood pressure, and significantly reduced the PRA and plasma angiotensin II concentration both in the WKYs and SHRs. Cardiac expressions of prorenin, renin, (PRR, angiotensinogen, angiotensin II AT1 receptor, phosphorylated (p-ERK1/2, p-p38MAPK, TGF-β and p-HSP27 were significantly increased by the high salt diet both in the WKYs and SHRs. The high-salt diet significantly increased the interventricular septum thickness and cardiomyocyte size, and accelerated cardiac interstitial and perivascular fibrosis both in the WKYs and SHRs. On the other hand, dilatation of left ventricular end-diastolic dimension and impairment of left ventricular fractional shortening was shown only in salt loaded SHRs.The high-salt diet markedly accelerated cardiac damage through the stimulation of cardiac (PRR and angiotensin II AT1 receptor by increasing tissue prorenin, renin and angiotensinogen and the activation of ERK1/2, TGF-β, p38MAPK and HSP27 under higher blood pressure.

  17. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models

    Energy Technology Data Exchange (ETDEWEB)

    Agha, Nezha Ahmad; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Material Research, Division of Metallic Biomaterials, Max-Planck-Str. 1, 21502 Geesthacht (Germany); Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich [University of Hamburg, Department of Earth Sciences, Grindelallee 48, 20146 Hamburg (Germany); Willumeit-Römer, Regine [Helmholtz-Zentrum Geesthacht, Institute of Material Research, Division of Metallic Biomaterials, Max-Planck-Str. 1, 21502 Geesthacht (Germany)

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). - Highlights: • Influence of blood buffering salts on magnesium degradation was studied. • CaCl{sub 2} reduced the degradation rate by Ca–PO{sub 4} layer formation. • MgSO{sub 4} influenced the morphology of the degradation interface. • NaHCO{sub 3} induced the formation of MgCO{sub 3} as a degradation product.

  18. Estimating Concentrations of Road-Salt Constituents in Highway-Runoff from Measurements of Specific Conductance

    Science.gov (United States)

    Granato, Gregory E.; Smith, Kirk P.

    1999-01-01

    Discrete or composite samples of highway runoff may not adequately represent in-storm water-quality fluctuations because continuous records of water stage, specific conductance, pH, and temperature of the runoff indicate that these properties fluctuate substantially during a storm. Continuous records of water-quality properties can be used to maximize the information obtained about the stormwater runoff system being studied and can provide the context needed to interpret analyses of water samples. Concentrations of the road-salt constituents calcium, sodium, and chloride in highway runoff were estimated from theoretical and empirical relations between specific conductance and the concentrations of these ions. These relations were examined using the analysis of 233 highwayrunoff samples collected from August 1988 through March 1995 at four highway-drainage monitoring stations along State Route 25 in southeastern Massachusetts. Theoretically, the specific conductance of a water sample is the sum of the individual conductances attributed to each ionic species in solution-the product of the concentrations of each ion in milliequivalents per liter (meq/L) multiplied by the equivalent ionic conductance at infinite dilution-thereby establishing the principle of superposition. Superposition provides an estimate of actual specific conductance that is within measurement error throughout the conductance range of many natural waters, with errors of less than ?5 percent below 1,000 microsiemens per centimeter (?S/cm) and ?10 percent between 1,000 and 4,000 ?S/cm if all major ionic constituents are accounted for. A semi-empirical method (adjusted superposition) was used to adjust for concentration effects-superposition-method prediction errors at high and low concentrations-and to relate measured specific conductance to that calculated using superposition. The adjusted superposition method, which was developed to interpret the State Route 25 highway-runoff records, accounts for

  19. Reproductive parameters and oxidative stress status of male rats fed with low and high salt diet

    Directory of Open Access Journals (Sweden)

    Bolanle O Iranloye

    2013-01-01

    Full Text Available Background: Deficiency of minerals and micronutrients has been reported to impair the process of spermatogenesis. Historically, salt has been used by women on their husbands to increase their libido, however, the role of salt diet on sperm parameters are yet to be ascertained. AIM: The present study was designed to determine the effect of low and high salt diet on sperm parameters, oxidative status and reproductive hormone levels of male rats. Materials and Methods: A total of 18 rats were divided into three groups: Group I: (control received 0.3% salt diet, Group II: low salt (received 0.14% salt diet and Group III: high salt (received 8% salt diet. All animals were treated for 6 weeks; after which epididymal sperm parameters; oxidative stress markers (malondialdehyde, glutathione, catalase and superoxide dismutase in the testes and epididymal tissues, as well as follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone levels were determined. Results: The results showed decreased sperm count in the low salt diet rats while increased sperm count was observed in the high salt diet treated rats. Both low salt and high salt diet fed rats exhibited increased abnormal sperm cells and increased epididymal oxidative stress when compared with their respective control. FSH and testosterone levels were increased in the high salt fed rats while LH level was decreased when compared with the control values. Conclusion: This study suggests that both low and high salt diet play a negative role in the fertility of male rats.

  20. High-temperature molten salt thermal energy storage systems

    Science.gov (United States)

    Petri, R. J.; Claar, T. D.; Tison, R. R.; Marianowski, L. G.

    1980-02-01

    The results of comparative screening studies of candidate molten carbonate salts as phase change materials (PCM) for advanced solar thermal energy storage applications at 540 to 870 C (1004 to 1600 F) and steam Rankine electric generation at 400 to 540 C (752 to 1004 F) are presented. Alkali carbonates are attractive as latent heat storage materials because of their relatively high storage capacity and thermal conductivity, low corrosivity, moderate cost, and safe and simple handling requirements. Salts were tested in 0.1 kWhr lab scale modules and evaluated on the basis of discharge heat flux, solidification temperature range, thermal cycling stability, and compatibility with containment materials. The feasibility of using a distributed network of high conductivity material to increase the heat flux through the layer of solidified salt was evaluated. The thermal performance of an 8 kWhr thermal energy storage (TES) module containing LiKCO3 remained very stable throughout 5650 hours and 130 charge/discharge cycles at 480 to 535 C (896 to 995 F). A TES utilization concept of an electrical generation peaking subsystem composed of a multistage condensing steam turbine and a TES subsystem with a separate power conversion loop was defined. Conceptual designs for a 100 MW sub e TES peaking system providing steam at 316 C, 427 C, and 454 C (600 F, 800 F, and 850 F) at 3.79 million Pa (550 psia) were developed and evaluated. Areas requiring further investigation have also been identified.

  1. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daaro, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2013-07-01

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorr - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.

  2. On-site production of a dialysis bath from dry salts. Results of solute concentration control by routine clinical chemistry.

    Science.gov (United States)

    Beige, Joachim; Lutter, Steffen; Martus, Peter

    2012-06-01

    BACKGROUND.: Dialysis bath production, at least in Europe, is currently based on pre-produced aqueous solutions of dialysis salts (concentrate), which are re-handled by dialysis machines to deliver the final dialysate concentrations. Because of the logistics of aqueous solution creation, a large amount of transportation capacity is needed. Therefore, we changed this process to use pre-produced dry salt containers and to undertake in-clinic dissolution of salts and concentration production. Because no preclinical control for solute concentrations is available so far using this new process, we employed routine clinical chemistry analytics. METHODS.: We report the controls of solute concentrations created by these methods for 746 samples of concentrates and 151 dissolution processes. For analysis, absolute and relative deviations from prescriptions and associations between the solute concentrations and the density controls of the concentrates were computed. RESULTS.: A total of 98% of all the concentrates were found to be within a 10% margin of error from the prescriptions. The mean relative deviation of the solute concentrations from the prescriptions was -0.635 ± 3.83%. Among particular solutes, sodium had the highest maximum deviation of 26 mmol/L from the prescription. Calcium and magnesium (small concentration solutes) exhibited small systematic errors of 1.37 and 1.22%, respectively. Other solute concentrations showed random errors only and no associations with the mean relative deviations of all the solutes within a production batch or with the density controls. CONCLUSIONS.: Single solute concentration control by routine clinical chemistry after dry salt production of concentrates is a valuable additional tool for monitoring clinical risk with dialysate concentrates. The analytical random error of clinical chemistry exceeds the weight tolerance of production; therefore, such analytics cannot be used for precision production and control of dry salt containers.

  3. Deconvoluting the effects of buffer salt concentration in hydrophilic interaction chromatography on a zwitterionic stationary phase.

    Science.gov (United States)

    West, Caroline; Auroux, Emeline

    2016-08-26

    Quantitative structure-retention relationships (QSRRs) furnish a detailed and reliable description of the role and extent of different molecular interactions that can be established between the analytes and the chromatographic system. Among QSRRs, the solvation parameter model using Abraham descriptors has gained acceptance as a general tool to explore the factors affecting retention in chromatographic systems. We have previously shown how a modified version of the solvation parameter model, with two extra terms to take account of interactions occurring with ionic and ionizable species (with positive and/or negative charges), could be applied to the characterization of hydrophilic interaction chromatographic (HILIC) systems. In the present study, we will show how this methodology can be used to evaluate the effects of increasing buffer salt concentration on retention and separation in a HILIC system. A commercial stationary phase possessing a sulfobetaine zwitterionic bonded ligand (Nucleodur HILIC) was used with a mobile phase composed of 80% acetonitrile and 20% pwwH4 ammonium acetate buffer, with aqueous buffer concentrations varying from 10 to 100mM, resulting in overall concentrations ranging from 2 to 20mM in the mobile phase. Retention factors were measured for a selection of 76 probe analytes. The chosen compounds are small molecules presenting a wide diversity of molecular structures and are relevant to biomedical and pharmaceutical applications. The QSRR models obtained allow for a rationalization of the interactions contributing to retention and separation in the HILIC system considered and shed some light on the effect of varying buffer salt concentration, namely the progressive transition from ion-exchange and electrostatic-repulsion mechanisms to hydrophilic partitioning.

  4. Effect of different salt concentration on total Bacterial count and heavy metal Composition of the Fish Hydrocynus spp.

    Directory of Open Access Journals (Sweden)

    H.H. ABBAS BAKHIET

    2013-03-01

    Full Text Available This piece of work was done in an attempt to evaluate the issue of the traditional fish salting practice in the Sudan. Fassiekh was selected as one of the widely consumed salted fish product, of great preference among Sudanese consumers. The study was directed towards the study of the heavy metal concentration and the microbiological analysis of fresh fish and fassiekh to compare the effect of the different salt concentrations. One kind of fish species preferable by Sudanese consumers in fasseikh making was selected for this study namely hydrocynus spp (kass. Samples were taken from Elmawrada fish market, and subjected to three salt concentration levels (15%, 20%and 25% by weight to achieve the goals of the study. Fresh fish were carefully handled throughout the preparation process; they were eviscerated and cleaned up and divided in to two groups then three sup groups to be treated with different salt concentration. After the fermentation process sample were taken to do the heavy metal concentration analysis and microbiological analysis. It was observed that the heavy metal (Arsenic, Cadmium and lead concentration were not significant. But the microbiological analysis result showed significant decrease in total bacterial count in all concentrations.

  5. Impacts of different salt source and concentrations on germination and seedling growth of many pumpkin seeds used as rootstoch in Iran

    Directory of Open Access Journals (Sweden)

    Dadashpour Ahmad

    2012-01-01

    Full Text Available The effects of different salt sources (C Cl2, NaCl, and KCl and concentrations, as measured by electrical conductivity, (0, "control", 1, 3, 5, 7 and 9 dS m-1 on seed germination and seedling growth of “Ferro”, “Obez”, “RS 841” and “Strong Tosa F1” pumpkin varieties used as rootstock were investigated in this study. The results showed that germination rate, root length, shoot length, fresh root weight, dry root weight, fresh shoot weight and dry shoot weights tend to decrease when the electrical conductivity of the solution is higher than 5 dS m-1, independent of salt sources and in all of the varieties. Three days after seeding, a germination ratio of 5 % was obtained from RS 841 variety in all salt source and concentrations, while a germination ratio over 50 % was obtained in “Strong Tosa” variety for the same conditions except CaCl2 salt source. Nevertheless, seeds germinated in medium having high concentrations of CaCl2 had lower germination rate and poor seedling growth, compared to media having the same concentrations of NaCl and KCl. It was concluded that all of the varieties studied were more sensitive to the concentrations prepared using CaCl2 than that of the KCl, and NaCl.

  6. High Flux Central Receivers of Molten Salts for the New Generation of Commercial Stand-Alone Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lata, J. M.; Rodriguez, M.; Alvarez de Lara, M.

    2006-07-01

    Molten salt technology represents nowadays the most cost-effective technology for electricity generation for stand-alone Solar Power Plants. Although this technology can be applied to both concentrating technologies, Parabolic TROUGH and Central Receiver Systems (CRS), CRS technology can take advantages from its high concentration, allowing to work at high temperatures and therefore with a reduction in the size and cost of the storage system. The Receiver System is the door for which the energy passes from the field collector to the thermal-electric cycle; it represents, therefore, the core of the CRS System. SENER and CIEMAT are joining forces to face up the challenge of sizing and designing a molten salt Receiver of high thermal efficiency, able to operate at high fluxes without compromising its durability (at least 25 years). The advances in design and studies of different materials, to operate at high fluxes using molten salts as heat transfer fluid, will be presented hereafter. (Author)

  7. High-Salt Intake Suppressed MicroRNA-133a Expression in Dahl SS Rat Myocardium

    Directory of Open Access Journals (Sweden)

    Tong-Shuai Guo

    2014-06-01

    Full Text Available Salt-sensitive individuals show earlier and more serious cardiac damage than nonsalt-sensitive ones. Some studies have suggested that microRNA-133a could reduce cardiac hypertrophy and myocardial fibrosis. The current study aims to investigate the different functions of high-salt intake on salt-sensitive (SS rats and Sprague-Dawley (SD rats and the involvement of microRNA-133a in these roles. After high-salt intervention, the left ventricular mass (LVW and left ventricular mass index (LVMI of the salt-sensitive high salt (SHS group were obviously higher than those of the salt-sensitive low salt (SLS group. However, the difference between the Sprague-Dawley high salt (DHS group and the Sprague-Dawley low salt (DLS group was not significant. Compared with SLS group, collagen I and connective tissue growth factor (CTGF in the heart of SHS group were significantly higher, whereas no statistical difference was observed between the DHS group and the DLS group. Compared with low-salt diet, microRNA-133a in the heart of both strains were significantly decreased, but that in the SHS group decreased more significantly. These results suggest that high salt intervention could down-regulate the expression of myocardial microRNA-133a, which may be one of the mechanisms involved in myocardial fibrosis in salt-sensitive hypertension.

  8. Determinação espectrofotométrica de alumínio em concentrados salinos utilizados em hemodiálise empregando pré-concentração em fluxo Spectrophotometric aluminium determination in high salts concentrations solution used in hemodyalisis emploing preconcentration in flow injection

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Silva Pereira

    2002-11-01

    Full Text Available An automatic flow injection procedure for spectrophotometric aluminium determination in purified water and solutions containing high salts concentrations used for hemodyalisis treatment was developed. The method was base on reaction of Al3+ with cianine eriochrome R (ECR after preconcentration using the AG50W-X8 cationic-exchange resin. Elution was carried out using a 1 % (m/v calcium chloride solution. The manifold comprised an automatic proporcional injector controlled by a computer equipped with an eletronic interface and software written in QuicBASIC 4.5 with facilities to control the injector and perform data acquisition. Samples with concentration ranging from 4.96 to 19.90 µg L-1 Al were analyzed and recoveries between 88 and 113% were obtained by using the standard addition method. Other profitable analytical characteristics such as a relative standard deviation 1.3 % (n = 10 for a typical sample 14.5 µg L-1 Al, a linear response ranging up to 60.0 µg L-1Al, and a sampling throughput of 10 determinations per hour were achieved. A detection limit of 4.2 µg L-1 Al was estimated as suggested by IUPAC.

  9. Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)

    Energy Technology Data Exchange (ETDEWEB)

    Michael McDowell; Alan Schwartz

    2010-03-31

    The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary

  10. Determination of bile salt critical micellization concentration on the road to drug discovery.

    Science.gov (United States)

    Natalini, Benedetto; Sardella, Roccaldo; Gioiello, Antimo; Ianni, Federica; Di Michele, Alessandro; Marinozzi, Maura

    2014-01-01

    With the discovery of the bile acid (BA)-activated nuclear and membrane receptors, the role of BAs as signalling molecules in important paracrine and endocrine networks has been fully documented in the last decade. Besides regulating their own synthesis and transport, BAs have been demonstrated being involved in triggering the adaptive response to cholestasis and other insults to liver. More to the point, their recognized ability to control the general energy-related metabolism and inflammation processes has contributed to justify the renewed interest towards this class of amphiphilic steroidal compounds. All these evidences feed a continuing interest in the BA research aimed at designing and synthesizing new side chain- and body-modified derivatives endowed with improved biological and physico-chemical profiles, as well as with proper ADMET behaviour. In this context, the micellar aggregation of BAs, and the respective critical micellization concentration (CMC) value (determined on the BA sodium salt, BS), is considered a key parameter that needs to be determined in the preliminary phase of compound characterization, being implicated in cytotoxicity issues. An extraordinary variety of different analytical techniques and methods have been proposed along the years with the aim of better identifying the start of the self-aggregation process of BS monomers. The unicity of the physico-chemical nature of such class of compounds can be invoked to explain this unusual interest. Accordingly, a number of both invasive and non-invasive approaches have been developed along with a limited number of indirect chromatographic-based estimation strategies. Worth to be mentioned among the non-invasive determination methods are those based on potentiometry, freezing point depression, surface tension, nuclear magnetic resonance, viscosimetry, turbidimetry, microcalorimetry, refractometry, conductimetry, spectrophotometry, cholesterol solubilization, and monoglucuronide solubilization

  11. STATISTICAL OPTIMIZATION OF MINERAL SALT AND UREA CONCENTRATION FOR CELLULASE AND XYLANASE PRODUCTION BY Penicillium echinulatum IN SUBMERGED FERMENTATION

    OpenAIRE

    L. dos Reis; Ritter,C. E. T.; R. C. Fontana; Camassola,M.; A. J. P. Dillon

    2015-01-01

    Abstract Penicillium echinulatum S1M29 is a mutant with cellulase and xylanase production comparable to the most studied microorganisms in the literature. However, its potential to produce these enzymes has not been fully investigated. This study aimed at optimizing salt and urea concentrations in the mineral solution, employing the response surface methodology. A 25-1 Fractional Factorial Design and a 23 Central Composite Design were applied to elucidate the effect of salts and urea in enzym...

  12. High salt meals in staff canteens of salt policy makers: observational study

    NARCIS (Netherlands)

    Brewster, L.M.; Berentzen, C.A.; van Montfrans, G.A.

    2011-01-01

    To assess the salt content of hot meals served at the institutions of salt policy makers in the Netherlands. Observational study. 18 canteens at the Department of Health, the Health Council, the Food and Consumer Product Safety Authority, university hospitals, and affiliated non-university hospitals

  13. High salt meals in staff canteens of salt policy makers: observational study

    NARCIS (Netherlands)

    Brewster, L.M.; Berentzen, C.A.; van Montfrans, G.A.

    2011-01-01

    To assess the salt content of hot meals served at the institutions of salt policy makers in the Netherlands. Observational study. 18 canteens at the Department of Health, the Health Council, the Food and Consumer Product Safety Authority, university hospitals, and affiliated non-university

  14. “Use salt and foods high in salt sparingly”: a food-based dietary ...

    African Journals Online (AJOL)

    2013-04-12

    Apr 12, 2013 ... have caused 9% of all deaths in South Africa in 2000. Fifty ... salt reduction is needed to reduce national blood pressure levels in the future. Legislating the ... excrete almost all ingested electrolytes and much of the .... Table I: Daily salt intake as determined from urinary sodium excretion in three surveys.

  15. Incomplete ion dissociation underlies the weakened attraction between DNA helices at high spermidine concentrations.

    Science.gov (United States)

    Yang, Jie; Rau, Donald C

    2005-09-01

    We have investigated the salt sensitivity of the hexagonal-to-cholesteric phase transition of spermidine-condensed DNA. This transition precedes the resolubilization of precipitated DNA that occurs at high spermidine concentration. The sensitivity of the critical spermidine concentration at the transition point to the anion species and the NaCl concentration indicates that ion pairing of this trivalent ion underlies this unusual transition. Osmotic pressure measurements of spermidine salt solutions are consistent with this interpretation. Spermidine salts are not fully dissociated at higher concentrations. The competition for DNA binding among the fully charged trivalent ion and the lesser charged complex species at higher concentrations significantly weakens attraction between DNA helices in the condensed state. This is contrary to the suggestion that the binding of spermidine at higher concentrations causes DNA overcharging and consequent electrostatic repulsion.

  16. Design and development of a high-concentration photovoltaic concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, R C

    1982-04-01

    The design and development of a high concentration photovoltaic concentrator module is discussed. The design concept described herein incorporates a curved groove domed Fresnel lens, a high concentration etched multiple vertical junction (EMVJ) solar cell and a passively cooled direct-bonded copper cell mount all packaged in a plastic module. Two seven inch diameter 1200x domed Fresnel lenses were fabricated using single point diamond turning technology. Testing at both GE and Sandia confirmed optical transmission efficiencies of over 83%. Samples of the latest available EMVJ cells were mounted and installed, with a domed Fresnel lens, into a prototype module. Subsequent testing demonstrated net lens-cell efficiencies of 10 to 13%. As a result of this program, salient conclusions have been formulated as to this technology.

  17. DNA duplex length and salt concentration dependence of enthalpy-entropy compensation parameters for DNA melting.

    Science.gov (United States)

    Starikov, E B; Nordén, Bengt

    2009-08-20

    Systematical differential calorimetry experiments on DNA oligomers with different lengths and placed in water solutions with various added salt concentrations may, in principle, unravel important information about the structure and dynamics of the DNA and their water-counterion surrounding. With this in mind, to reinterpret the most recent results of calorimetric experiments on DNA oligomers of such a kind, the recent enthalpy-entropy compensation theory has been used. It is demonstrated that the application of the latter could enable direct estimation of thermodynamic parameters of the microphase transitions connected to the changes in DNA dynamical regimes versus the length of the biopolymers and the ionic strengths of their water solutions, and this calls for much more systematical experimental and theoretical studies in this field.

  18. DNA Duplex Length and Salt Concentration Dependence of Enthalpy−Entropy Compensation Parameters for DNA Melting

    KAUST Repository

    Starikov, E. B.

    2009-08-20

    Systematical differential calorimetry experiments on DNA oligomers with different lengths and placed in water solutions with various added salt concentrations may, in principle, unravel important information about the structure and dynamics of the DNA and their water-counterion surrounding. With this in mind, to reinterpret the most recent results of calorimetric experiments on DNA oligomers of such a kind, the recent enthalpy-entropy compensation theory has been used. It is demonstrated that the application of the latter could enable direct estimation of thermodynamic parameters of the microphase transitions connected to the changes in DNA dynamical regimes versus the length of the biopolymers and the ionic strengths of their water solutions, and this calls for much more systematical experimental and theoretical studies in this field. © 2009 American Chemical Society.

  19. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution.

    Science.gov (United States)

    Arosio, Paolo; Jaquet, Baptiste; Wu, Hua; Morbidelli, Massimo

    2012-07-01

    Protein-salt interactions regulate protein solubility and stability and in particular several protein related processes, such as salting-out and aggregation. Using an IgG2 monoclonal antibody as a model multi-domain therapeutic protein, we have investigated the salt effect on the reversible formation of protein clusters with small aggregation number. The oligomer formation has been quantified by size exclusion chromatography (SEC). It is found that the salt effect is strongly ion specific and pH dependent. In particular, at pH 3.0 only anions affect the aggregation propensity, while at pH 4.0 both anions and cations influence the aggregation rate. The ranking of the anion effect follows the Hofmeister series with the only exception of sulfate, while that of the cation effect does not. In addition, a maximum of the aggregation propensity as a function of salt concentration is observed (i.e., presence of re-stabilization). By correlating the aggregation kinetics to the experimental investigation of protein structure and surface energy, it is shown that changes in pH and salt concentration induce aggregation not only through charge screening and various solvation forces, but also through the formation of protein intermediates characterized by partially ordered structures and certain degrees of hydrophobicity. The complex interaction between the solvation forces and such protein secondary structures induced by salts explains the observed experimental results relative to re-stabilization at large salt concentrations, ion specificity and the peculiar behavior of the sulfate anion.

  20. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    Directory of Open Access Journals (Sweden)

    H. Struthers

    2010-11-01

    Full Text Available Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70–90° N of 86×106 m−2 s−1 (mass emission increase of 23 μg m−2 s−1. This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between −0.2 and −0.4 W m−2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  1. Effect of acidification and salt concentration on two black brined olives from Sicily (cv moresca and giarraffa)

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F. V.; Piscopo, A.; Poiana, M.

    2010-07-01

    In the present work the effects of different brining treatments on mature table olives during natural fermentation were evaluated. The considered olive cultivars are typical of Sicily: Moresca and Giarraffa. They were harvested at pigmented state. The carpological data revealed their good quality as table olives. Natural fermentation was performed with or without acidification up to pH 4, and at 8% and 15% salt concentrations. The physical, chemical and microbiological changes in olives and brines were monitored throughout the processing period. The acidification affected and selected the microbial population and maintained the low pH necessary for the hygienic safety of the product. In fact, in Moresca brines,the lactic acid bacteria totally disappeared after 60 days of fermentation while in Giarraffa they maintained their presence in the brines up to 180 days with a value between 10{sup 4} UFC/mL and 106 UFC/mL, depending on the salt concentration. The microbial population was also affected by the polyphenol content, which was different between the cultivars. The color of olive fruits was greatly influenced by acidification and less by salt concentration. The addition of salt showed a different influence on the studied cultivars, in fact only the chemical analyses of Giarraffa showed a significant difference between the two levels of salt concentration. (Author) 19 refs.

  2. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiClsbnd KCl eutectic salt

    Science.gov (United States)

    Hoover, Robert O.; Yoon, Dalsung; Phongikaroon, Supathorn

    2016-08-01

    Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiClsbnd KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl3sbnd ZrCl4sbnd LiClsbnd KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl4 show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl4 and ZrCl2 as the function of temperature can be expressed as DZr(IV) = 0.00046exp(-3716/T) and DZr(II) = 0.027exp(-5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl4 at different temperatures were calculated. Furthermore, the results from the mixture of UCl3 and ZrCl4 indicate that high concentrations of UCl3 hide the features of the smaller concentration of ZrCl4 while Zr peaks become prominent as the concentration of ZrCl4 increases.

  3. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiCl−KCl eutectic salt

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, Robert O. [Department of Chemical and Materials Engineering and Nuclear Engineering Program, University of Idaho, Center for Advanced Energy Studies, 995 University Blvd, Idaho Falls, ID 8340 (United States); Yoon, Dalsung [Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, 401 West Main St., Richmond, VA 23284 (United States); Phongikaroon, Supathorn, E-mail: sphongikaroon@vcu.edu [Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, 401 West Main St., Richmond, VA 23284 (United States)

    2016-08-01

    Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiCl−KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl{sub 3}−ZrCl{sub 4}−LiCl−KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl{sub 4} show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl{sub 4} and ZrCl{sub 2} as the function of temperature can be expressed as D{sub Zr(IV)} = 0.00046exp(−3716/T) and D{sub Zr(II)} = 0.027exp(−5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl{sub 4} at different temperatures were calculated. Furthermore, the results from the mixture of UCl{sub 3} and ZrCl{sub 4} indicate that high concentrations of UCl{sub 3} hide the features of the smaller concentration of ZrCl{sub 4} while Zr peaks become prominent as the concentration of ZrCl{sub 4} increases.

  4. Gelation of barramundi (Lates calcarifer) minced muscle as affected by pressure and thermal treatments at low salt concentration.

    Science.gov (United States)

    Truong, Binh Q; Buckow, Roman; Nguyen, Minh H; Furst, John

    2017-08-01

    Barramundi minced muscle with salt 10 g kg(-1) and 20 g kg(-1) added is gelled by different combinations of pressurisation (300, 400 and 500 MPa at 4 °C for 10 min), cooking (0.1 MPa, 90 °C for 30 min) and setting (0.1 MPa, 50 °C for 2 h) to improve mechanical properties of barramundi gels and reduce salt added to barramundi gels. At the low salt concentration of 10 g kg(-1) , pressurisation prior to cooking (P-C) treatment induced barramundi gels with comparable mechanical properties and water-holding capacity to those of conventional heat induced (HI) gels with 20 g kg(-1) added salt. At salt concentration of 20 g kg(-1) , pressurisation prior to setting (P-S) and P-C gels exhibited higher mechanical properties and water-holding capacity as compared to HI gels. Scanning electron microscopy images showed a smooth and dense microstructure of P-C and P-S gels whereas the microstructure of HI gels is rough and less compact. P-C treatment can reduce salt concentration added to barramundi gels to 10 g kg(-1) . P-S and P-C treatment can result in higher mechanical and functional properties of barramundi gels at conventional salt concentration (20 g kg(-1) ) as compared to HI gels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    Science.gov (United States)

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  6. High-Pressure Synthesis of a Pentazolate Salt

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Brad A.; Stavrou, Elissaios; Crowhurst, Jonathan C.; Zaug, Joseph M.; Prakapenka, Vitali B.; Oleynik, Ivan I.

    2017-01-24

    The pentazolates, the last all-nitrogen members of the azole series, have been notoriously elusive for the last hundred years despite enormous efforts to make these compounds in either gas or condensed phases. Here, we report a successful synthesis of a solid state compound consisting of isolated pentazolate anions N5–, which is achieved by compressing and laser heating cesium azide (CsN3) mixed with N2 cryogenic liquid in a diamond anvil cell. The experiment was guided by theory, which predicted the transformation of the mixture at high pressures to a new compound, cesium pentazolate salt (CsN5). Electron transfer from Cs atoms to N5 rings enables both aromaticity in the pentazolates as well as ionic bonding in the CsN5 crystal. This work provides critical insight into the role of extreme conditions in exploring unusual bonding routes that ultimately lead to the formation of novel high nitrogen content species.

  7. Microbial population responses to pH and salt shock during phenols degradation under high salt conditions revealed by RISA and AFDRA.

    Science.gov (United States)

    Yan, Bin; Wang, Ping; Liao, Wenchao; Ye, Qian; Xu, Meilan; Zhou, Jiti

    2013-01-01

    The responses of microbial community to pH and salt shock during phenols degradation under high salt conditions were revealed by two DNA fingerprint methods, i.e. ribosomal intergenic spacer analysis (RISA) and amplified functional DNA restriction analysis (AFDRA), together with 16S rDNA clone library analysis. It was shown that the phenols removal rate was improved with increasing NaCl concentration from 0 to 50 mg/L, and could remain at a high level even in the presence of 100 mg/L NaCl. The degradation efficiency remained stable under neutral conditions (pH 7.0-9.0), but decreased sharply under acidic (below pH 5.0) or more alkaline conditions (above pH 10.0). The community structure was dramatically changed during salt fluctuations, with Halomonas sp. and Marinobacter sp. as the predominant salt-tolerant species. Meanwhile, Marinobacter sp. and Alcaligenes faecalis sp. were the major species which might play the key role for stabilizing the treatment systems under different pH conditions. Moreover, the changes of phenol hydroxylase genes were analyzed by AFDRA, which showed that these functional genes were substantially different under any shock conditions.

  8. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  9. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  10. Nitrification of an industrial wastewater in a moving-bed biofilm reactor: effect of salt concentration.

    Science.gov (United States)

    Vendramel, Simone; Dezotti, Marcia; Sant'Anna, Geraldo L

    2011-01-01

    Nitrification of wastewaters from chemical industries can pose some challenges due to the presence of inhibitory compounds. Some wastewaters, besides their organic complexity present variable levels of salt concentration. In order to investigate the effect of salt (NaCl) content on the nitrification of a conventional biologically treated industrial wastewater, a bench scale moving-bed biofilm reactor was operated on a sequencing batch mode. The wastewater presenting a chloride content of 0.05 g l(-1) was supplemented with NaCl up to 12 g Cl(-) l(-1). The reactor operation cycle was: filling (5 min), aeration (12 or 24h), settling (5 min) and drawing (5 min). Each experimental run was conducted for 3 to 6 months to address problems related to the inherent wastewater variability and process stabilization. A PLC system assured automatic operation and control of the pertinent process variables. Data obtained from selected batch experiments were adjusted by a kinetic model, which considered ammonia, nitrite and nitrate variations. The average performance results indicated that nitrification efficiency was not influenced by chloride content in the range of 0.05 to 6 g Cl(-) l(-1) and remained around 90%. When the chloride content was 12 g Cl(-) l(-1), a significant drop in the nitrification efficiency was observed, even operating with a reaction period of 24 h. Also, a negative effect of the wastewater organic matter content on nitrification efficiency was observed, which was probably caused by growth of heterotrophs in detriment of autotrophs and nitrification inhibition by residual chemicals.

  11. Effect of Heat Treatment and Salt Concentration on Free Amino Acids Composition of Sudanese Braided (Muddaffara Cheese during Storage

    Directory of Open Access Journals (Sweden)

    Mohamed O. E. Altahir

    2014-08-01

    Full Text Available The aim of this study was to assess the effect of heat treatment and salt concentrations (0, 5, and 10% on the free amino acids (FAA composition of Sudanese braided cheese (BC ripened for up to 3 months at 5±2°C. Heat and salt concentration significantly affected the FAA of braided cheese. The free amino acids concentrations of BC ripened in 0%, 5%, and 10% salted whey (SW were significantly fluctuated. Under ripening conditions tested (salt level + time, braided cheese made from pasteurized milk (BCPM had consistently lower values of FAA than braided cheese made from raw milk (BCRM. In fresh cheese, the major FAA in BCRM were Glu (36.12 nmol/ml, Leu (26.77nmol/ml and Lys (14.51 nmol/ml while the major ones in BCPM were Lys (2.94 nmol/ml and Ala (2.45 nmol/ml. BCPM stored in 10% SW had shorter quality life compared to that stored in 5% salted whey.

  12. Photoactive bile salts with critical micellar concentration in the micromolar range.

    Science.gov (United States)

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  13. Biaxial testing of canine annulus fibrosus tissue under changing salt concentrations

    Directory of Open Access Journals (Sweden)

    Jacques M. Huyghe

    2010-03-01

    Full Text Available The in vivo mechanics of the annulus fibrosus of the intervertebral disc is one of biaxial rather than uniaxial loading. The material properties of the annulus are intimately linked to the osmolarity in the tissue. This paper presents biaxial relaxation experiments of canine annulus fibrosus tissue under stepwise changes of external salt concentration. The force tracings show that stresses are strongly dependent on time, salt concentration and orientation. The force tracing signature of are sponse to a change instrain, is one of a jumpin stress that relaxes partly as the new strain is maintained. The force tracing signature of a stepwise change in salt concentration is a progressive monotonous change in stress towards a new equilibrium value. Although the number of samples does not allow any definitive quantitative conclusions, the trends may shed light on the complex interaction among the directionality of forces, strains and fiber orientation on one hand, and on the other hand, the osmolarity of the tissue. The dual response to a change in strain is understood as an immediate response before fluid flows in or out of the tissue, followed by a progressive readjustment of the fluid content in time because of the gradient in fluid chemical potential between the tissue and the surrounding solution.A mecânica in vivo do anel fibroso do disco intervertebral é baseada em carregamento biaxial ao invés de uniaxial. As propriedades materiais do anel estão intimamente ligadas à osmolaridade no tecido. O artigo apresenta experimentos de relaxação biaxiais do anel fibroso de um tecido canino sob mudanças abruptas na concentração externa de sal. A assinatura da força devido à mudança brusca de salinidade resulta em uma progressiva e monótona mudança na tensão em direção a um novo valor de equilíbrio. Embora o número de amostras não permita nenhuma conclusão quantitativa, as tendências podem abrir uma luz no entendimento das intera

  14. High Iodine and Salt Intakes and Obesity do not Modify the Thyroid Function in Mexican Schoolchildren.

    Science.gov (United States)

    Méndez-Villa, Lorena; García-Solís, Pablo; Solís-S, Juan Carlos; García-Gutiérrez, David Gustavo; Pérez-Mora, Valeria Alejandra; Robles-Osorio, Ludivina; Sampson-Zaldívar, Eduardo

    2016-08-01

    Mexico is considered as a nutritional transition country with a high prevalence of overweight and obesity, and recent studies have reported a high iodine intake in children. Both high iodine intake and obesity have been associated with thyroid dysfunction. Our aim was to assess iodine and salt intake and thyroid function in Mexican schoolchildren with normal weight and obesity. A cross-sectional study was performed during 2012-2013 in schoolchildren from Queretaro, Mexico. Six hundred seventy-eight schoolchildren were evaluated to obtain nutrition status, urinary iodine concentration (UIC) and thyroid volume (TVol). The prevalence of overweight and obesity was 47.3 %, the median UIC was 428 μg/L and TVol was normal in all schoolchildren; however, obese girls had a higher TVol than normal weight at the age of 8, 10 and 12 years. A subsample of schoolchildren was divided in 6-8 and 9-12-year-old groups, in order to compare thyroid function (thyrotropin, free T4, and anti-thyroid antibodies); iodine and salt intake were estimated with 24-h urinary samples. No differences in thyroid function were observed in both age groups. In the 6-8-year-old group, obese schoolchildren had higher iodine intake than normal-weight children (415.5 vs. 269.1 μg/day, p < 0.05), but no differences in salt intake. In contrast, in the 9-12-year-old group, obese schoolchildren had higher salt intake than normal-weight children (6.2 vs. 3.8 g/day, p < 0.05), but no differences in iodine intake. Dietary patterns could explain the differences between both age groups. Further studies are needed to identify the main sources of iodine intake in Mexican populations.

  15. Producing a highly concentrated coal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Mokudzu, K.; Atsudzima, T.; Kiyedzuka, Y.

    1983-06-03

    Coal from wet and dry grinding is loaded into a mixer with a mixer arm with the acquisition of a highly concentrated suspension. Foamers (for instance, alkylbenzolsulfonate) and foam stabilizers (for instance diethanolamide of lauric acid) are added in a ratio of 10 to (2 to 5). The high fluidity of the suspension is maintained by injecting air into the suspension and an 80 percent concentration of the suspension is achieved.

  16. Several Organic Salts with High Two-Photon Active

    Institute of Scientific and Technical Information of China (English)

    TIAN, Yu-Peng; JIANG, Min-Hua; WANG, He-Zhou; FANG, Qi

    2001-01-01

    Several organic salts with D-A molecular structure and different counterion have been prepared and experimentally investigated. The two-photon induced frequency-upconverted spectra and two-photon pumped lasing are measured for the organic salt solutions in various solvents. The results indicate that counterions have influence on their stability and lasing property.

  17. Characterization of immunoglobulin adsorption on dextran-grafted hydrophobic charge-induction resins: Cross-effects of ligand density and pH/salt concentration.

    Science.gov (United States)

    Liu, Tao; Lin, Dong-Qiang; Zhang, Qi-Lei; Yao, Shan-Jing

    2015-05-29

    Hydrophobic charge-induction chromatography (HCIC) is a promising technology for antibody purification. New HCIC resins MMI-B-XL with dextran-grafted agarose gel as the matrix and 2-mercapto-1-methyl-imidazole (MMI) as the functional ligand were prepared with different ligand densities. The adsorption behaviors (static adsorption equilibrium and adsorption kinetics) of human immunoglobulin G (hIgG) on series of MMI-B-XL resins at varying pHs and salt concentrations were investigated. The cross-effects of solid phase property (ligand density) and liquid phase conditions (pH and salt concentration) were focused. The results showed that the new resins had typical pH-dependent and salt-tolerant characteristics for hIgG adsorption, but differences were found for the resins with different ligand densities. For MMI-B-XL resins with higher ligand density, an obvious higher saturated adsorption capacity (Qm) and effective pore diffusivity (De) could be obtained, which were less affected at pH 7.0∼8.9 but dropped drastically at pH 5.0. Salt addition had less influence on protein adsorption onto MMI-B-XL with higher ligand density. Qm and De both reached minimum values at 0.2mol/L NaCl for all MMI-B-XL resins tested. The results of dynamic binding in the column demonstrated that MMI-B-XL with higher ligand density had better performance for hIgG adsorption, especially under high linear velocities. The mechanism of the cross-effects of ligand density and pH/salt concentration on IgG adsorption was discussed, which provides new insights into protein adsorption and mass transport for dextran-grafted HCIC resins. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order t...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method.......A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...

  19. Study of composite adsorbent synthesis and characterization for the removal of Cs in the high-salt and high-radioactive wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jimin; Lee, Keun Young; Kim, Kwang Wook; Lee, Eil Hee; Chung, Dong Yong; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hyun, Jae Hyuk [Chungnam National University, Daejeon (Korea, Republic of)

    2017-03-15

    For the removal of cesium (Cs) from high radioactive/high salt-laden liquid waste, this study synthesized a highly efficient composite adsorbent (potassium cobalt ferrocyanide (PCFC)-loaded chabazite (CHA)) and evaluated its applicability. The composite adsorbent used CHA, which could accommodate Cs as well as other molecules, as a supporting material and was synthesized by immobilizing the PCFC in the pores of CHA through stepwise impregnation/precipitation with CoCl{sub 2} and K{sub 4}Fe (CN){sub 6} solutions. When CHA, with average particle size of more than 10 μm, is used in synthesizing the composite adsorbent, the PCFC particles were immobilized in a stable form. Also, the physical stability of the composite adsorbent was improved by optimizing the washing methodology to increase the purity of the composite adsorbent during the synthesis. The composite adsorbent obtained from the optimal synthesis showed a high adsorption rate of Cs in both fresh water (salt-free condition) and seawater (high-salt condition), and had a relatively high value of distribution coefficient (larger than 10{sup 4} mL·g{sup -1}) regardless of the salt concentration. Therefore, the composite adsorbent synthesized in this study is an optimized material considering both the high selectivity of PCFC on Cs and the physical stability of CHA. It is proved that this composite adsorbent can remove rapidly Cs contained in high radioactive/high salt-laden liquid waste with high efficiency.

  20. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.

    Science.gov (United States)

    Suss, Matthew E; Biesheuvel, P M; Baumann, Theodore F; Stadermann, Michael; Santiago, Juan G

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements.

  1. Materials corrosion of high temperature alloys immersed in 600C binary nitrate salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-03-01

    Thirteen high temperature alloys were immersion tested in a 60/40 binary nitrate salt. Samples were interval tested up to 3000 hours at 600ÀC with air as the ullage gas. Chemical analysis of the molten salt indicated lower nitrite concentrations present in the salt, as predicted by the equilibrium equation. Corrosion rates were generally low for all alloys. Corrosion products were identified using x-ray diffraction and electron microprobe analysis. Fe-Cr based alloys tended to form mixtures of sodium and iron oxides, while Fe-Ni/Cr alloys had similar corrosion products plus oxides of nickel and chromium. Nickel based alloys primarily formed NiO, with chromium oxides near the oxide/base alloy interface. In625 exhibited similar corrosion performance in relation to previous tests, lending confidence in comparisons between past and present experiments. HA230 exhibited internal oxidation that consisted of a nickel/chromium oxide. Alloys with significant aluminum alloying tended to exhibit superior performance, due formation of a thin alumina layer. Soluble corrosion products of chromium, molybdenum, and tungsten were also formed and are thought to be a significant factor in alloy performance.

  2. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    Science.gov (United States)

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-01

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.

  3. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Windl, Wolfgang [The Ohio State Univ., Columbus, OH (United States); Blue, Thomas [The Ohio State Univ., Columbus, OH (United States)

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 °C in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multiscale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multiscale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  4. [Impact of high salt stress on Apocynum venetum growth and ionic homeostasis].

    Science.gov (United States)

    Ning, Jian-Feng; Zheng, Qing-Song; Yang, Shao-Hai; Zou, Xian-Zhong; Sun, Li-Li; Chen, Yong

    2010-02-01

    A pot experiment was conducted in a net room to study the growth responses and related mechanisms of Apocynum venetum treated with different concentrations (100-400 mmol x L(-1)) of NaCl for 30 days. The biomass accumulation, growth rate, root vigor, salt ion content and mineral ion uptake and distribution were measured. Compared with the control, treatment 100 mmol x L(-1) NaCl had lesser effects on the plant dry mass, but decreased the plant fresh mass and growth rate significantly. With increasing NaCl concentration in the medium, the plant dry mass, fresh mass, and growth rate all decreased significantly. The plant root vigor was obviously higher under 100 and 200 mmol x L(-1) NaCl stress, but decreased significantly under 300-400 mmol x L(-1) NaCl stress. With the increase of NaCl concentration in the medium, the Na+ content in A. venetum roots, stems and leaves increased gradually while the K+ content had a slow decrease, the Ca2+ and Mg2+ contents in leaves decreased obviously, and the Ca2+ content in stems and the Mg2+ content in roots increased in different degree. Under NaCl stress, the K+ /Na+, Ca2+/Na+, and Mg2+/Na+ ratios in roots, stems, and leaves decreased markedly, while the selective absorption and transportation of K+ and Ca2+ increased significantly. The stronger ability of salt exclusion and the higher selective absorption and transportation of K+ and Ca2+ were the key adaptive mechanisms of high salt-tolerance of A. venetum.

  5. Ion size effects on the electric double layer of a spherical particle in a realistic salt-free concentrated suspension.

    Science.gov (United States)

    Roa, Rafael; Carrique, Félix; Ruiz-Reina, Emilio

    2011-05-28

    A new modified Poisson-Boltzmann equation accounting for the finite size of the ions valid for realistic salt-free concentrated suspensions has been derived, extending the formalism developed for pure salt-free suspensions [Roa et al., Phys. Chem. Chem. Phys., 2011, 13, 3960-3968] to real experimental conditions. These realistic suspensions include water dissociation ions and those generated by atmospheric carbon dioxide contamination, in addition to the added counterions released by the particles to the solution. The electric potential at the particle surface will be calculated for different ion sizes and compared with classical Poisson-Boltzmann predictions for point-like ions, as a function of particle charge and volume fraction. The realistic predictions turn out to be essential to achieve a closer picture of real salt-free suspensions, and even more important when ionic size effects are incorporated to the electric double layer description. We think that both corrections have to be taken into account when developing new realistic electrokinetic models, and surely will help in the comparison with experiments for low-salt or realistic salt-free systems. This journal is © the Owner Societies 2011

  6. 无机诱导法去除反渗透浓缩液中结垢盐类%Scaling salts removal in RO concentrates by inorganic induced method

    Institute of Scientific and Technical Information of China (English)

    杨庆峰

    2005-01-01

    @@ Introduction Scaling on heat transfer surface[1,2] and reverse osmosis (RO) membrane surface[3] is one of the main problems in desalination processes. To mitigate scales, anti-scalants are often used. For RO system, membrane concentrates contain high amounts of dissolved salts and anti-scalants. Commonly, concentrates are discharged directly.

  7. Current-voltage behaviour of bipolar membranes in concentrated salt solutions investigated with chronopotentiometry

    NARCIS (Netherlands)

    Wilhelm, F.G.; Vegt, van der N.F.A.; Strathmann, H.; Wessling, M.

    2002-01-01

    Chronopotentiometry is used as a tool to obtain detailed information on the transport behaviour of the bipolar membrane BP-1 in solutions of high sodium chloride concentration above the limiting current density. We discuss critically the interpretation of the observed transition times. The occurrenc

  8. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    Science.gov (United States)

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3

  9. Cellulase Inhibition by High Concentrations of Monosaccharides

    DEFF Research Database (Denmark)

    Hsieh, Chia-Wen; Cannella, David; Jørgensen, Henning

    2014-01-01

    that low free water availability contributes to cellulase inhibition. Of the hydrolytic enzymes involved, those acting on the cellulose substrate, that is, exo- and endoglucanases, were the most inhibited. The β -glucosidases were shown to be less sensitive to high monosaccharide concentrations except...

  10. Low powdered activated carbon concentrations to improve MBR sludge filterability at high salinity and low temperature

    NARCIS (Netherlands)

    Remy, M.J.J.; Temmink, B.G.; Brink, van den P.; Rulkens, W.H.

    2011-01-01

    Previous research has demonstrated that powdered activated carbon (PAC), when applied at very low dosages and long SRTs, reduces membrane fouling in membrane bioreactor (MBRs). This effect was related to stronger flocs which are less sensitive to shear. Low temperature and high salt concentration ar

  11. Effect of various salts on the stability of lansoprazole, omeprazole, and pantoprazole as determined by high-performance liquid chromatography.

    Science.gov (United States)

    Ekpe, A; Jacobsen, T

    1999-09-01

    A fast and reproducible reverse-phase high-performance liquid chromatography (HPLC) assay method has been developed for the simultaneous quantitation of omeprazole, lansoprazole, and pantoprazole. The three compounds were monitored at 280 nm using Zorbax Eclipse XDB C8 (5 microns, 150 cm x 4.6 mm i.d.) and a mobile phase consisting of 700:300 phosphate buffer:acetonitrile with the pH adjusted to 7.0 with phosphoric acid. The method was used to study the effect of pH and various salts on the stability of the three compounds. The pH rate profile curve showed that pantoprazole was the most stable compound and lansoprazole the least stable. The stabilities of the compounds in salt solutions were found to be in the following order: phosphate buffer bicarbonate < sodium chloride < water. The rate of degradation had a direct relationship with the H+ and salt concentration.

  12. High salt intake in pregnancy alters maturation of glomeruli in the rat offspring

    Directory of Open Access Journals (Sweden)

    Nadezda Koleganova

    2012-06-01

    Full Text Available There is currently discussion on the optimal salt intake and uncertainty whether both high and low salt intake is associated with adverse effects. One aspect has so far not be considered, i.e. the potential impact of salt intake during pregnancy on kidney function and blood pressure in the offspring. Faulty fetal programming, amongst others by high or low salt intake, leads to alterations in kidney morphology and albuminuria in the offspring. A low number of glomeruli is known to cause high blood pressure later in life. It was the purpose of the present study to clarify whether very high (or low salt intakes in pregnancy affect kidney development in the offspring. Sprague-Dawley rats were fed normal (0.15%, medium (1.3%, or high (8.0% salt diet during pregnancy and weaning. The number of glomeruli (mature, immature, and S-shape bodies was assessed at 1 week postnatally. The expression of proteins of interest was assessed (by western blotting at 1 week postnatally and at term. There was no difference between the groups with respect to litter size, birth weight, and placenta size. At age 1 week the number of S-shaped bodies was significantly lower (405±308 and the number of mature glomeruli (818±405 and layers of developing glomeruli (7.1±0.6 was significantly higher in the offspring of mothers on high-salt compared to the medium or low salt groups (1044±490, 460±304, and 5.9±0.9 respectively. As a net result the total number of glomeruli was significantly lower in the offspring of mothers on high-salt (9476±1264 compared to the medium or low salt groups (11175±1920. At 1 week of age in the offspring of mothers on high salt the glomeruli were bigger compared to lower salt intake. The expression of Pax-2 (54±23% vs. 100±28% and FGF-2 (72±33% vs. 100±30% was significantly lower in the offspring of mothers on high-salt consistent with their causative role. We conclude that high maternal salt intake during pregnancy accelerates maturation

  13. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.

    Science.gov (United States)

    Almeida, C Marisa R; Mucha, Ana P; Bordalo, A A; Vasconcelos, M Teresa S D

    2008-09-15

    Influence of Halimione portulacoides, commonly found in temperate salt marshes, on sediment metal contents, speciation and potential mobility in case of sediment re-suspension was evaluated. Both colonized and non-colonized sediments were studied for total Cd, Cu, Pb and Zn contents and metal fraction exchangeable to water collected in situ. Sediment elutriates, prepared with water collected from each site, were used to simulate a sediment re-suspension phenomenon. As the characteristics and degree of contamination of sediments may influence system behaviour, salt marshes of two Portuguese estuaries, Cavado (NW coast) and Sado (SW coast), were studied. Cu, Pb and Zn contents higher than ERL (quality guideline, effect range-low) were observed, indicating potential risks for living organisms. Strong Cu-complexing organic ligands, also determined in both water and elutriates, were higher in rhizosediment elutriates, at concentrations similar, or even higher, to those of Cu. Such ligands condition metals speciation in the water column and probably also metal bioavailability. From rhizosediment significant amounts of Cu and Zn were transferred to the aqueous phase, concentrations 2-8 times higher than concentrations present in water. In contrast, elutriates of non-colonized sediment removed metals from water, Cu and Zn levels in elutriates being 2-6 times lower than initial ones. Cd and Pb levels in water and elutriates were not measurable in most cases. Results clearly indicate that metals potential solubility in the rhizosphere of plants was markedly higher than that in the surrounding sediment. The obtained results indicated that H. portulacoides presence (and probably other salt marsh plants) may cause a marked increase in metals concentrations in dissolved phase (pore water or even water column if rhizosediment is re-suspended). As salt marsh plants may be abundant in temperate and subtropical estuaries and costal lagoons, this phenomenon should not be disregard in

  14. Assessment of Candidate Molten Salt Coolants for the Advanced High Temperature Reactor (AHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Williams, D.F.

    2006-03-24

    The Advanced High-Temperature Reactor (AHTR) is a novel reactor design that utilizes the graphite-matrix high-temperature fuel of helium-cooled reactors, but provides cooling with a high-temperature fluoride salt. For applications at temperatures greater than 900 C the AHTR is also referred to as a Liquid-Salt-Cooled Very High-Temperature Reactor (LS-VHTR). This report provides an assessment of candidate salts proposed as the primary coolant for the AHTR based upon a review of physical properties, nuclear properties, and chemical factors. The physical properties most relevant for coolant service were reviewed. Key chemical factors that influence material compatibility were also analyzed for the purpose of screening salt candidates. Some simple screening factors related to the nuclear properties of salts were also developed. The moderating ratio and neutron-absorption cross-section were compiled for each salt. The short-lived activation products, long-lived transmutation activity, and reactivity coefficients associated with various salt candidates were estimated using a computational model. Table A presents a summary of the properties of the candidate coolant salts. Certain factors in this table, such as melting point, vapor pressure, and nuclear properties, can be viewed as stand-alone parameters for screening candidates. Heat-transfer properties are considered as a group in Sect. 3 in order to evaluate the combined effects of various factors. In the course of this review, it became apparent that the state of the properties database was strong in some areas and weak in others. A qualitative map of the state of the database and predictive capabilities is given in Table B. It is apparent that the property of thermal conductivity has the greatest uncertainty and is the most difficult to measure. The database, with respect to heat capacity, can be improved with modern instruments and modest effort. In general, ''lighter'' (low-Z) salts tend to

  15. High-dimensional entanglement concentration of twisted photon pairs High-dimensional entanglement concentration

    Science.gov (United States)

    Chen, L. X.; Wu, Q. P.

    2012-10-01

    Recently, Dada et al. reported on the experimental entanglement concentration and violation of generalized Bell inequalities with orbital angular momentum (OAM) [Nat. Phys. 7, 677 (2011)]. Here we demonstrate that the high-dimensional entanglement concentration can be performed in arbitrary OAM subspaces with selectivity. Instead of violating the generalized Bell inequalities, the working principle of present entanglement concentration is visualized by the biphoton OAM Klyshko picture, and its good performance is confirmed and quantified through the experimental Shannon dimensionalities after concentration.

  16. Effect of salt concentrations and drying methods on the quality and formation of histamine in dried milkfish (Chanos chanos).

    Science.gov (United States)

    Hwang, Chiu-Chu; Lin, Chia-Min; Kung, Hsien-Feng; Huang, Ya-Ling; Hwang, Deng-Fwu; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2012-11-15

    The effects of salt concentrations (0-15.0%) and drying methods on the quality of dried milkfish were studied. The results showed that the levels of aerobic plate counts, total coliform, water activity, moisture contents, total volatile basic nitrogen (TVBN) and thiobarbituric acid (TBA) of the dried milkfish samples prepared with the same drying method decreased with increased salt concentrations. The samples prepared with the cold-air drying method had better quality in term of lower TVBN and TBA values than those of samples prepared with other drying methods. The histamine contents in all samples, except two, prepared with various salt concentrations by different drying methods were less than 1.9 mg/100 g. Two unsalted samples prepared with hot-air drying at 35 °C and sun drying methods were found to contain histamine at levels of 249.7 and 67.4 mg/100 g, respectively, which were higher than the potential hazard level of 50 mg/100 g.

  17. [Aqueous and salt solutions of quinine of low concentrations: self-organization, physicochemical properties and actions on the electrical characteristics of neurons].

    Science.gov (United States)

    Murtazina, L I; Ryzhkina, I S; Mishina, O A; Andrianov, V V; Bogodvid, T Kh; Gaĭnutdinov, Kh L; Muranova, L N; Konovalov, A I

    2014-01-01

    Self-organization, the physicochemical properties of aqueous and salt solutions of quinine and the effects of salt quinine solutions in a wide range of concentrations (1 x 10(-22) - 1 x 10(-3) M) on the electrical characteristics of the edible snail's identified neurons were studied. Similar non-monotonic concentration dependencies of physicochemical properties of aqueous and salt quinine solutions at low concentrations are obtained. This allows of predicting the occurrence of biological effects at low concentrations of quinine solutions. Intrinsic (within 5% of the interval) changes in membrane potential, the amplitude and duration of the neuron action potential under the influence of quinine salt solutions at concentrations of quinine of 1 x 10(-20), 1 x 10(-18), 1 x 10(-10) M are found. For these concentrations the extreme values of specific conductivity and pH are shown.

  18. High salt primes a specific activation state of macrophages, M(Na)

    Science.gov (United States)

    Zhang, Wu-Chang; Zheng, Xiao-Jun; Du, Lin-Juan; Sun, Jian-Yong; Shen, Zhu-Xia; Shi, Chaoji; Sun, Shuyang; Zhang, Zhiyuan; Chen, Xiao-qing; Qin, Mu; Liu, Xu; Tao, Jun; Jia, Lijun; Fan, Heng-yu; Zhou, Bin; Yu, Ying; Ying, Hao; Hui, Lijian; Liu, Xiaolong; Yi, Xianghua; Liu, Xiaojing; Zhang, Lanjing; Duan, Sheng-Zhong

    2015-01-01

    High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na). PMID:26206316

  19. High-throughput salting-out-assisted homogeneous liquid-liquid extraction with acetonitrile for determination of baicalin in rat plasma with high-performance liquid chromatography.

    Science.gov (United States)

    Li, Tingting; Zhang, Lei; Tong, Ling; Liao, Qiongfeng

    2014-05-01

    Baicalin is the main indicator for qualitative and quantitative analysis of Scutellaria baicalensis Georgi and its prescription in vivo and in vitro. Owing to its insolubility and instability, the analysis of baicalin in biological samples is analytically challenging. Although there have been many pharmacokinetic or metabolism studies on baicalin, the current reported sample pretreatment methods are not the optimal choice with regard to absolute recovery and operation procedure. Here we report a high-throughput salting-out-assisted homogeneous liquid-liquid extraction method with acetonitrile and ammonium sulfate. Eight kinds of commonly used salts, preferred salt concentration and auxiliary solvents were investigated. The extraction efficiency in the presence of ammonium salt and auxiliary solvent (methanol) in comparison to that from the salt-free aqueous increased to above 90%. The performance of the developed pretreatment method was further evaluated through testing specificity, linearity, precision, accuracy, extraction recovery and stability. In particular, the stability investigation results proved that the operation at low temperature would no longer necessary be for salting-out-assisted homogeneous liquid-liquid extraction compared with protein precipitation, and the pretreatment method would be valuable if the compounds were unstable within matrices.

  20. Hydronephrosis causes salt-sensitive hypertension and impaired renal concentrating ability in mice

    DEFF Research Database (Denmark)

    Carlström, M; Sällström, J; Skøtt, O

    2007-01-01

    AIM: Hypertension is a common disease in the industrialized world and approximately 5% of all cases are secondary to kidney malfunction. We have recently shown that hydronephrosis due to partial unilateral ureteral obstruction (PUUO) causes salt-sensitive hypertension in rats. The mechanisms are ...

  1. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration

    Directory of Open Access Journals (Sweden)

    Frutos C. Marhuenda-Egea

    2002-01-01

    Full Text Available Alkaline p-nitrophenylphosphate phosphatase (pNPPase from the halophilic archaeobacterium Halobacterium salinarum (previously halobium was solubilized at low salt concentration in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane with 1-butanol as cosurfactant. The enzyme maintained its catalytic properties under these conditions. The thermodynamic “solvation–stabilization hypothesis” has been used to explain the bell-shaped dependence of pNPPase activity on the water content of reverse micelles, in terms of protein–solvent interactions. According to this model, the stability of the folded protein depends on a network of hydrated ions associated with acidic residues at the protein surface. At low salt concentration and low water content (the ratio of water concentration to surfactant concentration; w0, the network of hydrated ions within the reverse micelles may involve the cationic heads of the surfactant. The bell-shaped profile of the relationship between enzyme activity and w0 varied depending on the concentrations of NaCl and Mn2+.

  2. Land Use Change Impacts on Water, Salt, and Nutrient Cycles: Case Study Semiarid Southern High Plains, Texas, USA (Invited)

    Science.gov (United States)

    Scanlon, B. R.; Reedy, R. C.; Gates, J. B.

    2009-12-01

    Land use change can have large scale impacts on the salt and nutrient cycles by changing partitioning of water at the land surface, applying irrigation and fertilizers to the system, and transporting salts and nutrients to underlying aquifers. The objective of this study was to evaluate impacts of land-use change on salt and nutrient cycles by quantifying water fluxes and salt and nutrient inventories under natural ecosystems (3 boreholes) and rain-fed agroecosystem (19 boreholes) and irrigated agroecosystem (13 boreholes) in the Southern High Plains, Texas. Salt and nutrient inventories were estimated by measuring water-extractable anion concentrations in sampled boreholes and water fluxes were estimated using the chloride mass balance approach. Large salt inventories accumulated under natural ecosystems from bulk precipitation since the Pleistocene (median chloride: 2,200 kg/ha/m; perchlorate: 46 g/ha/m; sulfate: 5,600 kg/ha/m). Conversion of natural ecosystems to rainfed agroecosystems flushed these pre-existing salt reservoirs towards and into the underlying Ogallala aquifer as a result of increased recharge rates (median of 19 profiles: 24 mm/yr). The flushed zone of rain-fed profiles are characterized by extremely low inventories of salts (chloride: 15 kg/ha/m; perchlorate: 6.3 g/ha/m; sulfate, 750 kg/ha/m). Cultivation also resulted in mineralization and nitrification of soil organic nitrogen, creating nitrate reservoirs at the leading edge of the front that represent 74% of profile nitrate-N and that are being mobilized into the aquifer. Irrigation has the greatest impact on nonpoint source contaminants by adding salts and nutrients to the system. Chloride inventories under irrigated agroecosystems (median 1,600 kg/ha/m) are similar to those under natural ecosystems (median 2,200 kg/ha/m) but accumulated over decades rather than millennia typical of natural ecosystems. Peak Cl concentrations in profiles represent evapoconcentration factors of 12-42 relative

  3. A Rich Morphological Diversity of Biosaline Drying Patterns Is Generated by Different Bacterial Species, Different Salts and Concentrations: Astrobiological Implications

    Science.gov (United States)

    Gómez Gómez, José María; Medina, Jesús; Rull, Fernando

    2016-07-01

    Biosaline formations (BSFs) are complex self-organized biomineral patterns formed by "hibernating" bacteria as the biofilm that contains them dries out. They were initially described in drying biofilms of Escherichia coli cells + NaCl. Due to their intricate 3-D morphology and anhydrobiosis, these biomineralogical structures are of great interest in astrobiology. Here we report experimental data obtained with various alkali halide salts (NaF, NaCl, NaBr, LiCl, KCl, CsCl) on BSF formation with E. coli and Bacillus subtilis bacteria at two saline concentrations: 9 and 18 mg/mL. Our results indicate that, except for LiCl, which is inactive, all the salts assayed are active during BSF formation and capable of promoting the generation of distinctive drying patterns at each salt concentration. Remarkably, the BSFs produced by these two bacterial species produce characteristic architectural hallmarks as the BSF dries. The potential biogenicity of these biosaline drying patterns is studied, and the astrobiological implications of these findings are discussed.

  4. Cleaning Process Research of MVR High Concentration Salty Wastewater Treatment System

    Directory of Open Access Journals (Sweden)

    Wang Na

    2015-01-01

    Full Text Available A mechanical vapor re-compression (MVR evaporation system for the treatment of the highly-concentrated inorganic salt wastewater was investigated, and its process characteristics were analyzed taking sodium chloride salt wastewater as the treated solution. In this paper, by adding “H2O2 oxidation + filter +flash evaporation + hot filter” technology on the basis of original traditional MVR treatment system, the optimum technological conditions were determined through the experiment: The pH value is 8.5; the oxidation time is 24.0h; H2O2 amount accounting for 1% of the total wastewater under the condition of outlet test MVR system respectively fell 88.5% and 90.1% than the traditional process of effluent COD and NH3-N removal rate. MVR system for the sodium chloride salt qualified rate was increased from 83.2% to 98.2%. On the other hand, this process avoided the highly-concentrated outside of mother liquor by flashing evaporation recycling volatile solvent; the optimization process results were found to be consistent with published practical industrial data. Compared with the new process MVR system, the operation load of MVR system was lower. Therefore, the system can be used to treat the highly-concentrated inorganic salt wastewater and save energy. Therefore, the cleaning process can achieve remarkable energy saving and consumption, and reduce the pollution and the pollution and environmental protection effect.

  5. Design considerations for concentrating solar power tower systems employing molten salt.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

    2010-09-01

    The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

  6. Iodine concentration in canteen meals prepared with or without iodized salt.

    Science.gov (United States)

    Linseisen, J; Metges, C C; Schwarz, S; Wolfram, G

    1995-09-01

    In each of two university canteens differing in the use (canteen A) or non-use (canteen B) of iodized salt for food preparation, 15 mostly equal lunch meals were collected for iodide and NaCl analysis. With similar NaCl content, the meals of canteen A contained on average 6.1 micrograms I/100 g ww (8.5 micrograms I/g NaCl) more I than the meals of canteen B. Total I intake by consumption of an average meal of canteen A was estimated as 56.5 +/- 24.1 micrograms (canteen B: 17.0 +/- 9.9 micrograms). Consequently, the use of iodized salt in central catering seems to play a more important role in a sufficient I intake than assumed so far.

  7. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  8. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  9. Preparation and characterization of high salts polymer electrolyte based on poly(lithium acrylate)

    Institute of Scientific and Technical Information of China (English)

    TANG Ai-dong; HUANG Ke-long; PAN Chun-yue; LU Cui-hong

    2005-01-01

    Novel polymer electrolytes were prepared by highly mixing poly(lithium acrylate)(PPALi) with eutectic lithium salts of lithium acetate and lithium nitrate.Poly(lithium acrylate) was preparaed by inverse emulsion polymerization from crylic acid and LiOH.Phase transition temperatures were measured for all the eutectic lithium of binary system samples as a function of the concentration of Li(CH3 COO),and the mixtures exhibit the lowest phase transition temperatures of (448±2) K at about 50% (mass fraction) Li(CH3 COO).Thermogravimetry(TG)and X-ray diffraction(XRD) analysis indicate the formation of a novel polymer-salt complex.The highest conductivity(approximately 4.97 ×10-5S·cm-1) is found at room temperature with the electrolyte composition of eutectic mixture of about 80% (mass fraction),poly(lithium acrylate) 20% under quickly cooling condition,which is 150%higher than that under natural cooling condition.

  10. Influence of reaction period on a new packing SBBR process treating high-salt and phosphorus deficiency

    Science.gov (United States)

    Fu, J. X.; Zhou, M. J.; Yu, P. F.; Sun, M.; Ji, X. Q.; Zhang, J.

    2016-08-01

    In order to solve the problem of high-salt ballast wastewater treatment, Sequencing Biofilm Batch Reactor of new packing activated sludge process used to simulate an experimental study. When Chloride ion concentration is 20±2g/L, the impacts of reaction period and anoxic time (Ta) / aerobic time (To) on the effect of the treatment process and sludge activity were investigated. The results show the salt acclimation SBBR process can effectively remove organic contaminants; when the reaction period was 49h, the removal rates of Chemical Oxygen Demand (COD) reached more than 91.0%, and the removal rate of NH+ 4 -N was 83.3%, the removal rate of Total Nitrogen (TN) was 67.7%, and the effluent concentration of COD, NH+ 4 -N and TN were respectively 45.7mg/L, 7.8mg/L and 18.6mg/L. At this time, TF reached 43.6pg/ml. With the Ta / To increase, the degree of denitrification increased and the nitrification rate reduced. When Ta/To 1:3, the optimal nitrogen removal appeared, ammonia removal efficiency was 83.8%, the effluent concentration was 7.8mg / L, TN removal rate was 67.7%, and the effluent concentration was 18.6mg / L, to reach effluent standards. Technical support was also provided to solve the problem of coastal salt waste low phosphorus wastewater.

  11. The resistance of high frequency inductive welded pipe to grooving corrosion in salt water

    Energy Technology Data Exchange (ETDEWEB)

    Duran, C.; Triess, E.; Herbsleb, G.

    1986-09-01

    When exposed to neutral, salt-containing waters, electric resistant welded pipe in carbon and low alloy steels with increased sulfur contents may suffer preferential corrosion attack in the weld area. Because of its appearance, this type of corrosion is called grooving corrosion. The susceptibility to grooving corrosion may be determined and quantitatively described by means of an accelerated potentiostatic exposure test. The importance of type, concentration, and temperature of the electrolytic solution; potential; test duration; and the sulfur content of the steel in the accelerated corrosion test and the susceptibility of steels to grooving corrosion are described. Line pipe in high frequency inductive (HFI) welded carbon and low alloy steels are resistant to grooving corrosion particularly because of their low sulfur content.

  12. Microbiology of solar salt ponds

    Science.gov (United States)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  13. THE INFLUENCE OF SALT CONTENT AT DIFFERENT CONCENTRATIONS OF TERASI TO THE SENSORY CHARACTERISTICS OF SAMBAL TERASI, THE CHILI SAUCE ADDED WITH TERASI.

    Science.gov (United States)

    Ambarita, N T Damanik; De Meulenaer, B

    2015-01-01

    The type of terasi (the Indonesian seafood fermented paste) and the ingredients used can give sambal terasi (ST), the chili sauce added with terasi, its identity and taste distinction. Inherit from its production, salt content differs the flavor(s) of product added with terasi. This research explored the role of terasi salt content, either from the origin of terasi or by salt adjustment, to the products acceptability and sensory characteristics perceived during subsequent sensorial evaluations. Six types of terasi were characterized based on the proximate and salt content, and prepared as STs with and without salt adjustment at several terasi concentrations. 118 panelists conducted sensory evaluations for overall acceptability at 12.5% terasi; at lower concentration specific tastes (sweet, bitter, salty, sour, umami, fishy and rebon) were characterized by 80 panelists. Results showed that the acceptance of ST is more due to its innate origin salt content and to the suitability saltiness perceived. The specific odor of terasi, combining with other taste(s), when prepared at higher terasi concentration as practiced in restaurant, home and commercial products showed masking effect(s). After saltiness adjusted, different types of terasi showed different taste characteristics. Preferred ST were different between higher and lower concentration. Better tastes characteristics and stronger spices taste were found at lower salt content (and terasi concentration).

  14. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  15. Post-production losses in iodine concentration of salt hamper the control of iodine deficiency disorders: a case study in northern Ethiopia.

    Science.gov (United States)

    Shawel, Dawit; Hagos, Seifu; Lachat, Carl K; Kimanya, Martin E; Kolsteren, Patrick

    2010-06-01

    Iodine is essential for good function of the thyroid, and its deficiency is of public-health importance in Ethiopia. Iodization of salt is an effective and sustainable strategy to prevent and control iodine deficiency in large populations. The effectiveness of salt-iodization programmes depends on the conservation of iodine concentration in salt at various stages of the supply-chain. The overall objective of the study was to assess the loss of iodine in salt from production to consumption and to estimate the proportion of adults, especially pregnant women, at risk of dietary iodine insufficiency. A cross-sectional study was conducted during February-April 2007 in northern Ethiopia. Iodine concentrations of salt samples from producers (n=41), retailers (n=7), and consumers (n=32) were determined using iodiometric titration. A risk assessment was conducted for dietary iodine insufficiency among adults, including pregnant women, using a semi-probabilistic approach. The concentration of iodine in the sampled salts decreased by 57% from the production site to the consumers. The assessment of exposure showed that adults in 63% (n=20) of the households, including 90% (n=29) with pregnant women, were at risk of insufficient iodine intake. A monitoring and evaluation system needs to be established to ensure adequate supply of iodine along the distribution chain. Special attention is needed for the retailers and consumers. At these levels, dissemination of information regarding proper storage and handling of iodized salt is necessary to address the reported loss of iodine from salt.

  16. The Effect of Salt Concentration on Microbes during Microbial Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nmegbu, Chukwuma Godwin Jacob

    2014-06-01

    Full Text Available Reservoir fluid salinity, its effectiveness on viscosity as well as temperature dependency is an important parameter for enhanced oil recovery consideration. Previous studies on formation fluid properties focused on NaCl and KCl, the two most common brines in connate water and in water-based drilling mud, failing, however, to relate its performance to bacterial survival. This work has considered four different brine solutions and how it will affect the useability of pseudomonas species and halobacterium H – 356. The bacterial mixture viscosity shows a considerable difference between NaCl, CsCl, KCl and LiCl with NaCl and LiCl being favourable brines. Hence, for flooding agent at varying temperature since it makes the bacteria mixture viscosity more viscous whereas the KCl appeared less viscous compared to liquid mixture standard water. For the bacteria mixture, the viscosity of KCl and CsCl decreases with the concentration of a low temperature range and increases with the concentration at a high range.

  17. Adaptive changes in cardiolipin content of Staphylococcus aureus grown in different salt concentrations

    Directory of Open Access Journals (Sweden)

    Takatsu,Tieko

    1975-12-01

    Full Text Available Adaptive changes in cardiolipin content were examined in Staphylococcus aureus 209P using the 32P pulse-labelling method. Cardiolipin synthesis showed increased adaptation when cells grown in normal medium were transferred into high NaCl containing medium. When S. aureus cultured in 10% NaCl medium was transferred back to normal medium, cardiolipin concentration decreased to the normal level within 3 hours. The catabolic rate of cardiolipin in the cells was much slower in the 5% NaCl medium than in normal medium. The cardiolipin synthetase activity was examined by isolated membrane fraction from S. aureus grown both in normal and 10% NaCl medium. The activity was higher by two-fold in membrane fractions from cells cultured in 10% NaCl-containing medium than in membranes from cells cultured in normal medium.

  18. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J;

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible to athe...

  19. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    OBJECTIVES: High-salt diet likely elevates blood pressure (BP), thus increasing the risk of cardiovascular events. We hypothesized that a high-salt diet plays a critical role in subjects whose renin-angiotensin systems cannot adjust to variable salt intake, rendering them more susceptible to athe...

  20. Photogenerated Exciton Dissociation in Highly Coupled Lead Salt Nanocrystal Assemblies

    KAUST Repository

    Choi, Joshua J.

    2010-05-12

    Internanocrystal coupling induced excitons dissociation in lead salt nanocrystal assemblies is investigated. By combining transient photoluminescence spectroscopy, grazing incidence small-angle X-ray scattering, and time-resolved electric force microscopy, we show that excitons can dissociate, without the aid of an external bias or chemical potential gradient, via tunneling through a potential barrier when the coupling energy is comparable to the exciton binding energy. Our results have important implications for the design of nanocrystal-based optoelectronic devices. © 2010 American Chemical Society.

  1. Synthesis and Characterization of Nanoporous Carbon Materials; The Effect of Surfactant Concentrations and Salts

    Directory of Open Access Journals (Sweden)

    Shokoofeh Geranmayeh

    2011-01-01

    Full Text Available Nanoporous carbon framework was synthesized using phenol and formaldehyde as carbon precursors and triblock copolymer (pluronic F127 as soft template via evaporation induced self-assembly. Hexagonal mesoporous carbon with specific surface area of 350 m2/g through optimizing the situation was obtained. The effects of different surfactant/phenol molar ratio and presence of salts on specific surface area, pore size and pore volume for all the prepared samples were studied by means of the Brunauer-Emmett-Teller (BET formalism, powder X-ray diffraction technique and FT-IR spectroscopy.

  2. Influence of salt, smoke, and high pressure on growth of Listeria monocytogenes and spoilage microflora in cold-smoked dolphinfish (Coryphaena hippurus).

    Science.gov (United States)

    Montero, P; Gómez-Estaca, J; Gómez-Guillén, M C

    2007-02-01

    The effects of different salting and smoking conditions on the growth of Listeria monocytogenes in cold-smoked dolphinfish (Coryphaena hippurus) fillets were evaluated. High concentrations of phenol (72.47 ppm) and salt (3.25%) in muscle inhibited L. monocytogenes growth in smoked fish stored at 20 degrees C for 4 days. The antibacterial effect of high pressure in cold-smoked dolphinfish during long-term chilled (5 degrees C) storage was evaluated in fillets prepared according to two different sets of salting and smoking conditions. Combining the milder salting and smoking conditions (1.97% salt and 42 ppm phenol) with a high pressure treatment of 300 MPa at 20 degrees C for 15 min sufficed to exert a bacteriostatic effect on the total viable bacteria, total lactic acid bacteria, and L. monocytogenes. However, in fillets prepared using the more severe salting and smoking conditions (2.93% salt and 82 ppm phenol), pressurization kept L. monocytogenes counts under the detection limit throughout 100 days of storage. A similar effect was obtained by dosing the fillets with nisin. No luminescent bacteria, hydrogen sulfide-producing bacteria, or Enterobacteriaceae were found in any of the fillets produced using either of the two sets of processing conditions.

  3. Plasma and tissue levels of proangiotensin-12 and components of the renin-angiotensin system (RAS) following low- or high-salt feeding in rats.

    Science.gov (United States)

    Nagata, Sayaka; Kato, Johji; Kuwasako, Kenji; Kitamura, Kazuo

    2010-05-01

    The renin-angiotensin system (RAS) is an essential regulator of the blood pressure and body fluid balance, but the processing cascade or role of the tissue RAS remains obscure. Proangiotensin-12 (proang-12), a novel angiotensin peptide recently discovered in rat tissues, is assumed to function as a factor of the tissue RAS. To investigate the tissue production of proang-12, we measured the circulating and tissue components of the RAS including proang-12 following low-, normal-, or high-salt feeding in rats. Twelve-week-old male Wistar rats were fed a low-salt 0.3% NaCl or high-salt 8% NaCl diet for 7 days and compared with those fed a normal-salt diet of 0.7% NaCl. Low-salt feeding elevated the plasma renin activity and aldosterone concentration, resulting in significant increases in Ang I and Ang II levels in the plasma or kidney tissue, as compared with the normal- or high-salt group. Despite the increases in plasma renin activity, Ang I, and Ang II, the proang-12 levels in plasma and various tissues including the kidneys, small intestine, cardiac ventricles, and brain remained unchanged following low-salt feeding. These results suggest that peptide levels of proang-12 in rat plasma and tissues are regulated in a manner independent of the circulating RAS.

  4. Diverse microbial species survive high ammonia concentrations

    Science.gov (United States)

    Kelly, Laura C.; Cockell, Charles S.; Summers, Stephen

    2012-04-01

    Planetary protection regulations are in place to control the contamination of planets and moons with terrestrial micro-organisms in order to avoid jeopardizing future scientific investigations relating to the search for life. One environmental chemical factor of relevance in extraterrestrial environments, specifically in the moons of the outer solar system, is ammonia (NH3). Ammonia is known to be highly toxic to micro-organisms and may disrupt proton motive force, interfere with cellular redox reactions or cause an increase of cell pH. To test the survival potential of terrestrial micro-organisms exposed to such cold, ammonia-rich environments, and to judge whether current planetary protection regulations are sufficient, soil samples were exposed to concentrations of NH3 from 5 to 35% (v/v) at -80°C and room temperature for periods up to 11 months. Following exposure to 35% NH3, diverse spore-forming taxa survived, including representatives of the Firmicutes (Bacillus, Sporosarcina, Viridibacillus, Paenibacillus, Staphylococcus and Brevibacillus) and Actinobacteria (Streptomyces). Non-spore forming organisms also survived, including Proteobacteria (Pseudomonas) and Actinobacteria (Arthrobacter) that are known to have environmentally resistant resting states. Clostridium spp. were isolated from the exposed soil under anaerobic culture. High NH3 was shown to cause a reduction in viability of spores over time, but spore morphology was not visibly altered. In addition to its implications for planetary protection, these data show that a large number of bacteria, potentially including spore-forming pathogens, but also environmentally resistant non-spore-formers, can survive high ammonia concentrations.

  5. An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Aaron, Adam M [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL; Holcomb, David Eugene [ORNL; Kisner, Roger A [ORNL; Peretz, Fred J [ORNL; Robb, Kevin R [ORNL; Wilgen, John B [ORNL; Wilson, Dane F [ORNL

    2014-01-01

    The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

  6. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    Science.gov (United States)

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  7. Effects of Buffer Salt Concentration on the Dominated Deposition Mechanism and Optical Characteristics of Chemically Deposited Cadmium Sulfide Thin Films

    Science.gov (United States)

    Kakhaki, Z. Makhdoumi; Youzbashi, A.; Sangpour, P.; Kazemzadeh, A.; Naderi, N.; Bazargan, A. M.

    2016-02-01

    Effects of buffer salt concentration on the rate of deposition, dominated deposition mechanism and subsequently the structural, morphological, and optical properties of cadmium sulfide (CdS) thin films deposited by chemical bath deposition (CBD) on glass substrate were investigated. The precursors were chosen to be cadmium chloride (CdCl2) as the cadmium source, thiourea (CS(NH2)2) as the sulfur source, ammonium nitrate (NH4NO3) as the buffer salt and ammonia as the complexing agent and the pH controller. The influence of the NH4NO3 concentration on the structure, morphology, film uniformity, stoichiometry and optical properties of CdS thin films was also studied by X-ray diffractometer (XRD), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray (EDX) spectroscope, uv-visible and photoluminescence (PL) spectroscopes. The XRD studies revealed that all the deposited films exhibited a (002)h/(111)c preferred orientation. The crystallite size was increased from 20nm to 30nm by the increase of concentration of NH4NO3 from 0.5M to 2.5M. The morphology of CdS thin films were agglomerated spherical particles consisted of smaller particles. The surface of thin films deposited at the NH4NO3 concentration of 0.5M was compact and smooth. The increase of the concentration of NH4NO3 decreased the packing density of the films. The optical band gap was in the range of 2.25-2.4eV, which was decreased by the decrement of packing density. The PL spectra showed two peaks centered at 400nm and 500nm which are attributed to violet and band-to-band emissions, respectively.

  8. New family of lithium salts for highly conductive nonaqueous electrolytes.

    Science.gov (United States)

    Barbarich, Thomas J; Driscoll, Peter F; Izquierdo, Suzette; Zakharov, Lev N; Incarvito, Christopher D; Rheingold, Arnold L

    2004-11-29

    New lithium salts of weakly coordinating anions were prepared by treating lithium imidazolates or LiN(CH3)2 with 2 equiv of BF(3). They are LiIm(BF3)2, Li 2-MeIm(BF3)2, Li 4-MeIm(BF3)2, LiBenzIm(BF3)2, Li 2-iPrIm(BF3)2, and LiN(CH3)2(BF3)2 (Im=imidazolate, Me=methyl, iPr=isopropyl, BenzIm=benzoimidazolate). The salts were characterized by NMR spectroscopy and mass spectrometry. The structure of LiBenzIm(BF3)2 consists of a dimeric centrosymmetric unit with each lithium atom forming a bridge between the two anions through one fluorine contact to each anion. The structure of a hydrate of LiN(CH3)2(BF3)2 consists of an infinite chain in which each anion chelates two different lithium atoms through Li-F bonds. The conductivities of electrolyte solutions of these salts were measured and are discussed in terms of different ion-pairing modes determined from the solid-state structures, the anion's ability to distribute charge, and solution viscosity. Organic carbonate solutions of LiIm(BF3)2 partially disproportionate at 85 degrees C forming LiBF4, LiBF2[Im(BF3)]2, and Li[(BF3)ImBF2ImBF2Im(BF3)], reaching equilibrium by 3 months at 85 degrees C but not disproportionating at room temperature after 9 months. A mechanism for the formation of these disproportionation products is proposed. The lower conductivity of the 1 M LiIm(BF3)2 solution that has undergone disproportionation is attributed to the formation LiBF4, which is less conductive, and LiBF2[Im(BF3)]2 and Li[(BF3)ImBF2ImBF2Im(BF3)], which increase solution viscosity.

  9. Physical chemistry of highly concentrated emulsions.

    Science.gov (United States)

    Foudazi, Reza; Qavi, Sahar; Masalova, Irina; Malkin, Alexander Ya

    2015-06-01

    This review explores the physics underlying the rheology of highly concentrated emulsions (HCEs) to determine the relationship between elasticity and HCE stability, and to consider whether it is possible to describe all physicochemical properties of HCEs on the basis of a unique physical approach. We define HCEs as emulsions with a volume fraction above the maximum closest packing fraction of monodisperse spheres, φm=0.74, even if droplets are not of polyhedron shape. The solid-like rheological behavior of HCEs is characterized by yield stress and elasticity, properties which depend on droplet polydispersity and which are affected by caging at volume fractions about the jamming concentration, φj. A bimodal size distribution in HCEs diminishes caging and facilitates droplet movement, resulting in HCEs with negligible yield stress and no plateau in storage modulus. Thermodynamic forces automatically move HCEs toward the lowest free energy state, but since interdroplet forces create local minimums - points beyond which free energy temporarily increases before it reaches the global minimum of the system - the free energy of HCEs will settle at a local minimum unless additional energy is added. Several attempts have been undertaken to predict the elasticity of HCEs. In many cases, the elastic modulus of HCEs is higher than the one predicted from classical models, which only take into account spatial repulsion (or simply interfacial energy). Improved models based on free energy calculation should be developed to consider the disjoining pressure and interfacial rheology in addition to spatial repulsion. The disjoining pressure and interfacial viscoelasticity, which result in the deviation of elasticity from the classical model, can be regarded as parameters for quantifying the stability of HCEs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Gonzalo H Villarino

    Full Text Available Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  11. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    Science.gov (United States)

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  12. STATISTICAL OPTIMIZATION OF MINERAL SALT AND UREA CONCENTRATION FOR CELLULASE AND XYLANASE PRODUCTION BY Penicillium echinulatum IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    L. dos Reis

    2015-03-01

    Full Text Available Abstract Penicillium echinulatum S1M29 is a mutant with cellulase and xylanase production comparable to the most studied microorganisms in the literature. However, its potential to produce these enzymes has not been fully investigated. This study aimed at optimizing salt and urea concentrations in the mineral solution, employing the response surface methodology. A 25-1 Fractional Factorial Design and a 23 Central Composite Design were applied to elucidate the effect of salts and urea in enzyme production. Lower concentrations of KH2PO4 (2.0 g.L-1, (NH42SO4 (1.4 g.L-1, MgSO4.7H2O (0.375 g.L-1 and CaCl2 (0.375 g.L-1 were most suitable for the production of all enzymes evaluated. Nevertheless, higher concentrations of urea (0.525 g.L-1 gave the best results for cellulase and xylanase production. The maximum FPase (1,5 U.m.L-1, endoglucanase (7,2 U.m.L-1, xylanase (30,5 U.m.L-1 and β-glucosidase (4,0 U.m.L-1 activities obtained with the planned medium were, respectively, 87, 16, 17 and 21% higher when compared to standard medium. The experimental design contributed to adjust the concentrations of minerals and urea of the culture media for cellulase and xylanase production by P. echinulatum, avoiding waste of components in the medium.

  13. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes

    CERN Document Server

    Chen, Wei; Zhang, Qiang; Fan, Zhongli; Huang, Kuo-Wei; Zhang, Xixiang; Lai, Zhiping; Sheng, Ping

    2016-01-01

    Nanoporous carbon composite membranes, comprising a layer of porous carbon fiber structures with an average channel width of 30-60 nm grown on a porous ceramic substrate, are found to exhibit robust desalination effect with high freshwater flux. In three different membrane processes of vacuum membrane distillation, reverse osmosis and forward osmosis, the carbon composite membrane showed 100% salt rejection with 3.5 to 20 times higher freshwater flux compared to existing polymeric membranes. Thermal accounting experiments found that at least 80% of the freshwater pass through the carbon composite membrane with no phase change. Molecular dynamics simulations revealed a unique salt rejection mechanism. When seawater is interfaced with either vapor or the surface of carbon, one to three interfacial atomic layers contain no salt ions. Below the liquid entry pressure, the salt solution is stopped at the openings to the porous channels and forms a meniscus, while the surface layer of freshwater can feed the surface...

  14. Effect of acidification and salt concentration on two black brined olives from Sicily (cv moresca and giarraffa

    Directory of Open Access Journals (Sweden)

    Romeo, Flora V.

    2010-09-01

    Full Text Available In the present work the effects of different brining treatments on mature table olives during natural fermentation were evaluated. The considered olive cultivars are typical of Sicily: Moresca and Giarraffa. They were harvested at pigmented state. The carpological data revealed their good quality as table olives. Natural fermentation was performed with or without acidification up to pH 4, and at 8% and 15% salt concentrations. The physical, chemical and microbiological changes in olives and brines were monitored throughout the processing period. The acidification affected and selected the microbial population and maintained the low pH necessary for the hygienic safety of the product. In fact, in Moresca brines,the lactic acid bacteria totally disappeared after 60 days of fermentation while in Giarraffa they maintained their presence in the brines up to 180 days with a value between 104 UFC/mL and 106 UFC/mL, depending on the salt concentration. The microbial population was also affected by the polyphenol content, which was different between the cultivars. The color of olive fruits was greatly influenced by acidification and less by salt concentration. The addition of salt showed a different influence on the studied cultivars, in fact only the chemical analyses of Giarraffa showed a significant difference between the two levels of salt concentration.

    En el presente trabajo, los efectos de diferentes tratamientos con salmuera en aceitunas de mesa maduras durante su fermentación natural fueron evaluados. Los cultivos de aceitunas considerados son típicos de Sicilia: Moresca y Giarraffa. Ellas son cosechadas en su estado maduro. Los datos carpológicos revelan su buena calidad como aceituna de mesa. La fermentación natural fue realizada con y sin acidificación hasta pH 4, y a una concentración de sal del 8% y 15%. Cambios físicos, químicos y microbiológicos de las aceitunas y salmueras a través de todo el

  15. Biocompatibility of Four Common Orthopedic Biomaterials Following a High-Salt Diet: An In Vivo Study

    Directory of Open Access Journals (Sweden)

    Mathieu Lecocq

    2017-07-01

    Full Text Available Nowadays, salt consumption appears to be drastically above the recommended level in industrialized countries. The health consequences of this overconsumption are heavy since high-salt intake induces cardiovascular disease, kidney dysfunction, and stroke. Moreover, harmful interaction may also occur with orthopaedic devices because overconsumption of salt reinforces the corrosive aspect of biological tissues and favors bone resorption process. In the present study, we aimed to assess the in vivo effect of three weeks of a high-salt diet, associated (or not with two weeks of the neuro-myoelectrostimulation (NMES rehabilitation program on the biocompatibility of four biomaterials used in the manufacture of arthroplasty implants. Thus, two non-metallic (PEEK and Al2O3 and two metallic (Ti6Al4V and CrCo compounds were implanted in the rat tibial crest, and the implant-to-bone adhesion and cell viability of two surrounded muscles, the Flexor Digitorum (FD and Tibialis Anterior (TA, were assessed at the end of the experiment. Results indicated lower adhesion strength for the PEEK implant compared to other biomaterials. An effect of NMES and a high-salt diet was only identified for Al2O3 and Ti6Al4V implants, respectively. Moreover, compared to a normal diet, a high-salt diet induced a higher number of dead cells on both muscles for all biomaterials, which was further increased for PEEK, Al2O3, and CrCo materials with NMES application. Finally, except for Ti6Al4V, NMES induced a higher number of dead cells in the directly stimulated muscle (FD compared to the indirectly stimulated one (TA. This in vivo experiment highlights the potential harmful effect of a high-salt diet for people who have undergone arthroplasty, and a rehabilitation program based on NMES.

  16. Molecular biology of cyanobacterial salt acclimation.

    Science.gov (United States)

    Hagemann, Martin

    2011-01-01

    High and changing salt concentrations represent major abiotic factors limiting the growth of microorganisms. During their long evolution, cyanobacteria have adapted to aquatic habitats with various salt concentrations. High salt concentrations in the medium challenge the cell with reduced water availability and high contents of inorganic ions. The basic mechanism of salt acclimation involves the active extrusion of toxic inorganic ions and the accumulation of compatible solutes, including sucrose, trehalose, glucosylglycerol, and glycine betaine. The kinetics of these physiological processes has been exceptionally well studied in the model Synechocystis 6803, leading to the definition of five subsequent phases in reaching a new salt acclimation steady state. Recent '-omics' technologies using the advanced model Synechocystis 6803 have revealed a comprehensive picture of the dynamic process of salt acclimation involving the differential expression of hundreds of genes. However, the mechanisms involved in sensing specific salt stress signals are not well resolved. In the future, analysis of cyanobacterial salt acclimation will be directed toward defining the functions of the many unknown proteins upregulated in salt-stressed cells, identifying specific salt-sensing mechanisms, using salt-resistant strains of cyanobacteria for the production of bioenergy, and applying cyanobacterial stress genes to improve the salt tolerance of sensitive organisms.

  17. The effects of different salt concentrations on growth and chlorophyll content of some pumpkin rootstocks

    Directory of Open Access Journals (Sweden)

    Köksal AYDİNŞAKİR

    2015-12-01

    Full Text Available This study was conducted to determine the effects of different salinity levels, (0.7, 4.0, 8.0, 12.0, 16.0 dS m-1 on some physiological parameters of Obez F1, Ferro F1, RS841 F1, which are used as rootstocks in watermelon cultivation. Salty irrigation water was obtained through mixing of NaCl and CaCl2 salt into tap water. When the plants were at the 3-4 leaf stage, different salinity levels were applied. Plants were harvested during the phase of florescence. The study was carried out using split plots in randomized complete block design while rootstocks are main plot, salinity levels are sub-plot with three replications. While the salinity level was increasing, the physiological parameters decreased in each three rootstocks. While the plant height changed between 14.4-107.1 cm, the plant leaf area varied between 152.0-2182.7 cm2. Chlorophyll-a, chlorophyll-b and total carotenoid values decreased as the salinity level increased. Excluding the maximum value obtained from control plot, the highest chlorophyll-a, chlorophyll-b, and total carotenoid values were obtained in Obez variety under 4.0 dS m-1 application with 14.8 mg l-1, 12.8 mg l-1 and 0.28 mg g-1 fw, respectively.

  18. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [Electronic Materials Research Laboratory, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Chen, Baohong; Zhou, Jinxiong [State Key Laboratory for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics and School of Aerospace, Xi' an Jiaotong University, Xi' an 710049 (China); Suo, Zhigang, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu [School of Engineering and Applied Sciences, Kavli Institute of Bionano Science and Technology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels become possible.

  19. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    Science.gov (United States)

    Connolly, Amy; Goodhue, Abigail; Miki, Christian; Nichol, Ryan; Saltzberg, David

    2009-02-01

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft (30 m) and 200 ft below the 1500 ft level using three different pairs of dipole antennas whose bandwidths span 125-900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93±7m at 150 MHz, 63±3m at 300 MHz, and 36±2m at 800 MHz. This is the most precise measurement of radio attenuation in a natural salt formation to date. We assess the implications of this measurement for a future neutrino detector in salt.

  20. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gervasio, Dominic Francis [Univ. of Arizona, Tucson, AZ (United States)

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without or with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at

  1. Optimization of hybrid polymer electrolytes with the effect of lithium salt concentration in PEO/PVdF-HFP blends

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Edwin raj, S.; Sowmya, G.; Kalaiselvimary, J.; Ramesh Prabhu, M., E-mail: mkram83@gmail.com

    2016-03-15

    Highlights: • Polymer blends based on PVdF-HFP/PEO were prepared for Li-ion battery applications. • Structural and electrochemical studies were carried out on prepared electrolytes. • The electrolytes can be used as electrolyte in the possible device fabrications. - Abstract: Poly(ethylene oxide) (PEO) 6.25 wt%/poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HFP)] 18.75 wt% blend based electrolyte films containing different concentrations (2–10) wt% of lithium salt were prepared. The miscibility studies have been performed by using X-ray diffraction and Fourier transform infrared spectroscopy. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. A room temperature conductivity of 2.3912 × 10{sup −4} S cm{sup −1} has been obtained for PEO (6.25)–PVdF-HFP (18.75)–LiClO{sub 4} (8)–PC (67) polymer complex. The temperature dependence of the conductivity of polymer electrolyte seems to obey VTF relation. Electrochemical stability (3.3 V) was observed in the prepared polymer electrolyte. Reduction process and oxidation process of the prepared electrolyte system have also been evaluated by means of cyclic voltammetry. Thermogravimetric analysis results indicate thermal stability of PEO/PVdF-HFP lithium salt complexes. Roughness parameter of the sample having maximum ionic conductivity was studied by AFM. The morphology of the polymer complex is investigated by using SEM.

  2. Down-regulated CBS/H2S pathway is involved in high-salt-induced hypertension in Dahl rats.

    Science.gov (United States)

    Huang, Pan; Chen, Siyao; Wang, Yuan; Liu, Jia; Yao, Qiuyu; Huang, Yaqian; Li, Hongxia; Zhu, Mingzhu; Wang, Suxia; Li, Lin; Tang, Chaoshu; Tao, Yinghong; Yang, Guosheng; Du, Junbao; Jin, Hongfang

    2015-04-30

    The study was designed to explore the significance of endogenous H2S in the development of high-salt-induced hypertension in rats. High-salt-induced hypertension rat model was made by feeding Dahl rat high-salt diet containing 8% NaCl for 8 weeks with SD rats as control. SBP and aorta structure in rats were observed. Endogenous H2S content and expression of cystathionine β-lyase (CBS), cystathionine γ-lyase and mercaptopyruvate sulfurtransferase in renal tissues were detected. Mechanisms for the impact of high-salt on CBS/H2S in renal tissues were studied, targeting HIF-1α pathway. The effect of H2S on RAS in serum and renal tissue of rats were tested. High-salt reduced endogenous H2S content and inhibited the expression of CBS in renal tissue in salt-sensitive Dahl rats. H2S donor, however, inhibited salt-sensitive hypertension, reversed aortic structural remodeling and inhibited activation of the RAS system in renal tissues in Dahl rats. Expression of HIF-1α was decreased but expression of PHD2 was increased in renal tissue of Dahl rats with high-salt diet, whereas they did not alter in renal tissue of SD rats with high-salt diet. Ex vivo experiment showed that inhibitor of HIF-1α degradation could rescue down-regulated CBS/H2S pathway in renal tissue of Dahl rats with high-salt. In contrast, inhibitor of HIF-1α activity decreased the CBS/H2S pathway in the renal tissue of SD rats treated with high-salt. Down-regulated CBS/H2S pathway in renal tissues under high-salt insult might be an important pathogenesis of salt-sensitive hypertension. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. High-Temperature, High-Concentration Solar Thermoelectric Generators

    Science.gov (United States)

    Warren, Emily; Baranowski, Lauryn; Olsen, Michele; Ndione, Paul; Netter, Judy; Goodrich, Alan; Gray, Matthew; Parilla, Philip; Ginley, David; Toberer, Eric

    2014-03-01

    Solar thermoelectric generators (STEGs) powered with concentrated solar energy have potential for use as primary energy converters or as topping-cycles for more conventional concentrated solar power (CSP) technologies. Modeling based on current record modules from JPL suggests thermoelectric efficiencies of 18 % could be experimentally expected with a temperature gradient of 1000 - 100°C. Integrating these state-of-the-art TEGs with a concentrating solar receiver requires simultaneous optimization of optical, thermal, and thermoelectric systems. This talk will discuss the modeling, design, and experimental testing of STEG devices under concentrated sunlight. We have developed a model that combines thermal circuit modeling with optical ray tracing to design selective absorber coatings and cavities to minimize radiation losses from the system. We have fabricated selective absorber coatings and demonstrated that these selective absorber films can minimize blackbody radiation losses at high temperature and are stable after thermal cycling to 1000°C. On-sun testing of STEG devices and thermal simulators is ongoing and preliminary results will be discussed.

  4. Production of high concentrations of yeast

    Energy Technology Data Exchange (ETDEWEB)

    1981-11-10

    A microbe is aerobically cultured using O/sub 2/ or a gas rich in O/sub 2/. The grown cells are washed, concentrated and a portion of the cells used as a seed culture. Thus, Saccharomyces cerevisiae (bakers' yeast) was cultured in a jar fermentor by flow down system maintaining the dissolved O/sub 2/ at 2-5 mg/L; volume of the initial medium containing 30% glucose was 350 mL and the initial washed cell concentration was 50 g dry cells/L. After 12 hours of cultivation, the volume of the medium increased to 750 mL and the cell concentration rose to 102 g dry cells/L; the yield was 49% with respect to glucose. The cells were washed and the cultivation was repeated by use of the washed cells; cell concentration reached 105 g dry cells/L.

  5. Effects of salt concentrations of the aqueous peptide-amphiphile solutions on the sol-gel transitions, the gelation speed, and the gel characteristics.

    Science.gov (United States)

    Otsuka, Takahiro; Maeda, Tomoki; Hotta, Atsushi

    2014-10-02

    Hydrogels made of peptide amphiphiles (PA) have attracted a lot of interest in biomedical fields. Considering the applications of PA hydrogels, the control of the gelation speed and the gel characteristics is essential to predominantly determine the usefulness and practicability of the hydrogels. In this work, the effects of the salt concentrations using sodium dihydrogenorthophosphate (NaH2PO4) on the sol-gel transition behaviors, especially the gelation speed and the gel characteristics of the designed PA (C16-W3K) hydrogels in aqueous solution were discussed. It was found that the original solution state before rheological testing was independent of the salt concentration, which was confirmed by observing the self-assembly structures and the peptide secondary structures of PA through transmission electron microscopy (TEM) and circular dichroism spectroscopy (CD). The PA solutions with different salt concentrations, however, presented a profound difference in the gelation speed and the gel characteristics: the solution exhibited higher gelation speeds and higher mechanical properties at higher salt concentrations. Concurrently, the density, the length of wormlike micelles, and the conformational ratio of β-sheets to α-helices in the equilibrium PA solutions all increased with the increase in the salt concentrations.

  6. Horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications.

    Science.gov (United States)

    Ma, Hongcai; Wu, Lin

    2015-07-10

    We present the design of a horizontally staggered lightguide solar concentrator with lateral displacement tracking for high concentration applications. This solar concentrator consists of an array of telecentric primary concentrators, a horizontally staggered lightguide layer, and a vertically tapered lightguide layer. The primary concentrator is realized by two plano-aspheric lenses with lateral movement and maintains a high F-number over an angle range of ±23.5°. The results of the simulations show that the solar concentrator achieves a high concentration ratio of 500× with ±0.5° of acceptance angle by a single-axis tracker and dual lateral translation stages.

  7. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    OpenAIRE

    Zhu Guifeng; Zou Yang; Xu Hongjie

    2016-01-01

    Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PB-FHR) is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF2) salt Temperature Reactivity Coefficient (TRC). Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tristructural-isotropic (TRISO) coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics,...

  8. High Dietary Salt Intake Exacerbates Helicobacter pylori-Induced Gastric Carcinogenesis

    OpenAIRE

    Gaddy, Jennifer A.; Radin, Jana N.; Loh, John T.; Zhang, Feng; Washington, M. Kay; Peek, Richard M.; Algood, Holly M. Scott; Cover, Timothy L.

    2013-01-01

    Persistent colonization of the human stomach with Helicobacter pylori is a risk factor for gastric adenocarcinoma, and H. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT) cagA+ H. pylori strain or an isogenic cagA mutant strain and main...

  9. Plant protein kinase genes induced by drought, high salt and cold stresses

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Drought, high salt and cold are three different kinds of environment stresses that severely influence the growth, development and productivity of crops. They all decrease the water state of plant cells, and consequently result in the harm of plant from water deficit. Several genes encoding protein kinases and induced by drought, high salt and low temperature have been isolated from Arabidopsis. These protein kinases include receptor protein kinase (RPK), MAP kinases, ribosomal-protein kinases and transcription-regulation protein kinase. The expression features of these genes and the regulatory roles of these protein kinases in stress response and signal transduction are discussed.

  10. Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet.

    Science.gov (United States)

    Terakado, Shouko; Ueno, Mai; Tamura, Yuki; Toda, Natsuko; Yoshinaga, Mariko; Otsuka, Kie; Numabe, Atsushi; Kawabata, Yukari; Murota, Itsuki; Sato, Nobuyuki; Uehara, Yoshio

    2012-01-01

    In this article, the antihypertensive effects of sodium alginate oligosaccharides, enzymatic products of high molecular natural alginate from sea weeds, in Dahl salt-sensitive (Dahl S) rats were investigated. Dahl S rats fed a high-salt (4% NaCl) diet were treated with sodium alginate oligosaccharides (4% or 8% w/w) for 7 weeks. Systolic blood pressure (SBP) was measured by the tail-cuff method, and hypertensive cardiovascular benefits and kidney damage were assessed. Glomerular function and morphological sclerosis were determined. SBP increased in an age-dependent manner in the untreated Dahl S rats. Sodium alginate oligosaccharide treatment attenuated the increase in SBP in a dose-dependent manner. The heart and aortic walls weighed less in the rats treated with sodium alginate oligosaccharides than in the untreated rats. The SBP reduction was associated with a decrease in urinary protein excretion and an increase in the creatinine clearance rate. Sodium alginate oligosaccharides significantly attenuated hypertensive glomerular sclerosis and arterial injury in the kidney. Fractional excretion of sodium (FENa) decreased in low-salt Dahl S rats and increased with a salt challenge. The alginate oligosaccharides decreased FENa in high-salt Dahl S rats. The results of this study suggest that sodium alginate oligosaccharides attenuate salt-induced hypertension in Dahl S rats. This reduction is associated with decreases in cardiovascular and renal damage.

  11. Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater.

    Science.gov (United States)

    Lee, Keun-Young; Kim, Kwang-Wook; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-15

    Finding a striking peculiarity of nanomaterials and evaluating its feasibility for practical use are interesting topics of research. We investigated the application of nanozeolite's outstanding reactivity for a rapid and effective method for radioactive cesium removal in the wastewater generated from nuclear power plant accident, as a new concept. Extremely fast removal of cesium, even without stirring, was achieved by the nanozeolite at efficiencies never observed with bulk materials. The nanozeolite reached an adsorption equilibrium state within 1 min. Cesium adsorption by nanozeolite was demonstrated at reaction rates of orders of magnitude higher than that of larger zeolite phases. This observation was strongly supported by the positive correlation between the rate constant ratio (k2,bulk/k2,nano) and the initial Cs concentrations with a correlation coefficient (R(2)) of 0.99. A potential drawback of a nanoadsorbent is the difficulty of particle settling and separation because of its high dispersivity in solution. However, our results also demonstrated that the nanozeolite could be easily precipitated from the high-salt solution with ferric flocculant. The flocculation index reached a steady state within 10 min. A series of our experimental results met the goal of rapid processing in the case of emergency by applying the well-suited nanozeolite adsorption and flocculation.

  12. NITRATE REMOVAL BY ANTARCTIC PSYCHROPHILIC YEAST CELLS UNDER HIGH SALT CONDITIONS (19th Symposium on Polar Biology)

    OpenAIRE

    カタヤマ-ヒラヤマ, ケイコ; イシカワ, サトシ; ニシカワ, ジロウ; ツジ, マサオ; コミヤマ, ヨシヒロ; ヒラヤマ, キミアキ; Keiko, KATAYAMA-HIRAYAMA; Satoshi, ISHIKAWA; Jiro, NISHIKAWA; Masao, TSUJI; Yoshihiro, KOMIYAMA; Kimiaki, HIRAYAMA

    1998-01-01

    We researched nitrate removal in water with high salt concentrations at low temperature using Candida sp. which was isolated from the upper layer of Lake Vanda in the McMurdo Dry Valleys, Antarctica. The strain was cultured in a synthetic medium that contained nitrate as the sole nitrogen source The time course for the growth, and the nitrate and the total organic carbon (TOC) removals were examined aerobically in the presence of 0-20% NaCl at 5℃. The effects of pH and the C/N ratio on the re...

  13. Awareness of salt restriction is not reflected in the actual salt intake in Japanese hypertensive patients.

    Science.gov (United States)

    Takahashi, Nobuyuki; Tanabe, Kazuaki; Adachi, Tomoko; Nakashima, Ryuma; Sugamori, Takashi; Endo, Akihiro; Ito, Takafumi; Yoshitomi, Hiroyuki; Ishibashi, Yutaka

    2015-01-01

    The Japanese guidelines for hypertension management recommend reducing salt intake to awareness of the recommended reduced salt diet correlates with their actual intake. Therefore, the purpose of this study was to investigate the relationship between actual salt intake of Japanese hypertensive patients and their awareness of the recommended guidelines for reduced dietary salt intake. In total, 236 outpatients (146 males and 90 females) with a mean age 69.7 ± 12.5 years were included in this study. Daily dietary salt intake was estimated using sodium and creatinine concentrations detected in spot urine samples. The patients filled out a questionnaire regarding their awareness of recommended salt restriction for hypertension management. The questionnaire distinguished the patients' awareness of recommended salt restriction in four levels (low, moderate, high and very high). The mean estimated salt intake was 9.72 ± 2.43 g/day. Patients' awareness regarding salt intake in all levels provided in the questionnaire did not correlate with actual salt intake (p = 0.731). Our results demonstrated that Japanese hypertensive outpatients consumed higher levels of salt than the target value recommended by Japanese guidelines. There was no correlation between actual salt intake and patients' awareness of the recommended reduction in salt. These results suggest that monitoring salt intake and informing patients of their actual salt intake are necessary for effective hypertension management.

  14. Protective Effect of Salicornia europaea Extracts on High Salt Intake-Induced Vascular Dysfunction and Hypertension

    Science.gov (United States)

    Panth, Nisha; Park, Sin-Hee; Kim, Hyun Jung; Kim, Deuk-Hoi; Oak, Min-Ho

    2016-01-01

    High salt intake causes and aggravates arterial hypertension and vascular dysfunction. We investigated the effect of Salicornia europaea extracts (SE) on vascular function and blood pressure. SE constituents were analyzed using high performance liquid chromatography, and SE’s effect on vascular function was evaluated in isolated porcine coronary arteries. SE’s vascular protective effect was also evaluated in vivo using normotensive and spontaneous hypertensive rats (SHRs). SE mainly contained sodium chloride (55.6%), 5-(hydroxymethyl)furfural, p-coumaric acid, and trans-ferulic acid. High sodium (160 mmol/L) induced vascular dysfunction; however, SE containing the same quantity of sodium did not cause vascular dysfunction. Among the compounds in SE, trans-ferulic acid accounts for the vascular protective effect. Normotensive rats fed a high-salt diet showed significantly increased systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP), which decreased significantly in the SE-treated groups. In SHRs, high edible salt intake significantly increased SBP, DBP, and MAP, but SE intake was associated with a significantly lower MAP. Thus, SE did not induce vascular dysfunction, and trans-ferulic acid might be at least partly responsible for the vasoprotective effect of SE. Taken together, SE could be used as an alternative to purified salt to prevent and ameliorate hypertension. PMID:27455235

  15. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system.

    Directory of Open Access Journals (Sweden)

    Katie Smith

    Full Text Available The global trend of restricting the use of antibiotic growth promoters (AGP in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH, an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth.

  16. Discovery of Bile Salt Hydrolase Inhibitors Using an Efficient High-Throughput Screening System

    Science.gov (United States)

    Smith, Katie; Zeng, Ximin; Lin, Jun

    2014-01-01

    The global trend of restricting the use of antibiotic growth promoters (AGP) in animal production necessitates the need to develop valid alternatives to maintain productivity and sustainability of food animals. Previous studies suggest inhibition of bile salt hydrolase (BSH), an intestinal bacteria-produced enzyme that exerts negative impact on host fat digestion and utilization, is a promising approach to promote animal growth performance. To achieve the long term goal of developing novel alternatives to AGPs, in this study, a rapid and convenient high-throughput screening (HTS) system was developed and successfully used for identification of BSH inhibitors. With the aid of a high-purity BSH from a chicken Lactobacillus salivarius strain, we optimized various screening conditions (e.g. BSH concentration, reaction buffer pH, incubation temperature and length, substrate type and concentration) and establish a precipitation-based screening approach to identify BSH inhibitors using 96-well or 384-well microplates. A pilot HTS was performed using a small compound library comprised of 2,240 biologically active and structurally diverse compounds. Among the 107 hits, several promising and potent BSH inhibitors (e.g. riboflavin and phenethyl caffeate) were selected and validated by standard BSH activity assay. Interestingly, the HTS also identified a panel of antibiotics as BSH inhibitor; in particular, various tetracycline antibiotics and roxarsone, the widely used AGP, have been demonstrated to display potent inhibitory effect on BSH. Together, this study developed an efficient HTS system and identified several BSH inhibitors with potential as alternatives to AGP. In addition, the findings from this study also suggest a new mode of action of AGP for promoting animal growth. PMID:24454844

  17. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates

    Science.gov (United States)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-11-01

    Carrying out molecular dynamics simulations and graph theoretical analyses of high salt solutions, and comparing numerically calculated vibrational spectroscopic properties of water with femtosecond IR pump-probe experimental data, we have recently found that ions in high salt solutions can form two morphologically different ion aggregate structures. In the cases of NaCl solutions, Na+ and Cl- tend to form compact cluster-like ion aggregate in high NaCl solutions. In contrast, K+ and SCN- form spatially extended network-like ion aggregates that also exhibit a percolating network behavior. Interestingly, a variety of graph theoretical properties of ion network in high KSCN solutions were found to be very similar to those of water H-bonding network. It was shown that spatially extended ion networks in high KSCN solutions are completely intertwined with water H-bonding networks, which might be the key to understand the high solubility of thiocyanate salts in water. Here, we further consider two salts that have been extensively studied experimentally by using femtosecond IR pump-probe technique, which are NaClO4 and NaBF4. Note that ClO4 - and BF4 - are well-known chaotropic ions that have been believed to behave as water structure breaker. To understand how such chaotropic ions affect water H-bonding structure, we carried out spectral graph analyses of molecular dynamics simulation data of these aqueous solutions. Graph spectra and degree distribution of ion aggregates formed in high NaBF4 and NaClO4 solutions show that these chaotropic anions also have a strong propensity to form ion networks. The fact that salts containing chaotropic ions like SCN-, BF4 - , and ClO4 - have very high solubility limits in water could then be related to our observation that these chaotropic anions with counter cations in high salt solutions are capable of forming intricate ion networks intertwined with water H-bonding networks. We anticipate that the present graph theoretical analysis

  18. Combined effect of salt concentration and pressure gradients across charged membranes

    DEFF Research Database (Denmark)

    Benavente, Juana; Jonsson, Gunnar Eigil

    2002-01-01

    The combined effect of both concentration and pressure differences on electrical potential (Deltaphi) for two ion-exchanger membranes, one positively charged (AE) and another negatively charged (CE), measured with the membranes in contact with NaCl solutions was studied. Results show a linear...... dependence between Deltaphi and pressure, independently if DeltaC and DeltaP have the same or opposite directions. The ratio of the streaming potential for cation/anion exchange membranes is r = (2.1+/-0.4). A "bipolar" membrane (BM) was obtained by joining together both ion-exchanger membranes. In order...... to correlate the behaviour of the BP membrane with that corresponding to each sublayer, the same kind of measurements was carried out for both opposite external conditions, this means, applying the pressure on the cation exchanger (CABM) or on the anion exchanger membrane (ACBM), respectively. From values...

  19. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection.

    Science.gov (United States)

    Xu, Xiao-Ling; Lin, Fu-Wen; Du, Yong; Zhang, Xi; Wu, Jian; Xu, Zhi-Kang

    2016-05-25

    Swelling has great influences on the structure stability and separation performance of graphene oxide laminate membranes (GOLMs) for water desalination and purification. Herein, we report cross-linked GOLMs from GO assembled with cationic tetrakis(1-methyl-pyridinium-4-yl)porphyrin (TMPyP) by a vacuum-assisted strategy. The concave nonoxide regions (G regions) of GO are used as cross-linking sites for the first time to precisely control the channel size for water permeation and salt ion retention. Channels around 1 nm are constructed by modulating the assembly ratio of TMPyP/GO, and these cross-linked GOLMs show high salt rejection.

  20. Corrosion of high temperature alloys in solar salt at 400, 500, and 680ÀC.

    Energy Technology Data Exchange (ETDEWEB)

    Kruizenga, Alan Michael; Gill, David Dennis; LaFord, Marianne Elizabeth

    2013-09-01

    Corrosion tests at 400, 500, and 680ÀC were performed using four high temperature alloys; 347SS, 321SS In625, and HA230. Molten salt chemistry was monitored over time through analysis of nitrite, carbonate, and dissolved metals. Metallography was performed on alloys at 500 and 680ÀC, due to the relatively thin oxide scale observed at 400ÀC. At 500ÀC, corrosion of iron based alloys took the form of chromium depletion and iron oxides, while nickel based alloys also had chromium depletion and formation of NiO. Chromium was detected in relatively low concentrations at this temperature. At 680ÀC, significant surface corrosion occurred with metal losses greater than 450microns/year after 1025hours of exposure. Iron based alloys formed complex iron, sodium, and chromium oxides. Some data suggests grain boundary chromium depletion of 321SS. Nickel alloys formed NiO and metallic nickel corrosion morphologies, with HA230 displaying significant internal oxidation in the form of chromia. Nickel alloys both exhibited worse corrosion than iron based alloys likely due to preferential dissolution of chromium, molybdenum, and tungsten.

  1. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    Science.gov (United States)

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  2. Esterification and Transesterification of greases to fatty acid methyl esters with highly active diphenylamine salts

    Science.gov (United States)

    Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the fr...

  3. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    Science.gov (United States)

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  4. High-Temperature Salt Pump Review and Guidelines - Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hazelwood, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-05-01

    Fluoride salt cooled high-temperature reactor (FHR) concepts include pumps for forced circulation of the primary and secondary coolants. As part of a cooperative research and development agreement between the Shanghai Institute of Applied Physics and the Oak Ridge National Laboratory (ORNL), a research project was initiated to aid in the development of pumps for high-temperature salts. The objectives of the task included characterization of the behavior of an existing ORNL LSTL pump; design and test a modified impeller and volute for improved pump characteristics; and finally, provide lessons learned, recommendations, and guidelines for salt pump development and design. The pump included on the liquid salt test loop (LSTL) at ORNL served as a case study. This report summarizes the progress to date. The report is organized as follows. First, there is a review, focused on pumps, of the significant amount of work on salts at ORNL during the 1950s 1970s. The existing pump on the LSTL is then described. Plans for hot and cold testing of the pump are then discussed, including the design for a cold shakedown test stand and the required LSTL modifications for hot testing. Initial hydraulic and vibration modeling of the LSTL pump is documented. Later, test data from the LSTL will be used to validate the modeling approaches, which could then be used for future pump design efforts. Some initial insights and test data from the pump are then provided. Finally, some preliminary design goals and requirements for a future LSTL pump are provided as examples of salt pump design considerations.

  5. Salt concentration and solar orientation in two supralittoral sandhoppers: Talitrus saltator (Montagu) and Talorchestia ugolinii Bellan Santini and Ruffo.

    Science.gov (United States)

    Ugolini, Alberto; Cincinelli, Alessandra; Martellini, Tania; Doumett, Saer

    2015-05-01

    The influence of salt concentration in the seawater on solar orientation in Talitrus saltator and Talorchestia ugolinii was studied in a confined environment (transparent plexiglass bowls). Sodium and calcium concentrations strongly affect both sea-land orientation and the sun compass mechanism in T.saltator, whereas the behaviour of T. ugolinii is less influenced. The absence of Na(+) does not influence the sun compass mechanism, but causes an inversion in the mean direction of orientation in T. saltator. In T. ugolinii, there was no influence on the compass mechanism for solar orientation and no inversion in the directional choice. In the absence of Ca(2+), a photonegative tendency was observed for T saltator together with marked reduction in the capacity to go in any direction. However, the effect of Ca(2+) absence on the orientation capacity of T. saltator is reversible and the orientation capacity can be reduced in a few minutes. The different behaviour of the two species of sandhoppers is discussed.

  6. Effect of concentration, homogenization and stabilizing salts on heat stability and rheological properties of cow skim milk ultrafiltered retentate.

    Science.gov (United States)

    Meena, Ganga Sahay; Singh, Ashish Kumar; Borad, Sanket; Panjagari, Narender Raju

    2016-11-01

    Ultrafiltration (UF) of skimmed milk altered the composition of UF retentate and decreased the heat stability. Heat stability further reduced upon its subsequent homogenization or diafiltration. Poor heat stability of UF retentate restricts its processing at elevated temperatures. Therefore, this study was aimed to investigate the effect of protein concentration, homogenization and addition of stabilizing salts on the heat stability and rheological properties of UF retentates. Changes in the heat stability of fivefold homogenized UF retentate (5× HUFR) was studied in the pH range of 6.1-7.0. Disodium phosphate and trisodium citrate significantly increased the heat coagulation time (HCT) from 1.45 min (pH 6.41) to 120 min (at pH 6.5, 6.6, 7.0) and 80 min (pH 6.6), respectively. Significant reduction in ζ-potential of UF retentates was observed with an increase in calcium and reduction in pH during UF process. Rheological behaviour of retentates above threefold concentration exhibited Herschel-Bulkley behavior with linear increase in flow behavior index (n). Changes in the viscosity of the homogenized retentates were measured at the respective pH of maximum heat stability as a function of temperature (20-80 °C). Promising approaches that might improve the heat stability, solubility and other functional properties of protein rich powders have been discussed in this article.

  7. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  8. Effects of salt concentration and pH on structural and functional properties of Lactobacillus acidophilus: FT-IR spectroscopic analysis.

    Science.gov (United States)

    Gandhi, Akanksha; Shah, Nagendra P

    2014-03-03

    The effects of sodium chloride concentration and varying pH levels on the structural and functional properties of Lactobacillus acidophilus were investigated. Reconstituted skim milk was inoculated with Lb. acidophilus at varying salt concentrations (0, 1, 2, 5 and 10% NaCl) and pH levels (4.0, 5.0 and 6.0) and ACE-inhibitory activity and proteolytic activity were determined and the viable cell count was enumerated after 24h of fermentation at 37 °C. The degree of proteolysis exhibited an increase with higher salt concentration at pH 5.0 and 6.0. ACE-inhibitory activity was found to be the highest at pH 5.0 at all salt concentrations. Fourier transform infrared spectroscopy results demonstrated significant changes occurring beyond 2% NaCl particularly at low pH (4.0). The findings revealed that significant changes occurred in amide I and amide III regions when Lb. acidophilus was subjected to varying salt concentrations.

  9. SANS from Salt-Free Aqueous Solutions of Hydrophilic and Highly Charged Star-Branched Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    François Boué

    2016-06-01

    Full Text Available Scattering functions of sodium sulfonated polystyrene (NaPSS star-branched polyelectrolytes with high sulfonation degrees were measured from their salt-free aqueous solutions, using the Small Angle Neutron Scattering (SANS technique. Whatever the concentration c, they display two maxima. The first, of abscissa q1*, is related to a position order between star cores and scales as q1* ∝ c1/3. The second, of abscissa q2*, is also observed in the scattering function of a semi-dilute solution of NaPSS linear polyelectrolytes. In the dilute regime (c < c*, non-overlapping stars, peak abscissa does not depend on concentration c and is just an intramolecular characteristic associated with the electrostatic repulsion between arms of the same star. In the semi-dilute regime, due to the star interpenetration, the scattering function – through the peak position, reflects repulsion between arms of the same star or of different stars. The c threshold between these distinct c-dependencies of q2* in the dilute and semi-dilute regimes is estimated as c*. Just as simple is the measurement of the geometrical radius R of the star obtained from the q1* value at c* through the relation 2R = 2π/q1*. By considering NaPSS stars of the same functionality with different degrees of polymerization per arm Na, we find R scaling linearly with Na, suggesting an elongated average conformation of the arms. This is in agreement with theoretical predictions and simulations. Meanwhile the value of q2* measured in the dilute regime does not allow any inhomogeneous counterion distribution inside the stars to be revealed.

  10. Fluorosis and dental caries in Mexican schoolchildren residing in areas with different water fluoride concentrations and receiving fluoridated salt.

    Science.gov (United States)

    García-Pérez, A; Irigoyen-Camacho, M E; Borges-Yáñez, A

    2013-01-01

    To explore the association between fluoride in drinking water and the prevalence and severity of fluorosis and dental caries in children living in communities receiving fluoridated salt. Participants were schoolchildren (n = 457) living in two rural areas of the State of Morelos, Mexico, where the water fluoride concentration was 0.70 or 1.50 ppm. Dental caries status was assessed using Pitts' criteria. Lesions that were classified as D3 (decayed) were identified to determine the decayed, missing, and filled teeth index (D3MFT). Fluorosis was assessed using the Thylstrup-Fejerskov Index (TFI). Information regarding drinking water source and oral hygiene practices (tooth brushing frequency, dentifrice use, and oral hygiene index) was obtained. The prevalence of fluorosis (TFI ≥1) in communities with 0.70 and 1.50 ppm water fluoride was 39.4 and 60.5% (p = 0.014), respectively, while the prevalence of more severe forms (TFI ≥4) was 7.9 and 25.5% (p 1) showed that higher fluorosis categories (TFI 5-6 OR = 6.81, p = 0.001) were associated with higher caries experience, adjusted by age, number of teeth present, tooth brushing frequency, bottled water use, and natural water fluoride concentration. The prevalence of fluorosis was associated with the water fluoride concentration. Fluorosis at moderate and severe levels was associated with a higher prevalence of dental caries, compared with lesser degrees of fluorosis. The impact of dental fluorosis should be considered in dental public health programs. Copyright © 2013 S. Karger AG, Basel.

  11. Production of Integrated Automotive Part in High Pressure Diecasting Process Using Salt Core

    Institute of Scientific and Technical Information of China (English)

    Ki-Bae Kim; Hyun-Kwang Seok; Jun-Su Kim

    2004-01-01

    A new concept of salt core, a melting temperature of which is lower than the solidus temperature of cast alloy,was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. A salt core, named a fusible core in this paper because the salt core can be easily extracted just as holding at a temperature under a solidus temperature of a casting alloy, was developed and applied to produce a fuel control part for automotive GDI engine in high pressure diecasting machine. A different salt material of a lower melting temperature than that of A1 alloy was mixed with a different ceramic particulate to improve a thermo-physical property of fusible core. The thermo-physical property of the fusible core was measured and a weight faction of the ceramic particulate was optimized. The selected core materials were poured in metallic mold by gravity to produce a fusible core for a fuel control part for automotive GDI engine. The fuel control part, which the fusible core was included inside, was successful to fabricate in a conventional diecasting machine with no melting of fusible core during casting.

  12. High salt induced oxidative damage and antioxidant response in tomato grafted on tobacco

    Directory of Open Access Journals (Sweden)

    Özlem Darcansoy İşeri

    2015-06-01

    Full Text Available One of the major limitations on agricultural development in many countries is the high salinity of the groundwater used in irrigation. Grafted plants may exhibit phenotypic variations from scion and rootstock plants in terms of abiotic stress tolerance, and be a method for improvement of tolerance in agricultural practices. The aim of the present study was to investigate response of Solanum lycopersicum L. ('Elaziğ' grafted on Nicotiana tabacum L. ('Samsun' and Nicotiana rustica L. ('Hasankeyf', namely "Tomacco" plant (patent nr TR-2008-05391-B, to 10-d high NaCl irrigation. Physical development, chlorophyll a and b, total chlorophyll, total carotenoid, and anthocyanin levels were evaluated. Proline, lipid peroxidation, and electrolyte leakage levels were assayed in roots and leaves together with ascorbate peroxidase (APX and catalase (CAT activities. Considering alterations in chlorophyll contents, proline, malondialdehyde (MDA, and conductivity levels, and antioxidant enzyme activity levels scion and self-grafted plants seem to be more affected by salt treatments than tobacco and rootstock grafted plants. Tobacco roots seem to have better adaptive responses against salt stress in comparison to tomato as supported by changes in proline, APX, and CAT levels. Self-grafting experiments further supported grafting tomato onto tobacco rootstocks enhanced salt tolerance and adaptive response of scions and these changes seem to be dependent on rootstock rather than graft-induced changes. In conclusion, we demonstrated that previously defined graft unions of tomato on tobacco, which have increased fruit yield, had also enhanced tolerance to high salt stress and a promising technique for the cultivation of more salt tolerant varieties.

  13. A highly thermoactive and salt-tolerant α-amylase isolated from a pilot-plant biogas reactor.

    Science.gov (United States)

    Jabbour, Dina; Sorger, Anneke; Sahm, Kerstin; Antranikian, Garabed

    2013-04-01

    Aiming at the isolation of novel enzymes from previously uncultured thermophilic microorganisms, a metagenome library was constructed from DNA isolated from a pilot-plant biogas reactor operating at 55 °C. The library was screened for starch-degrading enzymes, and one active clone was found. An open reading frame of 1,461 bp encoding an α-amylase from an uncultured organism was identified. The amy13A gene was cloned in Escherichia coli, resulting in high-level expression of the recombinant amylase. The novel enzyme Amy13A showed the highest sequence identity (75%) to α-amylases from Petrotoga mobilis and Halothermothrix orenii. Amy13A is highly thermoactive, exhibiting optimal activity at 80 °C, and it is also highly salt-tolerant, being active in 25% (w/v) NaCl. Amy13A is one of the few enzymes that tolerate high concentrations of salt and elevated temperatures, making it a potential candidate for starch processing under extreme conditions.

  14. In Situ Raman Spectroscopic Studies on Concentration of Electrolyte Salt in Lithium-Ion Batteries by Using Ultrafine Multifiber Probes.

    Science.gov (United States)

    Yamanaka, Toshiro; Nakagawa, Hiroe; Tsubouchi, Shigetaka; Domi, Yasuhiro; Doi, Takayuki; Abe, Takeshi; Ogumi, Zempachi

    2017-03-09

    Lithium-ion batteries have attracted considerable attention due to their high power density. The change in concentration of salt in the electrolyte solution in lithium-ion batteries during operation causes serious degradation of battery performance. Herein, a new method of in situ Raman spectroscopy with ultrafine multifiber probes was developed to simultaneously study the concentrations of ions at several different positions in the electrolyte solution in deep narrow spaces between the electrodes in batteries. The total amount of ions in the electrolyte solution clearly changed during operation due to the low permeability of the solid-electrolyte interphase (SEI) at the anode for Li(+) permeation. The permeability, which is a key factor to achieve high battery performance, was improved (enhanced) by adding film-forming additives to the electrolyte solution to modify the properties of the SEI. The results provide important information for understanding and predicting phenomena occurring in a battery and for designing a superior battery. The present method is useful for analysis in deep narrow spaces in other electrochemical devices, such as capacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lateral Protein-Protein Interactions at Hydrophobic and Charged Surfaces as a Function of pH and Salt Concentration.

    Science.gov (United States)

    Hladílková, Jana; Callisen, Thomas H; Lund, Mikael

    2016-04-07

    Surface adsorption of Thermomyces lanuginosus lipase (TLL)-a widely used industrial biocatalyst-is studied experimentally and theoretically at different pH and salt concentrations. The maximum achievable surface coverage on a hydrophobic surface occurs around the protein isoelectric point and adsorption is reduced when either increasing or decreasing pH, indicating that electrostatic protein-protein interactions in the adsorbed layer play an important role. Using Metropolis Monte Carlo (MC) simulations, where proteins are coarse grained to the amino acid level, we estimate the protein isoelectric point in the vicinity of charged surfaces as well as the lateral osmotic pressure in the adsorbed monolayer. Good agreement with available experimental data is achieved and we further make predictions of the protein orientation at hydrophobic and charged surfaces. Finally, we present a perturbation theory for predicting shifts in the protein isoelectric point due to close proximity to charged surfaces. Although this approximate model requires only single protein properties (mean charge and its variance), excellent agreement is found with MC simulations.

  16. 高盐摄入与骨代谢%High salt intake and bone metabolism

    Institute of Scientific and Technical Information of China (English)

    朱晓峰; 张荣华

    2016-01-01

    Osteoporosis has become a global public health problem, and dietary interventions may potentially be helpful in preventing this disorder.Salt ( sodium chloride) is one of the most important dietary nutrients.High sodium chloride intake may play an important role in bone metabolism.In this paper, we reviewed the effects of high sodium chlo-ride intake on bone mineral density, bone mineral content and bone biochemical markers, and analyzed the possible causes through currently available literature.Although there are a few inconsistencies results, we conclude a long-term high salt intake can reduce bone density or bone mineral content, change many biochemical markers of bone resorption, which may be caused mainly by increasing urinary calcium excretion and a low-grade metabolic acidosis.However, there are still many unclear aspects need further exploration.

  17. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  18. Screening of Purslane (Portulaca oleracea L. Accessions for High Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Md. Amirul Alam

    2014-01-01

    Full Text Available Purslane (Portulaca oleracea L. is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05 and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9, 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12, 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13, and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.

  19. Measurements of radio propagation in rock salt for the detection of high-energy neutrinos

    CERN Document Server

    Connolly, Amy; Miki, Christian; Nichol, Ryan; Saltzberg, David

    2008-01-01

    We present measurements of the transmission of radio/microwave pulses through salt in the Cote Blanche salt mine operated by the North American Salt Company in St. Mary Parish, Louisiana. These results are from data taken in the southwestern region of the 1500 ft. (457 m) deep level of the mine on our third and most recent visit to the mine. We transmitted and received a fast, high-power, broadband pulse from within three vertical boreholes that were drilled to depths of 100 ft. (30 m) and 200 ft. below the 1500 ft. level using three different pairs of dipole antennas whose bandwidths span 125 to 900 MHz. By measuring the relative strength of the received pulses between boreholes with separations of 50 m and 169 m, we deduce the attenuation of the signal attributed to the salt medium. We fit the frequency dependence of the attenuation to a power law and find the best fit field attenuation lengths to be 93 \\pm 7 m at 150 MHz, 63 \\pm 3 m at 300 MHz, and 36 \\pm 2 m at 800 MHz. This is the most precise measuremen...

  20. EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface.

    Science.gov (United States)

    Parzel, Cheryl A; Pepper, Matthew E; Burg, Timothy; Groff, Richard E; Burg, Karen J L

    2009-06-01

    Tissue-engineering strategies may be employed in the development of in vitro breast tissue models for use in testing regimens of drug therapies and vaccines. The physical and chemical interactions that occur among cells and extracellular matrix components can also be elucidated with these models to gain an understanding of the progression of transformed epithelial cells into tumours and the ultimate metastases of tumour cells. The modified inkjet printer may be a useful tool for creating three-dimensional (3D) in vitro models, because it offers an inexpensive and high-throughput solution to microfabrication, and because the printer can be easily manipulated to produce varying tissue attributes. We hypothesized, however, that when ink is replaced with a biologically based fluid (i.e. a 'bio-ink'), specifically a serum-free cell culture medium, printer nozzle failure can result from salt scale build-up as fluid evaporates on the printhead surface. In this study, ethylene diamine tetra-acetic acid (EDTA) was used as a culture medium additive to prevent salt scaling and cell aggregation during the bioprinting process. The results showed that EDTA, at a concentration typically found in commercially available trypsin solutions (0.53 mM), prevented nozzle failure when a serum-free culture medium was printed from a nozzle at 1000 drops/s. Furthermore, increasing concentrations of EDTA appeared to mildly decrease aggregation of 4T07 cells. Cell viability studies were performed to demonstrate that addition of EDTA did not result in significant cell death. In conclusion, it is recommended that EDTA be incorporated into bio-ink solutions containing salts that could lead to nozzle failure.

  1. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    KAUST Repository

    Wu, Hongjun

    2017-07-13

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  2. Renewable and high efficient syngas production from carbon dioxide and water through solar energy assisted electrolysis in eutectic molten salts

    Science.gov (United States)

    Wu, Hongjun; Liu, Yue; Ji, Deqiang; Li, Zhida; Yi, Guanlin; Yuan, Dandan; Wang, Baohui; Zhang, Zhonghai; Wang, Peng

    2017-09-01

    Over-reliance on non-renewable fossil fuel leads to steadily increasing concentration of atmospheric CO2, which has been implicated as a critical factor contributing to global warming. The efficient conversion of CO2 into useful product is highly sought after both in academic and industry. Herein, a novel conversion strategy is proposed to one-step transform CO2/H2O into syngas (CO/H2) in molten salt with electrolysis method. All the energy consumption in this system are contributed from sustainable energy sources: concentrated solar light heats molten salt and solar cell supplies electricity for electrolysis. The eutectic Li0.85Na0.61K0.54CO3/nLiOH molten electrolyte is rationally designed with low melting point (<450 °C). The synthesized syngas contains very desirable content of H2 and CO, with tuneable molar ratios (H2/CO) from 0.6 to 7.8, and with an efficient faradaic efficiency of ∼94.5%. The synthesis of syngas from CO2 with renewable energy at a such low electrolytic temperature not only alleviates heat loss, mitigates system corrosion, and heightens operational safety, but also decreases the generation of methane, thus increases the yield of syngas, which is a remarkable technological breakthrough and this work thus represents a stride in sustainable conversion of CO2 to value-added product.

  3. Transcriptome changes in foxtail millet genotypes at high salinity: identification and characterization of a PHGPX gene specifically upregulated by NaCl in a salt-tolerant line.

    Science.gov (United States)

    Sreenivasulu, Nese; Miranda, Manoela; Prakash, Harischandra Sripathy; Wobus, Ulrich; Weschke, Winfriede

    2004-04-01

    Using a macro array filter with 711 cDNA inserts representing 620 unigenes selected from a barley EST collection, we identified transcripts differentially expressed in salt (NaCl)-treated tolerant (cv. Prasad) and sensitive (cv. Lepakshi) seedlings of foxtail millet (Setaria italica L.). Transcripts of hydrogen peroxide scavenging enzymes such as phospholipid hydroperoxide glutathione peroxidase (PHGPX), ascorbate peroxidase (APX) and catalase 1 (CAT1) in addition to some genes of cellular metabolism were found to be especially up-regulated at high salinity in the tolerant line. To analyse this process at the protein level we examined protein expression patterns under various stress conditions. A 25 kD protein with a pI of 4.8 was found to be induced prominently under high salt concentrations (250 mmol/L). This salt-induced 25 kD protein has been purified and identified by peptide sequencing as PHGPX protein. The increase of the PHGPX protein level under salt stress in the tolerant line parallels the PHGPX mRNA results of array analysis but was more pronounced. We cloned and characterized the foxtail millet PHGPX cDNA, which shows 85% and 95% homology at the DNA and protein level, respectively, to one stress-induced member of the small barley PHGPX gene family encoding non-selenium glutathione peroxidases. As shown by Southern blot analysis, a small family of PHGPX genes exists in foxtail millet, too. The specific expression pattern of the PHGPX gene in salt-induced tolerant millet seedlings suggests that its product plays an important role in the defense reaction against salt-induced oxidative damage and that the characterized glutathione peroxidase is one of the components conferring resistance against salt to the tolerant foxtail millet cultivar.

  4. An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice

    Directory of Open Access Journals (Sweden)

    Gupta Sudhiranjan

    2006-08-01

    Full Text Available Abstract Background The bZIP class Abscisic acid Responsive Element (ABRE-binding factor, OSBZ8 (38.5 kD has been considered to regulate ABA-mediated transcription in the suspension cultured cells of japonica rice. Still, nothing is known about the expression of OSBZ8 at protein level in vegetative tissue of salt sensitive and salt tolerant rice plants. In our previous study, Electrophoretic Mobility Shift Assay (EMSA of [32P]ABRE-DNA and nuclear extracts prepared from the lamina of Pokkali rice plants has detected the presence of an ABRE-binding factor. Northern analysis has also detected salinity stress induced accumulation of transcripts for bZIP class of factor. Therefore, OSBZ8 was considered to play an important role in the regulation of transcription in the vegetative tissue of rice. The aim of this study is to find out whether OSBZ8 has any role in regulating the NaCl-stress induced gene expression in vegetative tissue and whether the expression of OSBZ8 factor directly correlates with the stress tolerance of different varieties of indica type rice. Results Northern analysis of total RNA from roots and lamina of salt-sensitive M-I-48 and salt-tolerant Nonabokra, when probed with the N-terminal unique region of OSBZ8 (OSBZ8p, without the highly conserved basic region, a transcript of 1.3 kb hybridized and its level was much higher in tolerant cultivar. EMSA with Em1a, the strongest ABA Responsive Element till reported from the upstream of EmBP1, and the nuclear extracts from laminar tissue of untreated and salt-treated seedlings of three salt sensitive, one moderately sensitive and two salt tolerant indica rice cultivars showed specific binding of nuclear factor to ABRE element. Intensity of binding was low and inducible in salt sensitive rice cultivars while high and constitutive in salt tolerant cultivars. EMSA with 300 bp 5'upstream region of Rab16A gene, a well known salt stress and ABA-inducible gene of rice, showed formation of two

  5. Experience of applying the results of investigations into controlling lines of the salt ratio between the salt and pure sections of high-pressure drum boilers

    Science.gov (United States)

    Fedorov, A. I.

    2013-12-01

    Layouts of the connection of the salt ratio lines (SRLs) existing in domestic boiler building are analyzed and the main causes of their low operational efficiency are shown. The results of investigation of hydraulics and the salt mode of an internal boiler layout with the SRL of the TPE-208 boiler are presented. Recommendations on designing the SRL in internal boiler layouts of high-pressure drum boilers, which make it possible to increase the reliability of boilers and to decrease the annual consumption of phosphates, are developed.

  6. Effects of Gibberellic Acid and Nitrogen on Some Physiology Parameters and Micronutrients Concentration in Pistachio under Salt Stress

    Directory of Open Access Journals (Sweden)

    vahid mozafari

    2017-02-01

    /63, Tissue (Sandy loam, electrical conductivity (ECe (1 dS m-1, Silt (23.1%, Clay (5.5%, Organic matter (0.5%, Olsen phosphorus (P (5.35 mg kg-1, Ammonium acetate-extractable K (100 mg kg-1 were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting, divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week. Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations

  7. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  8. Factors Impeding Enzymatic Wheat Gluten Hydrolysis at High Solid Concentrations

    NARCIS (Netherlands)

    Hardt, N.A.; Janssen, A.E.M.; Boom, R.M.; Goot, van der A.J.

    2014-01-01

    Enzymatic wheat gluten hydrolysis at high solid concentrations is advantageous from an environmental and economic point of view. However, increased wheat gluten concentrations result in a concentration effect with a decreased hydrolysis rate at constant enzyme-to-substrate ratios and a decreased

  9. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    Science.gov (United States)

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  10. Protein glycosylation as an adaptive response in Archaea: growth at different salt concentrations leads to alterations in Haloferax volcanii S-layer glycoprotein N-glycosylation.

    Science.gov (United States)

    Guan, Ziqiang; Naparstek, Shai; Calo, Doron; Eichler, Jerry

    2012-03-01

    To cope with life in hypersaline environments, halophilic archaeal proteins are enriched in acidic amino acids. This strategy does not, however, offer a response to transient changes in salinity, as would post-translational modifications. To test this hypothesis, N-glycosylation of the Haloferax volcanii S-layer glycoprotein was compared in cells grown in high (3.4 M NaCl) and low (1.75 M NaCl) salt, as was the glycan bound to dolichol phosphate, the lipid upon which the N-linked glycan is assembled. In high salt, S-layer glycoprotein Asn-13 and Asn-83 are modified by a pentasaccharide, while dolichol phosphate is modified by a tetrasaccharide comprising the first four pentasaccharide residues. When the same targets were considered from cells grown in low salt, substantially less pentasaccharide was detected. At the same time, cells grown at low salinity contain dolichol phosphate modified by a distinct tetrasaccharide absent in cells grown at high salinity. The same tetrasaccharide modified S-layer glycoprotein Asn-498 in cells grown in low salt, whereas no glycan decorated this residue in cells grown in the high-salt medium. Thus, in response to changes in environmental salinity, Hfx. volcanii not only modulates the N-linked glycans decorating the S-layer glycoprotein but also the sites of such post-translational modification.

  11. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    Directory of Open Access Journals (Sweden)

    Zhi-Yan Lu

    2015-05-01

    Full Text Available A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC. The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH and catechol 1,2-dioxygenase (C12O were active in the phenol degradation process.

  12. Effects of High Salt Stress on Secondary Metabolite Production in the Marine-Derived Fungus Spicaria elegans

    Directory of Open Access Journals (Sweden)

    Weiming Zhu

    2011-03-01

    Full Text Available To obtain structurally novel and bioactive natural compounds from marine-derived microorganisms, the effect of high salt stress on secondary metabolite production in the marine-derived fungal strain, Spicaria elegans KLA-03, was investigated. The organism, which was isolated from marine sediment, produced different secondary metabolites when cultured in 3% and 10% saline conditions. Four characteristic metabolites, only produced in the 10% salinity culture, were isolated, and their structures were identified as (2E,2'Z-3,3'-(6,6'-dihydroxybiphenyl-3,3'-diyldiacrylic acid (1, aspulvinone E (2, aspochalasin E (3 and trichodermamide B (6, according to their 1D and 2D NMR spectra. Compound 1 is a new compound. High salt stress may therefore be a promising means to induce the production of new and chlorinated compounds in halotolerant fungi. Compound 1 showed moderate antibacterial activity against Pseudomonas aeruginosa and Escherichia coli with minimum inhibitory concentration (MIC values of 0.038 and 0.767 mM, respectively.

  13. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    Energy Technology Data Exchange (ETDEWEB)

    Morgunova, Ekaterina, E-mail: ekaterina.morgunova@ki.se [Karolinska Institutet, NOVUM, Centre of Structural Biochemistry, S-14157 Huddinge (Sweden); Gray, Fiona C. [Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen (Denmark); MacNeill, Stuart A. [Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen (Denmark); Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST,Scotland (United Kingdom); Ladenstein, Rudolf [Karolinska Institutet, NOVUM, Centre of Structural Biochemistry, S-14157 Huddinge (Sweden)

    2009-10-01

    The crystal structure of PCNA from the halophilic archaeon H. volcanii reveals specific features of the charge distribution on the protein surface that reflect adaptation to a high-salt environment and suggests a different type of interaction with DNA in halophilic PCNAs. The sliding clamp proliferating cell nuclear antigen (PCNA) plays vital roles in many aspects of DNA replication and repair in eukaryotic cells and in archaea. Realising the full potential of archaea as a model for PCNA function requires a combination of biochemical and genetic approaches. In order to provide a platform for subsequent reverse genetic analysis, PCNA from the halophilic archaeon Haloferax volcanii was subjected to crystallographic analysis. The gene was cloned and expressed in Escherichia coli and the protein was purified by affinity chromatography and crystallized by the vapour-diffusion technique. The structure was determined by molecular replacement and refined at 3.5 Å resolution to a final R factor of 23.7% (R{sub free} = 25%). PCNA from H. volcanii was found to be homotrimeric and to resemble other homotrimeric PCNA clamps but with several differences that appear to be associated with adaptation of the protein to the high intracellular salt concentrations found in H. volcanii cells.

  14. Refractive Secondary Solar Concentrator Demonstrated High-Temperature Operation

    Science.gov (United States)

    Wong, Wayne A.

    2002-01-01

    Space applications that utilize solar thermal energy--such as electric power conversion systems, thermal propulsion systems, and furnaces--require highly efficient solar concentration systems. The NASA Glenn Research Center is developing the refractive secondary concentrator, which uses refraction and total internal reflection to efficiently concentrate and direct solar energy. When used in combination with advanced lightweight primary concentrators, such as inflatable thin films, the refractive secondary concentrator enables very high system concentration ratios and very high temperatures. Last year, Glenn successfully demonstrated a secondary concentrator throughput efficiency of 87 percent, with a projected efficiency of 93 percent using an antireflective coating. Building on this achievement, Glenn recently successfully demonstrated high-temperature operation of the secondary concentrator when it was used to heat a rhenium receiver to 2330 F. The high-temperature demonstration of the concentrator was conducted in Glenn's 68-ft long Tank 6 thermal vacuum facility equipped with a solar simulator. The facility has a rigid panel primary concentrator that was used to concentrate the light from the solar simulator onto the refractive secondary concentrator. NASA Marshall Space Flight Center provided a rhenium cavity, part of a solar thermal propulsion engine, to serve as the high-temperature receiver. The prototype refractive secondary concentrator, measuring 3.5 in. in diameter and 11.2 in. long, is made of single-crystal sapphire. A water-cooled splash shield absorbs spillage light outside of the 3.5-in. concentrator aperture. Multilayer foil insulation composed of tungsten, molybdenum, and niobium is used to minimize heat loss from the hightemperature receiver. A liquid-cooled canister calorimeter is used to measure the heat loss through the multilayer foil insulation.

  15. Internal deformation in layered Zechstein-III K-Mg salts. Structures formed by complex deformation and high contrasts in viscosity observed in drill cores.

    Science.gov (United States)

    Raith, Alexander; Urai, Janos L.

    2016-04-01

    During the evaporation of a massive salt body, alternations of interrupted and full evaporation sequences can form a complex layering of different lithologies. Viscosity contrasts of up to five orders of magnitude between these different lithologies are possible in this environment. During the late stage of an evaporation cycle potassium and magnesium (K-Mg) salts are precipitated. These K-Mg salts are of economic interest but also a known drilling hazard due to their very low viscosity. How up to 200m thick layers of these evaporites affect salt deformation at different scales is not well known. A better understanding of salt tectonics with extreme mechanical stratification is needed for better exploration and production of potassium-magnesium salts and to predict the internal structure of potential nuclear waste repositories in salt. To gain a better understanding of the internal deformation of these layers we analyzed K-Mg salt rich drill cores out of the Zechstein III-1b subunit from the Veendam Pillow 10 km southeast of Groningen, near the city Veendam in the NE Netherlands. The study area has a complex geological history with multiple tectonic phases of extension and compression forming internal deformation in the pillow but also conserving most of the original layering. Beside halite the most common minerals in the ZIII-1b are carnallite, kieserite, anhydrite and bischofite alternating in thin layers of simple composition. Seismic interpretation revealed that the internal structure of the Veendam Pillow shows areas, in which the K-Mg salt rich ZIII 1b layer is much thicker than elsewhere, as a result of salt deformation. The internal structure of the ZIII-1b on the other hand, remains unknown. The core analysis shows a strong strain concentration in the weaker Bischofite (MgCl2*6H20) and Carnallite (KMgCl3*6H20) rich layers producing tectonic breccias and highly strained layers completely overprinting the original layering. Layers formed by alternating beds

  16. Phosphate salts

    Science.gov (United States)

    ... levels that are too high, and for preventing kidney stones. They are also taken for treating osteomalacia (often ... But intravenous phosphate salts should not be used. Kidney stones (nephrolithiasis). Taking potassium phosphate by mouth might help ...

  17. Fabrication and tolerances of optics for high concentration photovoltaics

    OpenAIRE

    Benitez Gimenez, Pablo; Miñano Dominguez, Juan Carlos; Ahmadpanaih, Hamed; Mendes Lopes, Joao; Zamora Herranz, Pablo

    2014-01-01

    High Concentration Photovoltaics (HCPV) require an optical system with high efficiency, low cost and large tolerance. We describe the particularities of the HCPV applications, which constrain the optics design and the manufacturing techonologies.

  18. Renal Overexpression of Atrial Natriuretic Peptide and Hypoxia Inducible Factor-1α as Adaptive Response to a High Salt Diet

    OpenAIRE

    Silvana Lorena Della Penna; Gabriel Cao; Andrea Carranza; Elsa Zotta; Susana Gorzalczany; Carolina Susana Cerrudo; Natalia Lucía Rukavina Mikusic; Alicia Correa; Verónica Trida; Jorge Eduardo Toblli; María Inés Rosón; Belisario Enrique Fernández

    2014-01-01

    In the kidney, a high salt intake favors oxidative stress and hypoxia and causes the development of fibrosis. Both atrial natriuretic peptide (ANP) and hypoxia inducible factor (HIF-1α) exert cytoprotective effects. We tested the hypothesis that renal expression of ANP and HIF-1α is involved in a mechanism responding to the oxidative stress produced in the kidneys of rats chronically fed a high sodium diet. Sprague-Dawley rats were fed with a normal salt (0.4% NaCl) (NS) or a high salt (8% Na...

  19. Fluoride Salt-Cooled High-Temperature Reactor Technology Development and Demonstration Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Mays, Gary T [ORNL; Pointer, William David [ORNL; Robb, Kevin R [ORNL; Yoder Jr, Graydon L [ORNL

    2013-11-01

    Fluoride salt-cooled High-temperature Reactors (FHRs) are an emerging reactor class with potentially advantageous performance characteristics, and fully passive safety. This roadmap describes the principal remaining FHR technology challenges and the development path needed to address the challenges. This roadmap also provides an integrated overview of the current status of the broad set of technologies necessary to design, evaluate, license, construct, operate, and maintain FHRs. First-generation FHRs will not require any technology breakthroughs, but do require significant concept development, system integration, and technology maturation. FHRs are currently entering early phase engineering development. As such, this roadmap is not as technically detailed or specific as would be the case for a more mature reactor class. The higher cost of fuel and coolant, the lack of an approved licensing framework, the lack of qualified, salt-compatible structural materials, and the potential for tritium release into the environment are the most obvious issues that remain to be resolved.

  20. High Purity DNA Extraction with a SPE Microfluidic Chip Using KI as the Binding Salt

    Institute of Scientific and Technical Information of China (English)

    Xing CHEN; Da Fu CUI; Chang Chun LIU

    2006-01-01

    Based on solid phase extraction method, a novel silicon-PDMS-glass microchip for high purity DNA extraction has been developed by using KI as the binding salt. The microfluidic chip fabricated by MEMS technology was composed of a silicon substrate with a coiled channel and a compounded PDMS-glass cover. With this microfluidic chip, the wall of the coiled channel was used as solid phase matrix for binding DNA and DNA was extracted by the fluxion of the binding buffer, washing buffer and elution buffer. KI as a substitute for guanidine, was used successfully as binding salt for purification DNA, obtaining higher purity of genomic DNA and about 13.9 ng DNA from 1 μL rat whole blood in 35 minutes.

  1. A novel gene, lstC, of Listeria monocytogenes is implicated in high salt tolerance.

    Science.gov (United States)

    Burall, Laurel S; Simpson, Alexandra C; Chou, Luoth; Laksanalamai, Pongpan; Datta, Atin R

    2015-06-01

    Listeria monocytogenes, causative agent of human listeriosis, has been isolated from a wide variety of foods including deli meats, soft cheeses, cantaloupes, sprouts and canned mushrooms. Standard control measures for restricting microbial growth such as refrigeration and high salt are often inadequate as L. monocytogenes grows quite well in these environments. In an effort to better understand the genetic and physiological basis by which L. monocytogenes circumvents these controls, a transposon library of L. monocytogenes was screened for changes in their ability to grow in 7% NaCl and/ or at 5 °C. This work identified a transposon insertion upstream of an operon, here named lstABC, that led to a reduction in growth in 7% NaCl. In-frame deletion studies identified lstC which codes for a GNAT-acetyltransferase being responsible for the phenotype. Transcriptomic and RT-PCR analyses identified nine genes that were upregulated in the presence of high salt in the ΔlstC mutant. Further analysis of lstC and the genes affected by ΔlstC is needed to understand LstC's role in salt tolerance. Published by Elsevier Ltd.

  2. The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in zoysiagrass (Zoysia japonica Steud subjected to short-term salinity stress

    Directory of Open Access Journals (Sweden)

    Shucheng Li

    2016-08-01

    Full Text Available Salt stress, and particularly short-term salinity stress, is one of the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd stimulats tolerance to salt stress in plants. In the present study, two cultivars that are typically grown in China were used. The two zoysiagrass cultivars, exhibiting a sensitive ( cv. Z081 or tolerant ( cv. Z057 salt stress adaptation ability, were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine (Put, Spd and Spm contents and polyamine metabolic enzyme (ADC, ODC, SAMDC, PAO and DAO, malondialdehyde (MDA, H2O2 and antioxidant enzyme activities (superoxide dismutase, catalase, and peroxidase were measured. The results showed that salt stress induced increases in Spd and Spm contents and the activity of ornithine decarboxylase (ODC, S-adenosylmethionine decarboxylase (SAMDC and diamine oxidase (DAO in both cultivars. Exogenous Spd application did not compromise polyamine contents through the regulation of polyamine-degrading enzymes, and an increase in PA synthesis enzymes was observed during the experiment. The application resulted in a tendency for the Spd and Spm contents and the activities of ODC, S-adenosylmethionine decarboxylase (SAMDC, DAO, and antioxidant enzymes to first increase and then decrease in both cultivars with an increase in the exogenous Spd concentration. H2O2 and MDA significantly decreased in both cultivars treated with Spd. With an increase in the exogenous Spd concentration, the Spd + Spm level scores showed positive correlations with polyamine synthesis enzymes (ADC, SAMDC, DAO, antioxidant enzymes (SOD, POD, CAT, while showing negative correlations with H2O2 and MDA in both cultivars.

  3. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.

    Science.gov (United States)

    Carrique, Félix; Ruiz-Reina, Emilio; Lechuga, Luis; Arroyo, Francisco J; Delgado, Ángel V

    2013-12-01

    Electrokinetic investigations in nanoparticle suspensions in aqueous media are most often performed assuming that the liquid medium is a strong electrolyte solution with specified concentration. The role of the ions produced by the process of charging the surfaces of the particles is often neglected or, at most, the concentrations of such ions are estimated in some way and added to the concentrations of the ions in the externally prepared solution. The situation here considered is quite different: no electrolyte is dissolved in the medium, and ideally only the counterions stemming from the particle charging are assumed to be in solution. This is the case of so-called salt-free systems. With the aim of making a model for such kind of dispersions as close to real situations as possible, it was previously found to consider the unavoidable presence of H(+) and OH(-) coming from water dissociation, as well as the (almost unavoidable) ions stemming from the dissolution of atmospheric CO2. In this work, we extend such approach by considering that the chemical reactions involved in dissociation and recombination of the (weak) electrolytes in solution must not necessarily be in equilibrium conditions (equal rates of forward and backward reactions). To that aim, we calculate the frequency spectra of the electric permittivity and dynamic electrophoretic mobility of salt-free suspensions considering realistic non-equilibrium conditions, using literature values for the rate constants of the reactions. Four species are linked by such reactions, namely H(+) (from water, from the--assumed acidic--groups on the particle surfaces, and from CO2 dissolution), OH(-) (from water), HCO3(-) and H2CO3 (again from CO2). A cell model is used for the calculations, which are extended to arbitrary values of the surface charge, the particle size, and particle volume fraction, in a wide range of the field frequency ω. Both approaches predict a high frequency relaxation of the counterion

  4. Physiological and chemical characteristics of safflower (Carthamus tinctorius L. grown in the presence of low salt concentrations

    Directory of Open Access Journals (Sweden)

    Daničić Milena M.

    2016-01-01

    Full Text Available (Carthamus tinctorius L. is highly regarded in the world as an aromatic, spicy, medicinal and oilseed crop, which can be used in all kinds of industries. It inhabits arid and semiarid areas of the world. The influence of the relatively low NaCl concentrations found in soils and irrigation waters on the growth and metabolism of saf­flower, grown under semi-controlled conditions, was examined in this work. It was found that increased concentrations of NaCl affected the number of leaves per plant and dry leaves mass/area ratio. The transpiration intensity was reduced in plants grown in the presence of NaCl and stomatal diffusive resistance increased following an increase in NaCl concentration.

  5. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    Science.gov (United States)

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2016-09-01

    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  6. Changes of microbial community structures and functional genes during biodegradation of phenolic compounds under high salt condition

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; QU Yuanyuan; ZHOU Jiti

    2009-01-01

    The changes of microbial community structures and functional genes during the biodegradation of single phenol and phenol plus p-cresol under high salt condition were explored.It was found that the phenol-fed system (PFS) exhibited stronger degrading abilities and more stable biomass than that of the phenol plus p-cresol-fed system (PCFS).The microbial community structures were revealed by a modern DNA fingerprint technique,ribosomal intergenic spacer analysis (RISA).The results indicated that the microbial community of PFS changed obviously when gradually increased phenol concentration,while PCFS showed a little change.16S rRNA sequence analysis of the major bands showed that Alcanivorax sp.genus was predominant species during phenolic compounds degradation.Furthermore,amplified functional DNA restriction analysis (AFDRA) on phenol hydroxylase genes showed that the fingerprints were substantially different in the two systems,and the fingerprints were not the same during the different operational periods.

  7. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  8. Activation of Renal (Pro)Renin Receptor Contributes to High Fructose-Induced Salt Sensitivity.

    Science.gov (United States)

    Xu, Chuanming; Lu, Aihua; Lu, Xiaohan; Zhang, Linlin; Fang, Hui; Zhou, Li; Yang, Tianxin

    2017-02-01

    A high-fructose diet is shown to induce salt-sensitive hypertension, but the underlying mechanism largely remains unknown. The major goal of the present study was to test the role of renal (pro)renin receptor (PRR) in this model. In Sprague-Dawley rats, high-fructose intake increased renal expression of full-length PRR, which were attenuated by allopurinol. High-fructose intake also upregulated renal mRNA and protein expression of sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter, as well as in vivo Na/K/2Cl cotransporter activity, all of which were nearly completely blocked by a PRR decoy inhibitor PRO20 or allopurinol treatment. Parallel changes were observed for indices of intrarenal renin-angiotensin-system including renal and urinary renin and angiotensin II levels. Radiotelemetry demonstrated that high-fructose or a high-salt diet alone did not affect mean arterial pressure, but the combination of the 2 maneuvers induced a ≈10-mm Hg increase of mean arterial pressure, which was blunted by PRO20 or allopurinol treatment. In cultured human kidney 2 cells, both fructose and uric acid increased protein expression of soluble PRR in a time- and dose-dependent manner; fructose-induced PRR upregulation was inhibited by allopurinol. Taken together, our data suggest that fructose via uric acid stimulates renal expression of PRR/soluble PRR that stimulate sodium/hydrogen exchanger 3 and Na/K/2Cl cotransporter expression and intrarenal renin-angiotensin system to induce salt-sensitive hypertension.

  9. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  10. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  11. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-22

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  12. Cold, pH and salt tolerant Penicillium spp. inhabit the high altitude soils in Himalaya, India.

    Science.gov (United States)

    Dhakar, Kusum; Sharma, Avinash; Pandey, Anita

    2014-04-01

    Twenty five fungal cultures (Penicillium spp.), isolated from soil samples from the high altitudes in the Indian Himalayan region, have been characterized following polyphasic approach. Colony morphology performed on five different media gave varying results; potato dextrose agar being the best for the vegetative growth and sporulation as well. Microscopic observations revealed 18 isolates to be biverticillate and 7 monoverticillate. Based on the phenotypic characters (colony morphology and microscopy), all the isolates were designated to the genus Penicillium. Exposure to low temperature resulted in enhanced sporulation in 23 isolates, while it ceased in case of two. The fungal isolates produced watery exudates in varying amount that in many cases increased at low temperature. All the isolates could grow between 4 and 37 °C, (optimum 24 °C), hence considered psychrotolerant. While all the isolates could tolerate pH from 2 to 14 (optimum 5-9), 7 isolates tolerated pH 1.5 as well. While all the fungal isolates tolerated salt concentration above 10 %; 10 isolates showed tolerance above 20 %. Based on ITS region (ITS1-5.8S-ITS2) analysis the fungal isolates belonged to 25 different species of Penicillium (showing similarity between 95 and 100 %). Characters like tolerance for low temperature, wide range of pH, and high salt concentration, and enhancement in sporulation and production of secondary metabolites such as watery exudates at low temperature can be attributed to the ecological resilience possessed by these fungi for survival under low temperature environment of mountain ecosystem.

  13. Contrasting physiological responses to high salinity between two varieties of corn 'Lluteño' (salt tolerant and 'Jubilee' (salt sensitive

    Directory of Open Access Journals (Sweden)

    Libertad Carrasco-Ríos

    2013-09-01

    Full Text Available 'Lluteño' is the only one corn capable to prosper in the Valley of Lluta under saline conditions (EC = 9.1 dS m-1. This cultivar has been little studied and there is no current information about its growth and about the possible mechanisms involved in its tolerance to salts. The aim of this research was to compare the growth of young plants of corn (Zea mays L. 'Lluteño' to that of the bred 'Jubilee', both grown under different salt concentrations, to characterize the absorption and distribution of Na+ and other nutrients in the plant and to evaluate the effect of the saline conditions in the osmotic adjustment in both cultivars. The plants of 21 d old were subjected for 15 d to two saline treatments: 50 and 100 mM NaCl. The accumulation of DM was reduced from 5.12 to 1.80 g plant-1 in 'Jubilee' and 5.53 to 4.12 g plant-1 in 'Lluteño' (P d" 0.05. 'Lluteño' showed to be more tolerant to salt stress that 'Jubilee' by greatest accumulation of biomass under saline conditions, it was associated with a lower accumulation of Na+, steadiness of K+ and Ca²+ content and accumulation of osmolytes in leaves. The latter affecting positively the maintenance of relative water content and the osmotic adjustment of this cultivar in the leaves.

  14. Effect Analysis of Mineral Salt Concentrations on Nosiheptide Production by Streptomyces actuosus Z-10 Using Response Surface Methodology

    OpenAIRE

    Wei Zhou; Xiaohui Liu; Pei Zhang; Pei Zhou; Xunlong Shi

    2014-01-01

    The objective of this study was to develop an optimal combination of mineral salts in the fermentation medium for nosiheptide (Nsh) production using statistical methodologies. A Plackett-Burman design (PBD) was used to evaluate the impacts of eight mineral salts on Nsh production. The results showed that among the no-significant factors, CaCO3, and K2HPO4·3H2O had positive effects, whereas FeSO4·7H2O, CuSO4·5H2O, and ZnSO4·7H2O had negative effects on Nsh production. The other three significa...

  15. Thermal modeling of a secondary concentrator integrated with an open direct-absorption molten-salt volumetric receiver in a beam-down tower system

    Science.gov (United States)

    Lahlou, Radia; Armstrong, Peter; Grange, Benjamin; Almheiri, Saif; Calvet, Nicolas; Slocum, Alexander; Shamim, Tariq

    2016-05-01

    An upward-facing three-dimensional secondary concentrator, herein termed Final Optical Element (FOE), is designed to be used in a beam-down tower in combination with an open volumetric direct-absorption molten-salt receiver tank acting simultaneously as a thermal energy storage system. It allows reducing thermal losses from the open receiver by decreasing its aperture area while keeping minimal spillage losses. The FOE is exposed to high solar fluxes, a part of which is absorbed by its reflector material, leading to material degradation by overheating. Consequently, the FOE may require active cooling. A thermal model of the FOE under passive cooling mechanism is proposed as a first step to evaluate its sensitivity to some design parameters. Then, it will be used to evaluate the requirements for the active cooling system. The model provides insights on the FOE thermal behavior and highlights the effectiveness of a design modification on passive cooling enhancement. First prototype tests under reduced flux and with no active cooling will be used for model adjustment.

  16. Uninephrectomy in young age or chronic salt loading causes salt-sensitive hypertension in adult rats

    DEFF Research Database (Denmark)

    Carlström, Mattias; Sällström, Johan; Skøtt, Ole

    2007-01-01

    animals raised with normal-salt diet (UNX) or high-salt diet (UNX+HS). In the adult animals, renal and cardiovascular functions were evaluated and blood pressure recorded telemetrically under different sodium conditions (normal, high, and low). Hypertension was present in UNX+HS (122+/-9 mm Hg), UNX (101...... renin concentrations during high sodium conditions and hypertrophic kidneys and hearts with various degrees of histopathologic changes. In conclusion, at a young age after completed nephrogenesis, uninephrectomy or chronic salt loading causes renal and cardiovascular injury with salt...

  17. Organic solvent tolerance of an α-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations.

    Science.gov (United States)

    Pandey, Sandeep; Singh, S P

    2012-04-01

    A haloalkaliphilic bacterium was isolated from salt-enriched soil of Mithapur, Gujarat (India) and identified as Bacillus agaradhaerens Mi-10-6₂ based on 16S rRNA sequence analysis (NCBI gene bank accession, GQ121032). The bacterium was studied for its α-amylase characteristic in the presence of organic solvents. The enzyme was quite active and it retained considerable activity in 30% (v/v) organic solvents, dodecane, decane, heptane, n-hexane, methanol, and propanol. At lower concentrations of solvents, the catalysis was quite comparable to control. Enzyme catalysis at wide range of alkanes and alcohol was an interesting finding of the study. Mi-10-6₂ amylase retained activity over a broader alkaline pH range, with the optimal pH at 10-11. Two molars of salt was optimum for catalysis in the presence of most of the tested solvents, though the enzyme retained significant activity even at 4 M salt. With dodecane, the optimum temperature shifted from 50 °C to 60 °C, while the enzyme was active up to 80 °C. Over all, the present study focused on the effect of organic solvents on an extracellular α-amylase from haloalkaliphilic bacteria under varying conditions of pH, temperature, and salt.

  18. Response of three shrub willow varieties (Salix spp.) to storm water treatments with different concentrations of salts.

    Science.gov (United States)

    Mirck, Jaconette; Volk, Timothy A

    2010-05-01

    The effect of recycling storm water with high chloride concentrations on shrub willow growth was examined in a ten-week greenhouse study. Three willow varieties Salix miyabeana (SX64), Salix purpurea (9882-34), and Salix sachalinensisxSalix miyabeana (9870-40) were grown in organically-amended Solvay waste, and irrigated with five storm water concentrations containing 163, 325, 813, 1625, and 8125mgCl(-)L(-1) and a tap water control. Stomatal conductance values responded most rapidly to stress (after 4.5weeks), but height and leaf length measurements, which revealed signs of stress after 6 and 7weeks, might be more practical stress indicators for large-scale plantations. Even though variety 9870-40 was most sensitive with increasing concentrations of Solvay storm water, this variety had the greatest ET values during the ten-week trial. Storm water with concentrations up to 1625mgCl(-)L(-1) had no short-term effects on biomass accumulation and evapotranspiration.

  19. Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

    2012-02-01

    Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental

  20. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.

    2007-01-01

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide......-swath synthetic aperture radar (SAR) scenes. The analysis is confined to the high-concentration Arctic sea ice, where the ice cover is near 100%. During winter the results indicate that the variability of the SSM/I concentration estimates is larger than the true variability of ice concentration. Results from...... a trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found...

  1. High Frequency Monitoring of the Quantity and Quality of Dissolved Organic Matter Flux Between Salt Marshes and Plum Island Sound, MA

    Science.gov (United States)

    Zhao, Y.; Raymond, P.

    2012-12-01

    Salt marshes are highly productive continental margin ecosystems, due to abundant solar radiation, water, and nutrients provided by tidal water. The unique bi-directional water movement introduced by tidal effect has a major impact on the formation and productivity of salt marsh and the material exchange between salt marsh and adjacent estuary. As a major term in carbon, energy, and nutrient budget for aquatic ecosystem, dissolved organic matter (DOM) has broad impact on food webs, carbon cycle, and nutrient retention/release. The frequency and period of DOM measurement is greatly increased by the use of reagent-free, low-cost, and reliable measurement with fluorescent and UV sensors measuring the chromophoric fraction of total DOM. Although fluorescent sensors can only measure concentration, UV absorbance in a wide spectral range (200nm-380nm) could potentially provide information on DOM composition. With the help of accurate direct real time water flux measurement and lab analysis of lability, DON, and 3D excitation emission matrix spectroscopy (EEMs), a database of DOM quantity and quality exchanged between several comparative salt marshes and Plum Island Sound, MA could be established to study the dynamics of DOM behavior in the salt marsh-estuary system. Understanding DOM source and fate is very important for evaluating the role of salt marsh in the carbon cycle and food web in coastal and global scale because coastal carbon cycling represents up to 21% of the ocean's primary production (Jahnke 2008). In addition, the approaches outlined in this proposal have broad applicability to study DOM quantity and quality in the material exchange theme between systems.

  2. High Stokes shift perylene dyes for luminescent solar concentrators.

    Science.gov (United States)

    Sanguineti, Alessandro; Sassi, Mauro; Turrisi, Riccardo; Ruffo, Riccardo; Vaccaro, Gianfranco; Meinardi, Francesco; Beverina, Luca

    2013-02-25

    Highly efficient plastic based single layer Luminescent Solar Concentrators (LSCs) require the design of luminophores having complete spectral separation between absorption and emission spectra (large Stokes shift). We describe the design, synthesis and characterization of a new perylene dye possessing Stokes shift as high as 300 meV, fluorescent quantum yield in the LSC slab of 70% and high chemical and photochemical stability.

  3. Fermentation and microflora of plaa-som, a Thai fermented fish product prepared with different salt concentrations

    DEFF Research Database (Denmark)

    Paludan-Müller, Christine; Madsen, M.; Sophanodora, P.

    2002-01-01

    . LAB counts increased to 108-109 cfu g-1 and yeast counts to 107-5 x 107 cfu g-1 in all batches, except in the 11% salt batch, where counts were 1-2 log lower. Phenotypic tests, ITS-PCR, carbohydrate fermentations and 16S rRNA gene sequencing identified LAB isolates as Pediococcus pentosaceus...

  4. In Situ Spatially and Temporally Resolved Measurements of Salt Concentration between Charging Porous Electrodes for Desalination by Capacitive Deionization

    NARCIS (Netherlands)

    Suss, M.E.; Biesheuvel, P.M.; Baumann, T.E.; Stadermann, M.; Santiago, J.G.

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and tem

  5. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtai

  6. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations.

    OpenAIRE

    Hinwood, Andrea L; Sim, Malcolm R; Jolley, Damien; de Klerk, Nick; Bastone, Elisa B; Gerostamoulos, Jim; Drummer, Olaf H

    2003-01-01

    Surface soil and groundwater in Australia have been found to contain high concentrations of arsenic. The relative importance of long-term human exposure to these sources has not been established. Several studies have investigated long-term exposure to environmental arsenic concentrations using hair and toenails as the measure of exposure. Few have compared the difference in these measures of environmental sources of exposure. In this study we aimed to investigate risk factors for elevated hai...

  7. Applications of nonimaging optics for very high solar concentrations

    Energy Technology Data Exchange (ETDEWEB)

    O`Gallagher, J.; Winston, R.

    1997-12-31

    Using the principles and techniques of nonimaging optics, solar concentrations that approach the theoretical maximum can be achieved. This has applications in solar energy collection wherever concentration is desired. In this paper, we survey recent progress in attaining and using high and ultrahigh solar fluxes. We review a number of potential applications for highly concentrated solar energy and the current status of the associated technology. By making possible new and unique applications for intense solar flux, these techniques have opened a whole new frontier for research and development of potentially economic uses of solar energy.

  8. Reported high salt intake is associated with increased prevalence of abdominal aortic aneurysm and larger aortic diameter in older men.

    Directory of Open Access Journals (Sweden)

    Jonathan Golledge

    Full Text Available Salt intake has been implicated in the pathogenesis of abdominal aortic aneurysm (AAA through studies in rodent models but not previously studied in humans. The aim of this study was to examine the association between reported addition of salt to food and the prevalence of AAA.A risk factor questionnaire which contained a question about salt intake was included as part of a population screening study for AAA in 11742 older men. AAA presence was assessed by abdominal ultrasound imaging using a reproducible protocol.The prevalence of AAA was 6.9, 8.5 and 8.6% in men who reported adding salt to food never, sometimes and always, respectively, p = 0.005. Addition of salt to food sometimes (odds ratio [OR]: 1.22, 95% confidence interval [CI]: 1.03-1.44 or always (OR: 1.23, 95% CI 1.04-1.47 was independently associated with AAA after adjustment for other risk factors including age, waist-hip ratio, blood pressure, history of hypertension, high cholesterol, angina, diabetes, myocardial infarction and stroke. Salt intake was also independently associated with aortic diameter (beta 0.023, p = 0.012. In men with no prior history of hypertension, high cholesterol, angina, myocardial infarction or stroke (n = 4185, the association between addition of salt to food sometimes (OR: 1.41, 95% CI 0.96-2.08 or always (OR: 1.52, 95% CI 1.04-2.22 and AAA remained evident.Reported salt intake is associated with AAA in older men. Additional studies are needed to determine whether reducing salt intake would protect against AAA.

  9. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy.

    Directory of Open Access Journals (Sweden)

    Chen-Hsueh Pai

    Full Text Available Preeclampsia (PE is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2 and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl to wild-type mice resulted in elevated placental TXA2 synthase (TXAS and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg, and decreased pup weight (~50% and size (~24%, but these adverse effects were ameliorated in TXAS knockout (KO mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.

  10. Lack of Thromboxane Synthase Prevents Hypertension and Fetal Growth Restriction after High Salt Treatment during Pregnancy.

    Science.gov (United States)

    Pai, Chen-Hsueh; Yen, Ching-Tzu; Chen, Chie-Pein; Yu, I-Shing; Lin, Shu-Wha; Lin, Shu-Rung

    2016-01-01

    Preeclampsia (PE) is a potentially fatal pregnancy-related hypertensive disorder characterized by poor placenta development that can cause fetal growth restriction. PE-associated pathologies, including thrombosis, hypertension, and impaired placental development, may result from imbalances between thromboxane A2 (TXA2) and prostacyclin. Low-dose aspirin, which selectively inhibits TXA2 production, is used to prevent high-risk PE. However, the role of TXA2 in aspirin-mediated protective effects in women with PE is not understood fully. In this study, we examined the role of prostanoids in PE using human samples and an induced PE mouse model. We demonstrated that the administration of salted drinking water (2.7% NaCl) to wild-type mice resulted in elevated placental TXA2 synthase (TXAS) and plasma TXA2, but not prostacyclin, levels, which was also found in our clinical PE placenta samples. The high salt-treated wild-type pregnant mice had shown unchanged maternal body weight, hypertension (MAP increase 15 mmHg), and decreased pup weight (~50%) and size (~24%), but these adverse effects were ameliorated in TXAS knockout (KO) mice. Moreover, increased expression of interleukin-1β and downstream phosphorylated-p38-mitogen-activated protein kinase were concordant with apoptosis induction in the placentas of salt water-treated wild-type mice. These alterations were not observed in TXAS KO mice. Together, our data suggest that TXA2 depletion has anti-PE effects due to the prevention of hypertension and placental damage through downregulation of the interleukin-1β pathway.

  11. Sustainability of thorium-uranium in pebble-bed fluoride salt-cooled high temperature reactor

    Directory of Open Access Journals (Sweden)

    Zhu Guifeng

    2016-01-01

    Full Text Available Sustainability of thorium fuel in a Pebble-Bed Fluoride salt-cooled High temperature Reactor (PB-FHR is investigated to find the feasible region of high discharge burnup and negative Flibe (2LiF-BeF2 salt Temperature Reactivity Coefficient (TRC. Dispersion fuel or pellet fuel with SiC cladding and SiC matrix is used to replace the tristructural-isotropic (TRISO coated particle system for increasing fuel loading and decreasing excessive moderation. To analyze the neutronic characteristics, an equilibrium calculation method of thorium fuel self-sustainability is developed. We have compared two refueling schemes (mixing flow pattern and directional flow pattern and two kinds of reflector materials (SiC and graphite. This method found that the feasible region of breeding and negative Flibe TRC is between 20 vol% and 62 vol% fuel loading in the fuel. A discharge burnup could be achieved up to about 200 MWd/kgHM. The case with directional flow pattern and SiC reflector showed superior burnup characteristics but the worst radial power peak factor, while the case with mixing flow pattern and SiC reflector, which was the best tradeoff between discharge burnup and radial power peak factor, could provide burnup of 140 MWd/kgHM and about 1.4 radial power peak factor with 50 vol% dispersion fuel. In addition, Flibe salt displays good neutron properties as a coolant of quasi-fast reactors due to the strong 9Be(n,2n reaction and low neutron absorption of 6Li (even at 1000 ppm in fast spectrum. Preliminary thermal hydraulic calculation shows good safety margin. The greatest challenge of this reactor may be the decades irradiation time of the pebble fuel.

  12. Performance assessment instrument to assess the senior high students' psychomotor for the salt hydrolysis material

    Science.gov (United States)

    Nahadi, Firman, Harry; Yulina, Erlis

    2016-02-01

    The purposes of this study were to develop a performance assessment instrument for assessing the competence of psychomotor high school students on salt hydrolysis concepts. The design used in this study was the Research & Development which consists of three phases: development, testing and application of instruments. Subjects in this study were high school students in class XI science, which amounts to 93 students. In the development phase, seven validators validated 17 tasks instrument. In the test phase, we divided 19 students into three-part different times to conduct performance test in salt hydrolysis lab work and observed by six raters. The first, the second, and the third groups recpectively consist of five, six, and eight students. In the application phase, two raters observed the performance of 74 students in the salt hydrolysis lab work in several times. The results showed that 16 of 17 tasks of performance assessment instrument developed can be stated to be valid with CVR value of 1,00 and 0,714. While, the rest was not valid with CVR value was 0.429, below the critical value (0.622). In the test phase, reliability value of instrument obtained were 0,951 for the five-student group, 0,806 for the six-student group and 0,743 for the eight-student group. From the interviews, teachers strongly agree with the performance instrument developed. They stated that the instrument was feasible to use for maximum number of students were six in a single observation.

  13. Direct Analysis of Triterpenes from High-Salt Fermented Cucumbers Using Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI)

    Science.gov (United States)

    Ekelöf, Måns; McMurtrie, Erin K.; Nazari, Milad; Johanningsmeier, Suzanne D.; Muddiman, David C.

    2017-02-01

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to a Q Exactive Plus mass spectrometer was used to directly analyze 50-μm thick slices of cucumber fermented and stored in 1 M sodium chloride brine. From the several hundred unique substances observed, three triterpenoid lipids produced by cucumbers, β-sitosterol, stigmasterol, and lupeol, were putatively identified based on exact mass and selected for structural analysis. The spatial distribution of the lipids were imaged, and the putative assignments were confirmed by tandem mass spectrometry performed directly on the same cucumber, demonstrating the capacity of the technique to deliver confident identifications from highly complex samples in molar concentrations of salt without the need for sample preparation.

  14. Influence of pH, temperature, and concentration on stabilization of aqueous hornet silk solution and fabrication of salt-free materials.

    Science.gov (United States)

    Kameda, Tsunenori

    2015-01-01

    We found that an aqueous solution of silk from cocoons produced by hornet larvae (hornet silk) can be obtained when the solution is adjusted to basic conditions of pH > 9.2. It is known that native hornet cocoons can be dissolved in concentrated aqueous solution of salts, such as lithium bromide (LiBr) and calcium chloride (CaCl2). Upon the removal of these salts from solution by dialysis, solidification, gelation, or sedimentation of hornet silk is known to occur. In the present study, under basic conditions, however, no such solidification occurred, even after salt removal. In this study, ammonia was used for alkalization of solution because it is volatilized during the casting process and pure hornet silk materials can be obtained after drying. The effects of the concentrations of hornet silk and ammonia, as well as dialysis temperature, on preventing gelation during dialysis were investigated. Dialysis conditions that limit the degradation of hornet silk by hydrolysis in alkali solution were identified. Moreover, casting conditions to prepare flexible and transparent hornet silk film from aqueous ammonia solution were optimized. Molecular structural analysis of hornet silk in aqueous ammonia solution and cast film indicated the formation of α-helix conformations.

  15. Exploring high charge of phosphate as new draw solute in a forward osmosis-membrane distillation hybrid system for concentrating high-nutrient sludge.

    Science.gov (United States)

    Nguyen, Nguyen Cong; Nguyen, Hau Thi; Ho, Su-Thing; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Ray, Saikat Sinha; Hsu, Hung-Te

    2016-07-01

    For the first time, a high charge of phosphate was used as the draw solute in a forward osmosis-membrane distillation (FO-MD) hybrid system for concentrating high-nutrient sludge. A high water flux (12.5L/m(2)h) and a low reverse salt flux (0.84g/m(2)) were simultaneously achieved at pH9 by using 0.1M Na3PO4 as the draw solute and deionized water as the feed solution in the FO process. The specific reverse salt flux of 0.1M Na3PO4 (Js/Jw=0.07g/L) was considerably less than that of 0.1M NaCl (Js/Jw=0.37g/L) because the complexion between Na(+) and HPO4(2-) at pH9 led to the reduction of free Na(+) ions, which subsequently reduced the reverse salt diffusion substantially. Moreover, for a feed solution with an initial sludge concentration of 3500mg/L, the sludge concentration could be concentrated to 19,800 and 22,000mg/L in the pressure-retarded osmosis (PRO) and FO membrane orientations, respectively, after 15h of operation. Four types of MD membranes were selected for draw solution recovery; of these, a polytetrafluoroethylene membrane with a pore size of 0.45μm was the most effective in achieving a high water flux (10.28L/m(2)h) and high salt rejection (approximately 100%) in a diluted Na3PO4 draw solution.

  16. Electron beam treatment of exhaust gas with high NOx concentration

    Science.gov (United States)

    Licki, Janusz; Chmielewski, Andrzej G.; Pawelec, Andrzej; Zimek, Zbigniew; Witman, Sylwia

    2014-05-01

    Simulated exhaust gases with a high NOx concentration, ranging from 200 to 1700 ppmv, were irradiated by an electron beam from an accelerator. In the first part of this study, only exhaust gases were treated. Low NOx removal efficiencies were obtained for high NOx concentrations, even with high irradiation doses applied. In the second part of study, gaseous ammonia or/and vapor ethanol were added to the exhaust gas before its inlet to the plasma reactor. These additions significantly enhanced the NOx removal efficiency. The synergistic effect of high SO2 concentration on NOx removal was observed. The combination of electron beam treatment with the introduction of the above additions and with the performance of irradiation under optimal parameters ensured high NOx removal efficiency without the application of a solid-state catalyst.

  17. [Reasons of high concentration ammonium in Yellow River, China].

    Science.gov (United States)

    Zhang, Xue-qing; Xia, Xing-hui; Yang, Zhi-feng

    2007-07-01

    Ammonium nitrogen contamination is one of the major problems of the Yellow River in China. The speciation, concentration and sources of nitrogen compounds as well as the water environment conditions of the Yellow River had been analyzed to study the reasons for the fact that the ammonium nitrogen concentration was above the water quality standard. In addition, laboratory experiments had been carried out to investigate the effects of suspended sediment (SS) on nitrification rate. The results indicated that the presence of SS could accelerate the nitrification process, therefore, the effects of SS on nitrification rate was not the reason for the high level of ammonium nitrogen in the river. The excessive and continuous input of nitrogen contaminants to the river was the fundamental reason for the high concentration of ammonium nitrogen. Organic and ammonium nitrogen with high concentration inhibitted the nitrification processes. When the initial NH4+ -N concentrations were 10.1, 18.4 and 28.2 mg/L, nitrification efficiencies were 17.4%, 13.0% and 2.5%, respectively. When the initial organic nitrogen concentrations were 5.5 and 8.6 mg/L, the maximum concentrations of ammonium nitrogen produced by the oxidation of organic nitrogen would reach 0.47 and 1.69 mg/L and they would last for 2 days and 6 days, respectively. The oxygen-consuming organics and toxic substance existing in the river water could inhibit the activity of nitrifying bacteria, and thus lead to the accumulation of ammonium nitrogen. In addition, the high pH value of river water resulted in the high concentration of nonionic ammonium nitrogen which would reduce the activity of nitrifying bacteria and decrease the nitrification rates. Besides, low river runoff, low SS content and low activity of nitrifying bacteria resulted in the high level of ammonium nitrogen of the river in the low water season.

  18. Hydronium-dominated ion transport in carbon-dioxide-saturated electrolytes at low salt concentrations in nanochannels

    DEFF Research Database (Denmark)

    Pennathur, Sumita; Kristensen, Jesper; Crumrine, Andrew

    2011-01-01

    Nanochannel ion transport is known to be governed by surface charge at low ionic concentrations. In this talk, we show that this surface charge is dominated by hydronium ions arising from dissolution of ambient atmospheric carbon dioxide. By refining the electrokinetic model of the nanochannel...... the surface reaction equilibrium constant for silica/hydronium reactions. The model describes our experimental data with aqueous potassium chloride solutions in 165-nm-high silica nanochannels well, and furthermore, by comparing model predictions with measurements in bulk and in nanochannels with hydrochloric...

  19. Salt content of school meals and comparison of perception related to sodium intake in elementary, middle, and high schools.

    Science.gov (United States)

    Ahn, Sohyun; Park, Seoyun; Kim, Jin Nam; Han, Sung Nim; Jeong, Soo Bin; Kim, Hye-Kyeong

    2013-02-01

    Excessive sodium intake leading to hypertension, stroke, and stomach cancer is mainly caused by excess use of salt in cooking. This study was performed to estimate the salt content in school meals and to compare differences in perceptions related to sodium intake between students and staffs working for school meal service. We collected 382 dishes for food from 24 schools (9 elementary, 7 middle, 8 high schools) in Gyeonggi-do and salt content was calculated from salinity and weight of individual food. The average salt content from elementary, middle, and high school meals were 2.44 g, 3.96 g, and 5.87 g, respectively. The amount of salt provided from the school lunch alone was over 80% of the recommended daily salt intake by WHO. Noodles, stews, sauces, and soups were major sources of salt intake at dish group level, while the most salty dishes were sauces, kimchies, and stir-fried foods. Dietary knowledge and attitude related to sodium intake and consumption frequency of the salty dishes were surveyed with questionnaire in 798 students and 256 staffs working for school meal service. Compared with the staffs, the students perceived school meals salty and the proportions of students who thought school meals were salty increased with going up from elementary to high schools (P high school students showed significant propensity for the preference to one-dish meal, processed foods, eating much broth and dipping sauce or seasoning compared with the elementary students, although they had higher nutrition knowledge scores. These results proposed that monitoring salt content of school meals and consideration on the contents and education methods in school are needed to lower sodium intake.

  20. Analysis of Organic Acids Accumulated in Kochia Scoparia Shoots and Roots by Reverse-phase High Performance Liquid Chromatography Under Salt and Alkali Stress

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Several organic acids accumulated in Kochia Scoparia shoots and roots were studied by means of reverse-phase high performance liquid chromatography with a C18 column. Five types of binary organic acids were separated. The organic acid concentrations were determined in K. Scoparia seedlings stressed by saline (NaCl) and alkaline(NaHCO3) at the same Na + concentration. Concentrations of organic acids are stimulated by alkaline because the cells will adjust their pH values through the accumulation of organic acids, when the environment is basic. The concentrations of oxalic acid and succinic acid are higher than those of other organic acids, including tartaric acid and malic acid, and the concentration of citric acid is the lowest. The concentrations of the organic acids in the roots are higher than those in the shoots under salt(NaCl) stress, but the results are opposite while the roots are under alkali (NaHCO3) stress. This indicates that there are different adaptive strategies for K. Scoparia seedlings in organic acid metabolism under salt and alkali stress.

  1. Differences in Swallowing between High and Low Concentration Taste Stimuli

    Directory of Open Access Journals (Sweden)

    Ahmed Nagy

    2014-01-01

    Full Text Available Taste is a property that is thought to potentially modulate swallowing behavior. Whether such effects depend on taste, intensity remains unclear. This study explored differences in the amplitudes of tongue-palate pressures in swallowing as a function of taste stimulus concentration. Tongue-palate pressures were collected in 80 healthy women, in two age groups (under 40, over 60, stratified by genetic taste status (nontasters, supertasters. Liquids with different taste qualities (sweet, sour, salty, and bitter were presented in high and low concentrations. General labeled magnitude scale ratings captured perceived taste intensity and liking/disliking of the test liquids. Path analysis explored whether factors of taste, concentration, age group, and/or genetic taste status impacted: (1 perceived intensity; (2 palatability; and (3 swallowing pressures. Higher ratings of perceived intensity were found in supertasters and with higher concentrations, which were more liked/disliked than lower concentrations. Sweet stimuli were more palatable than sour, salty, or bitter stimuli. Higher concentrations elicited stronger tongue-palate pressures independently and in association with intensity ratings. The perceived intensity of a taste stimulus varies as a function of stimulus concentration, taste quality, participant age, and genetic taste status and influences swallowing pressure amplitudes. High-concentration salty and sour stimuli elicit the greatest tongue-palate pressures.

  2. Indirect, reversible high-density hydrogen storage in compact metal ammine salts

    DEFF Research Database (Denmark)

    Sørensen, Rasmus Zink; Hummelshøj, Jens Strabo; Klerke, Asbjørn;

    2008-01-01

    densities both gravimetrically and volumetrically. Upon heating, NH3 is released from the salts, and by employing an appropriate catalyst, H-2 can be released corresponding to up to 9.78 wt % H and 0.116 kg H/L for the Ca(NH3)(8)Cl-2 salt. The NH3 release from all four salts is investigated using...

  3. High Black Carbon (BC) Concentrations along Indian National Highways

    Science.gov (United States)

    Kumar, S.; Singh, A. K.; Singh, R. P.

    2015-12-01

    Abstract:Black carbon (BC), the optically absorbing component of carbonaceous aerosol, has direct influence on radiation budget and global warming. Vehicular pollution is one of the main sources for poor air quality and also atmospheric pollution. The number of diesel vehicles has increased on the Indian National Highways during day and night; these vehicles are used for the transport of goods from one city to another city and also used for public transport. A smoke plume from the vehicles is a common feature on the highways. We have made measurements of BC mass concentrations along the Indian National Highways using a potable Aethalometer installed in a moving car. We have carried out measurements along Varanasi to Kanpur (NH-2), Varanasi to Durgapur (NH-2), Varanasi to Singrauli (SH-5A) and Varanasi to Ghazipur (NH-29). We have found high concentration of BC along highways, the average BC mass concentrations vary in the range 20 - 40 µg/m3 and found high BC mass concentrations up to 600 μg/m3. Along the highways high BC concentrations were characteristics of the presence of industrial area, power plants, brick kilns and slow or standing vehicles. The effect of increasing BC concentrations along the National Highways and its impact on the vegetation and human health will be presented. Key Words: Black Carbon; Aethalometer; mass concentration; Indian National Highways.

  4. Proteomic analysis of halotolerant proteins under high and low salt stress in Dunaliella salina using two-dimensional differential in-gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Yan-Long Jia

    2016-01-01

    Full Text Available Abstract Dunaliella salina, a single-celled marine alga with extreme salt tolerance, is an important model organism for studying fundamental extremophile survival mechanisms and their potential practical applications. In this study, two-dimensional differential in-gel electrophoresis (2D-DIGE was used to investigate the expression of halotolerant proteins under high (3 M NaCl and low (0.75 M NaCl salt concentrations. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS and bioinformatics were used to identify and characterize the differences among proteins. 2D-DIGE analysis revealed 141 protein spots that were significantly differentially expressed between the two salinities. Twenty-four differentially expressed protein spots were successfully identified by MALDI-TOF/TOF MS, including proteins in the following important categories: molecular chaperones, proteins involved in photosynthesis, proteins involved in respiration and proteins involved in amino acid synthesis. Expression levels of these proteins changed in response to the stress conditions, which suggests that they may be involved in the maintenance of intracellular osmotic pressure, cellular stress responses, physiological changes in metabolism, continuation of photosynthetic activity and other aspects of salt stress. The findings of this study enhance our understanding of the function and mechanisms of various proteins in salt stress.

  5. Salt block consumption by high yielding dairy cows fed rations with different amounts of NaCl

    NARCIS (Netherlands)

    Valk, H.; Kogut, J.

    1998-01-01

    The effect of different NaCl contents in the rations for dairy cows on salt lick block (99% NaCl) intake was studied and the intake of 5 different commercial blocks was evaluated. After mixing, the ration containing 60% roughage (whole crop silage and grass silage) and 40% concentrates (maize ear gr

  6. Fluoride Salt-Cooled High-Temperature Demonstration Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wysocki, Aaron J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-02-01

    The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR

  7. Hydrazine 5,5'-bitetrazole-1,1'-diolate: a promising high density energetic salt with good properties.

    Science.gov (United States)

    Zhang, Zhi-Bin; Xu, Cai-Xia; Yin, Xin; Zhang, Jian-Guo

    2016-12-21

    The development of new environmentally friendly energetic compounds with reasonable detonation performance and safety is a long-term target in energetic materials research. A new energetic eco-friendly salt of hydrazine 5,5'-bitetrazole-1,1'-diolate (HA·BTO) is developed based on the reaction of 1H,1'H-5,5'-bitetrazole-1,1'-diolate (BTO) with hydrazine hydrochloride (HA·HCl), and fully characterized. The monocrystal of the title salt is obtained and the structure is determined by powder X-ray diffraction and single crystal X-ray diffraction. Results show that the salt belongs to the triclinic space group P1[combining macron] with a relatively high density of 1.912 g cm(-3) under 298 K. The properties of the salt are discussed in detail. The thermal decomposition behaviors of the salt are tested, indicating that the salt has good thermal stability with a decomposition temperature above 200 °C. The enthalpy of formation for the salt is dependent on the combustion heat date measured by oxygen bomb calorimetry with a result of 425.6 kJ mol(-1), which is the same level as TKX-50, and four times higher than that of RDX. The detonation pressure (P) and detonation velocity (D) of the salt are calculated as 8931 m s(-1) and 36.1 GPa, which are higher than those of RDX. In addition, the impact and friction sensitivities are tested through a relevant standard method with a result of 28 J and 120 N, which are better than those of TKX-50. We can draw the conclusion that the salt could provide a promising future in use as a kind of insensitive explosive alternative. The discovery also contributes significantly to the expansion and application of the chemistry of 1H,1'H-5,5'-bitetrazole-1,1'-diolate, as well as N-heterocyclic compounds.

  8. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    Science.gov (United States)

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  9. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    Energy Technology Data Exchange (ETDEWEB)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  10. A six-week diet high in fat, fructose and salt and its influence on lipid and mineral status, in rats

    Directory of Open Access Journals (Sweden)

    Joanna Suliburska

    2013-06-01

    Full Text Available Introduction. Fat, fructose, and salt consumption has increased in industrialized countries, but there are few studies that have investigated the effect of this eating pattern on metabolic and physiological states. The purpose of this study was thus to assess lipid and carbohydrate metabolism and to estimate iron, zinc, copper, calcium, and magnesium status in rats fed a diet high in fat, fructose, and salt, compared to the control diet. Material and methods. Wistar rats were assigned to groups fed either a standard diet or a diet high in fat, fructose, and salt (M. After 6 weeks, the animals were weighed and killed. Liver, kidney, heart, pancreas, hair, and blood samples were collected. The total cholesterol, triglyceride, fasting glucose, and insulin levels in serum were measured. The iron, zinc, copper, calcium, and magnesium concentrations in tissues and serum were determined. Results.It was found that the M diet led to a significant increase in cholesterol and triglyceride levels in the serum of rats. Among rats fed the M diet, a markedly higher serum level of iron and a significantly lower serum level of zinc were observed. A significantly lower iron level in the pancreas, zinc level in the kidneys and pancreas, and copper level in the kidneys it was found in rats with the M diet. The modified diet resulted in markedly lower concentrations of magnesium in the hearts. In the hair of rats on the M diet, higher levels of iron and zinc were observed. The relative masses of the kidneys were markedly higher in rats with the M diet, as compared with the C diet. Conclusions.Diets high in fat, fructose, and salt disturb lipid status and kidney mass. This modified diet impairs mineral balance in the body.

  11. Anaerobic biotransformation of high concentrations of chloroform by an enrichment culture and two bacterial isolates.

    Science.gov (United States)

    Shan, Huifeng; Kurtz, Harry D; Mykytczuk, Nadia; Trevors, Jack T; Freedman, David L

    2010-10-01

    A fermentative enrichment culture (designated DHM-1) was developed that is capable of cometabolically biotransforming high concentrations of chloroform (CF) to nontoxic end products. Two Pantoea spp. were isolated from DHM-1 that also possess this dechlorination capability. Following acclimation to increasing levels of CF, corn syrup-grown DHM-1 was able to transform over 500 mg/liter CF in the presence of vitamin B(12) (approximately 3% of CF on a molar basis) at a rate as high as 22 mg/liter/day in a mineral salts medium. CO, CO(2), and organic acids were the predominant biodegradation products, suggesting that hydrolytic reactions predominate during CF transformation. DHM-1 was capable of growing on corn syrup in the presence of high concentrations of CF (as may be present near contaminant source zones in groundwater), which makes it a promising culture for bioaugmentation. Strains DHM-1B and DHM-1T transform CF at rates similar to that of the DHM-1 enrichment culture. The ability of these strains to grow in the presence of high concentrations of CF appears to be related to alteration of membrane fluidity or homeoviscous and homeophasic adaptation.

  12. Allopurinol alleviates hypertension and proteinuria in high fructose, high salt and high fat induced model of metabolic syndrome.

    Science.gov (United States)

    El-Bassossy, Hany M; Shaltout, Hossam A

    2015-05-01

    Metabolic syndrome (MetS) is a global epidemic associated with great socioeconomic and public health impact. Prevalence of the MetS has been consistently associated with cardiorenal mortality. The objective of this study was to investigate the effect of allopurinol treatment on various components of an established MetS in rats. In a first group, MetS was induced in male Wistar rats by the addition of 10% fructose to drinking water and placing the rats on high-fat and high-salt diet for 12 weeks (M). In the second group, MetS was induced for 12 weeks plus allopurinol administration (20 mg/kg/d) orally for 4 weeks starting at week 9 (MA). The third group was control (C) group that received a normal diet. The M group had higher blood pressure (BP) (85.5 ± 3.17 vs 66.1 ± 3.3 mm Hg) and proteinuria (1.8 ± 0.3 vs 0.59 ± 0.13 g/d) compared with the C group. Allopurinol reversed the BP and proteinuria in MA rats to the control level. Allopurinol administration suppressed the low-grade inflammation associated with MetS and reversed the increases in kidney transforming growth factor beta and urine 8-isoprostane acid observed in the MA group to control levels. In addition, allopurinol reduced angiotensin II and angiotensin receptor type 1 levels in the kidney of MA rats compared with the M group. The administration of allopurinol for short term in an established MetS model reduced features of the MetS especially hypertension and proteinuria. Addition of allopurinol to the therapy of MetS may provide superior means to alleviate hypertension and proteinuria associated with MetS.

  13. [Study on Salt Tolerance of Echinacea purpurea].

    Science.gov (United States)

    Wang, Tao; Jia, Xiao-dong; Liu, Yong-zhi; Xuan, Ji-ping; Guo, Zhong-ren; Qiao, Yu-shan

    2015-12-01

    To explore the salt tolerance of Echiancea purpurea and its mechanism. Echiancea purpurea was used as test material in this study and six salinity levels (0, 30, 60, 90, 120 and 150 mmol/L NaCl) were set. Effects on seed germination and salt tolerance relevant physiological and biochemical indexes of Echiancea purpurea were studied. Salt stress suppressed the germination of Echiancea purpurea seeds, induced osmotic adjustment substances proline, soluble sugar and K+ to increase, and activities of POD and SOD to rise, and meanwhile resulted in accumulation of Na+ and decrease of K+/Na+. Echiancea purpurea can tolerant salt stress to a certain degree, but in case of high salt concentrations, severe salt injury would remarkably suppress the growth of Echinacea purpurea.

  14. Physical Chemistry and Evolution of Salt Tolerance in Halobacteria

    Science.gov (United States)

    Lanyi, Janos K.

    1980-06-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  15. Physical chemistry and evolution of salt tolerance in halobacteria

    Science.gov (United States)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  16. Physical chemistry and evolution of salt tolerance in halobacteria

    Science.gov (United States)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  17. An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Cetiner, Sacit M [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

    2009-11-01

    This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

  18. High temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris

    Science.gov (United States)

    Takano, Masahide; Nishi, Tsuyoshi

    2013-11-01

    In order to clarify the possible impacts of seawater injection on the chemical and physical state of the corium debris formed in the severe accident at Fukushima Daiichi Nuclear Power Plants, the high temperature reaction between sea salt deposit and (U,Zr)O2 simulated corium debris (sim-debris) was examined in the temperature range from 1088 to 1668 K. A dense layer of calcium and sodium uranate formed on the surface of a sim-debris pellet at 1275 K under airflow, with the thickness of over 50 μm. When the oxygen partial pressure is low, calcium is likely to dissolve into the cubic sim-debris phase to form solid solution (Ca,U,Zr)O2+x. The diffusion depth was 5-6 μm from the surface, subjected to 1275 K for 12 h. The crystalline MgO remains affixed on the surface as the main residue of salt components. A part of it can also dissolve into the sim-debris.

  19. Enforced Layer-by-Layer Stacking of Energetic Salts towards High-Performance Insensitive Energetic Materials.

    Science.gov (United States)

    Zhang, Jiaheng; Mitchell, Lauren A; Parrish, Damon A; Shreeve, Jean'ne M

    2015-08-26

    Development of modern high-performance insensitive energetic materials is significant because of the increasing demands for both military and civilian applications. Here we propose a rapid and facile strategy called the "layer hydrogen bonding pairing approach" to organize energetic molecules via layer-by-layer stacking, which grants access to tunable energetic materials with targeted properties. Using this strategy, an unusual energetic salt, hydroxylammonium 4-amino-furazan-3-yl-tetrazol-1-olate, with good detonation performances and excellent sensitivities, was designed, synthesized, and fully characterized. In addition, the expected unique layer-by-layer structure with a high crystal packing coefficient was confirmed by single-crystal X-ray crystallography. Calculations indicate that the layer-stacking structure of this material can absorb the mechanical stimuli-induced kinetic energy by converting it to layer sliding, which results in low sensitivity.

  20. Salt controls feeding decisions in a blood-sucking insect.

    Science.gov (United States)

    Pontes, Gina; Pereira, Marcos H; Barrozo, Romina B

    2016-12-15

    Salts are necessary for maintaining homeostatic conditions within the body of all living organisms. Like with all essential nutrients, deficient or excessive ingestion of salts can result in adverse health effects. The taste system is a primary sensory modality that helps animals to make adequate feeding decisions in terms of salt consumption. In this work we show that sodium and potassium chloride salts modulate the feeding behavior of Rhodnius prolixus in a concentration-dependent manner. Feeding is only triggered by an optimal concentration of any of these salts (0.1-0.15M) and in presence of the phagostimulant ATP. Conversely, feeding solutions that do not contain salts or have a high-salt concentration (>0.3M) are not ingested by insects. Notably, we show that feeding decisions of insects cannot be explained as an osmotic effect, because they still feed over hyperosmotic solutions bearing the optimal salt concentration. Insects perceive optimal-salt, no-salt and high-salt solutions as different gustatory information, as revealed the electromyogram recordings of the cibarial pump. Moreover, because insects do a continuous gustatory monitoring of the incoming food during feeding, sudden changes beyond the optimal sodium concentration decrease and even inhibit feeding. The administration of amiloride, a sodium channel blocker, noticeably reduces the ingestion of the optimal sodium solution but not of the optimal potassium solution. Salt detection seems to occur at least through two salt receptors, one amiloride-sensitive and another amiloride-insensitive. Our results confirm the importance of the gustatory system in R. prolixus, showing the relevant role that salts play on their feeding decisions.

  1. Sterile Filtration of Highly Concentrated Protein Formulations: Impact of Protein Concentration, Formulation Composition, and Filter Material.

    Science.gov (United States)

    Allmendinger, Andrea; Mueller, Robert; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-10-01

    Differences in filtration behavior of concentrated protein formulations were observed during aseptic drug product manufacturing of biologics dependent on formulation composition. The present study investigates filtration forces of monoclonal antibody formulations in a small-scale set-up using polyvinylidene difluoride (PVDF) or polyethersulfone (PES) filters. Different factors like formulation composition and protein concentration related to differences in viscosity, as well as different filtration rates were evaluated. The present study showed that filtration behavior was influenced by the presence or absence of a surfactant in the formulation, which defines the interaction between filter membrane and surface active formulation components. This can lead to a change in filter resistance (PES filter) independent on the buffer system used. Filtration behavior was additionally defined by rheological non-Newtonian flow behavior. The data showed that high shear rates resulting from small pore sizes and filtration pressure up to 1.0 bar led to shear-thinning behavior for highly concentrated protein formulations. Differences in non-Newtonian behavior were attributed to ionic strength related to differences in repulsive and attractive interactions. The present study showed that the interplay of formulation composition, filter material, and filtration rate can explain differences in filtration behavior/filtration flux observed for highly concentrated protein formulations thus guiding filter selection.

  2. Denitrification of fertilizer wastewater at high chloride concentration

    DEFF Research Database (Denmark)

    Ucisik, Ahmed Süheyl; Henze, Mogens

    g/l. The results of the experiments showed that biological denitrification was feasible at the extreme environmental conditions prevailing in fertilizer wastewater. Stable continuous biological denitrfication of the synthetic high chloride wastewater was performed up to 77.4 g Cl/l at 37 degree C......Wastewater from fertilizer industry is characterized by high contents of chloride concentration, which normally vary between 60 and 76 g/l. Experiments with bilogical denitrification were performed in lab-scale "fill and draw" reactors with synthetic wastewater with chloride concentrations up to 77.4...

  3. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.

    Science.gov (United States)

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-15

    A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium-vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi(2)O(5) is converted to NaCl-type structure of Na(2)TiO(3), and M(3)O(5) (M=Ti, Mg, Fe) is converted to α-NaFeO(2)-type structure of NaMO(2), respectively. Roasting temperature and NaOH-slag mass ratio played a considerable role in the conversion of titanium in the rich titanium-vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH-slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na(+) was exchanged with H(+), Na(2)TiO(3) is converted to undefined structure of H(2)TiO(3), and NaMO(2) is converted to α-NaFeO(2)-type structure of HMO(2). Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out.

  4. Influences of hydrological regime on heavy metal and salt ion concentrations in intertidal sediment from Chongming Dongtan, Changjiang River estuary, China

    Science.gov (United States)

    Zhao, Jiale; Gao, Xiaojiang; Yang, Jin

    2017-04-01

    The tidal flat along the Changjiang (Yangtze) River estuary has long been reclaimed for the agricultural purposes, with the prevailing hydrological conditions during such pedogenic transformations being of great importance to their successful development. In this study, samples of surface sediment from Chongming Dongtan, situated at the mouth of the Changjiang River estuary, were collected and analyzed in order to understand how hydrological management can influence the concentrations of heavy metals and salt ions in pore water, and chemical fractionation of heavy metals during the reclamation process. We performed a series of experiments that simulated three different hydrological regimes: permanent flooding (R1), alternative five-day periods of wetting and drying (R2), continuous field capacity (R3). Our results exhibited good Pearson correlations coefficients between heavy metals and salt ions in the pore water for both R1 and R2. In particular, the concentrations of salt ions in the pore water decreased in all three regimes, but showed the biggest decline in R2. With this R2 experiment, the periodic concentration patterns in the pore water varied for Fe and Mn, but not for Cr, Cu, Pb and Zn. Neither the fractionation of Ni nor the residual fractions of any metals changed significantly in any regime. In R1, the reducible fractions of heavy metals (Cr, Cu, Zn and Pb) in the sediment decreased, while the acid extractable fractions increased. In R2, the acid extractable and the reducible fractions of Cr, Cu, Zn and Pb both decreased, as did the oxidizable fraction of Cu. These data suggest that an alternating hydrological regime can reduce both salinity and the availability of heavy metals in sediments.

  5. Effect Analysis of Mineral Salt Concentrations on Nosiheptide Production by Streptomyces actuosus Z-10 Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2014-09-01

    Full Text Available The objective of this study was to develop an optimal combination of mineral salts in the fermentation medium for nosiheptide (Nsh production using statistical methodologies. A Plackett-Burman design (PBD was used to evaluate the impacts of eight mineral salts on Nsh production. The results showed that among the no-significant factors, CaCO3, and K2HPO4·3H2O had positive effects, whereas FeSO4·7H2O, CuSO4·5H2O, and ZnSO4·7H2O had negative effects on Nsh production. The other three significant factors (Na2SO4, MnSO4·H2O, and MgSO4·7H2O were further optimized by using a five-level three-factor central composite design (CCD. Experimental data were fitted to a quadratic polynomial model, which provided an effective way to determine the interactive effect of metal salts on Nsh production. The optimal values were determined to be 2.63, 0.21, and 3.37 g/L, respectively. The model also ensured a good fitting of scale-up Nsh batch fermentation with a maximum production of 1501 mg/L, representing a 1.56-fold increase compared to the original standard condition. All these results revealed that statistical optimization methodology had the potential to achieve comprehensive optimization in Nsh fermentation behaviors, which indicates a possibility to establish economical large-scale production of Nsh.

  6. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology.

    Science.gov (United States)

    Zhou, Wei; Liu, Xiaohui; Zhang, Pei; Zhou, Pei; Shi, Xunlong

    2014-09-26

    The objective of this study was to develop an optimal combination of mineral salts in the fermentation medium for nosiheptide (Nsh) production using statistical methodologies. A Plackett-Burman design (PBD) was used to evaluate the impacts of eight mineral salts on Nsh production. The results showed that among the no-significant factors, CaCO3, and K2HPO4·3H2O had positive effects, whereas FeSO4·7H2O, CuSO4·5H2O, and ZnSO4·7H2O had negative effects on Nsh production. The other three significant factors (Na2SO4, MnSO4·H2O, and MgSO4·7H2O) were further optimized by using a five-level three-factor central composite design (CCD). Experimental data were fitted to a quadratic polynomial model, which provided an effective way to determine the interactive effect of metal salts on Nsh production. The optimal values were determined to be 2.63, 0.21, and 3.37 g/L, respectively. The model also ensured a good fitting of scale-up Nsh batch fermentation with a maximum production of 1501 mg/L, representing a 1.56-fold increase compared to the original standard condition. All these results revealed that statistical optimization methodology had the potential to achieve comprehensive optimization in Nsh fermentation behaviors, which indicates a possibility to establish economical large-scale production of Nsh.

  7. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress.

    Science.gov (United States)

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-10-01

    Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na(+) and to Cl(-) separately in comparison with the response to NaCl in a soil-based system using two varieties of faba bean (Vicia faba), that differed in salinity tolerance. The variety Nura is a salt-sensitive variety that accumulates Na(+) and Cl(-) to high concentrations while the line 1487/7 is salt tolerant which accumulates lower concentrations of Na(+) and Cl(-). Soils were prepared which were treated with Na(+) or Cl(-) by using a combination of different Na(+) salts and Cl(-) salts, respectively, or with NaCl. While this method produced Na(+)-dominant and Cl(-)-dominant soils, it unavoidably led to changes in the availability of other anions and cations, but tissue analysis of the plants did not indicate any nutritional deficiencies or toxicities other than those targeted by the salt treatments. The growth, water use, ionic composition, photosynthesis, and chlorophyll fluorescence were measured. Both high Na(+) and high Cl(-) reduced growth of faba bean but plants were more sensitive to Cl(-) than to Na(+). The reductions in growth and photosynthesis were greater under NaCl stress and the effect was mainly additive. An important difference to previous hydroponic studies was that increasing the concentrations of NaCl in the soil increased the concentration of Cl(-) more than the concentration of Na(+). The data showed that salinity caused by high concentrations of NaCl can reduce growth by the accumulation of high concentrations of both Na(+) and Cl(-) simultaneously, but

  8. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot.

    Science.gov (United States)

    Chen, Te-San; Chen, Ting-Chien; Yeh, Kuei-Jyum C; Chao, How-Ran; Liaw, Ean-Tun; Hsieh, Chi-Ying; Chen, Kuan-Chung; Hsieh, Lien-Te; Yeh, Yi-Lung

    2010-07-15

    Environmental estrogenic chemicals interrupt endocrine systems and generate reproductive abnormalities in wildlife, especially natural and synthetic estrogenic steroid hormones such as 17beta-estradiol (E2), estrone (E1), estriol (E3), 17alpha-ethynylestradiol (EE2), and diethylstilbestrol (DES). Concentrated animal feedlot operations (CAFOs) are of particular concern since large amounts of naturally excreted estrogens are discharged into aquatic environments. This study investigated E2, E1, E3, EE2, and DES with high performance liquid chromatography/tandem mass (HPLC-MS/MS) analyses along Wulo Creek in southern Taiwan, near a concentrated livestock feedlot containing 1,030,000 broiler chickens, 934,000 laying hens, 85,000 pigs, and 1500 cattle. Sampling was performed from December 2008 to May 2009, in which 54 samples were collected. Experimental results indicate that concentrations of EE2 were lower than the limit of detection (LOD), and concentrations of DES were only detected twice. Concentrations ranged from 7.4 to 1267 ng/L for E1, from not detected (ND) to 313.6 ng/L for E2, and from ND to 210 ng/L for E3. E1 had the highest average mass fraction (72.2 + or - 3.6%), which was significantly higher than E3 (16.2 + or - 1.7%) and E2 (11.5 + or - 2.6%). Additionally, the mean E2 equivalent quotient (EEQ) ranged from 17.3 to 137.9 ng-E2/L. Despite having a markedly lower concentration than E1, E2 more significantly contributed (52.4 + or - 6.0%) EEQ than E1 (19.7 + or - 3.5%). Moreover, the concentrations of E2, E1, and E3 upstream were significantly higher than concentrations downstream, suggesting a high attenuation effect and fast degradation in the study water. Most concentrations in winter season were higher than those of spring season due to the low dilution effect and low microbial activity in the winter season. Based on the results of this study, we recommend further treatment of the wastewater discharge from the feedlot.

  9. Biodegradation dynamics of high catechol concentrations by Aspergillus awamori.

    Science.gov (United States)

    Stanchev, Veselin; Stoilova, Ivanka; Krastanov, Albert

    2008-06-15

    The biodegradation process of high catechol concentrations by Aspergillus awamori was investigated. The values of the kinetic constants for a model of specific growth rate at different initial conditions were determined. At 1.0 g/L catechol concentration, the biodegradation process proceeded in the conditions of substrate limitation. At higher catechol concentrations (2.0 and 3.0 g/L) a presence of substrate inhibition was established. The dynamics of the specific catechol degradation rate was studied and the values of catechol and biomass concentrations, maximizing the specific catechol degradation rate, were estimated analytically. The specified ratio catechol/biomass could serve as a starting base for determination of the initial conditions for a batch process, for specifying the moment of feeding for a fed-batch process, and for monitoring and control of a continuous process by the aim of time-optimal control.

  10. Novel Salt-Assisted Combustion Synthesis of High Surface Area Ceria Nanopowders by An Ethylene Glycol-Nitrate Combustion Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel salt-assisted combustion process with ethylene glycol as a fuel and nitrate as an oxidant to synthesize high surface area ceria nanopowders was reported. The effects of various tunable conditions, such as fuel-to-oxidant ratio, type of salts, and amount of added salts, on the characteristics of the as-prepared powders were investigated by X-ray diffraction, transmission electron microscopy and BET surface area measurement. A mechanism scheme was proposed to illustrate the possible formation processes of well-dispersed ceria nanoparticles in the salt-assisted combustion synthesis. It was verified that the simple introduction of leachable inert inorganic salts as an excellent agglomeration inhibitor into the redox mixture precursor leads to the formation of well-dispersed ceria particles with particle size in the range of 4~6 nm and a drastic increase in the surface area. The presence of KCl results in an over ten-fold increment in specific surface area from 14.10 m2·g-1 for the produced ceria powders via the conventional combustion synthesis process to 156.74 m2·g-1 for the product by the salt-assisted combustion synthesis process at the same molar ratio of ethylene glycol-nitrate.

  11. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    Science.gov (United States)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  12. High shear treatment of concentrates and drying conditions influence the solubility of milk protein concentrate powders.

    Science.gov (United States)

    Augustin, Mary Ann; Sanguansri, Peerasak; Williams, Roderick; Andrews, Helen

    2012-11-01

    The solubility of milk protein concentrate (MPC) powders was influenced by the method used for preparing the concentrate, drying conditions, and the type of dryer used. Increasing total solids of the ultrafiltered concentrates (23% total solids, TS) by diafiltration to 25% TS or evaporation to 31% TS decreased the solubility of MPC powders (80-83% protein, w/w dry basis), with ultrafiltration followed by evaporation to higher total solids having the greater detrimental effect on solubility. High shear treatment (homogenisation at 350/100 bar, microfluidisation at 800 bar or ultrasonication at 24 kHz, 600 watts) of ultrafiltered and diafiltered milk protein concentrates prior to spray drying increased the nitrogen solubility of MPC powders (82% protein, w/w dry basis). Of the treatments applied, microfluidisation was the most effective for increasing nitrogen solubility of MPC powders after manufacture and during storage. Manufacture of MPC powders (91% protein, w/w dry basis) prepared on two different pilot-scale dryers (single stage or two stage) from milk protein concentrates (20% TS) resulted in powders with different nitrogen solubility and an altered response to the effects of microfluidisation. Microfluidisation (400, 800 and 1200 bar) of the concentrate prior to drying resulted in increased long term solubility of MPC powders that were prepared on a single stage dryer but not those produced on a two stage spray dryer. This work demonstrates that microfluidisation can be used as a physical intervention for improving MPC powder solubility. Interactions between the method of preparation and treatment of concentrate prior to drying, the drying conditions and dryer type all influence MPC solubility characteristics.

  13. Domain organization of DNase from Thioalkalivibrio sp. provides insights into retention of activity in high salt environments

    Directory of Open Access Journals (Sweden)

    Gediminas eAlzbutas

    2015-07-01

    Full Text Available Our study indicates that DNA binding domains are common in many halophilic or halotolerantbacterial DNases and they are potential activators of enzymatic activity at high ionic strength.Usually, proteins adapt to high ionic strength by increasing the number of negatively chargedresidues on the surface. However, in DNases such adaptation would hinder the binding to negativelycharged DNA, a step critical for catalysis. In our study we demonstrate how evolution hassolved this dilemma by engaging the DNA binding domain. We propose a mechanism, whichenables the enzyme activity at salt concentrations as high as 4 M of sodium chloride, based oncollected experimental data and domain structure analysis of a secreted bacterial DNase fromthe extremely halotolerant bacterium Thioalkalivibrio sp. K90mix. The enzyme harbors twodomains: an N-terminal domain, that exhibits DNase activity, and a C-terminal domain, comprisinga duplicate DNA binding helix-hairpin-helix motif. Here we present experimental datademonstrating that the C-terminal domain is responsible for the enzyme’s resistance to highionic strength.

  14. High-concentration planar microtracking photovoltaic system exceeding 30% efficiency

    Science.gov (United States)

    Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.

    2017-08-01

    Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.

  15. Cooking without salt

    Science.gov (United States)

    DASH diet; High blood pressure - DASH; Hypertension - DASH; Low-salt diet - DASH ... Explore cooking with salt substitutes. Add a splash of lemon and other citrus fruits, or wine, to soups and other dishes. Or use them ...

  16. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  17. Optimization of Scatterer Concentration in High-Gain Scattering Media

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiu-Gao; ZHU He-Yuan; SUN Die-Chi; DU Ge-Guo; LI Fu-Ming

    2001-01-01

    We report the scatterer concentration-dependent behaviour of laser action in high-gain scattering media. Amodified model of a random laser is proposed to explain the experimental results in good agreement. We mayuse this modified model to design and optimize the random laser system. A further detailed model is needed toquantitatively analyse the far-field distribution of random laser action.

  18. Characterization of the response of in vitro cultured Myrtus communis L. plants to high concentrations of NaCl.

    Science.gov (United States)

    Di Cori, P; Lucioli, S; Frattarelli, A; Nota, P; Tel-Or, E; Benyamini, E; Gottlieb, H; Caboni, E; Forni, C

    2013-12-01

    Effect of salt stress was examined in in vitro shoot cultures of Myrtus communis L. a species of the Mediterranean maquis. To determine the effects of high salt concentrations on myrtle plantlets and contribute toward understanding the mechanisms adopted from this species to counteract soil salinity, in vitro rooted shoots were transferred to a liquid culture medium containing 0, 125 or 250 mM NaCl for 30 days. After 15 and 30 days of in vitro culture, shoot and root growth, chlorosis and necrosis extension, chlorophylls, carotenoids, proline, arginine, cysteine and total sugars content, as well as guaiacol peroxidase (G-POD, EC 1.11.1.7) and ascorbate peroxidase (APX, EC 1.11.1.11) activities were determined. In treated plants shoot and root growth, as well as chlorophyll content, significantly decreased, while carotenoids content was not affected by the NaCl treatment. Among osmolytes, proline did not significantly increase, arginine and cysteine decreased, while total sugars were found to be higher in the treated plants than in the control. Enhancement of G-POD and APX activities was positively related to increasing salt concentrations in the culture media, regardless of the exposure time. Salt-treated plants did not show significant changes in lipid peroxidation or DNA fragmentation after 30 days salt treatment, regardless of the NaCl concentrations applied. The results represent a contribution towards understanding the mechanisms adopted by this species to high salinity.

  19. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  20. Laser-enhanced ionization detection of trace copper in high salt matrices.

    Science.gov (United States)

    Havrilla, G J; Carter, C C

    1987-09-01

    Laser-enhanced ionization (LEI) is used to determine trace levels of metals in high salt matrices, an analysis that is difficult by conventional methods. Copper is presented in detail to demonstrate the capability of the method. Three-dimensional spectra of the stepwise excitation of copper are presented which illustrate the one photon, stepwise, and two-photon transitions. Seven copper transitions have been studied for analytical utility, and detection limits have been determined for each. Ionization interferences were accommodated by both matrix matching and separation of the interferences using ion exchange resin. Absolute determinations at the 0.05-ng level are possible with the use of a Teflon microsampling cup for low volume quantitative analysis. In addition to copper, silver, cobalt, iron, and nickel have been detected within the same dye tuning range. Twelve new LEI transitions have been identified for these elements along with detection limits.

  1. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, Charles [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Peterson, Per [Univ. of California, Berkeley, CA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States)

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  2. High Temperature Corrosion of Inconel 600 in NaCl-KCl Molten Salts

    Directory of Open Access Journals (Sweden)

    G. Salinas-Solano

    2014-01-01

    Full Text Available In this work the corrosion resistance of a high content nickel alloy, Inconel 600, was investigated in mixed NaCl-KCl salts at 700, 800, and 900°C for 100 hours in static air. Investigation was carried out using electrochemical techniques such as polarization curves, rest potential measurements, linear polarization resistance, and electrochemical impedance spectroscopy. Corroded specimens were analyzed by scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. Electrochemical measurements showed an increased degradation rate of Inconel 600 with increasing test temperature. SEM and EDS analysis show that the damage experienced by Inconel 600 is greater than that determined by electrochemical measurements. This damage was identified as internal corrosion due to the reaction of Cl2 with the alloying elements (Cr and Fe; however, at 900°C the internal damage was minor and it was associated with the nickel content in the alloy.

  3. [Toxic effects of high concentrations of ammonia on Euglena gracilis].

    Science.gov (United States)

    Liu, Yan; Shi, Xiao-Rong; Cui, Yi-Bin; Li, Mei

    2013-11-01

    Ammonia is among the common contaminants in aquatic environments. The present study aimed at evaluation of the toxicity of ammonia at high concentration by detecting its effects on the growth, pigment contents, antioxidant enzyme activities, and DNA damage (comet assay) of a unicellular microalga, Euglena gracilis. Ammonia restrained the growth of E. gracilis, while at higher concentrations, ammonia showed notable inhibition effect, the growth at 2 000 mg x L(-1) was restrained to 55.7% compared with that of the control; The contents of photosynthetic pigments and protein went up with increasing ammonia dosage and decreased when the ammonia concentration was above 1000 mg x L(-1); In addition, there was an obvious increase in SOD and POD activities, at higher concentration (2 000 mg x L(-1)), activities of SOD and POD increased by 30.7% and 49.4% compared with those of the control, indicating that ammonia could promote activities of antioxidant enzymes in E. gracilis; The degree of DNA damage observed in the comet assay increased with increasing ammonia concentration, which suggested that high dose of ammonia may have potential mutagenicity on E. gracilis.

  4. Experimental deformation of coarse-grained rock salt to high strain

    Science.gov (United States)

    Linckens, J.; Zulauf, G.; Hammer, J.

    2016-08-01

    The processes and deformation mechanisms (e.g., dislocation creep, pressure solution, grain boundary sliding, and recrystallization) of rock salt are still a matter of debate. In order to fill this gap, high strain constriction experiments at 345°C, atmospheric pressure and a strain rate of 10-7 s-1 have been conducted on natural halite cuboids (60 × 60 × 45 mm) from the Morsleben mine of Northern Germany. Most samples were almost single crystals and contain a small amount of smaller grains (10-26%). The grain boundaries are decorated with fluid inclusions. The experiments were stopped at different final strains (ɛy = z of 10, 20, 30, and 40%) corresponding to a maximum strain (ɛx) range of 20-170%. The halite is deformed by dislocation creep, and the size of developed subgrains corresponds to the applied stress. The combined Schmid factor and subgrain boundary analysis indicate that slip was largely accommodated by the {110} slip systems, with possible minor contribution by slip on the {100} slip systems. Some of the deformed samples show evidence of grain boundary migration. In addition, subgrains with small misorientations form that result in large cumulative misorientations within a single grain (>40°). However, no subgrain rotation recrystallization is observed (i.e., misorientation angles are <10°). All the experiments show strain hardening, suggesting that recrystallization by grain boundary migration was not extensive and did not reset the microstructure. The experiments show that high finite strain in coarse-grained relatively dry rock salt can be accommodated by dislocation creep, without extensive dynamic recrystallization.

  5. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  6. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Per [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Greenspan, Ehud [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering

    2015-02-09

    This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designs are used, the power density of salt- cooled reactors is limited to 10 MW/m3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X

  7. High-efficiency organic solar concentrators for photovoltaics.

    Science.gov (United States)

    Currie, Michael J; Mapel, Jonathan K; Heidel, Timothy D; Goffri, Shalom; Baldo, Marc A

    2008-07-11

    The cost of photovoltaic power can be reduced with organic solar concentrators. These are planar waveguides with a thin-film organic coating on the face and inorganic solar cells attached to the edges. Light is absorbed by the coating and reemitted into waveguide modes for collection by the solar cells. We report single- and tandem-waveguide organic solar concentrators with quantum efficiencies exceeding 50% and projected power conversion efficiencies as high as 6.8%. The exploitation of near-field energy transfer, solid-state solvation, and phosphorescence enables 10-fold increases in the power obtained from photovoltaic cells, without the need for solar tracking.

  8. Bioleaching of marmatite in high concentration of iron

    Institute of Scientific and Technical Information of China (English)

    邱冠周; 吴伯增; 覃文庆; 蓝卓越

    2002-01-01

    Bioleaching of marmatite with a culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans in high concentration of iron was studied, the results show that the zinc leaching rate of the mixed culture is faster than that of the sole Thiobacillus ferrooxidans, the increasing iron concentration in leaching solution enhances the zinc leaching rate. The SEM analysis indicates that the chemical leaching residues is covered with porous solid layer of elemental sulfur, while elemental sulfur is not found in the bacterial leaching residues. The primary role of bacteria in bioleaching of sphalerite is to oxidize the chemical leaching products of ferrous ion and elemental sulfur, thus the indirect mechanism prevails in the bioleaching of marmatite.

  9. High concentration of calcium ions in Golgi apparatus

    Institute of Scientific and Technical Information of China (English)

    XUESHAOBAI; M.ROBERTNICOUD; 等

    1994-01-01

    The interphase NIH3T3 cells were vitally fluorescentstained with calcium indicator fluo-3 and Glogi probe C6-NBD-ceramide,and then the single cells were examined by laser scanning confocal microscopy(LSCFM) for subcellular distributions of Ca2+ and the location of Golgi apparatus.In these cells,the intracellular Ca2+ were found to be highly concentrated in the Golgi apparatus.The changes of distribution of cytosolic high Ca2+ region and the Golgi apparatus coincided with the cell cycle phase.In calcium free medium,when the plasma membrane of the cells which had been loaded with fluo-3/AM were permeated by digitonin,the fluorescence of the Golgi region decreased far less than that of the cytosol.Our results indicated that the Glogi lumen retained significantly high concentration of free calcium.

  10. Review of silicon solar cells for high concentrations

    Science.gov (United States)

    Schwartz, R. J.

    1982-06-01

    The factors that limit the performance of high concentration silicon solar cells are reviewed. The design of a conventional high concentration cell is discussed, together with the present state of the art. Unconventional cell designs that have been proposed to overcome the limitations of the conventional design are reviewed and compared. The current status of unconventional cells is reviewed. Among the unconventional cells discussed are the interdigitated back-contact cell, the double-sided cell, the polka dot cell, and the V-groove cell. It is noted that all the designs for unconventional cells require long diffusion lengths for high efficiency operation, even though the demands in this respect are less for those cells with the optical path longer than the diffusion path.

  11. Electronic and Optical Properties of Rock-Salt A1N under High Pressure via First-Principles Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; CHEN Xiang-Rong; CAI Ling-Cang; GOU Qing-Quan

    2008-01-01

    Electronic and optical properties of rock-salt A1N under high pressure are investigated by first -principles method based on the plane-wave basis set. Analysis of band structures suggests that the rock-salt AIN has an indirect gap of 4.53 eV, which is in good agreement with other results. By investigating the effects of pressure on the energy gap, the different movement of conduction band at X point below and above 22.5 GPa is predicted. The optical properties including dielectric function, absorption, reflectivity, and refractive index are also calculated and analyzed. It is found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does the transparence affected by the pressure. Furthermore, the curve of optical spectrum will shift to high energy area (blue shift) with increasing pressure.

  12. Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas

    Science.gov (United States)

    Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson

    2014-05-01

    Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire

  13. Decomposition of high concentration SF6 using an electron beam

    Science.gov (United States)

    Son, Youn-Suk; Lee, Sung-Joo; Choi, Chang Yong; Park, Jun-Hyeong; Kim, Tak-Hyun; Jung, In-Ha

    2016-07-01

    In this study, high concentration SF6 (2-10%) was decomposed using an electron beam irradiation. Various influential factors were investigated to improve the destruction and removal efficiency (DRE) of SF6. The initial concentrations of SF6, absorbed doses, SF6/H2 ratios and retention times were the main factors of concern. As a result, the DRE increased as the adsorbed dose and retention time increased. The DRE of SF6 also increased up to 20% approximately when H2 was added to the reaction mixture. On the other hand, the DRE of SF6 decreased as initial concentrations of SF6 increased. Finally, the main by-product formed from SF6 decomposition by the electron beam was HF.

  14. The salts of Mars

    Science.gov (United States)

    Clark, B. C.; Van Hart, D. C.

    1981-01-01

    Salt compounds are apparently an important component of the fine-grained regolith on Mars. Salt enrichment may be explained either as a secondary concentration of chemical weathering products or as direct incorporation of planetary released volatiles. Geochemical measurements and chemical relationships constrain the salt species and resultant physicochemical consequences. A likely assemblage is dominated by (Mg,Na)SO4, NaCl, and (Mg,Ca)CO3. Formation of brine in equilibrium with such a salt mixture is unlikely under the temperature and water-vapor restrictions prevalent over most, if not all, of the Martian surface. Acidic conditions, accompanying salt formation, favor the preferential destruction of susceptible igneous minerals.

  15. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    Energy Technology Data Exchange (ETDEWEB)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90/sup 0/C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation.

  16. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    Science.gov (United States)

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  17. Comparison of two commercial formulations of Bacillus thuringiensis var. israelensis for the control of Anopheles aquasalis (Diptera: Culicidae at three salt concentrations

    Directory of Open Access Journals (Sweden)

    Frances R Osborn

    2007-02-01

    Full Text Available Anopheles aquasalis larvae are salt water tolerant, preferring concentrations between 10 and 20 parts per thousand (ppt. The larvicidal efficacy of two formulations of Bacillus thuringiensis var. israelensis (Vectobac-12AS® and Bactivec®, was investigated against An. aquasalis at salinities of 0, 10, and 20 ppt. A probit analysis was used to calculate the lethal concentrations (LC50 and LC95 for each product at each salinity. The LC50 and LC95 were higher for Bactivec® than Vectobac-12AS®, and for Bactivec®, the LC50 and LC95 increased with salinity. Vectobac-12AS® should thus be preferred to Bactivec® for An. aquasalis control, especially in saline breeding habitats.

  18. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    Science.gov (United States)

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only.

  19. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    Science.gov (United States)

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  20. Concentration-dependent inhibitory and stimulating effects of amphiphilic ammonium salts upon photosynthetic activity of spinach chloroplasts.

    Science.gov (United States)

    Sersen, F; Král'ová, K

    1996-02-01

    The effects of piperidinopropylesters of 2-, 3- and 4-alkoxy substituted phenylcarbamic acids (PPACs) on oxygen evolution rate (OER) in spinach chloroplasts were investigated. PPAGs show concentration-dependent effects, namely OER inhibition at higher effector concentrations and OER stimulation at lower concentrations, i.e. below the inhibitory concentration range. The inhibitory efficiency of PPACs showed dependence on the alkyl chain length of the alkoxy substituent as well as on the position of this substituent on the benzene ring. Using EPR spectroscopy and fluorescence measurements it was confirmed that the site of PPAC inhibitory action is the donor side of photosystem 2, where D1 and D2 proteins are situated, namely the intermediates Z+/Y+, and the manganese cluster containing protein as well. The stimulating effects of PPACs on OER in spinach chloroplasts at relatively low effector concentrations are caused by photophosphorylation uncoupling due to protonophore properties of the effectors.

  1. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  2. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  3. Salt preferences of honey bee water foragers.

    Science.gov (United States)

    Lau, Pierre W; Nieh, James C

    2016-03-01

    The importance of dietary salt may explain why bees are often observed collecting brackish water, a habit that may expose them to harmful xenobiotics. However, the individual salt preferences of water-collecting bees were not known. We measured the proboscis extension reflex (PER) response of Apis mellifera water foragers to 0-10% w/w solutions of Na, Mg and K, ions that provide essential nutrients. We also tested phosphate, which can deter foraging. Bees exhibited significant preferences, with the most PER responses for 1.5-3% Na and 1.5% Mg. However, K and phosphate were largely aversive and elicited PER responses only for the lowest concentrations, suggesting a way to deter bees from visiting contaminated water. We then analyzed the salt content of water sources that bees collected in urban and semi-urban environments. Bees collected water with a wide range of salt concentrations, but most collected water sources had relatively low salt concentrations, with the exception of seawater and swimming pools, which had >0.6% Na. The high levels of PER responsiveness elicited by 1.5-3% Na may explain why bees are willing to collect such salty water. Interestingly, bees exhibited high individual variation in salt preferences: individual identity accounted for 32% of variation in PER responses. Salt specialization may therefore occur in water foragers.

  4. Salt Tolerance of Desorption Electrospray Ionization (DESI)

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Ayanna U. [Purdue University; Talaty, Nari [Purdue University; Cooks, R G [Purdue University; Van Berkel, Gary J [ORNL

    2007-01-01

    Suppression of ion intensity in the presence of high salt matrices is common in most mass spectrometry ionization techniques. Desorption electrospray ionization (DESI) is an ionization method that exhibits salt tolerance, and this is investigated. DESI analysis was performed on three different drug mixtures in the presence of 0, 0.2, 2, 5, 10, and 20% NaCl:KCl weight by volume from seven different surfaces. At physiological concentrations individual drugs in each mixture were observed with each surface. Collision-induced dissociation (CID) was used to provide additional confirmation for select compounds. Multiple stage experiments, to MS5, were performed for select compounds. Even in the absence of added salt, the benzodiazepine containing mixture yielded sodium and potassium adducts of carbamazepine which masked the ions of interest. These adducts were eliminated by adding 0.1% 7M ammonium acetate to the standard methanol:water (1:1) spray solvent. Comparison of the salt tolerance of DESI with that of electrospray ionization (ESI) demonstrated much better signal/noise characteristics for DESI in this study. The salt tolerance of DESI was also studied by performing limit of detection and dynamic range experiments. Even at a salt concentration significantly above physiological concentrations, select surfaces were effective in providing spectra that allowed the ready identification of the compounds of interest. The already high salt tolerance of DESI can be optimized further by appropriate choices of surface and spray solution.

  5. Evaluation of aroma differences between high-salt liquid-state fermentation and low-salt solid-state fermentation soy sauces from China.

    Science.gov (United States)

    Feng, Yunzi; Cai, Yu; Su, Guowan; Zhao, Haifeng; Wang, Chenxia; Zhao, Mouming

    2014-02-15

    Two types of Chinese soy sauce, high-salt liquid-state fermentation soy sauce (HLFSS) and low-salt solid-state fermentation soy sauce (LSFSS), were used to investigate their differences in aroma profile by headspace solid-phase microextraction (HS-SPME) and gas chromatography-olfactometry/mass spectrometry (GC-O/MS). Results from descriptive sensory analysis showed that the alcoholic, cooked potato-like and caramel-like attributes were significantly higher in HLFSS, while LSFSS exhibited significantly higher sour and burnt attributes. In addition, aroma extract dilution analysis (AEDA) revealed 37 and 33 odour-active regions for HLFSS and LSFSS, respectively. Ethanol, 3-methyl-1-butanol, phenylacetaldehyde, 4-ethyl-2-methoxyphenol, 2-methoxy-4-vinylphenol and 3-(methylthio)propanal detected in HLFSS showed the highest flavour dilution (FD) factors, while 3-methylbutanal, phenylacetaldehyde and ethyl propanoate possessed the highest FD factors in LSFSS. Therefore, the traditional Chinese soy sauce HLFSS contained more complex volatiles and exhibited a richer aromatic profile compared with LSFSS.

  6. Characterizing Soy Sauce Moromi Manufactured by High-Salt Dilute-State and Low-Salt Solid-State Fermentation Using Multiphase Analyzing Methods.

    Science.gov (United States)

    Zhang, Liqiang; Zhou, Rongqing; Cui, Ruiying; Huang, Jun; Wu, Chongde

    2016-10-14

    Present study was to characterize the physiochemical properties, free amino acids (FAAs), volatiles and microbial communities of various moromi, respectively sampled from different stages of high-salt dilute-state (HSDS) and low-salt solid-state (LSSS) fermentation, using multiphase analyzing methods. Phospholipid fatty acids (PLFA) analysis indicated that Gram-positive bacteria were dominant bacteria and fungi were principal microbes. For DGGE analysis, dominant microbes in moromi were mainly fell into Weissella, Tetragenococcus, Candida, Pichia, and Zygosaccharomyces. During fermentation, the dominant microbes shifted from nonhalophilic and less acid-tolerant species to halophilic and acid-tolerant species. Total of 15 FAAs and 44 volatiles were identified in moromi, mainly Glu, Asp, Tyr, and acids, alcohols, esters, aldehydes, respectively. Odor activity values analysis suggested that the final moromi of LSSS fermentation had more complicated odors than that of HSDS fermentation. Conclusively, technological parameters, microbial communities, raw materials and fermentation process may result in the discrepancy of HSDS and LSSS moromi.

  7. Biodegradation studies of oil sludge containing high hydrocarbons concentration

    Energy Technology Data Exchange (ETDEWEB)

    Olguin-Lora, P.; Munoz-Colunga, A.; Castorena-Cortes, G.; Roldan-Carrillo, T.; Quej Ake, L.; Reyes-Avila, J.; Zapata-Penasco, I.; Marin-Cruz, J.

    2009-07-01

    Oil industry has a significant impact on environment due to the emission of, dust, gases, waste water and solids generated during oil production all the way to basic petrochemical product manufacturing stages. the aim of this work was to evaluate the biodegradation of sludge containing high hydrocarbon concentration originated by a petroleum facility. A sludge sampling was done at the oil residuals pool (ORP) on a gas processing center. (Author)

  8. Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes.

    Science.gov (United States)

    Caçador, I; Vale, C; Catarino, F

    2000-04-01

    Concentrations of Zn, Pb, Cu and Cd have been determined in leaves, stems and roots of Spartina maritima and Halimione portulacoides from the Tagus estuary salt mash (Corroios) and in the sediments between their roots. Biological materials and sediments were sampled every 2 months, between July 1991 and July 1992. Root biomass increased from July to September and from January to March. The greatest metal concentrations occurred in the roots, with lowest levels in January and increasing levels during the growth periods. Zn, Pb and Cu in sediments exhibited a corresponding change in concentrations, reaching maximum in January and subsequently decreasing in spring. The ratios between metal concentrations in the root and in sediments were higher for H. portulacoides when compared to S. maritima, whose roots are surrounded by a more acidic and reduced sediment environment. It was concluded, therefore, that H. portulacoides is a more effective accumulator of metals than S. maritima, and both root-sediment systems exhibited a seasonal variation of metal concentrations.

  9. Particle sedimentation monitoring in high-concentration slurries

    Science.gov (United States)

    Nagasawa, Yoshihiro; Kato, Zenji; Tanaka, Satoshi

    2016-11-01

    In this study, the sedimentation states of particles in high-concentration slurries were elucidated by monitoring their internal states. We prepared transparent high-concentration silica slurries by adjusting the refractive index of the aqueous glycerol liquid in which the particles were dispersed to match that of the silica particles. In addition, a fluorescent dye was dissolved in the liquid. Then, we directly observed the individual and flocculated particles in the slurries during sedimentation by confocal laser scanning fluorescent microscopy. The particles were found to sediment very slowly while exhibiting fluctuating motion. The particle sedimentation rate in the high-concentration slurry with the aqueous glycerol solution (η =0.068 Pa. s ) and a particle volume fraction on the order of 0.3 was determined to be 1.58 ± 0.66 μ m. min-1 on the basis of the obtained image sequences for 24.9 h. In-situ observation provides a large amount of information about the sedimentation behavior of particles in condensed matter.

  10. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  11. Improved Dispersion of Carbon Nanotubes in Polymers at High Concentrations

    Science.gov (United States)

    Liu, Chao-Xuan; Choi, Jin-Woo

    2012-01-01

    The polymer nanocomposite used in this work comprises elastomer poly(dimethylsiloxane) (PDMS) as a polymer matrix and multi-walled carbon nanotubes (MWCNTs) as a conductive nanofiller. To achieve uniform distribution of carbon nanotubes within the polymer, an optimized dispersion process was developed, featuring a strong organic solvent—chloroform, which dissolved PDMS base polymer easily and allowed high quality dispersion of MWCNTs. At concentrations as high as 9 wt.%, MWCNTs were dispersed uniformly through the polymer matrix, which presented a major improvement over prior techniques. The dispersion procedure was optimized via extended experimentation, which is discussed in detail. PMID:28348312

  12. Feasibility Study on High Concentrating Photovoltaic Power Towers

    Science.gov (United States)

    Frohberger, Dirk; Jaus, Joachim; Wiesenfarth, Maike; Schramek, Philipp; Bett, Andreas W.

    2010-10-01

    This paper presents an analysis on the concept of high concentrating PV power towers. A feasibility study is conducted in order to evaluate the future potential of this technology. Objective of the analysis is to provide an improved basis for establishing research and development priorities for the PV power tower concept. Performance assessments and cost calculations for a 1 MW prototype PV tower power are derived. Based on the assumption of a highly homogeneously illuminated receiver, levelized costs of electricity of 0.29 €/kWh have been calculated for a prototype PV tower power.

  13. Effects of high nitrogen concentrations on the growth of submersed macrophytes at moderate phosphorus concentrations.

    Science.gov (United States)

    Yu, Qing; Wang, Hong-Zhu; Li, Yan; Shao, Jian-Chun; Liang, Xiao-Min; Jeppesen, Erik; Wang, Hai-Jun

    2015-10-15

    Eutrophication of lakes leading to loss of submersed macrophytes and higher turbidity is a worldwide phenomenon, attributed to excessive loading of phosphorus (P). However, recently, the role of nitrogen (N) for macrophyte recession has received increasing attention. Due to the close relationship between N and P loading, disentanglement of the specific effects of these two nutrients is often difficult, and some controversy still exists as to the effects of N. We studied the effects of N on submersed macrophytes represented by Vallisneria natans (Lour.) Hara in pots positioned at three depths (0.4 m, 0.8 m, and 1.2 m to form a gradient of underwater light conditions) in 10 large ponds having moderate concentrations of P (TP 0.03 ± 0.04 mg L(-1)) and five targeted concentrations of total nitrogen (TN) (0.5, 2, 10, 20, and 100 mg L(-1)), there were two ponds for each treatment. To study the potential shading effects of other primary producers, we also measured the biomass of phytoplankton (ChlaPhyt) and periphyton (ChlaPeri) expressed as chlorophyll a. We found that leaf length, leaf mass, and root length of macrophytes declined with increasing concentrations of TN and ammonium, while shoot number and root mass did not. All the measured growth indices of macrophytes declined significantly with ChlaPhyt, while none were significantly related to ChlaPeri. Neither ChlaPhyt nor ChlaPeri were, however, significantly negatively related to the various N concentrations. Our results indicate that shading by phytoplankton unrelated to the variation in N loading and perhaps toxic stress exerted by high nitrogen were responsible for the decline in macrophyte growth.

  14. Structural insights into the adaptation of proliferating cell nuclear antigen (PCNA) from Haloferax volcanii to a high-salt environment

    Science.gov (United States)

    Morgunova, Ekaterina; Gray, Fiona C.; MacNeill, Stuart A.; Ladenstein, Rudolf

    2009-01-01

    The sliding clamp proliferating cell nuclear antigen (PCNA) plays vital roles in many aspects of DNA replication and repair in eukaryotic cells and in archaea. Realising the full potential of archaea as a model for PCNA function requires a combination of biochemical and genetic approaches. In order to provide a platform for subsequent reverse genetic analysis, PCNA from the halophilic archaeon Haloferax volcanii was subjected to crystallographic analysis. The gene was cloned and expressed in Escherichia coli and the protein was purified by affinity chromatography and crystallized by the vapour-diffusion technique. The structure was determined by molecular replacement and refined at 3.5 Å resolution to a final R factor of 23.7% (R free = 25%). PCNA from H. volcanii was found to be homotrimeric and to resemble other homotrimeric PCNA clamps but with several differences that appear to be associated with adaptation of the protein to the high intracellular salt concentrations found in H. volcanii cells. PMID:19770505

  15. Copolymer SJ-1 as a Fluid Loss Additive for Drilling Fluid with High Content of Salt and Calcium

    Directory of Open Access Journals (Sweden)

    Hongping Quan

    2014-01-01

    Full Text Available A ternary copolymer of 2-acrylamide-2-methyl propane sulfonic acid (AMPS, acrylamide (AM, and allyl alcohol polyoxyethylene ether (APEG with a side chain polyoxyethylene ether (C2H4On SJ-1 were designed and synthesized in this work. Good temperature resistance and salt tolerance of “–SO3-” of AMPS, strong absorption ability of “amino-group” of AM, and good hydrability of side chain polyoxyethylene ether (C2H4On of APEG provide SJ-1 excellent properties as a fluid loss additive. The chemical structure of ternary copolymer was characterized by Fourier transform infrared (FTIR spectroscopy. The molecular weight and its distribution were determined by gel permeation chromatography (GPC. The API fluid loss of drilling fluid decreased gradually with the increasing concentration of NaCl and CaCl2 in the mud system. SJ-1 was applied well in the drilling fluid even at a high temperature of 220°C. Results of zeta potential of modified drilling fluid showed the dispersion stability of drilling fluid system. Scanning electron microscopy (SEM analysis showed the microstructure of the surface of the filter cake obtained from the drilling fluid modified by SJ-1.

  16. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  17. Poly(vinyl alcohol) composite films with high percent elongation prepared from amylose-fatty ammonium salt inclusion complexes

    Science.gov (United States)

    Amylose inclusion complexes prepared from cationic fatty ammonium salts and jet-cooked high amylose starch were combined with poly(vinyl alcohol) (PVOH) to form glycerol-plasticized films. Their tensile properties were compared with similar films prepared previously with analogous anionic fatty acid...

  18. Downregulation of Endogenous Hydrogen Sulfide Pathway Is Involved in Mitochondrion-Related Endothelial Cell Apoptosis Induced by High Salt

    Directory of Open Access Journals (Sweden)

    Yanfang Zong

    2015-01-01

    Full Text Available Background. The study aimed to investigate whether endogenous H2S pathway was involved in high-salt-stimulated mitochondria-related vascular endothelial cell (VEC apoptosis. Methods. Cultured human umbilical vein endothelial cells (HUVECs were used in the study. H2S content in the supernatant was detected. Western blot was used to detect expression of cystathionine gamma-lyase (CSE, cleaved-caspase-3, and mitochondrial and cytosolic cytochrome c (cytc. Fluorescent probes were used to quantitatively detect superoxide anion generation and measure the in situ superoxide anion generation in HUVEC. Mitochondrial membrane pore opening, mitochondrial membrane potential, and caspase-9 activities were measured. The cell apoptosis was detected by cell death ELISA and TdT-mediated dUTP nick end labeling (TUNEL methods. Results. High-salt treatment downregulated the endogenous VEC H2S/CSE pathway, in association with increased generation of oxygen free radicals, decreased mitochondrial membrane potential, enhanced the opening of mitochondrial membrane permeability transition pore and leakage of mitochondrial cytc, activated cytoplasmic caspase-9 and caspase-3 and subsequently induced VEC apoptosis. However, supplementation of H2S donor markedly inhibited VEC oxidative stress and mitochondria-related VEC apoptosis induced by high salt. Conclusion. H2S/CSE pathway is an important endogenous defensive system in endothelial cells antagonizing high-salt insult. The protective mechanisms for VEC damage might involve inhibiting oxidative stress and protecting mitochondrial injury.

  19. Yeast frataxin is stabilized by low salt concentrations: cold denaturation disentangles ionic strength effects from specific interactions.

    Science.gov (United States)

    Sanfelice, Domenico; Puglisi, Rita; Martin, Stephen R; Di Bari, Lorenzo; Pastore, Annalisa; Temussi, Piero Andrea

    2014-01-01

    Frataxins are a family of metal binding proteins associated with the human Friedreich's ataxia disease. Here, we have addressed the effect of non-specifically binding salts on the stability of the yeast ortholog Yfh1. This protein is a sensitive model since its stability is strongly dependent on the environment, in particular on ionic strength. Yfh1 also offers the unique advantage that its cold denaturation can be observed above the freezing point of water, thus allowing the facile construction of the whole protein stability curve and hence the measurement of accurate thermodynamic parameters for unfolding. We systematically measured the effect of several cations and, as a control, of different anions. We show that, while strongly susceptible to ionic strength, as it would be in the cellular environment, Yfh1 stability is sensitive not only to divalent cations, which bind specifically, but also to monovalent cations. We pinpoint the structural bases of the stability and hypothesize that the destabilization induced by an unusual cluster of negatively charged residues favours the entrance of water molecules into the hydrophobic core, consistent with the generally accepted mechanism of cold denaturation.

  20. Wet oxidation of real coke wastewater containing high thiocyanate concentration.

    Science.gov (United States)

    Oulego, Paula; Collado, Sergio; Garrido, Laura; Laca, Adriana; Rendueles, Manuel; Díaz, Mario

    2014-01-01

    Coke wastewaters, in particular those with high thiocyanate concentrations, represent an important environmental problem because of their very low biodegradability. In this work, the treatment by wet oxidation of real coke wastewaters containing concentrations of thiocyanate above 17 mM has been studied in a 1-L semi-batch reactor at temperatures between 453 and 493 K, with total oxygen pressures in the range of 2.0-8.0 MPa. A positive effect of the matrix of real coke wastewater was observed, resulting in faster thiocyanate degradation than was obtained with synthetic wastewaters. Besides, the effect of oxygen concentration and temperature on thiocyanate wet oxidation was more noticeable in real effluents than in synthetic wastewaters containing only thiocyanate. It was also observed that the degree of mineralization of the matrix organic compounds was higher when the initial thiocyanate concentration increased. Taking into account the experimental data, kinetic models were obtained, and a mechanism implying free radicals was proposed for thiocyanate oxidation in the matrix considered. In all cases, sulphate, carbonates and ammonium were identified as the main reaction products of thiocyanate wet oxidation.

  1. Analysis of Abnormal Phenomena in High Magnesium Boron Containing Salt Brine System%高镁含硼盐卤体系反常现象解析

    Institute of Scientific and Technical Information of China (English)

    乌志明; 崔香梅; 郑绵平

    2012-01-01

    Such phenomena as "supersaturated solubility", "salt formation by dilution" and "solubility increase of homonymy ion" exist in high magnesium boron containing salt brine system. Our research indicates that the magnesium chloride solution is neutral with medium or low concentration. It shows acidic property with high concentration and the pH value is lower than 4.5 when saturated. But many types of magnesium borate minerals are alkaline ones with pH value higher than 8.0. We know in general acid and base could hardly co-exist in an aqueous solution, but magnesium borate and magnesium chloride in high magnesium boron containing salt brine system do owing to the possession of the homonymy ion. The above mentioned abnormal phenomena can be satisfactorily interpreted with special acidity change of magnesium chloride solution and some related phase chemistry data.%高镁含硼盐卤体系中存在“过饱和溶解度”、“稀释成盐”和同名离子“增溶”等反常现象.研究发现:氯化镁溶液在中低浓度时显中性,在高浓度时显酸性,饱和时pH值小于4.5.而各种镁硼酸盐基本都是pH值大于8.0的碱性矿物.水溶液中酸碱难共存,但镁硼酸盐与氯化镁却因具有相同离子而能够在高镁含硼盐卤体系中共存.结合氯化镁溶液特殊酸度变化规律与相关相化学数据可较圆满的解释高镁含硼盐卤体系中的反常现象.

  2. Inactivation of human immunodeficiency virus type 1 in blood samples stored as high-salt lysates.

    Science.gov (United States)

    Zolg, J W; Lanciotti, R S; Wendlinger, M; Meyer, W A

    1990-09-01

    Blood samples to be tested for the presence of parasite DNA by using specific DNA probes are routinely stored in our laboratory as high-salt lysates (HSL). To safeguard against the risk of accidental infection with etiological agents such as the human immunodeficiency virus type 1 (HIV-1) while manipulating large numbers of blood samples in preparation for DNA probing, we determined the residual infectivity of HIV-1 after exposure to HSL components. Both high-titer virus stocks or provirus-carrying cells, suspended either in tissue culture medium or freshly drawn blood, were completely inactivated upon contact with the HSL components. This was verified by the absence of any detectable HIV-1-specific antigen in the supernatants of long-term cultures and the absence of virus-specific DNA fragments after amplification by polymerase chain reaction with DNA from such cultures as target DNA. These results support the conclusion that the virus is in fact completely inactivated by contact with the HSL components, rendering blood specimens stored as HSL noninfectious in regard to HIV-1.

  3. Cardiovascular and Renal Effects of High Salt Diet in GDNF+/- Mice with Low Nephron Number

    Directory of Open Access Journals (Sweden)

    Julia Schlote

    2013-09-01

    Full Text Available Aims: To test the suggested association of low nephron number and later development of renal and cardiovascular disease we investigated the effects of high sodium diet in heterozygous GDNF+/- mice. Methods: Aged wild type and GDNF+/- mice were grouped together according to high sodium (HS, 4% or low sodium (LS, 0.03% diet for 4 weeks. The heart, the aorta and the kidneys were processed for morphometric and stereological evaluations and TaqMan PCR. Results: On HS GDNF+/- mice showed significantly higher drinking volume and urine production than wt and mean arterial blood pressure tended to be higher. Heart weight was higher in GDNF+/- than in wt, but the difference was only significant for LS. HS significantly increased cardiac interstitial tissue in GDNF+/-, but not in wt. On LS GDNF+/- mice had significantly larger glomeruli than wt and HS led to an additional two fold increase of glomerular area compared to LS. On electron microscopy glomerular damage after HS was seen in GDNF+/-, but not in wt. Dietary salt intake modulated renal IL-10 gene expression in GDNF+/-. Conclusion: In the setting of 30% lower nephron number HS diet favoured maladaptive changes of the kidney as well as of the cardiovascular system.

  4. Transcript changes in Vibrio cholerae in response to salt stress.

    Science.gov (United States)

    Fu, Xiuping; Liang, Weili; Du, Pengcheng; Yan, Meiying; Kan, Biao

    2014-01-01

    Vibrio cholerae, which is a serious human intestinal pathogen, often resides and thrives in estuaries but requires major self-regulation to overcome intestinal hyperosmotic stress or high salt stress in water and food. In the present study, we selected multiple O1 and O139 group V. cholerae strains that were isolated from different regions and during different years to study their salt tolerance. Based on the mechanisms that other bacteria use to respond to high salt stress, we selected salt stress-response related genes to study the mechanisms which V. cholerae responds to high salt stress. V. cholerae strains showed salt-resistance characteristics that varied in salt concentrations from 4% to 6%. However, group O1 and group O139 showed no significant difference in the degree of salt tolerance. The primary responses of bacteria to salt stress, including Na(+) exclusion, K(+) uptake and glutamate biosynthesis, were observed in V. cholerae strains. In addition, some sigma factors were up-regulated in V. cholerae strains, suggesting that V. cholerae may recruit common sigma factors to achieve an active salt stress response. However, some changes in gene transcript levels in response to salt stress in V. cholerae were strain-specific. In particular, hierarchical clustering of differentially expressed genes indicated that transcript levels of these genes were correlated with the degree of salt tolerance. Therefore, elevated transcript levels of some genes, including sigma factors and genes involved in peptidoglycan biosynthesis, may be due to the salt tolerance of strains. In addition, high salt-tolerant strains may recruit common as well as additional sigma factors to activate the salt stress response.

  5. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds.

    Science.gov (United States)

    Yanagisawa, Mitsunori; Kawai, Shigeyuki; Murata, Kousaku

    2013-01-01

    Bioethanol has attracted attention as an alternative to petroleum-derived fuel. Seaweeds have been proposed as some of the most promising raw materials for bioethanol production because they have several advantages over lignocellulosic biomass. However, because seaweeds contain low contents of glucans, i.e., polysaccharides composed of glucose, the conversion of only the glucans from seaweed is not sufficient to produce high concentrations of ethanol. Therefore, it is also necessary to produce ethanol from other specific carbohydrate components of seaweeds, including sulfated polysaccharides, mannitol, alginate, agar and carrageenan. This review summarizes the current state of research on the production of ethanol from seaweed carbohydrates for which the conversion of carbohydrates to sugars is a key step and makes comparisons with the production of ethanol from lignocellulosic biomass. This review provides valuable information necessary for the production of high concentrations of ethanol from seaweeds.

  6. The Standard Addition-Elution Method for the Determination of Lead Content in High-salt Food%标准加入-洗脱法测定高盐食品中铅含量

    Institute of Scientific and Technical Information of China (English)

    常松

    2011-01-01

    实验先洗脱高盐食品大部分的钠盐或钾盐,再加入铅标准系列溶液,使校准曲线的组成与样品接近。该法能很好地消除高浓度盐对铅的严重干扰,提高了方法的灵敏度,十分适合食品检测实验室精确的测定铅元素。%The first elution high-salt food most of the sodium or potassium salt,then adding lead series of standard solution to let the calibration curve and the composition of the sample is close to.This method can well eliminate the high concentration of salt to lead the serious interference.

  7. Pre-Conceptual Design of a Fluoride-Salt-Cooled Small Modular Advanced High Temperature Reactor (SmAHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Carbajo, Juan J [ORNL; Ilas, Dan [ORNL; Cisneros, Anselmo T [ORNL; Varma, Venugopal Koikal [ORNL; Corwin, William R [ORNL; Wilson, Dane F [ORNL; Yoder Jr, Graydon L [ORNL; Qualls, A L [ORNL; Peretz, Fred J [ORNL; Flanagan, George F [ORNL; Clayton, Dwight A [ORNL; Bradley, Eric Craig [ORNL; Bell, Gary L [ORNL; Hunn, John D [ORNL; Pappano, Peter J [ORNL; Cetiner, Sacit M [ORNL

    2011-02-01

    This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.

  8. Hydrogen Sulfide Inhibits High-Salt Diet-Induced Renal Oxidative Stress and Kidney Injury in Dahl Rats

    Directory of Open Access Journals (Sweden)

    Pan Huang

    2016-01-01

    Full Text Available Background. The study was designed to investigate if H2S could inhibit high-salt diet-induced renal excessive oxidative stress and kidney injury in Dahl rats. Methods. Male salt-sensitive Dahl and SD rats were used. Blood pressure (BP, serum creatinine, urea, creatinine clearance rate, and 24-hour urine protein were measured. Renal ultra- and microstructures were observed. Collagen-I and -III contents the oxidants and antioxidants levels in renal tissue were detected. Keap1/Nrf2 association and Keap1 s-sulfhydration were detected. Results. After 8 weeks of high-salt diet, BP was significantly increased, renal function and structure were impaired, and collagen deposition was abundant in renal tissues with increased renal MPO activity, H2O2, MDA, GSSG, and •OH contents, reduced renal T-AOC and GSH contents, CAT, GSH-PX and SOD activity, and SOD expressions in Dahl rats. Furthermore, endogenous H2S in renal tissues was decreased in Dahl rats. H2S donor, however, decreased BP, improved renal function and structure, and inhibited collagen excessive deposition in kidney, in association with increased antioxidative activity and reduced oxidative stress in renal tissues. H2S activated Nrf2 by inducing Keap1 s-sulfhydration and subsequent Keap1/Nrf2 disassociation. Conclusions. H2S protected against high-salt diet-induced renal injury associated with enhanced antioxidant capacity and inhibited renal oxidative stress.

  9. Ovalbumin-gum arabic interactions: effect of pH, temperature, salt, biopolymers ratio and total concentration.

    Science.gov (United States)

    Niu, Fuge; Su, Yujie; Liu, Yuntao; Wang, Guanchao; Zhang, Yang; Yang, Yanjun

    2014-01-01

    The formation of soluble and insoluble complexes between ovalbumin (OVA) and gum arabic (GA) polysaccharide was investigated under specific conditions (pH 1.0-7.0; temperature 4-55 °C; NaCl concentration 0-60mM; total biopolymer concentration 0.05-3.0 wt%) by turbidimetric analysis. For the 2:1 OVA:GA ratio and in the absence of NaCl, soluble and insoluble complexes were observed at pH 4.61 (pHφ1) and 4.18 (pHφ2), respectively, with optimal biopolymer interactions occurring at pH 3.79 (pHopt). Under the same conditions, OVA alone gave only a weak turbidity intensity (turbidity biopolymer concentration increased until reaching a critical value (2.0%), afterwards becoming a constant value.

  10. Effect of heat stress and drinking water salt supplements on plasma electrolytes and aldosterone concentration in broiler chickens

    Science.gov (United States)

    Deyhim, F.; Teeter, R. G.

    1995-12-01

    An experiment was conducted to evaluate the effects of supplementing drinking water with isomolar (0.067 mol/l) KCl or NaCl on mass gain, food and water consumption, rectal temperature, and plasma concentrations of aldosterone, Na+, and K+ in broiler chickens reared in thermoneutral and cycling heat stressing environments. Heat stress decreased ( P≤0.05) mass gain, food consumption, and plasma concentrations of Na+ and K+, while increases ( P≤0.05) in plasma concentrations of aldosterone, rectal temperature, and water consumption were observed. Drinking water supplemented with either KCl or NaCl increased ( P≤0.05) broiler mass gain and water consumption, but had no effect ( P>0.1) on the other variables evaluated. The results of this study indicate that broiler chickens in a heat stress environment are under osmotic stress and supplementing drinking water with 0.067 mol/1 KCl or NaCl does not lessen this stress.

  11. The influence of ion binding and ion specific potentials on the double layer pressure between charged bilayers at low salt concentrations

    Science.gov (United States)

    Bostrom, M.; Lima, E. R. A.; Tavares, F. W.; Ninham, B. W.

    2008-04-01

    Measurements of surface forces between double-chained cationic bilayers adsorbed onto molecularly smooth mica surfaces across different millimolar salt solutions have revealed a large degree of ion specificity [Pashley et al., J. Phys. Chem. 90, 1637 (1986)]. This has been interpreted in terms of highly specific anion binding to the adsorbed bilayers. We show here that inclusion in the double layer theory of nonspecific ion binding and ion specific nonelectrostatic potentials acting between ions and the two surfaces can account for the phenomenon. It also gives the right Hofmeister series for the double layer pressure.

  12. Survival of Campylobacter spp. in poultry meat preparations subjected to freezing, refrigeration, minor salt concentration, and heat treatment.

    Science.gov (United States)

    Sampers, Imca; Habib, Ihab; De Zutter, Lieven; Dumoulin, Ann; Uyttendaele, Mieke

    2010-02-28

    The survival of Campylobacter spp. under defined conditions of freezing (-22 degrees C) was studied in naturally contaminated chicken skin and minced chicken meat. A decline of approximately one log(10) cfu/g was observed after 1 day of freezing. No further significant reduction was achieved by prolonged storage in the freezer, although a tendency for further gradual reduction of the numbers of Campylobacter spp. present was noted. Campylobacter spp. could still be detected qualitatively (per 0.1g) after 84 days. In a second part of this study, the survival of Campylobacter spp. in a typical minced meat preparation (minced meat supplemented with 1.5% salt (NaCl)) stored at refrigeration (4 degrees C) or frozen (-22 degrees C) was studied. No significant reduction of the pathogen was observed if the minced chicken meat was kept at 4 degrees C for 14 days, opposite to approximately one log(10) cfu/g reduction after 1 day when the minced meat preparation was stored in the freezer (-22 degrees C) for 14 days. The latter reduction is imputed to the effect of freezing as mentioned above and not due to the supplementation of NaCl to minced meat or the combination of NaCl and freezing, because similar reductions of Campylobacter spp. were noticed when minced meat (without addition of NaCl) was frozen. Finally, in a third part of the study, the survival of Campylobacter spp. subjected to a heat treatment, conform to consumer-based pan-frying, in inoculated (4.5+/-0.2 cfu/g) as well as naturally contaminated chicken burgers (2.1+/-0.1 cfu/g) was studied. The Campylobacter spp. numbers declined after 2 min (internal temperature reached circa 38 degrees C), where after 4 min (internal temperature reached circa 57.5 degrees C) they dropped below detectable levels (<10 cfu/g).

  13. SALT, a dedicated readout chip for high precision tracking silicon strip detectors at the LHCb Upgrade

    Science.gov (United States)

    Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.

    2016-02-01

    The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (designed, fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.

  14. Determination of Salt Impurities in MDEA Solution Used in Desulfurization of Highly Sulphurous Natural Gas

    Institute of Scientific and Technical Information of China (English)

    Liu Yucheng; Zhang Bo; Chen Mingyan; Wu Danni; Zhou Zheng

    2015-01-01

    The foaming phenomenon of N-methyldiethanolamine (MDEA) solution used in desulfurization process occurs frequently in the natural-gas puriifcation plant. The foaming phenomenon has a strong impact on operation of the process unit. The salt impurities are the main reason for causing the foaming of MDEA solution, so the full analysis of salt impuri-ties is necessary. A method for comprehensive analysis of salt impurities in MDEA solution used in desulfurization process was established. Anions and non-metallic cations of MDEA solution were determined by different conditions of ion chro-matograph, respectively. Metallic cations of the solution were detected by atomic absorption spectrophotometer with the N2O-C2H2 lfame absorption. The analytical results of salt impurities in the desulfurization solution can provide a theoretical basis for an accurate analysis of the factors affecting the foaming of MDEA to unveil further control measures.

  15. Antimutagenic activity and in vitro anticancer effects of bamboo salt on HepG2 human hepatoma cells.

    Science.gov (United States)

    Zhao, Xin; Ju, Jaehyun; Kim, Hyung-Min; Park, Kun-Young

    2013-01-01

    Bamboo salt is a traditional Korean baked solar salt processed by packing the solar salt in bamboo joint cases and heating it several times to high temperatures. The antimutagenic activity and in vitro anticancer effects of bamboo salt on HepG2 human hepatoma cells were investigated and compared to those of other salt samples. Although solar salt and purified salt exhibited comutagenicity with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in the Salmonella typhimurium TA100 strain, bamboo salt was associated with a lower degree of comutagenicity or antimutagenic activity. Bamboo salt baked nine times (9×) showed a greater increase in antimutagenic activity than salts baked once (1×) or three times (3×). At a concentration of 1%, the growth rate of HepG2 cells treated with 9× bamboo salt determined by a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MIT) assay was reduced by 65%; this rate of inhibition was higher than that achieved with 1× baked bamboo salt (40%). Purified and solar salts had relatively lower inhibitory effects on growth rate (25% and 29%, respectively). Compared to the other salt samples, 9× bamboo salt significantly (pbamboo salts, especially 9× bamboo salt, also significantly (p<0.05) downregulated the expression of inflammation-related NF-κB, iNOS, and COX-2, and upregulated the gene expression of IκB-α compared to the other salt sample.

  16. The Combined Effect of High Hydrostatic Pressure and Calcium Salts on the Stability, Solubility and Gel Formation of β-Lactoglobulin.

    Science.gov (United States)

    Saalfeld, Daniel; Riegel, Ina; Kulozik, Ulrich; Gebhardt, Ronald

    2015-06-08

    Stability, aggregation and gelation of β-Lactoglobulin are affected by high pressure and salts of the Hofmeister series. Little is known about their combined effects on structure formation processes of β-Lactoglobulin, mainly because many salts of the series are not suitable for use in food. Here, we investigate the effect of calcium salts on the strength of pressure-induced gels, inspired by the fact that high pressure and salts change the water structure in a similar way. We find that the larger the applied pressures, the higher the strength of the gels. In addition to pressure, there is a significant influence by the type of anions and the amount of added calcium salts. Gel strength increases in the order CaCl₂ formation by taking reaction rates for unfolding and aggregation, as well as specific/non-specific salts effect into consideration.

  17. Measurements of the Suitability of Large Rock Salt Formations for Radio Detection of High Energy Neutrinos

    CERN Document Server

    Gorham, P W; Odian, A; Williams, D; Besson, D; Frichter, G; Tantawi, S G; Gorham, Peter; Saltzberg, David; Odian, Allen; Williams, Dawn; Besson, David; Frichter, George; Tantawi, Sami

    2002-01-01

    We have investigated the possibility that large rock salt formations might be suitable as target masses for detection of neutrinos of energies about 10 PeV and above. In neutrino interactions at these energies, the secondary electromagnetic cascade produces a coherent radio pulse well above ambient thermal noise via the Askaryan effect. We describe measurements of radio-frequency attenuation lengths and ambient thermal noise in two salt formations. Measurements in the Waste Isolation Pilot Plant (WIPP), located in an evaporite salt bed in Carlsbad, NM yielded short attenuation lengths, 3-7 m over 150-300 MHz. However, measurements at United Salt's Hockley mine, located in a salt dome near Houston, Texas yielded attenuation lengths in excess of 250 m at similar frequencies. We have also analyzed early ground-penetrating radar data at Hockley mine and have found additional evidence for attenuation lengths in excess of several hundred meters at 440 MHz. We conclude that salt domes, which may individually contain...

  18. High salt intake down-regulates colonic mineralocorticoid receptors, epithelial sodium channels and 11β-hydroxysteroid dehydrogenase type 2.

    Directory of Open Access Journals (Sweden)

    Daniel Lienhard

    Full Text Available Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2. Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001 and reduced the expression of the MR (p<0.01. The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001. The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

  19. Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts: synthesis and promising properties of a new family of high-density insensitive materials.

    Science.gov (United States)

    Wang, Ruihu; Xu, Hongyan; Guo, Yong; Sa, Rongjian; Shreeve, Jean'ne M

    2010-09-01

    Bis[3-(5-nitroimino-1,2,4-triazolate)]-based energetic salts were synthesized in a simple, straightforward manner. They exhibit low solubility in available solvents, high hydrolytic stability, excellent thermal stability, high density, positive heat of formation, low shock sensitivity, and excellent detonation properties. The physical and energetic properties of some salts are similar and even superior to those of RDX.

  20. Hydronephrosis causes salt-sensitive hypertension in rats

    DEFF Research Database (Denmark)

    Carlström, Mattias; Wåhlin, Nils; Sällström, Johan

    2006-01-01

    , blood pressure increased from 118 +/- 5 mmHg on low salt to 140 +/- 6 mmHg on high salt intake, compared to control levels of 82 +/- 2 and 84 +/- 2 mmHg, respectively. Plasma renin concentration was increased in the hydronephrotic group of animals compared to controls on all diets, but the difference...

  1. Chronic Diarrhea Associated with High Teriflunomide Blood Concentration

    OpenAIRE

    Duquette, André; Frenette, Anne Julie; Doré, Maxime

    2016-01-01

    Objective To report the case of a patient treated with leflunomide that presented with chronic diarrhea associated with high teriflunomide blood concentration. Case Summary An 84-year-old woman taking leflunomide 20 mg once daily for the past 2 years to treat rheumatoid arthritis (RA) was investigated for severe chronic diarrhea that had been worsening for the past 5 months. The patient’s general condition progressively deteriorated and included electrolyte imbalances and a transient loss of ...

  2. The effects of high metal concentrations in soil-compost mixtures on soil enzymes.

    Science.gov (United States)

    Warman, P R; Munroe, M D

    2010-10-01

    The study was undertaken to determine the impact of high-metal composts on the activities of four soil enzymes. High concentrations of metal salts (Cr, Cu, Ni or a Co-Mo-Pb combination) were added to feedstocks during the thermophilic stage of composting. These four metal-enriched composts and an unamended control compost were then mixed with soil collected from long-term agriculture plots under organic management or conventional management. The compost-soil mixtures were prepared at two rates (1:1 or 1:3 compost:soil, v/v) and incubated at 20 degrees C for three weeks. These 20 combinations plus the five composts and the two soils were added to pots and incubated for three weeks. Following incubation, soil enzyme activities (acid phosphatase, arysulfatase, dehydrogenase, phosphodiesterase) were measured using traditional assay procedures. Compared to the control, none of the high-metal composts inhibited soil enzyme activity. Notably, the Cu compost treatment produced significantly higher activity of all four enzymes in the soil compared to the control. Previous soil management influenced the activity of three enzymes, arysulfatase and dehydrogenase had greater activity in the organic soil while phosphatase activity was greater in the conventional soil. Increasing the proportion of compost in the pot had a positive effect on phosphodiesterase activity only. In conclusion, the high-metal compost treatments either enhanced or caused no adverse effects on soil enzyme activity.

  3. Characterization of the deviation to the ideality of concentrated actinide and lanthanide salt solutions: contribution of the Bimsa theory; Caracterisation de l'ecart a l'idealite de solutions concentrees de sels d'actinide et de lanthanide: contribution de la theorie Bimsa

    Energy Technology Data Exchange (ETDEWEB)

    Ruas, A

    2006-03-15

    The aim of this work is to describe the mean stoichiometric activity coefficients, osmotic coefficients or water activities of aqueous actinide nitrate salt solutions up to high concentration. These sets of data are required for a better control of the equilibria occurring in liquid-liquid extraction processes. Experimental acquisition of these thermodynamic properties, in the case of some actinide nitrates, is possible and was conducted before.But, many actinide salt solutions cannot be experimentally handled up to high concentration because of unstable oxidation state or very high radioactivity. As a consequence, a suitable predictive theory is necessary for the description of these nitrate salt solutions (such as Am (NO{sub 3}){sub 3}, Cm (NO{sub 3}){sub 3}). The BIMSA ('Binding Mean Spherical Approximation') was chosen for this purpose. This theory, unlike other methods, uses a set of microscopic parameters that have some physical meaning, for the description of macroscopic thermodynamic properties (osmotic coefficients, activity coefficients).The following manuscript is divided by 4 chapters, corresponding to 4 articles accepted in the scientific journal 'Journal of Physical Chemistry'. Chapter 1 first reviews the basic thermodynamic concepts before describing the issues involved in acquiring actinides binary data. An approach based on the thermodynamic concept of simple solutions, the notion of fictive binary data, is described. Within this approach, the activity coefficient of an aqueous phase constituent depends on two parameters: the water activity of the system and total concentration of dissolved constituents. As a first application, new fictive binary data of uranyl nitrate are proposed from measurements on the ternary system UO{sub 2}(NO{sub 3}){sub 2}/HNO{sub 3}/H{sub 2}O.Chapter 2 gives the main principles of the BIMSA theory. It shows also preliminary promising results obtained when modeling lanthanide(III) salt properties. Then

  4. Structure/Processing Relationships of Highly Ordered Lead Salt Nanocrystal Superlattices

    KAUST Repository

    Hanrath, Tobias

    2009-10-27

    We investigated the influence of processing conditions, nanocrystal/substrate interactions and solvent evaporation rate on the ordering of strongly interacting nanocrystals by synergistically combining electron microscopy and synchrotron-based small-angle X-ray scattering analysis. Spin-cast PbSe nanocrystal films exhibited submicrometer-sized supracrystals with face-centered cubic symmetry and (001)s planes aligned parallel to the substrate. The ordering of drop-cast lead salt nanocrystal films was sensitive to the nature of the substrate and solvent evaporation dynamics. Nanocrystal films drop-cast on rough indium tin oxide substrates were polycrystalline with small grain size and low degree of orientation with respect to the substrate, whereas films drop-cast on flat Si substrates formed highly ordered face-centered cubic supracrystals with close-packed (111)s planes parallel to the substrate. The spatial coherence of nanocrystal films drop-cast in the presence of saturated solvent vapor was significantly improved compared to films drop-cast in a dry environment. Solvent vapor annealing was demonstrated as a postdeposition technique to modify the ordering of nanocrystals in the thin film. Octane vapor significantly improved the long-range order and degree of orientation of initially disordered or polycrystalline nanocrystal assemblies. Exposure to 1,2-ethanedithiol vapor caused partial displacement of surface bound oleic acid ligands and drastically degraded the degree of order in the nanocrystal assembly. © 2009 American Chemical Society.

  5. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    Science.gov (United States)

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  6. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  7. Thermodynamic assessment of the LiF-CeF3-ThF4 system: Prediction of PuF3 concentration in a molten salt reactor fuel

    Science.gov (United States)

    Beneš, O.; Konings, R. J. M.

    2013-04-01

    A thermodynamic description of the LiF-CeF3-ThF4 system is made in this study using a two-sublattice model for the description of the solid solution and a quasi-chemical model based on quadruplet approximation for the liquid phase. New calorimetric experimental data of the binary LiF-CeF3, CeF3-ThF4 and ternary LiF-CeF3-ThF4 systems have been obtained in this work justifying the calculated phase diagrams. Using the obtained thermodynamic assessment the concentration of PuF3 in the LiF-ThF4 melt was estimated based on the similarities with CeF3 and the melting behaviour of the initial molten salt fast reactor fuel was discussed.

  8. Testing a high resolution CO2 and CO emission inventory against atmospheric observations in Salt Lake City, Utah for policy applications

    Science.gov (United States)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.

    2016-12-01

    We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to

  9. Effect of high soil copper concentration on mycorrhizal grapevines

    Science.gov (United States)

    Nogales, Amaia; Santos, Erika S.; Viegas, Wanda; Aran, Diego; Pereira, Sofia H.; Vidigal, Patricia; Lopes, Carlos M.; Abreu, M. Manuela

    2017-04-01

    Repeated application of Copper (Cu) based fungicides in vineyards since the end of the 19th century has led to a significant increase in the concentration of this chemical element in many viticultural soils. Although Cu is an essential micronutrient for most organisms, it can be toxic for the development and survival of plants and soil (micro)organisms at high concentrations and eventually lead to yield loses in viticulture, as it negatively affects key physiological and biogeochemical processes. However, some soil microorganisms, including arbuscular mycorrhizal fungi (AMF), have developed adaptive mechanisms for persistence in environments with supra-optimal levels of essential elements or in the presence of harmful ones, as well as for increasing plant tolerance to such abiotic stress conditions. The objective of this work was to evaluate the effect of a high total soil concentration of Cu on microbial soil activity as well as on the development of mycorrhizal and non-mycorrhizal grapevines. A microcosm assay was set up under greenhouse and controlled conditions. Touriga Nacional grapevine variety plants grafted onto 1103P rootstocks were inoculated either with the AMF Rhizophagus irregularis or Funneliformis mosseae, or were left as non-inoculated controls. After three months, they were transplanted to containers filled with 4 kg of a sandy soil (pH: 7.0; electrical conductivity: 0.08 mS/cm; [organic C]: 5.6 g/kg; [N-NO3]: 1.1 mg/kg; [N-NH4]: 2.5 mg/kg; [extractable K]: 45.1 mg/kg; [extractable P]: 52.3 mg/kg), collected near to a vineyard in Pegões (Portugal). Two treatments were carried out: with and without Cu application. The soil with high Cu concentration was prepared by adding 300 mg Cu/kg (in the form of an aqueous solution of CuSO4·5H2O) followed by an incubation during four weeks in plastic bags at room temperature in dark. Physico-chemical soil characteristics (pH, electrical conductivity and nutrients concentration in available fraction), soil

  10. Particulate Matter Concentrations in East Oakland's High Street Corridor

    Science.gov (United States)

    Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.

    2012-12-01

    Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.

  11. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent.

    Science.gov (United States)

    Nasiri, H; Forouzandeh, M; Rasaee, M J; Rahbarizadeh, F

    2005-01-01

    Different approaches have been used to extract DNA from whole blood. In most of these methods enzymes (such as proteinase K and RNAse A) or toxic organic solvents (such as phenol or guanidine isothiocyanate) are used. Since these enzymes are expensive, and most of the materials that are used routinely are toxic, it is desirable to apply an efficient DNA extraction procedure that does not require the use of such materials. In this study, genomic DNA was extracted by the salting-out method, but instead of using an analytical-grade enzyme and chemical detergents, as normally used for DNA isolation, a common laundry powder was used. Different concentrations of the powder were tested, and proteins were precipitated by NaCl-saturated distilled water. Finally, DNA precipitation was performed with the use of 96% ethanol. From the results, we conclude that the optimum concentration of laundry powder for the highest yield and purity of isolated DNA is 30 mg/mL. The procedure was optimized, and a final protocol is suggested. Following the same protocol, DNA was extracted from 100 blood samples, and their amounts were found to be >50 microg/mL of whole blood. The integrity of the DNA fragments was confirmed by agarose gel electrophoresis. Furthermore, the extracted DNA was used as a template for PCR reaction. The results obtained from PCR showed that the final solutions of extracted DNA did not contain any inhibitory material for the enzyme used in the PCR reaction, and indicated that the isolated DNA was of good quality. These results show that this method is simple, fast, safe, and cost-effective, and can be used in medical laboratories and research centers. Copyright 2005 Wiley-Liss, Inc.

  12. Low-temperature rapid syntheses of high-quality ZnO nanostructure arrays induced by ammonium salt

    Science.gov (United States)

    Zhao, Ying; Tang, Yang; Han, Zhihua

    2017-01-01

    We have developed a simple ammonium ion-assisted hydrothermal method for the fast preparation of high quality Zinc Oxide (ZnO) nanorod arrays. Ammonium salts were introduced into typically hydrothermal growth solutions formed from Zinc acetate (ZnAc2) and hexamethylenetetramine (HMTA). Scanning electron microscope (SEM), X-ray diffractometer (XRD), High resolution transmission electron microscopic (HRTEM) and photoluminescence (PL) measurements revealed that the growth rate of ZnO nanorods was promoted by adding ammonium salts and the as-grown ZnO nanostructure arrays showed remarkably low defect density. Upon addition of ammonium salt to the hydrothermal reaction solution, complex Zn(NH3)42+ was formed by Zn2+ capturing NH3 molecules dissociated from HMTA. The improvement of growth rate and optical property of the ZnO nanostructure arrays was attributed to positively charged Zn(NH3)42+ attracting oxygen rich OH- in the growth sites of ZnO for hydrolysis reaction and simultaneously inhibiting the defect. Our results demonstrated that ammonium salt can act as a new paradigm to control morphology and quality of the ZnO microstructures.

  13. Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations

    Directory of Open Access Journals (Sweden)

    Ray eKeren

    2015-02-01

    Full Text Available Sponges are potent filter feeders and as such are exposed to high fluxes of toxic trace elements, which can accumulate in their body over time. Such is the case of the Red Sea sponge Theonella swinhoei, which has been shown to accumulate up to 8500 mg/Kg of the highly toxic element arsenic. T. swinhoei is known to harbor a multitude of sponge-associated bacteria, so it is hypothesized that the associated-bacteria will be tolerant to high arsenic concentration. This study also investigates the fate of the arsenic accumulated in the sponge to test if the associated-bacteria have an important role in the arsenic accumulation process of their host, since bacteria are key players in the natural arsenic cycle. Separation of the sponge to sponge cells and bacteria enriched fractions showed that arsenic is accumulated by the bacteria. Sponge-associated, arsenic-tolerant bacteria were cultured in the presence of 5 mM of either arsenate or arsenite (equivalent to 6150 mg/Kg arsenic, dry weight. The 54 isolated bacteria were grouped to 15 OTUs and isolates belonging to 12 OTUs were assessed for tolerance to arsenate at increased concentrations up to 100 mM. Eight of the 12 OTUs tolerated an order of magnitude increase in the concentration of arsenate, and some exhibited external biomineralization of arsenic-magnesium salts. The biomineralization of this unique mineral was directly observed in bacteria for the first time. These results may provide an explanation for the ability of the sponge to accumulate considerable amounts of arsenic. Furthermore arsenic-mineralizing bacteria can potentially be used for the study of bioremediation, as arsenic toxicity affects millions of people worldwide.

  14. Effect of initial salt concentrations on cell performance and distribution of internal resistance in microbial desalination cells.

    Science.gov (United States)

    Yang, Euntae; Choi, Mi-Jin; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Kim, In S

    2015-01-01

    Microbial desalination cells (MDCs) are modified microbial fuel cells (MFCs) that concurrently produce electricity and desalinate seawater, but adding a desalination compartment and an ion-exchange membrane may increase the internal resistance (Ri), which can limit the cell performance. However, the effects of a desalination chamber and initial NaCl concentrations on the internal resistances and the cell performances (i.e. Coulombic efficiency (CE), current and power density) of MDCs have yet to be thoroughly explored; thus, the cell performance and Ri distributions of MDCs having different initial concentrations and an MFC having no desalination chamber were compared. In the MDCs, the current and power density generation increased from 2.82 mA and 158.2 mW/m2 to 3.17 mA and 204.5 mW/m2 when the initial NaCl concentrations were increased from 5 to 30 g/L, as a consequence of the internal resistances decreasing from 2432.0 to 2328.4 Ω. And even though the MFC has a lower Ri than the MDCs, lower cell performances (current: 2.59 mA; power density: 141.6 mW/m2 and CE: 62.1%) were observed; there was no effect of improved junction potential in the MFC. Thus, in the MDCs, the higher internal resistances due to the addition of a desalination compartment can be offset by reducing the electrolyte resistance and improving the junction potential at higher NaCl concentrations.

  15. High manganese concentrations in rocks at Gale crater, Mars

    Science.gov (United States)

    Lanza, Nina L.; Fischer, Woodward W.; Wiens, Roger C.; Grotzinger, John; Ollila, Ann M.; Anderson, Ryan B.; Clark, Benton C.; Gellert, Ralf; Mangold, Nicolas; Maurice, Sylvestre; Le Mouélic, Stéphane; Nachon, Marion; Schmidt, Mariek E.; Berger, Jeffrey; Clegg, Samuel M.; Forni, Olivier; Hardgrove, Craig; Melikechi, Noureddine; Newsom, Horton E.; Sautter, Violaine

    2014-01-01

    The surface of Mars has long been considered a relatively oxidizing environment, an idea supported by the abundance of ferric iron phases observed there. However, compared to iron, manganese is sensitive only to high redox potential oxidants, and when concentrated in rocks, it provides a more specific redox indicator of aqueous environments. Observations from the ChemCam instrument on the Curiosity rover indicate abundances of manganese in and on some rock targets that are 1–2 orders of magnitude higher than previously observed on Mars, suggesting the presence of an as-yet unidentified manganese-rich phase. These results show that the Martian surface has at some point in time hosted much more highly oxidizing conditions than has previously been recognized.

  16. Shock initiation studies on high concentration hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L. Lee [Los Alamos National Laboratory; Bartram, Brian D. [Los Alamos National Laboratory

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  17. Shock initiation studies on high concentration hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L. Lee [Los Alamos National Laboratory; Bartram, Brian D. [Los Alamos National Laboratory

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  18. Asymbiotic culture of Cattleya intermedia Graham (Orchidaceae: the influence of macronutrient salts and sucrose concentrations on survival and development of plantlets

    Directory of Open Access Journals (Sweden)

    Márcio Hisayuki Sasamori

    2015-09-01

    Full Text Available ABSTRACTCattleya intermediais an Atlantic Forest species endemic to Brazil that is classed as vulnerable on the list of threatened species. In this study, C. intermedia plantlets were micropropagated in an asymbiotic culture and the influence of different concentrations of sucrose (15, 30, 45 and 60 g L-1, plus a zero sucrose medium and macronutrient salts (complete Murashige and Skoog (MS medium and half MS medium (with half-strength macronutrients on survival and development of the plantlets was evaluated. In all treatments 100% plantlet survival was achieved. The integrated analysis of height of aerial part, number of leaves per plantlet, fresh mass, number of roots per plantlet and length of the longest root showed that the plantlets exhibited greatest development at the half-strength macronutrient concentrations with 45 or 60 g L-1 of sucrose, as well as at the complete macronutrient concentration with 60 g L-1 of sucrose. Plantlets acclimatized and reintroduced to an environment in which the species occurs naturally exhibited 98.6% survival. The results obtained in this study allowed the establishment of optimal conditions for asymbiotic micropropagation, which is a requisite for future studies focused on conservation of C. intermedia.

  19. Rheological characterization of hair shampoo in the presence of dead sea salt.

    Science.gov (United States)

    Abu-Jdayil, B; Mohameed, H A; Sa'id, M; Snobar, T

    2004-02-01

    In Jordan, a growing industry has been established to produce different types of Dead Sea (DS) cosmetics that have DS salt (contains mainly NaCl, KCl, and MgCl(2)) in their formulas. In this work, the effect of DS salt on the rheology of hair shampoo containing the sodium lauryl ether sulfate as a main active matter was studied. The effects of DS salt and active matter concentration, and the temperature and time of salt mixing, on the rheological properties of hair shampoo were investigated. The salt-free shampoo showed a Newtonian behavior at 'low active matter' (LAM) and shear thinning at 'high active matter' (HAM). The presence of DS salt changed the rheological behavior of LAM shampoo from Newtonian (for the salt-free shampoo) to shear thinning. On the other hand, the behavior of HAM shampoo switched from shear thinning to Newtonian behavior in the presence of high concentration of DS salt. The addition of DS salt increased the apparent viscosity of shampoo to reach a maximum value that corresponded to a salt concentration of 1.5 wt.%. Further addition of DS salt led to a decrease in the shampoo viscosity to reach a value less than that of the salt-free sample at high salt concentration. Changing the mixing temperature (25-45 degrees C) and mixing time (15-120 min) of DS salt with shampoo has no significant influence on the rheological behavior. However, the mixing process increased the apparent viscosity of salt-free shampoo. The power law model fitted well the flow curves of hair shampoo with and without DS salt.

  20. Corrosion Tests of Steel Bar in Concrete under High Temperature by Salt Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChangMin; Lee, YoonHee; Lee, KunJai [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Lee, KyungHo; Jang, HyunKie; Kim, JeongMook [Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2007-07-01

    The saturation of South Korea's at-reactor (AR) spent fuel storage pools has created necessity for additional spent fuel storage capacity. The utility company (Korea Hydro and Nuclear Power Company) is planning to construct a dry storage facility, which offers advantages such as no generation of second time radioactive waste, relatively low operational cost, and a short construction period. Spent nuclear fuel from CANDU will be stored in MACSTOR-400. MACSTOR-400 developed by KHNP and AECL is a new dry storage module to replace Korea's existing concrete silo. This module composed of reinforced concrete has a capacity of 446MgU, twice the MACSTOR 200. Concrete has been used in the construction of nuclear facilities because of two primary properties, its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. Corrosion of reinforcing bars deteriorates the concrete structures and reduces their service life. Because spent fuel dry storage will be constructed near seashore, the reinforced concrete components and structures must withstand the damage due to salt attack under high temperature that is emitted by spent fuel. It can be noted that the temperature considerably affects degradation of reinforced concrete structure. However, there are very few examination examples to make clear the influence of the temperature. To obtain the basic material properties at high temperature and evaluate life time of spent fuel dry storage facility, the following test is now in progress.

  1. Source identification of high glyme concentrations in the Oder River.

    Science.gov (United States)

    Stepien, D K; Püttmann, W

    2014-05-01

    The objective of the following study was to identify the source of high concentrations of glycol diethers (diglyme, triglyme, and tetraglyme) in the Oder River. Altogether four sampling campaigns were conducted and over 50 surface samples collected. During the first two samplings of the Oder River in the Oderbruch region (km 626-690), glymes were detected at concentrations reaching 0.065 μg L(-1) (diglyme), 0.54 μg L(-1) (triglyme) and 1.7 μg L(-1) (tetraglyme). The subsequent sampling of the Oder River, from the area close to the source to the Poland-Germany border (about 500 km) helped to identify the possible area of the dominating glyme entry into the river between km 310 and km 331. During that sampling, the maximum concentration of triglyme was 0.46 μg L(-1) and tetraglyme 2.2 μg L(-1); diglyme was not detected. The final sampling focused on the previously identified area of glyme entry, as well as on tributaries of the Oder River. Samples from Czarna Woda stream and Kaczawa River contained even higher concentrations of diglyme, triglyme, and tetraglyme, reaching 5.2 μg L(-1), 13 μg L(-1) and 81 μg L(-1), respectively. Finally, three water samples were analyzed from a wastewater treatment plant receiving influents from a Copper Smelter and Refinery; diglyme, triglyme, and tetraglyme were present at a maximum concentration of 1700 μg L(-1), 13,000 μg L(-1), and 190,000 μg L(-1), respectively. Further research helped to identify the source of glymes in the wastewater. The gas desulfurization process Solinox uses a mixture of glymes (Genosorb(®)1900) as a physical absorption medium to remove sulfur dioxide from off-gases from the power plant. The wastewater generated from the process and from the maintenance of the equipment is initially directed to the wastewater treatment plant where it undergoes mechanical and chemical treatment processes before being discharged to the tributaries of the Oder River. Although monoglyme was

  2. The effect of NaCl substitution with KCl on proteinase activities of cell-free extract and cell-free supernatant at different pH levels and salt concentrations: Lactobacillus acidophilus and Lactobacillus casei.

    Science.gov (United States)

    Ayyash, M M; Sherkat, F; Shah, N P

    2013-01-01

    The aim of this study was to investigate the effect of substitution of NaCl with KCl at different pH levels and salt concentrations on proteinase activity of cell-free extract and cell-free supernatant of the probiotics Lactobacillus acidophilus and Lactobacillus casei. de Man, Rogosa, and Sharpe broth aliquots were mixed with 2 pure salts (NaCl and KCl) and 2 salt concentrations at 2 concentration levels (5 and 10%), inoculated with Lactobacillus acidophilus or Lactobacillus casei, and incubated aerobically at 37°C for 22 h. The cultures were then centrifuged at 4,000×g for 30 min, and the collected cell pellets were used to prepare cell-wall proteinases and the supernatants used as a source of supernatant (extracellular) proteinases. The proteolytic activity and protein content of both portions were determined. After incubation of both portions with 3 milk caseins (α-, β-, κ-casein), the supernatants were individually subjected to analysis of angiotensin-converting enzyme (ACE)-inhibitory activity and proteolytic activity using the o-phthalaldehyde method. Significant differences were observed in ACE-inhibitory and proteolytic activities between salt substitution treatments of cell-free extract and cell-free supernatant from both probiotic strains at the same salt concentration and pH level.

  3. Ecological effects of climate change on salt marsh wildlife: a case study from a highly urbanized estuary

    Science.gov (United States)

    Thorne, Karen M.; Takekawa, John Y.; Elliott-Fisk, Deborah L.

    2012-01-01

    Coastal areas are high-risk zones subject to the impacts of global climate change, with significant increases in the frequencies of extreme weather and storm events, and sea-level rise forecast by 2100. These physical processes are expected to alter estuaries, resulting in loss of intertidal wetlands and their component wildlife species. In particular, impacts to salt marshes and their wildlife will vary both temporally and spatially and may be irreversible and severe. Synergistic effects caused by combining stressors with anthropogenic land-use patterns could create areas of significant biodiversity loss and extinction, especially in urbanized estuaries that are already heavily degraded. In this paper, we discuss current ideas, challenges, and concerns regarding the maintenance of salt marshes and their resident wildlife in light of future climate conditions. We suggest that many salt marsh habitats are already impaired and are located where upslope transgression is restricted, resulting in reduction and loss of these habitats in the future. In addition, we conclude that increased inundation frequency and water depth will have negative impacts on the demography of small or isolated wildlife meta-populations as well as their community interactions. We illustrate our points with a case study on the Pacific Coast of North America at San Pablo Bay National Wildlife Refuge in California, an area that supports endangered wildlife species reliant on salt marshes for all aspects of their life histories.

  4. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    Science.gov (United States)

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  5. Acquisition and Analysis of Data from High Concentration Solutions

    KAUST Repository

    Besong, Tabot M.D.

    2016-05-13

    The problems associated with ultracentrifugal analysis of macromolecular solutions at high (>10 mg/ml) are reviewed. Especially for the case of solutes which are non-monodisperse, meaningful results are not readily achievable using sedimentation velocity approaches. It is shown however by both simulation and analysis of practical data that using a modified form of an algorithm (INVEQ) published in other contexts, sedimentation equilibrium (SE) profiles can be analysed successfully, enabling topics such as oligomer presence or formation to be defined.To achieve this, it is necessary to employ an approach in which the solution density, which in an SE profile is radius-dependent, is taken into consideration. Simulation suggests that any reasonable level of solute concentration can be analysed.

  6. Rheological properties of highly concentrated protein-stabilized emulsions.

    Science.gov (United States)

    Dimitrova, Tatiana D; Leal-Calderon, Fernando

    2004-05-20

    We prepared concentrated quasi monodisperse hexadecane-in-water emulsions stabilized by various proteins and investigated their rheological properties. Some protein-stabilized emulsions possess remarkably high elasticity and at the same time they are considerably fragile--they exhibit coalescence at yield strain and practically do not flow. The elastic storage modulus G' and the loss modulus G" of the emulsions were determined for different oil volume fractions above the random close packing. Surprisingly, the dimensionless elastic moduli G'/(sigma/a), sigma being the interfacial tension, and a being the mean drop radius, obtained for emulsions stabilized by different proteins do not collapse on a single master curve. They are almost always substantially higher than the corresponding values obtained for equivalent Sodium Dodecyl Sulfate (SDS)-stabilized emulsions. The unusually high elasticity cannot be attributed to a specificity of the continuous phase, because the osmotic equation of state of our emulsions is found identical to the one obtained for samples stabilized by classical surfactants. In parallel, we mimicked the thin films that separate the droplets in the concentrated emulsion and found that the protein adsorption layers contain a substantial number of sticky surface aggregates. These severely obstruct local rearrangements of individual drops in respect to their neighbors which leads to coalescence at yield strain. Furthermore, we found that G'/(sigma/a) is correlated (for a given oil volume fraction) to the dilatational elastic modulus, of the protein layer adsorbed on the droplets. The intrinsic elasticity of the protein layers, together with the blocked local rearrangements are considered as the main factors determining the unusual bulk elasticity of the studied emulsions.

  7. Do high concentrations of microcystin prevent Daphnia control of phytoplankton?

    Science.gov (United States)

    Chislock, Michael F; Sarnelle, Orlando; Jernigan, Lauren M; Wilson, Alan E

    2013-04-15

    Toxin-producing cyanobacteria have frequently been hypothesized to limit the ability of herbivorous zooplankton (such as Daphnia) to control phytoplankton biomass by inhibiting feeding, and in extreme cases, causing zooplankton mortality. Using limnocorral experiments in hyper-eutrophic ponds located in Alabama and Michigan (U.S.A.), we tested the hypothesis that high levels of cyanobacteria and microcystin, a class of hepatotoxins produced by several cyanobacterial genera, prevent Daphnia from strongly reducing phytoplankton abundance. At the start of the first experiment (Michigan), phytoplankton communities were dominated by toxic Microcystis and Anabaena (∼96% of total phytoplankton biomass), and concentrations of microcystin were ∼3 μg L⁻¹. Two weeks after adding Daphnia pulicaria from a nearby eutrophic lake, microcystin levels increased to ∼6.5 μg L⁻¹, yet Daphnia populations increased exponentially (r = 0.24 day⁻¹). By the third week, Daphnia had suppressed phytoplankton biomass by ∼74% relative to the no Daphnia controls and maintained reduced phytoplankton biomass until the conclusion of the five-week experiment. In the second experiment (Alabama), microcystin concentrations were greater than 100 μg L⁻¹, yet a mixture of three D. pulicaria clones from eutrophic lakes in southern MI increased and again reduced phytoplankton biomass, in this case by over 80%. The ability of Daphnia to increase in abundance and suppress phytoplankton biomass, despite high initial levels of cyanobacteria and microcystin, indicates that the latter does not prevent strong control of phytoplankton biomass by Daphnia genotypes that are adapted to environments with abundant cyanobacteria and associated cyanotoxins.

  8. Highly Concentrated Acetic Acid Poisoning: 400 Cases Reviewed

    Directory of Open Access Journals (Sweden)

    Konstantin Brusin

    2012-12-01

    Full Text Available Background: Caustic substance ingestion is known for causing a wide array of gastrointestinal and systemic complications. In Russia, ingestion of acetic acid is a major problem which annually affects 11.2 per 100,000 individuals. The objective of this study was to report and analyze main complications and outcomes of patients with 70% concentrated acetic acid poisoning. Methods: This was a retrospective study of patients with acetic acid ingestion who were treated at Sverdlovsk Regional Poisoning Treatment Center during 2006 to 2012. GI mucosal injury of each patient was assessed with endoscopy according to Zargar’s scale. Data analysis was performed to analyze the predictors of stricture formation and mortality. Results: A total of 400 patients with median age of 47 yr were included. GI injury grade I was found in 66 cases (16.5%, IIa in 117 (29.3%, IIb in 120 (30%, IIIa in 27 (16.7% and IIIb in 70 (17.5%. 11% of patients developed strictures and overall mortality rate was 21%. Main complications were hemolysis (55%, renal injury (35%, pneumonia (27% and bleeding during the first 3 days (27%. Predictors of mortality were age 60 to 79 years, grade IIIa and IIIb of GI injury, pneumonia, stages “I”, “F” and “L” of kidney damage according to the RIFLE scale and administration of prednisolone. Predictors of stricture formation were ingestion of over 100 mL of acetic acid and grade IIb and IIIa of GI injury. Conclusion: Highly concentrated acetic acid is still frequently ingested in Russia with a high mortality rate. Patients with higher grades of GI injury, pneumonia, renal injury and higher amount of acid ingested should be more carefully monitored as they are more susceptible to develop fatal consequences.          

  9. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction.

    Science.gov (United States)

    Stamatopoulos, Konstantinos; Katsoyannos, Evangelos; Chatzilazarou, Arhontoula

    2014-04-08

    A fast, clean, energy-saving, non-toxic method for the stabilization of the antioxidant activity and the improvement of the thermal stability of oleuropein and related phenolic compounds separated from olive leaf extract via salting-out-assisted cloud point extraction (CPE) was developed using Tween 80. The process was based on the decrease of the solubility of polyphenols and the lowering of the cloud point temperature of Tween 80 due to the presence of elevated amounts of sulfates (salting-out) and the separation from the bulk solution with centrifugation. The optimum conditions were chosen based on polyphenols recovery (%), phase volume ratio (Vs/Vw) and concentration factor (Fc). The maximum recovery of polyphenols was in total 95.9%; Vs/Vw was 0.075 and Fc was 15 at the following conditions: pH 2.6, ambient temperature (25 °C), 4% Tween 80 (w/v), 35% Na₂SO₄ (w/v) and a settling time of 5 min. The total recovery of oleuropein, hydroxytyrosol, luteolin-7-O-glucoside, verbascoside and apigenin-7-O-glucoside, at optimum conditions, was 99.8%, 93.0%, 87.6%, 99.3% and 100.0%, respectively. Polyphenolic compounds entrapped in the surfactant-rich phase (Vs) showed higher thermal stability (activation energy (Ea) 23.8 kJ/mol) compared to non-entrapped ones (Ea 76.5 kJ/mol). The antioxidant activity of separated polyphenols remained unaffected as determined by the 1,1-diphenyl-2-picrylhydrazyl method.

  10. Antioxidant Activity and Thermal Stability of Oleuropein and Related Phenolic Compounds of Olive Leaf Extract after Separation and Concentration by Salting-Out-Assisted Cloud Point Extraction

    Directory of Open Access Journals (Sweden)

    Konstantinos Stamatopoulos

    2014-04-01

    Full Text Available A fast, clean, energy-saving, non-toxic method for the stabilization of the antioxidant activity and the improvement of the thermal stability of oleuropein and related phenolic compounds separated from olive leaf extract via salting-out-assisted cloud point extraction (CPE was developed using Tween 80. The process was based on the decrease of the solubility of polyphenols and the lowering of the cloud point temperature of Tween 80 due to the presence of elevated amounts of sulfates (salting-out and the separation from the bulk solution with centrifugation. The optimum conditions were chosen based on polyphenols recovery (%, phase volume ratio (Vs/Vw and concentration factor (Fc. The maximum recovery of polyphenols was in total 95.9%; Vs/Vw was 0.075 and Fc was 15 at the following conditions: pH 2.6, ambient temperature (25 °C, 4% Tween 80 (w/v, 35% Na2SO4 (w/v and a settling time of 5 min. The total recovery of oleuropein, hydroxytyrosol, luteolin-7-O-glucoside, verbascoside and apigenin-7-O-glucoside, at optimum conditions, was 99.8%, 93.0%, 87.6%, 99.3% and 100.0%, respectively. Polyphenolic compounds entrapped in the surfactant-rich phase (Vs showed higher thermal stability (activation energy (Ea 23.8 kJ/mol compared to non-entrapped ones (Ea 76.5 kJ/mol. The antioxidant activity of separated polyphenols remained unaffected as determined by the 1,1-diphenyl-2-picrylhydrazyl method.

  11. Blood pressure and hormonal responses to short whole body cold exposure in subjects with high dietary salt intake.

    Science.gov (United States)

    Arjamaa, O; Turunen, L; Mäkinen, T; Laitinen, J; Leppäluoto, J; Vuolteenaho, O; Rintamäki, H

    1999-11-01

    The objective of the present study was to test a hypothesis that a high dietary salt intake potentiates a cold induced increase in blood pressure in normotensive men. Male subjects (n = 12) were given 7 g day-1 sodium chloride during the cold months of the year, divided in 3-4 doses per day and dissolved in water, for 14 days additional to their normal diet which contained on the average 9.7 g sodium chloride per day. The same subjects, having their normal diet, served as controls. The resting blood pressure was measured on the fourteenth day seven times at the intervals of five minutes in a climatic chamber in thermoneutral conditions. Then the subjects, wearing a three-layer winter clothing, moved into a wind tunnel (-15 degrees C, air velocity 3.5 ms-1) in which they stayed for fifteen minutes and the blood pressure was recorded at the intervals of three minutes. After the cold exposure, the subjects moved back into the climatic chamber for 30 min and the blood pressure was measured as before the cold exposure. Blood samples were drawn before and after the experiment for ion and hormone measurements. A 12 h urine sample was collected just prior to the cold exposure. A significant difference both in systolic (7 mmHg) and in diastolic (7 mmHg) blood pressure was found between a salt load group and control group under thermoneutral conditions, repeatedly measured over 30 min (paired Student's t-test; p < 0.05). During the whole body cold exposure, blood pressure significantly increased both with and without the extra salt load (repeated measures ANOVA, Student-Newman-Keuls; p < 0.05). The level to which the mean arterial pressure increased during the exposure was independent of the salt intake and the profile of the mean arterial pressure curve was similar in both groups. The systolic pressure increased by a 25 mmHg in both groups during the cold exposure. The increase in the diastolic pressure was significantly (paired Student's t-test, p < 0.05) higher in the

  12. Immunohistochemical expression of intrarenal renin angiotensin system components in response to tempol in rats fed a high salt diet

    Science.gov (United States)

    Cao, Gabriel; Della Penna, Silvana Lorena; Kouyoumdzian, Nicolás Martín; Choi, Marcelo Roberto; Gorzalczany, Susana; Fernández, Belisario Enrique; Toblli, Jorge Eduardo; Rosón, María Inés

    2017-01-01

    AIM To determine the effect of tempol in normal rats fed high salt on arterial pressure and the balance between antagonist components of the renal renin-angiotensin system. METHODS Sprague-Dawley rats were fed with 8% NaCl high-salt (HS) or 0.4% NaCl (normal-salt, NS) diet for 3 wk, with or without tempol (T) (1 mmol/L, administered in drinking water). Mean arterial pressure (MAP), glomerular filtration rate (GFR), and urinary sodium excretion (UVNa) were measured. We evaluated angiotensin II (Ang II), angiotensin 1-7 (Ang 1-7), angiotensin converting enzyme 2 (ACE2), mas receptor (MasR), angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptor (AT2R) in renal tissues by immunohistochemistry. RESULTS The intake of high sodium produced a slight but significant increase in MAP and differentially regulated components of the renal renin-angiotensin system (RAS). This included an increase in Ang II and AT1R, and decrease in ACE-2 staining intensity using immunohistochemistry. Antioxidant supplementation with tempol increased natriuresis and GFR, prevented changes in blood pressure and reversed the imbalance of renal RAS components. This includes a decrease in Ang II and AT1R, as increase in AT2, ACE2, Ang (1-7) and MasR staining intensity using immunohistochemistry. In addition, the natriuretic effects of tempol were observed in NS-T group, which showed an increased staining intensity of AT2, ACE2, Ang (1-7) and MasR. CONCLUSION These findings suggest that a high salt diet leads to changes in the homeostasis and balance between opposing components of the renal RAS in hypertension to favour an increase in Ang II. Chronic antioxidant supplementation can modulate the balance between the natriuretic and antinatriuretic components of the renal RAS. PMID:28101449

  13. Modelling acceptance of sunlight in high and low photovoltaic concentration

    Energy Technology Data Exchange (ETDEWEB)

    Leutz, Ralf, E-mail: ralf.leutz@leopil.com [Leutz Optics and Illumination UG (haftungsbeschränkt), Marburg (Germany)

    2014-09-26

    A simple model incorporating linear radiation characteristics, along with the optical trains and geometrical concentration ratios of solar concentrators is presented with performance examples for optical trains of HCPV, LCPV and benchmark flat-plate PV.

  14. Design philosophy and construction of a high concentration compound parabolic concentrator

    CSIR Research Space (South Africa)

    Roos, TH

    2010-09-01

    Full Text Available A compound parabolic concentrator (CPC) with a concentration ratio of 16:1 is under development at CSIR for volumetric receiver and solar fuels development. The ideal shape has been approximated by 6 and 12 facets in the longitudinal...

  15. Competitive exclusion of Elymus athericus from a high-stress habitat in a European salt marsh

    NARCIS (Netherlands)

    Bockelmann, AC; Neuhaus, R

    1999-01-01

    1 Zonation is often seen in environments with a strong physico-chemical gradient, such as salt marshes. It has been hypothesized that plant species are limited in their distribution by abiotic factors towards the more extreme end of the gradient, and by competition towards the more favourable end. I

  16. An evaluation of possible next-generation high temperature molten-salt power towers.

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, Gregory J.

    2011-12-01

    Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

  17. RESEARCH Reducing the sodium content of high-salt foods: Effect ...

    African Journals Online (AJOL)

    Salt is known to affect blood pressure (BP) via a linear association.6. This analysis provides ... common risk factors were to be reduced.11 We used the PIF to estimate the percentage ... behaviour or a well-functioning health system. This is the first .... legislative changes.22 However, sodium tax – an economic (dis) incentive ...

  18. High-performance deployable structures for the support of high-concentration ratio solar array modules

    Science.gov (United States)

    Mobrem, M.

    1985-01-01

    A study conducted on high-performance deployable structures for the support of high-concentration ratio solar array modules is discussed. Serious consideration is being given to the use of high-concentration ratio solar array modules or applications such as space stations. These concentrator solar array designs offer the potential of reduced cost, reduced electrical complexity, higher power per unit area, and improved survivability. Arrays of concentrators, such as the miniaturized Cassegrainian concentrator modules, present a serious challenge to the structural design because their mass per unit area (5.7 kg/square meters) is higher than that of flexible solar array blankets, and the requirement for accurate orientation towards the Sun (plus or minus 0.5 degree) requires structures with improved accuracy potentials. In addition, use on a space station requires relatively high structural natural frequencies to avoid deleterious interactions with control systems and other large structural components. The objective here is to identify and evaluate conceptual designs of structures suitable for deploying and accurately supporting high-concentration ratio solar array modules.

  19. Effect of acid and salt concentration in fresh-pack pickles on the growth of Clostridium botulinum spores.

    Science.gov (United States)

    Ito, K A; Chen, J K; Lerke, P A; Seeger, M L; Unverferth, J A

    1976-01-01

    The addition of various amounts of acetic acid to pureed cucumbers inoculated with Clostridium botulinum spores has shown that outgrowth is inhibited at pH 4.8 but not at pH 5.0. Inoculation experiments with whole cucumbers showed that as little as 0.9% acetic acid in the brine was sufficient to prevent outgrowth from spore inocula as high as 10(6)/cucumber. It was further shown that the rapid rate of acetic acid penetration into fresh-pack pickles prevents the growth of any C. botulinum spores that may be present. PMID:9898

  20. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    Energy Technology Data Exchange (ETDEWEB)

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  1. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

    Science.gov (United States)

    Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.

    2016-01-01

    Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

  2. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    Science.gov (United States)

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  3. Salt-assisted Low Temperature Solid State Synthesis of High Surface Area CoFe2O4 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Runhua Qin; Fengsheng Li; Wei Jiang; Li Liu

    2009-01-01

    A novel salt-assisted low temperature solid state method using CoCl2·6H2O, FeCl3·6H2O and NaOH as pre-cursor and using NaCl as a dispersant to synthesize high surface area CoFe2O4 nanoparticles, has been investigated. The effects of the molar ratio of added salt and calcination temperature on the characteristics of the products were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Brunauer, Emmett and Teller (BET) surface area analysis. Results showed that the introduction of leachable inert inorganic salt as a hard agglomeration inhibitor in the mixture precursorled to the formation of high dispersive CoFe2O4 nanoparticles; and the increase in specific surface area from 28.28 to 73.97 m2/g, and the saturation magnetization is 84.6 emu/g.

  4. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    Science.gov (United States)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  5. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Youliang Shen

    2014-01-01

    Full Text Available Carbon nanofibers modified graphite fibers (CNFs/GF composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  6. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available BACKGROUND: Invasive plants are often confronted with heterogeneous environments and various stress factors during their secondary phase of invasion into more stressful habitats. A high tolerance to stress factors may allow exotics to successfully invade stressful environments. Ipomoea cairica, a vigorous invader in South China, has recently been expanding into salt marshes. METHODOLOGY/PRINCIPAL FINDINGS: To examine why this liana species is able to invade a stressful saline environment, we utilized I. cairica and 3 non-invasive species for a greenhouse experiment. The plants were subjected to three levels of salinity (i.e., watered with 0, 4 and 8 g L(-1 NaCl solutions and simulated herbivory (0, 25 and 50% of the leaf area excised treatments. The relative growth rate (RGR of I. cairica was significantly higher than the RGR of non-invasive species under both stress treatments. The growth performance of I. cairica was not significantly affected by either stress factor, while that of the non-invasive species was significantly inhibited. The leaf condensed tannin content was generally lower in I. cairica than in the non-invasive I. triloba and Paederia foetida. Ipomoea cairica exhibited a relatively low resistance to herbivory, however, its tolerance to stress factors was significantly higher than either of the non-invasive species. CONCLUSIONS/SIGNIFICANCE: This is the first study examining the expansion of I. cairica to salt marshes in its introduced range. Our results suggest that the high tolerance of I. cairica to key stress factors (e.g., salinity and herbivory contributes to its invasion into salt marshes. For I. cairica, a trade-off in resource reallocation may allow increased resources to be allocated to tolerance and growth. This may contribute to a secondary invasion into stressful habitats. Finally, we suggest that I. cairica could spread further and successfully occupy salt marshes, and countermeasures based on herbivory could be

  7. An Automatic High Efficient Method for Dish Concentrator Alignment

    OpenAIRE

    Yong Wang; Song Li; Jinshan Xu; Yijiang Wang; Xu Cheng; Changgui Gu; Shengyong Chen; Bin Wan

    2014-01-01

    Alignment of dish concentrator is a key factor to the performance of solar energy system. We propose a new method for the alignment of faceted solar dish concentrator. The isosceles triangle configuration of facet’s footholds determines a fixed relation between light spot displacements and foothold movements, which allows an automatic determination of the amount of adjustments. Tests on a 25 kW Stirling Energy System dish concentrator verify the feasibility, accuracy, and efficiency of our...

  8. ["Legal highs" from the German internet--"bath salt drugs" on the rise].

    Science.gov (United States)

    Musshoff, Frank; Hottmann, Lidia; Hess, Cornelius; Madea, Burkhard

    2013-01-01

    The appearance of dangerous and insufficiently studied designer drugs has increased substantially within the last few years. Mixtures containing centrally active compounds are often declared as "bath salt", "incense", "plant food", "bong cleaners" and are marketed in head shops and on the Internet. As the majority of the ingredients of such products are not subject to regulations of the German Narcotics Law (Betäubungsmittelgesetz, BtMG), the vendors and consumers mistake the sale of such products for legal. An alternative possibility to prosecute the distribution of so-called "legal highs" arises from the regulations of the German Medicinal Products Act (Arzneimittelgesetz, AMG). Indicating a private address, several products were purchased via the Internet. The products were analyzed by gas chromatography- mass spectrometry using computer-assisted database search and potential hits were checked for plausibility. The analysis of 100 samples revealed centrally acting compounds (including caffeine) in 98 % (75 % of all samples positive for caffeine). In 16 % of the samples, drugs subject to the BtMG at the time of purchase (end of 2011) were found including 2,5-dimethoxy-4-methylamphetamine, amphetamine, etilamphetamine, N-benzylpiperazine, mephedrone, methcathinone, and phenobarbital. In 55 % of the samples, drugs subject to the current BtMG were found (after its amendment on 20 July 2012). In 37 % of the samples, substances subject to the AMG were found (e.g. ephedrine). In 35 % of the samples, drugs with a potential psychotropic effect were found. In 57.3 % of the positive samples, more than one active ingredient was determined and in some cases up to five active components were found. Other interesting pharmacologically active ingredients found were 4-methylcathinone (n=13), flephedrone (n=8), trifluoromethylphenyl-piperazine (n=7), methylone (n=5), butylone (n=2), hordenine (n=2), and harmane (n=2). Most of the substances not covered by the BtMG can be

  9. High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress

    OpenAIRE

    Tavakkoli, Ehsan; Rengasamy, Pichu; McDonald, Glenn K

    2010-01-01

    Despite the fact that most plants accumulate both sodium (Na+) and chloride (Cl–) ions to high concentration in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na+ accumulation. There have also been some recent concerns about the ability of hydroponic systems to predict the responses of plants to salinity in soil. To address these two issues, an experiment was conducted to compare the responses to Na+ and to ...

  10. High resolution spectrophotometry for identification of chlorine dioxide in concentrated chlorine solutions.

    Science.gov (United States)

    Gauw, R D; Emmert, G L; Bubnis, B; Gordon, G

    1999-12-06

    Electrolyzed salt brine generators hold great promise for water disinfection in small communities and remote locations. Electrolysis cell liquors have been reported to contain chlorine, chlorine dioxide and ozone. High resolution spectrophotometry was used to observe the presence (or absence) of a unique spectral absorbance pattern present in solutions containing 1-2 mg/l chlorine dioxide.

  11. Monitoring the oleuropein content of olive leaves and fruits using ultrasound- and salt-assisted liquid-liquid extraction optimized by response surface methodology and high-performance liquid chromatography.

    Science.gov (United States)

    Ismaili, Ahmad; Heydari, Rouhollah; Rezaeepour, Reza

    2016-01-01

    A novel and rapid ultrasound- and salt-assisted liquid-liquid extraction coupled with high-performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box-Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound-assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A(2) , B(2) , C(2) , and D(2) are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique.

  12. Selection of common bean lines with high grain yield and high grain calcium and iron concentrations

    Directory of Open Access Journals (Sweden)

    Nerinéia Dalfollo Ribeiro

    2014-02-01

    Full Text Available Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994 and grain yield and iron concentration (r = -0.3926. Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.

  13. Selectivity and Mass Transfer Limitations in Pressure-Retarded Osmosis at High Concentrations and Increased Operating Pressures.

    Science.gov (United States)

    Straub, Anthony P; Osuji, Chinedum O; Cath, Tzahi Y; Elimelech, Menachem

    2015-10-20

    Pressure-retarded osmosis (PRO) is a promising source of renewable energy when hypersaline brines and other high concentration solutions are used. However, membrane performance under conditions suitable for these solutions is poorly understood. In this work, we use a new method to characterize membranes under a variety of pressures and concentrations, including hydraulic pressures up to 48.3 bar and concentrations of up to 3 M NaCl. We find membrane selectivity decreases as the draw solution concentration is increased, with the salt permeability coefficient increasing by a factor of 2 when the draw concentration is changed from 0.6 to 3 M NaCl, even when the applied hydraulic pressure is maintained constant. Additionally, we find that significant pumping energy is required to overcome frictional pressure losses in the spacer-filled feed channel and achieve suitable mass transfer on the feed side of the membrane, especially at high operating pressures. For a meter-long module operating at 41 bar, we estimate feedwater will have to be pumped in at a pressure of at least 3 bar. Both the reduced selectivity and increased pumping energy requirements we observe in PRO will significantly diminish the obtainable net energy, highlighting important new challenges for development of systems utilizing hypersaline draw solutions.